NASA Astrophysics Data System (ADS)
Liu, H. Z.; Wang, M. H.; Wang, Z. F.; Bian, J. M.
2018-01-01
Due to using gaseous fluorine monomer with toxicity, waterborne fluoropolymers are synthesized by semi-continuous high-pressure emulsion polymerization method which differs from free-pressure emulsion polymerization. To dates, the research on preparing process and kinetics for high-pressure emulsion polymerization is reported relatively less, which hinders researchers from understanding of mechanisms for monomer-fluorinated emulsion polymerization. The paper also provides a new method by element auxiliary analysis to calculate kinetics parameters of high-pressure emulsion polymerization. Based on aforementioned consideration, waterborne fluoropolymers were prepared by copolymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), butyl acrylate (BA) and vinyl ester of versatic acid (Veova 10) using potassium persulfate as initiator and mixed surfactants. The kinetics of emulsion polymerization of waterborne fluoropolymers was then investigated. Effects of emulsifier concentration, initiator concentration, and polymerization temperature on polymerization rate (Rp) were evaluated, and relationship was described as Rp∝[I]0.10 and Rp∝[E]0.12. The apparent activation energy was determined to be 33.61 kJ·mol-1. Moreover, the relative conversion rate of CTFE with the other monomers was observed, and results indicated that CTFE monomer more uniformly copolymerized with the other monomers. The resulting emulsion properties and pressure change in an autoclave were evaluated at different stirring rates. The initial reaction time, defined as the beginning time of dropwise addition, was determined by the change in solid content and particle size of emulsion.
Qiu, Guihua; Wang, Qi; Wang, Chao; Lau, Willie; Guo, Yili
2007-01-01
Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles was successfully employed to prepare polystyrene (PS)/Fe3O4 magnetic emulsion and nanocomposite. The effects of Fe3O4 nanoparticles on miniemulsion polymerization process, the structure, morphology and properties of PS/Fe3O4 nanocomposite were investigated. The increase in the amount of Fe3O4 nanoparticles drastically increases the polymerization rate due to that Fe3O4 nanoparticles increase the number of radicals and the cavitation bubbles. Polymerization kinetics of ultrasonically initiated miniemulsion polymerization is similar to that of conventional miniemulsion polymerization. PS/Fe3O4 magnetic emulsion consists of two types of particles: latex particles with Fe3O4 nanoparticles and latex particles with no encapsulated Fe3O4 nanoparticles. Fe3O4 nanoparticles lower the molecular weight of PS and broaden the molecular weight and particle size distribution. Thermal stability of PS/Fe3O4 nanocomposite increases with the increase in Fe3O4 content. PS/Fe3O4 emulsion and nanocomposite exhibit magnetic properties. PS/Fe3O4 magnetic particles can be separated from the magnetic emulsion by an external magnetic field and redispersed into the emulsion with agitation.
NASA Technical Reports Server (NTRS)
Ray, Asit K.
1990-01-01
Monodisperse polymer particles (having uniform diameter) were used for the last two decades in physical, biological, and chemical sciences. In NASA Langley Research Center monodisperse polystyrene particles are used in wind tunnel laser velocimeters. These polystyrene (PS) particles in latex form were formulated at the Engineering Laboratory of FENGD using emulsion-free emulsion polymerization. Monodisperse PS latices particles having different particle diameters were formulated and useful experimental data involving effects of process conditions on particle size were accumulated. However, similar process conditions and chemical recipes for polymerization of styrene monomer have often yielded monodisperse particles having varying diameters. The purpose was to improve the PS latex product uniformity by fine-tuning the process parameters based on the knowledge of suspension and emulsion polymerization.
Various aspects of ultrasound assisted emulsion polymerization process.
Korkut, Ibrahim; Bayramoglu, Mahmut
2014-07-01
In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.
Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles.
Klapper, Markus; Nenov, Svetlin; Haschick, Robert; Müller, Kevin; Müllen, Klaus
2008-09-01
Polymer latex particles are nanofunctional materials with widespread applications including electronics, pharmaceuticals, photonics, cosmetics, and coatings. These materials are typically prepared using waterborne heterogeneous systems such as emulsion, miniemulsion, and suspension polymerization. However, all of these processes are limited to water-stable catalysts and monomers mainly polymerizable via radical polymerization. In this Account, we describe a method to overcome this limitation: nonaqueous emulsions can serve as a versatile tool for the synthesis of new types of polymer nanoparticles. To form these emulsions, we first needed to find two nonmiscible nonpolar/polar aprotic organic solvents. We used solvent mixtures of either DMF or acetonitrile in alkanes and carefully designed amphiphilic block and statistical copolymers, such as polyisoprene- b-poly(methyl methacrylate) (PI- b-PMMA), as additives to stabilize these emulsions. Unlike aqueous emulsions, these new emulsion systems allowed the use of water-sensitive monomers and catalysts. Although polyaddition and polycondensation reactions usually lead to a large number of side products and only to oligomers in the aqueous phase, these new conditions resulted in high-molecular-weight, defect-free polymers. Furthermore, conducting nanoparticles were produced by the iron(III)-induced synthesis of poly(ethylenedioxythiophene) (PEDOT) in an emulsion of acetonitrile in cyclohexane. Because metallocenes are sensitive to nitrile and carbonyl groups, the acetonitrile and DMF emulsions were not suitable for carrying out metallocene-catalyzed olefin polymerization. Instead, we developed a second system, which consists of alkanes dispersed in perfluoroalkanes. In this case, we designed a new amphipolar polymeric emulsifier with fluorous and aliphatic side chains to stabilize the emulsions. Such heterogeneous mixtures facilitated the catalytic polymerization of ethylene or propylene to give spherical nanoparticles of high molecular weight polyolefins. These nonaqueous systems also allow for the combination of different polymerization techniques to obtain complex architectures such as core-shell structures. Previously, such structures primarily used vinylic monomers, which greatly limited the number of polymer combinations. We have demonstrated how nonaqueous emulsions allow the use of a broad variety of hydrolyzable monomers and sensitive catalysts to yield polyester, polyurethane, polyamide, conducting polymers, and polyolefin latex particles in one step under ambient reaction conditions. This nonpolar emulsion strategy dramatically increases the chemical palette of polymers that can form nanoparticles via emulsion polymerization.
Zhu, Ye; Sun, Jianhua; Yi, Chenglin; Wei, Wei; Liu, Xiaoya
2016-09-13
In this study, a one-step generation of stable multiple Pickering emulsions using pH-responsive polymeric nanoparticles as the only emulsifier was reported. The polymeric nanoparticles were self-assembled from an amphiphilic random copolymer poly(dodecyl acrylate-co-acrylic acid) (PDAA), and the effect of the copolymer content on the size and morphology of PDAA nanoparticles was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The emulsification study of PDAA nanoparticles revealed that multiple Pickering emulsions could be generated through a one-step phase inversion process by using PDAA nanoparticles as the stabilizer. Moreover, the emulsification performance of PDAA nanoparticles at different pH values demonstrated that multiple emulsions with long-time stability could only be stabilized by PDAA nanoparticles at pH 5.5, indicating that the surface wettability of PDAA nanoparticles plays a crucial role in determining the type and stability of the prepared Pickering emulsions. Additionally, the polarity of oil does not affect the emulsification performance of PDAA nanoparticles, and a wide range of oils could be used as the oil phase to prepare multiple emulsions. These results demonstrated that multiple Pickering emulsions could be generated via the one-step emulsification process using self-assembled polymeric nanoparticles as the stabilizer, and the prepared multiple emulsions have promising potential to be applied in the cosmetic, medical, and food industries.
Photopolymerization Of Levitated Droplets
NASA Technical Reports Server (NTRS)
Rembaum, Alan; Rhim, Won-Kyu; Hyson, Michael T.; Chang, Manchium
1989-01-01
Experimental containerless process combines two established techniques to make variety of polymeric microspheres. In single step, electrostatically-levitated monomer droplets polymerized by ultraviolet light. Faster than multiple-step emulsion polymerization process used to make microspheres. Droplets suspended in cylindrical quadrupole electrostatic levitator. Alternating electrostatic field produces dynamic potential along axis. Process enables tailoring of microspheres for medical, scientific, and industrial applications.
SOURCE ASSESSMENT: POLYVINYL CHLORIDE
This report summarizes data on air emissions from the polyvinyl chloride (PVC) industry. PVC is manufactured by 20 companies at 35 plants. Each plant uses one or more of four possible polymerization processes: (1) suspension polymerization, (2) emulsion polymerization, (3) bulk p...
Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst
2013-04-16
Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.
Magi Meconi, Giulia; Ballard, Nicholas; Asua, José M; Zangi, Ronen
2017-12-06
Although surfactants are known to play a vital role in polymerization reactions carried out in dispersed media, many aspects of their use are poorly understood, perhaps none more so than the vastly different action of ionic and nonionic surfactants in emulsion polymerization. In this work, we combine experimental measurements of emulsion polymerization of styrene with atomistic molecular dynamics simulations to better understand the behavior of surfactants at monomer/polymer-water interfaces. In a batch emulsion polymerization of styrene, the nonionic surfactant Disponil AFX 1080 leads to two nucleation periods, in contrast to the behavior observed for the ionic surfactant SDS. This can be explained by the absorption of the nonionic surfactant into the organic phase at the early stages of the polymerization reaction which is then released as the reaction progresses. Indeed, we find that the partition coefficient of the surfactant between the organic phase and water increases with the amount of monomer in the former, and preferential partitioning is detected to organic phases containing at least 55% styrene. Results from molecular dynamics simulations confirm that spontaneous dissolution of the non-ionic surfactant into a styrene-rich organic phase occurs above a critical concentration of the surfactant adsorbed at the interface. Above this critical concentration, a linear correlation between the amount of surfactant adsorbed at the interface and that absorbed inside the organic phase is observed. To facilitate this absorption into a completely hydrophobic medium, water molecules accompany the intruding surfactants. Similar simulations but with the ionic surfactant instead did not result in any absorption of the surfactant into a neat styrene phase, likely because of its strongly hydrophilic head group. The unusual partitioning behavior of nonionic surfactants explains a number of observable features of emulsion polymerization reactions which use nonionic surfactants and should help with future development of processes for improved control over polymerization.
Aspects of droplet and particle size control in miniemulsions
NASA Astrophysics Data System (ADS)
Saygi-Arslan, Oznur
Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a potential application of the method. Molecular weight control was found to be achieved via diffusion of the CFRP agents through the aqueous phase owing to limited water solubilities. The effects of adsorption rate and energy on the droplet size and size distribution of miniemulsions using different surfactants (sodium lauryl sulfate (SLS), sodium dodecylbenzene sulfonate (SDBS), Dowfax 2A1, Aerosol OT-75PG, sodium n-octyl sulfate (SOS), and sodium n-hexadecyl sulfate (SHS)) were analyzed. For this purpose, first, the dynamics of surfactant adsorption at an oil/water interface were examined over a range of surfactant concentrations by the drop volume method and then adsorption rates of the different surfactants were determined for the early stages of adsorption. The results do not show a direct relationship between adsorption rate and miniemulsion droplet size and size distribution. Adsorption energies of these surfactants were also calculated by the Langmuir adsorption isotherm equation and no correlation between adsorption energy and miniemulsion droplet size was found. In order to understand the mechanism of miniemulsification process, the effects of breakage and coalescence processes on droplet size distributions were observed at different surfactant concentrations, monomer ratios, and homogenization conditions. A coalescence and breakup mechanism for miniemulsification is proposed to explain the size distribution of droplets. The multimodal droplet size distribution of ODMA miniemulsions was controlled by the breakage mechanism. The results also showed that, at a surfactant concentration when 100% surface coverage was obtained, the droplet size distribution became unimodal.
Silicone-containing aqueous polymer dispersions with hybrid particle structure.
Kozakiewicz, Janusz; Ofat, Izabela; Trzaskowska, Joanna
2015-09-01
In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bissadi, Golnaz
Hybrid membranes represent a promising alternative to the limitations of organic and inorganic materials for high productivity and selectivity gas separation membranes. In this study, the previously developed concept of emulsion-polymerized mixed matrix (EPMM) membranes was further advanced by investigating the effects of surfactant and compatibilizer on inorganic loading in poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based EPMM membranes, in which inorganic part of the membranes originated from tetraethylorthosilicate (TEOS). The polymerization of TEOS, which consists of hydrolysis of TEOS and condensation of the hydrolyzed TEOS, was carried out as (i) one- and (ii) two-step processes. In the one-step process, the hydrolysis and condensation take place in the same environment of a weak acid provided by the aqueous solution of aluminum hydroxonitrate and sodium carbonate. In the two-step process, the hydrolysis takes place in the environment of a strong acid (solution of hydrochloric acid), whereas the condensation takes place in weak base environment obtained by adding excess of the ammonium hydroxide solution to the acidic solution of the hydrolyzed TEOS. For both one- and two-step processes, the emulsion polymerization of TEOS was carried out in two types of emulsions made of (i) pure trichloroethylene (TCE) solvent, and (ii) 10 w/v% solution of PPO in TCE, using different combinations of the compatibilizer (ethanol) and the surfactant (n-octanol). The experiments with pure TCE, which are referred to as a gravimetric powder method (GPM) allowed assessing the effect of different experimental parameters on the conversion of TEOS. The GPM tests also provided a guide for the synthesis of casting emulsions containing PPO, from which the EPMM membranes were prepared using a spin coating technique. The synthesized EPMM membranes were characterized using 29Si nuclear magnetic resonance (29Si NMR), differential scanning calorimetry (DSC), inductively coupled plasma mass spectrometry (ICP-MS), and gas permeation measurements carried out in a constant pressure (CP) system. The 29Si NMR analysis verified polymerization of TEOS in the emulsions made of pure TCE, and the PPO solution in TCE. The conversions of TEOS in the two-step process in the two types of emulsions were very close to each other. In the case of the one-step process, the conversions in the TCE emulsion were significantly greater than those in the emulsion of the PPO solution in TCE. Consequently, the conversions of TEOS in the EPMM membranes made in the two-step process were greater than those in the EPMM membranes made in the one-step process. The latter ranged between 10 - 20%, while the highest conversion in the two-step process was 74% in the presence of pure compatibilizer with no surfactant. Despite greater conversions and hence the greater inorganic loadings, the EPMM membranes prepared in the two-step process had glass transition temperatures (Tg) only slightly greater than the reference PPO membranes. In contrast, despite relatively low inorganic loadings, the EPMM membranes prepared in the one-step process had Tgs markedly greater than PPO, and showed the expected trend of an increase in Tg with the inorganic loading. These results indicate that in the case of the one-step process the polymerized TEOS was well integrated with the PPO chains and the interactions between the two phases lead to high Tgs. On the other hand, this was not the case for the EPMM membranes prepared in the two-step process, suggesting possible phase separation between the polymerized TEOS and the organic phase. The latter was confirmed by detecting no selectivity in the EPMM membranes prepared by the two-step process. In contrast, the EPMM membranes prepared in the one-step process in the presence of the compatibilizer and no surfactant showed 50% greater O2 permeability coefficient and a slightly greater O2/N2 permeability ratio compared to the reference PPO membranes.
NASA Astrophysics Data System (ADS)
Gao, Dangge; Chang, Rui; Lyu, Bin; Ma, Jianzhong; Duan, Xiying
2018-03-01
This paper presents a facile and efficient synthesis method to fabricate epoxy-acrylate copolymer/nano-silica latex via Pickering emulsion polymerization stabilized by silica sol. The effects of solid contents, silica concentration and polymerization time on emulsion polymerization were studied. The core-shell epoxy-acrylate copolymer/nano-silica was obtained with average diameter 690 nm, was observed by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The formation mechanism of epoxy-acrylate copolymer/nano-silica emulsion polymerization was proposed through observing the morphology of latex particles at different polymerization time. Fourier Transformation Infrared (FT-IR) and Thermogravimetric Analysis (TGA) were used to study structure and thermostability of the composites. Morphology of the latex film was characterized by Scanning Electron Microscope (SEM). The results indicated that nano-silica particles existed in the composite emulsion and could improve the thermal stability of the film. The epoxy-acrylate copolymer/nano-silica latex was used as binder applied to cotton fabric for pigment printing. The application results demonstrated that Pickering emulsion stabilized by silica sol has good effects in the pigment printing binder without surfactant. Compared with commodity binder, the resistance to wet rubbing fastness and soaping fastness were improved half grade.
Production of large-particle-size monodisperse latexes
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.
1984-01-01
The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.
Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation.
Schaeffel, David; Staff, Roland Hinrich; Butt, Hans-Juergen; Landfester, Katharina; Crespy, Daniel; Koynov, Kaloian
2012-11-14
Dual color fluorescence cross-correlation spectroscopy (DC FCCS) experiments were conducted to study the coalescence and aggregation during the formation of nanoparticles. To assess the generality of the method, three completely different processes were selected to prepare the nanoparticles. Polymeric nanoparticles were formed either by solvent evaporation from emulsion nanodroplets of polymer solutions or by miniemulsion polymerization. Inorganic nanocapsules were formed by polycondensation of alkoxysilanes at the interface of nanodroplets. In all cases, DC FCCS provided fast and unambiguous information about the occurrence of coalescence and thus a deeper insight into the mechanism of nanoparticle formation. In particular, it was found that coalescence played a minor role for the emulsion-solvent evaporation process and the miniemulsion polymerization, whereas substantial coalescence was detected during the formation of the inorganic nanocapsules. These findings demonstrate that DC FCCS is a powerful tool for monitoring nanoparticles genesis.
Pan, Jianming; Li, Linzi; Hang, Hui; Wu, Runrun; Dai, Xiaohui; Shi, Weidong; Yan, Yongsheng
2013-06-25
Magnetic/hollow double-shelled imprinted polymers (MH-MIPs) were synthesized by Pickering emulsion polymerization. In this method, attapulgite (ATP) particles were used as stabilizers to establish a stable oil-in-water emulsion, and a few hydrophilic Fe3O4 nanoparticles were allowed to be magnetic separation carriers. The imprinting system was fabricated by radical polymerization in the presence of the functional and polymeric monomers in the oil phase. The results of characterization indicated that MH-MIPs exhibited magnetic sensitivity (Ms = 4.76 emu g(-1)), thermal stability (especially below 200 °C), and hollow structure and were composed of exterior ATP shells and interior imprinted polymers shells. Then MH-MIPs were evaluated as sorbents for the selective binding of λ-cyhalothrin as a result of their magnetism, enhanced mechanical strength, hydrophilic surface, and recognition ability. The kinetic properties of MH-MIPs were well described by the pseudo-second-order equation, indicating that the chemical process could be the rate-limiting step in the adsorption process for λ-cyhalothrin. The equilibrium adsorption capacity of MH-MIPs was 60.06 μmol g(-1) at 25 °C, and the Langmuir isotherm model gave a better fit to the experimental data, indicating the monolayer molecular adsorption for λ-cyhalothrin. The selective recognition experiments also demonstrated the high affinity and selectivity of MH-MIIPs toward λ-cyhalothrin over fenvalerate and diethyl phthalate.
Setti, Chiara; Suarato, Giulia; Perotto, Giovanni; Athanassiou, Athanassia; Bayer, Ilker S
2018-06-18
Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi ® , and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi ® /alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells. Copyright © 2018. Published by Elsevier B.V.
Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers.
Ma, Kai; An, Zesheng
2016-10-01
A novel type of emulsion gel based on star-polymer-stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well-defined phenol-functionalized core-crosslinked star polymers are synthesized via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization and are used as stabilizers for oil-in-water emulsions. Horseradish-peroxidase-catalyzed polymerization of the phenol moieties in the presence of H 2 O 2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-coalescence of oppositely charged droplets in pH-sensitive emulsions
Liu, Tingting; Seiffert, Sebastian; Thiele, Julian; Abate, Adam R.; Weitz, David A.; Richtering, Walter
2012-01-01
Like charges stabilize emulsions, whereas opposite charges break emulsions. This is the fundamental principle for many industrial and practical processes. Using micrometer-sized pH-sensitive polymeric hydrogel particles as emulsion stabilizers, we prepare emulsions that consist of oppositely charged droplets, which do not coalesce. We observe noncoalescence of oppositely charged droplets in bulk emulsification as well as in microfluidic devices, where oppositely charged droplets are forced to collide within channel junctions. The results demonstrate that electrostatic interactions between droplets do not determine their stability and reveal the unique pH-dependent properties of emulsions stabilized by soft microgel particles. The noncoalescence can be switched to coalescence by neutralizing the microgels, and the emulsion can be broken on demand. This unusual feature of the microgel-stabilized emulsions offers fascinating opportunities for future applications of these systems. PMID:22203968
Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study
NASA Technical Reports Server (NTRS)
Kim, S.; Westmoreland, D.
1994-01-01
The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.
Heterogeneous chemical reactions: Preparation of monodisperse latexes
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Sterk, A. A.; Bethke, G. W.
1977-01-01
It is demonstrated that a photoinitiated emulsion polymerization can be carried out to a significant conversion in a SPAR rocket prototype polymerization vessel within the six minutes allowed for the experiment. The percentage of conversion was determined by both dilatometry and gravimetric methods with good agreement. The experimental results lead to the following conclusions: (1) emulsion polymerizations can be carried out to conversions as high as 75%, using a stable micellized styrene-SLS system plus photoinitiator; (2) dilatometry can be used to accurately determine both the rate and conversion of polymerization; (3) thermal expansion due to the light source and heat of reaction is small and can be corrected for if necessary; (4) although seeded emulsion polymerizations are unfavorable in photoinitiation, as opposed to chemical initiation, polymerizations can be carried out to at least 15% conversion using 7940A seed particles, with 0.05% solids; and (5) photoinitiation should be used to initiate polymerization in the SPAR rocket experiments because of the mechanical simplicity of the experiment.
Covalent bonding of polycations to small polymeric particles
NASA Technical Reports Server (NTRS)
Rembaum, A.
1975-01-01
Process produces small spherical polymeric particles which have polycations bound to them. In emulsion form, particles present large positively charged surface which is available to absorb polyanions. This properly can be used in removing heparin from blood or bile acids from the digestive tract. Other anions, such as DNA and RNA, can also be removed from aqueous solutions.
Analysis of emulsion stability in acrylic dispersions
NASA Astrophysics Data System (ADS)
Ahuja, Suresh
2012-02-01
Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.
Synthesis of mesoporous poly(melamine-formaldehyde) particles by inverse emulsion polymerization.
Schwarz, Dana; Weber, Jens
2017-07-15
Mesoporous poly(melamine-formaldehyde) (MF) particles with surface areas of up to 200m 2 g -1 were synthesized by an inverse emulsion polymerization using dodecane and Span80® as continuous phase. The finer details of the shape control (using emulsion techniques) and the porosity control (using silica nanoparticles as hard-template) are discussed. The impact of phase-separation processes on the observable porosity of the 20-200µm sized spherical particles is analysed by gas sorption methods and electron microscopy. The high density of amine and triazine functional groups in the porous MF particles make the material a promising adsorber for heavy metal ions and methylene blue. In a preliminary column experiment, the synthesized material exhibited a total capacity of 2.54mmol/g (≙ 812.4mg/g) for the adsorption of methylene blue. Copyright © 2017 Elsevier Inc. All rights reserved.
Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien
2017-10-01
The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poly(vinyl alcohol) stabilization of acrylic emulsion polymers using the miniemulsion approach
NASA Astrophysics Data System (ADS)
Kim, Noma
Miniemulsion approach was employed to obtain stable acrylic latexes of n-butyl acrylate and methyl methacrylate (50/50 wt%) stabilized with poly(vinyl alcohol) (PVA) and to enhance the grafting reaction between PVA and acrylic monomers at the water/droplet interface. The stability of miniemulsions were studied in terms of the type and concentration of' the stabilizer, and the PVA partitioning were determined as a function of the PVA concentration. Using the comparison of PVA partitioning at droplet surface and grafted PVA as a function of concentration, it was suggested that the water/monomer interface is the main grafting site in the miniemulsion polymerization. Seeded emulsion and miniemulsion copolymerizations initiated with water-soluble (hydrogen peroxide, HPO), partially water-soluble (t-butyl peroxide, TBHP), and oil-soluble (t-butyl peroxyoctoate, TBPO) initiators were carried out to further investigate the oil/water interface as the grafting site for PVA. The interaction between the capillary wall in the CHDF (capillary hydrodynamic fractionation) chromatographic particle sizer and the water-soluble polymers adsorbed on the particle surface was studied using different types of water-soluble polymers and eluants. Different grafting architectures depending on the initiation site were suggested based on the CHDF results. The amounts of grafted PVA produced in miniemulsion polymers initiated with TBHP and TBPO were substantially less than those in the corresponding seeded emulsion polymerizations. The effect on the internal viscosity at the interface was proposed to explain the difference in grafting in terms of polymerization methods. Aqueous phase and interface grafting were studied using the measurement of the degree of hydrolysis (DH) of the serum PVA and adsorbed PVA after miniemulsion polymerizations. Based on the results, it was found that aqueous phase and interface grafting occurred in the HPO system; however, interface grafting dominated the TBHP system. Colloidal instability in conventional emulsion polymerizations was investigated and compared with the corresponding miniemulsion polymerization. It was found that the grafted PVA in conventional emulsion polymerizations was more hydrophobic presumably due to a greater amount of grafted chains than that in similar miniemulsion polymerizations and this could be correlated with the colloidal instability during conventional emulsion polymerizations.
Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita
2017-05-01
Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.
Omer-Mizrahi, Melany; Margel, Shlomo
2009-01-15
Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.
Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.
2007-12-01
The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; El-Aasser, M. S.
1987-01-01
The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.
Xu, Qingsong; Huang, Tong; Li, Shanlong; Li, Ke; Li, Chuanlong; Liu, Yannan; Wang, Yuling; Yu, Chunyang; Zhou, Yongfeng
2018-05-09
Hierarchical solution self-assembly has nowadays become an important biomimetic method to prepare highly complex and multifunctional supramolecular structures. However, despites the great progress, it is still highly challenging to prepare hierarchical self-assemblies in a large scale since the self-assembly processes are generally performed at high dilution. Herein, we report an emulsion-assisted polymerization-induced self-assembly (EAPISA) method with the advantages of in-situ self-assembly process, scalable preparation and facile functionalization to prepare hierarchical multiscale sea urchin-like aggregates (SUAs). It also extends horizons of PISA in monomers and in polymerization method. The obtained SUAs from amphiphilic alternating copolymers represent a novel self-assembled structure with micron-sized rattan ball-like capsule (RBC) acting as the hollow core body and radiating nanotubes tens of micrometers in length as the hollow spines. They can effectively capture model proteins at an ultra-low concentration (≈10 nM) after functionalized with amino groups through click copolymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lu; Pan, Mingwang; Song, Shaofeng; Zhu, Lei; Yuan, Jinfeng; Liu, Gang
2016-08-09
Herein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g., ester groups and radicals) are synthesized by soap-free emulsion polymerization. During the subsequent SSEP of styrene (St), PS bulges are nucleated on the PtBA seeds due to the microphase separation confined in the latex particles. The morphology evolution of PtBA/PS composite particles is tailored by varying the monomer/seed feed ratio, polymerization time, and polymerization temperature. Many intriguing morphologies, including hamburger-like, litchi-like, mushroom-like, strawberry-like, bowl-like, and snowman-like, have been acquired for PtBA/PS composite particles. The polar groups on the PtBA seed surface greatly influence the formation and further merging of PS/St bulges during the polymerization. A possible formation mechanism is proposed on the basis of experimental results. These complex composite particles are promising for applications in superhydrophobic coatings.
Chai, Xin-Sheng; Zhong, Jin-Feng; Hu, Hui-Chao
2012-05-18
This paper describes a novel multiple-headspace extraction/gas chromatographic (MHE-GC) technique for monitoring monomer conversion during a polymerization reaction in a water-based emulsion environment. The polymerization reaction of methyl methacrylate (MMA) in an aqueous emulsion is used as an example. The reaction was performed in a closed headspace sample vial (as a mini-reactor), with pentane as a tracer. In situ monitoring of the vapor concentration of the tracer, employing a multiple headspace extraction (sampling) scheme, coupled to a GC, makes it possible to quantitatively follow the conversion of MMA during the early stages of polymerization. Data on the integrated amount of the tracer vapor released from the monomer droplet phase during the polymerization is described by a mathematic equation from which the monomer conversion can be calculated. The present method is simple, automated and economical, and provides an efficient tool in the investigation of the reaction kinetics and effects of the reaction conditions on the early stage of polymerization. Copyright © 2012 Elsevier B.V. All rights reserved.
Xuan, Wang; Ruiyi, Li; Zaijun, Li; Junkang, Liu
2017-11-01
Pickering emulsions have attracted considerable interest due to their potential applications in many fields, such as the food, pharmaceutical, petroleum and cosmetics industries. The study reports the synthesis of dodecylamine-functionalized graphene quantum dots (d-GQDs) and their implementation as stabilizers in an emulsion polymerization of styrene. First, d-GQDs are prepared by thermal pyrolysis of citric acid and dodecylamine in 0.1M ammonium hydroxide. The resulting d-GQDs consist of small graphene sheets with abundant amino, carboxyl, acylamino, hydroxyl and alkyl chains on the edge. The amphiphilic structure gives the d-GQDs high surface activity. The addition of d-GQDs can reduce the surface tension of water to 30.8mNm -1 and the interfacial tension of paraffin oil/water to 0.0182mNm -1 . The surface activity is much better than that of previously reported solid particle surfactants for Pickering emulsions and is close to that of sodium dodecylbenzenesulfonate, which is, a classical organic surfactants. Then, d-GQDs are employed as solid particle surfactants for stabilizing styrene-in-water emulsions. The emulsions exhibit excellent stability at pH 7. However, stability is lost when the pH is more than 9 or less than 4. The pH-switchable behaviour can be attributed to the protonation of amino groups in a weak acid medium and dissociation of carboxyl groups in a weak base medium. Finally, 2,2'-azobis(2-methylpropionitrile) is introduced into the Pickering emulsions to trigger emulsion polymerization of styrene. The as-prepared polystyrene spheres display a uniform morphology with a narrow diameter distribution. The fluorescent d-GQDs coated their surfaces. This study presents an approach for the fabrication of amphiphilic GQDs and GQDs-based functional materials, which have a wide range of potential applications in emulsion polymerization, as well as in sensors, catalysts, and energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.
Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai
2013-10-01
Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Jianfei; Chen, Xiangli; Wang, Pei; Fu, Xuwei; Liu, Kaiqiang; Fang, Yu
2017-08-01
Porous polymeric monoliths with densities as low as ≈0.060 g cm -3 are prepared in a gel-emulsion template way, of which the stabilizer employed is a newly discovered acidified aramid fiber that is so efficient that 0.05% (w/v, accounts for continuous phase) is enough to gel the system. The porous monoliths as obtained can be dried at ambient conditions, avoiding energy-consuming processes. Importantly, the monoliths show selective adsorption to HCHO, and the corresponding adsorption capacity (M6) is ≈2700 mg g -1 , the best result that is reported until now. More importantly, the monoliths can be reused after drying. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles
NASA Astrophysics Data System (ADS)
Sun, Guanqing
The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the discussion of emulsion stabilization and preparation. A historical review of multiple emulsions is presented subsequently and the stability mechanism is discussed in details with regard to the transportation kinetics of small molecules through the separating membrane of double emulsions. The principle, property and applications of liquid marbles are then summarized. Secondly, the preparation of monodisperse Pickering emulsions stabilized by soft PNIPAM-co-MAA microgels through SPG membrane emulsification is described. The influence of the membrane pore size, pH of the particle dispersion, particle size and the operating parameters of the membrane emulsification device on the size of the emulsion droplets was investigated systematically. The improvement in monodispersity of the emulsion droplets allows us to measure the release profiles of a small molecular dye and a larger nanoparticle through the colloidosomes. It is further demonstrated that the preparation of monodisperse emulsions stabilized by other types of soft particles allows us control the stability of the emulsion with a pH trigger and improved biocompatibility. Thirdly, the preparation of multiple emulsions stabilized by a special designed PEG-b-PS diblock copolymer with desired hydrophobicity by one-step method was presented. The ultra-stability of the as-obtained multiple emulsions was ascribed to the effective steric stabilization of the two interfaces with different polymer configurations at the interfaces. A series of diblock copolymer with increasing PS chain length was then synthesized to investigate the influence of asymmetry ratio on the type of emulsions prepared. It is found that the diblock copolymers with the asymmetry ratio of approximately 1 had the highest power to stabilize multiple emulsions. The multiple emulsions were demonstrated to be a promising platform for controlled release. In the end, particle-stabilized water-in-air liquid marbles were investigated. PSco-MAA nanoparticles synthesized from surfactant-free emulsion polymerization were proved to be effective liquid marble stabilizers. The influence of drying conditions on the properties of liquid marbles was investigated through a macroscopic way. The pH value of the particle dispersion, which influences the protonation states of the particles before freeze-drying, has a profound influence on the property of the stabilized liquid marbles. A brief comment to the future of work of these investigated systems is delivered in the last part.
Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang
2017-07-06
Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.
2018-01-01
High molecular weight water-soluble polymers are widely used as flocculants or thickeners. However, synthesis of such polymers via solution polymerization invariably results in highly viscous fluids, which makes subsequent processing somewhat problematic. Alternatively, such polymers can be prepared as colloidal dispersions; in principle, this is advantageous because the particulate nature of the polymer chains ensures a much lower fluid viscosity. Herein we exemplify the latter approach by reporting the convenient one-pot synthesis of high molecular weight poly(glycerol monomethacrylate) (PGMA) via the reversible addition–fragmentation chain transfer (RAFT) aqueous emulsion polymerization of a water-immiscible protected monomer precursor, isopropylideneglycerol methacrylate (IPGMA) at 70 °C, using a water-soluble poly(glycerol monomethacrylate) (PGMA) chain transfer agent as a steric stabilizer. This formulation produces a low-viscosity aqueous dispersion of PGMA–PIPGMA diblock copolymer nanoparticles at 20% solids. Subsequent acid deprotection of the hydrophobic core-forming PIPGMA block leads to particle dissolution and affords a viscous aqueous solution comprising high molecular weight PGMA homopolymer chains with a relatively narrow molecular weight distribution. Moreover, it is shown that this latex precursor route offers an important advantage compared to the RAFT aqueous solution polymerization of glycerol monomethacrylate since it provides a significantly faster rate of polymerization (and hence higher monomer conversion) under comparable conditions. PMID:29805184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sar, B.
1992-12-31
Polymer colloids stabilized by polymeric surfactants are of great interest both commercially and academically. It has been found that these materials enhance latex stabilization in a number of applications. The polymeric surfactants are amphipathic block and graft copolymers containing both hydrophilic and hydrophobic moieties. The current study involved the synthesis of a series of amphipathic triblock copolymers, polyisobutylene-block-polyoxyethylene-block-polyisobutylene (PIB-b-POE-b-PIB), for use in the emulsion polymerization of styrene (STY), methyl methacrylate (MMA), and vinyl acetate (VAc). The stabilizing effectiveness of these triblock copolymers was studied as a function of their blocklength. When the molecular weight of the POE center block wasmore » changed from M{sub n} = 2,000 to 20,000 g/mole, stable lattices were obtained in emulsion polymerization with MMA, STY, and VAc as the monomers. In all cases, the polymerization rates remained constant, while the number of particles/volume decreased with increasing POE chain length. When the molecular weight of the PIB end blocks was changed from M{sub n} = 400 to 2,600 g/mole keeping the molecular weight of the POE center block constant at M{sub n} = 20,000 g/mole, the poly(methyl methacrylate) and poly(vinyl acetate) lattices exhibited similar behavior, i.e., the number of particles and particle sizes remained the same, but the rate of polymerization reached a maximum at 87 wt% POE content. In the case of poly(styrene) both the rate of polymerization and the number of particles remained constant. The emulsion polymerization of other monomers such as butadiene, acrylonitrile, methyl acrylate, ethyl acrylate, and butyl acrylate was carried out by using one triblock copolymer, i.e., PIB(400)-b-POE (8,000)-b-PIB-(400). Stable lattices were also formed in all cases.« less
21 CFR 175.210 - Acrylate ester copolymer coating.
Code of Federal Regulations, 2014 CFR
2014-04-01
... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... of the polymer and in the preparation and application of the emulsion may include substances named in... amount required as a preservative in emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde...
Thiolated alkyl-modified carbomers: Novel excipients for mucoadhesive emulsions.
Bonengel, Sonja; Hauptstein, Sabine; Leonaviciute, Gintare; Griessinger, Julia; Bernkop-Schnürch, Andreas
2015-07-30
The aim of this study was the design and evaluation of mucoadhesive emulsifying polymeric excipients. Three thiol bearing ligands with increasing pKa values of their sulfhydryl group, namely 4-aminothiophenol (pKa=6.86), l-cysteine (pKa=8.4) and d/l-homocysteine (pKa=10.0) were coupled to the polymeric backbone of alkyl-modified carbomer (PA1030). Resulting conjugates displayed 818.5μmol 4-aminothiophenol, 698.5μmol cysteine and 651.5μmol homocysteine per gram polymer and were evaluated regarding the reactivity of thiol groups, emulsifying and mucoadhesive properties. In general, the synthesized conjugates showed a pH dependent reactivity, whereby the fastest oxidation occurred in PA1030-cysteine, as almost no free thiol groups could be detected after 120min. Emulsification of medium chain triglycerides was feasible with all synthesized conjugates leading to oil-in-water-emulsions. Emulsions with PA1030-cysteine displayed the highest stability and the smallest droplet size among the tested formulations. Oxidation and consequently cross-linking of the thiomers prior to the emulsification process led to an overall decreased emulsion stability. Evaluating mucosal residence time of thiomer emulsions on porcine buccal mucosa, a 9.2-fold higher amount of formulation based on PA1030-cysteine remained on the mucosal tissue within 3h compared to the unmodified polymer. According to these results, the highest reactive ligand l-cysteine seems to be most promising in order to obtain thiolated polymers for the preparation of mucoadhesive o/w-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.
Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid
2011-08-15
Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Cui, Yanjun; Chen, Xia; Li, Yanfeng; Liu, Xiao; Lei, Lin; Zhang, Yakui; Qian, Jiayu
2014-01-01
Using emulsion copolymer of styrene (St), glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) as seed latexes, the superparamagnetic polymer emulsion particles were prepared by seeded emulsion copolymerization of butyl methacrylate (BMA), vinyl acetate (VAc) and ethylene glycol dimethacrylate in the presence of the seed latexes and superparamagnetic Fe3O4/SiOx nanoparticles (or Fe3O4-APTS nanoparticles) through a two-step process, without addition of any emulsifier. The magnetic emulsion particles named P(St-GMA-HEMA)/P(BMA-VAc) were characterized by transmission electron microscope and vibrating sample magnetometry. The results showed that the magnetic emulsion particles held a structure with a thinner shell (around 100 nm) and a bigger cavity (around 200 nm), and possessed a certain level of magnetic response. The resulting magnetic emulsion particles were employed in the immobilization of lipase by two strategies to immobilized lipase onto the resulting magnetic composites directly (S-1) or using glutaraldehyde as a coupling agent (S-2), thus, experimental data showed that the thermal stability and reusability of immobilized lipase based on S-2 were higher than that of S-1.
Closed-Loop Multitarget Optimization for Discovery of New Emulsion Polymerization Recipes
2015-01-01
Self-optimization of chemical reactions enables faster optimization of reaction conditions or discovery of molecules with required target properties. The technology of self-optimization has been expanded to discovery of new process recipes for manufacture of complex functional products. A new machine-learning algorithm, specifically designed for multiobjective target optimization with an explicit aim to minimize the number of “expensive” experiments, guides the discovery process. This “black-box” approach assumes no a priori knowledge of chemical system and hence particularly suited to rapid development of processes to manufacture specialist low-volume, high-value products. The approach was demonstrated in discovery of process recipes for a semibatch emulsion copolymerization, targeting a specific particle size and full conversion. PMID:26435638
A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.
Lu, Xiaocun; Katz, Joshua S; Schmitt, Adam K; Moore, Jeffrey S
2018-03-14
Compartmentalized structures widely exist in cellular systems (organelles) and perform essential functions in smart composite materials (microcapsules, vasculatures, and micelles) to provide localized functionality and enhance materials' compatibility. An entirely water-free compartmentalization system is of significant value to the materials community as nonaqueous conditions are critical to packaging microcapsules with water-free hydrophilic payloads while avoiding energy-intensive drying steps. Few nonaqueous encapsulation techniques are known, especially when considering just the scalable processes that operate in batch mode. Herein, we report a robust oil-in-oil Pickering emulsion system that is compatible with nonaqueous interfacial reactions as required for encapsulation of hydrophilic payloads. A major conceptual advance of this work is the notion of the partitioning inhibitor-a chemical agent that greatly reduces the payload's distribution between the emulsion's two phases, thus providing appropriate conditions for emulsion-templated interfacial polymerization. As a specific example, an immiscible hydrocarbon-amine pair of liquids is emulsified by the incorporation of guanidinium chloride (GuHCl) as a partitioning inhibitor into the dispersed phase. Polyisobutylene (PIB) is added into the continuous phase as a viscosity modifier for suitable modification of interfacial polymerization kinetics. The combination of GuHCl and PIB is necessary to yield a robust emulsion with stable morphology for 3 weeks. Shell wall formation was accomplished by interfacial polymerization of isocyanates delivered through the continuous phase and polyamines from the droplet core. Diethylenetriamine (DETA)-loaded microcapsules were isolated in good yield, exhibiting high thermal and chemical stabilities with extended shelf-lives even when dispersed into a reactive epoxy resin. The polyamine phase is compatible with a variety of basic and hydrophilic actives, suggesting that this encapsulation technology is applicable to other hydrophilic payloads such as polyols, aromatic amines, and aromatic heterocyclic bases. Such payloads are important for the development of extended pot or shelf life systems and responsive coatings that report, protect, modify, and heal themselves without intervention.
Gehrmann, Sandra; Bunjes, Heike
2018-05-01
Premix membrane emulsification is a possibility to produce colloidal emulsions as carrier systems for poorly water soluble drugs. During the extrusion of a coarse pre-emulsion through a porous membrane, the emulsion droplets are disrupted into smaller droplets. The influence of the membrane material on the emulsification success was investigated in dependence on the emulsifier. Premixed medium chain triglyceride (MCT) emulsions stabilized with five different emulsifiers were extruded through seven different hydrophilic polymeric membrane materials with pore sizes of 200nm. The resulting emulsions differed strongly in particle size and particle size distribution with a range of median particle sizes between 0.08μm and 11μm. The particle size of the emulsions did not depend mainly on the structure or thickness of the membrane but on the combination of emulsifier and membrane material. Contact angle measurements indicated that the wetting of the membrane with the continuous phase of the emulsion was decisive for achieving emulsions with colloidal particle sizes. The type of dispersed phase was of minor importance as basically the same results were obtained with peanut oil instead of MCT. To prove the assumption that only sufficiently hydrophilic membrane materials led to emulsions with colloidal particle sizes, two membrane materials were hydrophilized by plasma treatment. After hydrophilization, the emulsifying process led to emulsions with smaller particle sizes. The use of an alumina membrane (Anodisc®) improved the process even more. With this type of membrane, emulsions with a median particle size below 250nm and a narrow particle size distribution could be obtained with all investigated emulsifiers. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Haiou; Shi, Tiejun; Zhou, Xun
2013-02-01
In this paper, polystyrene (PS)/SiO2 microspheres were successfully prepared via Pickering emulsion polymerization stabilized solely by ethacryloxypropyltrimethoxysilane (MPTMS) modified SiO2 nanoparticles. The formation mechanisms of PS/SiO2 microspheres with different morphology were investigated under various Pickering emulsion polymerization conditions. The results showed that SiO2 concentrations and initiator sorts would synergistically impact on the morphology of products corresponding to distinct formation mechanisms. When SiO2 concentrations was low and water-solute initiator potassium persulfate (KPS) was used, aqueous nucleation was dominant, which was deduced to the formation of dispersive microspheres sparsely anchored by SiO2 particles. When SiO2 concentrations was increased and oil-solute initiator azobisisobutyronitrile (AIBN) was applied, nucleation in oil phase prevailed which lead to the formation of microspheres densely packed by SiO2 particles.
NASA Astrophysics Data System (ADS)
Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu
2017-03-01
A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in approximately 2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 µmol g-1. Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC.
Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu
2017-01-01
A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in ~2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 μmol g -1 . Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC.
Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu
2017-01-01
A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in ~2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 μmol g−1. Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC. PMID:28401145
Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A
2010-01-01
We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.
Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.
2010-01-01
We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648
Yuan, Jinfeng; Zhao, Weiting; Pan, Mingwang; Zhu, Lei
2016-08-01
A simple route is reported to synthesize colloidal particle clusters (CPCs) from self-assembly of in situ poly(vinylidene fluoride)/poly(styrene-co-tert-butyl acrylate) [PVDF/P(St-co-tBA)] Janus particles through one-pot seeded emulsion single electron transfer radical polymerization. In the in situ Pickering-like emulsion polymerization, the tBA/St/PVDF feed ratio and polymerization temperature are important for the formation of well-defined CPCs. When the tBA/St/PVDF feed ratio is 0.75 g/2.5 g/0.5 g and the reaction temperature is 35 °C, relatively uniform raspberry-like CPCs are obtained. The hydrophobicity of the P(St-co-tBA) domains and the affinity of PVDF to the aqueous environment are considered to be the driving force for the self-assembly of the in situ formed PVDF/P(St-co-tBA) Janus particles. The resultant raspberry-like CPCs with PVDF particles protruding outward may be promising for superhydrophobic smart coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Hyejin; Kim, Jin Yong; Choi, Woonjin; Moon, Myeong Hee
2017-06-23
In this study, ultrahigh-molecular-weight (MW) (>10 7 Da) cationic polyacrylamides (C-PAMs), which are water-soluble polymers used in waste water treatment, were characterized using frit-inlet asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractive detection. C-PAMs copolymerized with acryloxyethyltrimethyl ammonium chloride (DAC) were prepared by varying the feed amount of cationic monomer, polymerization method (solution vs. emulsion), and degree of branching. The MW of the copolymers prepared using emulsion polymerization (10 7 -10 9 Da) was generally larger than that of copolymers prepared using solution polymerization (4×10 7 -10 8 Da). When the amount of cationic monomer was increased from 10 to 55mol% in solution polymerization, hydrophobic contraction of the core induced formation of more compact C-PAMs. The copolymers prepared using emulsion polymerization formed highly aggregated or supercoil structures owing to increased intermolecular hydrophobic interaction when less cationic monomer was used. However, the MW decreased with increased cationic group content. In addition, C-PAMs larger than ∼10 8 Da prepared using the emulsion method were separated by steric/hyperlayer elution mode while those in the 10 7 -10 8 Da range were analyzed in either normal or steric/hyperlayer mode depending on the decay patterns of field programming. Moreover, branched copolymers were found to be resolved with different elution modes under the same field decay pattern depending on the degree of branching: steric/hyperlayer for low-branching and normal for high-branching C-PAMs. Copyright © 2017 Elsevier B.V. All rights reserved.
Elbert, Donald L.
2010-01-01
Macroporous hydrogels may have direct applications in regenerative medicine as scaffolds to support tissue formation. Hydrogel microspheres may be used as drug delivery vehicles or as building blocks to assemble modular scaffolds. A variety of techniques exist to produce macroporous hydrogels and hydrogel microspheres. A subset of these relies on liquid-liquid two phase systems. Within this subset, vastly different types of polymerization processes are found. In this review, the history, terminology and classification of liquid-liquid two phase polymerization and crosslinking are described. Instructive examples of hydrogel microsphere and macroporous scaffold formation by precipitation/dispersion, emulsion and suspension polymerizations are used to illustrate the nature of these processes. The role of the kinetics of phase separation in determining the morphology of scaffolds and microspheres is also delineated. Brief descriptions of miniemulsion, microemulsion polymerization and ionotropic gelation are also included. PMID:20659596
PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.
Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa
2015-11-30
Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
A general strategy to synthesize chemically and topologically anisotropic Janus particles
Fan, Jun-Bing; Song, Yongyang; Liu, Hong; Lu, Zhongyuan; Zhang, Feilong; Liu, Hongliang; Meng, Jingxin; Gu, Lin; Wang, Shutao; Jiang, Lei
2017-01-01
Emulsion polymerization is the most widely used synthetic technique for fabricating polymeric particles. The interfacial tension generated with this technique limits the ability to tune the topology and chemistry of the resultant particles. We demonstrate a general emulsion interfacial polymerization approach that involves introduction of additional anchoring molecules surrounding the microdroplets to synthesize a large variety of Janus particles with controllable topological and chemical anisotropy. This strategy is based on interfacial polymerization mediated by an anchoring effect at the interface of microdroplets. Along the interface of the microdroplets, the diverse topology and surface chemistry features of the Janus particles can be precisely tuned by regulating the monomer type and concentration as well as polymerization time. This method is applicable to a wide variety of monomers, including positively charged, neutrally charged, and negatively charged monomers, thereby enriching the community of Janus particles. PMID:28691089
NASA Astrophysics Data System (ADS)
Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.
2015-07-01
Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03474d
Wang, Wenwen; Wang, Weiyu; Li, Hui; ...
2015-01-14
In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 10 5 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less
General route for the assembly of functional inorganic capsules.
Akartuna, Ilke; Tervoort, Elena; Studart, André R; Gauckler, Ludwig J
2009-11-03
Semipermeable, hollow capsules are attractive materials for the encapsulation and delivery of active agents in food processing, pharmaceutical and agricultural industries, and biomedicine. These capsules can be produced by forming a solid shell of close packed colloidal particles, typically polymeric particles, at the surface of emulsion droplets. However, current methods to prepare such capsules may involve multistep chemical procedures to tailor the surface chemistry of particles or are limited to particles that exhibit inherently the right hydrophobic-hydrophilic balance to adsorb around emulsion droplets. In this work, we describe a general and simple method to fabricate semipermeable, inorganic capsules from emulsion droplets stabilized by a wide variety of colloidal metal oxide particles. The assembly of particles at the oil-water interface is induced by the in situ hydrophobization of the particle surface through the adsorption of short amphiphilic molecules. The adsorption of particles at the interface leads to stable capsules comprising a single layer of particles in the outer shell. Such capsules can be used in the wet state or can be further processed into dry capsules. The permeability of the capsules can be modified by filling the interstices between the shell particles with polymeric or inorganic species. Functional capsules with biocompatible, bioresorbable, heat-resistant, chemical-resistant, and magnetic properties were prepared using alumina, silica, iron oxide, or tricalcium phosphate as particles in the shell.
Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles.
Zou, Hua; Wu, Shishan; Shen, Jian
2008-09-16
This paper presents a novel method for preparation of polymer-silica colloidal nanocomposites based on emulsion polymerization and subsequent sol-gel nanocoating process. The polystyrene latex particles bearing basic groups on their surfaces were successfully synthesized through emulsion polymerization using 4-vinylpyridine (4VP) as a functional comonomer and polyvinylpyrrolidone (PVP) as a surfactant. A series of poly(styrene-co-4-vinylpyridine)/SiO2 nanocomposite particles with smooth or rough core-shell morphology were obtained through the coating process. The poly(styrene-co-4-vinylpyridine) particles could be dissolved subsequently or simultaneously during the sol-gel coating process to form hollow particles. The effects of the amount of 4VP, PVP, NH(4)OH, and tetraethoxysilane (TEOS) on both the nanocomposite particles and hollow particles were investigated. Transmission electron microscopy showed that the morphology of the nanocomposite particles and hollow particles was strongly influenced by the initial feed of the comonomer 4VP and the coupling agent PVP. The conditions to obtain all hollow particles were also studied. Thermogravimetric analysis and energy dispersive X-ray spectroscopy analyses indicated that the interiors of hollow particles were not really "hollow".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habercorn, Lasse; Merkl, Jan-Philip; Kloust, Hauke Christian
With the polymer encapsulation of quantum dots via seeded emulsion polymerization we present a powerful tool for the preparation of fluorescent nanoparticles with an extraordinary stability in aqueous solution. The method of the seeded emulsion polymerization allows a straightforward and simple in situ functionalization of the polymer shell under preserving the optical properties of the quantum dots. These requirements are inevitable for the application of semiconductor nanoparticles as markers for biomedical applications. Polymer encapsulated quantum dots have shown only a marginal loss of quantum yields when they were exposed to copper(II)-ions. Under normal conditions the quantum dots were totally quenchedmore » in presence of copper(II)-ions. Furthermore, a broad range of in situ functionalized polymer-coated quantum dots were obtained by addition of functional monomers or surfactants like fluorescent dye molecules, antibodies or specific DNA aptamers. Furthermore the emulsion polymerization can be used to prepare multifunctional hybrid systems, combining different nanoparticles within one construct without any adverse effect of the properties of the starting materials.{sup 1,2}.« less
Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping
2015-12-01
A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surfactant-free, cationic latices of poly(BMA-co-MMA) using AIBA initiator.
Lee, Ki-Chang
2013-09-01
When polymer particles come into use, especially, for photonic crystal applications, their diameter, dispersivity, and refractive indices become very important. Poly(benzyl methacrylate) is known to be a kind of high refracive materials (n = 1.57) compared to poly(methyl methacrylate) (n = 1.49). Not many work was concerned for surfactant-free emulsion polymerization of benzyl methacrylate or its copolymerization using cationic initiators. Narrowly dispersed cationic poly(BMA-co-MMA) and PBMA latices were synthesized successfully by surfactant-free emulsion polymerization with AIBA. The influences of BMA/MMA ratio, BMA/MMA monomer and initiator concentrations, addition of DVB/EGDMA crosslink agent, and polymerization temperature on the kinetics and on the particle size and molecular weight were studied. Monodisperse cationic charged PBMA and poly(BMA-coMMA) latices with particle diameters varying between 160-494 nm and polymer molecular weights of the order 1.25 x 10(4) to 7.55 x 10(4) g/mol were prepared. The rate of polymerization increased with increasing MMA concentration in BMA/MMA ratio, AIBA concentration, DVB crosslink agent, and polymerization temperature. The particle diameter increased with BMA concentration in BMA/MMA ratio, AIBA concentration, and BMA/MMA monomer concentration. The molecular weight increased with BMA concentration in BMA/MMA ratio and BMA/MMA monomer concentration. The glass transition temperature of the latex copolymers decreased with increasing amount of BMA from 375 K for PMMA to 321 K for PBMA. It was, thus, found that the particle diameter and rate of polymerization as well as the polymer molecular weight for surfactant-free emulsion polymerization of BMA and MMA can be controlled easily by controlling the BMA/MMA ratio, BMA/MMA monomer concentration, AIBA concentration, and polymerization temperature.
Iglesias, Jacobo; Pazos, Manuel; Lois, Salomé; Medina, Isabel
2010-06-23
Polyphenolic fractions extracted from pine (Pinus pinaster) bark, grape (Vitis vinifera) pomace, and witch hazel (Hamamelis virginiana) bark were selected for investigating the influence of the number of phenolic units, polymerization, and the content of esterified galloyl residues (galloylation) on their efficacy for inhibiting lipid oxidation in fish lipid enriched foodstuffs. Experiments carried out with nongalloylated pine bark fractions with different polymerization degrees demonstrated that the number of catechin residues per molecule modulates their reducing and chelating properties in solution. In real food systems such as bulk fish oil and fish oil-in-water emulsions, the efficacy against lipid oxidation was highly dependent on the physical location of the antioxidant at the oxidative sensitive sites. The lowest polymerized fractions were the most efficient in bulk fish oil samples, whereas proanthocyanidins with an intermediate polymerization degree showed the highest activity in fish oil-in-water emulsions. Galloylation did not influence the antioxidant effectiveness of proanthocyanidins in bulk fish oils. The presence of galloyl groups favored the antioxidant activity of the polyphenols in emulsions, although results indicated that a high degree of galloylation did not improve significantly the activity found with medium galloylated proanthocyanidins. The results obtained in this research provide useful information about the relationship between structure and antioxidant activity in order to design antioxidant additives with application in fish oil-enriched functional foods.
Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification
Bux, Jaiyana; Manga, Mohamed S.; Hunter, Timothy N.
2016-01-01
Accurate control of particle size at relatively narrow polydispersity remains a key challenge in the production of synthetic polymer particles at scale. A cross-flow membrane emulsification (XME) technique was used here in the preparation of poly(methyl methacrylate) microspheres at a 1–10 l h−1 scale, to demonstrate its application for such a manufacturing challenge. XME technology has previously been shown to provide good control over emulsion droplet sizes with careful choice of the operating conditions. We demonstrate here that, for an appropriate formulation, equivalent control can be gained for a precursor emulsion in a batch suspension polymerization process. We report here the influence of key parameters on the emulsification process; we also demonstrate the close correlation in size between the precursor emulsion and the final polymer particles. Two types of polymer particle were produced in this work: a solid microsphere and an oil-filled matrix microcapsule. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298430
Yan, Kun; Gao, Xiang; Luo, Yingwu
2015-07-01
A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Glycosylated polyacrylate nanoparticles by emulsion polymerization
Abeylath, Sampath C.; Turos, Edward
2007-01-01
A selection of glycosylated polyacrylate nanoparticles has been prepared by radical-initiated emulsion polymerization in aqueous media. Using ethyl acrylate as a co-monomer, carbohydrate acrylates were incorporated into the poly(ethyl acrylate) framework to give stable emulsions of glyconanoparticles with an average particle size of around 40 nm. Using this technique a variety of glyconanoparticles were prepared from 3-O-acryloyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose, 1-O-acryloyl-2,3:5,6-di-O-isopropylidene-α-D-mannofuranose, 6-O-acryloyl-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose, 2-N-acryloyl-1,3,4,6-tetra-O-acetyl-β-D-glucosamine, 5-O-acryloyl-2,3-isopropylidene-1-methoxy-β-D-ribofuranose and 4-N-acetyl-5’-O-acryloyl-2’,3’-O-isopropylidene cytidine. Scanning electron microscopy, dynamic light scattering and proton NMR analysis of the emulsions indicated essentially 100% incorporation of the carbohydrate acrylate monomer into the polymer with the exception of O-benzyl- and O-benzoyl-protected carbohydrate acrylates, which gave incomplete incorporation. Formation of larger glyconanoparticles of ~80nm with (unprotected) 3-O-acryloyl-D-glucose and 5-O-acryloyl-1-methoxy-β-D-ribofuranose revealed the influence of free hydroxyl groups in the monomer on the particle size during polymerization, a feature which is also apparently dependent on the amount of carbohydrate in the matrix. This methodology allows for a new, simple route to the synthesis of polymeric glyconanoparticles with potential applications in targeted drug delivery and materials development. PMID:18677404
Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald
2016-04-15
Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online to inductively coupled plasma mass spectrometry (ICP-MS) for elemental speciation and identification of the inorganic additive. SdFFF had a larger separation power to distinguish different particle size populations whereas AF4 had the capability of separating the organic particles and inorganic TiO2 particles, with high resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan
2016-05-01
A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Yongshang; Larock, Richard C
2007-10-01
A series of new waterborne polyurethane (PU)/acrylic hybrid latexes have been successfully synthesized by the emulsion polymerization of acrylic monomers (butyl acrylate and methyl methacrylate) in the presence of a soybean oil-based waterborne PU dispersion using potassium persulfate as an initiator. The waterborne PU dispersion has been synthesized by a polyaddition reaction of toluene 2,4-diisocyanate and a soybean oil-based polyol (SOL). The resulting hybrid latexes, containing 15-60 wt % SOL as a renewable resource, are very stable and exhibit uniform particle sizes of 125 +/- 20 nm as determined by transmittance electronic microscopy. The structure, thermal, and mechanical properties of the resulting hybrid latex films have been investigated by Fourier transform infrared spectroscopy, solid state 13C NMR spectroscopy, dynamic mechanical analysis, extraction, and mechanical testing. Grafting copolymerization of the acrylic monomers onto the PU network occurs during the emulsion polymerization, leading to a significant increase in the thermal and mechanical properties of the resulting hybrid latexes. This work provides a new way of utilizing renewable resources to prepare environmentally friendly hybrid latexes with high performance for coating applications.
NASA Astrophysics Data System (ADS)
Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao
2012-07-01
Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.
Reese, Chad E; Asher, Sanford A
2002-04-01
We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.
Wang, Zheng; Neves, Marcos A; Kobayashi, Isao; Uemura, Kunihiko; Nakajima, Mitsutoshi
2013-01-01
Soybean oil-in-water (O/W) emulsion-agar gel samples were prepared and their digestibility evaluated by using an in vitro gastrointestinal digestion model. Emulsion-agar sols were obtained by mixing the prepared O/W emulsions with a 1.5 wt % agar solution at 60 °C, and their subsequent cooling at 5 °C for 1 h formed emulsion-agar gels. Their gel strength values increased with increasing degree of polymerization of the emulsifiers, and the relative gel strength increased in the case of droplets with an average diameter smaller than 700 nm. Flocculation and coalescence of the released emulsion droplets depended strongly on the emulsifier type; however, the emulsifier type hardly affected the ζ-potential of emulsion droplets released from the emulsion-agar gels during in vitro digestion. The total FFA content released from each emulsion towards the end of the digestion period was nearly twice that released from the emulsion-agar gel, indicating that gelation of the O/W emulsion may have delayed lipid hydrolysis.
Preparation of Pickering Double Emulsions Using Block Copolymer Worms
2015-01-01
The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)–poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers. PMID:25834923
Investigation of Four Different Laponite Clays as Stabilizers in Pickering Emulsion Polymerization.
Brunier, Barthélémy; Sheibat-Othman, Nida; Chniguir, Mehdi; Chevalier, Yves; Bourgeat-Lami, Elodie
2016-06-21
Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.
USDA-ARS?s Scientific Manuscript database
Two formulations of rice protein concentrates (RPC) derived from brown rice were evaluated for their antioxidant activity in bulk oil and in oil-in-water emulsions. Bulk oils were mixed with RPC and heated to 180°C, and total polar compounds and triacylglycerol polymerization were measured. Minimal ...
ERIC Educational Resources Information Center
Teixeira, Zaine; Duran, Nelson; Guterres, Silvia S.
2008-01-01
In this experiment, the extract from annatto seeds was encapsulated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles by the emulsion-solvent evaporation method. The particles were washed and centrifuged to remove excess stabilizer and then freeze-dried. The main compound of annatto seeds, bixin, has antioxidant properties as well…
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Liu, Guoqiang; Yan, Wei; Chu, Paul K.; Yeung, Kelvin W. K.; Wu, Shuilin; Yi, Changfeng; Xu, Zushun
2012-04-01
Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.
Fabrication and Properties of polyacrylic acid by ionic surfactant disturbance method
NASA Astrophysics Data System (ADS)
Lawan, S.; Osotchan, T.; Chuajiw, W.; Subannajui, K.
2017-09-01
The formation of polymeric materials can be achieved by several methods such as melting and casting, screw extrusion, cross-linking of resin or rubber in a mold, and so on. In this work, the polyacrylic acid is formed by using the emulsion disturbance method. Despite extensively used in the colour painting and coating industries, acrylic emulsion can be processed into a foam and powder configuration by a reaction between acrylic emulsion and salt. The solidification hardly changes the volume between liquid emulsion and solidified polymer which means the final structure of polyacrylic acid is filled with opened air cells. The opened air cell structure is confirmed by the result from scanning electron microscopy. The chemical analysis and crystallography of acrylic powder and foam are examined by Fourier-transform infrared spectroscopy and X-ray diffraction respectively. The phase transformation and Thermal stability are studied by differential scanning calorimetry and thermo gravimetric analysis. Moreover, the mechanical properties of acrylic foam were observed by tensile, compressive and hardness test. In addition to the basic property analysis, acrylic foam was also used in the particle filtration application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.j; Iguchi, Motoi; Oku, Takeo
2010-04-15
Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis ofmore » a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.« less
Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao
2018-06-01
The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.
Ji, Chunnuan; Qu, Rongjun; Chen, Hou; Liu, Xiguang; Sun, Changmei; Ma, Caixia
2016-01-01
Initially, porous acrylonitrile/itaconic acid copolymers (AN/IA) were prepared by suspended emulsion polymerization. Successively, the cyano groups in AN/IA copolymers were converted to amidoxime (AO) groups by the reaction with hydroxylamine hydrochloride. The structures of the AN/IA and amidoximated AN/IA (AO AN/IA) were characterized by infrared spectroscopy, scanning electron microscopy, and porous structural analysis. The adsorption properties of AO AN/IA for Hg(II) were investigated. The results show that AO AN/IA has mesopores and macropores, and surface area of 11.71 m(2) g(-1). It was found that AO AN/IA has higher affinity for Hg(II), with the maximum adsorption capacity of 84.25 mg g(-1). The AO AN/IA also can effectively remove Hg(II) from different binary metal ion mixture systems. Furthermore, the adsorption kinetics and thermodynamics were studied in detail. The adsorption equilibrium can quickly be achieved in 4 h determined by an adsorption kinetics study. The adsorption process is found to belong to the second-order model, and can be described by the Freundlich model.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi
2017-12-01
We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.
Synthesis and Characterization of Novel Fluorine-Containing Water-Based Antirust Coating
NASA Astrophysics Data System (ADS)
Wang, Huiru; Wang, Xin; Zhao, Xiongyan
2018-01-01
A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which styrene(St) and butyl acrylate (BA) were used as main monomers and dodecafluoroheptyl methacrylate(DFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), scanning electron microscopy (SEM), particle size analysis, differential scanning calorimetry (DSC). The FTIR results showed that DFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a narrow particle size distribution. From the results salt spray test presented, it seems when the content of DFMA was 5wt% anti-rust performance of emulsion is relatively better. DSC and TGA also showed that their film exhibited higher thermal stability than that of fluorine-free emulsion.
An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions.
Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou
2016-04-22
A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of Nα-benzoyl-l-arginine ethyl ester to Nα-benzoyl-l-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. Copyright © 2016 Elsevier Inc. All rights reserved.
Structural micro-porous carbon anode for rechargeable lithium-ion batteries
Delnick, Frank M.; Even, Jr., William R.; Sylwester, Alan P.; Wang, James C. F.; Zifer, Thomas
1995-01-01
A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.
Hollow latex particles: synthesis and applications.
McDonald, Charles J; Devon, Michael J
2002-12-02
One of the major developments in emulsion polymerization over the last two decades has been the ability to make hollow latex particles. This has contributed many fundamental insights into the synthesis and the development of structure in particles. Hollow latex particles also enhance the performance of industrial coatings and potentially are useful in other technologies such as microencapsulation and controlled release. Ever since the publication of the initial process patents describing these particles, there has been a global R&D effort to extend the synthetic techniques and applications. One prominent synthetic approach to hollow particles is based on osmotic swelling. This dominates the literature, and usually starts with the synthesis of a structured latex particle containing an ionizable core that is subsequently expanded with the addition of base. Fundamental to this approach are a sophisticated control of transport phenomena, chemical reactivity within the particle, and the thermoplastic properties of the polymer shell. Hydrocarbon encapsulation technology has also been employed to make hollow latex particles. One approach involves a dispersed ternary system that balances transport, conversion kinetics, and phase separation variables to achieve the hollow morphology. Other techniques, including the use of blowing agents, are also present in the literature. The broad range of approaches that affords particles with a hollow structure demonstrates the unique flexibility of the emulsion polymerization process.
Yan, Rui; Zhang, Yaoyao; Wang, Xiaohui; Xu, Jianxiong; Wang, Da; Zhang, Wangqing
2012-02-15
Synthesis of porous poly(styrene-co-acrylic acid) (PS-co-PAA) microspheres through one-step soap-free emulsion polymerization is reported. Various porous PS-co-PAA microspheres with the particle size ranging from 150 to 240 nm and with the pore size ranging from 4 to 25 nm are fabricated. The porous structure of the microspheres is confirmed by the transmission electron microscopy measurement and Brunauer-Emmett-Teller (BET) analysis. The reason for synthesis of the porous PS-co-PAA microspheres is discussed, and the phase separation between the encapsulated hydrophilic poly(acrylic acid) segment and the hydrophobic polystyrene domain within the PS-co-PAA microspheres is ascribed to the pore formation. The present synthesis of the porous PS-co-PAA microspheres is anticipated to be a new and convenient way to fabricate porous polymeric particles. Copyright © 2011 Elsevier Inc. All rights reserved.
Flow curve analysis of a Pickering emulsion-polymerized PEDOT:PSS/PS-based electrorheological fluid
NASA Astrophysics Data System (ADS)
Kim, So Hee; Choi, Hyoung Jin; Leong, Yee-Kwong
2017-11-01
The steady shear electrorheological (ER) response of poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate)/polystyrene (PEDOT:PSS/PS) composite particles, which were initially fabricated from Pickering emulsion polymerization, was tested with a 10 vol% ER fluid dispersed in a silicone oil. The model independent shear rate and yield stress obtained from the raw torque-rotational speed data using a Couette type rotational rheometer under an applied electric field strength were then analyzed by Tikhonov regularization, which is the most suitable technique for solving an ill-posed inverse problem. The shear stress-shear rate data also fitted well with the data extracted from the Bingham fluid model.
Reddy, G. Suresh Kumar; Greenhalgh, Kerriann; Ramaraju, Praveen; Abeylath, Sampath C.; Jang, Seyoung; Dickey, Sonja; Lim, Daniel V.
2007-01-01
This report describes the preparation of antibacterially-active emulsified polyacrylate nanoparticles in which a penicillin antibiotic is covalently conjugated onto the polymeric framework. These nanoparticles were prepared in water by emulsion polymerization of an acrylated penicillin analogue pre-dissolved in a 7:3 (w:w) mixture of butyl acrylate and styrene in the presence of sodium dodecyl sulfate (surfactant) and potassium persulfate (radical initiator). Dynamic light scattering analysis and atomic force microscopy images show that the emulsions contain nanoparticles of approximately 40 nm in diameter. The nanoparticles have equipotent in vitro antibacterial properties against methicillin-susceptible and methicillin-resistant forms of Staphylococcus aureus and indefinite stability towards β-lactamase. PMID:17420125
Structural micro-porous carbon anode for rechargeable lithium-ion batteries
Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.
1995-06-20
A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.
Vasiljevic, Dragana; Parojcic, Jelena; Primorac, Marija; Vuleta, Gordana
2006-02-17
Multiple W/O/W emulsions with high content of inner phase (Phi1=Phi2=0.8) were prepared using relatively low concentrations of lipophilic polymeric primary emulsifier, PEG 30-dipolyhydroxystearate, and diclofenac diethylamine (DDA) as a model drug. The investigated formulations were characterized and their stability over the time was evaluated by dynamic and oscillatory rheological measurements, microscopic analysis and in vitro drug release study. In vitro release profiles of the selected model drug were evaluated in terms of the effective diffusion coefficients and flux of the released drug. The multiple emulsion samples exhibited good stability during the ageing time. Concentration of the lipophilic primary emulsifier markedly affected rheological behaviour as well as the droplet size and in vitro drug release kinetics of the investigated systems. The multiple emulsion systems with highest concentration (2.4%, w/w) of the primary emulsifier had the lowest droplet size and the highest apparent viscosity and highest elastic characteristics. Drug release data indicated predominately diffusional drug release mechanism with sustained and prolonged drug release accomplished with 2.4% (w/w) of lipophilic emulsifier employed.
NASA Astrophysics Data System (ADS)
Akkaş Kavaklı, Pınar; Kavaklı, Cengiz; Seko, Noriaki; Tamada, Masao; Güven, Olgun
2016-10-01
A novel nonwoven fabric adsorbent having 4-vinylpyridine functional groups was prepared by using radiation-induced emulsion graft polymerization method and grafting 4-vinylpyridine monomer onto a polyethylene-coated polypropylene nonwoven fabric (NWF) in aqueous emulsion solution. The grafting conditions of the 4-vinylpyridine monomer onto the NWF were optimised and 150% Dg VP-g-NWF was prepared using 30 kGy pre-irradiation dose, 5% VP monomer concentration and 0.5% (w/w) Tween 20 in aqueous emulsion. Grafted 4-vinylpyridine chains on the NWF were then quaternized for the preparation of QVP-g-NWF adsorbent. All fabric structures were characterized by using Fourier-transform infrared spectrometer, x-ray photoelectron spectrometer and scanning electron microscope. QVP-g-NWF adsorbent was used in batch adsorption experiments for As(V) ions by studying the pH, contact time, and initial As(V) ion concentration parameters. Results showed that QVP-g-NWF adsorbent has significant As(V) adsorption and experimental As(V) adsorption capacity was 98.04 mg As(V)/g polymer from 500 mg/L initial As(V) concentration at pH 7.00.
2016-01-01
Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions. PMID:27795581
It was found that the esters of polystyrene and cinnamic acid , polyvinyl alcohol, and cinnamic acid have high dielectric characteristics that change...Photosensitive acid -resisting emulsions for use in photoengraving of semiconductor parts and semiconductor surfaces were synthesized and tested...organosilicon compounds, cinnamic aldehyde, emulsions based on azo and diazo compounds and polymeric polyesters--were tested. The photoengraving method
Turos, Edward; Shim, Jeung-Yeop; Wang, Yang; Greenhalgh, Kerriann; Reddy, G Suresh Kumar; Dickey, Sonja; Lim, Daniel V
2007-01-01
This report describes the preparation of polyacrylate nanoparticles in which an N-thiolated beta-lactam antibiotic is covalently conjugated onto the polymer framework. These nanoparticles are formed in water by emulsion polymerization of an acrylated antibiotic pre-dissolved in a liquid acrylate monomer (or mixture of co-monomers) in the presence of sodium dodecyl sulfate as a surfactant and potassium persulfate as a radical initiator. Dynamic light scattering analysis and electron microscopy images of these emulsions show that the nanoparticles are approximately 40 nm in diameter. The emulsions have potent in vitro antibacterial properties against methicillin-resistant Staphylococcus aureus and have improved bioactivity relative to the non-polymerized form of the antibiotic. A unique feature of this methodology is the ability to incorporate water-insoluble drugs directly into the nanoparticle framework without the need for post-synthetic modification. Additionally, the antibiotic properties of the nanoparticles can be modulated by changing the length or location of the acrylate linker on the drug monomer.
Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan
2009-07-21
The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.
Structure- and oil type-based efficacy of emulsion adjuvants.
Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C
2006-06-29
Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.
Microchannel emulsification: A promising technique towards encapsulation of functional compounds.
Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi
2017-06-13
This review provides an overview of microchannel emulsification (MCE) for production of functional monodispersed emulsion droplets. The main emphasis has been put on functional bioactives encapsulation using grooved-type and straight-through microchannel array plates. MCE successfully encapsulates the bioactives like β-carotene, oleuropein, γ-oryzanol, β-sitosterol, L-ascorbic acid and ascorbic acid derivatives, vitamin D and quercetin. These bioactives were encapsulated in a variety of delivery systems like simple and multiple emulsions, polymeric particles, microgels, solid lipid particles and functional vesicles. The droplet generation process in MCE is based upon spontaneous transformation of interfaces rather than high energy shear stress systems. The scale-up of MCE can increase the productivity of monodispersed droplets >100 L h -1 and makes it a promising tool at industrial level.
Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers
Wang, Huiqun; Lu, Wei; Wang, Weiyu; ...
2017-09-28
Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huiqun; Lu, Wei; Wang, Weiyu
Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less
Bhanvase, B A; Darda, N S; Veerkar, N C; Shende, A S; Satpute, S R; Sonawane, S H
2015-05-01
Ultrasound assisted in-situ semi-batch emulsion polymerization has been used for the preparation of polyaniline (PANI) and PANI/ZnMoO4 nanocomposite with different loading of ZnMoO4 (ZM) nanoparticles. ZM nanoparticles were functionalized using Myristic acid (MA) for better compatibility with PANI. The cavitational effects induced due to ultrasonic irradiations have been shown significant enhancement in the dispersion of functionalized ZM nanoparticles into the PANI during ultrasound assisted in-situ emulsion polymerization process. TEM images of PANI/ZM nanocomposite particles give the direct evidence of fine dispersion and encapsulation of MA treated ZM nanoparticles in PANI matrix. The presence of ZM nanoparticles in PANI/ZM nanocomposite shows significant improvement in the mechanical (cross-cut adhesion), thermal, anticorrosion and sensing properties of PANI/ZM nanocomposite/alkyd coatings over PANI/alkyd and neat alkyd resin coating. Fine and uniform dispersion of ZM nanoparticles in PANI matrix using this novel synthesis method (PANI (p-type)/ZM (n-type) hetero-junction) improves LPG sensing ability and minimizes response time to sense LPG significantly compared with neat PANI. Copyright © 2014 Elsevier B.V. All rights reserved.
Protein specific polymeric immunomicrospheres
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor); Rembaum, Alan (Inventor)
1980-01-01
Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.
Langford, Caitlin R; Johnson, David W; Cameron, Neil R
2015-05-01
Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production methodologies of polymeric and hydrogel particles for drug delivery applications.
Lima, Ana Catarina; Sher, Praveen; Mano, João F
2012-02-01
Polymeric particles are ideal vehicles for controlled delivery applications due to their ability to encapsulate a variety of substances, namely low- and high-molecular mass therapeutics, antigens or DNA. Micro and nano scale spherical materials have been developed as carriers for therapies, using appropriated methodologies, in order to achieve a prolonged and controlled drug administration. This paper reviews the methodologies used for the production of polymeric micro/nanoparticles. Emulsions, phase separation, spray drying, ionic gelation, polyelectrolyte complexation and supercritical fluids precipitation are all widely used processes for polymeric micro/nanoencapsulation. This paper also discusses the recent developments and patents reported in this field. Other less conventional methodologies are also described, such as the use of superhydrophobic substrates to produce hydrogel and polymeric particulate biomaterials. Polymeric drug delivery systems have gained increased importance due to the need for improving the efficiency and versatility of existing therapies. This allows the development of innovative concepts that could create more efficient systems, which in turn may address many healthcare needs worldwide. The existing methods to produce polymeric release systems have some critical drawbacks, which compromise the efficiency of these techniques. Improvements and development of new methodologies could be achieved by using multidisciplinary approaches and tools taken from other subjects, including nanotechnologies, biomimetics, tissue engineering, polymer science or microfluidics.
Methods for purifying and detoxifying sodium dodecyl sulfate-stabilized polyacrylate nanoparticles.
Garay-Jimenez, Julio C; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward
2008-06-01
Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus. For this intended application it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain and not to any extraneous components. To investigate this we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure.
1979-12-01
resin types: 1) acrylic latex, 2) acrylic solution polymer, 3) epoxy emulsions, 4) polyurethane, 5) butadiene elastomeric latex, 6) polyester/ alkyd , 7...emulsions and the class of polyester/ alkyd resins were evaluated only as network, crosslinked films. -53- j z I, ACRYLIC SOLUTIONLATEX URE THANE ACRYLIC ...amount of "plasticizing" monomer such as ethyl acrylate . 2.3.1.3 Aqueous Polyester Alkyd Resins As indicated in section 2.2.7 of this report,
Shear Driven Synthesis of Polymeric Micro- and Nanomaterials
NASA Astrophysics Data System (ADS)
Tian, Tian
Polymeric micro- and nanomaterials play a significant role in various current and emerging technologies. A liquid shear based method was developed to fabricate a wide range of polymeric materials, which include fibers, sheets, ribbons, rods and spheres in a scalable, cost-effective and simple way. During the process, droplet shearing, droplet deformation, droplet breaking up and polymer precipitation occur simultaneously. The size and morphology of the resultant structures are determined by the dominating process which is further controlled by the experimental parameters including polymer concentration, polymer molecular weight and antisolvent concentration. Among all of these structures, nanofibers have attracted the latest research interest due to the unique properties. Current leading fiber production approaches in the market possess certain drawbacks. For example, the throughput of electrospinning is limited to around 2.5 kg/hr and the diameter of fiber produced by wet spinning cannot be below micrometer while melt spinning is only applicable to melt-processable polymers. The breakthrough of our liquid shear driven technique for fiber synthesis is that it produces fibers with diameter from 200 nm to several micrometers from a wide range of liquid- processable polymers with high commercial yield (up to 12 kg/hr). Thus in Chapter 2, the optimum parameters range for fiber formation is established and the effects of those parameters on fiber size are investigated. In the original liquid shear method, medium with high viscosity is needed to exert strong shear stress on the droplet and to stretch the droplets to long strand. However, the viscous medium complicates the post sample washing procedure and introduces the potential slippery danger in the working area. Thus a non-viscous medium shearing method is developed in Chapter 3 and it is the first time proposed that the synthesis of PLA or PS nanofibers can be completed in the aqueous ethanol medium. Colloid science usually categorizes emulsion as oil in water (O/W) and water in oil (W/O) dispersions. Oil in oil emulsion can also be formulated from the immiscible organic liquid pairs. Using the phase separation in the PS-cyclohexane system, the emulsion are formed under continuous shearing while the continuous phase is solvent-rich and the disperse phase is polymer-rich. By shearing the emulsions, the fibers sizes are reduced around 10X due to the smaller initial polymer droplet size. The fiber sizes are further reduced to 100 nm which enhances the competitive advantages of liquid shear technique. Controlled drug release combines the advantages of increased therapeutic efficacy, reduced toxicity and lower administration frequency. By dispersing model drugs in the spinning polymer solution, these drugs are successfully encapsulated inside the biodegradable matrix and the encapsulation efficiency is modulated by polymer concentration and fiber size while the release profile of the drug is determined by the degradation rate of the polymer matrix.
Jiguang Zhang; Matthew R. Dubay; Carl J. Houtman; Steven J. Severtson
2009-01-01
Described is the synthesis of diblock copolymers generated via sequential atom transfer radical polymerization (ATRP) of poly(n-butyl acrylate) (PnBA) followed by chain augmentation with either sulfonated poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(2-hydroxyethyl acrylate) (PHEA) blocks. ATRP of PHEMA or PHEA from PnBA macroinitiator was conducted in acetone/...
Yang, Taeseung; Choi, Sang Koo; Park, Daehwan; Lee, Yea Ram; Chung, Chan Bok; Kim, Jin Woong
2016-12-20
This study introduces a new type of associative nanoparticle (ANP) that provides controlled chain-to-chain attraction with an associative polymer rheology modifier (APRM) to produce highly stable Pickering emulsions. The ANPs were synthesized by grafting hydrophobically modified hygroscopic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine-co-stearyl methacrylate) brushes onto 20 nm sized silica NPs via surface-mediated living radical polymerization. The ANP-stabilized Pickering emulsions show significant viscosity enhancement in the presence of the APRM. This indicates that the ANPs act as particulate concentration agents at the interface owing to their hydrophobic association with the APRM in the aqueous phase, which leads to the generation of an ANP-mediated complex colloidal film. Consequently, the described ANP-reinforced Pickering emulsion system exhibits improved resistance to pH and salinity changes. This coacervation approach is advantageous because the complex colloidal layer at the interface provides the emulsion drops with a mechanically robust barrier, thus guaranteeing the improved Pickering emulsion stability against harsh environmental factors.
Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins
NASA Astrophysics Data System (ADS)
Pietrucha, K.; Pȩkala, W.; Kroh, J.
Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.
Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee
2016-01-15
In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming). Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Ki-Chang; Choo, Hun-Seung
2014-11-01
Narrowly dispersed poly(BMA-co-MMA) and PBMA latices with particle diameters ranging within 216-435 nm were synthesized successfully by surfactant-free emulsion polymerization with KPS and AIBA. The average particle diameter and particle size distribution, average molecular weight and its distribution, glass transition temperature, reflectance spectra in visible wavelength, and refractive indices for the respective poly(BMA-co-MMA) latices and their photonic crystals were systematically investigated in terms of BMA/MMA ratio, BMA content, polymerization temperature, and DVB effect. The rate of polymerization increased with increasing MMA concentration in BMA/MMA ratio. The particle diameter increased with BMA concentration in BMA/MMA ratio. The molecular weight increased with BMA concentration in BMA/MMA ratio and monomer concentration. The drying of the latices offered self-assembled shiny colloidal crystal films showing the characteristic structural colors in visible wavelength. All the poly(BMA-co-MMA) latices prepared in the study were fallen within the range of photonic grade microspheres. The reflectance measurement on the colloidal photonic crystals having different particle diameters clearly exhibited narrow stopbands. The reflection maxima (λ(max)) measured in this study were well close to the λ(max) calculated, derived from the Bragg's equation. The refractive indices of poly(BMA-co-MMA) photonic crystals were found to be almost same as the theoretical values and increased proportionally from 1.50 to 1.57 with BMA content in BMA/MMA ratios. It was, thus, found that the optical reflectance properties of the poly(BMA-co-MMA) colloidal photonic crystals can be controlled easily by adjusting the reaction conditions and BMA/MMA ratio in soap-free emulsion copolymerization of BMA and MMA.
Methods for Purifying and Detoxifying Sodium Dodecyl Sulfate-Stabilized Polyacrylate Nanoparticles
Garay-Jimenez, Julio C.; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward
2008-01-01
Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus (MRSA). For this intended application, it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain, rather than to any extraneous components. To investigate this, we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure. PMID:18472305
Synthesis and characterization of novel polyacid-stabilized latexes.
Yang, Pengcheng; Armes, S P
2012-09-18
A series of novel polyacid macromonomers based on 2-hydroxypropyl methacrylate (HPMA) were prepared by atom transfer radical polymerization (ATRP) via a two-step route. First, a range of well-defined PHPMA homopolymer precursors were synthesized by ATRP using a tertiary amine-functionalized initiator, 2-(dimethylamino)ethyl-2-bromoisobutyrylamide, and a CuCl/2, 2'-bipyridine (bpy) catalyst in alcoholic media at 50 °C. ATRP polymerizations were relatively slow and poorly controlled in pure isopropanol (IPA), especially when targeting higher degrees of polymerization (DP > 30). Improved control was achieved by addition of water: low polydispersity (M(w)/M(n) < 1.25) PHPMA homopolymers of DP = 30, 40, 50, 60, or 70 were successfully prepared using a 9:1 w/w % IPA/water mixture at 50 °C. These PHPMA homopolymer precursors were then derivatized to produce the corresponding poly(2-(succinyloxy)propyl methacrylate) (PSPMA) macromonomers by quaternizing the tertiary amine end-group with excess 4-vinylbenzyl chloride, followed by esterification of the pendent hydroxyl groups using excess succinic anhydride at 20 °C. These polyacid macromonomers were evaluated as reactive steric stabilizers for polystyrene latex synthesis under either aqueous emulsion polymerization or alcoholic dispersion polymerization conditions. Near-monodisperse polystyrene latexes were obtained via aqueous emulsion polymerization using 10 wt % PSPMA macromonomer (with respect to styrene monomer) with various initiators as evidenced by scanning electron microscopy, disk centrifuge photosedimentometry and light scattering studies. PSPMA macromomer concentrations as low as 1.0 wt % also produced near-monodisperse latexes, suggesting that these PSPMA macromonomers are highly effective stabilizers. Alcoholic dispersion polymerization of styrene conducted in various ethanol/water mixtures with 10 wt % PSPMA(50) macromonomer produced relatively large near-monodisperse latexes. Increasing the water content in such formulations led to smaller latexes, as expected. Control experiments conducted with 10 wt % PSPMA(50) homopolymer produced relatively large polydisperse latexes via emulsion polymerization and only macroscopic precipitates via alcoholic dispersion polymerization. Thus the terminal styrene group on the macromonomer chains is essential for the formation of well-defined latexes. FT-IR spectroscopy indicated that these latexes contained PSPMA macromonomer, whereas (1)H NMR spectroscopy studies of dissolved latexes allowed stabilizer contents to be determined. Aqueous electrophoresis and X-ray photoelectron spectroscopy studies confirmed that the PSPMA macromonomer chains were located at the latex surface, as expected. Finally, these polyacid-stabilized polystyrene latexes exhibited excellent freeze-thaw stability and remained colloidally stable in the presence of electrolyte.
Garay-Jimenez, Julio C.; Gergeres, Danielle; Young, Ashley; Dickey, Sonja; Lim, Daniel V.; Turos, Edward
2009-01-01
Recent efforts in our laboratory have explored the use of polyacrylate nanoparticles in aqueous media as stable emulsions for potential applications in treating drug-resistant bacterial infections. These emulsions are made by emulsion polymerization of acrylated antibiotic compounds in a mixture of butyl acrylate and styrene (7:3 w:w) using sodium dodecyl sulfate (SDS) as a surfactant. Prior work in our group established that the emulsions required purification to remove toxicity associated with extraneous surfactant present in the media. This paper summarizes our investigations of poly(butyl acrylate-styrene) emulsions made using anionic, cationic, zwitterionic, and non-charged (amphiphilic) surfactants, as well as attachable surfactant monomers (surfmers), comparing the cytotoxicity and microbiological activity levels of the emulsion both before and after purification. Our results show that the attachment of a polymerizable surfmer onto the matrix of the nanoparticle neither improves nor diminishes cytotoxic or antibacterial effects of the emulsion, regardless of whether the emulsions are purified or not, and that the optimal properties are associated with the use of the non-ionic surfactants versus those carrying anionic, cationic, or zwitterionic charge. Incorporation of an N-thiolated β-lactam antibacterial agent onto the nanoparticle matrix via covalent attachment endows the emulsion with antibiotic properties against pathogenic bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), without changing the physical properties of the nanoparticles or their emulsions. PMID:19523413
The Morphology of Emulsion Polymerized Latex Particles
DOE R&D Accomplishments Database
Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.
1987-11-01
Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.
Iglesias, Guillermo Ramón; Pirolt, Franz; Sadeghpour, Amin; Tomšič, Matija; Glatter, Otto
2013-12-17
The transfer kinetics of lipids between internally self-assembled droplets of O/W emulsions is studied. The droplets (isasomes) consist of various liquid-crystalline phases or W/O microemulsions stabilized by a polymeric stabilizer F127. The various internal phases were identified by the relative peak positions in the small-angle X-ray scattering (SAXS) curves. An arrested system composed of isasomes embedded in a gel matrix actually provides an additional possibility to control these systems in terms of the release of various host molecules. These experiments have been applied to examine the kinetics of the internal phase reorganization imposed by the lipids' release and uptake by the droplets embedded in a κ-carrageenan (KC) hydrogel network. Increasing the concentration of the gelling agent slows down the transfer from one droplet to the other through the aqueous phase. We examined the region where the free diffusion is stopped. i.e., the point where the system changes from the ergodic to the nonergodic state and the kinetics is essentially slowed down. This effect can be balanced by the addition of small amounts of free polymeric stabilizer, which speeds up the kinetics. This is even possible in the case of highly arrested dynamics of the emulsion droplets, as found for the highest KC hydrogel concentrations forming nonergodic systems.
Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method
NASA Astrophysics Data System (ADS)
Manzke, Achim; Vogel, Nicolas; Weiss, Clemens K.; Ziener, Ulrich; Plettl, Alfred; Landfester, Katharina; Ziemann, Paul
2011-06-01
Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars.Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars. Electronic supplementary information (ESI) available: Detailed description of the experimental part (S1-S4) platinum concentration inside the polymer particles synthesized by a seeded polymerization from the same seed particles measured by ICP-OES (Fig. S1 and S5); SEM image of Pt complex containing PS particles after oxygen plasma treatment (Fig. S2 and S6); effect of hydrofluoric acid treatment on silicon oxide elevation under Pt NPs (Fig. S3 and S6); SEM images demonstrating the variability of Pt NP distance while keeping the diameter constant (Fig. S4 and S8); results of experimental determination of Pt content by ICP-OES (Tables S1 and S9); diameter of the particles at different fabrication states (Tables S2 and S10). See DOI: 10.1039/c1nr10169b
NASA Astrophysics Data System (ADS)
Ding, Li-ming; Pei, Guang-ling
2015-07-01
Phase change material microcapsules (MicroPCMs) were synthesized by a coreshell-like emulsion polymerization method. Styrene and methylacrylic acid copolymer (PS- MAA) was used as a wall material, and paraffin was used as a core material in order to prepare spherical, high resistance and high enthalpy MicroPCMs. Scanning Electron Microscope (SEM), laser particle size analyzer, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TG) and Differential Scanning Calorimeter (DSC) were employed to characterize the MicroPCMs. The results indicated that the average particle size of MicroPCMs was 42.29 μm, and the content of paraffin within microcapsules was 57.6%. The melting temperature and crystallization temperature were 30.7°C and 25.2°C.The melting enthalpy and crystallization enthalpy were -84.1 J/g and 91.3 J/g, respectively.
Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.
Zhong, Justin X; Clegg, John R; Ander, Eric W; Peppas, Nicholas A
2018-06-01
Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018. © 2018 Wiley Periodicals, Inc.
Dispersion Polymerization of Polystyrene Particles Using Alcohol as Reaction Medium
NASA Astrophysics Data System (ADS)
Cho, Young-Sang; Shin, Cheol Hwan; Han, Sujin
2016-02-01
In this study, monodisperse polystyrene nanospheres were prepared by dispersion polymerization using alcohol as reaction medium to prepare colloidal clusters of the latex beads. Polyvinylpyrrolidone (PVP) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTC) were used as dispersion stabilizer and comonomer, respectively. The particle size could be controlled by adjusting the reactant compositions such as the amount of stabilizer, comonomer, and water in the reactant mixture. The size and monodispersity of the polymeric particles could be also controlled by changing the reaction medium with different alcohols other than ethanol or adjusting the polymerization temperature. The synthesized particles could be self-organized inside water-in-oil emulsion droplets by evaporation-driven self-assembly to produce colloidal clusters of the polymeric nanospheres.
Asphaltene dispersants as demulsification aids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manek, M.B.
1995-11-01
Destabilization of petroleum asphaltenes may cause a multitude of problems in crude oil recovery and production. One major problem is their agglomeration at the water-oil interface of crude oil emulsions. Once agglomeration occurs, destabilized asphaltenes can form a thick pad in the dehydration equipment, which significantly reduces the demulsification rate. Certain polymeric dispersants increase asphaltene solubilization in hydrocarbon media, and when used in conjunction with emulsion breakers, facilitate the demulsification process. Two case studies are presented that demonstrate how asphaltene dispersants can efficiently inhibit pad formation and help reduce demulsifier dosage. Criteria for dispersant application and selection are discussed, whichmore » include the application of a novel laboratory technique to assess asphaltene stabilization in the crude oil. The technique monitors asphaltene agglomeration while undergoing titration with an incompatible solvent (precipitant). The method was used to evaluate stabilization of asphaltenes in the crude oil and to screen asphaltene dispersants.« less
A Study of Functional Polymer Colloids Prepared Using Thiol-Ene/Yne Click Chemistry
NASA Astrophysics Data System (ADS)
Durham, Olivia Z.
