Sample records for enable high-throughput screening

  1. Droplet microfluidic technology for single-cell high-throughput screening.

    PubMed

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J Brian; Rothberg, Jonathan M; Link, Darren R; Perrimon, Norbert; Samuels, Michael L

    2009-08-25

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses.

  2. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery.

    PubMed

    Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott

    2018-05-01

    The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.

  3. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  4. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.

    PubMed

    Wen, Na; Zhao, Zhan; Fan, Beiyuan; Chen, Deyong; Men, Dong; Wang, Junbo; Chen, Jian

    2016-07-05

    This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.

  5. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.

    PubMed

    Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2004-01-01

    Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.

  6. Compound Transfer by Acoustic Droplet Ejection Promotes Quality and Efficiency in Ultra-High-Throughput Screening Campaigns.

    PubMed

    Dawes, Timothy D; Turincio, Rebecca; Jones, Steven W; Rodriguez, Richard A; Gadiagellan, Dhireshan; Thana, Peter; Clark, Kevin R; Gustafson, Amy E; Orren, Linda; Liimatta, Marya; Gross, Daniel P; Maurer, Till; Beresini, Maureen H

    2016-02-01

    Acoustic droplet ejection (ADE) as a means of transferring library compounds has had a dramatic impact on the way in which high-throughput screening campaigns are conducted in many laboratories. Two Labcyte Echo ADE liquid handlers form the core of the compound transfer operation in our 1536-well based ultra-high-throughput screening (uHTS) system. Use of these instruments has promoted flexibility in compound formatting in addition to minimizing waste and eliminating compound carryover. We describe the use of ADE for the generation of assay-ready plates for primary screening as well as for follow-up dose-response evaluations. Custom software has enabled us to harness the information generated by the ADE instrumentation. Compound transfer via ADE also contributes to the screening process outside of the uHTS system. A second fully automated ADE-based system has been used to augment the capacity of the uHTS system as well as to permit efficient use of previously picked compound aliquots for secondary assay evaluations. Essential to the utility of ADE in the high-throughput screening process is the high quality of the resulting data. Examples of data generated at various stages of high-throughput screening campaigns are provided. Advantages and disadvantages of the use of ADE in high-throughput screening are discussed. © 2015 Society for Laboratory Automation and Screening.

  7. The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.A.; Cohen, A.E.

    2009-05-26

    The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screenedmore » in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.« less

  8. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?

    PubMed

    Taylor, Jessica; Woodcock, Simon

    2015-09-01

    For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA-Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery. © 2015 Society for Laboratory Automation and Screening.

  9. CrossCheck: an open-source web tool for high-throughput screen data analysis.

    PubMed

    Najafov, Jamil; Najafov, Ayaz

    2017-07-19

    Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.

  10. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR library

    PubMed Central

    Zhu, Shiyou; Li, Wei; Liu, Jingze; Chen, Chen-Hao; Liao, Qi; Xu, Ping; Xu, Han; Xiao, Tengfei; Cao, Zhongzheng; Peng, Jingyu; Yuan, Pengfei; Brown, Myles; Liu, Xiaole Shirley; Wei, Wensheng

    2017-01-01

    CRISPR/Cas9 screens have been widely adopted to analyse coding gene functions, but high throughput screening of non-coding elements using this method is more challenging, because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. Herein, we report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (lncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 lncRNAs that can positively or negatively regulate human cancer cell growth. We individually validated 9 lncRNAs using CRISPR/Cas9-mediated genomic deletion and functional rescue, CRISPR activation or inhibition, and gene expression profiling. Our high-throughput pgRNA genome deletion method should enable rapid identification of functional mammalian non-coding elements. PMID:27798563

  11. High Throughput Exposure Estimation Using NHANES Data (SOT)

    EPA Science Inventory

    In the ExpoCast project, high throughput (HT) exposure models enable rapid screening of large numbers of chemicals for exposure potential. Evaluation of these models requires empirical exposure data and due to the paucity of human metabolism/exposure data such evaluations includ...

  12. Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.

    PubMed

    Ufarté, Lisa; Bozonnet, Sophie; Laville, Elisabeth; Cecchini, Davide A; Pizzut-Serin, Sandra; Jacquiod, Samuel; Demanèche, Sandrine; Simonet, Pascal; Franqueville, Laure; Veronese, Gabrielle Potocki

    2016-01-01

    Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.

  13. Miniaturization of High-Throughput Epigenetic Methyltransferase Assays with Acoustic Liquid Handling.

    PubMed

    Edwards, Bonnie; Lesnick, John; Wang, Jing; Tang, Nga; Peters, Carl

    2016-02-01

    Epigenetics continues to emerge as an important target class for drug discovery and cancer research. As programs scale to evaluate many new targets related to epigenetic expression, new tools and techniques are required to enable efficient and reproducible high-throughput epigenetic screening. Assay miniaturization increases screening throughput and reduces operating costs. Echo liquid handlers can transfer compounds, samples, reagents, and beads in submicroliter volumes to high-density assay formats using only acoustic energy-no contact or tips required. This eliminates tip costs and reduces the risk of reagent carryover. In this study, we demonstrate the miniaturization of a methyltransferase assay using Echo liquid handlers and two different assay technologies: AlphaLISA from PerkinElmer and EPIgeneous HTRF from Cisbio. © 2015 Society for Laboratory Automation and Screening.

  14. High Throughput, Polymeric Aqueous Two-Phase Printing of Tumor Spheroids

    PubMed Central

    Atefi, Ehsan; Lemmo, Stephanie; Fyffe, Darcy; Luker, Gary D.; Tavana, Hossein

    2014-01-01

    This paper presents a new 3D culture microtechnology for high throughput production of tumor spheroids and validates its utility for screening anti-cancer drugs. We use two immiscible polymeric aqueous solutions and microprint a submicroliter drop of the “patterning” phase containing cells into a bath of the “immersion” phase. Selecting proper formulations of biphasic systems using a panel of biocompatible polymers results in the formation of a round drop that confines cells to facilitate spontaneous formation of a spheroid without any external stimuli. Adapting this approach to robotic tools enables straightforward generation and maintenance of spheroids of well-defined size in standard microwell plates and biochemical analysis of spheroids in situ, which is not possible with existing techniques for spheroid culture. To enable high throughput screening, we establish a phase diagram to identify minimum cell densities within specific volumes of the patterning drop to result in a single spheroid. Spheroids show normal growth over long-term incubation and dose-dependent decrease in cellular viability when treated with drug compounds, but present significant resistance compared to monolayer cultures. The unprecedented ease of implementing this microtechnology and its robust performance will benefit high throughput studies of drug screening against cancer cells with physiologically-relevant 3D tumor models. PMID:25411577

  15. High-Throughput RT-PCR for small-molecule screening assays

    PubMed Central

    Bittker, Joshua A.

    2012-01-01

    Quantitative measurement of the levels of mRNA expression using real-time reverse transcription polymerase chain reaction (RT-PCR) has long been used for analyzing expression differences in tissue or cell lines of interest. This method has been used somewhat less frequently to measure the changes in gene expression due to perturbagens such as small molecules or siRNA. The availability of new instrumentation for liquid handling and real-time PCR analysis as well as the commercial availability of start-to-finish kits for RT-PCR has enabled the use of this method for high-throughput small-molecule screening on a scale comparable to traditional high-throughput screening (HTS) assays. This protocol focuses on the special considerations necessary for using quantitative RT-PCR as a primary small-molecule screening assay, including the different methods available for mRNA isolation and analysis. PMID:23487248

  16. An image analysis toolbox for high-throughput C. elegans assays

    PubMed Central

    Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.

    2012-01-01

    We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656

  17. A High-Throughput Screening Assay to Detect Thyroperoxidase Inhibitors (Teratology Society)

    EPA Science Inventory

    In support of the Endocrine Disruption Screening Program (EDSP21), the US EPA ToxCast program is developing assays to enable screening for chemicals that may disrupt thyroid hormone synthesis. Thyroperoxidase (TPO) is critical for TH synthesis and is a known target of thyroid-dis...

  18. The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology.

    PubMed

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-07-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory.

  19. High throughput system for magnetic manipulation of cells, polymers, and biomaterials

    PubMed Central

    Spero, Richard Chasen; Vicci, Leandra; Cribb, Jeremy; Bober, David; Swaminathan, Vinay; O’Brien, E. Timothy; Rogers, Stephen L.; Superfine, R.

    2008-01-01

    In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles ∼0.1–10 μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F∼r−2.7±0.1. We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments. PMID:19044357

  20. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG.

    PubMed

    Xiao, Xiaodong; Douthwaite, Julie A; Chen, Yan; Kemp, Ben; Kidd, Sara; Percival-Alwyn, Jennifer; Smith, Alison; Goode, Kate; Swerdlow, Bonnie; Lowe, David; Wu, Herren; Dall'Acqua, William F; Chowdhury, Partha S

    Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.

  1. From genes to protein mechanics on a chip.

    PubMed

    Otten, Marcus; Ott, Wolfgang; Jobst, Markus A; Milles, Lukas F; Verdorfer, Tobias; Pippig, Diana A; Nash, Michael A; Gaub, Hermann E

    2014-11-01

    Single-molecule force spectroscopy enables mechanical testing of individual proteins, but low experimental throughput limits the ability to screen constructs in parallel. We describe a microfluidic platform for on-chip expression, covalent surface attachment and measurement of single-molecule protein mechanical properties. A dockerin tag on each protein molecule allowed us to perform thousands of pulling cycles using a single cohesin-modified cantilever. The ability to synthesize and mechanically probe protein libraries enables high-throughput mechanical phenotyping.

  2. The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology

    PubMed Central

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-01-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory. PMID:21806374

  3. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates

    PubMed Central

    White, David T; Eroglu, Arife Unal; Wang, Guohua; Zhang, Liyun; Sengupta, Sumitra; Ding, Ding; Rajpurohit, Surendra K; Walker, Steven L; Ji, Hongkai; Qian, Jiang; Mumm, Jeff S

    2017-01-01

    The zebrafish has emerged as an important model for whole-organism small-molecule screening. However, most zebrafish-based chemical screens have achieved only mid-throughput rates. Here we describe a versatile whole-organism drug discovery platform that can achieve true high-throughput screening (HTS) capacities. This system combines our automated reporter quantification in vivo (ARQiv) system with customized robotics, and is termed ‘ARQiv-HTS’. We detail the process of establishing and implementing ARQiv-HTS: (i) assay design and optimization, (ii) calculation of sample size and hit criteria, (iii) large-scale egg production, (iv) automated compound titration, (v) dispensing of embryos into microtiter plates, and (vi) reporter quantification. We also outline what we see as best practice strategies for leveraging the power of ARQiv-HTS for zebrafish-based drug discovery, and address technical challenges of applying zebrafish to large-scale chemical screens. Finally, we provide a detailed protocol for a recently completed inaugural ARQiv-HTS effort, which involved the identification of compounds that elevate insulin reporter activity. Compounds that increased the number of insulin-producing pancreatic beta cells represent potential new therapeutics for diabetic patients. For this effort, individual screening sessions took 1 week to conclude, and sessions were performed iteratively approximately every other day to increase throughput. At the conclusion of the screen, more than a half million drug-treated larvae had been evaluated. Beyond this initial example, however, the ARQiv-HTS platform is adaptable to almost any reporter-based assay designed to evaluate the effects of chemical compounds in living small-animal models. ARQiv-HTS thus enables large-scale whole-organism drug discovery for a variety of model species and from numerous disease-oriented perspectives. PMID:27831568

  4. Advantages and application of label-free detection assays in drug screening.

    PubMed

    Cunningham, Brian T; Laing, Lance G

    2008-08-01

    Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.

  5. Break-up of droplets in a concentrated emulsion flowing through a narrow constriction

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Rosenfeld, Liat; Tang, Sindy; Tang Lab Team

    2014-11-01

    Droplet microfluidics has enabled a wide range of high throughput screening applications. Compared with other technologies such as robotic screening technology, droplet microfluidics has 1000 times higher throughput, which makes the technology one of the most promising platforms for the ultrahigh throughput screening applications. Few studies have considered the throughput of the droplet interrogation process, however. In this research, we show that the probability of break-up increases with increasing flow rate, entrance angle to the constriction, and size of the drops. Since single drops do not break at the highest flow rate used in the system, break-ups occur primarily from the interactions between highly packed droplets close to each other. Moreover, the probabilistic nature of the break-up process arises from the stochastic variations in the packing configuration. Our results can be used to calculate the maximum throughput of the serial interrogation process. For 40 pL-drops, the highest throughput with less than 1% droplet break-up was measured to be approximately 7,000 drops per second. In addition, the results are useful for understanding the behavior of concentrated emulsions in applications such as mobility control in enhanced oil recovery.

  6. Rational Methods for the Selection of Diverse Screening Compounds

    PubMed Central

    Huggins, David J.; Venkitaraman, Ashok R.; Spring, David R.

    2016-01-01

    Traditionally a pursuit of large pharmaceutical companies, high-throughput screening assays are becoming increasingly common within academic and government laboratories. This shift has been instrumental in enabling projects that have not been commercially viable, such as chemical probe discovery and screening against high risk targets. Once an assay has been prepared and validated, it must be fed with screening compounds. Crafting a successful collection of small molecules for screening poses a significant challenge. An optimized collection will minimize false positives whilst maximizing hit rates of compounds that are amenable to lead generation and optimization. Without due consideration of the relevant protein targets and the downstream screening assays, compound filtering and selection can fail to explore the great extent of chemical diversity and eschew valuable novelty. Herein, we discuss the different factors to be considered and methods that may be employed when assembling a structurally diverse compound screening collection. Rational methods for selecting diverse chemical libraries are essential for their effective use in high-throughput screens. PMID:21261294

  7. High-throughput identification of promiscuous inhibitors from screening libraries with the use of a thiol-containing fluorescent probe.

    PubMed

    McCallum, Megan M; Nandhikonda, Premchendar; Temmer, Jonathan J; Eyermann, Charles; Simeonov, Anton; Jadhav, Ajit; Yasgar, Adam; Maloney, David; Arnold, Alexander Leggy

    2013-07-01

    Testing small molecules for their ability to modify cysteine residues of proteins in the early stages of drug discovery is expected to accelerate our ability to develop more selective drugs with lesser side effects. In addition, this approach also enables the rapid evaluation of the mode of binding of new drug candidates with respect to thiol reactivity and metabolism by glutathione. Herein, we describe the development of a fluorescence-based high-throughput assay that allows the identification of thiol-reactive compounds. A thiol-containing fluorescent probe, MSTI, was synthesized and used to evaluate small molecules from the Library of Pharmacologically Active Compounds (LOPAC) collection of bioactive molecules. LOPAC compounds that are known to react with sulfur nucleophiles were identified with this assay, for example, irreversible protease inhibitors, nitric oxide-releasing compounds, and proton-pump inhibitors. The results confirm that both electrophilic and redox reactive compounds can be quickly identified in a high-throughput manner, enabling the assessment of screening libraries with respect to thiol-reactive compounds.

  8. High-content screening in microfluidic devices.

    PubMed

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2010-08-01

    Miniaturization is the key to advancing the state of the art in high-content screening (HCS) in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. The advantages of this technology are discussed, including cost savings, high-throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration and scaling. The reader will understand the capabilities of anew microfluidics-based platform for HCS and the advantages it provides over conventional plate-based HCS. Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery.

  9. web cellHTS2: a web-application for the analysis of high-throughput screening data.

    PubMed

    Pelz, Oliver; Gilsdorf, Moritz; Boutros, Michael

    2010-04-12

    The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.

  10. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass

    PubMed Central

    Wang, Guangliang; Rajpurohit, Surendra K; Delaspre, Fabien; Walker, Steven L; White, David T; Ceasrine, Alexis; Kuruvilla, Rejji; Li, Ruo-jing; Shim, Joong S; Liu, Jun O; Parsons, Michael J; Mumm, Jeff S

    2015-01-01

    Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes. DOI: http://dx.doi.org/10.7554/eLife.08261.001 PMID:26218223

  11. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  12. Ligand screening systems for human glucose transporters as tools in drug discovery

    NASA Astrophysics Data System (ADS)

    Schmidl, Sina; Iancu, Cristina V.; Choe, Jun-yong; Oreb, Mislav

    2018-05-01

    Hexoses are the major source of energy and carbon skeletons for biosynthetic processes in all kingdoms of life. Their cellular uptake is mediated by specialized transporters, including glucose transporters (GLUT, SLC2 gene family). Malfunction or altered expression pattern of GLUTs in humans is associated with several widespread diseases including cancer, diabetes and severe metabolic disorders. Their high relevance in the medical area makes these transporters valuable drug targets and potential biomarkers. Nevertheless, the lack of a suitable high-throughput screening system has impeded the determination of compounds that would enable specific manipulation of GLUTs so far. Availability of structural data on several GLUTs enabled in silico ligand screening, though limited by the fact that only two major conformations of the transporters can be tested. Recently, convenient high-throughput microbial and cell-free screening systems have been developed. These remarkable achievements set the foundation for further and detailed elucidation of the molecular mechanisms of glucose transport and will also lead to great progress in the discovery of GLUT effectors as therapeutic agents. In this mini-review, we focus on recent efforts to identify potential GLUT-targeting drugs, based on a combination of structural biology and different assay systems.

  13. The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration.

    PubMed

    Scafaro, Andrew P; Negrini, A Clarissa A; O'Leary, Brendan; Rashid, F Azzahra Ahmad; Hayes, Lucy; Fan, Yuzhen; Zhang, You; Chochois, Vincent; Badger, Murray R; Millar, A Harvey; Atkin, Owen K

    2017-01-01

    Mitochondrial respiration in the dark ( R dark ) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of R dark is essential for agronomic and ecological studies. However, currently methods used to measure R dark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O 2 consumption rates. The fluorophore technique was compared with O 2 -electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. The high-throughput fluorophore system provided stable measurements of R dark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of R dark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant R dark through dissection and simultaneous measurements of above- and below-ground organs. Variation in absolute R dark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of R dark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of R dark on multiple samples simultaneously, irrespective of plant or tissue type.

  14. A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs.

    PubMed

    Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo

    2008-01-23

    To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.

  15. Microelectroporation device for genomic screening

    DOEpatents

    Perroud, Thomas D.; Renzi, Ronald F.; Negrete, Oscar; Claudnic, Mark R.

    2014-09-09

    We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.

  16. Microfluidics in microbiology: putting a magnifying glass on microbes.

    PubMed

    Siddiqui, Sanya; Tufenkji, Nathalie; Moraes, Christopher

    2016-09-12

    Microfluidic technologies enable unique studies in the field of microbiology to facilitate our understanding of microorganisms. Using miniaturized and high-throughput experimental capabilities in microfluidics, devices with controlled microenvironments can be created for microbial studies in research fields such as healthcare and green energy. In this research highlight, we describe recently developed tools for diagnostic assays, high-throughput mutant screening, and the study of human disease development as well as a future outlook on microbes for renewable energy.

  17. Efficient Identification of Murine M2 Macrophage Peptide Targeting Ligands by Phage Display and Next-Generation Sequencing.

    PubMed

    Liu, Gary W; Livesay, Brynn R; Kacherovsky, Nataly A; Cieslewicz, Maryelise; Lutz, Emi; Waalkes, Adam; Jensen, Michael C; Salipante, Stephen J; Pun, Suzie H

    2015-08-19

    Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target binders in a library by Sanger sequencing are low-throughput, labor-intensive, and provide a limited perspective (<0.01%) of the complete sequence space. Moreover, the small sample space can be dominated by nonspecific, preferentially amplifying "parasitic sequences" and plastic-binding sequences, which may lead to the identification of false positives or exclude the identification of target-binding sequences. To overcome these challenges, we employed next-generation Illumina sequencing to couple high-throughput screening and high-throughput sequencing, enabling more comprehensive access to the phage display library sequence space. In this work, we define the hallmarks of binding sequences in next-generation sequencing data, and develop a method that identifies several target-binding phage clones for murine, alternatively activated M2 macrophages with a high (100%) success rate: sequences and binding motifs were reproducibly present across biological replicates; binding motifs were identified across multiple unique sequences; and an unselected, amplified library accurately filtered out parasitic sequences. In addition, we validate the Multiple Em for Motif Elicitation tool as an efficient and principled means of discovering binding sequences.

  18. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses.

    PubMed

    Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas

    2017-01-01

    Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.

  19. Development of a microbial high-throughput screening instrument based on elastic light scatter patterns

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Patsekin, Valery; Rajwa, Bartek; Bhunia, Arun K.; Holdman, Cheryl; Davisson, V. Jo; Hirleman, E. Daniel; Robinson, J. Paul

    2012-04-01

    A microbial high-throughput screening (HTS) system was developed that enabled high-speed combinatorial studies directly on bacterial colonies. The system consists of a forward scatterometer for elastic light scatter (ELS) detection, a plate transporter for sample handling, and a robotic incubator for automatic incubation. To minimize the ELS pattern-capturing time, a new calibration plate and correction algorithms were both designed, which dramatically reduced correction steps during acquisition of the circularly symmetric ELS patterns. Integration of three different control software programs was implemented, and the performance of the system was demonstrated with single-species detection for library generation and with time-resolved measurement for understanding ELS colony growth correlation, using Escherichia coli and Listeria. An in-house colony-tracking module enabled researchers to easily understand the time-dependent variation of the ELS from identical colony, which enabled further analysis in other biochemical experiments. The microbial HTS system provided an average scan time of 4.9 s per colony and the capability of automatically collecting more than 4000 ELS patterns within a 7-h time span.

  20. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    PubMed

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.

  1. Uninterrupted monitoring of drug effects in human-induced pluripotent stem cell-derived cardiomyocytes with bioluminescence Ca2+ microscopy.