This project demonstrates the first instance of thiol-ene chemistry as the polymerization method for the production of polymer colloids in two-phase heterogeneous suspensions, miniemulsions, and emulsions. This work was also expanded to thiol-yne chemistry for the production of polymer particles containing increased crosslinking density. The utility of thiol-ene and thiol-yne chemistries for polymerization and polymer modification is well established in bulk systems. These reactions are considered 'click' reactions, which can be defined as processes that are both facile and simple, offering high yields with nearly 100% conversion, no side products, easy product separation, compatibility with a diverse variety of commercially available starting materials, and orthogonality with other chemistries. In addition, thiol-ene and thiol-yne chemistry follow a step-growth mechanism for the development of highly uniform polymer networks, where polymer growth is dependent on the coupling of functional groups. These step-growth polymerization systems are in stark contrast to the chain-growth mechanisms of acrylic and styrenic monomers that have dominated the field of conventional heterogeneous polymerizations. Preliminary studies evaluated the mechanism of particle production in suspension and miniemulsion systems. Monomer droplets were compared to the final polymer particles to confirm that particle growth occurred through the polymerization of monomer droplets. Additional parameters examined include homogenization energy (mechanical mixing), diluent species and concentration, and monomer content. These reactions were conducted using photoinitiation to yield particles in a matter of minutes with diameters in the size range of several microns to hundreds of microns in suspensions or submicron particles in miniemulsions. Improved control over the particle size and size distribution was examined through variation of reaction parameters. In addition, a method of seeded suspension polymerization was attempted. This project was further expanded through an extensive evaluation of stabilizers in thiol-ene suspension polymerizations. The scope of stabilizers used included synthetic surfactants (ionic and nonionic), natural gums, and colloidal silica (Pickering stabilization). Suspension polymerizations were further expanded to include thiol-yne chemistry for the evaluation of polymer composition and thermal properties. In addition, polymer particles with excess ene, yne, or thiol functionality were successfully developed to demonstrate the potential for further functionalization. The self-limiting behavior of thiol-ene/yne reactions allows for successful synthesis of functional polymer colloids using off-stoichiometric amounts of monomers. This capacity to control functionality is illustrated through the creation of fluorescent polymer particles using both an in situ thiol-ene polymerization reaction with a vinyl chromophore as well as through post-polymerization modification of thiol-ene and thiol-yne polymers with excess thiol functionality via thiol-isocyanate chemistry. To produce smaller polymer particles without the need for intense homogenization energy or high stabilizer concentrations, an emulsion polymerization system was implemented using a water soluble-thermal initiator. It was found that unlike thiol-ene suspensions, which are limited to crosslinked systems, thiol-ene emulsion polymerizations allowed for the production of polymer particles comprised of either crosslinked or linear polymer networks. For the crosslinked systems, various anionic SDS surfactant concentrations were examined to observe the influence on particle size. In linear polymer systems, variations in polymer composition were examined. Preliminary studies performed with a monomer with an ethylene glycol-like structure indicated that the synthesis of polymer particles with narrower size distributions compared to any of the other emulsion compositions was possible. Finally, thiol-ene chemistry was also employed toward the synthesis of degradable polyanhydride polymer particles. Unlike the aforementioned studies, the approach to particle synthesis was conducted by using a premade thiol-ene polymer. Various linear thiol-ene polyanhydrides were emulsified in water or buffered solutions via sonication. Polymer latex was obtained upon solvent evaporation of the dichloromethane (DCM) solvent used to solubilize the polymer. In this work, variation of polymer composition as well as degradation was examined. Additional experiments included a study of the release of Rhodamine B dye, functionalization of the linear polymers, and studies involving the delay of degradation through the incorporation of crosslinking in the polymer particles. The projects presented herein provide an innovative approach to the synthesis of polymer colloids using thiol-ene and thiol-yne 'click' chemistry in both heterogeneous polymerizations as well as through solvent evaporation of premade polymer solutions. Polymer colloids prove to be an area of great interest for numerous applications that encompass various areas involving biomedical and industrial technologies including paints and coatings, cosmetics, diagnostics, and drug delivery. Improvements in methods of chemical synthesis as well as advances in the tailoring of material properties are of utmost importance for the ever increasing demands of new technologies and educational enlightenment.
Emulsion Inks for 3D Printing of High Porosity Materials.
Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M
2016-08-01
Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang
2017-01-01
The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.
Garay-Jimenez, Julio C; Turos, Edward
2011-08-01
We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stability of lutein encapsulated whey protein nano-emulsion during storage
Guo, Mingruo
2018-01-01
Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071
Combinatorial and high-throughput approaches in polymer science
NASA Astrophysics Data System (ADS)
Zhang, Huiqi; Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.
2005-01-01
Combinatorial and high-throughput approaches have become topics of great interest in the last decade due to their potential ability to significantly increase research productivity. Recent years have witnessed a rapid extension of these approaches in many areas of the discovery of new materials including pharmaceuticals, inorganic materials, catalysts and polymers. This paper mainly highlights our progress in polymer research by using an automated parallel synthesizer, microwave synthesizer and ink-jet printer. The equipment and methodologies in our experiments, the high-throughput experimentation of different polymerizations (such as atom transfer radical polymerization, cationic ring-opening polymerization and emulsion polymerization) and the automated matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) sample preparation are described.
Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C
2016-09-01
Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng
2017-08-17
A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenwen; Wang, Weiyu; Li, Hui
In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 10 5 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less
Wong, Ling L C; Villafranca, Pedro M Baiz; Menner, Angelika; Bismarck, Alexander
2013-05-21
In building construction, structural elements, such as lattice girders, are positioned specifically to support the mainframe of a building. This arrangement provides additional structural hierarchy, facilitating the transfer of load to its foundation while keeping the building weight down. We applied the same concept when synthesizing hierarchical open-celled macroporous polymers from high internal phase emulsion (HIPE) templates stabilized by varying concentrations of a polymeric non-ionic surfactant from 0.75 to 20 w/vol %. These hierarchical poly(merized)HIPEs have multimodally distributed pores, which are efficiently arranged to enhance the load transfer mechanism in the polymer foam. As a result, hierarchical polyHIPEs produced from HIPEs stabilized by 5 vol % surfactant showed a 93% improvement in Young's moduli compared to conventional polyHIPEs produced from HIPEs stabilized by 20 vol % of surfactant with the same porosity of 84%. The finite element method (FEM) was used to determine the effect of pore hierarchy on the mechanical performance of porous polymers under small periodic compressions. Results from the FEM showed a clear improvement in Young's moduli for simulated hierarchical porous geometries. This methodology could be further adapted as a predictive tool to determine the influence of hierarchy on the mechanical properties of a range of porous materials.
Ou, Hongxiang; Chen, Qunhui; Pan, Jianming; Zhang, Yunlei; Huang, Yong; Qi, Xueyong
2015-05-30
Magnetic imprinted polymers (MIPs) were synthesized by Pickering emulsion polymerization and used to adsorb erythromycin (ERY) from aqueous solution. The oil-in-water Pickering emulsion was stabilized by chitosan nanoparticles with hydrophobic Fe3O4 nanoparticles as magnetic carrier. The imprinting system was fabricated by radical polymerization with functional and crosslinked monomer in the oil phase. Batches of static and dynamic adsorption experiments were conducted to analyze the adsorption performance on ERY. Isotherm data of MIPs well fitted the Freundlich model (from 15 °C to 35 °C), which indicated heterogeneous adsorption for ERY. The ERY adsorption capacity of MIPs was about 52.32 μmol/g at 15 °C. The adsorption kinetics was well described by the pseudo-first-order model, which suggested that physical interactions were primarily responsible for ERY adsorption. The Thomas model used in the fixed-bed adsorption design provided a better fit to the experimental data. Meanwhile, ERY exhibited higher affinity during adsorption on the MIPs compared with the adsorption capacity of azithromycin and chloramphenicol. The MIPs also exhibited excellent regeneration capacity with only about 5.04% adsorption efficiency loss in at least three repeated adsorption-desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua
2015-08-01
Polymethyl methacrylate (PMMA)-coated hollow Sn-Co nanospheres (Sn-Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn-Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn-Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g-1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn-Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.
Process for preparation of large-particle-size monodisperse latexes
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Kornfeld, D. M. (Inventor)
1981-01-01
Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment.
Model Filled Polymers. 6. Determination of the Crosslink Density of Polymeric Beads by Swelling
1990-08-22
7 References [1] M. Mooney , J. AppI. Phys., 11, 582 (1940). [2] R. S. Rivlin , and D. W. Sanders, Trans. Faraday Soc., 48, 200 (1952). [31 P. J. Flory...microbeads ranging in diameter from 0.2 to 1 p were prepared by emulsion polymerization in the absence of emulsifier [23]. Polytetrafluorethylene ( PTFE ...density of polymethyl methacrylate is 1.17 g/cm3 [201. Swelling A PTFE ultrafiltration membrane is weighed and inserted in a concave configuration
Ionene modified small polymeric beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor)
1977-01-01
Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.
Probing of cosolvents in polymer latex materials by using solvatochromic fluorescence.
Brouwer, Albert M; Raja, Tanzeela N; Biemans, Koen; Nabuurs, Tijs; Tennebroek, Ronald
2008-01-01
The process of film formation is of great importance for the application of organic coatings. In waterborne coatings, organic cosolvents are still indispensable, but regulations force the industry to reduce their amounts. Here we describe a method that uses the solvatochromic fluorescence of a probe molecule copolymerized in an emulsion polymerization process with different monomers to shed light on the partitioning of cosolvents in polymer latex materials. The formulation of the latex with organic cosolvents that are not very water soluble leads to a quantifiable redshift of the emission of the probe. The transfer of the cosolvent upon mixing of cosolvent-containing and cosolvent-free compartments can also be monitored.
An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Guihua, E-mail: guihuaruan@hotmail.com; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004; Wu, Zhenwei
A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N{sub α}-benzoyl-L-arginine ethyl ester to N{sub α}-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast andmore » easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.« less
Gang Pu; Matthew R. Dubay; Jiguang Zhang; Steven J. Severtson; Carl J. Houtman
2012-01-01
n-Butyl acrylate and other acrylic monomers were copolymerized with an acrylated macromonomer to produce polymers for pressure-sensitive adhesive (PSA) applications. Macromonomers were generated through the ring-opening copolymerization of L-lactide and ε-caprolactone with 2-hydroxyethyl...
Huang, Yipeng; Zhang, Wenjuan; Ruan, Guihua; Li, Xianxian; Cong, Yongzheng; Du, Fuyou; Li, Jianping
2018-03-27
Reduced graphene oxide (RGO)-hybridized polymeric high-internal phase emulsions (RGO/polyHIPEs) with an open-cell structure and hydrophobicity have been successfully prepared using 2-ethylhexyl acrylate and ethylene glycol dimethacrylate as the monomer and the cross-linker, respectively. The adsorption mechanism and performance of this RGO/polyHIPEs to polycyclic aromatic hydrocarbons (PAHs) were investigated. Adsorption isotherms of PAHs on RGO/polyHIPEs show that the saturated adsorption capacity is 47.5 mg/g and the equilibrium time is 8 h. Cycling tests show that the adsorption capacity of RGO/polyHIPEs remains stable in 10 adsorption-desorption cycles without observable structure change in RGO/polyHIPEs. Moreover, the PAH residues in water samples after being purified by RGO/polyHIPEs are lower than the limit values in drinking water set by the European Food Safety Authority. These results demonstrate that the RGO/polyHIPEs have great potentiality in PAH removal and water purification.
Alzobaidi, Shehab; Lee, Jason; Jiries, Summer; Da, Chang; Harris, Justin; Keene, Kaitlin; Rodriguez, Gianfranco; Beckman, Eric; Perry, Robert; Johnston, Keith P; Enick, Robert
2018-09-15
The design of surfactants for CO 2 /oil emulsions has been elusive given the low CO 2 -oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO 2 /oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO 2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO 2 and oil through a beadpack (CO 2 volume fractions (ϕ) of 0.50-0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C 30 alkyl chains are CO 2 -insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO 2 -philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO 2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C 30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO 2 , with CO 2 droplets in the 10-150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations. Copyright © 2018 Elsevier Inc. All rights reserved.
Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer
Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos
2010-01-01
We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s−1. Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 µm, shell thicknesses ranging from 10 to 50 µm and shell pore diameters ranging from 1 to 10 µm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core–shell multimaterial particles. PMID:20484226
Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.
Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos
2010-08-06
We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s(-1). Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 microm, shell thicknesses ranging from 10 to 50 microm and shell pore diameters ranging from 1 to 10 microm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core-shell multimaterial particles.
2015-01-01
An immersion Raman probe was used in emulsion copolymerization reactions to measure monomer concentrations and particle sizes. Quantitative determination of monomer concentrations is feasible in two-monomer copolymerizations, but only the overall conversion could be measured by Raman spectroscopy in a four-monomer copolymerization. The feasibility of measuring monomer conversion and particle size was established using partial least-squares (PLS) calibration models. A simplified theoretical framework for the measurement of particle sizes based on photon scattering is presented, based on the elastic-sphere-vibration and surface-tension models. PMID:26900256
Amphiphilic Soft Janus Particles as Interfacial Stabilizers
NASA Astrophysics Data System (ADS)
Wang, Wenda; Niu, Sunny; Sosa, Chris; Prud'Homme, Robert; Priestley, Rodney; Priestley Polymer Group Team; Prud'homme Research Group Team
Janus particles, which incorporate two or more ``faces'' with different chemical functionality, have attracted great attention in scientific research. Amphiphilic Janus particles have two faces with distinctly different hydrophobicity. This can be thought of as colloidal surfactants. Theoretical studies on the stabilization of emulsions using Janus particles have confirmed higher efficiency. Herein we synthesize the narrow distributed amphiphilic polymeric Janus particles via Precipitation-Induced Self-Assembly (PISA). The efficiency of the amphiphilic Janus particles are tested on different oil/water systems. Biocompatible polymers can also be used on this strategy and may potentially have wide application for food emulsion, cosmetics and personal products.
Ruiyi, Li; Zaijun, Li; Junkang, Liu
2017-05-01
Carbon-based dots (CDs) are nanoparticles with size-dependent optical and electronic properties that have been widely applied in energy-efficient displays and lighting, photovoltaic devices and biological markers. However, conventional CDs are difficult to be used as ideal stabilizer for Pickering emulsion due to its irrational amphiphilic structure. The study designed and synthesized a new histidine-functionalized carbon dot-Zinc(II) nanoparticles, which is termed as His-CD-Zn. The His-CD was made via one-step hydrothermal treatment of histidine and maleic acid. The His-CD reacted with Zn 2+ to form His-CD-Zn. The as-prepared His-CD-Zn was used as a solid particle surfactant for stabilizing styrene-in-water emulsion. The Pickering emulsion exhibits high stability and sensitive pH-switching behaviour. The introduction of S 2 O 8 2- triggers the emulsion polymerization of styrene. The resulted polystyrene microsphere was well coated with His-CDs on the surface. It was successfully used as an ideal adsorbent for removal of heavy metallic ions from water with high adsorption capacity. The study also provides a prominent approach for fabrication of amphiphilic carbon-based nanoparticles for stabilizing Pickering emulsion. Copyright © 2017 Elsevier Inc. All rights reserved.
Surface Functionalization Methods to Enhance Bioconjugation in Metal-Labeled Polystyrene Particles
Abdelrahman, Ahmed I.; Thickett, Stuart C.; Liang, Yi; Ornatsky, Olga; Baranov, Vladimir; Winnik, Mitchell A.
2011-01-01
Lanthanide-encoded polystyrene particles synthesized by dispersion polymerization are excellent candidates for mass cytometry based immunoassays, however they have previously lacked the ability to conjugate biomolecules to the particle surface. We present here three approaches to post-functionalize these particles, enabling the covalent attachment of proteins. Our first approach used partially hydrolyzed poly(N-vinylpyrrolidone) as a dispersion polymerization stabilizer to synthesize particles with high concentration of -COOH groups on the particle surface. In an alternative strategy to provide -COOH functionality to the lanthanide-encoded particles, we employed seeded emulsion polymerization to graft poly(methacrylic acid) (PMAA) chains onto the surface of these particles. However, these two approaches gave little to no improvement in the extent of bioconjugation. In our third approach, seeded emulsion polymerization was subsequently used as a method to grow a functional polymer shell (in this case, poly(glycidyl methacrylate) (PGMA)) onto the surface of these particles, which proved highly successful. The epoxide-rich PGMA shell permitted extensive surface bioconjugation of NeutrAvidin, as probed by an Lu-labeled biotin reporter (ca. 7 × 105 binding events per particle with a very low amount of non-specific binding) and analyzed by mass cytometry. It was shown that coupling agents such as EDC were not needed, such was the reactivity of the particle surface. These particles were stable and the addition of a polymeric shell was shown did not affect the narrow lanthanide ion distribution within the particle interior as analyzed by mass cytometry. These particles represent the most promising candidates for the development of a highly multiplexed bioassay based on lanthanide-labeled particles to date. PMID:21799543
Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.
Lee, Parker W; Pokorski, Jonathan K
2018-03-13
Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.
Preparation and Characterization of Polymeric Nanoparticles: An Interdisciplinary Experiment
ERIC Educational Resources Information Center
Ramalho, Maria J.; Pereira, M. Carmo
2016-01-01
In this work, a laboratory experiment to introduce graduate students to nanotechnology is described. Students prepared poly(lactic-"co"-glycolic acid) (PLGA) nanoparticles using two different synthesis procedures, a single and a double emulsion-solvent evaporation method. The students also performed a physicochemical characterization of…
Conde, Enma; Moure, Andrés; Domínguez, Herminia; Gordon, Michael H; Parajó, Juan Carlos
2011-09-14
The phenolic fractions released during hydrothermal treatment of selected feedstocks (corn cobs, eucalypt wood chips, almond shells, chestnut burs, and white grape pomace) were selectively recovered by extraction with ethyl acetate and washed with ethanol/water solutions. The crude extracts were purified by a relatively simple adsorption technique using a commercial polymeric, nonionic resin. Utilization of 96% ethanol as eluting agent resulted in 47.0-72.6% phenolic desorption, yielding refined products containing 49-60% w/w phenolics (corresponding to 30-58% enrichment with respect to the crude extracts). The refined extracts produced from grape pomace and from chestnut burs were suitable for protecting bulk oil and oil-in-water and water-in-oil emulsions. A synergistic action with bovine serum albumin in the emulsions was observed.
Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis.
Abeylath, Sampath C; Turos, Edward; Dickey, Sonja; Lim, Daniel V
2008-03-01
This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine.
Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis
Abeylath, Sampath C.; Turos, Edward; Dickey, Sonja; Limb, Daniel V.
2008-01-01
This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio β-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-D-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-α-D-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters (~40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio β-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine. PMID:18063370
Jay, Steven M; Peevy, Nolan J; Jenkins, Thomas C; Burg, Karen J L
2006-01-01
Despite its abundance in their diet, cattle are unable to directly digest cellulose. The bovine digestive tract overcomes this problem via the rumen, a portion of the stomach containing mixed anaerobic bacteria. These microbes, while breaking down foodstuffs, also perform undesirable processes such as biohydrogenation, in which unsaturated fatty acids become saturated, with deleterious cardiovascular effects. An approach to preventing this saturation entailing the use of polymeric microspheres to encapsulate feed supplements is proposed, with a single emulsion, solvent evaporation method used to formulate poly(D,L-lactide) microparticles for delivery of unsaturated fatty acids to ruminant abomasum.
Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier
2013-02-01
A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.
Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.
Pang, Bo; Liu, Huan; Liu, Peiwen; Peng, Xinwen; Zhang, Kai
2018-03-01
Hydrophobic particles with static water contact angles larger than 90° are more like to stabilize W/O Pickering emulsions. In particular, high internal phase Pickering emulsions (HIPEs) are of great interest for diverse applications. However, W/O HIPEs have rarely been realized using sustainable biopolymers. Herein, we used stearoylated microcrystalline cellulose (SMCC) to stabilize W/O Pickering emulsions and especially, W/O HIPEs. Moreover, these W/O HIPEs can be further used as platforms for the preparation of porous materials, such as porous foams. Stearoylated microcrystalline cellulose (SMCC) was prepared by modifying MCC with stearoyl chloride under heterogeneous conditions. Using SMCC as emulsifiers, W/O medium and high internal phase Pickering emulsions (MIPEs and HIPEs) with various organic solvents as continuous phases were prepared using one-step and two-step methods, respectively. Polystyrene (PS) foams were prepared after polymerization of oil phase using HIPEs as templates and their oil/water separation capacity were studied. SMCC could efficiently stabilize W/O Pickering emulsions and HIPEs could only be prepared via the two-step method. The internal phase volume fraction of the SMCC-stabilized HIPEs reached as high as 89%. Diverse internal phase volume fractions led to distinct inner structures of foams with closed or open cells. These macroporous polystyrene (PS) foams demonstrated great potential for the effective absorption of organic solvents from underwater. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeong, Eun Seon; Byun, Aram; Kim, Jin Woong
2014-03-01
Lipid molecules have both hydrophilic and hydrophobic properties. Since their packing parameter ranges from 0.5 to 1, they self-assemble to form a vesicle structure, liposome. Thanks to the vesicle structure, liposome is able to encapsulate both hydrophilic and hydrophobic active ingredients, thus widening its applicability to pharmaceutical, cosmetic, and food industry. However, its vesicular structure is readily transferred to micelle in the presence of amphiphilic additives with low packing parameters. Therefore, it is critical to developing a technique to overcome this drawback. This study introduces a microfluidic approach to physically immobilize liposome in microgel particles. For this, we generate a uniform liposome-in-oil-in-water emulsion in a capillary-based microfluidic device. Basically, we observe how the flows in micro-channels affect generation of embryo emulsion drops. Then, the uniform emulsion is solidified by using photo-polymerization. Finally, we characterize the particle morphology, membrane fluidity, and mesh property, encapsulation efficiency and releasing.
Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K
2013-01-01
Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.
Polymerization model for hydrogen peroxide initiated synthesis of polypyrrole nanoparticles.
Leonavicius, Karolis; Ramanaviciene, Almira; Ramanavicius, Arunas
2011-09-06
A very simple, environmentally friendly, one-step oxidative polymerization route to fabricate polypyrrole (Ppy) nanoparticles of fixed size and morphology was developed and investigated. The herein proposed method is based on the application of sodium dodecyl sulfate and hydrogen peroxide, both easily degradable and cheap materials. The polymerization reaction is performed on 24 h time scale under standard conditions. We monitored a polaronic peak at 465 nm and estimated nanoparticle concentration during various stages of the reaction. Using this data we proposed a mechanism for Ppy nanoparticle formation in accordance with earlier emulsion polymerization mechanisms. Rates of various steps in the polymerization mechanism were accounted for and the resulting particles identified using atomic force microscopy. Application of Ppy nanoparticles prepared by the route presented here seems very promising for biomedical applications where biocompatibility is paramount. In addition, this kind of synthesis could be suitable for the development of solar cells, where very pure and low-cost conducting polymers are required. © 2011 American Chemical Society
Jilin Zhang; Yuxi Zhao; Matthew R. Dubay; Steven J. Severtson; Larry E. Gwin; Carl J. Houtman
2013-01-01
Comparisons of properties are made for pressure-sensitive adhesives (PSAs) generated via emulsion polymerization using both conventional and reactive emulsifiers. The emulsifiers are ammonium salts of sulfated nonylphenol ethoxylates with similar chemical structures and hydrophilic−lipophilic balances. The polymerizable surfactant possesses a reactive double...
Farias-Cepeda, Lorena; Herrera-Ordonez, Jorge; Hernandez-Martinez, Angel R; Estevez, Miriam; Rosales-Marines, Lucero
2017-08-15
The styrene (St) emulsion polymerization using Aerosol MA80 as surfactant and in the presence of sodium styrene sulfonate (NaSS) was studied. The effect of NaSS content was assessed using MA80 concentrations below and at the critical micellar concentration. It was found that at the higher NaSS and MA80 contents, the number of particles (N) reaches a maximum of the order of 10 17 particles/cm 3 water, a huge value that has never been reported. In this work an explanation for this super-enhanced particle nucleation phenomenon is proposed. Such hypothesis is based on the role of St-NaSS oligomers formed in the aqueous phase and their synergy with MA80 molecules to provide colloidal stability to the system. The proposal seems to be consistent with the experimental data obtained for the evolution of monomer conversion, N, particles size distribution and the wideness of this latter as well as with a theoretical estimation of the N. Copyright © 2017 Elsevier Inc. All rights reserved.
Structure-activity relationships of polyphenols to prevent lipid oxidation in pelagic fish muscle.
Pazos, Manuel; Iglesias, Jacobo; Maestre, Rodrigo; Medina, Isabel
2010-10-27
The influence of polymerization (number of monomers) and galloylation (content of esterified gallates) of oligomeric catechins (proanthocyanidins) on their effectiveness to prevent lipid oxidation in pelagic fish muscle was evaluated. Non-galloylated oligomers of catechin with diverse mean polymerization (1.9-3.4 monomeric units) were extracted from pine (Pinus pinaster) bark. Homologous fractions with galloylation ranging from 0.25 to <1 gallate group per molecule were obtained from grape (Vitis vinifera) and witch hazel (Hamamelis virginiana). The results showed the convenience of proanthocyanidins with medium size (2-3 monomeric units) and low galloylation degree (0.15-0.25 gallate group/molecule) to inhibit lipid oxidation in pelagic fish muscle. These optimal structural characteristics of proanthocyanidins were similar to those lately reported in fish oil-in-water emulsions using phosphatidylcholine as emulsifier. This finding suggests that the antioxidant behavior of polyphenols in muscle-based foods can be mimicked in emulsions prepared with phospholipids as emulsifier agents. The present data give relevant information to achieve an optimum use of polyphenols in pelagic fish muscle.
Lee, Ki Chang; Choo, Hun Seung
2015-10-01
In order to study the surfactant-free emulsion copolymerization of benzyl methacrylate (BMA) with sodium 1-allyloxy-2-hydroxypropane sulfonate (COPS-I) and the resulting optical properties, a series of experiments was carried out at various reaction conditions such as the changes of BMA concentration, COPS-I concentration, BMA concentration under a fixed COPS-I amount, initiator and divinyl benzene (DVB) concentration. All the latices showed highly monodispersed spherical particles in the size range of 144~435 nm and the respective shiny structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices. The increase of number of particles led to the increased rate of polymerization and zeta-potential of the latices, on the other hand, to the decreased molecular weight. Refractive indices and the reflectivity increased with COPS-I concentration, on the other hand, and decreased with DVB concentration. Especially, refractive indices of the resulting poly[BMA-co-(COPS-I)] colloidal photonic crystals showed much higher values of 1.65~2.21 than that of polystyrene, due to the formation of core-shell shaped morphology. Monodisperse and high refractive index of poly[BMA-co-(COPS-I)] particles prepared in this work could be used for the study in photonic crystals and electrophoretic display.
Molecular Imprinting Techniques Used for the Preparation of Biosensors
Ertürk, Gizem; Mattiasson, Bo
2017-01-01
Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications. PMID:28165419
Obando, Mónica; Papastergiadis, Antonios; Li, Shanshan; De Meulenaer, Bruno
2015-11-11
Enrichment of polyunsaturated fatty acids (PUFAs) is a growing trend in the food industry. However, PUFAs are known to be susceptible to lipid oxidation. It has been shown that oxidizing lipids react with proteins present in the food and that as a result polymeric protein complexes are produced. Therefore, the aim of this work was to investigate the impact of lipid and protein co-oxidation on protein digestibility. Casein and whey protein (6 mg/mL) based emulsions with 1% oil with different levels of PUFAs were subjected to respectively autoxidation and photo-oxidation. Upon autoxidation at 70 °C, protein digestibility of whey protein based emulsions containing fish oil decreased to 47.7 ± 0.8% after 48 h, whereas in the controls without oil 67.8 ± 0.7% was observed. Upon photo-oxidation at 4 °C during 30 days, mainly casein-based emulsions containing fish oil were affected: the digestibility amounted to 43.9 ± 1.2%, whereas in the control casein solutions without oil, 72.6 ± 0.2% of the proteins were digestible. Emulsions containing oils with high PUFA levels were more prone to lipid oxidation and thus upon progressive oxidation showed a higher impact on protein digestibility.
Obaid, M; Mohamed, Hend Omar; Yasin, Ahmed S; Yassin, Mohamed A; Fadali, Olfat A; Kim, HakYong; Barakat, Nasser A M
2017-10-15
Water in the world is becoming an increasingly scarce commodity and the membrane technology is a most effective strategy to address this issue. However, the fouling and low flux of the polymeric membrane remains the big challenges. Novel modified Polyvinylidene fluoride (PVDF) membrane was introduced, in this work, using a novel treatment technique for an electrospun polymeric PVDF membrane to be used in oil/water separation systems. The Characterizations of the modified and pristine membranes showed distinct changes in the phase and crystal structure of the membrane material as well as the wettability. The modification process altered the surface morphology and structure of the membrane by forming hydrophilic microspheres on the membrane surface. Therefore, the proposed treatment converts the membrane from highly hydrophobic to be a superhydrophilic under-oil when wetted with water. Accordingly, in the separation of oil/water mixtures, the modified membrane can achieve an outstanding flux of 20664 L/m 2 . hr under gravity, which is higher than the pristine membrane by infinite times. Moreover, in the separation of the emulsion, a high flux of 2727 L/m 2 . h was achieved. The results exhibited that the modified membrane can treat a huge amount of oily water with a minimal energy consumption. The corresponding separation efficiencies of both of oil/water mixtures and emulsion are more than 99%. The achieved characteristics for the modified and pristine membranes could be exploited to design a novel continuous system for oil/water separation with an excellent efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Breaking of the Bancroft rule for multiple emulsions stabilized by a single stimulable polymer.
Besnard, L; Protat, M; Malloggi, F; Daillant, J; Cousin, F; Pantoustier, N; Guenoun, P; Perrin, P
2014-09-28
We investigated emulsions of water and toluene stabilized by (co)polymers consisting of styrene (S) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) monomer units with different compositions and structures such as a PDMAEMA homopolymer, a P(S-co-DMAEMA) random copolymer and various PS-b-PDMAEMA and PS-b-(S-co-DMAEMA) block copolymers. The model system is used to study the fundamental conditions under which the different kinds of polymer-stabilized emulsions (direct oil in water, inverse water in oil and multiple emulsions) are stabilized or destabilized by pH change (at constant temperature). Polymer properties like chain conformation at the toluene-water interface as probed by SANS and neutron reflectivity at the liquid-liquid interface, the oil-water partitioning of the polymer chains (Bancroft's rule of thumb) as determined by UV spectroscopy and interfacial tensions measured by the rising and spinning drop techniques are determined. Overall, results evidence that the curvature sign, as defined by positive and negative values as the chain segments occupy preferentially the water and toluene sides of the interface respectively, reliably predicts the emulsion kind. In contrast, the Bancroft rule failed at foreseeing the emulsion type. In the region of near zero curvature the crossover from direct to inverse emulsions occurs through the formation of either unstable coexisting direct and inverse emulsions (i) or multiple emulsions (ii). The high compact adsorption of the chains at the interface as shown by low interfacial tension values does not allow to discriminate between both cases. However, the toluene-water partitioning of the polymeric emulsifier is still a key factor driving the formation of (i) or (ii) emulsions. Interestingly, the stabilization of the multiple emulsions can be tuned to a large extent as the toluene-water polymer partitioning can be adjusted using quite a large number of physico-chemical parameters linked to polymer architecture like diblock length ratio or polymer total molar mass, for example. Moreover, we show that monitoring the oil-water partitioning aspect of the emulsion system can also be used to lower the interfacial tension at low pH to values slightly higher than 0.01 mN m(-1), irrespective of the curvature sign.
Scaffolds for Controlled Release of Cartilage Growth Factors.
Morille, Marie; Venier-Julienne, Marie-Claire; Montero-Menei, Claudia N
2015-01-01
In recent years, cell-based therapies using adult stem cells have attracted considerable interest in regenerative medicine. A tissue-engineered construct for cartilage repair should provide a support for the cell and allow sustained in situ delivery of bioactive factors capable of inducing cell differentiation into chondrocytes. Pharmacologically active microcarriers (PAMs), made of biodegradable and biocompatible poly (D,L-lactide-co-glycolide acid) (PLGA), are a unique system which combines these properties in an adaptable and simple microdevice. This device relies on nanoprecipitation of proteins encapsulated in polymeric microspheres with a solid in oil in water emulsion-solvent evaporation process, and their subsequent coating with extracellular matrix protein molecules. Here, we describe their preparation process, and some of their characterization methods for an application in cartilage tissue engineering.
Wu, Yuqing; Wang, Ke; Tan, Haiying; Xu, Jiangping; Zhu, Jintao
2017-09-26
A simple yet efficient method is developed to manipulate the self-assembly of pH-sensitive block copolymers (BCPs) confined in emulsion droplets. Addition of acid induces significant variation in morphological transition (e.g., structure and surface composition changes) of the polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) assemblies, due to the hydrophobic-hydrophilic transition of the pH-sensitive P4VP block via protonation. In the case of pH > pKa (P4VP) (pKa (P4VP) = 4.8), the BCPs can self-assemble into pupa-like particles because of the nearly neutral wetting of PS and P4VP blocks at the oil/water interface. As expected, onion-like particles obtained when pH is slightly lower than pKa (P4VP) (e.g., pH = 3.00), due to the interfacial affinity to the weakly hydrophilic P4VP block. Interestingly, when pH was further decreased to ∼2.5, interfacial instability of the emulsion droplets was observed, and each emulsion droplet generated nanoscale assemblies including vesicles, worm-like and/or spherical micelles rather than a nanostructured microparticle. Furthermore, homopolymer with different molecular weights and addition ratio are employed to adjust the interactions among copolymer blocks. By this means, particles with hierarchical structures can be obtained. Moreover, owing to the kinetically controlled processing, we found that temperature and stirring speed, which can significantly affect the kinetics of the evaporation of organic solvent and the formation of particles, played a key role in the morphology of the assemblies. We believe that manipulation of the property for the aqueous phase is a promising strategy to rationally design and fabricate polymeric assemblies with desirable shapes and internal structures.
Gökay, Öznur; Karakoç, Veyis; Andaç, Müge; Türkmen, Deniz; Denizli, Adil
2015-02-01
The selective binding of albumin on dye-affinity nanospheres was combined with magnetic properties as an alternative approach for albumin depletion from human plasma. Magnetic poly(hydroxyethyl methacrylate) (mPHEMA) nanospheres were synthesized using mini-emulsion polymerization method in the presence of magnetite powder. The specific surface area of the mPHEMA nanospheres was found to be 1302 m(2)/g. Subsequent to Cibacron Blue F3GA (CB) immobilization onto mPHEMA nanospheres, a serial characterization processing was implemented. The quantity of immobilized CB was calculated as 800 μmol/g. Ultimately, albumin adsorption performance of the CB-attached mPHEMA nanospheres from both aqueous dissolving medium and human plasma were explored.
Investigation of non-isocyanate urethane functional latexes and carbon nanofiller/epoxy coatings
NASA Astrophysics Data System (ADS)
Meng, Lei
This dissertation consists of two parts. In the first part, a new class of non-isocyanate urethane methacrylates was synthesized and the effect of the new monomers on the urethane functional latex was investigated. The second part focused on a comparison of carbon nanofillers in inorganic/organic epoxy coating system for anticorrosive applications. A new class of non-isocyanate urethane methacrylates (UMAs) monomers was synthesized through an environmentally friendly non-isocyanate pathway. The kinetics of seeded semibatch emulsion polymerization of UMAs with methyl methacrylate (MMA) and butyl acrylate (BA) was monitored. The particle size and morphology were investigated by dynamic light scattering (DLS), ultrasound acoustic attenuation spectroscopy (UAAS) and transmission electron microscopy (TEM). The minimum film formation temperature (MFFT), mechanical and viscoelastic properties were studied. It was found that the emulsion polymerization processes all proceeded via Smith-Ewart control, leading to the uniform morphology and particle size. The glass transition temperature (Tg) and the mechanical properties of poly(MMA/BA/UMA) decreased with the increasing chain length of urethane methacrylate monomers due to the increasing flexibility of side chains. Without the effect of Tg, lower MFFT and improved mechanical properties were observed from urethane functional latexes. The improved mechanical properties were due to the increasing particle interaction by forming hydrogen bonding. Furthermore, the effect of urethane functionality in terms of the polymer composition, the location and the concentration was investigated by the batch, single-stage and two-stage semibatch polymerization of 2-[(butylcarbamoyl)oxy]ethyl methacrylate (BEM) with MMA and BA. The core-shell and homogeneous structures were evaluated by TEM, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (SS-NMR). The compositional drift was observed from the batch polymerization. The mechanical properties were improved with increasing urethane and the best was from the urethane in the shell due to higher concentration of urethane in the continuous phase. The inorganic/organic alkoxysilane modified epoxy coating system was formulated with carbon nanofillers, i.e. carbon black, mixture of carbon black and nanotubes, unpurified and purified non-fullerene carbon nanotubes and fullerene carbon nanotubes. Mechanical, thermal, electrical and anticorrosive properties of cured films were evaluated by tensile tests, DMTA, DSC, four-point probe method and electrochemical impedance spectroscopy (EIS), respectively. It was found that the most efficient material to enhance the electrical conductivity and anticorrosive properties of nanocomposite coating systems was fullerene CNTs.
pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors
NASA Technical Reports Server (NTRS)
Li, Wenyan; Calle, Luz M.
2006-01-01
A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint show visible color changes at induced corrosion sites and improvement of corrosion protection. Further investigation of the performance of the coating using electrochemical techniques and long term exposure are currently underway.
Preparation of small bio-compatible microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)
1979-01-01
Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such a hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.
Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.
Das, Sriya; Wajid, Ahmed S; Shelburne, John L; Liao, Yen-Chih; Green, Micah J
2011-06-01
We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. With this in mind, a physisorbed polymer layer is used to stabilize graphene sheets in solution. To create this protective layer, we formed an organic microenvironment around dispersed graphene sheets in surfactant solutions, and created a nylon 6, 10 or nylon 6, 6 coating via interfacial polymerization. Technique lies at the intersection of emulsion and admicellar polymerization; a similar technique was originally developed to protect luminescent properties of carbon nanotubes in solution. These coated graphene dispersions are aggregation-resistant and may be reversibly redispersed in water even after freeze-drying. The coated graphene holds promise for a number of applications, including multifunctional graphene-polymer nanocomposites. © 2011 American Chemical Society
Xu, Hongyun; Zheng, Xianhua; Huang, Yifei; Wang, Haitao; Du, Qiangguo
2016-01-12
Interconnected macroporous polymers were prepared by copolymerizing methyl acrylate (MA) via Pickering high internal phase emulsion (HIPE) templates with modified silica particles. The pore structure of the obtained polymer foams was observed by field-emission scanning electron microscopy (FE-SEM). Gas permeability was characterized to evaluate the interconnectivity of macroporous polymers. The polymerization shrinkage of continuous phase tends to form open pores while the solid particles surrounding the droplets act as barriers to produce closed pores. These two conflicting factors are crucial in determining the interconnectivity of macroporous polymers. Thus, poly-Pickering HIPEs with high permeability and well-defined pore structure can be achieved by tuning the MA content, the internal phase fraction, and the content of modified silica particles.
Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim
2017-10-06
Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.
Waterborne Polyurethane Coatings with Covalently Linked Black Dye Sudan Black B
Sun, Wei; Xu, Haiyan; Xu, Fei
2017-01-01
Colored waterborne polyurethanes have been widely used in paintings, leathers, textiles, and coatings. Here, a series of black waterborne polyurethanes (WPUs) with different ratios of black dye, Sudan Black B (SDB), were prepared by step-growth polymerization. WPU emulsions as obtained exhibit low particle sizes and remarkable storage stability at the same time. At different dye loadings, essential structural, statistical and thermal properties are characterized. FTIR (fourier transform infrared) spectra indicate that SDB is covalently linked into waterborne polyurethane chains. All of the WPUs with covalently linked SDB show better color fastness and resistance of thermal migration than those with SDB mixed physically. Besides, WPUs incorporated SDB covalently with different polymeric diols, polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), poly-1, 4-butylene adipate glycol (PBA) and polycaprolactone glycol (PCL), were prepared to obtain different properties to cater to a variety of practical demands. By a spraying method, the black WPUs can be directly used as metal coatings without complex dyeing process by simply mixing coating additive and other waterborne resins, which exhibit excellent coating performance. PMID:29143785
Preparation and in vitro evaluation of heparin-loaded polymeric nanoparticles.
Jiao, Y Y; Ubrich, N; Marchand-Arvier, M; Vigneron, C; Hoffman, M; Maincent, P
2001-01-01
Nanoparticles of a highly soluble macromolecular drug, heparin, were formulated with two biodegradable polymers (poly-E-caprolactone [PCL] and poly (D, L-lactic-co-glycolic-acid) 50/50 [PLAGA]) and two nonbiodegradable positively charged polymers (Eudragit RS and RL) by the double emulsion and solvent evaporation method, using a high-pressure homogenization device. The encapsulation efficiency and heparin release profiles were studied as a function of the type of polymers employed (alone or in combination) and the concentration of heparin. Optimal encapsulation efficiency was observed when 5000 IU of heparin were incorporated in the first emulsion. High drug entrapment efficiency was observed in both Eudragit RS and RL nanoparticles (60% and 98%, respectively), compared with PLAGA and PCL nanoparticles (<14%). The use of the two types of Eudragit in combination with PCL and PLAGA increased the encapsulation efficiency compared with these two biodegradable polymers used alone; however, the in vitro drug release was not modified and remained low. On the other hand, the addition of esterase to the dissolution medium resulted in a significant increase in heparin release. The in vitro biological activity of released heparin, evaluated by measuring the anti-Xa activity by a colorimetric assay, was conserved after the encapsulation process.
Electrokinetic properties of polymer colloids
NASA Technical Reports Server (NTRS)
Micale, F. J.; Fuenmayor, D. Y.
1986-01-01
The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.
NASA Astrophysics Data System (ADS)
Al-Dosari, Mohammad A.; Darwish, Sawsan S.; Adam, Mahmoud A.; Elmarzugi, Nagib A.; Al-Mouallimi, Nadia; Ahmed, Sayed M.
2017-04-01
The deterioration of calcareous stones materials used in artistic/architectural field is one of the most serious problems facing conservation today. The aim of this study was to evaluate the effectiveness of nanosized particles of calcium hydroxide (slaked lime) as a consolidation and protection material dispersed in acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly (EMA/MA), for calcareous stone monuments and painted surfaces affected by different kinds of decay. The synthesis process of Ca (OH)2 nanoparticles/polymer nanocomposites have been prepared by in situ emulsion polymerization system. The prepared nanocomposite containing 5% of Ca (OH)2 nanoparticles showed obvious transparency features and represent nanocomposites coating technology with hydrophobic, consolidating and well protection properties.
Shah, Ruchi R; Dodd, Stephanie; Schaefer, Mary; Ugozzoli, Mildred; Singh, Manmohan; Otten, Gillis R; Amiji, Mansoor M; O'Hagan, Derek T; Brito, Luis A
2015-04-01
Microfluidization is an established technique for preparing emulsion adjuvant formulations for use in vaccines. Although this technique reproducibly yields high-quality stable emulsions, it is complex, expensive, and requires proprietary equipment. For this study, we developed a novel and simple low shear process to prepare stable reproducible emulsions without the use of any proprietary equipment. We found this process can produce a wide range of differently sized emulsions based on the modification of ratios of oil and surfactants. Using this process, we prepared a novel 20-nm-sized emulsion that was stable, reproducible, and showed adjuvant effects. During evaluation of this emulsion, we studied a range of emulsions with the same composition all sized below 200; 20, 90, and 160 nm in vivo and established a correlation between adjuvant size and immune responses. Our studies indicate that 160-nm-sized emulsions generate the strongest immune responses. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Double emulsion solvent evaporation techniques used for drug encapsulation.
Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid
2015-12-30
Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Y. C.; Zhang, A. N.; Wang, X. B.; Xu, J.; Zeng, X. H.; Wang, H. M.
2017-08-01
This paper presents a technique to produce a new kind of fishery drug that is water emulsion suspending agent containing polymeric calcium-iron-dithiocarbamate with heavy metal complexing precipitate ability, good disinfection and auxiliary insecticidal efficacy. The product has good dispersion, high efficiency and low toxicity, as well as no pollution and no harmful residues. It not only can be used in the pond waters and ornamental waters, but also can meet the high requirements of the aquaculture waters. There is non-pollutant emission in the production, which is a green environment-friendly technique without three waste discharges. This technology belongs to the ecological and environmental protection.
Synthesis and self-assembly of amphiphilic polymeric microparticles.
Dendukuri, Dhananjay; Hatton, T Alan; Doyle, Patrick S
2007-04-10
We report the synthesis and self-assembly of amphiphilic, nonspherical, polymeric microparticles. Wedge-shaped particles bearing segregated hydrophilic and hydrophobic sections were synthesized in a microfludic channel by polymerizing across laminar coflowing streams of hydrophilic and hydrophobic polymers using continuous flow lithography (CFL). Particle monodispersity was characterized by measuring both the size of the particles formed and the extent of amphiphilicity. The coefficient of variation (COV) was found to be less than 2.5% in all measured dimensions. Particle structure was further characterized by measuring the curvature of the interface between the sections and the extent of cross-linking using FTIR spectroscopy. The amphiphilic particles were allowed to self-assemble in water or at water-oil interfaces. In water, the geometry of the particles enabled the formation of micelle-like structures, while in emulsions, the particles migrated to the oil-water interface and oriented themselves to minimize their surface energy.
Process for removing sulfate anions from waste water
Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.
1997-01-01
A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.
40 CFR 63.494 - Back-end process provisions-residual organic HAP and emission limitations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... produced by the emulsion process, polybutadiene rubber and styrene butadiene rubber produced by the... styrene butadiene rubber produced by the emulsion process: (i) A monthly weighted average of 0.40 kg... than a solution or emulsion process, polybutadiene rubber produced by any process other than a solution...
Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Cao, Rong; Sun, Hao; Huang, Chaonan; Chen, Jiping
2015-05-04
The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption-desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30-60 μm), a specific surface area (S(BET)) of 281.26 m(2) g(-1) and a total pore volume (V(t)) of 0.459 cm(3) g(-1). Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2-2.2 ng mL(-1). The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL(-1) for each BP) were in the range of 81.3-106.7% with RSD values below 8.3%. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamann, Christopher; Hecht, Lutz; Ebert, Matthias; Wirth, Richard
2013-11-01
Impact glasses are usually strongly affected by secondary alteration and chemical weathering. Thus, in order to understand relevant formation processes, detailed petrographic studies on unweathered impact glasses are necessary as preserved heterogeneities in quenched impact glasses may serve as a tool to better understand their genesis. Here, we report on petrography and microchemistry of impact glasses from the Wabar impact craters (Saudi Arabia) that, with an age of ∼300 years, are among the youngest terrestrial impact craters. The fact that parts of the IIIAB iron meteorite have survived impact and subsequent weathering is granting Wabar a special role among the presently 184 confirmed terrestrial impact structures. Electron microprobe analysis (EMPA) and transmission electron microscopy (TEM) obtained on the black impact melt/glass variety at Wabar suggest that meteoritic Fe was selectively mixed with high-silica target melt at high temperatures due to selective oxidation, resulting in high Fe/Ni ratios for the black melt (37 on average, individual values range from 13 to 449) and low Fe/Ni ratios for projectile droplets ("FeNi spheres" with a Fe/Ni ratio of 3 on average; Fe/Ni ratio for the meteorite is ∼12). The black melt shows emulsion textures that are the result of silicate liquid immiscibility. Liquid-liquid phase-separation resulted in the formation of a poorly polymerized, ultrabasic melt (Lfe) rich in divalent cations like Fe2+, Ca2+, or Mg2+, that is dispersed in a highly polymerized, high-silica melt (Lsi) matrix. The typical Wabar black melt emulsion displays a spheres-in-a-matrix texture of ∼10-20% Lfe homogeneously dispersed in the form of two sets of spheres and droplets (10-30 nm and 0.1-0.4 μm in diameter) in ∼80-90% Lsi matrix, plus occasionally disseminated FeNi spheres. Around large (>10 μm) FeNi spheres, however, the typical emulsion texture changes to ∼21% Lsi dispersed in ∼79% Lfe. This change of texture is interpreted as evidence for the transfer of meteoritic Fe from the meteoritic FeNi spheres into the target melt due to selective oxidation of Fe over Ni and Co. Variations in the bulk composition of Wabar black melt largely depend on the volume ratios between immiscible ultrabasic Lfe, felsic Lsi, and remains of meteoritic FeNi spheres. Based on natural occurrences of phase-separated glasses (this work and literature) and quenching experiments (literature), there is growing evidence that liquid immiscibility is a major process in the formation of glassy impactites.
Influence of phase inversion on the formation and stability of one-step multiple emulsions.
Morais, Jacqueline M; Rocha-Filho, Pedro A; Burgess, Diane J
2009-07-21
A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the first time, the significance of the ultralow surface tension point on multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory ,and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.
Bourgeat-Lami, Elodie; Insulaire, Mickaelle; Reculusa, Stéphane; Perro, Adeline; Ravaine, Serge; Duguet, Etienne
2006-02-01
Silica/polystyrene nanocomposite particles with different morphologies were synthesized through emulsion polymerization of styrene in the presence of silica particles previously modified by gamma-methacryloxypropyltrimethoxysilane (MPS). Grafting of the silane molecule was performed by direct addition of MPS to the aqueous silica suspension in the presence of an anionic surfactant under basic conditions. The MPS grafting density on the silica surface was determined using the depletion method and plotted against the initial MPS concentration. The influence of the MPS grafting density, the silica particles size and concentration and the nature of the surfactant on the polymerization kinetics and the particles morphology was investigated. When the polymerization was performed in the presence of an anionic surfactant, transmission electron microscopy images showed the formation of polymer spheres around silica for MPS grafting densities lower than typically 1 micromole x m(-2) while the conversion versus time curves indicated a strong acceleration effect under such conditions. In contrast, polymerizations performed in the presence of a larger amount of MPS moieties or in the presence of a non ionic emulsifier resulted in the formation of "excentered" core-shell morphologies and lower polymerization rates. The paper identifies the parameters that allow to control particles morphology and polymerization kinetics and describes the mechanism of formation of the nanocomposite colloids.
2017-01-01
Polymerization-induced self-assembly (PISA) has become a widely used technique for the rational design of diblock copolymer nano-objects in concentrated aqueous solution. Depending on the specific PISA formulation, reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization typically provides straightforward access to either spheres, worms, or vesicles. In contrast, RAFT aqueous emulsion polymerization formulations often lead to just kinetically-trapped spheres. This limitation is currently not understood, and only a few empirical exceptions have been reported in the literature. In the present work, the effect of monomer solubility on copolymer morphology is explored for an aqueous PISA formulation. Using 2-hydroxybutyl methacrylate (aqueous solubility = 20 g dm–3 at 70 °C) instead of benzyl methacrylate (0.40 g dm–3 at 70 °C) for the core-forming block allows access to an unusual “monkey nut” copolymer morphology over a relatively narrow range of target degrees of polymerization when using a poly(methacrylic acid) RAFT agent at pH 5. These new anisotropic nanoparticles have been characterized by transmission electron microscopy, dynamic light scattering, aqueous electrophoresis, shear-induced polarized light imaging (SIPLI), and small-angle X-ray scattering. PMID:28216792
Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C
2016-11-01
The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
Incorporation of water-in-oil-in-water (W1/O/W2) double emulsion in a set-type yogurt model.
Lalou, Sofia; Kadri, Hani El; Gkatzionis, Konstantinos
2017-10-01
The effect of W 1 /O/W 2 emulsion incorporation in set-type yogurt on the acidification process, physicochemical properties, bacterial growth kinetics and structural characteristics was investigated. The W 1 /O/W 2 emulsion was formed by using a two-step homogenisation process and milk as the W 1 and W 2 phases, and stability was monitored with optical microscopy and cryo-SEM. Adding the W 1 /O/W 2 emulsions reduced the acidification rate, viscosity and water retention capacity. Texture (adhesiveness, cohesiveness, hardness, and gumminess) differed in yogurts containing W 1 /O/W 2 emulsion compared to controls during the acidification process, however, trends became stable during storage. The growth of S. thermophilus during the acidification process of yogurt was reduced in the presence of W 1 /O/W 2 emulsion while L. bulgaricus trended higher during storage. This study shows that yogurts containing W 1 /O/W 2 emulsion are feasible subject to processing modification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using emulsion inversion in industrial processes.
Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna
2004-05-20
Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.
DIMENSION STABILIZED FIXED PHOTOGRAPHIC TYPE EMULSION AND A METHOD FOR PRODUCING SAME
Gilbert, F.C.
1962-03-13
A process is given for stabilizing the dimensions of fixed gelatin-base photographic type emulsions containing silver halide, and particularly to such emulsions containing large amounts of silver chloride for use as nuclear track emulsions, so that the dimensions of the final product are the same as or in a predetermined fixed ratio to the dimensions of the emulsions prior to exposure. The process comprises contacting an exposed, fixed emulsion with a solution of wood rosin dissolved in ethyl alcohol for times corresponding to the dimensions desired, and thereafter permitting the alcohol to evaporate. (AEC)
Obiols-Rabasa, M; Ramos, J; Forcada, J; Esquena, J; Solans, C; Levecke, B; Booten, K; Tadros, Tharwat F
2010-06-01
The seeded semicontinuous emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BuA) stabilized with a graft polymeric surfactant based on inulin, INUTEC SP1, as well as its mixture with sodium lauryl sulfate (SLS) is described. The mixture of SLS and Brij58 (alcohol ethoxylated) and the mixture of SLS and Pluronic P85 (block copolymer PEO-PPO-PEO) are also used as surfactant systems. The addition of methacrylic acid (MAA) or acrylic acid (AA) as comonomers is also studied. Previous results proved this inulin-derivative surfactant, INUTEC SP1, to be very effective on synthesizing latexes using a very low surfactant concentration. The kinetic features of the emulsion polymerization (instantaneous conversion and total conversion) were gravimetrically determined along the reactions. Latex dispersions were characterized by photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM) to obtain the average particle size, the particle size distributions (PSDs) as well as the polydispersity index (PdI). The stability was determined by turbidimetry measurements and expressed in terms of critical coagulation concentration. The results showed that the use of the graft polymeric surfactant allowed obtaining highly stable nanoparticles, at low surfactant concentrations and high solid contents (up to 37 wt %). This is an improvement with respect to previous works, in which a mixture of the graft polymeric surfactant with another surfactant was required to obtain stable nanoparticles with low polydispersity, at high solid content. In the present work, low polydispersity was achieved using INUTEC as the only emulsifier, which was related to the absence of secondary nucleations. When a mixture of INUTEC SP1 and SLS is used, a wider PSD is obtained due to secondary nucleations. Replacing INUTEC SP1 by other nonionic surfactants such as Brij58 or Pluronic P85 leads to an increase of average particle size and wider PSD.
Chen, Xinyue; Li, Hui; Yin, Panchao; ...
2015-02-27
In this study, polyoxometalates (POMs) covalently functionalized with methyl methacrylate groups were applied as surfactants in the emulsion polymerization reaction of styrene. Due to the copolymerization of the methyl methacrylate groups and the styrene monomers, the polyoxometalate clusters are covalently grafted onto the surface of polystyrene latex nanoparticles. Finally, such latex particles are fully covered with catalytic POM clusters and might serve as quasi-homogeneous catalysts.
Xie, ShuYu; Wang, SiLiang; Zhao, BaoKai; Han, Chao; Wang, Ming; Zhou, WenZhong
2008-12-01
Most proteins are hydrophilic and poorly encapsulated into the hydrophobic matrix of solid lipid nanoparticles (SLN). To solve this problem, poly (lactic-co-glycolic acid) (PLGA) was utilized as a lipophilic polymeric emulsifier to prepare hydrophilic protein-loaded SLN by w/o/w double emulsion and solvent evaporation techniques. Hydrogenated castor oil (HCO) was used as a lipid matrix and bovine serum albumin (BSA), lysozyme and insulin were used as model proteins to investigate the effect of PLGA on the formulation of the SLN. The results showed that PLGA was essential for the primary w/o emulsification. In addition, the stability of the w/o emulsion, the encapsulation efficiency and loading capacity of the nanoparticles were enhanced with the increase of PLGA concentration. Furthermore, increasing PLGA concentration decreased zeta potential significantly but had no influence on particle size of the SLN. In vitro release study showed that PLGA significantly affected the initial burst release, i.e. the higher the content of PLGA, the lower the burst release. The released proteins maintained their integrity and bioactivity as confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and biological assay. These results demonstrated that PLGA was an effective emulsifier for the preparation of hydrophilic protein-loaded SLN.
NASA Technical Reports Server (NTRS)
Sudol, E. D.; El-Aasser, M. S.; Vanderhoff, J. W.
1986-01-01
The polymerization kinetics of monodisperse polystyrene latexes with diameters of 1 micron are studied. The monodisperse latexes were prepared by the successive seeding method using 1 mM K2S2O8 with an 8 percent emulsifier surface coverage and 0.5 mM K2S2O8 with a 4 percent emulsifier surface coverage, and the kinetics were measured in a piston/cylinder dialometer. The data reveal that the polymerization rate decreases with increasing particle size; and the surface charge decreases with increasing particle size. The effects of initiators (AIBN and AMBN) and inhibitors (NH24SCN, NaNO2, and hydroquinone) on the product monodispersity and polymerization kinetics of latexes with diameters greater than 1 micron are investigated in a second experiment. It is observed that hydroquinone combined with AMBN are most effective in reducing nucleation without causing flocculation. It is noted that the kinetic transition from emulsion to bulk is complete for a particle size exceeding 1 micron in which the polymerization rate is independent of the particle size.
Wei, Zhong; Ujiiye-Ishii, Kento; Masuhara, Akito; Kasai, Hitoshi; Okada, Shuji; Matsune, Hideki; Asahi, Tsuyoshi; Masuhara, Hiroshi; Nakanishi, Hachiro
2005-06-01
Monodispersed polymer/polydiacetylenecomposite particles were synthesized by soap-free seeded emulsion polymerization of styrene andmethyl methacrylate; the products were characterized by XRD, SEM, TEM, UV-visible spectroscopy, and single particle scattering spectroscopy. In the synthesis process, polydiacetylene nanocrystals were found to act as inhibitor, and consequently a relatively low concentration was necessary. Different monomers lead to the differences in reaction condition and particle morphology; the PMMA composite particles were simpler in preparation than polystyrene particles, but the latter havebetter spherical morphology. The composite particles were composed of polymer shells and polydiacetylene cores, which kept their crystal structure and optical properties. A high percentage of cored particles could be achieved with optimized reaction conditions where the amount of seed was sufficient and the oily oligomer by-product was suppressed.
GPU applications for data processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladymyrov, Mykhailo, E-mail: mykhailo.vladymyrov@cern.ch; Aleksandrov, Andrey; INFN sezione di Napoli, I-80125 Napoli
2015-12-31
Modern experiments that use nuclear photoemulsion imply fast and efficient data acquisition from the emulsion can be performed. The new approaches in developing scanning systems require real-time processing of large amount of data. Methods that use Graphical Processing Unit (GPU) computing power for emulsion data processing are presented here. It is shown how the GPU-accelerated emulsion processing helped us to rise the scanning speed by factor of nine.
Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals
NASA Astrophysics Data System (ADS)
Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.
2016-11-01
Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.
Amphiphilic semi-interpenetrating polymer networks using pulverized rubber
NASA Astrophysics Data System (ADS)
Shahidi, Nima
Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media applications such as additives to waterborne emulsions. This innovative process for the first time opened up the application of rubber particles in aqueous media. The kinetics of polymerization reaction of hydrophilic monomer mixture within the rubber particles was investigated based on the assumption of partitioning of acrylic acid monomer in the hydrophobic rubber particles. The produced PPSIPNs were used as additives to waterborne emulsions and the mechanical and physical properties of the prepared coatings were examined. It was observed that the PPSIPNs could be added in high quantities with an improvement in adhesion, enhancement of the impact strength, and hardness of the coatings. This approach aims to develop environmentally benign products from scrap rubber materials.
Ito, Toshifumi; Tsuji, Yukitaka; Aramaki, Kenji; Tonooka, Noriaki
2012-01-01
Multiple emulsions, also called complex emulsions or multiphase emulsions, include water-in-oil-in-water (W/O/W)-type and oil-in-water-in-oil (O/W/O)-type emulsions. W/O/W-type multiple emulsions, obtained by utilizing lamellar liquid crystal with a layer structure showing optical anisotropy at the periphery of emulsion droplets, are superior in stability to O/W/O-type emulsions. In this study, we investigated a two-step emulsification process for a W/O/W-type multiple emulsion utilizing liquid crystal emulsification. We found that a W/O/W-type multiple emulsion containing lamellar liquid crystal can be prepared by mixing a W/O-type emulsion (prepared by primary emulsification) with a lamellar liquid crystal obtained from poly(oxyethylene) stearyl ether, cetyl alcohol, and water, and by dispersing and emulsifying the mixture in an outer aqueous phase. When poly(oxyethylene) stearyl ether and cetyl alcohol are each used in a given amount and the amount of water added is varied from 0 to 15 g (total amount of emulsion, 100 g), a W/O/W-type multiple emulsion is efficiently prepared. When the W/O/W-type multiple emulsion was held in a thermostatic bath at 25°C, the droplet size distribution showed no change 0, 30, or 60 days after preparation. Moreover, the W/O/W-type multiple emulsion strongly encapsulated Uranine in the inner aqueous phase as compared with emulsions prepared by one-step emulsification.
Incorporation of iodine in polymeric microparticles and emulsions
NASA Astrophysics Data System (ADS)
Kolontaeva, Olga A.; Khokhlova, Anastasia R.; Markina, Natalia E.; Markin, Alexey V.; Burmistrova, Natalia A.
2016-04-01
Application of different methods for formation of microcontainers containing iodine is proposed in this paper. Two types of microcontainers: microemulsions and microparticles have been investigated, conditions and methods for obtaining microcontainers were optimized. Microparticles were formed by layer-by-layer method with cores of calcium carbonate (CaCO3) as templates. Incorporation of complexes of iodine with polymers (chitosan, starch, polyvinyl alcohol) into core, shell and hollow capsules was investigated and loadings of microparticles with iodine were estimated. It was found that the complex of iodine with chitosan adsorbed at CaCO3 core is the most stable under physiological conditions and its value of loading can be 450 μg of I2 per 1 g of CaCO3. Moreover, chitosan was chosen as a ligand because of its biocompatibility and biodegradability as well as very low toxicity while its complex with iodine is very stable. A small amount of microparticles containing a iodine-chitosan complex can be used for prolonged release of iodine in the human body since iodine daily intake for adults is around 100 μg. "Oil-in-water" emulsions were prepared by ultrasonication of iodinated oils (sunflower and linseed) with sodium laurilsulfate (SLS) as surfactant solution. At optimal conditions, the homogenous emulsions remained stable for weeks, with total content of iodine in such emulsion being up to 1% (w/w). The oil:SLS ratio was equal to 1:10 (w/w), optimal duration and power of ultrasound exposure were 1.5 min and 7 W, correspondingly. Favorable application of iodized linseed oil for emulsion preparation with suitable oil microdroplets size was proved.
Emulsion design to improve the delivery of functional lipophilic components.
McClements, David Julian
2010-01-01
The food industry has used emulsion science and technology for many years to create a diverse range of food products, such as milk, cream, soft drinks, nutritional beverages, dressings, mayonnaise, sauces, dips, deserts, ice cream, margarine, and butter. The majority of these food products are conventional oil-in-water (O/W) or water-in-oil (W/O) type emulsions. Recently, there has been increasing interest within the food industry in either improving or extending the functional performance of foods using novel structured emulsions. This article reviews recent developments in the creation of structured emulsions that could be used by the food and other industries, including nanoemulsions, multiple emulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. These structured emulsions can be produced from food-grade [generally recognized as safe (GRAS)] ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals), using simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, production, performance, and potential applications of each type of structured emulsion system are discussed.
A thin porous substrate using bonded particles for reverse-emulsion electrophoretic displays
NASA Astrophysics Data System (ADS)
Ahumada, M.; Bryning, M.; Cromer, R.; Hartono, M.; Lee, S. J.
2012-03-01
A thin porous layer of bonded ceramic microparticles has been developed to provide structural integrity and a stationary matrix for use in reflective-mode reverse-emulsion electrophoretic displays (REED), based on self-assembled nanodroplets dispersed in a non-polar liquid. REED ink uses low-cost materials and manufacturing processes, yet is capable of video speed and low voltage operation below 10 V. Porous layers of titanium dioxide (TiO2) are prepared as thin as 10 microns by fluidizing the particles in a water-based slurry with polymeric adhesive. The slurry is distributed between glass shear plates, one of which serves as the substrate for the working device. Particle morphology is examined using scanning electron microscopy and layer uniformity is characterized by opacity measurements using a throughbeam fiber optic sensor. Performance of the bonded matrix with REED ink is compared to baseline performance of a paste mixture, comprised of the same ink and unbonded TiO2 particles. Results show that at 25% volume fraction, the bonded substrate improves image bistability and is better able to maintain both light and dark intensity after extensive switching. The same bonded substrate also improves image bistability when power is disconnected, even compared to a paste with 40% volume fraction of TiO2.
NASA Astrophysics Data System (ADS)
Yılmaz, Onur; Özkan, ćiǧdem Kılıçarislan; Yılmaz, Catalina N.; Yorgancıoǧlu, Ali; Özgünay, Hasan; Karavana, Hüseyin Ata
2017-12-01
Copolymers bearing reactive functional groups with controlled molecular weights are of importance since they can be used in many fields such as composites, coatings, membranes, catalysis, biology, optoelectronics, pharmaceuticals, etc. In the present study low molecular weight copolymers based on butyl acrylate (BA) and methyl methacrylate (MMA) in combination with reactive functional monomers of vinyl trietoxysilane (VTES), 3-trimetoxysilylpropyl methacrylate (TMSPMA) and glycidyl methacrylate (GMA) were synthesized via RAFT mini-emulsion technique using 2-cyano 2-propyldodecyldithiocarbonate as CTA agent. The results showed that the average molecular weights of copolymers were close to the theoretical values. On the other hand, PDI values were found to be higher than conventional RAFT polymers. The particle sizes of the latexes were small with very homogenous distributions and good stability. FTIR, H-NMR and TGA results verified the success of copolymer syntheses.
Hybrid self-healing matrix using core-shell nanofibers and capsuleless microdroplets.
Lee, Min Wook; An, Seongpil; Lee, Changmin; Liou, Minho; Yarin, Alexander L; Yoon, Sam S
2014-07-09
In this work, we developed novel self-healing anticorrosive hierarchical coatings that consist of several components. Namely, as a skeleton we prepared a core-shell nanofiber mat electrospun from emulsions of cure material (dimethyl methylhydrogen siloxane) in a poly(acrylonitrile) (PAN) solution in dimethylformamide. In these nanofibers, cure is in the core, while PAN is in the shell. The skeleton deposited on a protected surface is encased in an epoxy-based matrix, which contains emulsified liquid droplets of dimethylvinyl-terminated dimethylsiloxane resin monomer. When such hierarchical coatings are damaged, cure is released from the nanofiber cores and the resin monomer, released from the damaged matrix, is polymerized in the presence of cure. This polymerization and solidification process takes about 1-2 days and eventually heals the damaged material when solid poly(dimethylsiloxane) resin is formed. The self-healing effect was demonstrated using an electrochemical analogue of the scanning vibrating electrode technique. Damaged samples were left for 2 days. After that, the electric current through a damaged coating was found to be negligibly small for the samples with self-healing properties. On the other hand, for the samples without self-healing properties, the electric current was significant.
Application of petroleum demulsification technology to shale oil emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, R.E.
1983-01-01
Demulsification, the process of emulsion separation, of water-in-oil shale oil emulsions produced by several methods was accomplished using commercial chemical demulsifiers which are used typically for petroleum demulsification. The shale oil emulsions were produced from Green River shale by one in situ and three different above-ground retorts, an in situ high pressure/high temperature steam process, and by washing both retort-produced and hydrotreated shale oils.
Kaci, M; Arab-Tehrany, E; Dostert, G; Desjardins, I; Velot, E; Desobry, S
2016-11-01
To improve the encapsulation and release of coenzyme Q10 (CoQ10), emulsifier-free-emulsions were developed with a new emulsification process using high-frequency ultrasound (HFU) at 1.7MHz. Nano-emulsions containing CoQ10 were prepared with or without rapeseed lecithin as an emulsifier. The emulsions prepared with HFU were compared with an emulsion of CoQ10 containing emulsifier prepared with the same emulsification technique as well as with emulsions prepared with low-frequency ultrasound coupled with high-pressure homogenization (LFU+HPH). The physico-chemical properties of the emulsions were determined by average droplet size measurement with nano-droplet tracking analysis, droplet surface charge with ζ potential measurement, surface tension and rheological behaviour. Emulsions made by LFU+HPH with an emulsifier showed lower droplet sizes due to cavitation generated by the HFU process. Surface tension results showed that there was no significant difference between emulsions containing lecithin emulsifier regardless of the preparation process or the inclusion of CoQ10. In vitro biocompatibility tests were performed on human mesenchymal stem cells in order to show the cytotoxicity of various formulations and the efficiency of CoQ10-loaded emulsions. In vitro tests proved that the vectors were not toxic. Furthermore, CoQ10 facilitated a high rate of cell proliferation and metabolic activity especially when in an emulsifier-free formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Beer, Sebastian; Dobler, Dorota; Gross, Alexander; Ost, Martin; Elseberg, Christiane; Maeder, Ulf; Schmidts, Thomas Michael; Keusgen, Michael; Fiebich, Martin; Runkel, Frank
2013-01-30
Multiple emulsions offer various applications in a wide range of fields such as pharmaceutical, cosmetics and food technology. Two features are known to yield a great influence on multiple emulsion quality and utility as encapsulation efficiency and prolonged stability. To achieve a prolonged stability, the production of the emulsions has to be observed and controlled, preferably in line. In line measurements provide available parameters in a short time frame without the need for the sample to be removed from the process stream, thereby enabling continuous process control. In this study, information about the physical state of multiple emulsions obtained from dielectric spectroscopy (DS) is evaluated for this purpose. Results from dielectric measurements performed in line during the production cycle are compared to theoretically expected results and to well established off line measurements. Thus, a first step to include the production of multiple emulsions into the process analytical technology (PAT) guidelines of the Food and Drug Administration (FDA) is achieved. DS proved to be beneficial in determining the crucial stopping criterion, which is essential in the production of multiple emulsions. The stopping of the process at a less-than-ideal point can severely lower the encapsulation efficiency and the stability, thereby lowering the quality of the emulsion. DS is also expected to provide further information about the multiple emulsion like encapsulation efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.
Tian, Fang; Decker, Eric A; Goddard, Julie M
2012-08-08
Transition metal-promoted oxidation impacts the quality, shelf life, and nutrition of many packaged foods. Metal-chelating active packaging therefore offers a means to protect foods against oxidation. Herein, we report the development and characterization of nonmigratory metal-chelating active packaging. To prepare the films, carboxylic acids were grafted onto the surfaces of polypropylene films by photoinitiated graft polymerization of acrylic acid. Attenuated total reflectance/Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, and iron-chelating assay were used to characterize film properties. Graft polymerization yielded a carboxylic acid density of 68.67 ± 9.99 nmol per cm(2) film, with ferrous iron-chelating activity of 71.07 ± 12.95 nmol per cm(2). The functionalized films extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion system from 2 to 9 days. The application of such nonmigratory active packaging films represents a promising approach to reduce additive use while maintaining food quality.
NASA Astrophysics Data System (ADS)
Mizuki, Hidenobu; Ito, Yudai; Harada, Hisashi; Uezu, Kazuya
Zr(IV) surface-immobilized resins for removal of fluoride ion were prepared by surface template polymerization using polystyrene as a porogen. At polymerization, polystyrene was added in order to increase mesopores (2-50 nm) and macropore (>50 nm) with large macropores (around 300 nm) formed with internal aqueous phase of W⁄O emulsion. The pore structure of Zr(IV) surface-immobilized resins was evaluated by measuring specific surface area, pore volume, and pore size distribution with volumetric adsorption measurement instrument and mercury porosimeter. The adsorption isotherms were well fitted by Langmuir equation. The removal of fluoride was also carried out with column method. Zr(IV) surface-immobilized resins, using 10 g⁄L polystyrene in toluene at polymerization, possessed higher volume of not only mesopores and macropores but also large macropores. Furethermore, by adding the polystyrene with smaller molecular size, the pore volume of mesopores, macropores and large macropores was significantly increased, and the fluoride ion adsorption capacity and the column utilization also increased.
Synthesis of berberine loaded polymeric nanoparticles by central composite design
NASA Astrophysics Data System (ADS)
Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh
2016-04-01
Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.
New insights about flocculation process in sodium caseinate-stabilized emulsions.
Huck-Iriart, Cristián; Montes-de-Oca-Ávalos, Juan; Herrera, María Lidia; Candal, Roberto Jorge; Pinto-de-Oliveira, Cristiano Luis; Linares-Torriani, Iris
2016-11-01
Flocculation process was studied in emulsions formulated with 10wt.% sunflower oil, 2, 5 or 7.5wt.% NaCas, and with or without addition of sucrose (0, 5, 10, 15, 20 or 30wt.%). Two different processing conditions were used to prepare emulsions: ultraturrax homogenization or further homogenization by ultrasound. Emulsions with droplets with diameters above (coarse) or below (fine) 1μm were obtained. Emulsions were analyzed for droplet size distribution by static light scattering (SLS), stability by Turbiscan, and structure by confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). SAXS data were fitted by a theoretical model that considered a system composed of poly dispersed spheres with repulsive interaction and presence of aggregates. Flocculation behavior was caused by the self-assembly properties of NaCas, but the process was more closely related to interfacial protein content than micelles concentration in the aqueous phase. The results indicated that casein aggregation was strongly affected by disaccharide addition, hydrophobic interaction of the emulsion droplets, and interactions among interfacial protein molecules. The structural changes detected in the protein micelles in different environments allowed understanding the macroscopic physical behavior observed in concentrated NaCas emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rheology of attractive emulsions
NASA Astrophysics Data System (ADS)
Datta, Sujit S.; Gerrard, Dustin D.; Rhodes, Travers S.; Mason, Thomas G.; Weitz, David A.
2011-10-01
We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φRCP, can form soft gel-like elastic solids. However, above φRCP, attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φRCP, also undergo droplet configurational rearrangements.
Rheology of attractive emulsions.
Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A
2011-10-01
We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.
Alison, Lauriane; Demirörs, Ahmet F; Tervoort, Elena; Teleki, Alexandra; Vermant, Jan; Studart, Andre R
2018-05-29
In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil-water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products.
Morphological study of polymethyl methacrylate microcapsules filled with self-healing agents
NASA Astrophysics Data System (ADS)
Ahangaran, Fatemeh; Hayaty, Mehran; Navarchian, Amir H.
2017-03-01
Polymethyl methacrylate (PMMA) microcapsules filled with epoxy prepolymer, 3-aminomethyl-3,5,5-trimethylcyclohexylamine, and pentaerythritol tetrakis (3-mercaptopropionate) as healing agents have been prepared separately through internal phase separation method for self-healing purposes. PMMA with two different molecular weights (M bar1 = 36,000 g/mol and M bar2 = 550,000 g/mol) were used with two types of different emulsifiers (ionic and polymeric) to prepare microcapsules. The morphology of healing agent microcapsules was investigated using field emission scanning electron microscopy (FESEM). It was found that PMMA microcapsules separately filled with epoxy and amine had core-shell morphologies with smooth surfaces. The mercaptan/PMMA particles exhibited core-shell and acorn-shape morphologies. The surface morphology of mercaptan microcapsules changed from holed to plain in different emulsion systems. The spreading coefficient (S) of phases in the prepared emulsion systems were calculated from interfacial tension (σ) and contact angle (θ) measurements. The theoretical equilibrium morphology of PMMA microcapsules was predicted according to spreading coefficient values of phases in emulsion systems. It was also found that the surface morphology of PMMA microcapsules depended strongly on the nature of the core, molecular weight of PMMA, type and concentration of emulsifier.
Zhu, L; Xie, S; Dong, Z; Wang, X; Wang, Y; Zhou, W
2011-09-01
Poly(lactic-co-glycolic acid) (PLGA) was used as a polymeric emulsifier to encapsulate plasmid DNA into hydrogenated castor oil (HCO)-solid lipid nanoparticles (SLN) by w/o/w double emulsion and solvent evaporation techniques. The effects of PLGA on the preparation, characteristics and transfection efficiency of DNA-loaded SLN were studied. The results showed that PLGA was essential to form the primary w/o emulsion and the stability of the emulsion was enhanced with the increase of PLGA content. DNA-loaded SLN were spherical with smooth surfaces. The SLN had a negative charge in weak acid and alkaline environment but acquired a positive charge in acidic pH and the cationisation capacity of the SLN increased with the increase of PLGA/HCO ratio. Agarose gel electrophoresis demonstrated that the majority of the DNA maintained its structural integrity after preparation and being extracted or released from DNA-loaded SLN. When PLGA/HCO ratio increased from 5 to 15%, the encapsulation efficiency, loading capacity and transfection efficiency of the nanoparticles increased significantly, whereas the changes of particle size and polydispersity index were insignificant. Cytotoxicity study in cell culture demonstrated that the SLN was not toxic.
NASA Astrophysics Data System (ADS)
Kassim, Syara; Zahari, Siti Balqis; Tahrin, Rabiatul Addawiyah Azwa; Harun, Noor Aniza
2017-09-01
Photonic crystals are being the great interest of researcher to studies due to a variety of potential application for the interaction of light including the solar cells, optical sensors and paints. In order to evaluate the fabrication of photonic crystals thin film, a free-emulsifier emulsion copolymerization of styrene and methyl methacrylate was carried out. By using the self -assembly approach, this method offers the opportunity to produce crystalline polymer sphere in more ease operation, low cost and environmental friendly. The influences of the mixing ratio of monomer and amount of initiators were studied. In advance, the presence of styrene as co-monomer had improved the thermal degradation of polymer methyl methacrylate. While in changing the mixing ratio of styrene and methyl methacrylate resulted in particle size of the sphere. The size of polymer particles slightly increased on increasing volume of styrene monomer ratio. This occurred because the properties of styrene in water where it sparingly soluble and lead to coagulation of particles. This simple, yet effective method for preparing functional complex 3D structures has the potential to be used generically to fabricate a variety of functional porous 3D structures that could find application not only in new or improved photonic crystal (PC) devices but also in areas such as catalysis, solar cell, separation, fuel cells technology, microelectronics and optoelectronics.
Wuytens, Pieter; Parakhonskiy, Bogdan; Yashchenok, Alexey; Winterhalter, Mathias; Skirtach, Andre
2014-10-01
This review is devoted to pharmacological applications of principles of release from capsules to overcome the membrane barrier. Many of these principles were developed in the context of polymeric multilayer capsule membrane modulation, but they are also pertinent to liposomes, polymersomes, capsosomes, particles, emulsion-based carriers and other carriers. We look at these methods from the physical, chemical or biological driving mechanisms point of view. In addition to applicability for carriers in drug delivery, these release methods are significant for another area directly related to pharmacology - modulation of the permeability of the membranes and thus promoting the action of drugs. Emerging technologies, including ionic current monitoring through a lipid membrane on a nanopore, are also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sequential self-assembly of DNA functionalized droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia
Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less
Dunlap, C J; Carr, P W
1996-10-11
Porous zirconia particles made by the oil emulsion (OE) method and the polymerization-induced colloid aggregation (PICA) method have been coated with a small, carboxymethylated (approximately 5%) dextran polymer and crosslinked in place. The parameters of the coating process (dextran concentration, adsorption time and crosslinker concentration) have all been examined and an optimum value for each determined. The coated and uncoated materials were characterized by nitrogen sorptometry and size-exclusion chromatography (SEC) using solutes (polystyrenes and dextrans) of well-defined molecular masses. Nitrogen sorptometry results show that the PICA material has a much lower pore volume and smaller pore diameter than do the OE materials. Despite this, the elution volumes of the SEC probes change very little upon polymer coating the PICA material while the OE material shows a very large change upon coating.
Sequential self-assembly of DNA functionalized droplets
Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia; ...
2017-06-16
Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.
In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.
Treatment method for emulsified petroleum wastes
Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.
1990-01-01
An improved reclamation process for treating petroleum oil and water emulsions derived from producing or processing crude oil is disclosed. The process comprises heating the emulsion to a predetermined temperature at or above about 300.degree. C. and pressurizing the emulsion to a predetermined pressure above the vapor pressure of water at the predetermined temperature. The emulsion is broken by containing the heated and pressurized fluid within a vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first, second and third phases. The three phases are then separately withdrawn from the vessel, preferably without any appreciable reduction in temperature and pressure, and at least above a withdraw temperature of about 300.degree. and above the vapor pressure of water at the withdraw temperature.
Nonequilibrium stabilization of an RNA/protein droplet emulsion by nuclear actin
NASA Astrophysics Data System (ADS)
Brangwynne, Clifford
2013-03-01
Actin plays a structural role in the cytoplasm. However, actin takes on new functions and structures in the nucleus that are poorly understood. The nuclei of the large oocytes of the frog X. laevisspecifically accumulate actin to reach high concentrations; however, it remains unclear if this actin polymerizes into a network, and what, if any, structural role such an actin network might play. Here, we use microrheological and confocal imaging techniques to probe the local architecture and mechanics of the nucleus. Our data show that actin forms a weak network that spatially organizes the nucleus by kinetically stabilizing embedded liquid-like RNA/protein bodies which are important for cell growth. In actin-disrupted nuclei this RNA/protein droplet emulsion is destabilized leading to homotypic coalescence into single large droplets. Our data provide intriguing new insights into why large cell nuclei require an actin-based structural scaffold.
Preparation of an Adhesive in Emulsion for Maxillofacial Prosthetic
Sánchez-García, Judith A.; Ortega, Alejandra; Barceló-Santana, Federico H.; Palacios-Alquisira, Joaquín
2010-01-01
Maxillofacial prostheses is a dental medicine specialty aimed at restoring anatomical facial defects caused by cancer, trauma or congenital malformations through an artificial device, which is commonly attached to the skin with the help of an adhesive. The purpose of our research was to develop a pressure-sensitive adhesive (PSA) based on acrylic monomers, characterizing and determining its drying kinetics, that is to say the time it takes to lose 50 to 90% of its moisture. The adhesive synthesis was realized by means of emulsion polymerization; the composition of formulations was: (AA-MMA-EA) and (AA-MMA-2EHA) with different molar ratios. The formulation based on (AA-MMA-2EHA) with 50 w% of solids, presented good adhesive properties such as tack, bond strength, and short drying time. We propose this formulation as a PSA, because it offers an alternative for systemically compromised patients, by less irritation compared to organic solvent-based adhesives. PMID:21152308
Transport and Retention of Emulsion Droplets in Sandy Porous Media
NASA Astrophysics Data System (ADS)
Esahani, S. G.; Muller, K.; Chapra, S. C.; Ramsburg, A.
2014-12-01
Emulsions are commonly used as amendments during remediation; yet, the processes controlling the distribution of droplets within the subsurface are not well understood. Given that inadequate spatial and/or temporal delivery of amendments often leads to ineffective treatment, there is a need to better understand emulsion transport. Experiments were conducted to evaluate the transport and retention of emulsion droplets in columns containing Ottawa sands. Breakthrough curves and deposition profiles from these experiments were interrogated using a mathematical model capable of describing attachment, detachment, and straining to begin to elucidate the physical processes controlling delivery. Emulsions were constructed by stabilizing soybean oil droplets within a continuous aqueous phase. Physical properties of the resulting oil-in-water emulsions were favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet d50). Emulsions were introduced to the columns for approximately two pore volumes and followed by an extended flush of background solution. Effluent droplet size distributions did not vary significantly over the course of the experiment and remained similar to those measured for the influent emulsion. Emulsion breakthrough curves exhibited tailing, and deposition profiles were found to be hyper-exponential and unaffected by extended periods of background flow. Depending on emulsion composition and flow characteristics, 10-30% of the injected emulsion was retained on the sand suggesting a non-negligible influence on accessible porosity over the course of the experiment. Experimental results were further interpreted using a droplet transport model that accounts for temporal and spatial variation in porosity due to the retention of the emulsion droplets. At present the model assumes a uniform size distribution of inelastic emulsion droplets which are transported by advection and dispersion, and exchanged with the solid phase through attachment, detachment, and straining processes. Results examine the relative roles of attachment-detachment and straining in reducing the accessible porosity. Evaluation of how the porosity change influences the flow regime for moderately and slightly clogged media is currently under investigation.
Steingoetter, Andreas; Radovic, Tijana; Buetikofer, Simon; Curcic, Jelena; Menne, Dieter; Fried, Michael; Schwizer, Werner; Wooster, Tim J
2015-04-01
Efficient fat digestion requires fat processing within the stomach and fat sensing in the intestine. Both processes also control gastric emptying and gastrointestinal secretions. We aimed to visualize the influence of the intragastric stability of fat emulsions on their dynamics of gastric processing and structuring and to assess the effect this has on gastrointestinal motor and secretory functions. Eighteen healthy subjects with normal body mass index (BMI) were studied on 4 separate occasions in a double-blind, randomized, crossover design. Magnetic resonance imaging (MRI) data of the gastrointestinal tract and blood triglycerides were recorded before and for 240 min after the consumption of the following 4 different fat emulsions: lipid emulsion 1 (LE1; acid stable, 0.33 μm), lipid emulsion 2 (LE2; acid stable, 52 μm), lipid emulsion 3 (LE3; acid unstable, solid fat, 0.32 μm), and lipid emulsion 4 (LE4; acid unstable, liquid fat, 0.38 μm). Intragastric emulsion instability was associated with a change in gastric emptying. Acid-unstable emulsions exhibited biphasic and faster emptying profiles than did the 2 acid-stable emulsions (P ≤ 0.0001). When combined with solid fat (LE3), different dynamics of postprandial gallbladder volume were induced (P ≤ 0.001). For acid-stable emulsions, a reduction of droplet size by 2 orders of magnitude [LE1 (0.33 μm) compared with LE2 (52 μm)] delayed gastric emptying by 38 min. Although acid-stable (LE1 and LE2) and redispersible (LE4) emulsions caused a constant increase in blood triglycerides, no increase was detectable for LE3 (P < 0.0001). For LE3, MRI confirmed the generation of large fat particles during gastric processing, which emptied into and progressed through the small intestine. MRI allows the detailed characterization of the in vivo fate of lipid emulsions. The acute effects of lipid emulsions on gastric emptying, gallbladder volume, and triglyceride absorption are dependent on microstructural changes undergone during consumption. Gastric peristalsis and secretion were effective at redispersing pools of liquid fat in the stomach. This trial was registered at clinicaltrials.gov as NCT01253005. © 2015 American Society for Nutrition.
Adlington, Kevin; El Harfi, Jaouad; Li, Jianing; Carmichael, Kim; Guderian, Jeffrey A; Fox, Christopher B; Irvine, Derek J
2016-01-11
The potential to replace shark-derived squalene in vaccine adjuvant applications with synthetic squalene/poly(isoprene) oligomers, synthesized by the controlled oligomerization of isoprene is demonstrated. Following on from our previous work regarding the synthesis of poly(isoprene) oligomers, we demonstrate the ability to tune the molecular weight of the synthetic poly(isoprene) material beyond that of natural squalene, while retaining a final backbone structure that contained a minimum of 75% of 1,4 addition product and an acceptable polydispersity. The synthesis was successfully scaled from the 2 g to the 40 g scale both in the bulk (i.e., solvent free) and with the aid of additional solvent by utilizing catalytic chain transfer polymerization (CCTP) as the control method, such that the target molecular weight, acceptable dispersity levels, and the desired level of 1,4 addition in the backbone structure and an acceptable yield (∼60%) are achieved. Moreover, the stability and in vitro bioactivity of nanoemulsion adjuvant formulations manufactured with the synthetic poly(isoprene) material are evaluated in comparison to emulsions made with shark-derived squalene. Emulsions containing the synthetic poly(isoprene) achieved smaller particle size and equivalent or enhanced bioactivity (stimulation of cytokine production in human whole blood) compared to corresponding shark squalene emulsions. However, as opposed to the shark squalene-based emulsions, the poly(isoprene) emulsions demonstrated reduced long-term size stability and induced hemolysis at high concentrations. Finally, we demonstrate that the synthetic oligomeric poly(isoprene) material could successfully be hydrogenated such that >95% of the double bonds were successfully removed to give a representative poly(isoprene)-derived squalane mimic.
Physical and material properties of an emulsion-based lipstick produced via a continuous process.
Beri, A; Pichot, R; Norton, I T
2014-04-01
Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aim of this work was to investigate the effect of a continuous process (scraped surface heat exchanger (SSHE) and pin stirrer (PS)) on the physical and material properties of an emulsion-based lipstick by altering the processing conditions of both the SSHE and PS. Emulsion formation was achieved using a SSHE and PS. Emulsions were analysed using nuclear magnetic resonance restricted diffusion (droplet size), texture analysis and rheology (mechanical properties). Results showed that a higher impeller rotational velocity (IRV) (1500 r.p.m.) and a lower exit temperature (52°C) produce the smallest droplets (~ 4 μm), due to greater disruptive forces and a higher viscosity of the continuous phase. The addition of a PS reduces the droplet size (14-6 μm) if the SSHE has a low IRV (500 r.p.m.), due to greater droplet disruption as the emulsion passes through the PS unit. Results also show that if the jacket temperature of a SSHE is 65°C, so that crystallization occurs in both process and post-production, droplets can be integrated into the network resulting in a stiffer wax network (G' - 0.12, in comparison to 0.02 MPa). This is due to small crystals creating a shell around water droplets which can form connections with the continuous network forming a structured network. The addition of a pin stirrer can disrupt a formed network reducing the stiffness of the emulsion (0.3-0.05 MPa). This work suggests the potential use of a continuous process in producing an emulsion-based lipstick, particularly when wax crystals are produced in the process. Future work should consider the moisturizing or lubricating properties of wax continuous emulsions and the release of hydrophilic compounds from the aqueous phase.
40 CFR 63.494 - Back-end process provisions-residual organic HAP limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology or control or recovery devices. (1) For styrene butadiene rubber produced by the emulsion process... rubber produced by any process other than a solution or emulsion process, polybutadiene rubber produced...
Surface Modification of Nanocellulose Substrates
NASA Astrophysics Data System (ADS)
Zoppe, Justin Orazio
Cellulose fibers constitute an important renewable raw material that is utilized in many commercial applications in non-food, paper, textiles and composite materials. Chemical functionalization is an important approach for improving the properties of cellulose based materials. Different approaches are used to graft polymeric chains onto cellulose substrates, which can be classified by two principal routes, namely 'grafting onto' or 'grafting from' methods. Never-dried cellulose nanocrystals (CNCs) or nanowhiskers produced from sulfuric acid hydrolysis of ramie fibers were used as substrates for surface chemical functionalization with various macromolecules. In addition, the use of cellulose nanocrystals to reinforce poly(epsilon-caprolactone) (PCL) nanofibers was studied. Chemical grafting with low molecular weight polycaprolactone diol onto cellulose nanocrystals was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Significant improvements in the mechanical properties of the nanofibers after reinforcement with unmodified cellulose nanocrystals were confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNCs showed ca. 1.5-fold increase in Young's modulus and ultimate strength compared to PCL webs. The CNCs were also grafted with poly(N-isopropylacrylamide) (poly(NiPAAm)) brushes via surface-initiated single-electron transfer living radical polymerization (SI-SETLRP) under various conditions at room temperature. The grafting process depended on the initiator and/or monomer concentrations used. No observable damage occurred to the CNCs after grafting, as determined by X-ray diffraction. Size exclusion chromatography analyses of polymer chains cleaved from the cellulose nanocrystals indicated that a higher degree of polymerization was achieved by increasing initiator or monomer loading, most likely caused by local heterogeneities yielding higher rates of polymerization. In addition, the colloidal stability and thermo-responsive behavior of poly(NiPAAm) brushes grafted from nanoparticles of CNCs of varying graft densities and molecular weights was investigated. Halo areas surrounding grafted CNCs that were adsorbed on silica and imaged with an AFM were indicative of the grafted polymer brushes. Aggregation of nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of CNCs in liquid medium and as spin-coated films was determined by using light scattering, viscometry and Colloidal Probe Microscopy (CPM). Light transmittance measurements showed temperaturedependent aggregation originating from the different graft densities and molecular weights and a sharp increase in dispersion viscosity as the temperature approached the LCST. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength as is the case of neat poly(NiPAAm) in aqueous solution. CPM in aqueous media for asymmetric systems consisting of thin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on the interaction (repulsive and adhesive) forces. The origin of such forces was mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films was observed with the ionic strength of the aqueous solution medium. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as main reasons for the less prominent polymer bridging between interacting surfaces. Finally, poly(NiPAAm)-g-CNCs were utilized as a Pickering emulsions stabilizer. All emulsions formed were oil-in-water confirmed by a drop test. Various drop sizes were obtained as characterized by laser scattering particle size analysis and optical microscopy. Anisotropic colloidal assemblies of grafted CNCs at the oil-water interface were observed in freeze-fractured samples via Transmission Electron Microscopy. Emulsions were stable for over three months at the time of writing this thesis, however rapidly broke above the LCST as determined by rheometry.
Emulsion based cast booster - a priming system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, R.N.; Mishra, A.K.
2005-07-01
This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiatedmore » with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.« less
Influence of processing parameters on morphology of polymethoxyflavone in emulsions.
Ting, Yuwen; Li, Colin C; Wang, Yin; Ho, Chi-Tang; Huang, Qingrong
2015-01-21
Polymethoxyflavones (PMFs) are groups of compounds isolated from citrus peels that have been documented with wide arrays of health-promoting bioactivities. Because of their hydrophobic structure and high melting point, crystallized PMFs usually have poor systemic bioavailability when consumed orally. To improve the oral efficiency of PMFs, a viscoelastic emulsion system was formulated. Because of the crystalline nature, the inclusion of PMFs into the emulsion system faces great challenges in having sufficient loading capacity and stabilities. In this study, the process of optimizing the quality of emulsion-based formulation intended for PMF oral delivery was systematically studied. With alteration of the PMF loading concentration, processing temperature, and pressure, the emulsion with the desired droplet and crystal size can be effectively fabricated. Moreover, storage temperatures significantly influenced the stability of the crystal-containing emulsion system. The results from this study are a good illustration of system optimization and serve as a great reference for future formulation design of other hydrophobic crystalline compounds.
Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics
NASA Astrophysics Data System (ADS)
Aydın, Derya; Kızılel, Seda
2017-07-01
Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.
Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties
Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer
2016-01-01
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT). PMID:26780244
One-step formation of w/o/w multiple emulsions stabilized by single amphiphilic block copolymers.
Hong, Liangzhi; Sun, Guanqing; Cai, Jinge; Ngai, To
2012-02-07
Multiple emulsions are complex polydispersed systems in which both oil-in-water (O/W) and water-in-oil (W/O) emulsion exists simultaneously. They are often prepared accroding to a two-step process and commonly stabilized using a combination of hydrophilic and hydrophobic surfactants. Recently, some reports have shown that multiple emulsions can also be produced through one-step method with simultaneous occurrence of catastrophic and transitional phase inversions. However, these reported multiple emulsions need surfactant blends and are usually described as transitory or temporary systems. Herein, we report a one-step phase inversion process to produce water-in-oil-in-water (W/O/W) multiple emulsions stabilized solely by a synthetic diblock copolymer. Unlike the use of small molecule surfactant combinations, block copolymer stabilized multiple emulsions are remarkably stable and show the ability to separately encapsulate both polar and nonpolar cargos. The importance of the conformation of the copolymer surfactant at the interfaces with regards to the stability of the multiple emulsions using the one-step method is discussed.