    PubMed

    Suzuki, Kazushi; Onishi, Takahito; Nakada, Chieko; Takei, Shunsuke; Daniels, Matthew J; Nakano, Masahiro; Matsuda, Tomoki; Nagai, Takeharu

    2018-05-18

    Cardiomyocytes derived from human-induced pluripotent stem cells are a powerful platform for high-throughput drug screening in vitro. However, current modalities for drug testing, such as electrophysiology and fluorescence imaging have inherent drawbacks. To circumvent these problems, we report the development of a bioluminescent Ca 2+ indicator GmNL(Ca 2+ ), and its application in a customized microscope for high-throughput drug screening. GmNL(Ca 2+ ) gives a 140% signal change with Ca 2+ , and can image drug-induced changes of Ca 2+ dynamics in cultured cells. Since bioluminescence requires application of a chemical substrate, which is consumed over ~ 30 min we made a dedicated microscope with automated drug dispensing inside a light-tight box, to control drug addition. To overcome thermal instability of the luminescent substrate, or small molecule, dual climate control enables distinct temperature settings in the drug reservoir and the biological sample. By combining GmNL(Ca 2+ ) with this adaptation, we could image spontaneous Ca 2+ transients in cultured cardiomyocytes and phenotype their response to well-known drugs without accessing the sample directly. In addition, the bioluminescent strategy demonstrates minimal perturbation of contractile parameters and long-term observation attributable to lack of phototoxicity and photobleaching. Overall, bioluminescence may enable more accurate drug screening in a high-throughput manner.

  2. Database for High Throughput Screening Hits (dHITS): a simple tool to retrieve gene specific phenotypes from systematic screens done in yeast.

    PubMed

    Chuartzman, Silvia G; Schuldiner, Maya

    2018-03-25

    In the last decade several collections of Saccharomyces cerevisiae yeast strains have been created. In these collections every gene is modified in a similar manner such as by a deletion or the addition of a protein tag. Such libraries have enabled a diversity of systematic screens, giving rise to large amounts of information regarding gene functions. However, often papers describing such screens focus on a single gene or a small set of genes and all other loci affecting the phenotype of choice ('hits') are only mentioned in tables that are provided as supplementary material and are often hard to retrieve or search. To help unify and make such data accessible, we have created a Database of High Throughput Screening Hits (dHITS). The dHITS database enables information to be obtained about screens in which genes of interest were found as well as the other genes that came up in that screen - all in a readily accessible and downloadable format. The ability to query large lists of genes at the same time provides a platform to easily analyse hits obtained from transcriptional analyses or other screens. We hope that this platform will serve as a tool to facilitate investigation of protein functions to the yeast community. © 2018 The Authors Yeast Published by John Wiley & Sons Ltd.

  3. Novel throughput phenotyping platforms in plant genetic studies.

    PubMed

    Montes, Juan M; Melchinger, Albrecht E; Reif, Jochen C

    2007-10-01

    Unraveling the genetic basis of complex traits in plants is limited by the lack of appropriate phenotyping platforms that enable high-throughput screening of many genotypes in multilocation field trials. Near-infrared spectroscopy on agricultural harvesters and spectral reflectance of plant canopies have recently been reported as promising components of novel phenotyping platforms. Understanding the genetic basis of complex traits is now within reach with the use of these new techniques.

  4. Microplate-Based Method for High-Throughput Screening (HTS) of Chromatographic Conditions Studies for Recombinant Protein Purification.

    PubMed

    Carvalho, Rimenys J; Cruz, Thayana A

    2018-01-01

    High-throughput screening (HTS) systems have emerged as important tools to provide fast and low cost evaluation of several conditions at once since it requires small quantities of material and sample volumes. These characteristics are extremely valuable for experiments with large number of variables enabling the application of design of experiments (DoE) strategies or simple experimental planning approaches. Once, the capacity of HTS systems to mimic chromatographic purification steps was established, several studies were performed successfully including scale down purification. Here, we propose a method for studying different purification conditions that can be used for any recombinant protein, including complex and glycosylated proteins, using low binding filter microplates.

  5. High content screening in microfluidic devices

    PubMed Central

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  6. Chiral Amine Synthesis Using ω-Transaminases: An Amine Donor that Displaces Equilibria and Enables High-Throughput Screening**

    PubMed Central

    Green, Anthony P; Turner, Nicholas J; O'Reilly, Elaine

    2014-01-01

    The widespread application of ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by fundamental challenges, including unfavorable equilibrium positions and product inhibition. Herein, an efficient process that allows reactions to proceed in high conversion in the absence of by-product removal using only one equivalent of a diamine donor (ortho-xylylenediamine) is reported. This operationally simple method is compatible with the most widely used (R)- and (S)-selective ω-TAs and is particularly suitable for the conversion of substrates with unfavorable equilibrium positions (e.g., 1-indanone). Significantly, spontaneous polymerization of the isoindole by-product generates colored derivatives, providing a high-throughput screening platform to identify desired ω-TA activity. PMID:25138082

  7. Essential attributes identified in the design of a Laboratory Information Management System for a high throughput siRNA screening laboratory.

    PubMed

    Grandjean, Geoffrey; Graham, Ryan; Bartholomeusz, Geoffrey

    2011-11-01

    In recent years high throughput screening operations have become a critical application in functional and translational research. Although a seemingly unmanageable amount of data is generated by these high-throughput, large-scale techniques, through careful planning, an effective Laboratory Information Management System (LIMS) can be developed and implemented in order to streamline all phases of a workflow. Just as important as data mining and analysis procedures at the end of complex processes is the tracking of individual steps of applications that generate such data. Ultimately, the use of a customized LIMS will enable users to extract meaningful results from large datasets while trusting the robustness of their assays. To illustrate the design of a custom LIMS, this practical example is provided to highlight the important aspects of the design of a LIMS to effectively modulate all aspects of an siRNA screening service. This system incorporates inventory management, control of workflow, data handling and interaction with investigators, statisticians and administrators. All these modules are regulated in a synchronous manner within the LIMS. © 2011 Bentham Science Publishers

  8. Diving deeper into Zebrafish development of social behavior: analyzing high resolution data.

    PubMed

    Buske, Christine; Gerlai, Robert

    2014-08-30

    Vertebrate model organisms have been utilized in high throughput screening but only with substantial cost and human capital investment. The zebrafish is a vertebrate model species that is a promising and cost effective candidate for efficient high throughput screening. Larval zebrafish have already been successfully employed in this regard (Lessman, 2011), but adult zebrafish also show great promise. High throughput screening requires the use of a large number of subjects and collection of substantial amount of data. Collection of data is only one of the demanding aspects of screening. However, in most screening approaches that involve behavioral data the main bottleneck that slows throughput is the time consuming aspect of analysis of the collected data. Some automated analytical tools do exist, but often they only work for one subject at a time, eliminating the possibility of fully utilizing zebrafish as a screening tool. This is a particularly important limitation for such complex phenotypes as social behavior. Testing multiple fish at a time can reveal complex social interactions but it may also allow the identification of outliers from a group of mutagenized or pharmacologically treated fish. Here, we describe a novel method using a custom software tool developed within our laboratory, which enables tracking multiple fish, in combination with a sophisticated analytical approach for summarizing and analyzing high resolution behavioral data. This paper focuses on the latter, the analytic tool, which we have developed using the R programming language and environment for statistical computing. We argue that combining sophisticated data collection methods with appropriate analytical tools will propel zebrafish into the future of neurobehavioral genetic research. Copyright © 2014. Published by Elsevier B.V.

  9. Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.

    PubMed

    Zhang, Ji-Hu; Kang, Zhao B; Ardayfio, Ophelia; Ho, Pei-i; Smith, Thomas; Wallace, Iain; Bowes, Scott; Hill, W Adam; Auld, Douglas S

    2014-06-01

    Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment. © 2013 Society for Laboratory Automation and Screening.

  10. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.

    PubMed

    Zhou, Yuexin; Zhu, Shiyou; Cai, Changzu; Yuan, Pengfei; Li, Chunmei; Huang, Yanyi; Wei, Wensheng

    2014-05-22

    Targeted genome editing technologies are powerful tools for studying biology and disease, and have a broad range of research applications. In contrast to the rapid development of toolkits to manipulate individual genes, large-scale screening methods based on the complete loss of gene expression are only now beginning to be developed. Here we report the development of a focused CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) lentiviral library in human cells and a method of gene identification based on functional screening and high-throughput sequencing analysis. Using knockout library screens, we successfully identified the host genes essential for the intoxication of cells by anthrax and diphtheria toxins, which were confirmed by functional validation. The broad application of this powerful genetic screening strategy will not only facilitate the rapid identification of genes important for bacterial toxicity but will also enable the discovery of genes that participate in other biological processes.

  11. 20180312 - Mechanistic Modeling of Developmental Defects through Computational Embryology (SOT)

    EPA Science Inventory

    Significant advances in the genome sciences, in automated high-throughput screening (HTS), and in alternative methods for testing enable rapid profiling of chemical libraries for quantitative effects on diverse cellular activities. While a surfeit of HTS data and information is n...

  12. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum.

    PubMed

    Christiansen, Anders; Kringelum, Jens V; Hansen, Christian S; Bøgh, Katrine L; Sullivan, Eric; Patel, Jigar; Rigby, Neil M; Eiwegger, Thomas; Szépfalusi, Zsolt; de Masi, Federico; Nielsen, Morten; Lund, Ole; Dufva, Martin

    2015-08-06

    Phage display is a prominent screening technique with a multitude of applications including therapeutic antibody development and mapping of antigen epitopes. In this study, phages were selected based on their interaction with patient serum and exhaustively characterised by high-throughput sequencing. A bioinformatics approach was developed in order to identify peptide motifs of interest based on clustering and contrasting to control samples. Comparison of patient and control samples confirmed a major issue in phage display, namely the selection of unspecific peptides. The potential of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage display by (i) enabling the analysis of complex biological samples, (ii) circumventing the traditional laborious picking and functional testing of individual phage clones and (iii) reducing the number of selection rounds.

  13. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators

    PubMed Central

    Bodenmiller, Bernd; Zunder, Eli R.; Finck, Rachel; Chen, Tiffany J.; Savig, Erica S.; Bruggner, Robert V.; Simonds, Erin F.; Bendall, Sean C.; Sachs, Karen; Krutzik, Peter O.; Nolan, Garry P.

    2013-01-01

    The ability to comprehensively explore the impact of bio-active molecules on human samples at the single-cell level can provide great insight for biomedical research. Mass cytometry enables quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell communication, the signaling variability between 8 donors, and to define the impact of 27 inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14 PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic investigation of human disease. PMID:22902532

  14. Differentiating high priority pathway-based toxicity from non-specific effects in high throughput toxicity data: A foundation for prioritizing AOP development.

    EPA Science Inventory

    The ToxCast chemical screening approach enables the rapid assessment of large numbers of chemicals for biological effects, primarily at the molecular level. Adverse outcome pathways (AOPs) offer a means to link biomolecular effects with potential adverse outcomes at the level of...

  15. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.

    PubMed

    Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W

    2015-11-01

    A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds.

  16. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  17. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    PubMed

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  18. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies.

    PubMed

    Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy

    2006-08-01

    Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.

  19. Screening of HIV-1 Protease Using a Combination of an Ultra-High-Throughput Fluorescent-Based Assay and RapidFire Mass Spectrometry.

    PubMed

    Meng, Juncai; Lai, Ming-Tain; Munshi, Vandna; Grobler, Jay; McCauley, John; Zuck, Paul; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Adam, Gregory C

    2015-06-01

    HIV-1 protease (PR) represents one of the primary targets for developing antiviral agents for the treatment of HIV-infected patients. To identify novel PR inhibitors, a label-free, high-throughput mass spectrometry (HTMS) assay was developed using the RapidFire platform and applied as an orthogonal assay to confirm hits identified in a fluorescence resonance energy transfer (FRET)-based primary screen of > 1 million compounds. For substrate selection, a panel of peptide substrates derived from natural processing sites for PR was evaluated on the RapidFire platform. As a result, KVSLNFPIL, a new substrate measured to have a ~ 20- and 60-fold improvement in k cat/K m over the frequently used sequences SQNYPIVQ and SQNYPIV, respectively, was identified for the HTMS screen. About 17% of hits from the FRET-based primary screen were confirmed in the HTMS confirmatory assay including all 304 known PR inhibitors in the set, demonstrating that the HTMS assay is effective at triaging false-positives while capturing true hits. Hence, with a sampling rate of ~7 s per well, the RapidFire HTMS assay enables the high-throughput evaluation of peptide substrates and functions as an efficient tool for hits triage in the discovery of novel PR inhibitors. © 2015 Society for Laboratory Automation and Screening.

  20. G protein-coupled receptor internalization assays in the high-content screening format.

    PubMed

    Haasen, Dorothea; Schnapp, Andreas; Valler, Martin J; Heilker, Ralf

    2006-01-01

    High-content screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently applied tool to study test compound effects in cellular disease-modeling systems. This chapter describes the measurement of G protein-coupled receptor (GPCR) internalization in the HCS format using a high-throughput, confocal cellular imaging device. GPCRs are the most successful group of therapeutic targets on the pharmaceutical market. Accordingly, the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry today. This chapter describes methods for the ligand-induced internalization of GPCRs labeled previously with either a fluorophore-conjugated ligand or an antibody directed against an N-terminal tag of the GPCR. Both labeling techniques produce robust assay formats. Complementary to other functional GPCR drug discovery assays, internalization assays enable a pharmacological analysis of test compounds. We conclude that GPCR internalization assays represent a valuable medium/high-throughput screening format to determine the cellular activity of GPCR ligands.

  1. High-throughput screening based on label-free detection of small molecule microarrays

    NASA Astrophysics Data System (ADS)

    Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong

    2017-02-01

    Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.

  2. The FLIGHT Drosophila RNAi database

    PubMed Central

    Bursteinas, Borisas; Jain, Ekta; Gao, Qiong; Baum, Buzz; Zvelebil, Marketa

    2010-01-01

    FLIGHT (http://flight.icr.ac.uk/) is an online resource compiling data from high-throughput Drosophila in vivo and in vitro RNAi screens. FLIGHT includes details of RNAi reagents and their predicted off-target effects, alongside RNAi screen hits, scores and phenotypes, including images from high-content screens. The latest release of FLIGHT is designed to enable users to upload, analyze, integrate and share their own RNAi screens. Users can perform multiple normalizations, view quality control plots, detect and assign screen hits and compare hits from multiple screens using a variety of methods including hierarchical clustering. FLIGHT integrates RNAi screen data with microarray gene expression as well as genomic annotations and genetic/physical interaction datasets to provide a single interface for RNAi screen analysis and datamining in Drosophila. PMID:20855970

  3. Application of ToxCast High-Throughput Screening and ...

    EPA Pesticide Factsheets

    Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors

  4. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries

    PubMed Central

    Watt, Eric D.; Hornung, Michael W.; Hedge, Joan M.; Judson, Richard S.; Crofton, Kevin M.; Houck, Keith A.; Simmons, Steven O.

    2016-01-01

    High-throughput screening for potential thyroid-disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the U.S. Environmental Protection Agency ToxCast screening assay portfolio. To fill 1 critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast phase I and II chemical libraries, comprised of 1074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single-concentration screen were retested in concentration-response. Due to high false-positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed 2 additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using guaiacol as a substrate to confirm the activity profiles of putative TPO inhibitors. This effort represents the most extensive TPO inhibition screening campaign to date and illustrates a tiered screening approach that focuses resources, maximizes assay throughput, and reduces animal use. PMID:26884060

  5. A high throughput array microscope for the mechanical characterization of biomaterials

    NASA Astrophysics Data System (ADS)

    Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard

    2015-02-01

    In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.

  6. Tiered High-Throughput Screening Approach to Identify ...

    EPA Pesticide Factsheets

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the US EPA ToxCast screening assay portfolio. To fill one critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast Phase I and II chemical libraries, comprised of 1,074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single concentration screen were retested in concentration-response. Due to high false positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed two additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using

  7. High-content screening of small compounds on human embryonic stem cells.

    PubMed

    Barbaric, Ivana; Gokhale, Paul J; Andrews, Peter W

    2010-08-01

    Human ES (embryonic stem) cells and iPS (induced pluripotent stem) cells have been heralded as a source of differentiated cells that could be used in the treatment of degenerative diseases, such as Parkinson's disease or diabetes. Despite the great potential for their use in regenerative therapy, the challenge remains to understand the basic biology of these remarkable cells, in order to differentiate them into any functional cell type. Given the scale of the task, high-throughput screening of agents and culture conditions offers one way to accelerate these studies. The screening of small-compound libraries is particularly amenable to such high-throughput methods. Coupled with high-content screening technology that enables simultaneous assessment of multiple cellular features in an automated and quantitative way, this approach is proving powerful in identifying both small molecules as tools for manipulating stem cell fates and novel mechanisms of differentiation not previously associated with stem cell biology. Such screens performed on human ES cells also demonstrate the usefulness of human ES/iPS cells as cellular models for pharmacological testing of drug efficacy and toxicity, possibly a more imminent use of these cells than in regenerative medicine.

  8. High Throughput Transcriptomics: From screening to pathways

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  9. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  10. Applications of Biophysics in High-Throughput Screening Hit Validation.

    PubMed

    Genick, Christine Clougherty; Barlier, Danielle; Monna, Dominique; Brunner, Reto; Bé, Céline; Scheufler, Clemens; Ottl, Johannes

    2014-06-01

    For approximately a decade, biophysical methods have been used to validate positive hits selected from high-throughput screening (HTS) campaigns with the goal to verify binding interactions using label-free assays. By applying label-free readouts, screen artifacts created by compound interference and fluorescence are discovered, enabling further characterization of the hits for their target specificity and selectivity. The use of several biophysical methods to extract this type of high-content information is required to prevent the promotion of false positives to the next level of hit validation and to select the best candidates for further chemical optimization. The typical technologies applied in this arena include dynamic light scattering, turbidometry, resonance waveguide, surface plasmon resonance, differential scanning fluorimetry, mass spectrometry, and others. Each technology can provide different types of information to enable the characterization of the binding interaction. Thus, these technologies can be incorporated in a hit-validation strategy not only according to the profile of chemical matter that is desired by the medicinal chemists, but also in a manner that is in agreement with the target protein's amenability to the screening format. Here, we present the results of screening strategies using biophysics with the objective to evaluate the approaches, discuss the advantages and challenges, and summarize the benefits in reference to lead discovery. In summary, the biophysics screens presented here demonstrated various hit rates from a list of ~2000 preselected, IC50-validated hits from HTS (an IC50 is the inhibitor concentration at which 50% inhibition of activity is observed). There are several lessons learned from these biophysical screens, which will be discussed in this article. © 2014 Society for Laboratory Automation and Screening.

  11. Modular, Antibody-free Time-Resolved LRET Kinase Assay Enabled by Quantum Dots and Tb3+-sensitizing Peptides

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Parker, Laurie L.

    2016-07-01

    Fluorescent drug screening assays are essential for tyrosine kinase inhibitor discovery. Here we demonstrate a flexible, antibody-free TR-LRET kinase assay strategy that is enabled by the combination of streptavidin-coated quantum dot (QD) acceptors and biotinylated, Tb3+ sensitizing peptide donors. By exploiting the spectral features of Tb3+ and QD, and the high binding affinity of the streptavidin-biotin interaction, we achieved multiplexed detection of kinase activity in a modular fashion without requiring additional covalent labeling of each peptide substrate. This strategy is compatible with high-throughput screening, and should be adaptable to the rapidly changing workflows and targets involved in kinase inhibitor discovery.

  12. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.

    PubMed

    Czerniecki, Stefan M; Cruz, Nelly M; Harder, Jennifer L; Menon, Rajasree; Annis, James; Otto, Edgar A; Gulieva, Ramila E; Islas, Laura V; Kim, Yong Kyun; Tran, Linh M; Martins, Timothy J; Pippin, Jeffrey W; Fu, Hongxia; Kretzler, Matthias; Shankland, Stuart J; Himmelfarb, Jonathan; Moon, Randall T; Paragas, Neal; Freedman, Benjamin S

    2018-05-15

    Organoids derived from human pluripotent stem cells are a potentially powerful tool for high-throughput screening (HTS), but the complexity of organoid cultures poses a significant challenge for miniaturization and automation. Here, we present a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. The entire 21-day protocol, from plating to differentiation to analysis, can be performed automatically by liquid-handling robots, or alternatively by manual pipetting. High-content imaging analysis reveals both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identify previously undetected parietal, interstitial, and partially differentiated compartments within organoids and define conditions that greatly expand the vascular endothelium. Chemical modulation of toxicity and disease phenotypes can be quantified for safety and efficacy prediction. Screening in gene-edited organoids in this system reveals an unexpected role for myosin in polycystic kidney disease. Organoids in HTS formats thus establish an attractive platform for multidimensional phenotypic screening. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. High-throughput on-chip in vivo neural regeneration studies using femtosecond laser nano-surgery and microfluidics

    NASA Astrophysics Data System (ADS)

    Rohde, Christopher B.; Zeng, Fei; Gilleland, Cody; Samara, Chrysanthi; Yanik, Mehmet F.

    2009-02-01

    In recent years, the advantages of using small invertebrate animals as model systems for human disease have become increasingly apparent and have resulted in three Nobel Prizes in medicine or chemistry during the last six years for studies conducted on the nematode Caenorhabditis elegans (C. elegans). The availability of a wide array of species-specific genetic techniques, along with the transparency of the worm and its ability to grow in minute volumes make C. elegans an extremely powerful model organism. We present a suite of technologies for complex high-throughput whole-animal genetic and drug screens. We demonstrate a high-speed microfluidic sorter that can isolate and immobilize C. elegans in a well-defined geometry, an integrated chip containing individually addressable screening chambers for incubation and exposure of individual animals to biochemical compounds, and a device for delivery of compound libraries in standard multiwell plates to microfluidic devices. The immobilization stability obtained by these devices is comparable to that of chemical anesthesia and the immobilization process does not affect lifespan, progeny production, or other aspects of animal health. The high-stability enables the use of a variety of key optical techniques. We use this to demonstrate femtosecond-laser nanosurgery and three-dimensional multiphoton microscopy. Used alone or in various combinations these devices facilitate a variety of high-throughput assays using whole animals, including mutagenesis and RNAi and drug screens at subcellular resolution, as well as high-throughput high-precision manipulations such as femtosecond-laser nanosurgery for large-scale in vivo neural degeneration and regeneration studies.