Studying breaking of inverted emulsions with thermolysis purification TD600
NASA Astrophysics Data System (ADS)
Tarasova, G. I.; Shevaga, O. N.; Grachyova, E. O.
2018-03-01
Currently, emulsions are used in many branches of industry and agriculture. It explains significant attention paid to issues in production, stabilization and breaking of emulsion. Besides, producing steady emulsions is of importance in many processes; the reverse problem, that of demulsification, is important as well in oil production and treatment of oil emulsion waste water. This paper studies the breaking (demulsification) of inverted emulsions with the help of thermolysis purification TD600, produced by thermal modification of purification, a large-scale waste of the sugar industry.
Rapid, chemical-free breaking of microfluidic emulsions with a hand-held antistatic gun
Shahi, Payam; Abate, Adam R.
2017-01-01
Droplet microfluidics can form and process millions of picoliter droplets with speed and ease, allowing the execution of huge numbers of biological reactions for high-throughput studies. However, at the conclusion of most experiments, the emulsions must be broken to recover and analyze their contents. This is usually achieved with demulsifiers, like perfluorooctanol and chloroform, which can interfere with downstream reactions and harm cells. Here, we describe a simple approach to rapidly and efficiently break microfluidic emulsions, which requires no chemicals. Our method allows one-pot multi-step reactions, making it useful for large scale automated processing of reactions requiring demulsification. Using a hand-held antistatic gun, we pulse emulsions with the electric field, coalescing ∼100 μl of droplets in ∼10 s. We show that while emulsions broken with chemical demulsifiers exhibit potent PCR inhibition, the antistatic-broken emulsions amplify efficiently. The ability to break emulsions quickly without chemicals should make our approach valuable for most demulsification needs in microfluidics. PMID:28794817
Creating nanoscale emulsions using condensation.
Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K
2017-11-08
Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.
Gutiérrez, Gemma; Lobo, Alberto; Benito, José M; Coca, José; Pazos, Carmen
2011-01-30
A process is proposed for the treatment of a waste oil-in-water (O/W) emulsion generated in an industrial copper-rolling operation. The use of demulsifier agents improves the subsequent treatment by techniques such as ultrafiltration (UF) or evaporation. The effluent COD is reduced up to 50% when the O/W emulsion is treated by UF using a flat 30 nm TiO(2) ceramic membrane (ΔP = 0.1 MPa) and up to 70% when it is treated by vacuum evaporation, after an emulsion destabilization pretreatment in both cases. Increases in the UF permeate flux and in the evaporation rate are observed when a chemical demulsifier is used in the pretreatment step. A combined process consisting of destabilization/settling, UF, and vacuum evaporation can yield a very high-quality aqueous effluent that could be used for process cooling or emulsion reformulation. Copyright © 2010 Elsevier B.V. All rights reserved.
Transport and Retention of Concentrated Oil-in-Water Emulsions in Sandy Porous Media
NASA Astrophysics Data System (ADS)
Muller, K.; Esahani, S. G.; Steven, C. C.; Ramsburg, A.
2015-12-01
Oil-in-water emulsions are widely employed to promote biotic reduction of contaminants; however, emulsions can also be used to encapsulate and deliver active ingredients required for long-term subsurface treatment. Our research focuses on encapsulating alkalinity-releasing particles in oil-in-water emulsions for sustained control of subsurface pH. Typical characteristics of these emulsions include kinetically stable for >20 hr; 20% soybean oil; 1 g/mL density; 8-10 cP viscosity; and 1.5 μm droplet d50, with emulsions developed for favorable subsurface delivery. The viscosity of the oil-in-water emulsions was found to be a function of oil content. Ultimately we aim to model both emulsion delivery and alkalinity release (from retained emulsion droplets) to provide a description of pH treatment. Emulsion transport and retention was investigated via a series of 1-d column experiments using varying particle size fractions of Ottawa sand. Emulsions were introduced for approximately two pore volumes followed by a flush of background solution (approx. ρ=1 g/mL; μ=1cP). Emulsion breakthrough curves exhibit an early fall on the backside of the breakthrough curve along with tailing. Deposition profiles are found to be hyper-exponential and unaffected by extended periods of background flow. Particle transport models established for dilute suspensions are unable to describe the transport of the concentrated emulsions considered here. Thus, we explore the relative importance of additional processes driving concentrated droplet transport and retention. Focus is placed on evaluating the role of attachment-detachment-straining processes, as well as the influence of mixing from both viscous instabilities and variable water saturation due to deposited mass.
NASA Astrophysics Data System (ADS)
Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.
2016-09-01
The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.
Synthesis and evaluation on pH- and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels.
Rasib, S Z M; Ahmad, Z; Khan, A; Akil, H M; Othman, M B H; Hamid, Z A A; Ullah, F
2018-03-01
In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier. Copyright © 2017 Elsevier B.V. All rights reserved.
Nano-formulations of drugs: Recent developments, impact and challenges.
Jeevanandam, Jaison; Chan, Yen San; Danquah, Michael K
2016-01-01
Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J
2006-07-26
The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.
Mazloomi-Rezvani, Mahsa; Salami-Kalajahi, Mehdi; Roghani-Mamaqani, Hossein
2018-06-01
Different core-shell nanoparticles with Au as core and stimuli-responsive polymers such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(N-isopropylacrylamide) (PNIPAAm), poly(N,N'-methylenebis(acrylamide)) (PMBA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) as shells were fabricated via inverse emulsion polymerization. Dynamic light scattering (DLS) was used to investigate particles sizes and particle size distributions and transmission electron microscopy (TEM) was applied to observe the core-shell structure of Au-polymer nanoparticles. Also, surface charge of all samples was studied by measurement of zeta potentials. Synthesized core-shell nanoparticles were utilized as nanocarriers of DOX as anti-cancer drug and drug release behaviors were investigated in dark room and under irradiation of near-infrared (NIR) light. Results showed that all core-shell samples have particle sizes less than 100 nm with narrow particle size distributions. Moreover, amount of drug loading decreased by increasing zeta potential. In dark room, lower pH resulted in higher cumulative drug release due to better solubility of DOX in acidic media. Also, NIR lighting on DOX-loaded samples led to increasing cumulative drug release significantly. However, DOX-loaded Au-PAA and Au-PMAA showed higher drug release at pH = 7.4 compared to 5.3 under NIR lighting. Copyright © 2018 Elsevier B.V. All rights reserved.
Castellane, Tereza Cristina Luque; Persona, Michelli Romanoli; Campanharo, João Carlos; de Macedo Lemos, Eliana Gertrudes
2015-03-01
The potential use of rhizobia under controlled fermentation conditions may result in the production of new extracellular polymeric substances (EPS) having novel and superior properties that will open up new areas of industrial applications and thus increase their demand. The production of EPS and the stability of emulsions formed with soybean oil, diesel oil and toluene using different concentrations of purified EPS derived from wild-type and mutant strains of Rhizobium tropici SEMIA 4077 was investigated. The EPS was defined as a heteropolysaccharide composed of six constituent monosaccharides that displayed higher intrinsic viscosity and pseudoplastic non-Newtonian fluid behavior in an aqueous solution. The ratio between the total EPS production and the cellular biomass was 76.70 for the 4077::Z04 mutant strain and only 8.10 for the wild-type strain. The EPS produced by the wild-type R. tropici SEMIA 4077 resulted in more stable emulsions with the tested toluene than xanthan gum, and the emulsification indexes with hydrocarbons and soybean oil were higher than 50%, indicating strong emulsion-stabilizing capacity. These results demonstrate that the EPS of R. tropici strains could be attractive for use in industrial and environmental applications, as it had higher intrinsic viscosity and good emulsification activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Ge, Jianlong; Jin, Qing; Zong, Dingding; Yu, Jianyong; Ding, Bin
2018-05-09
Creating a porous membrane to effectively separate the emulsified oil-in-water emulsions with energy-saving property is highly desired but remains a challenge. Herein, a multilayer nanofibrous membrane was developed with the inspiration of the natural architectures of earth for gravity-driven water purification. As a result, the obtained biomimetic multilayer nanofibrous membranes exhibited three individual layers with designed functions; they were the inorganic nanofibrous layer to block the serious intrusion of oil to prevent the destructive fouling of the polymeric matrix; the submicron porous layer with designed honeycomb-like cavities to catch the smaller oil droplets and ensures a satisfactory water permeability; and the high porous fibrous substrate with larger pore size provided a template support and allows water to pass through quickly. Consequently, with the cooperation of these three functional layers, the resultant composite membrane possessed superior anti-oil-fouling property and robust oil-in-water emulsion separation performance with good separation efficiency and competitive permeation flux solely under the drive of gravity. The permeation flux of the membrane for the emulsion was up to 5163 L m -2 h -1 with a separation efficiency of 99.5%. We anticipate that our strategy could provide a facile route for developing a new generation of specific membranes for oily wastewater remediation.
Wang, Jing-Tao; Wang, Juan; Han, Jun-Jie
2011-07-04
Recent advances in the fabrication of complex particles and particle-based materials assisted by droplet-based microfluidics are reviewed. Monodisperse particles with expected internal structures, morphologies, and sizes in the range of nanometers to hundreds of micrometers have received a good deal of attention in recent years. Due to the capability of generating monodisperse emulsions and of executing precise control and operations on the suspended droplets inside the microchannels, droplet-based microfluidic devices have become powerful tools for fabricating complex particles with desired properties. Emulsions and multiple-emulsions generated in the microfluidic devices can be composed of a variety of materials including aqueous solutions, gels, polymers and solutions containing functional nanoparticles. They are ideal microreactors or fine templates for synthesizing advanced particles, such as polymer particles, microcapsules, nanocrystals, and photonic crystal clusters or beads by further chemical or physical operations. These particles are promising materials that may be applicable for many fields, such as photonic materials, drug delivery systems, and bio-analysis. From simple to complex, from spherical to nonspherical, from polymerization and reaction crystallization to self-assembly, this review aims to help readers be aware of the many aspects of this field. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Food emulsions as delivery systems for flavor compounds: A review.
Mao, Like; Roos, Yrjö H; Biliaderis, Costas G; Miao, Song
2017-10-13
Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.
Gómez-Mascaraque, Laura G; López-Rubio, Amparo
2016-03-01
This work shows the potential of emulsion electrospraying of proteins using food-grade emulsions for the microencapsulation and enhanced protection of a model thermosensitive hydrophobic bioactive. Specifically, gelatin, a whey protein concentrate (WPC) and a soy protein isolate (SPI) were compared as emulsion stabilizers and wall matrices for encapsulation of α-linolenic acid. In a preliminary stage, soy bean oil was used as the hydrophobic component for the implementation of the emulsion electrospraying process, investigating the effect of protein type and emulsion protocol used (i.e. with or without ultrasound treatment) on colloidal stability. This oil was then substituted by the ω-3 fatty acid and the emulsions were processed by electrospraying and spray-drying, comparing both techniques. While the latter resulted in massive bioactive degradation, electrospraying proved to be a suitable alternative, achieving microencapsulation efficiencies (MEE) of up to ∼70%. Although gelatin yielded low MEEs due to the need of employing acetic acid for its processing by electrospraying, SPI and WPC achieved MEEs over 60% for the non-sonicated emulsions. Moreover, the degradation of α-linolenic acid at 80°C was significantly delayed when encapsulated within both matrices. Whilst less than an 8% of its alkene groups were detected after 27h of thermal treatment for free α-linolenic acid, up to 43% and 67% still remained intact within the electrosprayed SPI and WPC capsules, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.
DELIVERY OF WATER-SOLUBLE DRUGS USING ACOUSTICALLY-TRIGGERED, PERFLUOROCARBON DOUBLE EMULSIONS
Fabiilli, Mario L.; Lee, James A.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian
2010-01-01
Purpose Ultrasound can be used to release a therapeutic payload encapsulated within a perfluorocarbon (PFC) emulsion via acoustic droplet vaporization (ADV), a process whereby the PFC phase is vaporized and the agent is released. ADV-generated microbubbles have been previously used to selectively occlude blood vessels in vivo. The coupling of ADV-generated drug delivery and occlusion has therapeutically, synergistic potentials. Methods Micron-sized, water-in-PFC-in-water (W1/PFC/W2) emulsions were prepared in a two-step process using perfluoropentane (PFP) or perfluorohexane (PFH) as the PFC phase. Fluorescein or thrombin was contained in the W1 phase. Results Double emulsions containing fluorescein in the W1 phase displayed a 5.7±1.4 fold and 8.2±1.3 fold increase in fluorescein mass flux, as measured using a Franz diffusion cell, after ADV for the PFP and PFH emulsions, respectively. Thrombin was stably retained in four out of five double emulsions. For three out of five formulations tested, the clotting time of whole blood decreased, in a statistically significant manner (p < 0.01), when incubated with thrombin-loaded emulsions exposed to ultrasound compared to emulsions not exposed to ultrasound. Conclusions ADV can be used to spatially and temporally control the delivery of water-soluble compounds formulated in PFC double emulsions. Thrombin release could extend the duration of ADV-generated, microbubble occlusions. PMID:20872050
Programmed emulsions for sodium reduction in emulsion based foods.
Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina
2015-05-01
In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.
Richter, A R; Feitosa, J P A; Paula, H C B; Goycoolea, F M; de Paula, R C M
2018-04-01
In this work, we provide proof-of-concept of formation, physical characteristics and potential use as a drug delivery formulation of Pickering emulsions (PE) obtained by a novel method that combines nanoprecipitation with subsequent spontaneous emulsification process. To this end, pre-formed ultra-small (d.∼10 nm) nanoprecipitated nanoparticles of hydrophobic derivatives of cashew tree gum grafted with polylactide (CGPLAP), were conceived to stabilize Pickering emulsions obtained by spontaneous emulsification. These were also loaded with Amphotericin B (AmB), a drug of low oral bioavailability used in the therapy of neglected diseases such as leishmaniasis. The graft reaction was performed in two CG/PLA molar ratio conditions (1:1 and 1:10). Emulsions were prepared by adding the organic phase (Miglyol 812 ® ) in the aqueous phase (nanoprecipitated CGPLAP), resulting the immediate emulsion formation. The isolation by centrifugation does not destabilize or separate the nanoparticles from oil droplets of the PE emulsion. Emulsions with CGPLAP 1:1 presented unimodal distributions at different CGPLA concentration, lower values in size and PDI and the best stability over time. The AmB was incorporated in the emulsions with a process efficiency of 21-47%, as determined by UV-vis. AmB in CGPLAP emulsions is in less aggregated state than observed in commercial AmB formulation. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.
1978-02-01
Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.
Double emulsion formation through hierarchical flow-focusing microchannel
NASA Astrophysics Data System (ADS)
Azarmanesh, Milad; Farhadi, Mousa; Azizian, Pooya
2016-03-01
A microfluidic device is presented for creating double emulsions, controlling their sizes and also manipulating encapsulation processes. As a result of three immiscible liquids' interaction using dripping instability, double emulsions can be produced elegantly. Effects of dimensionless numbers are investigated which are Weber number of the inner phase (Wein), Capillary number of the inner droplet (Cain), and Capillary number of the outer droplet (Caout). They affect the formation process, inner and outer droplet size, and separation frequency. Direct numerical simulation of governing equations was done using volume of fluid method and adaptive mesh refinement technique. Two kinds of double emulsion formation, the two-step and the one-step, were simulated in which the thickness of the sheath of double emulsions can be adjusted. Altering each dimensionless number will change detachment location, outer droplet size and droplet formation period. Moreover, the decussate regime of the double-emulsion/empty-droplet is observed in low Wein. This phenomenon can be obtained by adjusting the Wein in which the maximum size of the sheath is discovered. Also, the results show that Cain has significant influence on the outer droplet size in the two-step process, while Caout affects the sheath in the one-step formation considerably.
Novel Biobased Sodium Shellac for Wrapping Disperse Multiscale Emulsion Particles.
Luo, Qingming; Li, Kai; Xu, Juan; Li, Kun; Zheng, Hua; Liu, Lanxiang; Zhang, Hong; Sun, Yanlin
2016-12-14
As a result of amphipathic oligomers driven by different forces including hydrophobic interaction, electrostatic interaction, H-bond, and heat, multiscale emulsion particles can be wrapped. In this paper we attempted to use sodium shellac as a novel biobased wrapping material. The H + , Ca + , and spray-drying methods were employed to solidify the complex vitamin E (VE) emulsion with sodium shellac to fabricate the beads. The VE loading and encapsulation efficiency were used to evaluate the wrapping process. The results show that the microscale VE emulsion particles could easily be wrapped by these three means. However, due to the high solid content of the nanoscale emulsion particles, it was difficult to wrap them by spray-drying method. The beads solidified by H + had higher VE loading and encapsulation efficiency than those solidified by other methods and even grabbed the hydrophobic molecule VE from the emulsion micelles. At an R VS of 1:4, these two parameters, which are obtained by the nanoscale emulsion particle wrapping process, could reach 18.9 and 64.3% supported by the single driving force of hydrophobic interaction. Above all, this research introduced a novel wrapping material driven by different forces that can aggregate and wrap the emulsion micelles. It can be widely used in the medical, food, and cosmetics industries.
Salgado, Ana; Gonçalves, Lídia; Pinto, Pedro C.; Urbano, Manuela; Ribeiro, Helena M.
2013-01-01
It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion). The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53). EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids. PMID:24294598
Raposo, Sara; Salgado, Ana; Gonçalves, Lídia; Pinto, Pedro C; Urbano, Manuela; Ribeiro, Helena M
2013-01-01
It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion). The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53). EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orr, C. Jr.; Keng, E.Y.H.
1974-06-01
Oils, greases, and waxes frequently occur in industrial waste waters. Simultaneously, soaps and detergents enter most waste waters from domestic and other sources. When the mixtures of waste particles in water, known as emulsions, come in contact with the soaps and detergents, they generally become quite stable. One way to break such emulsions and thereby separate out the wastes is to add chemicals that will cause the oil droplet to agglomerate into larger drops. This study sought to assess the usefulness of electrical measurements, particularly the so-called zeta potential, in guiding the treatment process to chemicals and application rates thatmore » can break measured emulsions. When the zeta potential, which for a highly stable emulsion may be as negative as -0.090 volt, is made to approach -0.015 volt, the stability of the emulsion deteriorates rapidly. Past this poin oil-in-water emulsions often break spontaneously. The larger drops will then rise to the water surface and form a distinct oil layer that can be easily removed. Laboratory applications of various chemicals to emulsion samples and subsequent zeta potential measurement should thus provide a ready guide to those trying to remove oily waste water discharge.« less
Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2006-03-01
The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.
Drug delivery properties of macroporous polystyrene solid foams.
Canal, Cristina; Aparicio, Rosa Maria; Vilchez, Alejandro; Esquena, Jordi; García-Celma, Maria José
2012-01-01
Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time.
Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems
NASA Astrophysics Data System (ADS)
Curcio, Manuela; Altimari, Ilaria; Spizzirri, Umile Gianfranco; Cirillo, Giuseppe; Vittorio, Orazio; Puoci, Francesco; Picci, Nevio; Iemma, Francesca
2013-04-01
Native gelatin, N, N'-ethylenebisacrylamide, and sodium methacrylate were inserted into a spherical crosslinked structure by a solvent-free emulsion polymerization method, in which sunflower seed oil containing different amounts of lecithin was selected as continuous phase. Nanogels were characterized by morphological analysis, particle size distribution, and determination of swelling degree. Different dimensional distributions (100-500 nm) and water affinities were obtained by varying the amount of surfactant in the polymerization feed. Nanogels were non-toxic on human bone marrow mesenchymal stromal cells and enzymatically stable in the gastric tract, with weight losses ranging from 58 to 20 % in pancreatin solution. Release profiles of diclofenac sodium salt from the nanogels were evaluated at different pH and found to depend on crosslinking degree and drug-polymer interactions; while in pancreatin solution, a complete release of the drug was observed. The release mechanism and the diffusional contribution were evaluated by semiempirical equations.
NASA Astrophysics Data System (ADS)
Tahrin, Rabiatul Addawiyah Azwa; Azma, Nur Syafiqa; Kassim, Syara; Harun, Noor Aniza
2017-09-01
3-dimensional (3D) photonic crystals have been extended use in wide research and application from material to sensor. Nanoparticles of poly (methyl methacrylate) (PMMA) latex beads have been successfully prepared by green-chemistry approach where no surfactant, linking agent and solvent were involved. Regardless of the effect of initiator in polymerization reaction, this study presents the effect of temperature, monomer concentration, stirring speed and reaction period in order to tune the particle size. Its morphology of uniformity sized-tuned was confirming by using particle size analyzer (PSA) and scanning electron microscopy (SEM). The fabrication of 3D photonic crystals film by using self-assembly method to pattern the desired PMMA layers which is the most feasible, low cost method are also presented. The detailed properties of PMMA nanoparticles from this experimental study will be discussed and its potential used in photonic application will be explained.
Ratanajanchai, Montri; Soodvilai, Sunhapas; Pimpha, Nuttaporn; Sunintaboon, Panya
2014-01-01
Herein, we prepared PEI-immobilized core-shell particles possessing various types of polymer cores via a visible light-induced surfactant-free emulsion polymerization (SFEP) of three vinyl monomers: styrene (St), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA). An effect of monomers on the polymerization and characteristics of resulting products was investigated. Monomers with high polarity can provide high monomer conversion, high percentage of grafted PEI, stable particles with uniform size distribution but less amino groups per particles. All prepared nanoparticles exhibited a core-shell nanostructure, containing PEI on the shell with hydrodynamic size around 140-230nm. For in-vitro study in Caco-2 cells, we found that the incorporation of PEI into these core-shell nanoparticles can significantly reduce its cytotoxic effect and also be able to internalized within the cells. Accordingly, these biocompatible particles would be useful for various biomedical applications, including gene transfection and intracellular drug delivery. © 2013.
3-Dimensional Colloidal Crystals From Hollow Spheres
NASA Astrophysics Data System (ADS)
Zhang, Jian; Work, William J.; Sanyal, Subrata; Lin, Keng-Hui; Yodh, A. G.
2000-03-01
We have succeeded in synthesizing submicron-sized, hollow PMMA spheres and self-assembling them into colloidal crystalline structures using the depletion force. The resulting structures can be used as templates to make high refractive-index contrast, porous, inorganic structures without the need to use calcination or chemical-etching. With the method of emulsion polymerization, we managed to coat a thin PMMA shell around a swellable P(MMA/MAA/EGDMA) core. After neutralization and heating above the glass transition temperature of PMMA, we obtained water-swollen hydrogel particles encapsulated in PMMA shells. These composite particles become hollow spheres after drying. We characterized the particles with both transmission electron microscopy (TEM) and dynamic light scattering (DLS). The TEM results confirmed that each sphere has a hollow core. The DLS results showed that our hollow spheres are submicron-sized, with a swelling ratio of at least 25%, and with a polydispersity less than 5%. We anticipate using this method in the near-future to encapsulate ferrofluid emulsion droplets and liquid crystal droplets.
A Facile Method for Preparation of Polymer Particles Having a "Cylindrical" Shape.
Li, Wei; Suzuki, Toyoko; Minami, Hideto
2018-06-16
A facile and novel approach to prepare monodisperse polystyrene (PS) particles having a "cylindrical" shape was discovered. The proposed synthetic method involved dispersion polymerization of the spherical PS particles stirred in a polyvinylpyrrolidone (PVP) aqueous solution for several hours using a magnetic stirrer at room temperature. In the presence of PVP, the spherical PS particles deformed into cylindrical shapes following stirring; however, the particles did not deform in the absence of PVP. The deformation rate of the particles was affected by the molecular weight of the dissolved PVP. This stirring method is not only highly efficient and provides high yield, but is also applicable to other materials such as polymethyl methacrylate. Moreover, the cylindrical particles were successfully applied as particulate surfactants in a Pickering emulsion system, which exhibited excellent stability as comparison with the system using spherical particles as a surfactant. In the latter case, the emulsion was left standing for more than 4 months. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photo-triggered release in polyamide nanosized capsules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marturano, V.; Ambrogi, V.; Cerruti, P.
2014-05-15
In this work, nanosized capsules based on a lightly cross-linked polyamide containing azobenzene moieties in the main chain were synthesized by miniemulsion interfacial polymerization. The obtained nanocapsules were loaded either with toluene or with the fluorescent probe coumarin-6 as a core. Diameters of the nanocapsules were in the 100-900 nm range, depending on the selected emulsion conditions. The morphology and shape of the samples were observed by TEM and SEM while the emulsion droplets and nanocapsules size was measured by DLS. Under continuous UV irradiation the polymer underwent E-Z photoisomerization allowing the release of the encapsulated material. Variation in diametermore » of the nanocapsules with the time of UV irradiation was detected through DLS analysis. 10-30% growth was observed, depending on the sample. The kinetics of release of coumarin-6 was followed by spectrofluorimetry in ethanol. In absence of irradiation, the fluorescence intensity appeared to be constant over time, while it increased when the sample was irradiated with 360 nm UV light.« less
Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2016-07-13
Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging.
de León-Martínez, L Díaz; Rodríguez-Aguilar, M; Ocampo-Pérez, R; Gutiérrez-Hernández, J M; Díaz-Barriga, F; Batres-Esquivel, L; Flores-Ramírez, R
2018-03-01
A molecularly imprinted polymer was developed and evaluated for selective determination of metronidazole (MNZ) in wastewater. This was achieved by using sodium methacrylate as monomer, toluene as porogen, ethylene glycol dimethacrylate as crosslinker, azobisisobutyronitrile as initiator and metronidazole as template molecule to generate the selectivity of the polymer for the compound, as well as non-imprinted polymers were synthesized. Two different polymerization approaches were used, bulk and emulsion and the polymers obtained by emulsion presented higher retention percentages the MIP 2-M presented the higher retention (83%). The performed method, was validated in fortified water, showing linearity from 10 up to 1000 ng/mL; limit of detection and quantification for compound were between 3 and 10 ng/mL, respectively. Finally, the method was applied in samples of a wastewater treatment plant in the city of San Luis Potosí, México, and the concentrations of MNZ in these samples were 84.1-114 ng/mL.
Turino, Ludmila N; Mariano, Rodolfo N; Mengatto, Luciano N; Luna, Julio A
2015-01-01
One possibility to obtain a higher dose of drug in a lower formulation volume can be by using of saturated quantity of drug in one of the phases of an emulsion. These formulations are called suspoemulsions (S/O/W). When a hydrophobic polymer is added to the organic phase of suspoemulsions, these formulations can be used to entrap the drug inside microspheres after in situ precipitation of the polymer-drug-excipients mix. In this work, performance and stability of progesterone suspensions in triacetin as organic phase of suspoemulsions were evaluated. These formulations were compared with O/W emulsions. Mathematical models were used to study in vitro release profiles. The results confirmed that S/O/W systems could be an attractive alternative to O/W formulations for the entrapment of progesterone inside poly(d,l-lactide-co-glycolide) microspheres. Diffusive-based models fit the in vitro release of progesterone from in situ-formed microspheres. For longer release periods, a time-dependent diffusion coefficient was successfully estimated.
Microcapsule and methods of making and using microcapsules
Okawa, David C.; Pastine, Stefan J.; Zettl, Alexander K.; Frechet, Jean M.J.
2014-09-02
An embodiment of a microcapsule includes a shell surrounding a space, a liquid within the shell, and a light absorbing material within the liquid. An embodiment of a method of making microcapsules includes forming a mixture of a light absorbing material and an organic solution. An emulsion of the mixture and an aqueous solution is then formed. A polymerization agent is added to the emulsion, which causes microcapsules to be formed. Each microcapsule includes a shell surrounding a space, a liquid within the shell, and light absorbing material within the liquid. An embodiment of a method of using microcapsules includes providing phototriggerable microcapsules within a bulk material. Each of the phototriggerable microcapsules includes a shell surrounding a space, a chemically reactive material within the shell, and a light absorbing material within the shell. At least some of the phototriggerable microcapsules are exposed to light, which causes the chemically reactive material to release from the shell and to come into contact with bulk material.
Bouguyon, Edwige; Goncalves, Elodie; Shevtsov, Alexander; Maisonnasse, Pauline; Remyga, Stepan; Goryushev, Oleg; Deville, Sebastien; Bertho, Nicolas; Ben Arous, Juliette
2015-11-01
Vaccination is the most effective way to control swine influenza virus (SIV) in the field. Classical vaccines are based on inactivated antigens formulated with an oil emulsion or a polymeric adjuvant. Standard adjuvants enhance the humoral response and orient the immune response toward a Th2 response. An important issue is that current vaccines do not protect against new strains. One approach to improve cross-protection is to enhance Th1 and cytotoxic responses. The development of adjuvants orienting the immune response of inactivated vaccines toward Th1/Cytotoxic responses would be highly beneficial. This study shows that the water in oil in water emulsion adjuvant Montanide™ ISA 201 VG allows the induction of anti-influenza CD8 T cell in mice and induces homologous protection against an H1N1 challenge in swine. Such adjuvants that induce both humoral and cell-mediated immunity could improve the protection conferred by SIV vaccines in the field.
NASA Astrophysics Data System (ADS)
Duan, Guorong; Zhang, Chunxiang; Li, Aimei; Yang, Xujie; Lu, Lude; Wang, Xin
2008-03-01
Superfine powders of poly (methyl methacrylate) (PMMA) have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2 adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.
Nabavi, Seyed Ali; Vladisavljević, Goran T; Zhu, Yidi; Manović, Vasilije
2017-10-03
Highly selective molecularly imprinted poly[acrylamide-co-(ethylene glycol dimethacrylate)] polymer particles (MIPs) for CO 2 capture were synthesized by suspension polymerization via oil-in-oil emulsion. Creation of CO 2 -philic, amide-decorated cavities in the polymer matrix led to a high affinity to CO 2 . At 0.15 bar CO 2 partial pressure, the CO 2 /N 2 selectivity was 49 (corresponding to 91% purity of the gas stream after regeneration), and reached 97 at ultralow CO 2 partial pressures. The imprinted polymers showed considerably higher CO 2 uptakes compared to their nonimprinted counterparts, and the maximum equilibrium CO 2 capture capacity of 1.1 mmol g -1 was achieved at 273 K. The heat of adsorption was below 32 kJ mol -1 and the temperature of onset of intense thermal degradation was 351-376 °C. An increase in monomer-to-cross-linker molar ratio in the dispersed phase up to 1:2.5 led to a higher affinity toward CO 2 due to higher density of selective amide groups in the polymer network. MIPs are a promising option for industrial packed and fluidized bed CO 2 capture systems due to large particles with a diameter up to 1200 μm and irregular oblong shapes formed due to arrested coalescence during polymerization, occurring as a result of internal elasticity of the partially polymerized semisolid drops.
Pickering Particles Prepared from Food Waste
Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina
2016-01-01
In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings. PMID:28773909
DOT National Transportation Integrated Search
2009-12-01
Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix : design process developed during the previous phase is applied for CIR-emulsion mixtures with varying : emulsified asphalt contents. Dynamic modulus ...
NASA Astrophysics Data System (ADS)
Thijssen, J. H. J.; Vermant, J.
2018-01-01
Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.
Fernandez-Avila, C; Trujillo, A J
2016-10-15
Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Clegg, Paul S; Tavacoli, Joe W; Wilde, Pete J
2016-01-28
Multiple emulsions have great potential for application in food science as a means to reduce fat content or for controlled encapsulation and release of actives. However, neither production nor stability is straightforward. Typically, multiple emulsions are prepared via two emulsification steps and a variety of approaches have been deployed to give long-term stability. It is well known that multiple emulsions can be prepared in a single step by harnessing emulsion inversion, although the resulting emulsions are usually short lived. Recently, several contrasting methods have been demonstrated which give rise to stable multiple emulsions via one-step production processes. Here we review the current state of microfluidic, polymer-stabilized and particle-stabilized approaches; these rely on phase separation, the role of electrolyte and the trapping of solvent with particles respectively.
Lee, Eun-Hye; Hong, Soon-Seok; Kim, So Hee; Lee, Mi-Kyung; Lim, Joon Seok; Lim, Soo-Jeong
2014-08-01
In an effort to apply the imaging techniques currently used in disease diagnosis for monitoring the pharmacokinetics and biodisposition of particulate drug carriers, we sought to use computed tomography (CT) scanning methodology to investigate the impact of surfactant on the blood residence time of emulsions. We prepared the iodinated oil Lipiodol emulsions with different compositions of surfactants and investigated the impact of surfactant on the blood residence time of emulsions by CT scanning. The blood circulation time of emulsions was prolonged by including Tween 80 or DSPE-PEG (polyethylene glycol 2000) in emulsions. Tween 80 was less effective than DSPE-PEG in terms of prolongation effect, but the blood circulating time of emulsions was prolonged in a Tween 80 content-dependent manner. As a proof-of-concept demonstration of the usefulness of CT-guided screening in the process of formulating drugs that need to be loaded in emulsions, paclitaxel was loaded in emulsions prepared with 87 or 65% Tween 80-containing surfactant mixtures. A pharmacokinetics study showed that paclitaxel loaded in 87% Tween 80 emulsions circulated longer in the bloodstream compared to those in 65% Tween 80 emulsions, as predicted by CT imaging. CT-visible, Lipiodol emulsions enabled the simple evaluation of surfactant composition effects on the biodisposition of emulsions.
NASA Astrophysics Data System (ADS)
Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Lestari, F. P.; Desnasari, D.; Santoso, I. P. M.
2018-02-01
L-fucose has been understood as sulfated polysaccharides and it could be extracted and fractionated from brown algae. These polysaccharides contains carbohydrate, sulfate, and protein that may be used as emulsifier. This research was aimed to study the emulsification properties of L-fucose through the determination of total dissolved solids (TDS), color CIE L*a*b* and stability of oil-in-water emulsion. As much as 0.5% of high concentrated L-fucose and 0.5% of carboxymethyl cellulose (CMC) were used as emulsifier in a 10% (v/v) oil-in-water (O/W) emulsion. The emulsifier was added to O/W emulsions and then heated at 72°C. Result of stability emulsion and TDS showed that L-fucose was comparable to the CMC but remarkable changed the color of O/W emulsion. Heating process significantly reduced the stability O/W emulsion when L-fucose was applied. As conclusion, L-fucose might be used as natural emulsifier in O/W emulsion but in the low heat treatment of food processing. This study may provide valuable information for utilizing natural emulsifier from abundant resources from nature.
Demulsification of oil-in-water emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roark, D.N.
1986-09-30
This patent describes a process of demulsifying an oil-in-water emulsion which comprises admixing with the emulsion a water-soluble polymer of monoallylamine that causes formation of and separation between an oil phase and an aqueous phase to occur. The emulsion has a pH in the range of about 5 to about 10 and the polymer has a weight average molecular weight of at least 1000 and contains at least 95% by weight of monoallylamine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, N.S.K.
In aqueous lysine-sucrose model systems, the effects of reaction time, pH and molar ratio were studied on the formation of non-enzymatic browning reaction (NBR) products. The extent of sucrose hydrolysis was measured and the antioxidant effect of NBR products on linoleic acid emulsions was examined. Nuclear magnetic resonance (NMR) spectra were obtained at various stages of browning. Sucrose produced NMR produces with lysine in an aqueous system at 100/sup 0/C. The C-13 NMR spectra indicated that the NBR started when sucrose and lysine were dissolved in water. The C-13 NMR spectra also showed that heating did not have an effectmore » on the gross composition of polymeric species. The absorbance at 480 nm of 0.75 M lysine-sucrose solution heated up to 6 hours increased with reaction times. The pH values of heated lysine-sucrose solution gradually decreased with reaction time. When 0.75 M sucrose or lysine solution was heated separately up to 6 hours, there were no changes in absorbance in pH. In the pH range of 3.52-6.35, higher absorbance was obtained from heated lysine-sucrose solution at acidic pH levels than at neutral pH levels. As the concentration of lysine and sucrose solution was increased, the absorbance increased. At longer reaction times or acidic pH levels, enhanced hydrolysis of sucrose to reducing sugars resulted in more NBR products. NBR products obtained at a longer reaction time, an acidic pH, and higher concentration of reactants showed a darker brown color and were effective in preventing the formation of peroxides. The oxygen uptake of linoleic acid emulsion having NBR products was smaller than that of linoleic acid emulsion without NBR products. Based on these results, it was concluded that sucrose may act as an antioxidant in processed foods containing both amino acids and lipids.« less
Costa, Ana Letícia Rodrigues; Gomes, Andresa; Tibolla, Heloisa; Menegalli, Florencia Cecilia; Cunha, Rosiane Lopes
2018-08-15
Cellulose nanofibers (CNFs) from banana peels was evaluated as promising stabilizer for oil-in-water emulsions. CNFs were treated using ultrasound and high-pressure homogenizer. Changes on the size, crystallinity index and zeta potential of CNFs were associated with the intense effects of cavitation phenomenon and shear forces promoted by mechanical treatments. CNFs-stabilized emulsions were produced under the same process conditions as the particles. Coalescence phenomenon was observed in the emulsions produced using high-pressure homogenizer, whereas droplets flocculation occurred in emulsions processed by ultrasound. In the latter, coalescence stability was associated with effects of cavitation forces acting on the CNFs breakup. Thus, smaller droplets created during the ultrasonication process could be recovered by particles that acted as an effective barrier against droplets coalescence. Our results improved understanding about the relationship between the choice of emulsification process and their effects on the CNFs properties influencing the potential application of CNFs as a food emulsifier. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghobashy, Mohamed Mohamady; Elhady, Mohamed., A.
2017-05-01
Emulsion polymerization is an efficient method for the production of new wax-hydrogel matrices of cetyl alcohol: stearic acid wax and acrylamide hydrogel using triethylamine (TEA) as an emulsifier. A cross-linking reaction occurred when a mixture of wax-hydrogel solution was irradiated with gamma rays at a dose of 20 kGy. The gelation percentage of the matrices (CtOH-StA/PAAm) was 86%, which indicates that a sufficiently high conversion occurred in these new wax-hydrogel matrices. The ability of PAAm and CtOH-StA/PAAm as an adsorbent for dye removal was investigated. The removal of three reactive dyes, namely Remazol Red (RR), Amido Black (AB), and Toluidine Blue (TB), from aqueous solutions depends on the pH of the dye solution. Removal efficiency was investigated by UV spectrophotometry, and the results showed the affinity of the wax hydrogel to adsorb TB was 98% after 320 min. Fourier transform infrared-attenuated total reflectance spectra confirmed the cross-linking process involved between the chains of wax and hydrogel; furthermore, scanning electron microscopy images showed that the wax and hydrogel were completely miscible to form a single matrix. Swelling measurements showed the high affinity of adsorbed dyes from aqueous solutions at different pH values to the wax-hydrogel network; the highest swelling values of 13.05 and 8.24 (g/g) were observed at pH 10 and 6, respectively
Emulsion stability measurements by single electrode capacitance probe (SeCaP) technology
NASA Astrophysics Data System (ADS)
Schüller, R. B.; Løkra, S.; Salas-Bringas, C.; Egelandsdal, B.; Engebretsen, B.
2008-08-01
This paper describes a new and novel method for the determination of the stability of emulsions. The method is based on the single electrode capacitance technology (SeCaP). A measuring system consisting of eight individual measuring cells, each with a volume of approximately 10 ml, is described in detail. The system has been tested on an emulsion system based on whey proteins (WPC80), oil and water. Xanthan was added to modify the emulsion stability. The results show that the new measuring system is able to quantify the stability of the emulsion in terms of a differential variable. The whole separation process is observed much faster in the SeCaP system than in a conventional separation column. The complete separation process observed visually over 30 h is seen in less than 1.4 h in the SeCaP system.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Styrene (100-42-5) ABS latex ✔ ✔ ✔ ABS using a batch emulsion process ✔ ✔ ✔ ABS using a batch suspension process ✔ ✔ ✔ ABS using a continuous emulsion process ✔ ✔ ✔ ABS using a continuous mass process ✔ ✔ ✔ ASA...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Styrene (100-42-5) ABS latex ✔ ✔ ✔ ABS using a batch emulsion process ✔ ✔ ✔ ABS using a batch suspension process ✔ ✔ ✔ ABS using a continuous emulsion process ✔ ✔ ✔ ABS using a continuous mass process ✔ ✔ ✔ ASA...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Styrene (100-42-5) ABS latex ✔ ✔ ✔ ABS using a batch emulsion process ✔ ✔ ✔ ABS using a batch suspension process ✔ ✔ ✔ ABS using a continuous emulsion process ✔ ✔ ✔ ABS using a continuous mass process ✔ ✔ ✔ ASA...
Badawi, Mariam A; El-Khordagui, Labiba K
2014-07-16
Emulsion electrospinning is a multifactorial process used to generate nanofibers loaded with hydrophilic drugs or macromolecules for diverse biomedical applications. Emulsion electrospinnability is greatly impacted by the emulsion pharmaceutical attributes. The aim of this study was to apply a quality by design (QbD) approach based on design of experiments as a risk-based proactive approach to achieve predictable critical quality attributes (CQAs) in w/o emulsions for electrospinning. Polycaprolactone (PCL)-thickened w/o emulsions containing doxycycline HCl were formulated using a Span 60/sodium lauryl sulfate (SLS) emulsifier blend. The identified emulsion CQAs (stability, viscosity and conductivity) were linked with electrospinnability using a 3(3) factorial design to optimize emulsion composition for phase stability and a D-optimal design to optimize stable emulsions for viscosity and conductivity after shifting the design space. The three independent variables, emulsifier blend composition, organic:aqueous phase ratio and polymer concentration, had a significant effect (p<0.05) on emulsion CQAs, the emulsifier blend composition exerting prominent main and interaction effects. Scanning electron microscopy (SEM) of emulsion-electrospun NFs and desirability functions allowed modeling of emulsion CQAs to predict electrospinnable formulations. A QbD approach successfully built quality in electrospinnable emulsions, allowing development of hydrophilic drug-loaded nanofibers with desired morphological characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation.
Hoesli, Corinne A; Raghuram, Kamini; Kiang, Roger L J; Mocinecová, Dušana; Hu, Xiaoke; Johnson, James D; Lacík, Igor; Kieffer, Timothy J; Piret, James M
2011-02-01
Alginate has been used to protect transplanted pancreatic islets from immune rejection and as a matrix to increase the insulin content of islet progenitor cells. The throughput of alginate bead generation by the standard extrusion and external gelation method is limited by the rate of droplet formation from nozzles. Alginate bead generation by emulsion and internal gelation is a scaleable alternative that has been used with biological molecules and microbial cells, but not mammalian cells. We describe the novel adaptation of this process to mammalian cell immobilization. After optimization, the emulsion process yielded 90 ± 2% mouse insulinoma 6 (MIN6) cell survival, similar to the extrusion process. The MIN6 cells expanded at the same rate in both bead types to form pseudo-islets with increased glucose stimulation index compared to cells in suspension. The emulsion process was suitable for primary pancreatic exocrine cell immobilization, leading to 67 ± 32 fold increased insulin expression after 10 days of immobilized culture. Due to the scaleability and broad availability of stirred mixers, the emulsion process represents an attractive option for laboratories that are not equipped with extrusion-based cell encapsulators, as well as for the production of immobilized or encapsulated cellular therapeutics on a clinical scale. © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sun, Yuxiang; Mei, Ling; Han, Ning; Ding, Xinyi; Yu, Caihao; Yang, Wenjuan; Ruan, Gang
2017-06-01
The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes ( 25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes ( 3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.
Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan
2016-10-01
In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hong, Geun-Pyo; Chun, Ji-Yeon; Jo, Yeon-Ji
2014-01-01
This study investigated the effects of microbial transglutaminase (MTGase) and pH-shift processing on the functional properties of porcine myofibrillar proteins (MP). The pH-shift processing was carried out by decreasing the pH of MP suspension to 3.0, followed by re-adjustment to pH 6.2. The native (CM) and pH-shifted MP (PM) was reacted with and without MTGase, and the gelling and emulsion characteristics were compared. To compare the pH-shifted MTGase-treated MP (PT), deamidation (DM) was conducted by reacting MTGase with MP at pH 3.0. Rigid thermal gel was produced by MTGase-treated native MP (CT) and PT. PM and DM showed the lowest storage modulus (G') at the end of thermal scanning. Both MTGase and pH-shifting produced harder MP gel, and the highest gel strength was obtained in PT. All treatments yielded lower than CM, and CT showed significantly higher yield than PM and DM treatments. For emulsion characteristics, pH-shifting improved the emulsifying ability of MP-stabilized emulsion, while the treatments had lower emulsion stability. PM-stabilized emulsion exhibited the lowest creaming stability among all treatments. The emulsion stability could be improved by the usage of MTGase. The results indicated that pH-shifting combined with MTGase had a potential application to modify or improve functional properties of MP in manufacturing of meat products. PMID:26760940
Gosecka, Monika; Chehimi, Mohamed M; Basinska, Teresa; Slomkowski, Stanislaw; Makowski, Tomasz
2017-12-01
We investigated the distribution of polyglycidol and polystyrene on the surface of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres (random distribution or segregated into hydrophilic and hydrophobic patches), using fibrinogen (Fb) as a macromolecular probe. The fibrinogen was adsorbed or covalently attached to the surface of the poly(styrene-co-α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGLy)) microspheres. The P(S/PGLy) particles were prepared by emulsion copolymerization of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol (PGLy) macromonomer initiated with potassium persulfate. The polymerizations yielded P(S/PGLy) particles with various surface fractions of polyglycidol, depending on the amount of added macromonomer and the addition process. In some syntheses, the entire macromonomer amount was added once at the beginning of the polymerization, while in others, the macromonomer was added gradually after the formation of particle seeds from pure polystyrene. XPS studies revealed that the fraction of polyglycidol in the interfacial layer of the microspheres was larger when the entire amount of macromonomer was added at the beginning of the polymerization than when it was added after formation of the polystyrene seeds. Studies of fibrinogen adsorption provided the first evidence of segregation of the hydrophobic (polystyrene) and hydrophilic (polyglycidol) components at the surface of the composite P(S/PGLy) microspheres into patches. The hydrophobic patches are composed mainly of polystyrene. However, they also contain a small amount of polyglycidol chains, making the adsorption of fibrinogen weaker than the adsorption onto the pure polystyrene. Studies of covalent immobilization of fibrinogen on the microspheres via 1,3,5-trichlorotriazine confirmed these findings. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 471.105 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (b) Sizing spent emulsions. Subpart J—PSNS Pollutant or pollutant property Maximum for any 1 day... discharge of process wastewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—PSNS Pollutant... off-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005...
40 CFR 471.105 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... (b) Sizing spent emulsions. Subpart J—PSNS Pollutant or pollutant property Maximum for any 1 day... discharge of process wastewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—PSNS Pollutant... off-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005...
40 CFR 471.105 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... (b) Sizing spent emulsions. Subpart J—PSNS Pollutant or pollutant property Maximum for any 1 day... discharge of process wastewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—PSNS Pollutant... off-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005...
40 CFR 471.105 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... (b) Sizing spent emulsions. Subpart J—PSNS Pollutant or pollutant property Maximum for any 1 day... discharge of process wastewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—PSNS Pollutant... off-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005...
40 CFR 471.103 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... times. (b) Sizing spent emulsions. Subpart J—NSPS Pollutant or pollutant property Maximum for any 1 day... discharge of process wastewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—NSPS Pollutant... off-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005...
40 CFR 471.23 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... magnesium forming process wastewater shall not exceed the following values: (a) Rolling spent emulsions... (pounds per million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032...) Sawing or grinding spent emulsions. Subpart B—NSPS Pollutant or pollutant property Maximum for any 1 day...
40 CFR 471.23 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... magnesium forming process wastewater shall not exceed the following values: (a) Rolling spent emulsions... (pounds per million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032...) Sawing or grinding spent emulsions. Subpart B—NSPS Pollutant or pollutant property Maximum for any 1 day...
40 CFR 471.23 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... magnesium forming process wastewater shall not exceed the following values: (a) Rolling spent emulsions... (pounds per million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032...) Sawing or grinding spent emulsions. Subpart B—NSPS Pollutant or pollutant property Maximum for any 1 day...
Patel, Ashok R; Rajarethinem, Pravin S; Cludts, Nick; Lewille, Benny; De Vos, Winnok H; Lesaffer, Ans; Dewettinck, Koen
2015-02-24
Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion.
A novel microfluidic system for the mass production of Inertial Fusion Energy shells
NASA Astrophysics Data System (ADS)
Inoue, N. T.
2016-04-01
A system which can mass produce millimetre sized spherical polymer shells economically and with high precision will be a great step towards the Inertial Fusion Energy goal. Microfluidics has shown itself to be a disruptive technology, where a rapid and continuous production of compound emulsions can be processed into such shells. Planar emulsion generators co-flow-focus in one step (COFON) and cascaded co-flow- focus (COFUS) enable millimetre compound emulsions to be produced using a one or two step formation process respectively. The co-flow-focus geometry uses symmetric and curved carrier fluid entrance walls to create a focusing orifice-minima and a carrier flow which aids movement and shaping of the dispersed fluid(s) towards the outlet, whilst maintaining operation in the dripping regime. Precision concentric alignment of these compound emulsions remains one of the greatest challenges. However steps to solve this passively using curved channel modulation to perturbate the emulsion have shown that rapid alignment can be achieved. Issues with satellite droplet formation, repeatability of the emulsion generation and cost are also addressed.
Duffus, Laudina J; Norton, Jennifer E; Smith, Paul; Norton, Ian T; Spyropoulos, Fotios
2016-07-01
Whilst literature describing edible Pickering emulsions is becoming increasingly available, current understanding of these systems still suffers from a lack of consistency in terms of the (processing and formulation) conditions within which these structures have been studied. The current study aims to provide a comparative analysis of the behaviour of different edible Pickering candidates and their ability to stabilise emulsion droplets, under well-controlled and uniform experimental conditions, in order to clearly identify the particle properties necessary for successful Pickering functionality. More specifically, an extensive investigation into the suitability of various food-grade material to act as Pickering particles and provide stable oil-in-water (O/W) and water-in-oil (W/O) emulsions was carried out. Polysaccharide and flavonoid particles were characterised in terms of their size, ζ-potential, interfacial activity and wettability, under equivalent conditions. Particles were subsequently used to stabilise 20% w/w O/W and W/O emulsions, in the absence of added surfactant or other known emulsifying agents, through different processing routes. All formed Pickering emulsions were shown to resist significant droplet size variation and remain stable at particle concentrations between 2 and 3% w/w. The main particle prerequisites for successful Pickering stabilisation were: particle size (200nm - 1μm); an affinity for the emulsion continuous phase and a sufficient particle charge to extend stability. Depending upon the employed emulsification process, the resulting emulsion formation and stability behaviour can be reasonably predicted a priori from the evaluation of specific particle characteristics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions
NASA Technical Reports Server (NTRS)
Avedisian, C. Thomas
1997-01-01
This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-crylate (80-62-6) Styrene (100-42-5) ABS latex ✔ ✔ ✔ ABS using a batch emulsion process ✔ ✔ ✔ ABS using a batch suspension process ✔ ✔ ✔ ABS using a continuous emulsion process ✔ ✔ ✔ ABS using a continuous mass...
Code of Federal Regulations, 2014 CFR
2014-07-01
...-crylate (80-62-6) Styrene (100-42-5) ABS latex ✔ ✔ ✔ ABS using a batch emulsion process ✔ ✔ ✔ ABS using a batch suspension process ✔ ✔ ✔ ABS using a continuous emulsion process ✔ ✔ ✔ ABS using a continuous mass...
Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric
NASA Astrophysics Data System (ADS)
Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio
2010-01-01
A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.
A solid colloidal drug delivery system for the eye: encapsulation of pilocarpin in nanoparticles.
Harmia, T; Speiser, P; Kreuter, J
1986-01-01
The present study was undertaken in order to encapsulate pilocarpin into nanoparticles. Two principally different methods for manufacturing these particles were investigated. Firstly, pilocarpin was dissolved in an aqueous medium in which the polymerization was carried out, and secondly, the polymerizing monomer was kept saturated with the drug solution under acidic conditions resulting in an incorporation into the nanoparticles in an aqueous environment. The amount of pilocarpin that could be incorporated into the nanoparticles was found to be largely influenced by the temperature at which the nanoparticles were produced and by the stabilizers used. At low temperatures, up to 60 per cent of pilocarpin nitrate could be encapsulated into butylcyanoacrylate nanoparticles using emulsion polymerization techniques. Larger amounts of pilocarpin could not be incorporated because of the hydrophilicity of the salts of this drug. The physico-chemical characteristics of the nanoparticles are reported: the particle size and morphology were determined by scanning and transmission electron microscopy and photon correlation spectrometry. The average particle size was about 100 nm. The results obtained in this study show that photon correlation spectrometry is a suitable method for the sizing of nanoparticles.
Generation of colloidal granules and capsules from double emulsion drops
NASA Astrophysics Data System (ADS)
Hess, Kathryn S.
Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals, and agricultural applications, among others.
Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P
2017-09-20
The main objective of this study is to develop microencapsulation technology for thermal energy storage incorporating a phase change material (PCM) in a composite wall shell, which can be used to create a stable environment and allow the PCM to undergo phase change without any outside influence. Surface modification of cellulose nanocrystals (CNCs) was conducted by grafting poly(lactic acid) oligomers and oleic acid to improve the dispersion of nanoparticles in a polymeric shell. A microencapsulated phase change material (methyl laurate) with poly(urea-urethane) (PU) composite shells containing the hydrophobized cellulose nanocrystals (hCNCs) was fabricated using an in situ emulsion interfacial polymerization process. The encapsulation process of the PCMs with subsequent interfacial hCNC-PU to form composite microcapsules as well as their morphology, composition, thermal properties, and release rates was examined in this study. Oil soluble Sudan II dye solution in methyl laurate was used as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency as well as dye release rates were measured spectroscopically in a water medium. The influence of polyol content in the PU polymer matrix of microcapsules was investigated. An increase in polyol contents leads to an increase in the mean size of microcapsules but a decrease in the gel content (degree of cross-linking density) and permeability of their shell structure. The encapsulated PCMs for thermal energy storage demonstrated here exhibited promising performance for possible use in building or paving materials in terms of released heat, desired phase transformation temperature, chemical and physical stability, and concrete durability during placement.
NASA Astrophysics Data System (ADS)
Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko
2017-06-01
Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.
NASA Astrophysics Data System (ADS)
Juntarasakul, O.; Maneeintr, K.
2018-04-01
Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.
Ramkumar, C; Singh, H; Munro, P A; Singh, A M
2000-05-01
Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.
Centrifugal Pump Effect on Average Particle Diameter of Oil-Water Emulsion
NASA Astrophysics Data System (ADS)
Morozova, A.; Eskin, A.
2017-11-01
In this paper we review the process of oil-water emulsion particles fragmentation in a turbulent flow created by a centrifugal pump. We examined the influence of time necessary for oil-water emulsion preparation on the particle size of oil products and the dependence of a centrifugal pump emulsifying capacity on the initial emulsion dispersion. The investigated emulsion contained the brand fuel oil M-100 and tap water; it was sprayed with a nozzle in a gas-water flare. After preparation of the emulsion, the centrifugal pump was turned on and the emulsion samples were taken before and after the pump passing in 15, 30 and 45 minutes of spraying. To determine the effect the centrifugal pump has on the dispersion of the oil-water emulsion, the mean particle diameter of the emulsion particles was determined by the optical and microscopic method before and after the pump passing. A dispersion analysis of the particles contained in the emulsion was carried out by a laser diffraction analyzer. By analyzing the pictures of the emulsion samples, it was determined that after the centrifugal pump operation a particle size of oil products decreases. This result is also confirmed by the distribution of the obtained analyzer where the content of fine particles with a diameter less than 10 μm increased from 12% to 23%. In case of increasing emulsion preparation time, a particle size of petroleum products also decreases.
Multiple emulsions: an overview.
Khan, Azhar Yaqoob; Talegaonkar, Sushama; Iqbal, Zeenat; Ahmed, Farhan Jalees; Khar, Roop Krishan
2006-10-01
Multiple emulsions are complex polydispersed systems where both oil in water and water in oil emulsion exists simultaneously which are stabilized by lipophillic and hydrophilic surfactants respectively. The ratio of these surfactants is important in achieving stable multiple emulsions. Among water-in-oil-in-water (w/o/w) and oil-in-water-in-oil (o/w/o) type multiple emulsions, the former has wider areas of application and hence are studied in great detail. Formulation, preparation techniques and in vitro characterization methods for multiple emulsions are reviewed. Various factors affecting the stability of multiple emulsions and the stabilization approaches with specific reference to w/o/w type multiple emulsions are discussed in detail. Favorable drug release mechanisms and/or rate along with in vivo fate of multiple emulsions make them a versatile carrier. It finds wide range of applications in controlled or sustained drug delivery, targeted delivery, taste masking, bioavailability enhancement, enzyme immobilization, etc. Multiple emulsions have also been employed as intermediate step in the microencapsulation process and are the systems of increasing interest for the oral delivery of hydrophilic drugs, which are unstable in gastrointestinal tract like proteins and peptides. With the advancement in techniques for preparation, stabilization and rheological characterization of multiple emulsions, it will be able to provide a novel carrier system for drugs, cosmetics and pharmaceutical agents. In this review, emphasis is laid down on formulation, stabilization techniques and potential applications of multiple emulsion system.
Fernández-Ávila, C; Escriu, R; Trujillo, A J
2015-09-01
The effect of Ultra-High Pressure Homogenization (UHPH, 100-300MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15MPa). CH emulsions were prepared with non-heated and heated (95°C for 15min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d 3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200MPa with 20% of oil were the most stable due to low particle size values (d 3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 471.104 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... atomized Copper 9.58 5.040 Cyanide 1.46 0.605 Lead 2.12 1.01 (b) Sizing spent emulsions. Subpart J—PSES... process watewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—PSES Pollutant or...-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005 0.002...
40 CFR 471.104 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... atomized Copper 9.58 5.040 Cyanide 1.46 0.605 Lead 2.12 1.01 (b) Sizing spent emulsions. Subpart J—PSES... process watewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—PSES Pollutant or...-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005 0.002...
40 CFR 471.104 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... atomized Copper 9.58 5.040 Cyanide 1.46 0.605 Lead 2.12 1.01 (b) Sizing spent emulsions. Subpart J—PSES... process watewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—PSES Pollutant or...-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005 0.002...
40 CFR 471.104 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... atomized Copper 9.58 5.040 Cyanide 1.46 0.605 Lead 2.12 1.01 (b) Sizing spent emulsions. Subpart J—PSES... process watewater pollutants. (g) Sawing or grinding spent emulsions. Subpart J—PSES Pollutant or...-pounds) of powder metallurgy parts sawed or ground with emulsions Copper 0.035 0.018 Cyanide 0.005 0.002...
NASA Astrophysics Data System (ADS)
Collados, Maria Victoria; Arias, Isabel; García, Ana; Atencia, Jesús; Quintanilla, Manuel
2003-02-01
In this work we study the feasibility of using silver halide sensitized gelatin based on PFG-01 (Slavich) emulsions to construct uniaxial compound lenses. This processing is able to introduce variations in the thickness and refractive index of the emulsion. We prove that these changes are not sufficient to provide the observed variations in Bragg conditions in the reconstruction and that a shear-type effect must exist to explain the performance of processed emulsions. We study the characteristics of a compound lens, obtaining acceptable image quality, good resolution, and the typical field limitation of volume holographic elements.
Recovery of process water from spent emulsions generated in copper cable factory.
Karakulski, K; Morawski, A W
2011-02-28
Treatment of waste emulsions generated in the cable factory from copper wire drawing was investigated using the integrated membrane processes: ultrafiltration (UF) and nanofiltration (NF). The application of UF tubular membranes (MWCO 100 kDa) resulted in 98% retention of oil and lubricants, whereas the degree of passage of copper ions (the major component of effluents from cable factory) was 99%. The average permeate flux amounted to 45 l/m(2) h for the transmembrane pressure of 3.5 bar during the UF pretreatment of waste emulsions. The Silt Density Index (SDI) values of UF permeates were appropriate for the application of spiral wound membranes in the NF process. The complete removal of oil and lubricants was achieved in NF process and the content of TOC was reduced by more than 90%. The rejection of copper ions in the NF process was 90% and 98% for NF270 and NF90 membranes (FILMTEC), respectively. The quality of NF permeates allows a direct reuse of treated water for the preparation of fresh emulsion. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuliusman; Huda, M.; Ramadhan, I. T.; Farry, A. R.; Wulandari, P. T.; Alfia, R.
2018-03-01
In this study was conducted to recover nickel metal from spent nickel catalyst resulting from hydrotreating process in petroleum industry. The nickel extraction study with the emulsion liquid membrane using Cyanex 272 as an extractant to extract and separate nickel from the feed phase solution. Feed phase solution was preapred from spent catalyst using sulphuric acid. Liquid membrane consists of a kerosene as diluent, a Span 80 as surfactant, a Cyanex 272 as carrier and sulphuric acid solutions have been used as the stripping solution. The important parameters governing the permeation of nickel and their effect on the separation process have been studied. These parameters are surfactant concentration, extractant concentration feed phase pH. The optimum conditions of the emulsion membrane making process is using 0.06 M Cyanex 272, 8% w/v SPAN 80, 0.05 M H2SO4, internal phase extractant / phase volume ratio: 1/1, and stirring speed 1150 rpm for 60 Minute that can produce emulsion membrane with stability level above 90% after 4 hours. In the extraction process with optimum condition pH 6 for feed phase, ratio of phase emulsion/phase of feed: 1/2, and stirring speed 175 rpm for 15 minutes with result 81.51% nickel was extracted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, E.R.; Fajen, J.M.
1987-05-08
An in depth industrial hygiene survey was conducted at the Copolymer Rubber and Chemical Corporation located in Baton Rouge, Louisiana. The facility produced styrene-butadiene rubber and nitrile-butadiene rubber by continuous emulsion polymerization. The ultimate use of this product was for the manufacture of tire and rubber products. The authors recommend that leaking pumps which can present a potential for 1,3-butadiene exposure in the tank farm and recovery areas should be controlled through the use of dual mechanical seals. Employees assigned to maintenance tasks should use respirators with organic vapor cartridges.
Colloidal crystal beads composed of core-shell particles for multiplex bioassay.
Xu, Hua; Zhu, Cun; Zhao, Yuanjin; Zhao, Xiangwei; Hu, Jing; Gu, Zhongze
2009-04-01
A convenient method was developed to fabricate colloidal crystal beads (CCBs) with tough mechanical strength, which was used as encoded carriers for multiplex bioassay. The latex particles used for the construction of the CCBs were designed with a rigid core PS and a elastomeric shell poly(MMA/EA/MAA), and were prepared via one-step soap-free emulsion polymerization. The as-above-prepared CCBs were thermo-treated to drive the elastomeric shells of adjacent latex particles joining together. It was found that the coalescence of latex particles can greatly improve the mechanical strength of the CCBs for multiplex bioassay.
WE-AB-BRA-03: Non-Invasive Controlled Release from Implantable Hydrogel Scaffolds Using Ultrasound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moncion, A; Kripfgans, O.D; Putnam, A.J
Purpose: To control release of a model payload in acoustically responsive scaffolds (ARSs) using focused ultrasound (FUS). Methods: Fluorescently-labeled dextran (10 kDa) was encapsulated in sonosensitive perfluorocarbon (C{sub 6}F{sub 14} or C{sub 5}F{sub 12}) double emulsions (mean diameter: 2.9±0.1 µm). For in vitro release studies, 0.5 mL ARSs (10 mg/mL fibrin, 1% (v/v) emulsion) were polymerized in 24 well plates and covered with 0.5 mL medium. Starting one day after polymerization, ARSs were exposed to FUS (2.5 MHz, Pr = 8 MPa, 13 cycles, 100 Hz PRF) for 2 min daily. The amount of dextran released into the media wasmore » quantified. For in vivo studies, 0.25 mL ARSs were prepared as described previously and injected subcutaneously in the lower back of BALB/c mice. After polymerization, a subset of the implanted ARSs were exposed to FUS (as previously described). Animals were imaged longitudinally using a fluorescence imaging system to quantify the amount of dextran released from the ARSs. Results: In vitro: Over 6 days, +FUS displayed an 8.2-fold increase in dextran release compared to −FUS (−FUS: 2.7±0.6%; +FUS: 22.2±3.0%) for C{sub 6}F{sub 14} ARSs, and a 6.7-fold increase (−FUS: 5.0±0.8%; +FUS: 38.5±1.6%) for C{sub 5}F{sub 12}:C{sub 6}F{sub 14} ARSs. In vivo: +FUS displayed statistically greater dextran release compared to −FUS one day after implantation for C{sub 5}F{sub 12}:C{sub 6}F{sub 14} ARSs (−FUS: 55.1±1.5%; +FUS: 74.1±2.2%) and three days after implantation for C{sub 6}F{sub 14} ARSs (−FUS: 1.4±6.5%; +FUS: 30.4±5.4%). Conclusion: FUS enables non-invasive control of payload release from an ARS, which could benefit growth factor delivery for tissue regeneration. ARS are versatile due to their tunability (i.e. stiffness, emulsion composition, FUS pressure, FUS frequency, etc.) and can be modified to for optimal payload release. Future work will optimize ARS formulations for in vivo use to minimize payload release in the absence of FUS. This work was supported by NIH Grant R21 AR065010 (M.L. Fabiilli) and the Basic Radiologic Sciences Innovative Research Award (M.L. Fabiilli). A. Moncion is supported by the National Science Foundation Graduate Student Research Fellowship (Grant DGE 1256260).« less
Aqueous enzymatic extraction of Moringa oleifera oil.
Mat Yusoff, Masni; Gordon, Michael H; Ezeh, Onyinye; Niranjan, Keshavan
2016-11-15
This paper reports on the extraction of Moringa oleifera (MO) oil by using aqueous enzymatic extraction (AEE) method. The effect of different process parameters on the oil recovery was discovered by using statistical optimization, besides the effect of selected parameters on the formation of its oil-in-water cream emulsions. Within the pre-determined ranges, the use of pH 4.5, moisture/kernel ratio of 8:1 (w/w), and 300stroke/min shaking speed at 40°C for 1h incubation time resulted in highest oil recovery of approximately 70% (goil/g solvent-extracted oil). These optimized parameters also result in a very thin emulsion layer, indicating minute amount of emulsion formed. Zero oil recovery with thick emulsion were observed when the used aqueous phase was re-utilized for another AEE process. The findings suggest that the critical selection of AEE parameters is key to high oil recovery with minimum emulsion formation thereby lowering the load on the de-emulsification step. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ariizumi, Masahiro; Kubo, Megumi; Handa, Akihiro; Hayakawa, Takashi; Matsumiya, Kentaro; Matsumura, Yasuki
2017-04-01
Mayonnaise-like oil-in-water emulsions with different stabilities-evaluated from the degree of macroscopic defects, e.g., syneresis-were prepared by different formulations and processing conditions (egg yolk weight, homogenizer speed, and vegetable oil temperature). Emulsions prepared with lower egg yolk content were destabilized for shorter periods. The long-term stability of emulsions was weakly related to initial properties, e.g., oil droplet distribution and protein coverage at the interface. Protein aggregation between oil droplets was observed and would be responsible for the instability of emulsions exhibited by the appearance defects. SDS-PAGE results for adsorbed and unadsorbed proteins at the O/W interface suggested that predominant constituents adsorbed onto the interface were egg white proteins as compared with egg yolk components when the amount of added egg yolk was low. In present condition, egg white proteins adsorbed at the O/W interface could be a bridge of neighboring oil droplets thereby causing flocculation in emulsions.
USDA-ARS?s Scientific Manuscript database
In this study, an innovative emulsion made from soybean and navy bean blends of different proportionalities was developed. In addition, two processing methods were evaluated: traditional cooking and jet-cooking. The physical attributes and storage stability were measured and compared. This study fou...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emulsion. Subpart J—BPT Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average... process wastewater pollutants. (g) Sawing or grinding spent emulsion. Subpart J—BPT Pollutant or pollutant... powder metallurgy parts sawed or ground with emulsion Copper 0.035 0.018 Cyanide 0.005 0.002 Lead 0.008 0...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emulsion. Subpart J—BPT Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average... process wastewater pollutants. (g) Sawing or grinding spent emulsion. Subpart J—BPT Pollutant or pollutant... powder metallurgy parts sawed or ground with emulsion Copper 0.035 0.018 Cyanide 0.005 0.002 Lead 0.008 0...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emulsion. Subpart J—BPT Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average... process wastewater pollutants. (g) Sawing or grinding spent emulsion. Subpart J—BPT Pollutant or pollutant... powder metallurgy parts sawed or ground with emulsion Copper 0.035 0.018 Cyanide 0.005 0.002 Lead 0.008 0...
Parthasarathi, S; Muthukumar, S P; Anandharamakrishnan, C
2016-05-18
Vitamin E (α-tocopherol) is a nutraceutical compound, which has been shown to possess potent antioxidant and anticancer activity. However, its biological activity may be limited by its poor bioavailability. Colloidal delivery systems have shown wide applications in the food and pharmaceutical industries to deliver lipophilic bioactive compounds. In this study, we have developed conventional and nanoemulsions of vitamin E from food grade ingredients (sunflower oil, saponin, and water) and showed the nanoemulsion formulation increased the oral bioavailability when compared to the conventional emulsion. The mean droplet diameters in the nano and conventional emulsions were 0.277 and 1.285 μm, respectively. The stability of the emulsion formulation after thermal processing, long-term storage at different temperatures, mechanical stress and in plasma was determined. The results showed that the saponin coated nanoemulsion was stable to droplet coalescence during thermal processing (30-90 °C), long-term storage and mechanical stress when compared to the conventional emulsion. The biological fate of the emulsion formulations were studied using male Wistar rats as an animal model. The emulsion droplet stability during passage through the gastrointestinal tract was evaluated by their introduction into rat stomachs. Microscopy was used to investigate the structural changes that occurred during digestion. Both the conventional emulsion and nanoemulsion formulations showed strong evidence of droplet flocculation and coalescence during in vivo digestion. The in vivo oral bioavailability study revealed that vitamin E in a nanoemulsion form showed a 3-fold increase in the AUC when compared to the conventional emulsion. The information reported in this study will facilitate the design of colloidal delivery systems using nanoemulsion formulations.
Modification of lignin for the production of new compounded materials.
Hüttermann, A; Mai, C; Kharazipour, A
2001-05-01
The cell walls of woody plants are compounded materials made by in situ polymerization of a polyphenolic matrix (lignin) into a web of fibers (cellulose), a process that is catalysed by polyphenoloxidases (laccases) or peroxidases. The first attempt to transform the basic strategy of this natural process for use in human craftsmanship was the ancient lacquer method. The sap of the lacquer tree (Rhus verniciflua) contains large amounts of a phenol (urushiol), a polysaccharide and the enzyme laccase. This oil-in-water emulsion solidifies in the presence of oxygen. The Chinese began using this phenomenon for the production of highly creative artwork more than 6,000 years ago. It was the first example of an isolated enzyme being used as a catalyst to create an artificial plastic compound. In order to apply this process to the production of products on an industrial scale, an inexpensive phenol must be used, which is transferred by an enzyme to active radicals that react with different components to form a compounded material. At present, the following approaches have been studied: (1) In situ polymerization of lignin for the production of particle boards. Adhesive cure is based on the oxidative polymerization of lignin using phenoloxidases (laccase) as radical donors. This lignin-based bio-adhesive can be applied under conventional pressing conditions. The resulting particle boards meet German performance standards. By this process, 80% of the petrochemical binders in the wood-composite industry can be replaced by materials from renewable resources. (2) Enzymatic copolymerization of lignin and alkenes. In the presence of organic hydroperoxides, laccase catalyses the reaction between lignin and olefins. Detailed studies on the reaction between lignin and acrylate monomers showed that chemo-enzymatic copolymerization offers the possibility to produce defined lignin-acrylate copolymers. The system allows control of the molecular weights of the products in a way that has not been possible with chemical catalysts. This is a novel attempt to enzymatically induce grafting of polymeric side chains onto the lignin backbone, and it enables the utilization of lignin as part of new engineering materials. (3) Enzymatic activation of the middle-lamella lignin of wood fibers for the production of wood composites. The incubation of wood fibers with a phenol oxidizing enzyme results in oxidative activation of the lignin crust on the fiber surface. When such fibers are pressed together, boards are obtained which meet the German standards for medium-density fiber boards (MDF). The fibers are bound together in a way that comes close to that by which wood fibers are bound together in naturally grown wood. This process will, for the first time, yield wood composites that are produced solely from naturally grown products without any addition of resins.
Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava
2013-10-15
Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application. Copyright © 2013 Elsevier Ltd. All rights reserved.
A novel acrylamide-free flocculant and its application for sludge dewatering.
Lu, Lianghua; Pan, Zhida; Hao, Nan; Peng, Wenqing
2014-06-15
In the present research, copolymers of methyl acrylate (MA) with anionic or cationic monomers were synthesized via emulsion polymerization, and used as sludge dewatering aids in wastewater treatment. The copolymerization of different stoichiometry of two monomers afforded a variety of water soluble copolymers with charge densities ranging from 40% to 80%, which align with the charge density of current flocculant products. These copolymers resemble current commercial products, but provide a greener solution by eliminating acrylamide monomer, which is a suspected carcinogen. High molecular weight copolymers were achieved by applying powder-like synthesis process with intrinsic viscosity of final products as high as 12.98 dl/g for anionic flocculant and 10.74 dl/g for cationic flocculant. The copolymers of methyl acrylate and [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) with 55% charge density exhibited comparable performance in clay settling test, real water jar test, and sludge dewatering, when compared to AM-based commercial product in the real wastewater treatment application. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temperature Response of Rhodamine B-Doped Latex Particles. From Solution to Single Particles.
Soleilhac, Antonin; Girod, Marion; Dugourd, Philippe; Burdin, Béatrice; Parvole, Julien; Dugas, Pierre-Yves; Bayard, François; Lacôte, Emmanuel; Bourgeat-Lami, Elodie; Antoine, Rodolphe
2016-04-26
Nanoparticle-based temperature imaging is an emerging field of advanced applications. Herein, the sensitivity of the fluorescence of rhodamine B-doped latex nanoparticles toward temperature is described. Submicrometer size latex particles were prepared by a surfactant-free emulsion polymerization method that allowed a simple and inexpensive way to incorporate rhodamine B into the nanoparticles. Also, rhodamine B-coated latex nanoparticles dispersed in water were prepared in order to address the effect of the dye location in the nanoparticles on their temperature dependence. A better linearity of the temperature dependence emission of the rhodamine B-embedded latex particles, as compared to that of free rhodamine B dyes or rhodamine B-coated latex particles, is observed. Temperature-dependent fluorescence measurements by fluorescent confocal microscopy on individual rhodamine B-embedded latex particles were found similar to those obtained for fluorescent latex nanoparticles in solution, indicating that these nanoparticles could be good candidates to probe thermal processes as nanothermometers.
Poly(ε-caprolactone) Microfiber Meshes for Repeated Oil Retrieval
Hersey, J. S.; Yohe, S. T.; Grinstaff, M. W.
2016-01-01
Electrospun non-woven poly(ε-caprolactone) (PCL) microfiber meshes are described as biodegradable, mechanically robust, and reusable polymeric oil sorbents capable of selectively retrieving oil from simulated oil spills in both fresh and seawater scenarios. Hydrophobic PCL meshes have >99.5% (oil over water) oil selectivity and oil absorption capacities of ~10 grams of oil per gram of sorbent material, which is shown to be a volumetrically driven process. Both the oil selectivity and absorption capacity remained constant over several oil absorption and vacuum assisted retrieval cycles when removing crude oil or mechanical pump oil from deionized water or simulated seawater mixtures. Finally, when challenged with surfactant stabilized water-in-oil emulsions, the PCL meshes continued to show selective oil absorption. These studies add to the knowledge base of synthetic oil sorbents highlighting a need for biodegradable synthetic oil sorbents which balance porosity and mechanical integrity enabling reuse, allowing for the efficient recovery of oil after an accidental oil spill. PMID:26989490
Yang, Nan; Mao, Peng; Lv, Ruihe; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O
2016-08-01
Oil-in-water (O/W) emulsions with varying concentration of oil phase, medium-chain triglyceride (MCT), were prepared using phase-separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase-separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP-rich phase and a lower GA-rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP-rich phase, then to the GA-rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase-separated emulsions were discussed. © 2016 Institute of Food Technologists®
Meshulam, Dafna; Lesmes, Uri
2014-01-01
There is an upsurge of interest in the use of nano-particles to fabricate emulsions and modulate their functionality, with particular emphasis on modulating emulsion digestive fate. Food grade nano-particles formed through controlled processing and electrostatic biopolymer interactions are yet to be systematically studied for their ability to stabilize emulsions and modulate emulsion digestibility. This study focused on the responsiveness of emulsions stabilized by lactoferrin (LF) nano-particles (NPs) and dietary fibers to key digestive parameters. Compared to native LF, LF-NPs comprised emulsion exhibited elevated creaming rates as evident from accelerated stability tests performed by analytical centrifugation. The electrostatic deposition of alginate or carrageenan onto the LF-NPs significantly improved the stability of the corresponding emulsions. Further, the use of various nano-particles showed to have both beneficial and deleterious effects on emulsion responsiveness to pH (2.0 < pH < 10.0), CaCl2 (0-40 mM) and bile (0-25 mg mL(-1)). Simulated pH-stat lipolysis experiments show that the use of LF or LF-NPs had no marked effect on lipolysis. Intriguingly, the use of LF-NPs and alginate reduced emulsion lipolysis by 14% while the use of LF-NPs and carrageenan increased lipolysis by 10%. Microscopy images as well as droplet characterization in terms of size and charge indicate that the altered emulsion responsiveness may be due to physical differences in emulsion properties (e.g. droplet size) and overall organization during digestion (e.g. aggregation vs. coalescence). Overall, this study's insights could prospectively be used to harness protein nano-particles to tweak emulsion behavior during digestion.
Development of eco-friendly submicron emulsions stabilized by a bio-derived gum.
Pérez-Mosqueda, Luis María; Ramírez, Pablo; Trujillo-Cayado, Luis Alfonso; Santos, Jenifer; Muñoz, José
2014-11-01
Many traditional organic solvents are being gradually replaced by ecofriendly alternatives. D-Limonene is a terpenic (bio)-solvent that fulfils the requirements to be considered a green solvent. D-Limonene sub-micron emulsions suffer from Ostwald ripening destabilization. In this study, we examined the influence of the addition of a natural gum (rosin gum) to D-limonene in order to prevent Ostwald ripening. This contribution deals with the study of emulsions formulated with a mixture of D-limonene and rosin gum as dispersed phase and Pluronic PE9400 as emulsifier. The procedure followed for the development of these formulations was based on the application of product design principles. This led to the optimum ratio rosin gum/D-limonene and subsequently to the optimum surfactant concentration. The combination of different techniques (rheology, laser diffraction and multiple light scattering) was demonstrated to be a powerful tool to assist in the prediction of the emulsions destabilization process. Not only did the addition of rosin gum highly increase the stability of these emulsions by inhibiting the Ostwald ripening, but it also reduced the emulsions droplet size. Thus, we found that stable sub-micron D-limonene-in-water emulsions have been obtained in the range 3-6 wt% Pluronic PE-9400 by means of a single-step rotor/stator homogenizing process. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.
Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F
2010-10-15
Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brui, E. B.; Galashkina, I. A.
1993-12-01
Peculiarities of the photo-chemical processing of the relief-phase holograms, registered in the layers of argentum-halogenide emulsion PE-2 with the thickness 1 micrometers , are presented in the paper. It was found that in the case of such thickness the tanning processing does not provide the improvement of the maximal relief depth in comparison with the non-tanning process.
Whey protein isolate modified by transglutaminase aggregation and emulsion gel properties
NASA Astrophysics Data System (ADS)
Qi, Weiwei; Chen, Chong; Liu, Mujun; Yu, Guoping; Cai, Xinghang; Guo, Peipei; Yao, Yuxiu; Mei, Sijie
2015-07-01
Whey protein isolate and commercial soybean salad oil were used to produce the WPI emulsion dispersions. The properties of TG-catalyzed emulsion gelation produced from WPI emulsion dispersions were investigated by the amount of TG, temperature, pH and reaction time. Specifically, the texture properties (hardness and springiness), water-holding capacity and rheological properties (G' and G") were assessed. The result of Orthogonal tests showed WPI emulsion can form better hardness and springiness gel when the ratio of TG and WPI was 20U/g, pH 7.5, treatment temperature and time were 50°C and 3 h, respectively. The microstructure of TG emulsion gels was more compact, gel pore is smaller, distribution more uniform, the oil droplets size smaller compared with untreated emulsion gels. Compared to the control of rheological properties, G' and G" were significantly increased and G' > G", results showed that the gel was solid state, and TG speeded up the process of gelation.
Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.
Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S
2013-02-13
There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.
Formation of 2D and 3D superlattices of silver nanoparticles inside an emulsion droplet
NASA Astrophysics Data System (ADS)
Hussain Shaik, Aabid; Srinivasa Reddy, D.
2017-03-01
This work is aimed at the formation of 2D and 3D superlattices (SL) of silver nanoparticles inside an emulsion droplet. The monodisperse nanoparticles required for SL formation were prepared by a digestive ripening technique. Digestive ripening is a post processing technique where polydisperse colloids are refluxed with excess surface-active ligands to prepare a monodisperse colloid. More uniform silver nanoparticles (~3.6 ± 0.5 nm) were formed by slow evaporation of organosols on a carbon-coated copper grid. The best 3D silver superlattices have been formed using an oil in water (o/w) emulsion method by aging the monodisperse particles in a confined environment like o/w emulsion at different temperatures ranging from 5 °C-4 °C. The kinetics of the formation of superlattices inside an emulsion droplet were investigated by controlling various parameters. The kinetics were found to be dependent on the emulsion aging period (30 d) and storage temperature of the emulsion (-4 °C).
Wu, Longkun; Wang, Limin; Qi, Baokun; Zhang, Xiaonan; Chen, Fusheng; Li, Yang; Sui, Xiaonan; Jiang, Lianzhou
2018-05-30
The understanding of the structure morphology of oil-rich emulsion from enzyme-assisted extraction processing (EAEP) was a critical step to break the oil-rich emulsion structure in order to recover oil. Albeit EAEP method has been applied as an alternative way to conventional solvent extraction method, the structure morphology of oil-rich emulsion was still unclear. The current study aimed to investigate the structure morphology of oil-rich emulsion from EAEP using 3D confocal Raman imaging technique. With increasing the enzymatic hydrolysis duration from 1 to 3 h, the stability of oil-rich emulsion was decreased as visualized in the 3D confocal Raman images that the protein and oil were mixed together. The subsequent Raman spectrum analysis further revealed that the decreased stability of oil-rich emulsion was due to the protein aggregations via SS bonds or protein-lipid interactions. The conformational transfer in protein indicated the formation of a compact structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan
2013-06-28
The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.
NASA Astrophysics Data System (ADS)
Zhu, G. Y.; Lin, C. T.; Chen, J. M.; Lei, D. M.; Zhu, G. X.
2018-01-01
Green grass fragrance has been widely used in many fields. However, fragrances are volatile compounds that do not last long. In order to prolong its odor, nanocapsules encapsulated green grass fragrance were prepared. The paper deals with the preparation of green grass fragrance nanocapsules by emulsion polymerization. N-butylcyanoacrylate (BCA) with excellent biocompatibility and biodegradability was used as encapsulant. The nanocapsule suspension systems were characterized and its stability was investigated. The physicochemical properties of polymeric nanocapsules (average diameter and polydispersity) were evaluated as a function of time to assess the system stability. The result showed that the system (containing 0.8% of green grass fragrance, with a polydispersity index (PDI) near 0.1 and an average diameter in the range of 20-30 nm) was an ideal state and relatively stable. Besides, the distinction of stability of three nanocapsule suspensions with different green grass fragrance content was also obvious from scanning electron microscopy (SEM).
NASA Astrophysics Data System (ADS)
Ramsburg, C. A.; Muller, K.; Gill, J.
2012-12-01
Many current approaches to managing groundwater contamination rely on further advances in amendment delivery in order to initiate and sustain contaminant degradation or immobilization. In fact, limited or ineffective delivery is often cited when treatment objectives are not attained. Emulsions, specifically oil-in-water emulsions, have demonstrated potential to aid delivery of remediation amendments. Emulsions also afford opportunities to control the release of active ingredients encapsulated within the droplets. Our research is currently focused on the controlled release of nanoparticle-based buffering agents using oil-in-water emulsions. This interest is motivated by the fact that chemical and biological processes employed for the remediation and stewardship of contaminated sites often necessitate control of pH during treatment and, in some cases, long thereafter. Alkalinity-release nanoparticles (e.g., CaCO3, MgO) were suspended within soybean oil and subsequently encapsulated by through the creation of oil-in-water emulsions. These oil-in-water emulsions are designed to have physical properties which are favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet diameter). Buffer capacity titrations suggest that MgO particles are moderately more accessible within the oil phase and nearly twice as effective (on a per mass basis) at releasing alkalinity (as compared to the CaCO3 particles). Results from experiments designed to assess the release kinetics suggest that a linear driving force model is capable of describing the release process and mass transfer coefficients are constant through the reactive life of the emulsion. The release kinetics in emulsions containing MgO particles were found to be three orders of magnitude faster than those quantified for emulsions containing CaCO3. The slower release kinetics of the emulsions containing CaCO3 particles may prove beneficial when considering pH control at sites where acid fluxes are lower. The ability of emulsions to sustain alkalinity release within porous media was preliminarily examined using a series of 1-D column experiments. Emulsions were introduced for 2 pore volumes in a medium sand at Darcy velocities of approximately 0.8 cm/hr. Following the emulsion pulse, a pH 4 solution (adjusted with HCl) was introduced into the column and the effluent was monitored for pH, oil content, and droplet size distributions. All un-retained emulsion (~20% wt. was retained) was flushed from the column within approximately 2 pore volumes of terminating the emulsion pulse. The effluent pH at quasi-steady state and the reactive life of the emulsion depended on the retention characteristics, as well as the type and loading of nanoparticles employed within the emulsion. For the scenarios considered here, quasi-steady effluent pHs were observed to be between 6.5 and 10, and reactive lifetimes (i.e., the number of pore volumes for which the retained emulsion resulted in the effluent pH exceeding that of the influent) were between 15 and 100 pore volumes. These results demonstrate the ability of the emulsion to offer longer-term release and highlight the ability to tune the alkalinity release rate to match site characteristics by adjusting the emulsion content. Current research is directed toward evaluation release properties in heterogeneous aquifer cell experiments.
Sharma, Sachin; Kumar Poddar, Maneesh; Moholkar, Vijayanand S
2017-05-01
This study reports synthesis and characterization of poly(MMA-co-BA)/Cloisite 30B (organo-modified montmorillonite clay) nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Copolymers have been synthesized with MMA:BA monomer ratio of 4:1, and varying clay loading (1-5wt% monomer). The poly(MMA-co-BA)/Cloisite 30B nanocomposites have been characterized for their thermal and mechanical properties. Ultrasonically synthesized nanocomposites have been revealed to possess higher thermal degradation resistance and mechanical strength than the nanocomposites synthesized using conventional techniques. These properties, however, show an optimum (or maxima) with clay loading. The maximum values of thermal and mechanical properties of the nanocomposites with optimum clay loading are as follows. Thermal degradation temperatures: T 10% =320°C (4wt%), T 50 =373°C (4wt%), maximum degradation temperature=384°C (4wt%); glass transition temperature=64.8°C (4wt%); tensile strength=20MPa (2wt%), Young's modulus=1.31GPa (2wt%), Percentage elongation=17.5% (1wt%). Enhanced properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites are attributed to effective exfoliation and dispersion of clay nanoparticles in copolymer matrix due to intense micro-convection induced by ultrasound and cavitation. Clay platelets help in effective heat absorption with maximum surface interaction/adhesion that results in increased thermal resistivity of nanocomposites. Hindered motion of the copolymer chains due to clay platelets results in enhancement of tensile strength and Young's modulus of nanocomposite. Rheological (liquid) study of the nanocomposites reveals that nanocomposites have higher yield stress and infinite shear viscosity than neat copolymer. Nonetheless, nanocomposites still display shear thinning behavior - which is typical of the neat copolymer. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, J.F.; Burton, F.G.; Cataldo, D.A.
1982-09-01
The objective of this project was to develop and evaluate the effectiveness of physical and chemical barriers designed to prevent plant and animal breachment of uranium mill tailings containment systems for an extended period of time. A polymeric carrier/biocide delivery system was developed and tested in the laboratory, greenhouse and field. A continuous flow technique was established to determine the release rates of the biocides from the PCD systems; polymeric carrier specifications were established. Studies were conducted to determine effective biocide concentrations required to produce a phytotoxic response and the relative rates of phytotoxin degradation resulting from chemical and biologicalmore » breakdown in soils. The final PCD system developed was a pelletized system containing 24% trifluralin, 18% carbon black and 58% polymer. Pellets were placed in the soil at the Grand Junction U-tailings site at one in. and two in. intervals. Data obtained in the field determined that the pellets released enough herbicide to the soil layer to stop root elongation past the barrier. Physical barriers to subsurface movement of burrowing animals were investigated. Small crushed stone (1 to 1 1/2 in. diameter) placed over asphalt emulsion and multilayer soil seals proved effective as barriers to a small mammal (ground squirrels) but were not of sufficient size to stop a larger animal (the prairie dog). No penetrations were made through the asphalt emulsion or the clay layer of the multilayer soil seals by either of the two mammals tested. A literature survey was prepared and published on the burrowing habits of the animals that may be found at U-tailings sites.« less
Purification of trona ores by conditioning with an oil-in-water emulsion
Miller, J. D.; Wang, Xuming; Li, Minhua
2009-04-14
The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.
21 CFR 172.846 - Sodium stearoyl lactylate.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) As an emulsifier or stabilizer in liquid and solid edible fat-water emulsions intended for use as... finished edible fat-water emulsion. (4) As a formulation aid, processing aid, or surface-active agent in...
NASA Astrophysics Data System (ADS)
Gholamipour-Shirazi, A.; Carvalho, M. S.; Fossum, J. O.
2016-07-01
Research on emulsions is driven by their widespread use in different industries, such as food, cosmetic, pharmaceutical and oil recovery. Emulsions are stabilized by suitable surfactants, polymers, solid particles or a combination of them. Microfluidic emulsification is the process of droplet formation out of two or more liquids under strictly controlled conditions, without pre-emulsification step. Microfluidic technology offers a powerful tool for investigating the properties of emulsions themselves. In this work stable oil in water emulsions were formed with hydrophilic Laponite RD® nanoparticles adsorbed at the interface of the oil phase and aqueous clay nanofluid in a T junction microfluidic chip. Emulsion stability up to at least 40 days could be observed.
Kowalska, M; Mendrycka, M; Zbikowska, A; Stawarz, S
2015-02-01
Formation of emulsion systems based on interesterified fats was the objective of the study. Enzymatic interesterification was carried out between enzymatic mutton tallow and walnut oil in the proportions 2 : 3 (w/w) to produce fats not available in nature. At the beginning of the interesterification process, the balance between the interesterification and fat hydrolysis was intentionally disturbed by adding more water to the catalyst (Lipozyme IR MR) of the reaction to produce more of the polar fraction monoacylglycerols [MAGs] and diacylglycerols [DAGs]. To obtain a greater quantity of MAGs and DAGs in the reaction environment via hydrolysis, water was added (11, 13, 14, 16 w-%) to the enzymatic preparation. The obtained fats were used to form emulsions. The emulsions were evaluated with respect to sensory and skin moisturizing properties by 83 respondents. Determination of emulsion stability using temperature and centrifugal tests was carried out. Morphology and the type of emulsions were determined. The respondents described the skin to which the emulsions in testing were applied as smooth, pleasant to touch and adequately moisturized. The work has demonstrated that interesterification of a mutton tallow and walnut oil blend resulted in new fats with very interesting characteristics of triacylglycerols that are not present in the environment. The results of the present work indicate the possibility of application of fats with the largest quantity of MAGs and DAGs as a fat base of emulsions in the cosmetic industries. The hypothesis assumed in this work of producing additional quantities of MAGs and DAGs (in the process of enzymatic interesterification) responsible for the stability of the system was confirmed. It should be pointed out that the emulsions based on interesterified fats exhibited a greater level of moisturization of the skin than the emulsions containing non-interesterified fat. Also, in the respondents' opinion, the emulsion containing fat, which was modified during enzymatic interesterification when 13% of water was added to the enzymatic preparation, exhibited the best sensory profile. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Tabatabaee Amid, Bahareh; Mirhosseini, Hamed
2014-01-01
The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of the inner droplet of double emulsions on the film drainage during a head-on collision
NASA Astrophysics Data System (ADS)
Wang, Jingtao; Jing, Hefeng; Xu, Genmiao; Wang, Xiaoyong; Duan, Zhenya
2015-07-01
As a critical stage which severely affects the final coalescence of droplets, film drainage in the collision process of two simple droplets has been deeply studied for many years. However, the collision of multiple emulsions which contain other phases (like daughter droplets or particles) has never been studied although multiple emulsions are very important in emulsion industries nowadays. In this paper, the head-on collision of two core-shell double emulsions with equal sizes is investigated through a boundary integral method to disclose the effects of the inner droplet on the film drainage. When capillary number Ca is relatively high, due to the effect of the inner droplet on the inner circulation of mother droplets, the film drainage of double emulsions includes three stages: drainage, drainage halt, and second drainage, instead of two stages for that of simple droplets: drainage and drainage halt.
Joyce, Paul; Whitby, Catherine P; Prestidge, Clive A
2015-08-12
Biodegradable and bioactive hybrid particles composed of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and medium-chain triglycerides were prepared by spray drying lipid-in-water emulsions stabilized by PLGA nanoparticles, to form PLGA-lipid hybrid (PLH) microparticles approximately 5 μm in mean diameter. The nanoparticle stabilizer was varied and mannitol was also incorporated during the preparation to investigate the effect of stabilizer charge and cryoprotectant content on the particle microstructure. An in vitro lipolysis model was used to demonstrate the particles' bioactivity by manipulating the digestion kinetics of encapsulated lipid by pancreatic lipase in simulated gastrointestinal fluid. Lipid digestion kinetics were enhanced in PLH and PLGA-lipid-mannitol hybrid (PLMH) microparticles for both stabilizers, compared to a coarse emulsion, in biorelevant media. An optimal digestion rate was observed for the negatively charged PLMH system, evidenced by a 2-fold increase in the pseudo-first-order rate constant compared to a coarse emulsion. Improved microparticle redispersion, probed by dual dye confocal fluorescence microscopy, increased the available surface area of lipid for lipase adsorption, enhancing digestion kinetics. Thereby, lipase action was controlled in hybrid microparticles by altering the surface charge and carbohydrate content. Our results demonstrate that bioactive microparticles composed of versatile and biodegradable polymeric particles and oil droplets have great potential for use in smart food and nutrient delivery, as well as safer and more efficacious oral delivery of drugs and drug combinations.