  14. High-throughput analysis of yeast replicative aging using a microfluidic system

    PubMed Central

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-01-01

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  15. Advance in phage display technology for bioanalysis.

    PubMed

    Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong

    2016-06-01

    Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Strategic and Operational Plan for Integrating Transcriptomics ...

    EPA Pesticide Factsheets

    Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016

  17. High-throughput screening (HTS) and modeling of the retinoid ...

    EPA Pesticide Factsheets

    Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system

  18. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.

    PubMed

    van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2018-03-01

    Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.

  19. Advances in Predictive Toxicology for Discovery Safety through High Content Screening.

    PubMed

    Persson, Mikael; Hornberg, Jorrit J

    2016-12-19

    High content screening enables parallel acquisition of multiple molecular and cellular readouts. In particular the predictive toxicology field has progressed from the advances in high content screening, as more refined end points that report on cellular health can be studied in combination, at the single cell level, and in relatively high throughput. Here, we discuss how high content screening has become an essential tool for Discovery Safety, the discipline that integrates safety and toxicology in the drug discovery process to identify and mitigate safety concerns with the aim to design drug candidates with a superior safety profile. In addition to customized mechanistic assays to evaluate target safety, routine screening assays can be applied to identify risk factors for frequently occurring organ toxicities. We discuss the current state of high content screening assays for hepatotoxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, and genotoxicity, including recent developments and current advances.

  20. From Genes to Protein Mechanics on a Chip

    PubMed Central

    Milles, Lukas F.; Verdorfer, Tobias; Pippig, Diana A.; Nash, Michael A.; Gaub, Hermann E.

    2014-01-01

    Single-molecule force spectroscopy enables mechanical testing of individual proteins, however low experimental throughput limits the ability to screen constructs in parallel. We describe a microfluidic platform for on-chip protein expression and measurement of single-molecule mechanical properties. We constructed microarrays of proteins covalently attached to a chip surface, and found that a single cohesin-modified cantilever that bound to the terminal dockerin-tag of each protein remained stable over thousands of pulling cycles. The ability to synthesize and mechanically probe protein libraries presents new opportunities for high-throughput mechanical phenotyping. PMID:25194847

  1. Data from Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors within the ToxCast Phase I and II Chemical Libraries

    EPA Pesticide Factsheets

    High-throughput screening for potential thyroid-disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the U.S. Environmental Protection Agency ToxCast screening assay portfolio. To fill 1 critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast phase I and II chemical libraries, comprised of 1074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single-concentration screen were retested in concentration-response. Due to high false-positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed 2 additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidat

  2. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus.

    PubMed

    Cheng, Han; Koning, Katie; O'Hearn, Aileen; Wang, Minxiu; Rumschlag-Booms, Emily; Varhegyi, Elizabeth; Rong, Lijun

    2015-11-24

    Genome-wide RNAi screening has been widely used to identify host proteins involved in replication and infection of different viruses, and numerous host factors are implicated in the replication cycles of these viruses, demonstrating the power of this approach. However, discrepancies on target identification of the same viruses by different groups suggest that high throughput RNAi screening strategies need to be carefully designed, developed and optimized prior to the large scale screening. Two genome-wide RNAi screens were performed in parallel against the entry of pseudotyped Marburg viruses and avian influenza virus H5N1 utilizing an HIV-1 based surrogate system, to identify host factors which are important for virus entry. A comparative analysis approach was employed in data analysis, which alleviated systematic positional effects and reduced the false positive number of virus-specific hits. The parallel nature of the strategy allows us to easily identify the host factors for a specific virus with a greatly reduced number of false positives in the initial screen, which is one of the major problems with high throughput screening. The power of this strategy is illustrated by a genome-wide RNAi screen for identifying the host factors important for Marburg virus and/or avian influenza virus H5N1 as described in this study. This strategy is particularly useful for highly pathogenic viruses since pseudotyping allows us to perform high throughput screens in the biosafety level 2 (BSL-2) containment instead of the BSL-3 or BSL-4 for the infectious viruses, with alleviated safety concerns. The screening strategy together with the unique comparative analysis approach makes the data more suitable for hit selection and enables us to identify virus-specific hits with a much lower false positive rate.

  3. Tissue matrix arrays for high throughput screening and systems analysis of cell function

    PubMed Central

    Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.

    2015-01-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475

  4. Dissecting enzyme function with microfluidic-based deep mutational scanning.

    PubMed

    Romero, Philip A; Tran, Tuan M; Abate, Adam R

    2015-06-09

    Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.

  5. Ultra-high-throughput screening method for the directed evolution of glucose oxidase.

    PubMed

    Ostafe, Raluca; Prodanovic, Radivoje; Nazor, Jovana; Fischer, Rainer

    2014-03-20

    Glucose oxidase (GOx) is used in many industrial processes that could benefit from improved versions of the enzyme. Some improvements like higher activity under physiological conditions and thermal stability could be useful for GOx applications in biosensors and biofuel cells. Directed evolution is one of the currently available methods to engineer improved GOx variants. Here, we describe an ultra-high-throughput screening system for sorting the best enzyme variants generated by directed evolution that incorporates several methodological refinements: flow cytometry, in vitro compartmentalization, yeast surface display, fluorescent labeling of the expressed enzyme, delivery of glucose substrate to the reaction mixture through the oil phase, and covalent labeling of the cells with fluorescein-tyramide. The method enables quantitative screening of gene libraries to identify clones with improved activity and it also allows cells to be selected based not only on the overall activity but also on the specific activity of the enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Adaptation of High-Throughput Screening in Drug Discovery—Toxicological Screening Tests

    PubMed Central

    Szymański, Paweł; Markowicz, Magdalena; Mikiciuk-Olasik, Elżbieta

    2012-01-01

    High-throughput screening (HTS) is one of the newest techniques used in drug design and may be applied in biological and chemical sciences. This method, due to utilization of robots, detectors and software that regulate the whole process, enables a series of analyses of chemical compounds to be conducted in a short time and the affinity of biological structures which is often related to toxicity to be defined. Since 2008 we have implemented the automation of this technique and as a consequence, the possibility to examine 100,000 compounds per day. The HTS method is more frequently utilized in conjunction with analytical techniques such as NMR or coupled methods e.g., LC-MS/MS. Series of studies enable the establishment of the rate of affinity for targets or the level of toxicity. Moreover, researches are conducted concerning conjugation of nanoparticles with drugs and the determination of the toxicity of such structures. For these purposes there are frequently used cell lines. Due to the miniaturization of all systems, it is possible to examine the compound’s toxicity having only 1–3 mg of this compound. Determination of cytotoxicity in this way leads to a significant decrease in the expenditure and to a reduction in the length of the study. PMID:22312262

  7. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    PubMed

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  8. Assay format as a critical success factor for identification of novel inhibitor chemotypes of tissue-nonspecific alkaline phosphatase from high-throughput screening.

    PubMed

    Chung, Thomas D Y; Sergienko, Eduard; Millán, José Luis

    2010-04-27

    The tissue-nonspecific alkaline phosphatase (TNAP) isozyme is centrally involved in the control of normal skeletal mineralization and pathophysiological abnormalities that lead to disease states such as hypophosphatasia, osteoarthritis, ankylosis and vascular calcification. TNAP acts in concert with the nucleoside triphosphate pyrophosphohydrolase-1 (NPP1) and the Ankylosis protein to regulate the extracellular concentrations of inorganic pyrophosphate (PP(i)), a potent inhibitor of mineralization. In this review we describe the serial development of two miniaturized high-throughput screens (HTS) for TNAP inhibitors that differ in both signal generation and detection formats, but more critically in the concentrations of a terminal alcohol acceptor used. These assay improvements allowed the rescue of the initially unsuccessful screening campaign against a large small molecule chemical library, but moreover enabled the discovery of several unique classes of molecules with distinct mechanisms of action and selectivity against the related placental (PLAP) and intestinal (IAP) alkaline phosphatase isozymes. This illustrates the underappreciated impact of the underlying fundamental assay configuration on screening success, beyond mere signal generation and detection formats.

  9. Design, development, and validation of a high-throughput drug-screening assay for targeting of human leukemia

    PubMed Central

    Karjalainen, Katja; Pasqualini, Renata; Cortes, Jorge E.; Kornblau, Steven M.; Lichtiger, Benjamin; O'Brien, Susan; Kantarjian, Hagop M.; Sidman, Richard L.; Arap, Wadih; Koivunen, Erkki

    2015-01-01

    Background We introduce an ex vivo methodology to perform drug library screening against human leukemia. Method Our strategy relies on human blood or bone marrow cultures under hypoxia; under these conditions, leukemia cells deplete oxygen faster than normal cells, causing a hemoglobin oxygenation shift. We demonstrate several advantages: (I) partial recapitulation of the leukemia microenvironment, (ii) use of native hemoglobin oxygenation as real-time sensor/reporter, (iii) cost-effectiveness, (iv) species-specificity, and (v) format that enables high-throughput screening. Results As a proof-of-concept, we screened a chemical library (size ∼20,000) against human leukemia cells. We identified 70 compounds (“hit” rate=0.35%; Z-factor=0.71) with activity; we examined 20 to find 18 true-positives (90%). Finally, we show that carbonohydraxonic diamide group-containing compounds are potent anti-leukemia agents that induce cell death in leukemia cells and patient-derived samples. Conclusions This unique functional assay can identify novel drug candidates as well as find future applications in personalized drug selection for leukemia patients. PMID:24496871

  10. Medium-Throughput Screen of Microbially Produced Serotonin via a G-Protein-Coupled Receptor-Based Sensor.

    PubMed

    Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela

    2017-10-17

    Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.

  11. High Throughput Screening For Hazard and Risk of Environmental Contaminants

    EPA Science Inventory

    High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...

  12. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells.

    PubMed

    Zhang, Huijie; Oellers, Tobias; Feng, Wenqian; Abdulazim, Tarik; Saw, En Ning; Ludwig, Alfred; Levkin, Pavel A; Plumeré, Nicolas

    2017-06-06

    Microarray technology has shown great potential for various types of high-throughput screening applications. The main read-out methods of most microarray platforms, however, are based on optical techniques, limiting the scope of potential applications of such powerful screening technology. Electrochemical methods possess numerous complementary advantages over optical detection methods, including its label-free nature, capability of quantitative monitoring of various reporter molecules, and the ability to not only detect but also address compositions of individual compartments. However, application of electrochemical methods for the purpose of high-throughput screening remains very limited. In this work, we develop a high-density individually addressable electrochemical droplet microarray (eDMA). The eDMA allows for the detection of redox-active reporter molecules irrespective of their electrochemical reversibility in individual nanoliter-sized droplets. Orthogonal band microelectrodes are arranged to form at their intersections an array of three-electrode systems for precise control of the applied potential, which enables direct read-out of the current related to analyte detection. The band microelectrode array is covered with a layer of permeable porous polymethacrylate functionalized with a highly hydrophobic-hydrophilic pattern, forming spatially separated nanoliter-sized droplets on top of each electrochemical cell. Electrochemical characterization of single droplets demonstrates that the underlying electrode system is accessible to redox-active molecules through the hydrophilic polymeric pattern and that the nonwettable hydrophobic boundaries can spatially separate neighboring cells effectively. The eDMA technology opens the possibility to combine the high-throughput biochemical or living cell screenings using the droplet microarray platform with the sequential electrochemical read-out of individual droplets.

  13. High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models.

    PubMed

    Hop, Cornelis E C A; Cole, Mark J; Davidson, Ralph E; Duignan, David B; Federico, James; Janiszewski, John S; Jenkins, Kelly; Krueger, Suzanne; Lebowitz, Rebecca; Liston, Theodore E; Mitchell, Walter; Snyder, Mark; Steyn, Stefan J; Soglia, John R; Taylor, Christine; Troutman, Matt D; Umland, John; West, Michael; Whalen, Kevin M; Zelesky, Veronica; Zhao, Sabrina X

    2008-11-01

    Evaluation and optimization of drug metabolism and pharmacokinetic data plays an important role in drug discovery and development and several reliable in vitro ADME models are available. Recently higher throughput in vitro ADME screening facilities have been established in order to be able to evaluate an appreciable fraction of synthesized compounds. The ADME screening process can be dissected in five distinct steps: (1) plate management of compounds in need of in vitro ADME data, (2) optimization of the MS/MS method for the compounds, (3) in vitro ADME experiments and sample clean up, (4) collection and reduction of the raw LC-MS/MS data and (5) archival of the processed ADME data. All steps will be described in detail and the value of the data on drug discovery projects will be discussed as well. Finally, in vitro ADME screening can generate large quantities of data obtained under identical conditions to allow building of reliable in silico models.

  14. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells.

    PubMed

    Lu, Mei; Chan, Brian M; Schow, Peter W; Chang, Wesley S; King, Chadwick T

    2017-12-01

    With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Droplet Microarray Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-Throughput Stem Cell Screening.

    PubMed

    Tronser, Tina; Popova, Anna A; Jaggy, Mona; Bastmeyer, Martin; Levkin, Pavel A

    2017-12-01

    Over the past decades, stem cells have attracted growing interest in fundamental biological and biomedical research as well as in regenerative medicine, due to their unique ability to self-renew and differentiate into various cell types. Long-term maintenance of the self-renewal ability and inhibition of spontaneous differentiation, however, still remain challenging and are not fully understood. Uncontrolled spontaneous differentiation of stem cells makes high-throughput screening of stem cells also difficult. This further hinders investigation of the underlying mechanisms of stem cell differentiation and the factors that might affect it. In this work, a dual functionality of nanoporous superhydrophobic-hydrophilic micropatterns is demonstrated in their ability to inhibit differentiation of mouse embryonic stem cells (mESCs) and at the same time enable formation of arrays of microdroplets (droplet microarray) via the effect of discontinuous dewetting. Such combination makes high-throughput screening of undifferentiated mouse embryonic stem cells possible. The droplet microarray is used to investigate the development, differentiation, and maintenance of stemness of mESC, revealing the dependence of stem cell behavior on droplet volume in nano- and microliter scale. The inhibition of spontaneous differentiation of mESCs cultured on the droplet microarray for up to 72 h is observed. In addition, up to fourfold increased cell growth rate of mESCs cultured on our platform has been observed. The difference in the behavior of mESCs is attributed to the porosity and roughness of the polymer surface. This work demonstrates that the droplet microarray possesses the potential for the screening of mESCs under conditions of prolonged inhibition of stem cells' spontaneous differentiation. Such a platform can be useful for applications in the field of stem cell research, pharmacological testing of drug efficacy and toxicity, biomedical research as well as in the field of regenerative medicine and tissue engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis.

    PubMed

    Lee, Hyokyeong; Moody-Davis, Asher; Saha, Utsab; Suzuki, Brian M; Asarnow, Daniel; Chen, Steven; Arkin, Michelle; Caffrey, Conor R; Singh, Rahul

    2012-01-01

    Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be extended to other helmintic diseases which together afflict a large part of humankind.

  17. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis

    PubMed Central

    2012-01-01

    Background Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. Method We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. Results We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. Conclusions The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be extended to other helmintic diseases which together afflict a large part of humankind. PMID:22369037

  18. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.

    PubMed

    Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W

    2010-09-01

    Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.

  19. High-throughput, image-based screening of pooled genetic variant libraries

    PubMed Central

    Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2018-01-01

    Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401

  20. Identification of Novel Pro-Migratory, Cancer-Associated Genes Using Quantitative, Microscopy-Based Screening

    PubMed Central

    Naffar-Abu-Amara, Suha; Shay, Tal; Galun, Meirav; Cohen, Naomi; Isakoff, Steven J.; Kam, Zvi; Geiger, Benjamin

    2008-01-01

    Background Cell migration is a highly complex process, regulated by multiple genes, signaling pathways and external stimuli. To discover genes or pharmacological agents that can modulate the migratory activity of cells, screening strategies that enable the monitoring of diverse migratory parameters in a large number of samples are necessary. Methodology In the present study, we describe the development of a quantitative, high-throughput cell migration assay, based on a modified phagokinetic tracks (PKT) procedure, and apply it for identifying novel pro-migratory genes in a cancer-related gene library. In brief, cells are seeded on fibronectin-coated 96-well plates, covered with a monolayer of carboxylated latex beads. Motile cells clear the beads, located along their migratory paths, forming tracks that are visualized using an automated, transmitted-light screening microscope. The tracks are then segmented and characterized by multi-parametric, morphometric analysis, resolving a variety of morphological and kinetic features. Conclusions In this screen we identified 4 novel genes derived from breast carcinoma related cDNA library, whose over-expression induces major alteration in the migration of the stationary MCF7 cells. This approach can serve for high throughput screening for novel ways to modulate cellular migration in pathological states such as tumor metastasis and invasion. PMID:18213366

  1. Printing Proteins as Microarrays for High-Throughput Function Determination

    NASA Astrophysics Data System (ADS)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  2. ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)

    EPA Science Inventory

    US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...

  3. Analytical Validation of a Portable Mass Spectrometer Featuring Interchangeable, Ambient Ionization Sources for High Throughput Forensic Evidence Screening

    NASA Astrophysics Data System (ADS)

    Lawton, Zachary E.; Traub, Angelica; Fatigante, William L.; Mancias, Jose; O'Leary, Adam E.; Hall, Seth E.; Wieland, Jamie R.; Oberacher, Herbert; Gizzi, Michael C.; Mulligan, Christopher C.

    2017-06-01

    Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. [Figure not available: see fulltext.

  4. 1001 Ways to run AutoDock Vina for virtual screening

    NASA Astrophysics Data System (ADS)

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  5. 1001 Ways to run AutoDock Vina for virtual screening.

    PubMed

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  6. Virtual Liver: Estimating Proliferation and Apoptosis of Hepatocytes Exposed to Environmental Chemicals Using ToxCastTM Data

    EPA Science Inventory

    The U.S. EPA’s ToxCastTM program has screened over a thousand chemicals for potential toxicity using hundreds of high-throughput, in vitro assays. The U.S. EPA’s Virtual Liver (v-Liver™) is a cellular systems model of hepatic tissues that enables the estimation of in vivo effects...

  7. Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6. | Office of Cancer Genomics

    Cancer.gov

    In prostate cancer, the development of castration resistance is pivotal in progression to aggressive disease. However, understanding of the pathways involved remains incomplete. In this study, we performed a high-throughput genetic screen to identify kinases that enable tumor formation by androgen-dependent prostate epithelial (LHSR-AR) cells under androgen-deprived conditions.

  8. A high throughput mechanical screening device for cartilage tissue engineering.

    PubMed

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  9. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    EPA Science Inventory

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  10. Advantages of Crystallographic Fragment Screening: Functional and Mechanistic Insights from a Powerful Platform for Efficient Drug Discovery

    PubMed Central

    Patel, Disha; Bauman, Joseph D.; Arnold, Eddy

    2015-01-01

    X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this “chemical interrogation” of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. PMID:25117499

  11. Advantages of crystallographic fragment screening: functional and mechanistic insights from a powerful platform for efficient drug discovery.

    PubMed

    Patel, Disha; Bauman, Joseph D; Arnold, Eddy

    2014-01-01

    X-ray crystallography has been an under-appreciated screening tool for fragment-based drug discovery due to the perception of low throughput and technical difficulty. Investigators in industry and academia have overcome these challenges by taking advantage of key factors that contribute to a successful crystallographic screening campaign. Efficient cocktail design and soaking methodologies have evolved to maximize throughput while minimizing false positives/negatives. In addition, technical improvements at synchrotron beamlines have dramatically increased data collection rates thus enabling screening on a timescale comparable to other techniques. The combination of available resources and efficient experimental design has resulted in many successful crystallographic screening campaigns. The three-dimensional crystal structure of the bound fragment complexed to its target, a direct result of the screening effort, enables structure-based drug design while revealing insights regarding protein dynamics and function not readily obtained through other experimental approaches. Furthermore, this "chemical interrogation" of the target protein crystals can lead to the identification of useful reagents for improving diffraction resolution or compound solubility. Copyright © 2014. Published by Elsevier Ltd.

  12. Novel selection methods for DNA-encoded chemical libraries

    PubMed Central

    Chan, Alix I.; McGregor, Lynn M.; Liu, David R.

    2015-01-01

    Driven by the need for new compounds to serve as biological probes and leads for therapeutic development and the growing accessibility of DNA technologies including high-throughput sequencing, many academic and industrial groups have begun to use DNA-encoded chemical libraries as a source of bioactive small molecules. In this review, we describe the technologies that have enabled the selection of compounds with desired activities from these libraries. These methods exploit the sensitivity of in vitro selection coupled with DNA amplification to overcome some of the limitations and costs associated with conventional screening methods. In addition, we highlight newer techniques with the potential to be applied to the high-throughput evaluation of DNA-encoded chemical libraries. PMID:25723146

  13. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    PubMed

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-05-17

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening.

    PubMed

    Green, Anthony P; Turner, Nicholas J; O'Reilly, Elaine

    2014-09-26

    The widespread application of ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by fundamental challenges, including unfavorable equilibrium positions and product inhibition. Herein, an efficient process that allows reactions to proceed in high conversion in the absence of by-product removal using only one equivalent of a diamine donor (ortho-xylylenediamine) is reported. This operationally simple method is compatible with the most widely used (R)- and (S)-selective ω-TAs and is particularly suitable for the conversion of substrates with unfavorable equilibrium positions (e.g., 1-indanone). Significantly, spontaneous polymerization of the isoindole by-product generates colored derivatives, providing a high-throughput screening platform to identify desired ω-TA activity. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  15. Development of a quantitative assay amenable for high-throughput screening to target the type II secretion system for new treatments against plant-pathogenic bacteria.

    PubMed

    Tran, Nini; Zielke, Ryszard A; Vining, Oliver B; Azevedo, Mark D; Armstrong, Donald J; Banowetz, Gary M; McPhail, Kerry L; Sikora, Aleksandra E

    2013-09-01

    Plant-pathogenic bacteria are the causative agents of diseases in important agricultural crops and ornamental plants. The severe economic burden of these diseases requires seeking new approaches for their control, particularly because phytopathogenic bacteria are often resistant to available treatments. The type II secretion (T2S) system is a key virulence factor used by major groups of phytopathogenic bacteria. The T2S machinery transports many hydrolytic enzymes responsible for degradation of the plant cell wall, thus enabling successful colonization and dissemination of the bacteria in the plant host. The genetic inactivation of the T2S system leads to loss of virulence, which strongly suggests that targeting the T2S could enable new treatments against plant-pathogenic bacteria. Accordingly, we have designed and optimized an assay to identify small-molecule inhibitors of the T2S system. This assay uses a double parametric output: measurement of bacterial growth and the enzymatic activity of cellulase, which is secreted via the T2S pathway in our model organism Dickeya dadantii. The assay was evaluated by screening natural extracts, culture filtrates isolated from rhizosphere bacteria, and a collection of pharmaceutically active compounds in LOPAC(1280). The calculated Z' values of 0.63, 0.63, and 0.58, respectively, strongly suggest that the assay is applicable for a high-throughput screening platform.

  16. An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery

    PubMed Central

    Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing

    2010-01-01

    The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897

  17. Lessons from high-throughput protein crystallization screening: 10 years of practical experience

    PubMed Central

    JR, Luft; EH, Snell; GT, DeTitta

    2011-01-01

    Introduction X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and in terms of pharmaceutical design is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser-laboratory or industrial scale. Expert Opinion High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful. PMID:22646073

  18. Development of an Influenza virus protein array using Sortagging technology

    PubMed Central

    Sinisi, Antonia; Popp, Maximilian Wei-Lin; Antos, John M.; Pansegrau, Werner; Savino, Silvana; Nissum, Mikkel; Rappuoli, Rino; Ploegh, Hidde L.; Buti, Ludovico

    2013-01-01

    Protein array technology is an emerging tool that enables high throughput screening of protein-protein or protein-lipid interactions and identification of immunodominant antigens during the course of a bacterial or viral infection. In this work we developed an Influenza virus protein array using the sortase-mediated transpeptidation reaction known as “Sortagging”. LPETG-tagged Influenza virus proteins from bacterial and eukaryotic cellular extracts were immobilized at their carboxyl-termini onto a pre-activated amine-glass slide coated with a Gly3 linker. Immobilized proteins were revealed by specific antibodies and the newly generated Sortag-protein chip can be used as a device for antigen and/or antibody screening. The specificity of the Sortase A (SrtA) reaction avoids purification steps in array building and allows immobilization of proteins in an oriented fashion. Previously, this versatile technology has been successfully employed for protein labeling and protein conjugation. Here, the tool is implemented to covalently link proteins of a viral genome onto a solid support. The system could readily be scaled up to proteins of larger genomes in order to develop protein arrays for high throughput screening. PMID:22594688

  19. High-throughput measurements of biochemical responses using the plate::vision multimode 96 minilens array reader.

    PubMed

    Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich

    2006-01-01

    The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.

  20. Separation of phospholipids in microfluidic chip device: application to high-throughput screening assays for lipid-modifying enzymes.

    PubMed

    Lin, Sansan; Fischl, Anthony S; Bi, Xiahui; Parce, Wally

    2003-03-01

    Phospholipid molecules such as ceramide and phosphoinositides play crucial roles in signal transduction pathways. Lipid-modifying enzymes including sphingomyelinase and phosphoinositide kinases regulate the generation and degradation of these lipid-signaling molecules and are important therapeutic targets in drug discovery. We now report a sensitive and convenient method to separate these lipids using microfluidic chip-based technology. The method takes advantage of the high-separation power of the microchips that separate lipids based on micellar electrokinetic capillary chromatography (MEKC) and the high sensitivity of fluorescence detection. We further exploited the method to develop a homogenous assay to monitor activities of lipid-modifying enzymes. The assay format consists of two steps: an on-plate enzymatic reaction using fluorescently labeled substrates followed by an on-chip MEKC separation of the reaction products from the substrates. The utility of the assay format for high-throughput screening (HTS) is demonstrated using phospholipase A(2) on the Caliper 250 HTS system: throughput of 80min per 384-well plate can be achieved with unattended running time of 5.4h. This enabling technology for assaying lipid-modifying enzymes is ideal for HTS because it avoids the use of radioactive substrates and complicated separation/washing steps and detects both substrate and product simultaneously.

  1. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    PubMed Central

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  2. Metabolomics Approach for Toxicity Screening of Volatile Substances

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However, the ch...

  3. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    PubMed

    Tepper, Naama; Shlomi, Tomer

    2011-01-21

    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).

  4. A simple and sensitive high-throughput GFP screening in woody and herbaceous plants.

    PubMed

    Hily, Jean-Michel; Liu, Zongrang

    2009-03-01

    Green fluorescent protein (GFP) has been used widely as a powerful bioluminescent reporter, but its visualization by existing methods in tissues or whole plants and its utilization for high-throughput screening remains challenging in many species. Here, we report a fluorescence image analyzer-based method for GFP detection and its utility for high-throughput screening of transformed plants. Of three detection methods tested, the Typhoon fluorescence scanner was able to detect GFP fluorescence in all Arabidopsis thaliana tissues and apple leaves, while regular fluorescence microscopy detected it only in Arabidopsis flowers and siliques but barely in the leaves of either Arabidopsis or apple. The hand-held UV illumination method failed in all tissues of both species. Additionally, the Typhoon imager was able to detect GFP fluorescence in both green and non-green tissues of Arabidopsis seedlings as well as in imbibed seeds, qualifying it as a high-throughput screening tool, which was further demonstrated by screening the seedlings of primary transformed T(0) seeds. Of the 30,000 germinating Arabidopsis seedlings screened, at least 69 GFP-positive lines were identified, accounting for an approximately 0.23% transformation efficiency. About 14,000 seedlings grown in 16 Petri plates could be screened within an hour, making the screening process significantly more efficient and robust than any other existing high-throughput screening method for transgenic plants.

  5. High-throughput microsphiltration to assess red blood cell deformability and screen for malaria transmission-blocking drugs.

    PubMed

    Duez, Julien; Carucci, Mario; Garcia-Barbazan, Irene; Corral, Matias; Perez, Oscar; Presa, Jesus Luis; Henry, Benoit; Roussel, Camille; Ndour, Papa Alioune; Rosa, Noemi Bahamontes; Sanz, Laura; Gamo, Francisco-Javier; Buffet, Pierre

    2018-06-01

    The mechanical retention of rigid erythrocytes in the spleen is central in major hematological diseases such as hereditary spherocytosis, sickle-cell disease and malaria. Here, we describe the use of microsphiltration (microsphere filtration) to assess erythrocyte deformability in hundreds to thousands of samples in parallel, by filtering them through microsphere layers in 384-well plates adapted for the discovery of compounds that stiffen Plasmodium falciparum gametocytes, with the aim of interrupting malaria transmission. Compound-exposed gametocytes are loaded into microsphiltration plates, filtered and then transferred to imaging plates for analysis. High-content imaging detects viable gametocytes upstream and downstream from filters and quantifies spleen-like retention. This screening assay takes 3-4 d. Unlike currently available methods used to assess red blood cell (RBC) deformability, microsphiltration enables high-throughput pharmacological screening (tens of thousands of compounds tested in a matter of months) and involves a cell mechanical challenge that induces a physiologically relevant dumbbell-shape deformation. It therefore directly assesses the ability of RBCs to cross inter-endothelial splenic slits in vivo. This protocol has potential applications in quality control for transfusion and in determination of phenotypic markers of erythrocytes in hematological diseases.

  6. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.

  7. Microfluidics for cell-based high throughput screening platforms - A review.

    PubMed

    Du, Guansheng; Fang, Qun; den Toonder, Jaap M J

    2016-01-15

    In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

    PubMed Central

    Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles

    2012-01-01

    The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792

  9. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    PubMed

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  10. Inhibition of Retinoblastoma Protein Inactivation

    DTIC Science & Technology

    2017-11-01

    SUBJECT TERMS cell cycle, Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY...screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor, cancer, cell-cycle inhibition, activation...modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography . 3.0 ACCOMPLISHMENTS Summary: We

  11. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...

  12. Definitive screening design enables optimization of LC-ESI-MS/MS parameters in proteomics.

    PubMed

    Aburaya, Shunsuke; Aoki, Wataru; Minakuchi, Hiroyoshi; Ueda, Mitsuyoshi

    2017-12-01

    In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC-ESI-MS/MS to comprehensively identify these peptides. However, there are many parameters for LC-ESI-MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC-ESI-MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC-ESI-MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC-ESI-MS/MS systems.

  13. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.

    PubMed

    Krska, Shane W; DiRocco, Daniel A; Dreher, Spencer D; Shevlin, Michael

    2017-12-19

    The structural complexity of pharmaceuticals presents a significant challenge to modern catalysis. Many published methods that work well on simple substrates often fail when attempts are made to apply them to complex drug intermediates. The use of high-throughput experimentation (HTE) techniques offers a means to overcome this fundamental challenge by facilitating the rational exploration of large arrays of catalysts and reaction conditions in a time- and material-efficient manner. Initial forays into the use of HTE in our laboratories for solving chemistry problems centered around screening of chiral precious-metal catalysts for homogeneous asymmetric hydrogenation. The success of these early efforts in developing efficient catalytic steps for late-stage development programs motivated the desire to increase the scope of this approach to encompass other high-value catalytic chemistries. Doing so, however, required significant advances in reactor and workflow design and automation to enable the effective assembly and agitation of arrays of heterogeneous reaction mixtures and retention of volatile solvents under a wide range of temperatures. Associated innovations in high-throughput analytical chemistry techniques greatly increased the efficiency and reliability of these methods. These evolved HTE techniques have been utilized extensively to develop highly innovative catalysis solutions to the most challenging problems in large-scale pharmaceutical synthesis. Starting with Pd- and Cu-catalyzed cross-coupling chemistry, subsequent efforts expanded to other valuable modern synthetic transformations such as chiral phase-transfer catalysis, photoredox catalysis, and C-H functionalization. As our experience and confidence in HTE techniques matured, we envisioned their application beyond problems in process chemistry to address the needs of medicinal chemists. Here the problem of reaction generality is felt most acutely, and HTE approaches should prove broadly enabling. However, the quantities of both time and starting materials available for chemistry troubleshooting in this space generally are severely limited. Adapting to these needs led us to invest in smaller predefined arrays of transformation-specific screening "kits" and push the boundaries of miniaturization in chemistry screening, culminating in the development of "nanoscale" reaction screening carried out in 1536-well plates. Grappling with the problem of generality also inspired the exploration of cheminformatics-driven HTE approaches such as the Chemistry Informer Libraries. These next-generation HTE methods promise to empower chemists to run orders of magnitude more experiments and enable "big data" informatics approaches to reaction design and troubleshooting. With these advances, HTE is poised to revolutionize how chemists across both industry and academia discover new synthetic methods, develop them into tools of broad utility, and apply them to problems of practical significance.

  14. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    EPA Science Inventory

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  15. FIM, a Novel FTIR-Based Imaging Method for High Throughput Locomotion Analysis

    PubMed Central

    Otto, Nils; Löpmeier, Tim; Valkov, Dimitar; Jiang, Xiaoyi; Klämbt, Christian

    2013-01-01

    We designed a novel imaging technique based on frustrated total internal reflection (FTIR) to obtain high resolution and high contrast movies. This FTIR-based Imaging Method (FIM) is suitable for a wide range of biological applications and a wide range of organisms. It operates at all wavelengths permitting the in vivo detection of fluorescent proteins. To demonstrate the benefits of FIM, we analyzed large groups of crawling Drosophila larvae. The number of analyzable locomotion tracks was increased by implementing a new software module capable of preserving larval identity during most collision events. This module is integrated in our new tracking program named FIMTrack which subsequently extracts a number of features required for the analysis of complex locomotion phenotypes. FIM enables high throughput screening for even subtle behavioral phenotypes. We tested this newly developed setup by analyzing locomotion deficits caused by the glial knockdown of several genes. Suppression of kinesin heavy chain (khc) or rab30 function led to contraction pattern or head sweeping defects, which escaped in previous analysis. Thus, FIM permits forward genetic screens aimed to unravel the neural basis of behavior. PMID:23349775

  16. High-throughput Screening of Recalcitrance Variations in Lignocellulosic Biomass: Total Lignin, Lignin Monomers, and Enzymatic Sugar Release

    PubMed Central

    Decker, Stephen R.; Sykes, Robert W.; Turner, Geoffrey B.; Lupoi, Jason S.; Doepkke, Crissa; Tucker, Melvin P.; Schuster, Logan A.; Mazza, Kimberly; Himmel, Michael E.; Davis, Mark F.; Gjersing, Erica

    2015-01-01

    The conversion of lignocellulosic biomass to fuels, chemicals, and other commodities has been explored as one possible pathway toward reductions in the use of non-renewable energy sources. In order to identify which plants, out of a diverse pool, have the desired chemical traits for downstream applications, attributes, such as cellulose and lignin content, or monomeric sugar release following an enzymatic saccharification, must be compared. The experimental and data analysis protocols of the standard methods of analysis can be time-consuming, thereby limiting the number of samples that can be measured. High-throughput (HTP) methods alleviate the shortcomings of the standard methods, and permit the rapid screening of available samples to isolate those possessing the desired traits. This study illustrates the HTP sugar release and pyrolysis-molecular beam mass spectrometry pipelines employed at the National Renewable Energy Lab. These pipelines have enabled the efficient assessment of thousands of plants while decreasing experimental time and costs through reductions in labor and consumables. PMID:26437006

  17. High-Throughput Screening of Recalcitrance Variations in Lignocellulosic Biomass: Total Lignin, Lignin Monomers, and Enzymatic Sugar Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Stephen R.; Sykes, Robert W.; Turner, Geoffrey B.

    The conversion of lignocellulosic biomass to fuels, chemicals, and other commodities has been explored as one possible pathway toward reductions in the use of non-renewable energy sources. In order to identify which plants, out of a diverse pool, have the desired chemical traits for downstream applications, attributes, such as cellulose and lignin content, or monomeric sugar release following an enzymatic saccharification, must be compared. The experimental and data analysis protocols of the standard methods of analysis can be time-consuming, thereby limiting the number of samples that can be measured. High-throughput (HTP) methods alleviate the shortcomings of the standard methods, andmore » permit the rapid screening of available samples to isolate those possessing the desired traits. This study illustrates the HTP sugar release and pyrolysis-molecular beam mass spectrometry pipelines employed at the National Renewable Energy Lab. These pipelines have enabled the efficient assessment of thousands of plants while decreasing experimental time and costs through reductions in labor and consumables.« less

  18. Novel selection methods for DNA-encoded chemical libraries.

    PubMed

    Chan, Alix I; McGregor, Lynn M; Liu, David R

    2015-06-01

    Driven by the need for new compounds to serve as biological probes and leads for therapeutic development and the growing accessibility of DNA technologies including high-throughput sequencing, many academic and industrial groups have begun to use DNA-encoded chemical libraries as a source of bioactive small molecules. In this review, we describe the technologies that have enabled the selection of compounds with desired activities from these libraries. These methods exploit the sensitivity of in vitro selection coupled with DNA amplification to overcome some of the limitations and costs associated with conventional screening methods. In addition, we highlight newer techniques with the potential to be applied to the high-throughput evaluation of DNA-encoded chemical libraries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  20. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  1. Inhibition of Retinoblastoma Protein Inactivation

    DTIC Science & Technology

    2016-09-01

    Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY CLASSIFICATION OF: 17...developed a method to perform fragment based screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor...cancer, cell-cycle inhibition, activation, modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography

  2. A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells.

    PubMed

    Bassett, Andrew R; Kong, Lesheng; Liu, Ji-Long

    2015-06-20

    The simplicity of the CRISPR/Cas9 system of genome engineering has opened up the possibility of performing genome-wide targeted mutagenesis in cell lines, enabling screening for cellular phenotypes resulting from genetic aberrations. Drosophila cells have proven to be highly effective in identifying genes involved in cellular processes through similar screens using partial knockdown by RNAi. This is in part due to the lower degree of redundancy between genes in this organism, whilst still maintaining highly conserved gene networks and orthologs of many human disease-causing genes. The ability of CRISPR to generate genetic loss of function mutations not only increases the magnitude of any effect over currently employed RNAi techniques, but allows analysis over longer periods of time which can be critical for certain phenotypes. In this study, we have designed and built a genome-wide CRISPR library covering 13,501 genes, among which 8989 genes are targeted by three or more independent single guide RNAs (sgRNAs). Moreover, we describe strategies to monitor the population of guide RNAs by high throughput sequencing (HTS). We hope that this library will provide an invaluable resource for the community to screen loss of function mutations for cellular phenotypes, and as a source of guide RNA designs for future studies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Human Plasma.

    PubMed

    Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan

    2016-07-01

    We present a high-throughput, nontargeted lipidomics approach using liquid chromatography coupled to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. We applied this method to screen a wide range of fatty acids from medium-chain to very long-chain (8 to 24 carbon atoms) in human plasma samples. The method enables us to chromatographically separate branched-chain species from their straight-chain isomers as well as separate biologically important ω-3 and ω-6 polyunsaturated fatty acids. We used 51 fatty acid species to demonstrate the quantitative capability of this method with quantification limits in the nanomolar range; however, this method is not limited only to these fatty acid species. High-throughput sample preparation was developed and carried out on a robotic platform that allows extraction of 96 samples simultaneously within 3 h. This high-throughput platform was used to assess the influence of different types of human plasma collection and preparation on the nonesterified fatty acid profile of healthy donors. Use of the anticoagulants EDTA and heparin has been compared with simple clotting, and only limited changes have been detected in most nonesterified fatty acid concentrations.

  4. Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles.

    PubMed

    Sanders, John M; Beshore, Douglas C; Culberson, J Christopher; Fells, James I; Imbriglio, Jason E; Gunaydin, Hakan; Haidle, Andrew M; Labroli, Marc; Mattioni, Brian E; Sciammetta, Nunzio; Shipe, William D; Sheridan, Robert P; Suen, Linda M; Verras, Andreas; Walji, Abbas; Joshi, Elizabeth M; Bueters, Tjerk

    2017-08-24

    High-throughput screening (HTS) has enabled millions of compounds to be assessed for biological activity, but challenges remain in the prioritization of hit series. While biological, absorption, distribution, metabolism, excretion, and toxicity (ADMET), purity, and structural data are routinely used to select chemical matter for further follow-up, the scarcity of historical ADMET data for screening hits limits our understanding of early hit compounds. Herein, we describe a process that utilizes a battery of in-house quantitative structure-activity relationship (QSAR) models to generate in silico ADMET profiles for hit series to enable more complete characterizations of HTS chemical matter. These profiles allow teams to quickly assess hit series for desirable ADMET properties or suspected liabilities that may require significant optimization. Accordingly, these in silico data can direct ADMET experimentation and profoundly impact the progression of hit series. Several prospective examples are presented to substantiate the value of this approach.

  5. Human stem cells and drug screening: opportunities and challenges.

    PubMed

    Ebert, Allison D; Svendsen, Clive N

    2010-05-01

    High-throughput screening technologies are widely used in the early stages of drug discovery to rapidly evaluate the properties of thousands of compounds. However, they generally rely on testing compound libraries on highly proliferative immortalized or cancerous cell lines, which do not necessarily provide an accurate indication of the effects of compounds in normal human cells or the specific cell type under study. Recent advances in stem cell technology have the potential to allow production of a virtually limitless supply of normal human cells that can be differentiated into any specific cell type. Moreover, using induced pluripotent stem cell technology, they can also be generated from patients with specific disease traits, enabling more relevant modelling and drug screens. This article discusses the opportunities and challenges for the use of stem cells in drug screening with a focus on induced pluripotent stem cells.

  6. High-Throughput/High-Content Screening Assays with Engineered Nanomaterials in ToxCast

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  7. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Cancer.gov

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  8. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors within the ToxCast Phase I and II Chemical Libraries

    EPA Science Inventory

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limi...

  9. Evaluating the Impact of Uncertainties in Clearance and Exposure When Prioritizing Chemicals Screened in High-Throughput Assays

    EPA Science Inventory

    The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and phar...

  10. Characterization of noncoding regulatory DNA in the human genome.

    PubMed

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  11. Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides

    PubMed Central

    Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J.; Henary, Maged; Nasr, Khaled A.; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.

    2011-01-01

    We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787

  12. Lens-free shadow image based high-throughput continuous cell monitoring technique.

    PubMed

    Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu

    2012-01-01

    A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Evaluation of Compatibility of ToxCast High-Throughput/High-Content Screening Assays with Engineered Nanomaterials

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  14. Uncertainty Quantification in High Throughput Screening: Applications to Models of Endocrine Disruption, Cytotoxicity, and Zebrafish Development (GRC Drug Safety)

    EPA Science Inventory

    Using uncertainty quantification, we aim to improve the quality of modeling data from high throughput screening assays for use in risk assessment. ToxCast is a large-scale screening program that analyzes thousands of chemicals using over 800 assays representing hundreds of bioche...

  15. High-Throughput Screening and Quantitative Chemical Ranking for Sodium Iodide Symporter Inhibitors in ToxCast Phase 1 Chemical Library

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) and Office of Research and Development (ORD) are currently developing high throughput assays to screen chemicals that may alter the thyroid hormone pathway. One potential target in this pathway is the sodium iodide...

  16. High-Throughput Screening and Quantitative Chemical Ranking for Sodium Iodide Symporter Inhibitors in ToxCast Phase 1 Chemical Library

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) and Office of Research and Development (ORD) are currently developing high throughput assays to screen chemicals that may alter the thyroid hormone pathway. One potential target in this pathway is the sodium iodide sympo...

  17. A Split-Luciferase-Based Trimer Formation Assay as a High-throughput Screening Platform for Therapeutics in Alport Syndrome.