Rowenczyk, Laura; Picard, Céline; Duclairoir-Poc, Cécile; Hucher, Nicolas; Orange, Nicole; Feuilloley, Marc; Grisel, Michel
2016-08-20
Model emulsions were developed with or without commercial titanium dioxide nanoparticles (NP) carrying various surface treatments in order to get close physicochemical properties whatever the NP surface polarity (hydrophilic and hydrophobic). Rheology and texturometry highlighted that the macroscopic properties of the three formulated emulsions were similar. However, characterizations by optical microscopy, static light scattering and zetametry showed that their microstructures reflected the diversity of the incorporated NP surface properties. In order to use these model emulsions as tools for biological evaluations of the NP in use, they had to show the lowest initial microbiological charge and, specifically for the NP-free emulsion, the lowest bactericidal effect. Hence, formulae were developed preservative-free and a thermal sterilization step was conducted. Efficiency of the sterilization and its impact on the emulsion integrity were monitored. Results highlighted the effect of the NP surface properties: only the control emulsion and the emulsion containing hydrophilic NP fulfilled both requirements. To ensure the usability of these model emulsions as tools to evaluate the 'NP effect' on representative bacteria of the skin microflora (S. aureus and P. fluorescens), impact on the bacterial growth was measured on voluntary inoculated formulae. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bigikocin, Erman; Mert, Behic; Alpas, Hami
2011-09-01
Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.
W/O/W multiple emulsions with diclofenac sodium.
Lindenstruth, Kai; Müller, Bernd W
2004-11-01
The disperse oil droplets of W/O/W multiple emulsions contain small water droplets, in which drugs could be incorporated, but the structure of these emulsions is also the reason for possible instability. Due to the middle oil phase which acts as a 'semipermeable' membrane the passage of water across the oil phase can take place. However, the emulsions have been produced in a two-step-production process so not only the leakage of encapsulated drug molecules out of the inner water phase during storage but also a production-induced reduction of the encapsulation rate should be considered. The aim of this study was to ascertain how far the production-induced reduction of the encapsulation rate relates to the size of inner water droplets and to evaluate the relevance of multiple emulsions as drug carrier for diclofenac sodium. Therefore multiple emulsions were produced according to a central composite design. During the second production step it was observed that the parameters pressure and temperature have an influence on the size of the oil droplets in the W/O/W multiple emulsions. Further experiments with different W/O emulsions resulted in W/O/W multiple emulsions with different encapsulation rates of diclofenac sodium, due to the different sizes of the inner water droplets, which were obtained in the first production step.
Allen, Brett L; Johnson, Jermaine D; Walker, Jeremy P
2012-07-27
In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase's stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme's exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a 'sacrificial barrier' by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO(2) (100 ppm).
Ning, Yin; Fielding, Lee A; Ratcliffe, Liam P D; Wang, Yun-Wei; Meldrum, Fiona C; Armes, Steven P
2016-09-14
Polymerization-induced self-assembly (PISA) offers a highly versatile and efficient route to a wide range of organic nanoparticles. In this article, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate) [PSEM-PBzMA] diblock copolymer nanoparticles can be prepared with either a high or low PSEM stabilizer surface density using either RAFT dispersion polymerization in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion polymerization, respectively. We then use these model nanoparticles to gain new insight into a key topic in materials chemistry: the occlusion of organic additives into inorganic crystals. Substantial differences are observed for the extent of occlusion of these two types of anionic nanoparticles into calcite (CaCO3), which serves as a suitable model host crystal. A low PSEM stabilizer surface density leads to uniform nanoparticle occlusion within calcite at up to 7.5% w/w (16% v/v), while minimal occlusion occurs when using nanoparticles with a high PSEM stabilizer surface density. This counter-intuitive observation suggests that an optimum anionic surface density is required for efficient occlusion, which provides a hitherto unexpected design rule for the incorporation of nanoparticles within crystals.
Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick
2010-10-15
This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.
Direct electron-pair production by high energy heavy charged particles
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.
1989-01-01
Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.
Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.
Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi
2015-12-30
The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong
2017-01-01
In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level. PMID:28406431
Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong
2017-04-13
In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level.
Best practices for full-depth reclamation using asphalt emulsions.
DOT National Transportation Integrated Search
2015-07-01
Full depth reclamation of asphalt pavements using asphalt emulsions (AEFDR) is a process that recycles and rejuvenates the existing : asphalt pavement surface, base, and, sometimes, the subgrade, providing an improved underlying structure for the new...
Kroupa, Martin; Vonka, Michal; Soos, Miroslav; Kosek, Juraj
2015-07-21
The coagulation process has a dramatic impact on the properties of dispersions of colloidal particles including the change of optical, rheological, as well as texture properties. We model the behavior of a colloidal dispersion with moderate particle volume fraction, that is, 5 wt %, subjected to high shear rates employing the time-dependent Discrete Element Method (DEM) in three spatial dimensions. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to model noncontact interparticle interactions, while contact mechanics was described by the Johnson-Kendall-Roberts (JKR) theory of adhesion. The obtained results demonstrate that the steady-state size of the produced clusters is a strong function of the applied shear rate, primary particle size, and the surface energy of the particles. Furthermore, it was found that the cluster size is determined by the maximum adhesion force between the primary particles and not the adhesion energy. This observation is in agreement with several simulation studies and is valid for the case when the particle-particle contact is elastic and no plastic deformation occurs. These results are of major importance, especially for the emulsion polymerization process, during which the fouling of reactors and piping causes significant financial losses.
Iyer, Vidyashankara; Cayatte, Corinne; Marshall, Jason D; Sun, Jenny; Schneider-Ohrum, Kirsten; Maynard, Sean K; Rajani, Gaurav Manohar; Bennett, Angie Snell; Remmele, Richard L; Bishop, Steve M; McCarthy, Michael P; Muralidhara, Bilikallahalli K
2017-06-01
To generate potent vaccine responses, subunit protein antigens typically require coformulation with an adjuvant. Oil-in-water emulsions are among the most widely investigated adjuvants, based on their demonstrated ability to elicit robust antibody and cellular immune responses in the clinic. However, most emulsions cannot be readily frozen or lyophilized, on account of the risk of phase separation, and may have a deleterious effect on protein antigen stability when stored long term as a liquid coformulation. To circumvent this, current emulsion-formulated vaccines generally require a complex multivial presentation with obvious drawbacks, making a single-vial presentation for such products highly desirable. We describe the development of a stable, lyophilized squalene emulsion adjuvant through innovative formulation and process development approaches. On reconstitution, freeze-dried emulsion preparations were found to have a minimal increase in particle size of ∼20 nm and conferred immunogenicity in BALB/c mice similar in potency to freshly prepared emulsion coformulations in liquid form. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J.; Whinnery, Jr., Leroy; Even, Jr., William R.
2005-01-25
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J [Livermore, CA; Whinnery, Jr., Leroy; Even, Jr., William R.
2009-02-10
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Preparation of anionic polyurethane nanoparticles and blood compatible behaviors.
Zhu, Qinshu; Wang, Yan; Zhou, Min; Mao, Chun; Huang, Xiaohua; Bao, Jianchun; Shen, Jian
2012-05-01
The anionic polyurethane nanoparticles (APU-NPs) were obtained by an emulsion polymerization method. It was found that the average size of the prepared APU-NPs is about 84 nm, and the APU-NPs have zeta-potential of -38.9 mV. The bulk characterization of synthesized APU-NPs was investigated by FTIR. The blood compatibility of APU-NPs was characterized by in vitro for coagulation tests, complement activation, platelet activation, cytotoxicity experiments, and hemolysis assay. The results showed that the APU-NPs synthesized in this paper are blood compatible with low level of cell cytotoxicity, and the results were significant for their potential use in vivo.
Preparation, thermal property and morphology analysis of waterborne polyurethane-acrylate
NASA Astrophysics Data System (ADS)
Zhao, Zhenyu; Jing, Zefeng; Qiu, Fengxian; Dai, Yuting; Xu, Jicheng; Yu, Zongping; Yang, Pengfei
2017-01-01
A series of waterborne polyurethane-acrylate (WPUA) dispersions were prepared with isophorone diisocyanate (IPDI), polyether polyol (NJ-210), dimethylol propionic acid (DMPA), hydroxyethyl methyl acrylate (HEMA), different proportions of methyl methacrylate (MMA) and ethyl acrylate (MMA and EA) and initiating agent by the emulsion co-polymerization. The structures, thermal properties and morphology of WPUA films were characterized with FT-IR, DSC, SEM and AFM. Performances of the dispersions and films were studied by means of apparent viscidity, particle size and polydispersity, surface tension and mechanical properties. The obtained WPUA have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings and wood finishes.
Methods for Generating Hydrogel Particles for Protein Delivery
Liu, Allen L.; García, Andrés J.
2016-01-01
Proteins represent a major class of therapeutic molecules with vast potential for the treatment of acute and chronic diseases and regenerative medicine applications. Hydrogels have long been investigated for their potential in carrying and delivering proteins. As compared to bulk hydrogels, hydrogel microparticles (microgels) hold promise in improving aspects of delivery owing to their less traumatic route of entry into the body and improved versatility. This review discusses common methods of fabricating microgels, including emulsion polymerization, microfluidic techniques, and lithographic techniques. Microgels synthesized from both natural and synthetic polymers are discussed, as are a series of microgels fashioned from environment-responsive materials. PMID:27160672
Zafeiri, I; Smith, P; Norton, I T; Spyropoulos, F
2017-07-19
The quest to identify and use bio-based particles with a Pickering stabilisation potential for food applications has lately been particularly substantial and includes, among other candidates, lipid-based particles. The present study investigates the ability of solid lipid particles to stabilise oil-in-water (o/w) emulsions against coalescence. Results obtained showed that emulsion stability could be achieved when low amounts (0.8 wt/wt%) of a surface active species (e.g. Tween 80 or NaCas) were used in particles' fabrication. Triple staining of the o/w emulsions enabled the visualisation of emulsion droplets' surface via confocal microscopy. This revealed an interfacial location of the lipid particles, hence confirming stabilisation via a Pickering mechanism. Emulsion droplet size was controlled by varying several formulation parameters, such as the type of the lipid and surface active component, the processing route and the polarity of the dispersed phase. Differential scanning calorimetry (DSC) was employed as the analytical tool to quantify the amount of crystalline material available to stabilise the emulsion droplets at different intervals during the experimental timeframe. Dissolution of lipid particles in the oil phase was observed and evolved distinctly between a wax and a triglyceride, and in the presence of a non-ionic surfactant and a protein. Yet, this behaviour did not result in emulsion destabilisation. Moreover, emulsion's thermal stability was found to be determined by the behaviour of lipid particles under temperature effects.
Monitoring reactive microencapsulation dynamics using microfluidics
Brosseau, Quentin; Baret, Jean-Christophe
2015-01-01
We use microfluidic polydimethylsiloxane (PDMS) devices to measure the kinetics of reactive encapsulations occurring at the interface of emulsion droplets. The formation of the polymeric shell is inferred from the droplet deformability measured in a series of expansion–constriction chambers along the microfluidic chip. With this tool we quantify the kinetic processes governing the encapsulation at the very early stage of shell formation with a time resolution of the order of the millisecond for overall reactions occurring in less than 0.5 s. We perform a comparison of monomer reactivities used for the encapsulation. We study the formation of polyurea microcapsules (PUMCs); the shell formation proceeds at the water–oil interface by an immediate reaction of amines dissolved in the aqueous phase and isocyanates dissolved in the oil phase. We observe that both monomers contribute differently to the encapsulation kinetics. The kinetics of the shell formation process at the oil-in-water (O/W) experiments significantly differs from the water-in-oil (W/O) systems; the component dissolved in the continuous phase has the largest impact on the kinetics. In addition, we quantified the retarding effect on the encapsulation kinetics by the interface stabilizing agent (surfactant). Our approach is valuable for quantifying in situ reactive encapsulation processes and provides guidelines to generate microcapsules with soft interfaces of tailored and controllable interfacial properties. PMID:25705975
Adelphi-Goddard emulsified fuel project. [using water/oil emulsions
NASA Technical Reports Server (NTRS)
1977-01-01
Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.
Hydrophilic microspheres from water-in-oil emulsions by the water diffusion technique.
Trotta, Michele; Chirio, Daniela; Cavalli, Roberta; Peira, Elena
2004-08-01
In this study, we developed and evaluated a novel method to produce insulin-loaded hydrophilic microspheres allowing high encapsulation efficiency and the preservation of peptide stability during particle processing. The preparation method used the diffusion of water by an excess of solvent starting from a water-in-solvent emulsion. The water dispersed phase containing albumin or lactose, or albumin-lactose in different weight ratios, and insulin was emulsified in water-saturated triacetin with and without emulsifiers, producing a water-in-triacetin emulsion. An excess of triacetin was added to the emulsion so that water could be extracted into the continuous phase, allowing the insulin-loaded microsphere precipitation. Insulin stability within the microspheres after processing was evaluated by reverse-phase and size-exclusion high-performance liquid chromatography. The water diffusion extraction process provided spherical microparticles of albumin or albumin-lactose. The mean diameter of the microspheres prepared with or without emulsifiers ranged from 2 to 10 microm, and the encapsulation efficiency of insulin was between 60% and 75%, respectively. The analysis of microsphere content after processing showed that insulin did not undergo any chemical modification within microspheres. The use of lactose alone led to the formation of highly viscous droplets that coalesced during the purification step. The water extraction procedures successfully produced insulin-loaded hydrophilic microspheres allowing the preservation of peptide stability. The type of excipient and the size of the disperse phase of the primary w/o emulsion were crucial determinants of microsphere characteristics.
Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang
2018-07-01
Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Boiling of an emulsion in a yield stress fluid.
Guéna, Geoffroy; Wang, Ji; d'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence
2010-11-01
We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.
Thormar, H; Hilmarsson, H
2010-09-01
Contamination in the kitchen with foodborne bacteria is a risk factor in human exposure to these pathogens, an important route being transfer of bacteria from contaminated cutting boards and other surfaces to humans. The aim of this study was to test microbicidal emulsions of glycerol monocaprate (monocaprin) against Campylobacter on contaminated cutting boards. Plastic and wooden cutting boards, soiled with meat juice heavily contaminated with Campylobacter, were treated for 2 min with emulsions of monocaprin (MC) made in water or in buffer at low pH. Viable Campylobacter counts were reduced below the detectable level on plastic board surfaces after treatment with MC emulsions with or without 1.25% washing-up liquids (WUL). The counts were also greatly reduced on wooden boards (P < 0.05). Monocaprin emulsions and mixtures of MC emulsions and WUL may be useful as sanitizers/disinfectants in kitchens and in other food preparing and processing facilities. Cleaning with MC emulsions with or without WUL may reduce the risk of human exposure to Campylobacter.
Li, Jingbo; Pedersen, Jacob Nedergaard; Anankanbil, Sampson; Guo, Zheng
2018-10-30
It is hypothesized that rapeseed lecithins may have different emulsifying and antioxidant properties in delivering fish oil compared to soy lecithin based on previous studies. The results showed that in vitro antioxidant activities of rapeseed lecithins were stronger than those of soy lecithin. Emulsions stabilized by rapeseed based lecithins and DATEM were stable over 3 months at 4 °C, whereas the creaming of emulsions containing soy lecithin started immediately after its preparation. Zeta-potential of rapeseed lecithins was higher than soy lecithin and DATEM, which partially contributed to the emulsion stability. Although the particle sizes of emulsions prepared by rapeseed lecithins increased after 14 days storage, no creaming was observed. Lipid oxidation as indicated by TBARS values suggested that DATEM was the most unfavorable, followed by soy lecithin. It is concluded that rapeseed lecithins are better than soy lecithin and DATEM in terms of emulsion stability and antioxidant capability, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S
2008-01-01
The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.
Okuma, C H; Andrade, T A M; Caetano, G F; Finci, L I; Maciel, N R; Topan, J F; Cefali, L C; Polizello, A C M; Carlo, T; Rogerio, A P; Spadaro, A C C; Isaac, V L B; Frade, M A C; Rocha-Filho, P A
2015-04-25
Appropriate therapeutics for wound treatments can be achieved by studying the pathophysiology of tissue repair. Here we develop formulations of lamellar gel phase (LGP) emulsions containing marigold (Calendula officinalis) oil, evaluating their stability and activity on experimental wound healing in rats. LGP emulsions were developed and evaluated based on a phase ternary diagram to select the best LGP emulsion, having a good amount of anisotropic structure and stability. The selected LGP formulation was analyzed according to the intrinsic and accelerated physical stability at different temperatures. In addition, in vitro and in vivo studies were carried out on wound healing rats as a model. The LGP emulsion (15.0% marigold oil; 10.0% of blend surfactants and 75.0% of purified water [w/w/w]) demonstrated good stability and high viscosity, suggesting longer contact of the formulation with the wound. No cytotoxic activity (50-1000 μg/mL) was observed in marigold oil. In the wound healing rat model, the LGP (15 mg/mL) showed an increase in the leukocyte recruitment to the wound at least on days 2 and 7, but reduced leukocyte recruitment after 14 and 21 days, as compared to the control. Additionally, collagen production was reduced in the LGP emulsion on days 2 and 7 and further accelerated the process of re-epithelialization of the wound itself. The methodology utilized in the present study has produced a potentially useful formulation for a stable LGP emulsion-containing marigold, which was able to improve the wound healing process. Copyright © 2015 Elsevier B.V. All rights reserved.
Qu, Haiou; Wang, Jiang; Wu, Yong; Zheng, Jiwen; Krishnaiah, Yellela S R; Absar, Mohammad; Choi, Stephanie; Ashraf, Muhammad; Cruz, Celia N; Xu, Xiaoming
2018-03-01
Commonly used characterization techniques such as cryogenic-transmission electron microscopy (cryo-TEM) and batch-mode dynamic light scattering (DLS) are either time consuming or unable to offer high resolution to discern the poly-dispersity of complex drug products like cyclosporine ophthalmic emulsions. Here, a size-based separation and characterization method for globule size distribution using an asymmetric flow field flow fractionation (AF4) is reported for comparative assessment of cyclosporine ophthalmic emulsion drug products (model formulation) with a wide size span and poly-dispersity. Cyclosporine emulsion formulations that are qualitatively (Q1) and quantitatively (Q2) the same as Restasis® were prepared in house with varying manufacturing processes and analyzed using the optimized AF4 method. Based on our results, the commercially available cyclosporine ophthalmic emulsion has a globule size span from 30 nm to a few hundred nanometers with majority smaller than 100 nm. The results with in-house formulations demonstrated the sensitivity of AF4 in determining the differences in the globule size distribution caused by the changes to the manufacturing process. It is concluded that the optimized AF4 is a potential analytical technique for comprehensive understanding of the microstructure and assessment of complex emulsion drug products with high poly-dispersity. Published by Elsevier B.V.
Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Chevalier, Yves
2017-10-05
Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.
Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan
2016-05-01
Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released.
Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan
2016-01-01
Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released. PMID:27279935
Fish oil lipid emulsions and immune response: what clinicians need to know.
Waitzberg, Dan Linetzky; Torrinhas, Raquel Susana
2009-01-01
Current evidence indicates that omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid and docosahexaenoic acid found in fish oil, can prevent the development of inflammatory diseases by affecting different steps of the immune response. The capacity of omega-3 PUFAs to modulate synthesis of eicosanoids, activity of nuclear receptor and nuclear transcription factors, and production of resolvins may also mitigate inflammatory processes already present. Parenteral infusion of omega-3 PUFAs is advantageous, particularly in severely ill patients, because the fatty acids are rapidly incorporated by cells. In addition, when fatty acids are given parenterally, there are no losses from digestion and absorption as there are with enteral infusion. Recently, lipid emulsions enriched with omega-3 fish oil have been introduced as a component of parenteral nutrition. Currently, there is one lipid emulsion that contains only fish oil; it is infused together with conventionally used lipid emulsions. Other commercially available lipid emulsions contain fish oil in a fat mixture; one contains 10% fish oil and another 15% fish oil. Relevant experimental and clinical data from studies evaluating fish oil lipid emulsions are discussed in the present review. Administration of fish oil lipid emulsion, when compared with soybean oil lipid emulsion (rich in omega-6 PUFA), decreases the length of hospital and intensive care unit stay in surgical patients.
Liu, Wei; Yang, Xiang-Liang; Ho, W S Winston
2011-01-01
Much attention has in recent years been paid to fine applications of drug delivery systems, such as multiple emulsions, micro/nano solid lipid and polymer particles (spheres or capsules). Precise control of particle size and size distribution is especially important in such fine applications. Membrane emulsification can be used to prepare uniform-sized multiple emulsions and micro/nano particulates for drug delivery. It is a promising technique because of the better control of size and size distribution, the mildness of the process, the low energy consumption, easy operation and simple equipment, and amendable for large scale production. This review describes the state of the art of membrane emulsification in the preparation of monodisperse multiple emulsions and micro/nano particulates for drug delivery in recent years. The principles, influence of process parameters, advantages and disadvantages, and applications in preparing different types of drug delivery systems are reviewed. It can be concluded that the membrane emulsification technique in preparing emulsion/particulate products for drug delivery will further expand in the near future in conjunction with more basic investigations on this technique. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing
Anderson, Brian L.
2017-01-24
A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.
Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing
Anderson, Brian L.
2015-05-26
A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.
Amphiphilic phase-transforming catalysts for transesterification of triglycerides
NASA Astrophysics Data System (ADS)
Nawaratna, Gayan Ivantha
Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be recovered in the form of their polymerized counterparts as a result of condensation polymerization subsequent to completion of the transesterification reaction.
Droplet-based microfluidics and the dynamics of emulsions
NASA Astrophysics Data System (ADS)
Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng
2012-02-01
Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)
Choe, Jeesu; Oh, Boyoung; Choe, Eunok
2014-11-01
The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®
Wang, Li-Juan; Yin, Shou-Wei; Wu, Lei-Yan; Qi, Jun-Ru; Guo, Jian; Yang, Xiao-Quan
2016-12-15
Herein, we reported a facile method to fabricate ultra-stable, surfactant- and antimicrobial-free Pickering emulsions by designing and modulating emulsions' interfaces via zein/chitosan colloid particles (ZCCPs). Highly charged ZCCPs with neutral wettability were produced by a facile anti-solvent procedure. The ZCCPs were shown to be effective Pickering emulsifiers because the emulsions formed were highly resistant to coalescence over a 9-month storage period. The ZCCPs were adsorbed irreversibly at the interface during emulsification, forming a hybrid network framework in which zein particles were embedded within the chitosan network, yielding ultra-stable food-grade zein/chitosan colloid particles stabilized Pickering emulsions (ZCCPEs). Moreover, stable surfactant-free oil gels were obtained by a one-step freeze-drying process of the precursor ZCCPEs. This distinctive interfacial architecture accounted for the favourable physical performance, and potentially oxidative and microbial stability of the emulsions and/or oil gels. This work opens up a promising route via a food-grade Pickering emulsion-template approach to transform liquid oil into solid-like fats with zero trans-fat formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qin, Xin-Sheng; Luo, Zhi-Gang; Peng, Xi-Chun
2018-05-02
The natural quinoa protein isolate (QPI) was largely reflected in the nanoparticle form at pH 7.0 (∼401 nm), and the ultrasound at 20 min progressively improved the contact angle (wettability) and surface hydrophobicity of the nanoparticles. Ultrasound process also modified the type of intraparticle interaction, and the internal forces of sonicated particles were largely maintained by both disulfide bonds and hydrophobic interaction forces. In emulsion system, the ultrasound progressively increased the emulsification efficiency of the QPI nanoparticles, particularly at high protein concentration ( c > 1%, w/ v) and higher emulsion stability against coalescence. As compared with the natural QPI-stabilized emulsions, the 20 min sonicated emulsions exhibited higher packing and adsorption at the protein interface. The microstructure of emulsions that occurs is bridging flocculation of droplets at low c (≤1%, w/ v), while the amount of protein particles could be high enough to cover the droplet surface at high c ( >1%, w/ v) with hexagonal array model arrangement. Thus these results illustrated that both natural and sonicated QPI nanoparticles could be performed as effective food-grade stabilizer for Pickering emulsion; however, the sonicated QPI nanoparticles exhibited much better emulsifying and interfacial properties.
Particle size analysis of some water/oil/water multiple emulsions.
Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V
2005-04-29
Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.
Gallarate, Marina; Trotta, Michele; Battaglia, Luigi; Chirio, Daniela
2009-08-01
A method to produce solid lipid nanoparticles (SLN) from W/O/W multiple emulsions was developed applying the solvent-in-water emulsion-diffusion technique. Insulin was chosen as hydrophilic peptide drug to be dissolved in the acidic inner aqueous phase of multiple emulsions and to be consequently carried in SLN. Several partially water-miscible solvents with low toxicity were screened in order to optimize emulsions and SLN composition, after assessing that insulin did not undergo any chemical modification in the presence of the different solvents and under the production process conditions. SLN of spherical shape and with mean diameters in the 600-1200 nm range were obtained by simple water dilution of the W/O/W emulsion. Best results, in terms of SLN mean diameter and encapsulation efficiencies, were obtained using glyceryl monostearate as lipid matrix, butyl lactate as a solvent, and soy lecithin and Pluronic F68 as surfactants. Encapsulation efficiencies up to 40% of the loaded amount were obtained, owing to the actual multiplicity of the system; the use of multiple emulsion-derived SLN can be considered a useful strategy to encapsulate a hydrophilic drug in a lipid matrix.
Dielectric spectroscopy of solutions of amino silicone emulsion in distilled water
NASA Astrophysics Data System (ADS)
Shah, K. N.; Rana, V. A.; Trivedi, C. M.; Vankar, H. P.
2016-05-01
Complex permittivity spectra ɛ*(ω) = ɛ' - jɛ″ of solutions of amino silicone emulsion in distilled water in the frequency range 100 Hz to 2 MHz were obtained using precision LCR meter. Complex permittivity data is used to find out complex impedance z*(ω) and complex electric conductivity σ*(ω). All these spectra are used to gain information about various polarization processes taking place in the solutions of amino silicone emulsion in distilled water under the effect of ac electric field. The frequency and concentration dependent behavior of the solutions of amino silicone emulsion in distilled waterhave beenalso investigated. Density and refractive index of the samples are also measured and are reported.
Forward particle production in inelastic Ne-22 inteVractions in emulsion at 4.1 A Ge/c
NASA Technical Reports Server (NTRS)
1985-01-01
The collisions of high energy nuclei are likely to be the subject of intense experimental investigation in the near future. The results are presented on multiple meson production in forward cone in inelastic interactions of Ne-22 nuclei in emulsion at a primary momentum 4.1 GeV/c per nucleon. The detailed characteristics of particle production and the fragmentation processes in collisions of Ne-22 nuclei in emulsion are described.
Zhu, Yongfeng; Zheng, Yian; Zong, Li; Wang, Feng; Wang, Aiqin
2016-09-20
A series of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres were prepared via O/W Pickering high internal phase emulsions (HIPEs) integrated precipitation polymerization. The structure and composition of modified Fe3O4 and porous structures were characterized by TEM, XRD, TGA and SEM. The results indicated that the silanized Fe3O4 can influence greatly the pore structure of magnetic porous sphere in addition to non-negligible impacts of the proportion of mixed solvent and co-surfactant. The adsorption experiment demonstrated that the adsorption equilibrium can be reached within 40min and the maximal adsorption capacity was 300.00mg/g for Cd(2+) and 242.72mg/g for Cu(2+), suggesting its fast adsorption kinetics and high adsorption capacity. After five adsorption-desorption cycles, no significant changes in the adsorption capacity were observed, suggesting its excellent reusability. The magnetic porous sphere can be easily separated from the solution and then find its potential as a recyclable material for highly efficient removal of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deng, Wei; Li, Ronglong; Zhang, Mengjun; Gong, Lixiang; Kan, Chengyou
2010-09-01
Soap-free P(St-MAA) latex particles with variable styrene (St)/methacrylic acid (MAA) ratio were synthesized by batch emulsion copolymerization at 70 degrees C for 7h, and the particles with porous structure were obtained after stepwise alkali/acid post-treatment. The effects of MAA amount on the particle morphologies after the alkali and the stepwise alkali/acid post-treatments were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Results indicated that the alkali-treated latex particles showed anomalous structure with rough surface, and no hollow was clearly identified inside them. When these alkali-treated particles were further treated with acid solution, the particle surface became much smoother, and porous morphology appeared. It was found that when the MAA amount was less than or equal to 4mol%, no obvious morphological variation was observed; while the latex particles showed clearly porous structure as the MAA amount increased to 6mol%; with the further increase of MAA amount to 8mol%, the pore size decreased distinctly. Copyright 2010 Elsevier Inc. All rights reserved.
Jung, S; Maurer, D; Johnson, L A
2009-11-01
The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.
Garekani, Hadi Afrasiabi; Ahmadi, Behzad; Sadeghi, Fatemeh
2017-01-01
There are conflicting reports regarding the effect of polymer viscosity grade on microcapsule properties. The aim of the present study was to investigate the effect of just viscosity grade of ethylcellulose (EC) (not polymeric solution) on properties of theophylline microcapsules prepared by emulsion solvent evaporation. The effect of EC viscosity grade and drug:polymer ratio was investigated on microcapsule properties (yield, particle size, morphology, surface characteristics and drug release). Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) were implemented to study the interaction and solid state of drug. The microcapsules were compressed in the presence of excipients and drug release was evaluated. The yield of microencapsulation and encapsulation efficiency at 1:1 drug:polymer ratio was dependent on EC viscosity. Microcapsules were spherical with some pores on their surfaces. The number of pores was more and their size was bigger for EC 100 cP microcapsules. Theophylline remained in crystalline form after encapsulation. DSC studies confirmed lack of interaction between drug and polymer. The drug release was rapid at 2:1 drug:polymer whilst it was slowed down at 1:1 drug:polymer ratio. Microcapsules obtained from EC 100 cP showed slightly faster drug release at latter ratio. Marginal changes in release rate were observed after compression of microcapsules. All viscosity grades of EC were able to sustain the release of the drug from microcapsules. Considering the similar release profiles for microcapsules prepared from different viscosities of EC, the use of lower viscosity grade of EC is recommended due to the ease of production and also less processing time. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pickering emulsions stabilized by paraffin wax and Laponite clay particles.
Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun
2009-08-01
Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.
Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion
NASA Astrophysics Data System (ADS)
Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.
2018-05-01
The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.
Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy.
Xiao, Man; Wan, Li; Corke, Harold; Yan, Wenli; Ni, Xuewen; Fang, Yapeng; Jiang, Fatang
2016-04-01
Konjac glucomannan-ethyl cellulose (KGM-EC, 7:3, w/w) blended film shows good mechanical and moisture resistance properties. To better understand the basis for the KGM-EC film formation, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the formation of the film from emulsion. Optical microscopy images showed that EC oil droplets were homogeneously dispersed in KGM water phase without obviously coalescence throughout the entire drying process. SEM images showed the surface and cross-sectional structures of samples maintained continuous and homogeneous appearance from the emulsion to dried film. AFM images indicated that KGM molecules entangled EC molecules in the emulsion. Interactions between KGM and EC improved the stability of KGM-EC emulsion, and contributed to uniformed structures of film formation. Based on these output information, a schematic model was built to elucidate KGM-EC film-forming process. Copyright © 2015 Elsevier B.V. All rights reserved.
Robotic Enrichment Processing of Roche 454 Titanium Emlusion PCR at the DOE Joint Genome Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Matthew; Wilson, Steven; Bauer, Diane
2010-05-28
Enrichment of emulsion PCR product is the most laborious and pipette-intensive step in the 454 Titanium process, posing the biggest obstacle for production-oriented scale up. The Joint Genome Institute has developed a pair of custom-made robots based on the Microlab Star liquid handling deck manufactured by Hamilton to mediate the complexity and ergonomic demands of the 454 enrichment process. The robot includes a custom built centrifuge, magnetic deck positions, as well as heating and cooling elements. At present processing eight emulsion cup samples in a single 2.5 hour run, these robots are capable of processing up to 24 emulsion cupmore » samples. Sample emulsions are broken using the standard 454 breaking process and transferred from a pair of 50ml conical tubes to a single 2ml tube and loaded on the robot. The robot performs the enrichment protocol and produces beads in 2ml tubes ready for counting. The robot follows the Roche 454 enrichment protocol with slight exceptions to the manner in which it resuspends beads via pipette mixing rather than vortexing and a set number of null bead removal washes. The robotic process is broken down in similar discrete steps: First Melt and Neutralization, Enrichment Primer Annealing, Enrichment Bead Incubation, Null Bead Removal, Second Melt and Neutralization and Sequencing Primer Annealing. Data indicating our improvements in enrichment efficiency and total number of bases per run will also be shown.« less
Light-responsive polymer microcapsules as delivery systems for natural active agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bizzarro, Valentina; Carfagna, Cosimo; Cerruti, Pierfrancesco
2016-05-18
In this work we report the preparation and the release behavior of UV-responsive polymeric microcapsules containing essential oils as a core. The oil acted also as a monomer solvent during polymerization. Accordingly, the potentially toxic organic solvent traditionally used was replaced with a natural active substance, resulting in a more sustainable functional system. Polymer shell was based on a lightly cross-linked polyamide containing UV-sensitive azobenzene moieties in the main chain. The micro-sized capsules were obtained via interfacial polycondensation in o/w emulsion, and their mean size was measured via Dynamic Light Scattering. Shape and morphology were analyzed through Scanning Electron andmore » Optical Microscopy. UV-responsive behavior was evaluated via spectrofluorimetry, by assessing the release kinetics of a fluorescent probe molecule upon UV light irradiation (λ{sub max}=360 nm). The irradiated samples showed an increase in fluorescence intensity, in accordance with the increase of the probe molecule concentration in the release medium. As for the un-irradiated sample, no changes could be detected demonstrating the effectiveness of the obtained releasing system.« less
Preparation and encapsulation of white/yellow dual colored suspensions for electrophoretic displays
NASA Astrophysics Data System (ADS)
Han, Jingjing; Li, Xiaoxu; Feng, Yaqing; Zhang, Bao
2014-11-01
C.I. Pigment Yellow 181 (PY181) composite particles encapsulated by polyethylene (PE) were prepared by dispersion polymerization method, and C.I. Pigment Yellow 110 (PY110) composite particles encapsulated by polystyrene (PS) with mini-emulsion polymerization method were achieved, respectively. The modified pigments were characterized by fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope. Compared with the PE-coated PY 181 pigments, the PS-coated PY-110 particles had a narrow particle size distribution, regular spherical and average particle size of 450 nm. Suspension 1 and suspension 3 were prepared by the two composite particles dispersed in isopar M. A chromatic electrophoretic display cell consisting of yellow particles was successfully fabricated using dispersions of yellow ink particles in a mixed dielectric solvent with white particles as contrast. The response behavior and the contrast ratio to the electric voltage were also examined. The contrast ratio of pigments modified by polystyrene was 1.48, as well as the response time was 2 s, which were better than those of pigments modified by polyethylene.
Kaur, Harjot; Bulasara, Vijaya Kumar; Gupta, Raj Kumar
2018-09-01
Polymer-ceramic composite membranes were prepared by dip coating technique using 5 wt.% cellulose acetate (CA) solution at different temperatures (15 °C, 25 °C and 40 °C). The effect of pH (2-12) of the polymeric solution on the properties of the membranes was studied using SEM, EDAX, FTIR, gas and liquid permeation. The thickness of the polymeric layer depended on the interaction of CA solution with the surface of ceramic support. Membrane permeability decreased with increase in pH because of decrease in pore size and porosity resulting from strong interaction of the polymer layer with the ceramic support. The porosity and mean pore size of the prepared membranes were found to be 28-60% and 30-47 nm (ultrafiltration range), respectively. The optimized membrane (pH 7) was used for ultrafiltration of oil in water emulsions (100 and 200 mg/L). Oil rejection of 99.61% was obtained for 100 mg/L of oil concentration in water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Ezzat, Abdelrahman O
2014-07-17
Monodisperse silver nanoparticles were synthesized by a new developed method via reaction of AgNO3 and oleic acid with the addition of a trace amount of Fe3+ ions. Emulsion polymerization at room temperature was employed to prepare a core-shell silver nanoparticle with controllable particle size. N,N'-methylenebisacrylamide (MBA) and potassium peroxydisulfate (KPS) were used as a crosslinker, and as redox initiator system, respectively for crosslinking polymerization. The structure and morphology of the silver nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), transmission and scanning electron microscopy (TEM and SEM). The effectiveness of the synthesized compounds as corrosion inhibitors for steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Monolayers of silver nanoparticle were self-assembled on the fresh active surface of the steel electrode and have been tested as a corrosion inhibitor for steel in 1 M HCl solution. The results of polarization measurements showed that nanogel particles act as a mixed type inhibitor.
Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II
2015-01-01
This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers. PMID:26761810
Preparation of O/I1-type Emulsions and S/I1-type Dispersions Encapsulating UV-Absorbing Agents.
Aramaki, Kenji; Kimura, Minami; Masuda, Kazuki
2015-01-01
Oil-in-cubic phase (O/I1) emulsions encapsulating the cosmetic UV absorbing agents 2-ethylhexyl 4-methoxycinnamate (EHMC), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (octocrylene, OCR) and 1-(4-tertbutylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (Avobenzone, TBMP) were prepared by vortex mixing accompanied by a heating-cooling process. A ternary phase diagram in a water/C12EO25/EHMC system at 25°C was constructed and the two-phase equilibrium of an oil phase and an I1 phase, which is necessary to prepare the O/I1-type emulsions, was confirmed. Also, the melting of the I1 phase into a fluid micellar solution phase was confirmed, allowing emulsification by a heating-cooling process. The O/I1-type emulsions were formulated in the ternary system as well as a quaternary system. The four-component system contained an additional cosolvent, isopropyl myristate (IPM). The use of the cosolvent allows the use of reduced amounts of EHMC, which is desirable because EHMC can cause temporary skin irritation. Formulation of the O/I1-type emulsions with other UV absorbing agents (OCR and TBMP) was also possible using the same emulsification method. When IPM was changed to tripalmitin, which has a melting point greater than room temperature, a solid-oil dispersion in I1 phase was formed. We have termed this a "solidin-cubic phase (S/I1) type dispersion". These novel emulsions have not been reported previously. The UV absorbability of the O/I1-type emulsions and S/I1-type dispersions that encapsulate the UV absorbing agents was confirmed by measurement of UV absorption spectra.
Nanobeads-based assays. The case of gluten detection
NASA Astrophysics Data System (ADS)
Venditti, Iole; Fratoddi, Ilaria; Vittoria Russo, Maria; Bellucci, Stefano; Crescenzo, Roberta; Iozzino, Luisa; Staiano, Maria; Aurilia, Vincenzo; Varriale, Antonio; Rossi, Mosè; D'Auria, Sabato
2008-11-01
In order to verify if the use of nanobeads of poly[phenylacetylene-(co-acrylic acid)] (PPA/AA) in the ELISA test would affect the immune-activity of the antibodies (Ab) and/or the activity of the enzymes used to label the Ab anti-rabbit IGg, in this work we immobilized the horse liver peroxidase labelled Ab anti-rabbit IGg onto PPA/AA nanobeads. The gluten test was chosen as the model to demonstrate the usefulness of these nanobeads in immunoassays. The synthesis of PPA/AA nanobeads was performed by a modified emulsion polymerization. Self-assembly of nanospheres with mean diameter equal to 200 nm was achieved by casting aqueous suspensions. The materials were characterized by traditional spectroscopic techniques, while the size and dispersion of the particles were analysed by scanning electron microscopy (SEM) measurements. The obtained results show that the immobilization process of the Abs onto PPA/AA did not affect either the immune-response of the Abs or the functional activity of the peroxidase suggesting the usefulness of PPA/AA for the design of advanced nanobeads-based assays for the simultaneous screening of several analytes in complex media.
NASA Astrophysics Data System (ADS)
Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei
2015-11-01
In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.
Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions
NASA Astrophysics Data System (ADS)
Muller, K.; Chapra, S. C.; Ramsburg, A.
2014-12-01
Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated using a transport code containing the linear-driving-force expression evaluated in the batch experiments. In these simulations the lumped mass transfer coefficient was fit and compared with values predicted using existing correlations for liquid-liquid and solid-liquid interfaces in porous media.
Piacentini, Emma; Drioli, Enrico; Giorno, Lidietta
2011-04-01
In this work, a novel strategy for the controlled fabrication of biomolecular stimulus responsive water-in-oil-in-water (W/O/W) multiple emulsion using the membrane emulsification process was investigated. The emulsions interface was functionalized with a biomolecule able to function as a receptor for a target compound. The interaction between the biomolecular receptor and target stimulus activated the release of bioactive molecules contained within the structured emulsion. A glucose sensitive emulsion was investigated as a model study case. Concanavalin A (Con A) was used as the biomolecular glucose sensor. Various physicochemical strategies for stimulus responsive materials formulation are available in literature, but the preparation of biomolecule-responsive emulsions has been explored for the first time in this paper. The development of novel drug delivery systems requires advanced and highly precise techniques to obtain their particular properties and targeting requirements. The present study has proven the flexibility and suitability of membrane emulsification for the preparation of stable and functional multiple emulsions containing Con A as interfacial biomolecular receptor able to activate the release of a bioactive molecule as a consequence of interaction with the glucose target molecule. The influence of emulsion interfacial composition and membrane emulsification operating conditions on droplets stability and functional properties have been investigated. The release of the bioactive molecule as a function of glucose stimulus and its concentration has been demonstrated. Copyright © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Roy, J. C.; Ferri, A.; Salaün, F.; Giraud, S.; Chen, G.; Jinping, G.
2017-10-01
Chitosan-based emulsions were prepared at pH from 4.0 to 6.0. The zeta potential and droplet size were monitored at different pH. Double emulsions (wateroil- water) were observed due to the stiff conformation of chitosan at pH 4.0. At pH 5.0, the emulsion droplets were the smallest (2.9 μm) of the experimental pH range. The emulsion droplets were well dispersed due to high surface charge of chitosan (for example, +50 mV at pH 5.5) in entire pH range. The emulsion was treated with carboxymethyl cellulose (CMC) for neutralizing the charged chitosan on the surface of emulsion droplets. Above 10×10-2 mg/ml of CMC, no change in zeta potential was observed indicating no more free chitosan existed after neutralization with CMC. The emulsion was then crosslinked with different amount of glutaraldehyde. Upon increasing the amount of glutaraldehyde, the amount of core content inside the microcapsule and encapsulation efficiency of shell materials decreased gradually. The Dynamic Scanning Calorimetry data confirmed no interaction between core and shell material in the microencapsulation process. The thermal degradation of the microcapsules was examined by thermogravimetric analysis and a gradual decrease in the degradation temperature upon increasing glutaraldehyde concentration was found. The tuning of CMC concentration can provide valuable information regarding stable emulsion and efficient microcapsule formulation via coacervation.
Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system.
Dadras, Pegah; Atyabi, Fatemeh; Irani, Shiva; Ma'mani, Leila; Foroumadi, Alireza; Mirzaie, Zahra Hadavand; Ebrahimi, Marzieh; Dinarvand, R
2017-01-15
Theranostic polymeric NPs developed for both cancer diagnosis and cancer therapy. This multifunctional polymeric vehicle was prepared by a single emulsion evaporation method, using carboxyl-terminated PLGA. LHRH as a targeting moiety, was conjugated to the surface of polymeric carrier by applying polyethylene glycol. The results indicated that the diameter of NPs was ~185.4±4.6nm as defined by DLS. The entrapment efficacy of docetaxel, silibinin, and SPIONs was 84.6±4.1%, 80.6±2.7%, and 77.9±4.3%, respectively. The NPs showed a triphasic in-vitro drug release pattern. MTT assay was done on two cell lines, MCF-7 and SKOV-3. Enhanced cellular uptake ability of the targeted NPs to MCF-7 was evaluated in-vitro by confocal laser scanning microscopy. The results indicated that compared to non-targeted NPs, the LHRH targeted NPs had significant efficacy at IC50 concentration. The effect of the NPs on VEGF expression in MCF-7 and SKOV-3 cells was investigated by Real-Time PCR method. VEGF mRNA level expression in MCF-7 cell line reduced by 83% in comparison to control cell line. The designed NPs can be used as promising multifunctional platform for detection and targeted drug delivery in breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor
2016-04-01
The emulsion texture is a rare magma mixing feature in which rounded bodies of one magmatic phase remain dispersed in the other coherent phase (Freundt and Schmincke, 1992). This type of special texture in hybrid rocks can significantly contribute toward understanding the mechanisms facilitating magma mixing and magma chamber dynamics involving two disparate magmas as the exact processes by which mixing occurs still remain unclear. Recent developments in microfluidics have greatly helped us to understand the complex processes governing magma mixing occurring at micro-level. Presented work uses some of the results obtained from microfluidic experiments with a view to understand the formation mechanism of emulsions preserved in the hybrid rocks of the Ghansura Rhyolite Dome (GRD) of Proterozoic Chotanagpur Granite Gneiss Complex (CGGC), Eastern India. The GRD has preserved hybrid rocks displaying emulsion texture that formed due to the interaction of a phenocryst-rich basaltic magma and host rhyolite magma. The emulsions are more or less spherical in shape and dominantly composed of amphibole having biotite rinds set in a matrix of biotite, plagioclase, K-feldspar and quartz. Amphibole compositions were determined from the core of the emulsions to the rim with a view to check for cationic substitutions. The amphibole constituting the emulsions is actinolite in composition, and commonly shows tschermakite (Ts) and pargasite (Prg) substitutions. From petrographical and mineral-chemical analyses we infer that when mafic magma, containing phenocrysts of augite, came in contact with felsic magma, diffusion of cations like H+, Al3+and others occurred from the felsic to the mafic system. These cations reacted with the clinopyroxene phenocrysts in the mafic magma to form amphibole (actinolite) crystals. The formation of amphibole crystals in the mafic system greatly increased the viscosity of the system allowing the amphibole crystals to venture into the adjacent felsic magma as veins. As these veins traversed in the felsic medium they underwent sinuous perturbations as a result of the competition between the viscous torque, due to difference in drag on each side of the veins, and the dynamic viscous bending resistance (Cubaud and Mason, 2009). Further downstream, the undulations amplified and swirls started to develop on the sinuous veins by accumulating the high viscosity mafic phase into central bulbs and depleting the regions in between them forming tails. Gradually the tails thinned out and blended into the surrounding felsic melt forming discrete viscous emulsions/swirls. After separation, the amphibole constituting the emulsions started interacting with the surrounding felsic magma forming biotite at the periphery of the emulsions. Eventually, biotite is eroded away and new rinds simultaneously form on freshly eroded surfaces of emulsions facilitating the mixing process (Farner et al., 2014). Cubaud T and Mason TG (2009) New J. Phys. 11, 075029. Farner et al. (2014) Earth and Planetary Science Letters 393, 49-59. Freundt A and Schmincke HU (1992) Contrib Mineral Petrol 112, 1-19.
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
Zhao, Chun-Xia
2013-11-01
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced. Copyright © 2013 Elsevier B.V. All rights reserved.
Protat, Marine; Bodin, Noémie; Gobeaux, Frédéric; Malloggi, Florent; Daillant, Jean; Pantoustier, Nadège; Guenoun, Patrick; Perrin, Patrick
2016-09-22
Multiple water-in-oil-in-water (W/O/W) emulsions are promising materials in designing carriers of hydrophilic molecules or drug delivery systems, provided stability issues are solved and biocompatible chemicals can be used. In this work, we designed a biocompatible amphiphilic copolymer, poly(dimethylsiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA), that can stabilize emulsions made with various biocompatible oils. The hydrophilic/hydrophobic properties of the copolymer can be adjusted using both pH and ionic strength stimuli. Consequently, the making of O/W (oil in water), W/O (water in oil), and W/O/W emulsions can be achieved by sweeping the pH and ionic strength. Of importance, W/O/W emulsions are formulated over a large pH and ionic strength domain in a one-step emulsification process via transitional phase inversion and are stable for several months. Cryo-TEM and interfacial tension studies show that the formation of these W/O/W emulsions is likely to be correlated to the interfacial film curvature and microemulsion morphology.