    PubMed

    Omachi, Kohei; Kamura, Misato; Teramoto, Keisuke; Kojima, Haruka; Yokota, Tsubasa; Kaseda, Shota; Kuwazuru, Jun; Fukuda, Ryosuke; Koyama, Kosuke; Matsuyama, Shingo; Motomura, Keishi; Shuto, Tsuyoshi; Suico, Mary Ann; Kai, Hirofumi

    2018-05-17

    Alport syndrome is a hereditary glomerular disease caused by mutation in type IV collagen α3-α5 chains (α3-α5(IV)), which disrupts trimerization, leading to glomerular basement membrane degeneration. Correcting the trimerization of α3/α4/α5 chain is a feasible therapeutic approach, but is hindered by lack of information on the regulation of intracellular α(IV) chain and the absence of high-throughput screening (HTS) platforms to assess α345(IV) trimer formation. Here, we developed sets of split NanoLuc-fusion α345(IV) proteins to monitor α345(IV) trimerization of wild-type and clinically associated mutant α5(IV). The α345(IV) trimer assay, which satisfied the acceptance criteria for HTS, enabled the characterization of intracellular- and secretion-dependent defects of mutant α5(IV). Small interfering RNA-based and chemical screening targeting the ER identified several chemical chaperones that have potential to promote α345(IV) trimer formation. This split luciferase-based trimer formation assay is a functional HTS platform that realizes the feasibility of targeting α345(IV) trimers to treat Alport syndrome. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. ELISA microarray technology as a high-throughput system for cancer biomarker validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zangar, Richard C.; Daly, Don S.; White, Amanda M.

    A large gap currently exists between the ability to discover potential biomarkers and the ability to assess the real value of these proteins for cancer screening. One major challenge in biomarker validation is the inherent variability in biomarker levels. This variability stems from the diversity across the human population and the considerable molecular heterogeneity between individual tumors, even those that originate from a single tissue. Another major challenge with cancer screening is that most cancers are rare in the general population, meaning that the specificity of an assay must be very high if the number of false positive is notmore » going to be much greater than the number of true positives. Because of these challenges with biomarker validation, it is necessary to analysis of thousands of samples before a clear idea of the utility of a screening assay can be determined. Enzyme-linked immunosorbent assay (ELISA) microarray technology can simultaneously quantify levels of multiple proteins and has the potential to accelerate biomarker validation. In this review, we discuss current ELISA microarray technology and the enabling advances needed to achieve the reproducibility and throughput that are required to evaluate cancer biomarkers.« less

  19. Discovery and Structure Enabled Synthesis of 2,6-Diaminopyrimidin-4-one IRAK4 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seganish, W. Michael; Fischmann, Thierry O.; Sherborne, Brad

    2015-08-13

    We report the identification and synthesis of a series of aminopyrimidin-4-one IRAK4 inhibitors. Through high throughput screening, an aminopyrimidine hit was identified and modified via structure enabled design to generate a new, potent, and kinase selective pyrimidin-4-one chemotype. This chemotype is exemplified by compound 16, which has potent IRAK4 inhibition activity (IC50 = 27 nM) and excellent kinase selectivity (>100-fold against 99% of 111 tested kinases), and compound 31, which displays potent IRAK4 activity (IC50 = 93 nM) and good rat bioavailability (F = 42%).

  20. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits.

    PubMed

    Choi, Su-Lim; Rha, Eugene; Lee, Sang Jun; Kim, Haseong; Kwon, Kilkoang; Jeong, Young-Su; Rhee, Young Ha; Song, Jae Jun; Kim, Hak-Sung; Lee, Seung-Goo

    2014-03-21

    Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.

  1. Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations

    PubMed Central

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737

  2. Methodology for enabling high-throughput simultaneous saccharification and fermentation screening of yeast using solid biomass as a substrate.

    PubMed

    Elliston, Adam; Wood, Ian P; Soucouri, Marie J; Tantale, Rachelle J; Dicks, Jo; Roberts, Ian N; Waldron, Keith W

    2015-01-01

    High-throughput (HTP) screening is becoming an increasingly useful tool for collating biological data which would otherwise require the employment of excessive resources. Second generation biofuel production is one such process. HTP screening allows the investigation of large sample sets to be undertaken with increased speed and cost effectiveness. This paper outlines a methodology that will enable solid lignocellulosic substrates to be hydrolyzed and fermented at a 96-well plate scale, facilitating HTP screening of ethanol production, whilst maintaining repeatability similar to that achieved at a larger scale. The results showed that utilizing sheets of biomass of consistent density (handbills), for paper, and slurries of pretreated biomass that could be pipetted allowed standardized and accurate transfers to 96-well plates to be achieved (±3.1 and 1.7%, respectively). Processing these substrates by simultaneous saccharification and fermentation (SSF) at various volumes showed no significant difference on final ethanol yields, either at standard shake flask (200 mL), universal bottle (10 mL) or 96-well plate (1 mL) scales. Substrate concentrations of up to 10% (w/v) were trialed successfully for SSFs at 1 mL volume. The methodology was successfully tested by showing the effects of steam explosion pretreatment on both oilseed rape and wheat straws. This methodology could be used to replace large shake flask reactions with comparatively fast 96-well plate SSF assays allowing for HTP experimentation. Additionally this method is compatible with a number of standardized assay techniques such as simple colorimetric, High-performance liquid chromatography (HPLC) and Nuclear magnetic resonance (NMR) spectroscopy. Furthermore this research has practical uses in the biorefining of biomass substrates for second generation biofuels and novel biobased chemicals by allowing HTP SSF screening, which should allow selected samples to be scaled up or studied in more detail.

  3. University of Texas MD Anderson Cancer Center: High-Throughput Screening Identifying Driving Mutations in Endometrial Cancer | Office of Cancer Genomics

    Cancer.gov

    Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.

  4. High-Throughput Identification of Loss-of-Function Mutations for Anti-Interferon Activity in the Influenza A Virus NS Segment

    PubMed Central

    Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Luan, Harding H.; Li, Xinmin; Wu, Ting-Ting

    2014-01-01

    ABSTRACT Viral proteins often display several functions which require multiple assays to dissect their genetic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that confer a fitness disadvantage under a specified growth condition. Our methodology was achieved by genetically monitoring a mutant library under two growth conditions, with and without interferon, by deep sequencing. We employed a molecular tagging technique to distinguish true mutations from sequencing error. This approach enabled us to identify mutations that were negatively selected against, in addition to those that were positively selected for. Using this technique, we identified loss-of-function mutations in the influenza A virus NS segment that were sensitive to type I interferon in a high-throughput fashion. Mechanistic characterization further showed that a single substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach described in this study can be applied under any specified condition for any virus that can be genetically manipulated. IMPORTANCE Traditional genetics focuses on a single genotype-phenotype relationship, whereas high-throughput genetics permits phenotypic characterization of numerous mutants in parallel. High-throughput genetics often involves monitoring of a mutant library with deep sequencing. However, deep sequencing suffers from a high error rate (∼0.1 to 1%), which is usually higher than the occurrence frequency for individual point mutations within a mutant library. Therefore, only mutations that confer a fitness advantage can be identified with confidence due to an enrichment in the occurrence frequency. In contrast, it is impossible to identify deleterious mutations using most next-generation sequencing techniques. In this study, we have applied a molecular tagging technique to distinguish true mutations from sequencing errors. It enabled us to identify mutations that underwent negative selection, in addition to mutations that experienced positive selection. This study provides a proof of concept by screening for loss-of-function mutations on the influenza A virus NS segment that are involved in its anti-interferon activity. PMID:24965464

  5. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Waki, Atsuo; Okuyama, Hiroaki; Inoue, Masahiro; Itoh, Manabu; Zhang, Ming-Rong; Wakizaka, Hidekatsu; Sogawa, Chizuru; Kiyono, Yasushi; Yoshii, Hiroshi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2015-05-01

    Anti-cancer drug development typically utilizes high-throughput screening with two-dimensional (2D) cell culture. However, 2D culture induces cellular characteristics different from tumors in vivo, resulting in inefficient drug development. Here, we report an innovative high-throughput screening system using nanoimprinting 3D culture to simulate in vivo conditions, thereby facilitating efficient drug development. We demonstrated that cell line-based nanoimprinting 3D screening can more efficiently select drugs that effectively inhibit cancer growth in vivo as compared to 2D culture. Metabolic responses after treatment were assessed using positron emission tomography (PET) probes, and revealed similar characteristics between the 3D spheroids and in vivo tumors. Further, we developed an advanced method to adopt cancer cells from patient tumor tissues for high-throughput drug screening with nanoimprinting 3D culture, which we termed Cancer tissue-Originated Uniformed Spheroid Assay (COUSA). This system identified drugs that were effective in xenografts of the original patient tumors. Nanoimprinting 3D spheroids showed low permeability and formation of hypoxic regions inside, similar to in vivo tumors. Collectively, the nanoimprinting 3D culture provides easy-handling high-throughput drug screening system, which allows for efficient drug development by mimicking the tumor environment. The COUSA system could be a useful platform for drug development with patient cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Synthetic Molecular Evolution of Membrane-Active Peptides

    NASA Astrophysics Data System (ADS)

    Wimley, William

    The physical chemistry of membrane partitioning largely determines the function of membrane active peptides. Membrane-active peptides have potential utility in many areas, including in the cellular delivery of polar compounds, cancer therapy, biosensor design, and in antibacterial, antiviral and antifungal therapies. Yet, despite decades of research on thousands of known examples, useful sequence-structure-function relationships are essentially unknown. Because peptide-membrane interactions within the highly fluid bilayer are dynamic and heterogeneous, accounts of mechanism are necessarily vague and descriptive, and have little predictive power. This creates a significant roadblock to advances in the field. We are bypassing that roadblock with synthetic molecular evolution: iterative peptide library design and orthogonal high-throughput screening. We start with template sequences that have at least some useful activity, and create small, focused libraries using structural and biophysical principles to design the sequence space around the template. Orthogonal high-throughput screening is used to identify gain-of-function peptides by simultaneously selecting for several different properties (e.g. solubility, activity and toxicity). Multiple generations of iterative library design and screening have enabled the identification of membrane-active sequences with heretofore unknown properties, including clinically relevant, broad-spectrum activity against drug-resistant bacteria and enveloped viruses as well as pH-triggered macromolecular poration.

  7. AOPs & Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making.

    EPA Science Inventory

    As high throughput screening (HTS) approaches play a larger role in toxicity testing, computational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models for this purpose are becoming increasingly more sophisticated...

  8. X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization

    PubMed Central

    Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Wan, Frank; Sheraden, Paige N.; Broecker, Jana; Ernst, Oliver P.; Gennis, Robert B.

    2017-01-01

    Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å. PMID:28469762

  9. High-throughput combinatorial cell co-culture using microfluidics.

    PubMed

    Tumarkin, Ethan; Tzadu, Lsan; Csaszar, Elizabeth; Seo, Minseok; Zhang, Hong; Lee, Anna; Peerani, Raheem; Purpura, Kelly; Zandstra, Peter W; Kumacheva, Eugenia

    2011-06-01

    Co-culture strategies are foundational in cell biology. These systems, which serve as mimics of in vivo tissue niches, are typically poorly defined in terms of cell ratios, local cues and supportive cell-cell interactions. In the stem cell niche, the ability to screen cell-cell interactions and identify local supportive microenvironments has a broad range of applications in transplantation, tissue engineering and wound healing. We present a microfluidic platform for the high-throughput generation of hydrogel microbeads for cell co-culture. Encapsulation of different cell populations in microgels was achieved by introducing in a microfluidic device two streams of distinct cell suspensions, emulsifying the mixed suspension, and gelling the precursor droplets. The cellular composition in the microgels was controlled by varying the volumetric flow rates of the corresponding streams. We demonstrate one of the applications of the microfluidic method by co-encapsulating factor-dependent and responsive blood progenitor cell lines (MBA2 and M07e cells, respectively) at varying ratios, and show that in-bead paracrine secretion can modulate the viability of the factor dependent cells. Furthermore, we show the application of the method as a tool to screen the impact of specific growth factors on a primary human heterogeneous cell population. Co-encapsulation of IL-3 secreting MBA2 cells with umbilical cord blood cells revealed differential sub-population responsiveness to paracrine signals (CD14+ cells were particularly responsive to locally delivered IL-3). This microfluidic co-culture platform should enable high throughput screening of cell co-culture conditions, leading to new strategies to manipulate cell fate. This journal is © The Royal Society of Chemistry 2011

  10. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.

    PubMed

    Peng, Cheng; Wang, Hua; Xu, Xiaoli; Wang, Xiaofu; Chen, Xiaoyun; Wei, Wei; Lai, Yongmin; Liu, Guoquan; Godwin, Ian Douglas; Li, Jieqin; Zhang, Ling; Xu, Junfeng

    2018-05-15

    Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene-edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high-throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high-throughput quantitative real-time (qPCR)-based method. The qPCR-based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild-type and a gene-edited mutant. We showed that the qPCR-based method can accurately distinguish CRISPR/Cas9-induced mutants from the wild-type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR-based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T 0 transgenic plants. In a 384-well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post-polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T 0 transgenic plants, which will be widely used in the area of plant gene editing. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  11. High Throughput, Real-time, Dual-readout Testing of Intracellular Antimicrobial Activity and Eukaryotic Cell Cytotoxicity

    PubMed Central

    Chiaraviglio, Lucius; Kang, Yoon-Suk; Kirby, James E.

    2016-01-01

    Traditional measures of intracellular antimicrobial activity and eukaryotic cell cytotoxicity rely on endpoint assays. Such endpoint assays require several additional experimental steps prior to readout, such as cell lysis, colony forming unit determination, or reagent addition. When performing thousands of assays, for example, during high-throughput screening, the downstream effort required for these types of assays is considerable. Therefore, to facilitate high-throughput antimicrobial discovery, we developed a real-time assay to simultaneously identify inhibitors of intracellular bacterial growth and assess eukaryotic cell cytotoxicity. Specifically, real-time intracellular bacterial growth detection was enabled by marking bacterial screening strains with either a bacterial lux operon (1st generation assay) or fluorescent protein reporters (2nd generation, orthogonal assay). A non-toxic, cell membrane-impermeant, nucleic acid-binding dye was also added during initial infection of macrophages. These dyes are excluded from viable cells. However, non-viable host cells lose membrane integrity permitting entry and fluorescent labeling of nuclear DNA (deoxyribonucleic acid). Notably, DNA binding is associated with a large increase in fluorescent quantum yield that provides a solution-based readout of host cell death. We have used this combined assay to perform a high-throughput screen in microplate format, and to assess intracellular growth and cytotoxicity by microscopy. Notably, antimicrobials may demonstrate synergy in which the combined effect of two or more antimicrobials when applied together is greater than when applied separately. Testing for in vitro synergy against intracellular pathogens is normally a prodigious task as combinatorial permutations of antibiotics at different concentrations must be assessed. However, we found that our real-time assay combined with automated, digital dispensing technology permitted facile synergy testing. Using these approaches, we were able to systematically survey action of a large number of antimicrobials alone and in combination against the intracellular pathogen, Legionella pneumophila. PMID:27911388

  12. A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.

    PubMed

    Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao

    2016-10-17

    In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.

  13. Development of a thyroperoxidase inhibition assay for high-throughput screening

    EPA Science Inventory

    High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluores...

  14. High-throughput screening, predictive modeling and computational embryology - Abstract

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  15. Picking Cell Lines for High-Throughput Transcriptomic Toxicity Screening (SOT)

    EPA Science Inventory

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captu...

  16. Development of a Scintillation Proximity Assay (SPA) Based, High Throughput Screening Feasible Method for the Identification of PDE12 Activity Modulators.

    PubMed

    Mang, Samuel; Bucher, Hannes; Nickolaus, Peter

    2016-01-01

    The scintillation proximity assay (SPA) technology has been widely used to establish high throughput screens (HTS) for a range of targets in the pharmaceutical industry. PDE12 (aka. 2'- phosphodiesterase) has been published to participate in the degradation of oligoadenylates that are involved in the establishment of an antiviral state via the activation of ribonuclease L (RNAse-L). Degradation of oligoadenylates by PDE12 terminates these antiviral activities, leading to decreased resistance of cells for a variety of viral pathogens. Therefore inhibitors of PDE12 are discussed as antiviral therapy. Here we describe the use of the yttrium silicate SPA bead technology to assess inhibitory activity of compounds against PDE12 in a homogeneous, robust HTS feasible assay using tritiated adenosine-P-adenylate ([3H]ApA) as substrate. We found that the used [3H]ApA educt, was not able to bind to SPA beads, whereas the product [3H]AMP, as known before, was able to bind to SPA beads. This enables the measurement of PDE12 activity on [3H]ApA as a substrate using a wallac microbeta counter. This method describes a robust and high throughput capable format in terms of specificity, commonly used compound solvents, ease of detection and assay matrices. The method could facilitate the search for PDE12 inhibitors as antiviral compounds.

  17. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    PubMed

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  18. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    PubMed

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  19. High Throughput, High Content Screening for Novel Pigmentation Regulators Using a Keratinocyte/Melanocyte Co-culture System

    PubMed Central

    Lee, Ju Hee; Chen, Hongxiang; Kolev, Vihren; Aull, Katherine H.; Jung, Inhee; Wang, Jun; Miyamoto, Shoko; Hosoi, Junichi; Mandinova, Anna; Fisher, David E.

    2014-01-01

    Skin pigmentation is a complex process including melanogenesis within melanocytes and melanin transfer to the keratinocytes. To develop a comprehensive screening method for novel pigmentation regulators, we used immortalized melanocytes and keratinocytes in co-culture to screen large numbers of compounds. High-throughput screening plates were subjected to digital automated microscopy to quantify the pigmentation via brightfield microscopy. Compounds with pigment suppression were secondarily tested for their effects on expression of MITF and several pigment regulatory genes, and further validated in terms of non-toxicity to keratinocytes/melanocytes and dose dependent activity. The results demonstrate a high-throughput, high-content screening approach, which is applicable to the analysis of large chemical libraries using a co-culture system. We identified candidate pigmentation inhibitors from 4,000 screened compounds including zoxazolamine, 3-methoxycatechol, and alpha-mangostin, which were also shown to modulate expression of MITF and several key pigmentation factors, and are worthy of further evaluation for potential translation to clinical use. PMID:24438532

  20. State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet

    EPA Pesticide Factsheets

    State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet (Presented by Dr. Marilyn J. Aardema, Chief Scientific Advisor, Toxicology, Dr. Leon Stankowski, et. al. (6/28/2012)

  1. Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening

    EPA Science Inventory

    Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multip...

  2. Environmental Impact on Vascular Development Predicted by High Throughput Screening

    EPA Science Inventory

    Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High throughput screening (HTS) in EPA’s ToxCastTM project provides vast d...

  3. AOPs and Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making

    EPA Science Inventory

    As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will b...

  4. tcpl: The ToxCast Pipeline for High-Throughput Screening Data

    EPA Science Inventory

    Motivation: The large and diverse high-throughput chemical screening efforts carried out by the US EPAToxCast program requires an efficient, transparent, and reproducible data pipeline.Summary: The tcpl R package and its associated MySQL database provide a generalized platform fo...

  5. High-throughput screening, predictive modeling and computational embryology

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to profile thousands of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition to projects worldwide,...

  6. Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

    EPA Science Inventory

    High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, c...

  7. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform

    PubMed Central

    Rizvi, Imran; Moon, Sangjun; Hasan, Tayyaba; Demirci, Utkan

    2013-01-01

    In vitro 3D cancer models that provide a more accurate representation of disease in vivo are urgently needed to improve our understanding of cancer pathology and to develop better cancer therapies. However, development of 3D models that are based on manual ejection of cells from micropipettes suffer from inherent limitations such as poor control over cell density, limited repeatability, low throughput, and, in the case of coculture models, lack of reproducible control over spatial distance between cell types (e.g., cancer and stromal cells). In this study, we build on a recently introduced 3D model in which human ovarian cancer (OVCAR-5) cells overlaid on Matrigel™ spontaneously form multicellular acini. We introduce a high-throughput automated cell printing system to bioprint a 3D coculture model using cancer cells and normal fibroblasts micropatterned on Matrigel™. Two cell types were patterned within a spatially controlled microenvironment (e.g., cell density, cell-cell distance) in a high-throughput and reproducible manner; both cell types remained viable during printing and continued to proliferate following patterning. This approach enables the miniaturization of an established macro-scale 3D culture model and would allow systematic investigation into the multiple unknown regulatory feedback mechanisms between tumor and stromal cells and provide a tool for high-throughput drug screening. PMID:21298805

  8. A droplet-based heterogeneous immunoassay for screening single cells secreting antigen-specific antibodies.

    PubMed

    Akbari, Samin; Pirbodaghi, Tohid

    2014-09-07

    High throughput heterogeneous immunoassays that screen antigen-specific antibody secreting cells are essential to accelerate monoclonal antibody discovery for therapeutic applications. Here, we introduce a heterogeneous single cell immunoassay based on alginate microparticles as permeable cell culture chambers. Using a microfluidic device, we encapsulated single antibody secreting cells in 35-40 μm diameter alginate microbeads. We functionalized the alginate to capture the secreted antibodies inside the microparticles, enabling single cell analysis and preventing the cross-talk between the neighboring encapsulated cells. We demonstrated non-covalent functionalization of alginate microparticles by adding three secondary antibodies to the alginate solution to form high molecular weight complexes that become trapped in the porous nanostructure of alginate and capture the secreted antibodies. We screened anti-TNF-alpha antibody-secreting cells from a mixture of antibody-secreting cells.

  9. Frontiers in Chemical Sensors: Novel Principles and Techniques

    NASA Astrophysics Data System (ADS)

    Orellana, Guillermo; Moreno-Bondi, Maria Cruz

    This third volume of Springer Series on Chemical Sensors and Biosensors aims to enable the researcher or technologist to become acquainted with the latest principles and techniques that keep on enlarging the applications in this fascinating field. It deals with the novel luminescence lifetime-based techniques for interrogation of sensor arrays in high-throughput screening, cataluminescence, chemical sensing with hollow waveguides, new ways in sensor design and fabrication by means of either combinatorial methods or engineered indicator/support couples.

  10. Commercialization of microfluidic devices.

    PubMed

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. University of Texas MD Anderson Cancer Center (UT-MDACC): High-Throughput Screening Identifying Driving Mutations in Endometrial Cancer | Office of Cancer Genomics

    Cancer.gov

    Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.

  12. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids

    PubMed Central

    Beneke, Tom; Makin, Laura; Valli, Jessica; Sunter, Jack

    2017-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput production of mutant phenotypes. Here, we report development of a CRISPR-Cas9 toolkit that allows rapid tagging and gene knockout in diverse kinetoplastid species without requiring the user to perform any DNA cloning. We developed a new protocol for single-guide RNA (sgRNA) delivery using PCR-generated DNA templates which are transcribed in vivo by T7 RNA polymerase and an online resource (LeishGEdit.net) for automated primer design. We produced a set of plasmids that allows easy and scalable generation of DNA constructs for transfections in just a few hours. We show how these tools allow knock-in of fluorescent protein tags, modified biotin ligase BirA*, luciferase, HaloTag and small epitope tags, which can be fused to proteins at the N- or C-terminus, for functional studies of proteins and localization screening. These tools enabled generation of null mutants in a single round of transfection in promastigote form Leishmania major, Leishmania mexicana and bloodstream form Trypanosoma brucei; deleted genes were undetectable in non-clonal populations, enabling for the first time rapid and large-scale knockout screens. PMID:28573017

  13. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine

    PubMed Central

    Pauli, Chantal; Hopkins, Benjamin D.; Prandi, Davide; Shaw, Reid; Fedrizzi, Tarcisio; Sboner, Andrea; Sailer, Verena; Augello, Michael; Puca, Loredana; Rosati, Rachele; McNary, Terra J.; Churakova, Yelena; Cheung, Cynthia; Triscott, Joanna; Pisapia, David; Rao, Rema; Mosquera, Juan Miguel; Robinson, Brian; Faltas, Bishoy M.; Emerling, Brooke E.; Gadi, Vijayakrishna K.; Bernard, Brady; Elemento, Olivier; Beltran, Himisha; Dimichelis, Francesca; Kemp, Christopher J.; Grandori, Carla; Cantley, Lewis C.; Rubin, Mark A.

    2017-01-01

    Precision Medicine is an approach that takes into account the influence of individuals' genes, environment and lifestyle exposures to tailor interventions. Here, we describe the development of a robust precision cancer care platform, which integrates whole exome sequencing (WES) with a living biobank that enables high throughput drug screens on patient-derived tumor organoids. To date, 56 tumor-derived organoid cultures, and 19 patient-derived xenograft (PDX) models have been established from the 769 patients enrolled in an IRB approved clinical trial. Because genomics alone was insufficient to identify therapeutic options for the majority of patients with advanced disease, we used high throughput drug screening effective strategies. Analysis of tumor derived cells from four cases, two uterine malignancies and two colon cancers, identified effective drugs and drug combinations that were subsequently validated using 3D cultures and PDX models. This platform thereby promotes the discovery of novel therapeutic approaches that can be assessed in clinical trials and provides personalized therapeutic options for individual patients where standard clinical options have been exhausted. PMID:28331002

  14. Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions.

    PubMed

    Trinder, Mark; Daisley, Brendan A; Dube, Josh S; Reid, Gregor

    2017-01-01

    Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host-microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host-microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host-microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.

  15. CRISPR-FOCUS: A web server for designing focused CRISPR screening experiments.

    PubMed

    Cao, Qingyi; Ma, Jian; Chen, Chen-Hao; Xu, Han; Chen, Zhi; Li, Wei; Liu, X Shirley

    2017-01-01

    The recently developed CRISPR screen technology, based on the CRISPR/Cas9 genome editing system, enables genome-wide interrogation of gene functions in an efficient and cost-effective manner. Although many computational algorithms and web servers have been developed to design single-guide RNAs (sgRNAs) with high specificity and efficiency, algorithms specifically designed for conducting CRISPR screens are still lacking. Here we present CRISPR-FOCUS, a web-based platform to search and prioritize sgRNAs for CRISPR screen experiments. With official gene symbols or RefSeq IDs as the only mandatory input, CRISPR-FOCUS filters and prioritizes sgRNAs based on multiple criteria, including efficiency, specificity, sequence conservation, isoform structure, as well as genomic variations including Single Nucleotide Polymorphisms and cancer somatic mutations. CRISPR-FOCUS also provides pre-defined positive and negative control sgRNAs, as well as other necessary sequences in the construct (e.g., U6 promoters to drive sgRNA transcription and RNA scaffolds of the CRISPR/Cas9). These features allow users to synthesize oligonucleotides directly based on the output of CRISPR-FOCUS. Overall, CRISPR-FOCUS provides a rational and high-throughput approach for sgRNA library design that enables users to efficiently conduct a focused screen experiment targeting up to thousands of genes. (CRISPR-FOCUS is freely available at http://cistrome.org/crispr-focus/).

  16. Retrofit Strategies for Incorporating Xenobiotic Metabolism into High Throughput Screening Assays (EMGS)

    EPA Science Inventory

    The US EPA’s ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  17. Defining the taxonomic domain of applicability for mammalian-based high-throughput screening assays

    EPA Science Inventory

    Cell-based high throughput screening (HTS) technologies are becoming mainstream in chemical safety evaluations. The US Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCastTM) and the multi-agency Tox21 Programs have been at the forefront in advancing this science, m...

  18. DNA-encoded chemistry: enabling the deeper sampling of chemical space.

    PubMed

    Goodnow, Robert A; Dumelin, Christoph E; Keefe, Anthony D

    2017-02-01

    DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.

  19. A Method for Identifying Small-Molecule Aggregators Using Photonic Crystal Biosensor Microplates

    PubMed Central

    Chan, Leo L.; Lidstone, Erich A.; Finch, Kristin E.; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.

    2010-01-01

    Small molecules identified through high-throughput screens are an essential element in pharmaceutical discovery programs. It is now recognized that a substantial fraction of small molecules exhibit aggregating behavior leading to false positive results in many screening assays, typically due to nonspecific attachment to target proteins. Therefore, the ability to efficiently identify compounds within a screening library that aggregate can streamline the screening process by eliminating unsuitable molecules from further consideration. In this work, we show that photonic crystal (PC) optical biosensor microplate technology can be used to identify and quantify small-molecule aggregation. A group of aggregators and nonaggregators were tested using the PC technology, and measurements were compared with those gathered by three alternative methods: dynamic light scattering (DLS), an α-chymotrypsin colorimetric assay, and scanning electron microscopy (SEM). The PC biosensor measurements of aggregation were confirmed by visual observation using SEM, and were in general agreement with the α-chymotrypsin assay. DLS measurements, in contrast, demonstrated inconsistent readings for many compounds that are found to form aggregates in shapes, very different from the classical spherical particles assumed in DLS modeling. As a label-free detection method, the PC biosensor aggregation assay is simple to implement and provides a quantitative direct measurement of the mass density of material adsorbed to the transducer surface, whereas the microplate-based sensor format enables compatibility with high-throughput automated liquid-handling methods used in pharmaceutical screening. PMID:20930952

  20. Reprogramming cell fate with a genome-scale library of artificial transcription factors.

    PubMed

    Eguchi, Asuka; Wleklinski, Matthew J; Spurgat, Mackenzie C; Heiderscheit, Evan A; Kropornicka, Anna S; Vu, Catherine K; Bhimsaria, Devesh; Swanson, Scott A; Stewart, Ron; Ramanathan, Parameswaran; Kamp, Timothy J; Slukvin, Igor; Thomson, James A; Dutton, James R; Ansari, Aseem Z

    2016-12-20

    Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices.

  1. Reprogramming cell fate with a genome-scale library of artificial transcription factors

    PubMed Central

    Eguchi, Asuka; Wleklinski, Matthew J.; Spurgat, Mackenzie C.; Heiderscheit, Evan A.; Kropornicka, Anna S.; Vu, Catherine K.; Bhimsaria, Devesh; Swanson, Scott A.; Stewart, Ron; Ramanathan, Parameswaran; Kamp, Timothy J.; Slukvin, Igor; Thomson, James A.; Dutton, James R.; Ansari, Aseem Z.

    2016-01-01

    Artificial transcription factors (ATFs) are precision-tailored molecules designed to bind DNA and regulate transcription in a preprogrammed manner. Libraries of ATFs enable the high-throughput screening of gene networks that trigger cell fate decisions or phenotypic changes. We developed a genome-scale library of ATFs that display an engineered interaction domain (ID) to enable cooperative assembly and synergistic gene expression at targeted sites. We used this ATF library to screen for key regulators of the pluripotency network and discovered three combinations of ATFs capable of inducing pluripotency without exogenous expression of Oct4 (POU domain, class 5, TF 1). Cognate site identification, global transcriptional profiling, and identification of ATF binding sites reveal that the ATFs do not directly target Oct4; instead, they target distinct nodes that converge to stimulate the endogenous pluripotency network. This forward genetic approach enables cell type conversions without a priori knowledge of potential key regulators and reveals unanticipated gene network dynamics that drive cell fate choices. PMID:27930301

  2. Process-driven information management system at a biotech company: concept and implementation.

    PubMed

    Gobbi, Alberto; Funeriu, Sandra; Ioannou, John; Wang, Jinyi; Lee, Man-Ling; Palmer, Chris; Bamford, Bob; Hewitt, Robin

    2004-01-01

    While established pharmaceutical companies have chemical information systems in place to manage their compounds and the associated data, new startup companies need to implement these systems from scratch. Decisions made early in the design phase usually have long lasting effects on the expandability, maintenance effort, and costs associated with the information management system. Careful analysis of work and data flows, both inter- and intradepartmental, and identification of existing dependencies between activities are important. This knowledge is required to implement an information management system, which enables the research community to work efficiently by avoiding redundant registration and processing of data and by timely provision of the data whenever needed. This paper first presents the workflows existing at Anadys, then ARISE, the research information management system developed in-house at Anadys. ARISE was designed to support the preclinical drug discovery process and covers compound registration, analytical quality control, inventory management, high-throughput screening, lower throughput screening, and data reporting.

  3. Identifying Toxicity Pathways with ToxCast High-Throughput Screening and Applications to Predicting Developmental Toxicity

    EPA Science Inventory

    Results from rodent and non-rodent prenatal developmental toxicity tests for over 300 chemicals have been curated into the relational database ToxRefDB. These same chemicals have been run in concentration-response format through over 500 high-throughput screening assays assessin...

  4. SeqAPASS to evaluate conservation of high-throughput screening targets across non-mammalian species

    EPA Science Inventory

    Cell-based high-throughput screening (HTS) and computational technologies are being applied as tools for toxicity testing in the 21st century. The U.S. Environmental Protection Agency (EPA) embraced these technologies and created the ToxCast Program in 2007, which has served as a...

  5. Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program

    EPA Science Inventory

    There are thousands of chemicals that are directly added to or come in contact with food, many of which have undergone little to no toxicological evaluation. The ToxCast high-throughput screening (HTS) program has evaluated over 1,800 chemicals in concentration-response across ~8...

  6. Application of Physiologically-Based Pharmacokinetic/Pharmacodynamic Model for Interpretation of High-throughput Screening Assay for Thyroperoxidase Inhibition

    EPA Science Inventory

    In vitro based assays are used to identify potential endocrine disrupting chemicals. Thyroperoxidase (TPO), an enzyme essential for thyroid hormone (TH) synthesis, is a target site for disruption of the thyroid axis for which a high-throughput screening (HTPS) assay has recently ...

  7. Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

    EPA Science Inventory

    The EPA ToxCast research program uses high throughput screening for bioactivity profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase‐I tested 309 well‐characterized chemicals in over 500 assays for a wide range of molecular targets and cellular respo...

  8. Neural Progenitor Cells as Models for High-Throughput Screens of Developmental Neurotoxicity: State of the Science

    EPA Science Inventory

    In vitro, high-throughput approaches have been widely recommended as an approach to screen chemicals for the potential to cause developmental neurotoxicity and prioritize them for additional testing. The choice of cellular models for such an approach will have important ramificat...

  9. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening*

    EPA Science Inventory

    AbstractHigh-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may ...

  10. Integrated Model of Chemical Perturbations of a Biological PathwayUsing 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor

    EPA Science Inventory

    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity pa...

  11. Computational methods for evaluation of cell-based data assessment--Bioconductor.

    PubMed

    Le Meur, Nolwenn

    2013-02-01

    Recent advances in miniaturization and automation of technologies have enabled cell-based assay high-throughput screening, bringing along new challenges in data analysis. Automation, standardization, reproducibility have become requirements for qualitative research. The Bioconductor community has worked in that direction proposing several R packages to handle high-throughput data including flow cytometry (FCM) experiment. Altogether, these packages cover the main steps of a FCM analysis workflow, that is, data management, quality assessment, normalization, outlier detection, automated gating, cluster labeling, and feature extraction. Additionally, the open-source philosophy of R and Bioconductor, which offers room for new development, continuously drives research and improvement of theses analysis methods, especially in the field of clustering and data mining. This review presents the principal FCM packages currently available in R and Bioconductor, their advantages and their limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation

    PubMed Central

    Rihel, Jason; Prober, David A.; Arvanites, Anthony; Lam, Kelvin; Zimmerman, Steven; Jang, Sumin; Haggarty, Stephen J.; Kokel, David; Rubin, Lee L.; Peterson, Randall T.; Schier, Alexander F.

    2010-01-01

    A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multi-dimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go-related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors. PMID:20075256

  13. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).

    PubMed

    Yong, K J; Scott, D J

    2015-03-01

    Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS. © 2014 Wiley Periodicals, Inc.

  14. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications.

    PubMed

    Stockwell, B R; Haggarty, S J; Schreiber, S L

    1999-02-01

    Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.

  15. Quality control methodology for high-throughput protein-protein interaction screening.

    PubMed

    Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha

    2011-01-01

    Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.

  16. tcpl: the ToxCast pipeline for high-throughput screening data.

    PubMed

    Filer, Dayne L; Kothiya, Parth; Setzer, R Woodrow; Judson, Richard S; Martin, Matthew T

    2017-02-15

    Large high-throughput screening (HTS) efforts are widely used in drug development and chemical toxicity screening. Wide use and integration of these data can benefit from an efficient, transparent and reproducible data pipeline. Summary: The tcpl R package and its associated MySQL database provide a generalized platform for efficiently storing, normalizing and dose-response modeling of large high-throughput and high-content chemical screening data. The novel dose-response modeling algorithm has been tested against millions of diverse dose-response series, and robustly fits data with outliers and cytotoxicity-related signal loss. tcpl is freely available on the Comprehensive R Archive Network under the GPL-2 license. martin.matt@epa.gov. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  17. CRISPR-Cas9-Edited Site Sequencing (CRES-Seq): An Efficient and High-Throughput Method for the Selection of CRISPR-Cas9-Edited Clones.

    PubMed

    Veeranagouda, Yaligara; Debono-Lagneaux, Delphine; Fournet, Hamida; Thill, Gilbert; Didier, Michel

    2018-01-16

    The emergence of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) gene editing systems has enabled the creation of specific mutants at low cost, in a short time and with high efficiency, in eukaryotic cells. Since a CRISPR-Cas9 system typically creates an array of mutations in targeted sites, a successful gene editing project requires careful selection of edited clones. This process can be very challenging, especially when working with multiallelic genes and/or polyploid cells (such as cancer and plants cells). Here we described a next-generation sequencing method called CRISPR-Cas9 Edited Site Sequencing (CRES-Seq) for the efficient and high-throughput screening of CRISPR-Cas9-edited clones. CRES-Seq facilitates the precise genotyping up to 96 CRISPR-Cas9-edited sites (CRES) in a single MiniSeq (Illumina) run with an approximate sequencing cost of $6/clone. CRES-Seq is particularly useful when multiple genes are simultaneously targeted by CRISPR-Cas9, and also for screening of clones generated from multiallelic genes/polyploid cells. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  18. Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing

    NASA Astrophysics Data System (ADS)

    Bazhirov, Timur; Mohammadi, Mohammad; Ding, Kevin; Barabash, Sergey

    Recent advances in cloud computing made it possible to access large-scale computational resources completely on-demand in a rapid and efficient manner. When combined with high fidelity simulations, they serve as an alternative pathway to enable computational discovery and design of new materials through large-scale high-throughput screening. Here, we present a case study for a cloud platform implemented at Exabyte Inc. We perform calculations to screen lightweight ternary alloys for thermodynamic stability. Due to the lack of experimental data for most such systems, we rely on theoretical approaches based on first-principle pseudopotential density functional theory. We calculate the formation energies for a set of ternary compounds approximated by special quasirandom structures. During an example run we were able to scale to 10,656 CPUs within 7 minutes from the start, and obtain results for 296 compounds within 38 hours. The results indicate that the ultimate formation enthalpy of ternary systems can be negative for some of lightweight alloys, including Li and Mg compounds. We conclude that compared to traditional capital-intensive approach that requires in on-premises hardware resources, cloud computing is agile and cost-effective, yet scalable and delivers similar performance.

  19. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    PubMed

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  20. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation

    PubMed Central

    Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G.; Garraway, Levi A.; Struhl, Kevin

    2015-01-01

    Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment. PMID:25902495

  1. Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation.

    PubMed

    Rotem, Asaf; Janzer, Andreas; Izar, Benjamin; Ji, Zhe; Doench, John G; Garraway, Levi A; Struhl, Kevin

    2015-05-05

    Colony formation in soft agar is the gold-standard assay for cellular transformation in vitro, but it is unsuited for high-throughput screening. Here, we describe an assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the soft-agar assay. Using GILA, we describe high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. Such molecules are unlikely to be found through conventional drug screening, and they include kinase inhibitors and drugs for noncancer diseases. In addition to known oncogenes, the genetic screen identifies genes that contribute to cellular transformation. Lastly, we demonstrate the ability of Food and Drug Administration-approved noncancer drugs to selectively kill ovarian cancer cells derived from patients with chemotherapy-resistant disease, suggesting this approach may provide useful information for personalized cancer treatment.

  2. Development of a Platform to Enable Fully Automated Cross-Titration Experiments.

    PubMed

    Cassaday, Jason; Finley, Michael; Squadroni, Brian; Jezequel-Sur, Sylvie; Rauch, Albert; Gajera, Bharti; Uebele, Victor; Hermes, Jeffrey; Zuck, Paul

    2017-04-01

    In the triage of hits from a high-throughput screening campaign or during the optimization of a lead compound, it is relatively routine to test compounds at multiple concentrations to determine potency and maximal effect. Additional follow-up experiments, such as agonist shift, can be quite valuable in ascertaining compound mechanism of action (MOA). However, these experiments require cross-titration of a test compound with the activating ligand of the receptor requiring 100-200 data points, severely limiting the number tested in MOA assays in a screening triage. We describe a process to enhance the throughput of such cross-titration experiments through the integration of Hewlett Packard's D300 digital dispenser onto one of our robotics platforms to enable on-the-fly cross-titration of compounds in a 1536-well plate format. The process handles all the compound management and data tracking, as well as the biological assay. The process relies heavily on in-house-built software and hardware, and uses our proprietary control software for the platform. Using this system, we were able to automate the cross-titration of compounds for both positive and negative allosteric modulators of two different G protein-coupled receptors (GPCRs) using two distinct assay detection formats, IP1 and Ca 2+ detection, on nearly 100 compounds for each target.

  3. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    PubMed

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.

  4. A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis

    PubMed Central

    Bharat, Amrita; Blanchard, Jan E.; Brown, Eric D.

    2014-01-01

    The synthesis of ribosomes is an essential process, which is aided by a variety of transacting factors in bacteria. Among these is a group of GTPases essential for bacterial viability and emerging as promising targets for new antibacterial agents. Herein, we describe a robust high-throughput screening process for inhibitors of one such GTPase, the Escherichia coli EngA protein. The primary screen employed an assay of phosphate production in 384-well density. Reaction conditions were chosen to maximize sensitivity for the discovery of competitive inhibitors while maintaining a strong signal amplitude and low noise. In a pilot screen of 31,800 chemical compounds, 44 active compounds were identified. Further, we describe the elimination of non-specific inhibitors that were detergent-sensitive or reactive as well as those that interfered with the high-throughput phosphate assay. Four inhibitors survived these common counter-screens for non-specificity but these chemicals were also inhibitors of the unrelated enzyme dihydrofolate reductase, suggesting that they too were promiscuously active. The high-throughput screen of the EngA protein described here provides a meticulous pilot study in the search for specific inhibitors of GTPases involved in ribosome biogenesis. PMID:23606650

  5. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library.

    PubMed

    Macdonald, Spencer S; Patel, Ankoor; Larmour, Veronica L C; Morgan-Lang, Connor; Hallam, Steven J; Mark, Brian L; Withers, Stephen G

    2018-03-02

    Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N -acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A neurite quality index and machine vision software for improved quantification of neurodegeneration.

    PubMed

    Romero, Peggy; Miller, Ted; Garakani, Arman

    2009-12-01

    Current methods to assess neurodegradation in dorsal root ganglion cultures as a model for neurodegenerative diseases are imprecise and time-consuming. Here we describe two new methods to quantify neuroprotection in these cultures. The neurite quality index (NQI) builds upon earlier manual methods, incorporating additional morphological events to increase detection sensitivity for the detection of early degeneration events. Neurosight is a machine vision-based method that recapitulates many of the strengths of NQI while enabling high-throughput screening applications with decreased costs.

  7. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry.

    PubMed

    Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean

    2016-10-01

    To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.

  8. High Throughput Determination of Critical Human Dosing Parameters (SOT)

    EPA Science Inventory

    High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data int...

  9. High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)

    EPA Science Inventory

    High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...

  10. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    EPA Science Inventory

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  11. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.