Flood replenishment: a new method of processor control.
Frank, E D; Gray, J E; Wilken, D A
1980-01-01
In mechanized radiographic film processors that process medium to low volumes of film, roll films, and those that process single-emulsion films from nuclear medicine scans, computed tomography, and ultrasound, it is difficult to maintain the developer solution at a stable processing level. We describe our experience using flood replenishment, which is a method in which developer replenisher containing starter solution is introduced in the processor at timed intervals, independent of the number of films being processed. By this process, a stable level of developer activity is maintained in a processor used to develop a medium to low volume of single-emulsion film.
Design of polymeric immunomicrospheres for cell labelling and cell separation
NASA Technical Reports Server (NTRS)
Rembaum, A.; Margel, S.
1978-01-01
Synthesis of several classes of hydrophylic microspheres applied to cell labeling and cell separation is described. Five classes of cross-linked microspheres with functional groups such as carboxyl, hydroxyl, amide and/or pyridine groups were synthesized. These functional groups were used to bind covalently antibodies and other proteins to the surface of the microspheres. To optimize the derivatisation technique, polyglutaraldehyde immunomicrospheres were prepared and utilized. Specific populations of human and murine lymphocytes were labelled with microspheres synthesized by the emulsion of the ionizing radiation technique. The labelling of the cells by means of microspheres containing an iron core produced successful separation of B from T lymphocytes by means of a magnetic field.
Pharmacokinetics of intramuscular microparticle depot of valdecoxib in an experimental model.
Agnihotri, Sagar M; Vavia, Pradeep R
2009-09-01
We did a prospective study to investigate pharmacokinetics of a single intramuscularly (i.m.) administered Valdecoxib (VC) polymeric microparticles in New Zealand white rabbits. Poly[lac(glc-leu)] microparticles encapsulating a potent cyclooxygenase-2- selective inhibitor, VC, were prepared by emulsion and solvent evaporation technique and administered i.m. to rabbits for pharmacokinetic study. A single i.m. dose of drug-loaded poly[lac(glc-leu)] microparticles resulted in sustained therapeutic drug levels in the plasma for 49 days. The relative bioavailability was increased severalfold as compared with unencapsulated drug. Injectable poly[lac(glc-leu)] microparticles hold promise for increasing drug bioavailability and reducing dosing frequency for better management of rheumatoid arthritis.
Khvan, Svetlana; Kim, Junkyung; Lee, Sang-Soo
2007-02-01
Hydrophobic polymer (PS) nanoparticles preformed through an emulsifier-free emulsion polymerization method were successfully incorporated into a gallery of pristine sodium montmorillonite via interfacial cation exchange. The polymer beads confined between clay nanosheets were capable of (1) preventing the silicate layers from restacking and (2) maintaining the exfoliated state of clay. The increase in the abundance of surface groups promoted adsorption of the nanobeads onto the silicate surface and eventually led to the establishment of strong polymer-clay interactions. These findings suggest that, on the basis of the obtained pre-exfoliated clay masterbatch, the presence of strong polymer-clay interactions could improve the mechanical performance of nanocomposites.
Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering
NASA Astrophysics Data System (ADS)
Demina, T. S.; Zaytseva-Zotova, D. S.; Timashev, P. S.; Bagratashvili, V. N.; Bardakova, K. N.; Sevrin, Ch; Svidchenko, E. A.; Surin, N. M.; Markvicheva, E. A.; Grandfils, Ch; Akopova, T. A.
2015-07-01
Chitosan-g-oligo (L, D-lactide) copolymers were synthesized and assessed to fabricate a number of 3D scaffolds using a variety of technologies such as oil/water emulsion evaporation technique, freeze-drying and two-photon photopolymerization. Solid-state copolymerization method allowed us to graft up to 160 wt-% of oligolactide onto chitosan backbone via chitosan amino group acetylation with substitution degree reaching up to 0.41. Grafting of hydrophobic oligolactide side chains with polymerization degree up to 10 results in chitosan amphiphilic properties. The synthesized chitosan-g-lactide copolymers were used to design 3D scaffolds for tissue engineering such as spherical microparticles and macroporous hydrogels.
Brandenbusch, Christoph; Glonke, Sebastian; Collins, Jonathan; Hoffrogge, Raimund; Grunwald, Klaudia; Bühler, Bruno; Schmid, Andreas; Sadowski, Gabriele
2015-11-01
The formation of stable emulsions in biphasic biotransformations catalyzed by microbial cells turned out to be a major hurdle for industrial implementation. Recently, a cost-effective and efficient downstream processing approach, using supercritical carbon dioxide (scCO2 ) for both irreversible emulsion destabilization (enabling complete phase separation within minutes of emulsion treatment) and product purification via extraction has been proposed by Brandenbusch et al. (2010). One of the key factors for a further development and scale-up of the approach is the understanding of the mechanism underlying scCO2 -assisted phase separation. A systematic approach was applied within this work to investigate the various factors influencing phase separation during scCO2 treatment (that is pressure, exposure of the cells to CO2 , and changes of cell surface properties). It was shown that cell toxification and cell disrupture are not responsible for emulsion destabilization. Proteins from the aqueous phase partially adsorb to cells present at the aqueous-organic interface, causing hydrophobic cell surface characteristics, and thus contribute to emulsion stabilization. By investigating the change in cell-surface hydrophobicity of these cells during CO2 treatment, it was found that a combination of catastrophic phase inversion and desorption of proteins from the cell surface is responsible for irreversible scCO2 mediated phase separation. These findings are essential for the definition of process windows for scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. © 2015 Wiley Periodicals, Inc.
Tunable stability of monodisperse secondary O/W nano-emulsions
NASA Astrophysics Data System (ADS)
Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.
2014-07-01
Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S3, and Tables S1-S6. See DOI: 10.1039/c4nr02273d
De San Luis, Alicia; Paulis, Maria; Leiza, Jose Ramon
2017-11-15
Hybrid core/shell polymer particles with co-encapsulated quantum dots (QDs) (CdSe/ZnS) and CeO 2 nanoparticles have been synthesized in a two stage semi-batch emulsion polymerization process. In the first stage, both inorganic nanoparticles are incorporated into cross-linked polystyrene (PS) particles by miniemulsion polymerization. This hybrid dispersion is then used as the seed to produce the core/shell particles by starved feeding of methyl methacrylate and divinylbenzene (MMA/DVB) monomers. The core/shell hybrid dispersions maintained in the dark exhibit stable fluorescence emission over time, and notably their fluorescence intensity increases under sunlight, likely due to the effect of the co-encapsulated CeO 2 nanoparticles that change the optical properties of the environment of the quantum dot particles. The fluorescence increase depends on the QD : CeO 2 ratio, with the 1 : 2 ratio resulting in the highest increase (280%). Furthermore, a film forming hybrid latex has been synthesized using the former core/shell PS/QD/CeO 2 /PMMA particles as seeds and feeding under semi-batch conditions methyl methacrylate, butyl acrylate and acrylic acid. Films cast from this core/shell/shell hybrid dispersion also exhibit fluorescence, and as for the core/shell latex the fluorescence increases under sunlight exposure. Interestingly, the increase in the film is at least two times higher than that in the latex, which is attributed to the additional effect of the neighboring coalesced particles containing CeO 2 affecting the environment of the QDs.
Deng, Wanshun; Long, Mengying; Zhou, Qiannan; Wen, Ni; Deng, Wenli
2018-02-01
Superhydrophobic membranes with opposite wettability toward water and oil are able to separate water-in-oil emulsions. By constructing porous and hierarchal-structured superhydrophobic coating on filter paper, we hope a quick separation process could be achieved due to the acceleration of both demulsification and penetration process. Here, superhydrophobic coatings were prepared by simply spraying environmental and cost-effective acrylonitrile-butadiene-styrene copolymer (ABS) colloid in dichloromethane onto filter paper. The morphologies and wettability of the obtained coatings were carefully studied. Moreover, the separation performances in dealing with various surfactant-stabilized water-in-oil emulsions (SSWOE) were also investigated to verify our hypothesis. The morphologies of the ABS coatings varied with its weight concentration in dichloromethane and they changed from porous and plain surface into porous and hierarchal-structured surface. Besides, the hydrophobicity of the above coatings varied form hydrophobic to superhydrophobic. Moreover, the resulted superhydrophobic membranes show great separation capability in separating various span 80-stabilized water-in-oil emulsions with oil filtrate purities larger than 99.90% and huge penetration fluxes whose maximum is over 13,000L/(m 2 h). Thus, we envision that such membrane can be a practical candidate in dealing with water-in-oil emulsions to obtain pure oils. Copyright © 2017 Elsevier Inc. All rights reserved.
Park, Sung Hee; Min, Sang-Gi; Jo, Yeon-Ji; Chun, Ji-Yeon
2015-01-01
In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products. PMID:26761891
Pulse shaping circuit for active counting of superheated emulsion
NASA Astrophysics Data System (ADS)
Murai, Ikuo; Sawamura, Teruko
2005-08-01
A pulse shaping circuit for active counting of superheated emulsions is described. A piezoelectric transducer is used for sensing bubble formation acoustically and the acoustic signal is transformed to a shaping pulse for counting. The circuit has a short signal processing time in the order of 10 ms.
DOT National Transportation Integrated Search
1978-07-01
Initial efforts with water/fuel emulsions in diesel engines were directed toward the control of NOx. More recent studies emphasized the use of emulsions to improve fuel economy. It is believed that in a diesel engine combustion process, emulsified fu...
Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi
2014-01-01
It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant.
Sen, T; Tiddy, G J T; Casci, J L; Anderson, M W
2003-09-07
The room-temperature synthesis of a macro-mesoporous silica material during the natural creaming process of an oil-in-water emulsion is reported. The material has 3-dimensional interconnected macropores with a strut-like structure similar to meso-cellular silica foams with mesoporous walls of worm-hole structure. The material has very high surface area (approximately 800 m2 g(-1)) with narrow mesopore size distribution.
Patil, Leena; Gogate, Parag R
2018-01-01
In the present work, application of ultrasound and stirring individually or in combination for improved emulsification of turmeric oil in skimmed milk has been investigated. The effect of different operating parameters/strategies such as addition of surfactant, sodium dodecyl sulfate (SDS), at different concentrations, quantity of oil phase, applied power, sonication time and duty cycle on the droplet size have been investigated. The stability of emulsion was analyzed in terms of the fraction of the emulsion that remains stable for a period of 28days. Optimized set of major emulsification process variables has been used at higher emulsion volumes. The effectiveness of treatment approach was analyzed based on oil droplet size, energy density and the time required for the formation of stable emulsion. It was observed that the stable emulsion at 50mL capacity with mean droplet diameter of about 235.4nm was obtained with the surfactant concentration of 5mg/mL, 11% of rated power (power density: 0.31W/mL) and irradiation time of 5min. The emulsion stability was higher in the case of ultrasound assisted approach as compared to the stirring. For the preparation of stable emulsion at 300mL capacity, it was observed that the sequential approach, i.e., stirring followed by ultrasound, gave lower mean droplet diameter (232.6nm) than the simultaneous approach, i.e., ultrasound and stirring together (257.9nm). However, the study also revealed that the simultaneous approach required very less time (15min) to synthesize stable emulsion as compared to the sequential approach (30min stirring and 60min ultrasound). It was successfully demonstrated that the ultrasound-assisted emulsification in the presence of SDS could be used for the preparation of stable turmeric oil-dairy emulsions, also providing insights into the role of SDS in increasing the stability of emulsions and of ultrasound in giving lower droplet sizes. Copyright © 2017 Elsevier B.V. All rights reserved.
Kowalska, Malgorzata; Mendrycka, Mariola; Zbikowska, Anna; Kowalska, Dorota
2017-03-01
Atopic dermatitis is one of the most common skin disorders seen in infants, children and adults. Proper prevention might slow the atopic symptoms. The purpose of the work was a sensory analysis, an evaluation of moistening properties and stability of emulsions based on an enzymatic interesterified fat blend (mutton tallow and walnut oil) and homogenized at different revolutions and different contents of thickener. The emulsions were evaluated with respect to sensory and skin moisturizing properties by 78 respondents. Stability tests, particle size, distribution, dispersity index, morphology structure of the emulsions were determinated too. Taking into consideration all properties of the emulsions, emulsion IV (containing 0.9 g carboxymethyl cellulose and homogenized at 18000 rpm) and emulsion V (1.5 g of carboxymethyl cellulose and homogenized at 24000 rpm) were found to be of optimum composition. The emulsions exhibited good stability, were highly rated in sensory terms and displayed optimum moistening properties. It has been proven that model emulsions based on interesterified fats containing partial acylglicerols, with optimum carboxymethyl cellulose content and specific revolutions at the time of homogenization are an opportunity for developing preparations targeted at skins requiring special care (e.g., with atopic dermatitis or psoriasis). The work proved the use of enzymatic process to create the emulsifier, which represents the innovative contribution of this work. Also it showed an additional application of enzymatic interesterified fats which since has been used only in food industries.
NASA Astrophysics Data System (ADS)
Seko, Noriaki; Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Saiki, Seiichi; Ueki, Yuji
2018-02-01
Six years after the Fukushima-nuclear accident, the dissolved radioactive cesium (Cs) is now hardly detected in environmental natural waters. These natural waters are directly used as source of drinking and domestic waters in disaster-stricken areas in Fukushima. However, the possibility that some radioactive Cs adsorbed on soil or leaves will contaminate these natural waters during heavy rains or typhoon is always present. In order for the returning residents to live with peace of mind, it is important to demonstrate the safety of the domestic waters that they will use for their daily life. For this purpose, we have synthesized a material for selective removal of radioactive Cs by introducing ammonium 12-molybdophosphate (AMP) onto polyethylene nonwoven fabric through radiation-induced emulsion graft polymerization technique. Water purifiers filled with the grafted Cs adsorbent were installed in selected houses in Fukushima. The capability of the grafted adsorbent to remove Cs from domestic waters was evaluated for a whole year. The results showed that the tap water filtered through the developed water purifier contained no radioactive Cs, signifying the very effective adsorption performance of the developed grafted adsorbent. From several demonstrations, we have commercialized the water purifier named "KranCsair®". Furthermore, we have also developed a method for the mass production of the grafted nonwoven fabric. Using a 30 L grafting reactor, it was possible to produce the grafted nonwoven fabric with a suitable range of degree of grafting. When an irradiated roll of nonwoven trunk fabric with a length of 10 m and a width of 30 cm was set in the reactor filled with glycidyl methacrylate (GMA), AMP, Tween 80 monomer emulsion solution at 40 °C for 1 h, the difference of Dgs in the length and the width on roll of fabrics was negligible.
Huang, Chaonan; Li, Yun; Yang, Jiajia; Peng, Junyu; Jin, Jing; Dhanjai; Wang, Jincheng; Chen, Jiping
2017-10-27
The present work represents a simple and effective preparation of a novel mixed-mode anion-exchange (MAX) sorbent based on porous poly[2-(diethylamino)ethyl methacrylate-divinylbenzene] (poly(DEAEMA-DVB)) spherical particles synthesized by one-step Pickering emulsion polymerization. The poly(DEAEMA-DVB) particles were quaternized with 1,4-butanediol diglycidyl ether (BDDE) followed by triethylamine (TEA) via epoxy-amine reaction to offer strong anion exchange properties. The synthesized MAX sorbent was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, nitrogen adsorption-desorption measurements and elemental analysis. The MAX sorbent possessed regular spherical shape and narrow diameter distribution (15-35μm), a high IEC of 0.54meq/g, with carbon and nitrogen contents of 80.3% and 1.62%, respectively. Compared to poly(DEAEMA-DVB), the MAX sorbent exhibited decreased S BET (390.5 vs. 515.3m 2 g -1 ), pore volume (0.74 vs. 0.85cm 3 g -1 ) and pore size (16.8 vs. 17.3nm). Moreover, changes of N content for producing the MAX sorbent reveal a successful two-step quaternization, which can be highly related to such a high IEC. Finally, the MAX sorbent was successfully evaluated for selective isolation and purification of some selected acidic pharmaceuticals (ketoprofen, KEP; naproxen, NAP; and ibuprofen, IBP) from neutral (hydrocortisone, HYC), basic (carbamazepine, CAZ; amitriptyline, AMT) pharmaceuticals and other interferences in water samples using solid phase extraction (SPE). An efficient analytical method based on the MAX-based mixed-mode SPE coupled with HPLC-UV was developed for highly selective extraction and cleanup of acidic KEP, NAP and IBP in spiked wastewater samples. The developed method exhibited good sensitivity (0.009-0.085μgL -1 limit of detection), satisfactory recoveries (82.1%-105.5%) and repeatabilities (relative standard deviation < 7.9%, n=3). Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion
NASA Astrophysics Data System (ADS)
Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad
2010-05-01
The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient was remained stable even when stored until three months. Coalescence process between the droplets was not occurred significantly and droplet size was still below 500 nm. Over all, the emulsion remained stable, even it was centrifuged at 12000 rpm for 30 minutes.
Frank, Kerstin; Walz, Elke; Gräf, Volker; Greiner, Ralf; Köhler, Karsten; Schuchmann, Heike Petra
2012-12-01
Anthocyanins belong to the most important hydrophilic plant pigments. Outside their natural environment, these molecules are extremely unstable. Encapsulating them in submicron-sized containers is one possibility to stabilize them for the use in bioactivity studies or functional foods. The containers have to be designed for a target release in the human gastrointestinal system. In this contribution, an anthocyanin-rich bilberry extract was encapsulated in the inner aqueous phase of water-in-oil-in-water-double emulsions. The physical stability as well as the release of free fatty acids and encapsulated, bioactive substances from the emulsions during an in vitro gastrointestinal passage were investigated. The focus was on the influence of emulsion microstructural parameters (for example, inner and outer droplet size, disperse phase content) and required additives (emulsifier systems), respectively. It could be shown that it is possible to stabilize anthocyanins in the inner phase of double emulsions. The release rate of free fatty acids during incubation was independent of the emulsifier used. However, the exterior (O/W)-emulsifier has an impact on the stability of multiple emulsions in gastrointestinal environment and, thus, the location of release. Long-chained emulsifiers like whey proteins are most suitable to transport a maximum amount of bioactive substances to the effective location, being the small intestine for anthocyanins. In addition, it was shown that the dominating release mechanism for entrapped matter was coalescence of the interior W(1) -droplets with the surrounding W(2) -phase. © 2012 Institute of Process Engineering in Life Science I: Food Process Engineering, Karlsruhe Institute of Technology (KIT).
Suppression of Ostwald Ripening by Chemical Reactions
NASA Astrophysics Data System (ADS)
Zwicker, David; Hyman, Anthony A.; Jülicher, Frank
2015-03-01
Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.
Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets
Hadorn, Maik; Boenzli, Eva; Sørensen, Kristian T.; Fellermann, Harold; Eggenberger Hotz, Peter; Hanczyc, Martin M.
2012-01-01
Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion droplets. Three length scales were thereby involved: nanoscale DNA base pairing linking microscopic building blocks resulted in macroscopic aggregates visible to the naked eye. The aggregation process was reversible by changing the temperature and electrolyte concentration and by the addition of competing oligonucleotides. The system was reset and reused by subsequent refunctionalization of the emulsion droplets. DNA-directed self-assembly of oil-in-water emulsion droplets, therefore, offers a solid basis for programmable and recyclable soft materials that undergo structural rearrangements on demand and that range in application from information technology to medicine. PMID:23175791
NASA Astrophysics Data System (ADS)
Techarang, Jiranat; Apichartsrangkoon, Arunee; Phanchaisri, Boonrak; Pathomrungsiyoungkul, Pattavara; Sriwattana, Sujinda
2017-07-01
Swai-fish emulsions containing fermented soybeans (thua nao and rice-koji miso) were pressurized at 600 MPa for 20 min or heated at 72°C for 30 min. The fish batters were blended with soy protein isolate (SPI) or whey protein concentrate (WPC) to stabilize the emulsions. The processed fish emulsions were then subjected to physical, chemical and microbiological examinations. The results of gel strength and water-holding potential showed that SPI addition yielded higher impact on these properties than WPC addition, which was also confirmed by the interactions between SPI and native fish proteins depicted by electrophoregrams. The frequency profiles suggested that the heated gels had a greater storage and loss moduli than pressurized gels, while pressurized WPC set-gel displayed larger loss tangent (the predominance of viscous moiety) than those pressurized SPI set-gel. High bacteria and spore counts of B. subtilis (residual of the thua nao) were observed in both pressurized and heated fish-based emulsions.
Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta
2012-06-20
Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.
NASA Astrophysics Data System (ADS)
Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.
2017-03-01
A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.
NASA Astrophysics Data System (ADS)
Pyatanova, P. A.; Adeeva, L. N.
2017-08-01
It was elaborated the ability of the sorbent produced by thermic treatment of cedar nut shell to destruct model and real first kind (direct) emulsions in static and dynamic conditions. In static conditions optimal ratio sorbent-emulsion with the original concentration of oil products 800 mg/l was in the range of 2.0 g per 100 ml of emulsion which corresponds to the level of treatment 94.9%. The time of emulsion destruction was 40 minutes. This sorbent is highly active in dynamic processes of oil-contaminated water treatment, the level of treatment 96.0% is being achieved. Full dynamic sorptive capacity of the sorbent is 0.85 g/g. Sorbent based on the thermic treated cedar nut shell can be elaborated as sorptive filter element of local treatment facilities of oil refining and petrochemical processes. After the treatment with this sorbent of drainage waters of oil refinery in dynamic conditions the concentration of oil products became less than mpc on oil products for waste waters coming to biological treatment.
NASA Astrophysics Data System (ADS)
Ge, Wangyao
Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern emulsion-based RIR-MAPLE is still missing, which increases the difficulty of using rational design to improve the performance of initial RIR-MAPLE devices that have been demonstrated. As a result, it is important to study the fundamentals of emulsion-based RIR-MAPLE in order to provide insight into the long-term prospects for this thin film deposition technique. This dissertation explores the fundamental deposition mechanisms of emulsion-based RIR-MAPLE by considering the effects of the emulsion target composition (namely, the primary solvent, secondary solvent, and surfactant) on the properties of deposited polymer films. The study of primary solvent effects on hydrophobic polymer deposition helps identify the unique method of film formation for emulsion-based RIR-MAPLE, which can be described as cluster-by-cluster deposition of emulsified particles that yields two levels of ordering (i.e., within the clusters and among the clusters). The generality of this film formation mechanism is tested by applying the lessons learned to hydrophilic polymer deposition. Based on these studies, the deposition design rules to achieve smooth polymer films, which are important for different device applications, are identified according to the properties of the polymer. After discussion of the fundamental deposition mechanisms, three applications of emulsion-based RIR-MAPLE, namely thin film deposition of organic solar cells, polymer/nanoparticle hybrid solar cells, and antimicrobial/fouling-release multifunctional films, are studied. The work on organic solar cells identifies the ideal deposition mode for blended films with nanoscale domain sizes, as well as demonstrates the relationships among emulsion target composition, film properties, and corresponding device performance. The studies of polymer/nanoparticle hybrid solar cells demonstrate precise control of colloidal nanoparticle deposition, in which the integrity of nanoparticles is maintained and a distinct film morphology is achieved when co-deposited with polymers. Finally, the application of antimicrobial and fouling-release multifunctional films demonstrates the importance of blended film deposition with nanoscale phase separation, a key feature to achieving reusable bio-films that can kill bacteria when illuminated with ultraviolet light. Thus, this dissertation provides great insight to the fundamentals of emulsion-based RIR-MAPLE, serves as a valuable reference for future development, and paves the pathway for wider adoption of this unique thin film deposition technique, especially for organic solar cells.
Cambronero-Rojas, Adrián; Torres-Vergara, Pablo; Godoy, Ricardo; von Plessing, Carlos; Sepúlveda, Jacqueline; Gómez-Gaete, Carolina
2015-07-10
Capreomycin sulfate (CS) is a second-line drug used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The adverse effects profile and uncomfortable administration scheme of CS has led to the development of formulations based on liposomes and polymeric microparticles. However, as CS is a water-soluble peptide that does not encapsulate properly into hydrophobic particulate matrices, it was necessary to reduce its aqueous solubility by forming the pharmacologically active capreomycin oleate (CO) ion pair. The aim of this research was to develop a new formulation of CO for intramuscular injection, based on biodegradable microparticles that encapsulate CO in order to provide a controlled release of the drug with reduced local and systemic adverse effects. The CO-loaded microparticles prepared by spray drying or solvent emulsion-evaporation were characterized in their morphology, encapsulation efficiency, in vitro/in vivo kinetics and tissue tolerance. Through scanning electron microscopy it was confirmed that the microparticles were monodisperse and spherical, with an optimal size for intramuscular administration. The interaction between CO and the components of the microparticle matrix was confirmed on both formulations by X-ray powder diffraction and differential scanning calorimetry analyses. The encapsulation efficiencies for the spray-dried and emulsion-evaporation microparticles were 92% and 56%, respectively. The in vitro kinetics performed on both formulations demonstrated a controlled and continuous release of CO from the microparticles, which was successfully reproduced on an in vivo rodent model. The results of the histological analysis demonstrated that none of the formulations produced significant tissue damage on the site of injection. Therefore, the results suggest that injectable CO microparticles obtained by spray drying and solvent emulsion-evaporation could represent an interesting therapeutic alternative for the treatment of MDR-TB. Copyright © 2015 Elsevier B.V. All rights reserved.
Achieving interconnected pore architecture in injectable PolyHIPEs for bone tissue engineering.
Robinson, Jennifer L; Moglia, Robert S; Stuebben, Melissa C; McEnery, Madison A P; Cosgriff-Hernandez, Elizabeth
2014-03-01
Template polymerization of a high internal phase emulsion (polyHIPE) is a relatively new method to produce tunable high-porosity scaffolds for tissue regeneration. This study focuses on the development of biodegradable injectable polyHIPEs with interconnected porosity that have the potential to fill bone defects and enhance healing. Our laboratory previously fabricated biodegradable polyHIPEs that cure in situ upon injection; however, these scaffolds possessed a closed-pore morphology, which could limit bone ingrowth. To address this issue, HIPEs were fabricated with a radical initiator dissolved in the organic phase rather than the aqueous phase of the emulsion. Organic-phase initiation resulted in macromer densification forces that facilitated pore opening during cure. Compressive modulus and strength of the polyHIPEs were found to increase over 2 weeks to 43±12 MPa and 3±0.2 MPa, respectively, properties comparable to cancellous bone. The viscosity of the HIPE before cure (11.0±2.3 Pa·s) allowed for injection and filling of the bone defect, retention at the defect site during cure under water, and microscale integration of the graft with the bone. Precuring the materials before injection allowed for tuning of the work and set times. Furthermore, storage of the HIPEs before cure for 1 week at 4°C had a negligible effect on pore architecture after injection and cure. These findings indicate the potential of these emulsions to be stored at reduced temperatures and thawed in the surgical suite before injection. Overall, this work highlights the potential of interconnected propylene fumarate dimethacrylate polyHIPEs as injectable scaffolds for bone tissue engineering.
Controlled double emulsification utilizing 3D PDMS microchannels
NASA Astrophysics Data System (ADS)
Chang, Fu-Che; Su, Yu-Chuan
2008-06-01
This paper presents a PDMS emulsification device that is capable of generating water-in-oil-in-water double emulsions in a controlled manner. Specially designed 3D microchannels are utilized to steer the independently driven water- and oil-phase flows (especially to restrict the attachment of the middle oil-phase flow on the channel surfaces), and to break the continuous flows into monodisperse double emulsions. In addition to channel geometries and fluid flow rates, surfactants and osmotic agents are employed to facilitate the breakup process and stabilize the resulting emulsion structures. In the prototype demonstration, two-level SU-8 molds were fabricated to duplicate PDMS microstructures, which were surface treated and bonded irreversibly to form 3D microchannels. Throughout the emulsification trials, dripping was intentionally induced to generate monodisperse double emulsions with single or multiple aqueous droplets inside each oil drop. It is found that the overall and core sizes of the resulting double emulsions could be adjusted independently, mainly by varying the outer and inner fluid flow rates, respectively. As such, the presented double emulsification device could potentially realize the controllability on emulsion structure and size distribution, which is desired for a variety of biological and pharmaceutical applications.
Dias, Tania Cristina de Sá; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles
2008-06-01
Straightening is a chemical process by which excessively curly hair is straightened in an irreversible way. Generally, products are formulated as emulsions with high pH value (9.0-12.0), which, after applied on hair, cause considerable damage, making it dry and fragile. This research work evaluated the protective effect of lauryl PEG/PPG-18/18 methicone, cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer, jojoba oil, and aqua (and) cystine bis-PG propyl silanetriol, as conditioning agents, on Afro-ethnic hair locks treated with thioglycolate-based straightening emulsions by protein loss, combability, and traction to rupture. Standard Afro-ethnic hair locks were prepared following a protocol for straightening emulsion application. Considering the assays performed, the addition of conditioning agents to the straightening emulsion with ammonium thioglycolate benefited the hair fiber, thus diminishing protein loss, protecting the hair thread, and improving resistance to breakage. Jojoba oil and lauryl PEG/PPG-18/18 methicone were the conditioning agents that presented the best results. Straightening emulsions with ammonium thioglycolate containing aqua (and) cystine bis-PG propyl silanetriol and cyclopentasiloxane (and) PEG-12 dimethicone cross-polymer were the ones that provided higher breakage resistance of the thread.
Zhu, Qiaomei; Zhao, Ling; Zhang, Hui; Saito, Masayoshi; Yin, Lijun
2017-04-01
The objective of present study was to prepare multiple water-in-oil-in-water (W/O/W) emulsions that exhibit different release rates of magnesium ions; and assess their utility as coagulants in improving tofu quality. W/O/W emulsions containing bovine serum albumin (BSA) and magnesium chloride (MgCl 2 ) were developed for controlled release applications. An increasing BSA concentration led to an increase in viscosity and droplet size of W/O/W double emulsions, as well as a decreased release rate of encapsulated Mg 2+ from emulsions. The gelation process of soy protein was simulated by conducting dynamic viscoelastic measurements. The rate constant (k) and saturated storage modulus (G' sat ) values of soy protein gel decreased as BSA concentration increased, suggesting that BSA could slow the release of magnesium ions from double emulsions. Confocal laser scanning microscopy (CLSM) results showed that increased concentration of BSA created a more homogeneous microstructure of soy protein gels with smaller pores within the gel network structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Han, Ng Sook; Basri, Mahiran; Abd Rahman, Mohd Basyaruddin; Abd Rahman, Raja Noor Zaliha Raja; Salleh, Abu Bakar; Ismail, Zahariah
2012-01-01
Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.
Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong
2015-10-01
High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.
A study of the effectiveness and energy efficiency of ultrasonic emulsification.
Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O
2017-12-20
Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.
Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction
NASA Technical Reports Server (NTRS)
Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.
2001-01-01
Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.
Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming
2015-07-01
Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.
Hoppel, Magdalena; Mahrhauser, Denise; Stallinger, Christina; Wagner, Florian; Wirth, Michael; Valenta, Claudia
2014-05-01
The aim of this study was to create multiple water-in-oil-in-water (W/O/W) emulsions with an increased long-term stability as skin delivery systems for the hydrophilic model drug 5-fluorouracil. Multiple W/O/W emulsions were prepared in a one-step emulsification process, and were characterized regarding particle size, microstructure and viscosity. In-vitro studies on porcine skin with Franz-type diffusion cells, tape stripping experiments and attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) were performed. The addition of Solagum AX, a natural polymer mixture of acacia and xanthan gum, led to multiple W/O/W emulsions with a remarkably increased long-term stability in comparison to formulations without a thickener. The higher skin diffusion of 5-fluorouracil from the multiple emulsions compared with an O/W-macroemulsion could be explained by ATR-FTIR. Shifts to higher wave numbers and increase of peak areas of the asymmetric and symmetric CH2 stretching vibrations confirmed a transition of parts of the skin lipids from an ordered to a disordered state after impregnation of porcine skin with the multiple emulsions. Solagum AX is highly suitable for stabilization of the created multiple emulsions. Moreover, these formulations showed superiority over a simple O/W-macroemulsion regarding skin permeation and penetration of 5-fluorouracil. © 2013 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Ivanov, A.; Chikishev, E.
2017-01-01
The paper is dedicated to a problem of environmental pollution by emissions of hazardous substances with the exhaust gases of internal combustion engines. It is found that application of water-fuel emulsions yields the best results in diesels where production of a qualitative carburetion is the main problem for the organization of working process. During pilot studies the composition of a water-fuel emulsion with the patent held is developed. The developed composition of a water-fuel emulsion provides its stability within 14-18 months depending on mass content of components in it while stability of emulsions’ analogues makes 8-12 months. The mode of operation of pilot unit is described. Methodology and results of pilot study of operation of diesel engine on a water-fuel emulsion are presented. Cutting time of droplet combustion of a water-fuel emulsion improves combustion efficiency and reduces carbon deposition (varnish) on working surfaces. Partial dismantling of the engine after its operating time during 60 engine hours has shown that there is a removal of a carbon deposition in cylinder-piston group which can be observed visually. It is found that for steady operation of the diesel and ensuring decrease in level of emission of hazardous substances the water-fuel emulsion with water concentration of 18-20% is optimal.
Lu, Dongwei; Zhang, Tao; Ma, Jun
2015-04-07
Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.
Li, Jian; Xu, Changcheng; Zhang, Yan; Tang, Xiaohua; Qi, Wei; Wang, Qiong
2018-02-01
Pressure-driven and lower flux of superwetting ultrafiltration membranes in various emulsions separation are long-standing issues and major barriers for their large-scale utilization. Even though currently reported membranes have achieved great success in emulsions separeation, they still suffer from low flux and complex fabrication process resulting from their smaller nanoscale pore size. Herein, utilizition of coconut shell as a novel biomaterial for developing into a layer through the simple smashing, cleaning and stacking procedures, which not only could avoid the complexity of film making process, but also could realize efficient gravity-directed separation of both immiscible oil/water mixtures and water-in-oil emulsions with high flux. Specifically, the layer acted as "water-removing" type filtrate material with excellent underwater superoleophobicity, exhibiting high efficiency for various immiscible oil/water mixtures separation and larger oil intrusion pressure. More importantly, the layer could also serve as adsorbent material with underoil superhydrophilicity, achieving gravity-directed kinds of water-in-oil emulsions separation with high separation efficiency (above 99.99%) and higher flux (above 1620L/m 2 h), even when their pore sizes are larger than that of emulsified droplets. We deeply believe that this study would open up a new strategy for both immiscible oil/water mixtures and water-in-oil emulsions separation. Copyright © 2017 Elsevier Inc. All rights reserved.
Qiu, Wei; Ma, Guang-Hui; Meng, Fan-Tao; Su, Zhi-Guo
2004-03-01
Methoxypoly (ethylene glycol)- block-poly (DL-lactide) (PELA) microcapsules containing bovine hemoglobin (BHb) were prepared by a W/O/W double emulsion-solvent diffusion process. The P50 and Hill coeffcient were 3466 Pa and 2.4 respectively, which were near to the natural bioactivity of bovine hemoglobin. The results suggested that polymer composition had significant influence on encapsulation efficiency and particle size of microcapsules. The encapsulation efficiency could reach 90% and the particle size 3 - 5 microm when the PELA copolymer containing MPEG 2000 block was used. The encapsulation efficiency and particle size increased with the concentration of PELA. Increasing the concentrations of NaCl in outer aqueous solution resulted in the increase of encapsulation efficiency and the decrease of particle size. As the concentration of stabilizer in outer aqueous solution increased in the range of 10 g/L to 20 g/L, the particle size reduced while encapsulation efficiency was increased, further increase of the stabilizer concentration would decrease encapsulation efficiency. Increasing of primary emulsion stirring rate was advantageous to the improvement of encapsulation efficiency though it had little influence on the particle size. The influence of re-emulsion stirring rate was complicated, which was not apparent in the case of large volume of re-emulsion solution. When the wall polymer and primary emulsion stirring rate were fixed, the encapsulation efficiency decreased as the particle size reduced.
Carrillo, Carlos A; Nypelö, Tiina; Rojas, Orlando J
2016-03-14
A route for the compatibilization of aqueous dispersions of cellulose nanofibrils (CNFs) with a non-polar polymer matrix is proposed to overcome a major challenge in CNF-based material synthesis. Non-ionic surfactants were used in CNF aqueous dispersions equilibrated with an organic phase (for demonstration, a polystyrene solution, PS, was used). Stable water-in-oil-in-water (W/O/W) double emulsions were produced as a result of the compromise between composition and formulation variables. Most remarkably, the proposed route for CNF integration with hydrophobic polymers removed the need for drying or solvent-exchange of the CNF aqueous dispersion prior to processing. The rheological behavior of the double emulsions showed strong shear thinning behavior and facilitated CNF-PS co-mixing in solid nanofibers upon electrospinning. The morphology and thermal properties of the resultant nanofibers revealed that CNFs were efficiently integrated in the hydrophobic matrix which was consistent with the high interfacial area of the precursor double emulsion. In addition, the morphology and quality of the composite nanofibers can be controlled by the conductivity (ionic strength) of the CNF dispersion. Overall, double emulsion systems are proposed as a novel, efficient and scalable platform for CNF co-processing with non-polar systems and they open up the possibility for the redispersion of CNFs after removal of the organic phase.
NASA Technical Reports Server (NTRS)
Stevenson, William A. (Inventor)
1989-01-01
A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.
NASA Technical Reports Server (NTRS)
Stevenson, William A. (Inventor)
1992-01-01
A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.
NASA Astrophysics Data System (ADS)
Fang, F. F.; Liu, Y. D.; Choi, H. J.
2010-12-01
Conducting polymer/inorganic composite particles have been regarded as a potential candidate material for electrorheological (ER) fluids when dispersed in non-conducting oils due to their synergistic physical properties such as enhanced thermal stability and high dielectric properties. In this study, we fabricated polyaniline (PANI)/clay nanoparticles with unique core-shell structure via Pickering emulsion in the phase of toluene by adopting exfoliated clay as a stabilizer. Successfully synthesized PANI nanospheres which were initialized by oil-soluble benzoyl peroxide possess a polydispersed size distribution of particles ranging from 200 nm to 1 µm. Surface morphology was revealed by SEM images in which some clay sheets were found to wrap the PANI nanoparticles compactly. TEM images explicitly confirm the position of exfoliated clay layers around the nanospheres. In addition, some nano-scaled particles showed an irregular shape because clay plates are difficult to bend while wrapping the very tiny PANI nanoparticles, so the x-ray diffraction (XRD) pattern did not indicate any obvious sharp peak, demonstrating the nearly completely exfoliated clay layers. Besides these, thermal gravimetric analysis (TGA) data also gave additional information on thermal stability and composition. Finally, the ER fluid was prepared by dispersing PANI/clay nanoparticles in silicone oil and the ER performance was investigated via a rotational rheometer under an applied electric field.
Rheological behavior on treated Malaysian crude oil
NASA Astrophysics Data System (ADS)
Chandran, Krittika; Sinnathambi, Chandra Mohan
2016-11-01
Crude oil is always produced with water. This association causes many problems during oil production, arising from the formation of emulsion. Emulsion is an undesirable substance that increases operational and capital cost in the pipeline and processing equipment. To overcome this issue, demulsifiers are formulated to break the emulsion, where they are able to separate the water-oil emulsions to their respective phases. The emulsifier's main function is to reduce the interfacial tension properties of the emulsion. For this research, both the EOR and natural water-in-oil emulsions were treated with low a concentration demulsifier. The main objective of this paper is to determine the dynamic viscosity and rheological properties of the treated EOR and natural emulsion. The dynamic viscosity was obtained using the Brook-field Digital Viscometer. The components that influence the emulsion's rheological properties are the temperature, shear rate and shear stress. The results obtained demonstrate that the viscosity of the treated crude decreases and portrays the Non-Newtonian shear thinning "pseudo-plastic" behavior. Besides that, to determine the interfacial film of the treated crude, the spinning drop tensiometer was used. With the addition of demulsifier, the thinning rate of the oil film accelerates whereby there is a linear decrease in the interfacial tension with an increase in time. Therefore, from the results, it can be observed that the rheology study plays a significant role in the demulsification test. Furthermore, both the rheology approaches showed that time, temperature, shear rate and shear stress have a great impact on the viscosity behavior as well as the IFT.
Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio
2004-11-01
Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.
Low-power upconversion in dye-doped polymer nanoparticles.
Simon, Yoan C; Bai, Shuo; Sing, Michelle K; Dietsch, Hervé; Achermann, Marc; Weder, Christoph
2012-04-13
Examples of nanoscale low-power upconverting systems are rapidly increasing because of their potential application in numerous areas such as bioimaging or drug delivery. The fabrication of dye-doped cross-linked rubbery nanoparticles that exhibit upconversion even at relatively low power densities is reported here. The nanoparticles were prepared by surfactant-free emulsion polymerization of n-butylacrylate with divinylbenzene as a cross-linker, followed by dyeing of the resulting particles with a two-chromophore system composed of a palladium porphyrin sensitizer, and diphenylanthracene. Blue emission (≈440 nm) of these systems was observed upon excitation at 532 nm. In addition to their optical properties, the particles were characterized by electron microscopy and dynamic light scattering. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The impact of size on particulate vaccine adjuvants.
Shah, Ruchi R; O'Hagan, Derek T; Amiji, Mansoor M; Brito, Luis A
2014-12-01
Particulate adjuvants have been successful at inducing increased immune responses against many poorly immunogenic antigens. However, the mechanism of action of these adjuvants often remains unclear. As more potential vaccine targets are emerging, it is becoming necessary to broaden our knowledge on the factors involved in generating potent immune responses to recombinant antigens with adjuvants. While composition of adjuvants is integral in defining the overall performance of an adjuvant, some physical parameters such as particle size, surface charge and surface modification may also contribute to the potency. In this review, we will try to highlight the role of particle size in controlling the immune responses to adjuvanted vaccines, with a focus on insoluble aluminum salts, oil-in-water emulsions, polymeric particles and liposomes.
Symposium on Explosives and Pyrotechnics, 13th, Hilton Head Island, SC, Dec. 2-4, 1986, Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The present conference on explosive and pyrotechnic technologies discusses the shock-sensitivity of RDX, the thermodynamic properties of RDX, TNT, nitroglycerine, and HMX energetic molecules, the dynamic resistivity of exploding conductors, the decomposition of azides, the critical shock-initiation energy of emulsion explosives, actuator valve optimization, pyrotechnic aerosolization from novel imbibed liquid matrices, tetrazole initiators, and polymeric binders for red phosphorus pellets. Also discussed are channel-effect studies, the dynamic desensitization of coal mine explosives, the electromagnetic and electrostatic protection of explosives, the reliability of fuze explosive trains, the hazardous properties of explosive chemicals, the emulsification of an explosive with a chemical foamingmore » agent, and low energy ignition of HMX using a foil bridge.« less
Synthesis and characterization of nanomagnetite particles and their polymer coated forms.
Utkan, Guldem Guven; Sayar, Filiz; Batat, Pinar; Ide, Semra; Kriechbaum, Manfred; Pişkin, Erhan
2011-01-15
Superparamagnetic nanoparticles were prepared by coprecipitation of ferrous (Fe(2+)) and ferric (Fe(3+)) aqueous solution by a base. Nanomagnetite particles were coated with poly(St/PEG-EEM/DMAPM) and poly(St/PEG-MA/DMAPM) layer by emulsifier-free emulsion polymerization. Chemical structure of nanoparticles was characterized by both FTIR and (1)H NMR. Particle morphologies were determined by Zeta Sizer, DLS, XRD and SAXS. Structural analysis showed that after polymer coating nanomagnetite particles kept their superparamagnetic property. Besides the synthesized magnetites, polymer coated forms of these particles are more biocompatible, well dispersable and uniform. These properties make them a very strong candidate for bioengineering applications, such as bioseparation, gene transfer. Copyright © 2010 Elsevier Inc. All rights reserved.
Holographic studies of the vapor explosion of vaporizing water-in-fuel emulsion droplets
NASA Technical Reports Server (NTRS)
Sheffield, S. A.; Hess, C. F.; Trolinger, J. D.
1982-01-01
Holographic studies were performed which examined the fragmentation process during vapor explosion of a water-in-fuel (hexadecane/water) emulsion droplet. Holograms were taken at 700 to 1000 microseconds after the vapor explosion. Photographs of the reconstructed holograms reveal a wide range of fragment droplet sizes created during the explosion process. Fragment droplet diameters range from below 10 microns to over 100 microns. It is estimated that between ten thousand and a million fragment droplets can result from this extremely violent vapor explosion process. This enhanced atomization is thus expected to have a pronounced effect on vaporization processes which are present during combustion of emulsified fuels.
Particle formation in the emulsion-solvent evaporation process.
Staff, Roland H; Schaeffel, David; Turshatov, Andrey; Donadio, Davide; Butt, Hans-Jürgen; Landfester, Katharina; Koynov, Kaloian; Crespy, Daniel
2013-10-25
The mechanism of particle formation from submicrometer emulsion droplets by solvent evaporation is revisited. A combination of dynamic light scattering, fluorescence resonance energy transfer, zeta potential measurements, and fluorescence cross-correlation spectroscopy is used to analyze the colloids during the evaporation process. It is shown that a combination of different methods yields reliable and quantitative data for describing the fate of the droplets during the process. The results indicate that coalescence plays a minor role during the process; the relatively large size distribution of the obtained polymer colloids can be explained by the droplet distribution after their formation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High speed automated microtomography of nuclear emulsions and recent application
NASA Astrophysics Data System (ADS)
Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.
2015-12-01
The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.
Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.
Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam
2016-01-01
Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.
Pagar, Kunal P; Vavia, Pradeep R
2014-06-01
The poly[La-(Glc-Leu)] copolymer was applied in the present investigation as polymeric carrier to fabricate naltrexone (NTX)-loaded poly[La-(Glc-Leu)] microspheres in the single emulsion solvent evaporation technique for the long-term treatment of alcohol dependence. Newly synthesized poly[La-(Glc-Leu)] copolymer exhibited diminished crystallanity, good biocompatibility and favorable biodegradability to be explored for drug delivery application. Scanning Electron Microscopy study revealed smooth and spherical-shaped NTX-loaded polymeric microspheres with a mean size of 10-90 µm. Influence of various decisive formulation variables such as amount of polymer, stabilizer concentration, homogenization speed, homogenization time, drug loading and organic-to-aqueous phase ratio on particle size, and entrapment efficiency was studied. Differential scanning calorimeter and X-ray diffractometry study confirmed the drug entrapment within polymer matrix into the microsphere environment. In vitro drug release showed the sustained drug release of formulation for the period of 28 d giving biphasic release pattern. Histological examination of NTX-loaded poly[La-(Glc-Leu)] microspheres injected intramuscularly into the thigh muscle of Wistar rats showed minimal inflammatory reaction, demonstrating that NTX-loaded microspheres were biocompatible. Insignificant increase in the serum creatine phosphokinase level (p < 0.05) as compared with the normal value revealed good muscle compatibility of the poly[La-(Glc-Leu)] microsphere system. Biocompatible nature and sustained drug-release action of poly[La-(Glc-Leu)] microspheres may have potential application in depot therapy.
Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.
1982-06-29
The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.
Chain Reaction Polymerization.
ERIC Educational Resources Information Center
McGrath, James E.
1981-01-01
The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)