    PubMed

    Morschett, Holger; Wiechert, Wolfgang; Oldiges, Marco

    2016-02-09

    Within the context of microalgal lipid production for biofuels and bulk chemical applications, specialized higher throughput devices for small scale parallelized cultivation are expected to boost the time efficiency of phototrophic bioprocess development. However, the increasing number of possible experiments is directly coupled to the demand for lipid quantification protocols that enable reliably measuring large sets of samples within short time and that can deal with the reduced sample volume typically generated at screening scale. To meet these demands, a dye based assay was established using a liquid handling robot to provide reproducible high throughput quantification of lipids with minimized hands-on-time. Lipid production was monitored using the fluorescent dye Nile red with dimethyl sulfoxide as solvent facilitating dye permeation. The staining kinetics of cells at different concentrations and physiological states were investigated to successfully down-scale the assay to 96 well microtiter plates. Gravimetric calibration against a well-established extractive protocol enabled absolute quantification of intracellular lipids improving precision from ±8 to ±2 % on average. Implementation into an automated liquid handling platform allows for measuring up to 48 samples within 6.5 h, reducing hands-on-time to a third compared to manual operation. Moreover, it was shown that automation enhances accuracy and precision compared to manual preparation. It was revealed that established protocols relying on optical density or cell number for biomass adjustion prior to staining may suffer from errors due to significant changes of the cells' optical and physiological properties during cultivation. Alternatively, the biovolume was used as a measure for biomass concentration so that errors from morphological changes can be excluded. The newly established assay proved to be applicable for absolute quantification of algal lipids avoiding limitations of currently established protocols, namely biomass adjustment and limited throughput. Automation was shown to improve data reliability, as well as experimental throughput simultaneously minimizing the needed hands-on-time to a third. Thereby, the presented protocol meets the demands for the analysis of samples generated by the upcoming generation of devices for higher throughput phototrophic cultivation and thereby contributes to boosting the time efficiency for setting up algae lipid production processes.

  12. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening.

    PubMed

    Soufan, Othman; Ba-Alawi, Wail; Magana-Mora, Arturo; Essack, Magbubah; Bajic, Vladimir B

    2018-06-14

    High-throughput screening (HTS) performs the experimental testing of a large number of chemical compounds aiming to identify those active in the considered assay. Alternatively, faster and cheaper methods of large-scale virtual screening are performed computationally through quantitative structure-activity relationship (QSAR) models. However, the vast amount of available HTS heterogeneous data and the imbalanced ratio of active to inactive compounds in an assay make this a challenging problem. Although different QSAR models have been proposed, they have certain limitations, e.g., high false positive rates, complicated user interface, and limited utilization options. Therefore, we developed DPubChem, a novel web tool for deriving QSAR models that implement the state-of-the-art machine-learning techniques to enhance the precision of the models and enable efficient analyses of experiments from PubChem BioAssay database. DPubChem also has a simple interface that provides various options to users. DPubChem predicted active compounds for 300 datasets with an average geometric mean and F 1 score of 76.68% and 76.53%, respectively. Furthermore, DPubChem builds interaction networks that highlight novel predicted links between chemical compounds and biological assays. Using such a network, DPubChem successfully suggested a novel drug for the Niemann-Pick type C disease. DPubChem is freely available at www.cbrc.kaust.edu.sa/dpubchem .

  13. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitablymore » designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.« less

  14. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  15. An industrial engineering approach to laboratory automation for high throughput screening

    PubMed Central

    Menke, Karl C.

    2000-01-01

    Across the pharmaceutical industry, there are a variety of approaches to laboratory automation for high throughput screening. At Sphinx Pharmaceuticals, the principles of industrial engineering have been applied to systematically identify and develop those automated solutions that provide the greatest value to the scientists engaged in lead generation. PMID:18924701

  16. Evaluation of High-throughput Genotoxicity Assays Used in Profiling the US EPA ToxCast Chemicals

    EPA Science Inventory

    Three high-throughput screening (HTS) genotoxicity assays-GreenScreen HC GADD45a-GFP (Gentronix Ltd.), CellCiphr p53 (Cellumen Inc.) and CellSensor p53RE-bla (Invitrogen Corp.)-were used to analyze the collection of 320 predominantly pesticide active compounds being tested in Pha...

  17. Collaborative Core Research Program for Chemical-Biological Warfare Defense

    DTIC Science & Technology

    2015-01-04

    Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD...Discovery through High Throughput Screening (HTS) and Fragment-Based Drug Design (FBDD) Current pharmaceutical approaches involving drug discovery...structural analysis and docking program generally known as fragment based drug design (FBDD). The main advantage of using these approaches is that

  18. PLASMA PROTEIN PROFILING AS A HIGH THROUGHPUT TOOL FOR CHEMICAL SCREENING USING A SMALL FISH MODEL

    EPA Science Inventory

    Hudson, R. Tod, Michael J. Hemmer, Kimberly A. Salinas, Sherry S. Wilkinson, James Watts, James T. Winstead, Peggy S. Harris, Amy Kirkpatrick and Calvin C. Walker. In press. Plasma Protein Profiling as a High Throughput Tool for Chemical Screening Using a Small Fish Model (Abstra...

  19. High-throughput screening and small animal models, where are we?

    PubMed Central

    Giacomotto, Jean; Ségalat, Laurent

    2010-01-01

    Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day. PMID:20423335

  20. High-throughput differentiation of heparin from other glycosaminoglycans by pyrolysis mass spectrometry.

    PubMed

    Nemes, Peter; Hoover, William J; Keire, David A

    2013-08-06

    Sensors with high chemical specificity and enhanced sample throughput are vital to screening food products and medical devices for chemical or biochemical contaminants that may pose a threat to public health. For example, the rapid detection of oversulfated chondroitin sulfate (OSCS) in heparin could prevent reoccurrence of heparin adulteration that caused hundreds of severe adverse events including deaths worldwide in 2007-2008. Here, rapid pyrolysis is integrated with direct analysis in real time (DART) mass spectrometry to rapidly screen major glycosaminoglycans, including heparin, chondroitin sulfate A, dermatan sulfate, and OSCS. The results demonstrate that, compared to traditional liquid chromatography-based analyses, pyrolysis mass spectrometry achieved at least 250-fold higher sample throughput and was compatible with samples volume-limited to about 300 nL. Pyrolysis yielded an abundance of fragment ions (e.g., 150 different m/z species), many of which were specific to the parent compound. Using multivariate and statistical data analysis models, these data enabled facile differentiation of the glycosaminoglycans with high throughput. After method development was completed, authentically contaminated samples obtained during the heparin crisis by the FDA were analyzed in a blinded manner for OSCS contamination. The lower limit of differentiation and detection were 0.1% (w/w) OSCS in heparin and 100 ng/μL (20 ng) OSCS in water, respectively. For quantitative purposes the linear dynamic range spanned approximately 3 orders of magnitude. Moreover, this chemical readout was successfully employed to find clues in the manufacturing history of the heparin samples that can be used for surveillance purposes. The presented technology and data analysis protocols are anticipated to be readily adaptable to other chemical and biochemical agents and volume-limited samples.

  1. A Novel High Throughput Assay for Anthelmintic Drug Screening and Resistance Diagnosis by Real-Time Monitoring of Parasite Motility

    PubMed Central

    Smout, Michael J.; Kotze, Andrew C.; McCarthy, James S.; Loukas, Alex

    2010-01-01

    Background Helminth parasites cause untold morbidity and mortality to billions of people and livestock. Anthelmintic drugs are available but resistance is a problem in livestock parasites, and is a looming threat for human helminths. Testing the efficacy of available anthelmintic drugs and development of new drugs is hindered by the lack of objective high-throughput screening methods. Currently, drug effect is assessed by observing motility or development of parasites using laborious, subjective, low-throughput methods. Methodology/Principal Findings Here we describe a novel application for a real-time cell monitoring device (xCELLigence) that can simply and objectively assess anthelmintic effects by measuring parasite motility in real time in a fully automated high-throughput fashion. We quantitatively assessed motility and determined real time IC50 values of different anthelmintic drugs against several developmental stages of major helminth pathogens of humans and livestock, including larval Haemonchus contortus and Strongyloides ratti, and adult hookworms and blood flukes. The assay enabled quantification of the onset of egg hatching in real time, and the impact of drugs on hatch rate, as well as discriminating between the effects of drugs on motility of drug-susceptible and –resistant isolates of H. contortus. Conclusions/Significance Our findings indicate that this technique will be suitable for discovery and development of new anthelmintic drugs as well as for detection of phenotypic resistance to existing drugs for the majority of helminths and other pathogens where motility is a measure of pathogen viability. The method is also amenable to use for other purposes where motility is assessed, such as gene silencing or antibody-mediated killing. PMID:21103363

  2. Rapid Catalyst Screening by a Continuous-Flow Microreactor Interfaced with Ultra High Pressure Liquid Chromatography

    PubMed Central

    Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.

    2010-01-01

    A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502

  3. A Novel 96well-formatted Micro-gap Plate Enabling Drug Response Profiling on Primary Tumour Samples

    NASA Astrophysics Data System (ADS)

    Ma, Wei-Yuan; Hsiung, Lo-Chang; Wang, Chen-Ho; Chiang, Chi-Ling; Lin, Ching-Hung; Huang, Chiun-Sheng; Wo, Andrew M.

    2015-04-01

    Drug-based treatments are the most widely used interventions for cancer management. Personalized drug response profiling remains inherently challenging with low cell count harvested from tumour sample. We present a 96well-formatted microfluidic plate with built-in micro-gap that preserves up to 99.2% of cells during multiple assay/wash operation and only 9,000 cells needed for a single reagent test (i.e. 1,000 cells per test spot x 3 selected concentration x triplication), enabling drug screening and compatibility with conventional automated workstations. Results with MCF7 and MDA-MB-231 cell lines showed that no statistical significance was found in dose-response between the device and conventional 96-well plate control. Primary tumour samples from breast cancer patients tested in the device also showed good IC50 prediction. With drug screening of primary cancer cells must consider a wide range of scenarios, e.g. suspended/attached cell types and rare/abundant cell availability, the device enables high throughput screening even for suspended cells with low cell count since the signature microfluidic cell-trapping feature ensures cell preservation in a multiple solution exchange protocol.

  4. Measuring molecular biomarkers in epidemiologic studies: laboratory techniques and biospecimen considerations.

    PubMed

    Erickson, Heidi S

    2012-09-28

    The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Iterative Focused Screening with Biological Fingerprints Identifies Selective Asc-1 Inhibitors Distinct from Traditional High Throughput Screening.

    PubMed

    Kutchukian, Peter S; Warren, Lee; Magliaro, Brian C; Amoss, Adam; Cassaday, Jason A; O'Donnell, Gregory; Squadroni, Brian; Zuck, Paul; Pascarella, Danette; Culberson, J Chris; Cooke, Andrew J; Hurzy, Danielle; Schlegel, Kelly-Ann Sondra; Thomson, Fiona; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Parmentier-Batteur, Sophie; Finley, Michael

    2017-02-17

    N-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer's disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine-serine-cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs. To identify novel Asc-1 inhibitors, two different screening approaches were performed with whole-cell amino acid uptake in heterologous cells stably expressing human Asc-1: (1) a high-throughput screen (HTS) of 3 M compounds measuring 35 S l-cysteine uptake into cells attached to scintillation proximity assay beads in a 1536 well format and (2) an iterative focused screen (IFS) of a 45 000 compound diversity set using a 3 H d-serine uptake assay with a liquid scintillation plate reader in a 384 well format. Critically important for both screening approaches was the implementation of counter screens to remove nonspecific inhibitors of radioactive amino acid uptake. Furthermore, a 15 000 compound expansion step incorporating both on- and off-target data into chemical and biological fingerprint-based models for selection of additional hits enabled the identification of novel Asc-1-selective chemical matter from the IFS that was not identified in the full-collection HTS.

  6. High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels.

    PubMed

    Willhammar, Tom; Su, Jie; Yun, Yifeng; Zou, Xiaodong; Afeworki, Mobae; Weston, Simon C; Vroman, Hilda B; Lonergan, William W; Strohmaier, Karl G

    2017-08-07

    The aluminosilicate zeolite ZSM-43 (where ZSM = Zeolite Socony Mobil) was first synthesized more than 3 decades ago, but its chemical structure remained unsolved because of its poor crystallinity and small crystal size. Here we present optimization of the ZSM-43 synthesis using a high-throughput approach and subsequent structure determination by the combination of electron crystallographic methods and powder X-ray diffraction. The synthesis required the use of a combination of both inorganic (Cs + and K + ) and organic (choline) structure-directing agents. High-throughput synthesis enabled a screening of the synthesis conditions, which made it possible to optimize the synthesis, despite its complexity, in order to obtain a material with significantly improved crystallinity. When both rotation electron diffraction and high-resolution transmission electron microscopy imaging techniques are applied, the structure of ZSM-43 could be determined. The structure of ZSM-43 is a new zeolite framework type and possesses a unique two-dimensional channel system limited by 8-ring channels. ZSM-43 is stable upon calcination, and sorption measurements show that the material is suitable for adsorption of carbon dioxide as well as methane.

  7. Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)

    EPA Science Inventory

    High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...

  8. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology.

    PubMed

    Watson, Christa; Ge, Jing; Cohen, Joel; Pyrgiotakis, Georgios; Engelward, Bevin P; Demokritou, Philip

    2014-03-25

    The likelihood of intentional and unintentional engineered nanoparticle (ENP) exposure has dramatically increased due to the use of nanoenabled products. Indeed, ENPs have been incorporated in many useful products and have enhanced our way of life. However, there are many unanswered questions about the consequences of nanoparticle exposures, in particular, with regard to their potential to damage the genome and thus potentially promote cancer. In this study, we present a high-throughput screening assay based upon the recently developed CometChip technology, which enables evaluation of single-stranded DNA breaks, abasic sites, and alkali-sensitive sites in cells exposed to ENPs. The strategic microfabricated, 96-well design and automated processing improves efficiency, reduces processing time, and suppresses user bias in comparison to the standard comet assay. We evaluated the versatility of this assay by screening five industrially relevant ENP exposures (SiO2, ZnO, Fe2O3, Ag, and CeO2) on both suspension human lymphoblastoid (TK6) and adherent Chinese hamster ovary (H9T3) cell lines. MTT and CyQuant NF assays were employed to assess cellular viability and proliferation after ENP exposure. Exposure to ENPs at a dose range of 5, 10, and 20 μg/mL induced dose-dependent increases in DNA damage and cytotoxicity. Genotoxicity profiles of ZnO>Ag>Fe2O3>CeO2>SiO2 in TK6 cells at 4 h and Ag>Fe2O3>ZnO>CeO2>SiO2 in H9T3 cells at 24 h were observed. The presented CometChip platform enabled efficient and reliable measurement of ENP-mediated DNA damage, therefore demonstrating the efficacy of this powerful tool in nanogenotoxicity studies.

  9. Creation of a small high-throughput screening facility.

    PubMed

    Flak, Tod

    2009-01-01

    The creation of a high-throughput screening facility within an organization is a difficult task, requiring a substantial investment of time, money, and organizational effort. Major issues to consider include the selection of equipment, the establishment of data analysis methodologies, and the formation of a group having the necessary competencies. If done properly, it is possible to build a screening system in incremental steps, adding new pieces of equipment and data analysis modules as the need grows. Based upon our experience with the creation of a small screening service, we present some guidelines to consider in planning a screening facility.

  10. Improvement of High-throughput Genotype Analysis After Implementation of a Dual-curve Sybr Green I-based Quantification and Normalization Procedure

    USDA-ARS?s Scientific Manuscript database

    The ability to rapidly screen a large number of individuals is the key to any successful plant breeding program. One of the primary bottlenecks in high throughput screening is the preparation of DNA samples, particularly the quantification and normalization of samples for downstream processing. A ...

  11. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    EPA Science Inventory

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  12. Use of FRTL-5 Cell Line as a Complementary Assay for Chemicals Identified During High-Throughput Screening as Sodium/Iodide Symporter (NIS) Inhibitors

    EPA Science Inventory

    Confirmation of Test Chemicals Identified by a High-Throughput Screen (HTPS) as Sodium Iodide Symporter (NIS) Inhibitors in FRTL-5 Model S. Laws1, A. Buckalew1, J. Wang2, D. Hallinger1, A. Murr1, and T. Stoker1. 1Endocrin...

  13. Computational Toxicology as Implemented by the U.S. EPA: Providing High Throughput Decision Support Tools for Screening and Assessing Chemical Exposure, Hazard and Risk

    EPA Science Inventory

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environ...

  14. Use of Threshold of Toxicological Concern (TTC) with High Throughput Exposure Predictions as a Risk-Based Screening Approach of Several Thousand Commodity Chemicals (SOT Poster)

    EPA Science Inventory

    Although progress has been made with HTS (high throughput screening) in profiling biological activity (e.g., EPA’s ToxCast™), challenges arise interpreting HTS results in the context of adversity & converting HTS assay concentrations to equivalent human doses for the broad domain...

  15. Probe molecules (PrM) approach in adverse outcome pathway (AOP) based high throughput screening (HTS): in vivo discovery for developing in vitro target methods

    EPA Science Inventory

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...

  16. Using adverse outcome pathway analysis to guide development of high-throughput screening assays for thyroid-disruptors

    EPA Science Inventory

    Using Adverse Outcome Pathway Analysis to Guide Development of High-Throughput Screening Assays for Thyroid-Disruptors Katie B. Paul1,2, Joan M. Hedge2, Daniel M. Rotroff4, Kevin M. Crofton4, Michael W. Hornung3, Steven O. Simmons2 1Oak Ridge Institute for Science Education Post...

  17. A novel assay for monoacylglycerol hydrolysis suitable for high-throughput screening.

    PubMed

    Brengdahl, Johan; Fowler, Christopher J

    2006-12-01

    A simple assay for monoacylglycerol hydrolysis suitable for high-throughput screening is described. The assay uses [(3)H]2-oleoylglycerol as substrate, with the tritium label in the glycerol part of the molecule and the use of phenyl sepharose gel to separate the hydrolyzed product ([(3)H]glycerol) from substrate. Using cytosolic fractions derived from rat cerebella as a source of hydrolytic activity, the assay gives the appropriate pH profile and sensitivity to inhibition with compounds known to inhibit hydrolysis of this substrate. The assay could also be adapted to a 96-well plate format, using C6 cells as the source of hydrolytic activity. Thus the assay is simple and appropriate for high-throughput screening of inhibitors of monoacylglycerol hydrolysis.

  18. Multi-tiered Approach to Development of Increased Throughput Assay Models to Assess Endocrine-Disrupting Activity of Chemicals

    EPA Science Inventory

    Screening for endocrine-disrupting chemicals (EDCs) requires sensitive, scalable assays. Current high-throughput screening (HTPS) approaches for estrogenic and androgenic activity yield rapid results, but many are not sensitive to physiological hormone concentrations, suggesting ...

  19. Use of early passage fetal intestinal epithelial cells in semi-high-throughput screening assays: an approach to identify new innate immune system adjuvants.

    PubMed

    Buckner, Diana; Wilson, Suzanne; Kurk, Sandra; Hardy, Michele; Miessner, Nicole; Jutila, Mark A

    2006-09-01

    Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.

  20. Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries.

    PubMed

    Vinogradov, Alexander A; Gates, Zachary P; Zhang, Chi; Quartararo, Anthony J; Halloran, Kathryn H; Pentelute, Bradley L

    2017-11-13

    A methodology to achieve high-throughput de novo sequencing of synthetic peptide mixtures is reported. The approach leverages shotgun nanoliquid chromatography coupled with tandem mass spectrometry-based de novo sequencing of library mixtures (up to 2000 peptides) as well as automated data analysis protocols to filter away incorrect assignments, noise, and synthetic side-products. For increasing the confidence in the sequencing results, mass spectrometry-friendly library designs were developed that enabled unambiguous decoding of up to 600 peptide sequences per hour while maintaining greater than 85% sequence identification rates in most cases. The reliability of the reported decoding strategy was additionally confirmed by matching fragmentation spectra for select authentic peptides identified from library sequencing samples. The methods reported here are directly applicable to screening techniques that yield mixtures of active compounds, including particle sorting of one-bead one-compound libraries and affinity enrichment of synthetic library mixtures performed in solution.

  1. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection

    PubMed Central

    Choudhry, Priya

    2016-01-01

    Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays. PMID:26848849

  2. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    NASA Astrophysics Data System (ADS)

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-06-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.

  3. Discovery of novel drugs for promising targets.

    PubMed

    Martell, Robert E; Brooks, David G; Wang, Yan; Wilcoxen, Keith

    2013-09-01

    Once a promising drug target is identified, the steps to actually discover and optimize a drug are diverse and challenging. The goal of this study was to provide a road map to navigate drug discovery. Review general steps for drug discovery and provide illustrating references. A number of approaches are available to enhance and accelerate target identification and validation. Consideration of a variety of potential mechanisms of action of potential drugs can guide discovery efforts. The hit to lead stage may involve techniques such as high-throughput screening, fragment-based screening, and structure-based design, with informatics playing an ever-increasing role. Biologically relevant screening models are discussed, including cell lines, 3-dimensional culture, and in vivo screening. The process of enabling human studies for an investigational drug is also discussed. Drug discovery is a complex process that has significantly evolved in recent years. © 2013 Elsevier HS Journals, Inc. All rights reserved.

  4. High throughput and miniaturised systems for biodegradability assessments.

    PubMed

    Cregut, Mickael; Jouanneau, Sulivan; Brillet, François; Durand, Marie-José; Sweetlove, Cyril; Chenèble, Jean-Charles; L'Haridon, Jacques; Thouand, Gérald

    2014-01-01

    The society demands safer products with a better ecological profile. Regulatory criteria have been developed to prevent risks for human health and the environment, for example, within the framework of the European regulation REACH (Regulation (EC) No 1907, 2006). This has driven industry to consider the development of high throughput screening methodologies for assessing chemical biodegradability. These new screening methodologies must be scalable for miniaturisation, reproducible and as reliable as existing procedures for enhanced biodegradability assessment. Here, we evaluate two alternative systems that can be scaled for high throughput screening and conveniently miniaturised to limit costs in comparison with traditional testing. These systems are based on two dyes as follows: an invasive fluorescent dyes that serves as a cellular activity marker (a resazurin-like dye reagent) and a noninvasive fluorescent oxygen optosensor dye (an optical sensor). The advantages and limitations of these platforms for biodegradability assessment are presented. Our results confirm the feasibility of these systems for evaluating and screening chemicals for ready biodegradability. The optosensor is a miniaturised version of a component already used in traditional ready biodegradability testing, whereas the resazurin dye offers an interesting new screening mechanism for chemical concentrations greater than 10 mg/l that are not amenable to traditional closed bottle tests. The use of these approaches allows generalisation of high throughput screening methodologies to meet the need of developing new compounds with a favourable ecological profile and also assessment for regulatory purpose.

  5. Lead discovery for mammalian elongation of long chain fatty acids family 6 using a combination of high-throughput fluorescent-based assay and RapidFire mass spectrometry assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Mari; Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama; Sakurai, Masaaki

    A high-throughput RapidFire mass spectrometry assay is described for elongation of very long-chain fatty acids family 6 (Elovl6). Elovl6 is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 may be a new therapeutic target for fat metabolism disorders such as obesity, type 2 diabetes, and nonalcoholic steatohepatitis. To identify new Elovl6 inhibitors, we developed a high-throughput fluorescence screening assay in 1536-well format. However, a number of false positives caused by fluorescent interference have been identified. To pick up the real active compounds among the primary hits from the fluorescence assay, we developed amore » RapidFire mass spectrometry assay and a conventional radioisotope assay. These assays have the advantage of detecting the main products directly without using fluorescent-labeled substrates. As a result, 276 compounds (30%) of the primary hits (921 compounds) in a fluorescence ultra-high-throughput screening method were identified as common active compounds in these two assays. It is concluded that both methods are very effective to eliminate false positives. Compared with the radioisotope method using an expensive {sup 14}C-labeled substrate, the RapidFire mass spectrometry method using unlabeled substrates is a high-accuracy, high-throughput method. In addition, some of the hit compounds selected from the screening inhibited cellular fatty acid elongation in HEK293 cells expressing Elovl6 transiently. This result suggests that these compounds may be promising lead candidates for therapeutic drugs. Ultra-high-throughput fluorescence screening followed by a RapidFire mass spectrometry assay was a suitable strategy for lead discovery against Elovl6. - Highlights: • A novel assay for elongation of very-long-chain fatty acids 6 (Elovl6) is proposed. • RapidFire mass spectrometry (RF-MS) assay is useful to select real screening hits. • RF-MS assay is proved to be beneficial because of its high-throughput and accuracy. • A combination of fluorescent and RF-MS assays is effective for Elovl6 inhibitors.« less

  6. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    PubMed Central

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-01-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5–10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications. PMID:25430092

  7. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni

    PubMed Central

    Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin

    2016-01-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  8. Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High Throughput Screening

    PubMed Central

    NEL, ANDRE; XIA, TIAN; MENG, HUAN; WANG, XIANG; LIN, SIJIE; JI, ZHAOXIA; ZHANG, HAIYUAN

    2014-01-01

    Conspectus The production of engineered nanomaterials (ENMs) is a scientific breakthrough in material design and the development of new consumer products. While the successful implementation of nanotechnology is important for the growth of the global economy, we also need to consider the possible environmental health and safety (EHS) impact as a result of the novel physicochemical properties that could generate hazardous biological outcomes. In order to assess ENM hazard, reliable and reproducible screening approaches are needed to test the basic materials as well as nano-enabled products. A platform is required to investigate the potentially endless number of bio-physicochemical interactions at the nano/bio interface, in response to which we have developed a predictive toxicological approach. We define a predictive toxicological approach as the use of mechanisms-based high throughput screening in vitro to make predictions about the physicochemical properties of ENMs that may lead to the generation of pathology or disease outcomes in vivo. The in vivo results are used to validate and improve the in vitro high throughput screening (HTS) and to establish structure-activity relationships (SARs) that allow hazard ranking and modeling by an appropriate combination of in vitro and in vivo testing. This notion is in agreement with the landmark 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy” (http://www.nap.edu/catalog.php?record_id=11970), which advocates increased efficiency of toxicity testing by transitioning from qualitative, descriptive animal testing to quantitative, mechanistic and pathway-based toxicity testing in human cells or cell lines using high throughput approaches. Accordingly, we have implemented HTS approaches to screen compositional and combinatorial ENM libraries to develop hazard ranking and structure-activity relationships that can be used for predicting in vivo injury outcomes. This predictive approach allows the bulk of the screening analysis and high volume data generation to be carried out in vitro, following which limited, but critical, validation studies are carried out in animals or whole organisms. Risk reduction in the exposed human or environmental populations can then focus on limiting or avoiding exposures that trigger these toxicological responses as well as implementing safer design of potentially hazardous ENMs. In this communication, we review the tools required for establishing predictive toxicology paradigms to assess inhalation and environmental toxicological scenarios through the use of compositional and combinatorial ENM libraries, mechanism-based HTS assays, hazard ranking and development of nano-SARs. We will discuss the major injury paradigms that have emerged based on specific ENM properties, as well as describing the safer design of ZnO nanoparticles based on characterization of dissolution chemistry as a major predictor of toxicity. PMID:22676423

  9. Robust high-throughput batch screening method in 384-well format with optical in-line resin quantification.

    PubMed

    Kittelmann, Jörg; Ottens, Marcel; Hubbuch, Jürgen

    2015-04-15

    High-throughput batch screening technologies have become an important tool in downstream process development. Although continuative miniaturization saves time and sample consumption, there is yet no screening process described in the 384-well microplate format. Several processes are established in the 96-well dimension to investigate protein-adsorbent interactions, utilizing between 6.8 and 50 μL resin per well. However, as sample consumption scales with resin volumes and throughput scales with experiments per microplate, they are limited in costs and saved time. In this work, a new method for in-well resin quantification by optical means, applicable in the 384-well format, and resin volumes as small as 0.1 μL is introduced. A HTS batch isotherm process is described, utilizing this new method in combination with optical sample volume quantification for screening of isotherm parameters in 384-well microplates. Results are qualified by confidence bounds determined by bootstrap analysis and a comprehensive Monte Carlo study of error propagation. This new approach opens the door to a variety of screening processes in the 384-well format on HTS stations, higher quality screening data and an increase in throughput. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Enhancing high throughput toxicology - development of putative adverse outcome pathways linking US EPA ToxCast screening targets to relevant apical hazards.

    EPA Science Inventory

    High throughput toxicology programs, such as ToxCast and Tox21, have provided biological effects data for thousands of chemicals at multiple concentrations. Compared to traditional, whole-organism approaches, high throughput assays are rapid and cost-effective, yet they generall...

  11. Evaluation of High-Throughput Chemical Exposure Models via Analysis of Matched Environmental and Biological Media Measurements

    EPA Science Inventory

    The U.S. EPA, under its ExpoCast program, is developing high-throughput near-field modeling methods to estimate human chemical exposure and to provide real-world context to high-throughput screening (HTS) hazard data. These novel modeling methods include reverse methods to infer ...

  12. Novel heparan sulfate assay by using automated high-throughput mass spectrometry: application to monitoring and screening for mucopolysaccharidoses

    PubMed Central

    Shimada, Tsutomu; Kelly, Joan; LaMarr, William A; van Vlies, Naomi; Yasuda, Eriko; Mason, Robert W.; Mackenzie, William; Kubaski, Francyne; Giugliani, Roberto; Chinen, Yasutsugu; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E.; Fukao, Toshiyuki; Orii, Tadao; Tomatsu, Shunji

    2014-01-01

    Mucopolysaccharidoses (MPS) are caused by deficiency of one of a group of specific lysosomal enzymes, resulting in excessive accumulation of glycosaminoglycans (GAGs). We previously developed GAG assay methods using liquid chromatography tandem mass spectrometry (LC-MS/MS); however, it takes 4–5 min per sample for analysis. For the large numbers of samples in a screening program, a more rapid process is desirable. The automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) integrates a solid phase extraction robot to concentrate and desalt samples prior to direction into the MS/MS without chromatographic separation; thereby allowing each sample to be processed within ten seconds (enabling screening of more than one million samples per year). The aim of this study was to develop a higher throughput system to assay heparan sulfate (HS) using HT-MS/MS, and to compare its reproducibility, sensitivity and specificity with conventional LC-MS/MS. HS levels were measured in blood (plasma and serum) from control subjects and patients with MPS II, III, or IV and in dried blood spots (DBS) from newborn controls and patients with MPS I, II, or III. Results obtained from HT-MS/MS showed 1) that there was a strong correlation of levels of disaccharides derived from HS in blood, between those calculated using conventional LC-MS/MS and HT-MS/MS, 2) that levels of HS in blood were significantly elevated in patients with MPS II and III, but not in MPS IVA, 3) that the level of HS in patients with a severe form of MPS II was higher than that in an attenuated form, 4) that reduction of blood HS level was observed in MPS II patients treated with enzyme replacement therapy or hematopoietic stem cell transplantation, and 5) that levels of HS in newborn DBS were elevated in patients with MPS I, II or III, compared to control newborns. In conclusion, HT-MS/MS provides much higher throughput than LC-MS/MS-based methods with similar sensitivity and specificity in an HS assay, indicating that HT-MS/MS may be feasible for diagnosis, monitoring, and newborn screening of MPS. PMID:25092413

  13. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    PubMed Central

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  14. Peroxisome Mini-Libraries: Systematic Approaches to Study Peroxisomes Made Easy.

    PubMed

    Dahan, Noa; Schuldiner, Maya; Zalckvar, Einat

    2017-01-01

    High-throughput methodologies have been extensively used in the budding yeast, Saccharomyces cerevisiae, to uncover fundamental principles of cell biology. Over the years, several collections of yeast strains (libraries) were built to enable systematic exploration of cellular functions. However, using these libraries experimentally is often labor intensive and restricted to laboratories that hold high throughput platforms. Utilizing the available full genome libraries we handpicked a subset of strains that represent all known and predicted peroxisomal proteins as well as proteins that have central roles in peroxisome biology. These smaller collections of strains, mini-libraries, can be rapidly and easily used for complicated screens by any lab. Since one of the libraries is built such that it can be easily modified in the tag, promoter and selection, we also discuss how these collections form the basis for creating a diversity of new peroxisomal libraries for future studies. Using manual tools, available in any yeast lab, coupled with few simple genetic approaches, we will show how these libraries can be "mixed and matched" to create tailor made libraries for screening. These yeast collections may now be exploited to study uncharted territories in the biology of peroxisomes by anyone, anywhere.

  15. High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase.

    PubMed

    Kim, Sung Bae; Ozawa, Takeaki; Watanabe, Shigeaki; Umezawa, Yoshio

    2004-08-10

    Nucleocytoplasmic trafficking of functional proteins plays a key role in regulating gene expressions in response to extracellular signals. We developed a genetically encoded bioluminescent indicator for monitoring the nuclear trafficking of target proteins in vitro and in vivo. The principle is based on reconstitution of split fragments of Renilla reniformis (Rluc) by protein splicing with a DnaE intein (a catalytic subunit of DNA polymerase III). A target cytosolic protein fused to the N-terminal half of Rluc is expressed in mammalian cells. If the protein translocates into the nucleus, the Rluc moiety meets the C-terminal half of Rluc, and full-length Rluc is reconstituted by protein splicing. We demonstrated quantitative cell-based in vitro sensing of ligand-induced translocation of androgen receptor, which allowed high-throughput screening of exo- and endogenous agonists and antagonists. Furthermore, the indicator enabled noninvasive in vivo imaging of the androgen receptor translocation in the brains of living mice with a charge-coupled device imaging system. These rapid and quantitative analyses in vitro and in vivo provide a wide variety of applications for screening pharmacological or toxicological compounds and testing them in living animals.

  16. New Toxico-Cheminformatics & Computational Toxicology ...

    EPA Pesticide Factsheets

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate data-mining, and data read-across. The DSSTox Structure-Browser provides structure searchability across all published DSSTox toxicity-related inventory, and is enabling linkages between previously isolated toxicity data resources. As of early March 2008, the public DSSTox inventory has been integrated into PubChem, allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. The most recent DSSTox version of the Carcinogenic Potency Database file (CPDBAS) illustrates ways in which various summary definitions of carcinogenic activity can be employed in modeling and data mining. Phase I of the ToxCastTM project is generating high-throughput screening data from several hundred biochemical and cell-based assays for a set of 320 chemicals, mostly pesticide actives, with rich toxicology profiles. Incorporating and expanding traditional SAR concepts into this new high-throughput and data-rich world pose conceptual and practical challenges, but also holds great promise for improving predictive capabilities.

  17. Label-assisted mass spectrometry for the acceleration of reaction discovery and optimization

    NASA Astrophysics Data System (ADS)

    Cabrera-Pardo, Jaime R.; Chai, David I.; Liu, Song; Mrksich, Milan; Kozmin, Sergey A.

    2013-05-01

    The identification of new reactions expands our knowledge of chemical reactivity and enables new synthetic applications. Accelerating the pace of this discovery process remains challenging. We describe a highly effective and simple platform for screening a large number of potential chemical reactions in order to discover and optimize previously unknown catalytic transformations, thereby revealing new chemical reactivity. Our strategy is based on labelling one of the reactants with a polyaromatic chemical tag, which selectively undergoes a photoionization/desorption process upon laser irradiation, without the assistance of an external matrix, and enables rapid mass spectrometric detection of any products originating from such labelled reactants in complex reaction mixtures without any chromatographic separation. This method was successfully used for high-throughput discovery and subsequent optimization of two previously unknown benzannulation reactions.

  18. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis.

    PubMed

    Mei, Feng; Fancy, Stephen P J; Shen, Yun-An A; Niu, Jianqin; Zhao, Chao; Presley, Bryan; Miao, Edna; Lee, Seonok; Mayoral, Sonia R; Redmond, Stephanie A; Etxeberria, Ainhoa; Xiao, Lan; Franklin, Robin J M; Green, Ari; Hauser, Stephen L; Chan, Jonah R

    2014-08-01

    Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.

  19. A systematic study of mitochondrial toxicity of environmental chemicals using quantitative high throughput screening

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Sakamuru, Srilatha; Witt, Kristine L.; Beeson, Gyda C.; Shou, Louie; Schnellmann, Rick G.; Beeson, Craig C.; Tice, Raymond R.; Austin, Christopher P.; Xia, Menghang

    2014-01-01

    A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs. PMID:23895456

  20. High-throughput screening of chromatographic separations: IV. Ion-exchange.

    PubMed

    Kelley, Brian D; Switzer, Mary; Bastek, Patrick; Kramarczyk, Jack F; Molnar, Kathleen; Yu, Tianning; Coffman, Jon

    2008-08-01

    Ion-exchange (IEX) chromatography steps are widely applied in protein purification processes because of their high capacity, selectivity, robust operation, and well-understood principles. Optimization of IEX steps typically involves resin screening and selection of the pH and counterion concentrations of the load, wash, and elution steps. Time and material constraints associated with operating laboratory columns often preclude evaluating more than 20-50 conditions during early stages of process development. To overcome this limitation, a high-throughput screening (HTS) system employing a robotic liquid handling system and 96-well filterplates was used to evaluate various operating conditions for IEX steps for monoclonal antibody (mAb) purification. A screening study for an adsorptive cation-exchange step evaluated eight different resins. Sodium chloride concentrations defining the operating boundaries of product binding and elution were established at four different pH levels for each resin. Adsorption isotherms were measured for 24 different pH and salt combinations for a single resin. An anion-exchange flowthrough step was then examined, generating data on mAb adsorption for 48 different combinations of pH and counterion concentration for three different resins. The mAb partition coefficients were calculated and used to estimate the characteristic charge of the resin-protein interaction. Host cell protein and residual Protein A impurity levels were also measured, providing information on selectivity within this operating window. The HTS system shows promise for accelerating process development of IEX steps, enabling rapid acquisition of large datasets addressing the performance of the chromatography step under many different operating conditions. (c) 2008 Wiley Periodicals, Inc.

  1. Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions.

    PubMed

    Caraus, Iurie; Alsuwailem, Abdulaziz A; Nadon, Robert; Makarenkov, Vladimir

    2015-11-01

    Significant efforts have been made recently to improve data throughput and data quality in screening technologies related to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi) types of screening. Data generated by these screening technologies are subject to several environmental and procedural systematic biases, which introduce errors into the hit identification process. We first review systematic biases typical of HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for providing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe main data normalization and correction techniques and introduce a general data preprocessing protocol. This protocol can be recommended for academic and industrial researchers involved in the analysis of current or next-generation HTS data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. High-throughput in Vitro Data To Inform Prioritization of Ambient Water Monitoring and Testing for Endocrine Active Chemicals.

    PubMed

    Heiger-Bernays, Wendy J; Wegner, Susanna; Dix, David J

    2018-01-16

    The presence of industrial chemicals, consumer product chemicals, and pharmaceuticals is well documented in waters in the U.S. and globally. Most of these chemicals lack health-protective guidelines and many have been shown to have endocrine bioactivity. There is currently no systematic or national prioritization for monitoring waters for chemicals with endocrine disrupting activity. We propose ambient water bioactivity concentrations (AWBCs) generated from high throughput data as a health-based screen for endocrine bioactivity of chemicals in water. The U.S. EPA ToxCast program has screened over 1800 chemicals for estrogen receptor (ER) and androgen receptor (AR) pathway bioactivity. AWBCs are calculated for 110 ER and 212 AR bioactive chemicals using high throughput ToxCast data from in vitro screening assays and predictive pathway models, high-throughput toxicokinetic data, and data-driven assumptions about consumption of water. Chemical-specific AWBCs are compared with measured water concentrations in data sets from the greater Denver area, Minnesota lakes, and Oregon waters, demonstrating a framework for identifying endocrine bioactive chemicals. This approach can be used to screen potential cumulative endocrine activity in drinking water and to inform prioritization of future monitoring, chemical testing and pollution prevention efforts.

  3. High throughput screening of particle conditioning operations: I. System design and method development.

    PubMed

    Noyes, Aaron; Huffman, Ben; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Sunasara, Khurram; Mukhopadhyay, Tarit

    2015-08-01

    The biotech industry is under increasing pressure to decrease both time to market and development costs. Simultaneously, regulators are expecting increased process understanding. High throughput process development (HTPD) employs small volumes, parallel processing, and high throughput analytics to reduce development costs and speed the development of novel therapeutics. As such, HTPD is increasingly viewed as integral to improving developmental productivity and deepening process understanding. Particle conditioning steps such as precipitation and flocculation may be used to aid the recovery and purification of biological products. In this first part of two articles, we describe an ultra scale-down system (USD) for high throughput particle conditioning (HTPC) composed of off-the-shelf components. The apparatus is comprised of a temperature-controlled microplate with magnetically driven stirrers and integrated with a Tecan liquid handling robot. With this system, 96 individual reaction conditions can be evaluated in parallel, including downstream centrifugal clarification. A comprehensive suite of high throughput analytics enables measurement of product titer, product quality, impurity clearance, clarification efficiency, and particle characterization. HTPC at the 1 mL scale was evaluated with fermentation broth containing a vaccine polysaccharide. The response profile was compared with the Pilot-scale performance of a non-geometrically similar, 3 L reactor. An engineering characterization of the reactors and scale-up context examines theoretical considerations for comparing this USD system with larger scale stirred reactors. In the second paper, we will explore application of this system to industrially relevant vaccines and test different scale-up heuristics. © 2015 Wiley Periodicals, Inc.

  4. Cytopathological image analysis using deep-learning networks in microfluidic microscopy.

    PubMed

    Gopakumar, G; Hari Babu, K; Mishra, Deepak; Gorthi, Sai Siva; Sai Subrahmanyam, Gorthi R K

    2017-01-01

    Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process. Several neural network architectures were designed to provide human expertise to machines. In this paper, we explore and propose the feasibility of using deep-learning networks for cytopathologic analysis by performing the classification of three important unlabeled, unstained leukemia cell lines (K562, MOLT, and HL60). The cell images used in the classification are captured using a low-cost, high-throughput cell imaging technique: microfluidics-based imaging flow cytometry. We demonstrate that without any conventional fine segmentation followed by explicit feature extraction, the proposed deep-learning algorithms effectively classify the coarsely localized cell lines. We show that the designed deep belief network as well as the deeply pretrained convolutional neural network outperform the conventionally used decision systems and are important in the medical domain, where the availability of labeled data is limited for training. We hope that our work enables the development of a clinically significant high-throughput microfluidic microscopy-based tool for disease screening/triaging, especially in resource-limited settings.

  5. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    PubMed

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-03-03

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each. Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

  6. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    PubMed

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  7. High-throughput method for optimum solubility screening for homogeneity and crystallization of proteins

    DOEpatents

    Kim, Sung-Hou [Moraga, CA; Kim, Rosalind [Moraga, CA; Jancarik, Jamila [Walnut Creek, CA

    2012-01-31

    An optimum solubility screen in which a panel of buffers and many additives are provided in order to obtain the most homogeneous and monodisperse protein condition for protein crystallization. The present methods are useful for proteins that aggregate and cannot be concentrated prior to setting up crystallization screens. A high-throughput method using the hanging-drop method and vapor diffusion equilibrium and a panel of twenty-four buffers is further provided. Using the present methods, 14 poorly behaving proteins have been screened, resulting in 11 of the proteins having highly improved dynamic light scattering results allowing concentration of the proteins, and 9 were crystallized.

  8. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    PubMed

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  9. Fluorescence-based high-throughput screening of dicer cleavage activity.

    PubMed

    Podolska, Katerina; Sedlak, David; Bartunek, Petr; Svoboda, Petr

    2014-03-01

    Production of small RNAs by ribonuclease III Dicer is a key step in microRNA and RNA interference pathways, which employ Dicer-produced small RNAs as sequence-specific silencing guides. Further studies and manipulations of microRNA and RNA interference pathways would benefit from identification of small-molecule modulators. Here, we report a study of a fluorescence-based in vitro Dicer cleavage assay, which was adapted for high-throughput screening. The kinetic assay can be performed under single-turnover conditions (35 nM substrate and 70 nM Dicer) in a small volume (5 µL), which makes it suitable for high-throughput screening in a 1536-well format. As a proof of principle, a small library of bioactive compounds was analyzed, demonstrating potential of the assay.

  10. High- and low-throughput scoring of fat mass and body fat distribution in C. elegans

    PubMed Central

    Wählby, Carolina; Lee-Conery, Annie; Bray, Mark-Anthony; Kamentsky, Lee; Larkins-Ford, Jonah; Sokolnicki, Katherine L.; Veneskey, Matthew; Michaels, Kerry; Carpenter, Anne E.; O’Rourke, Eyleen J.

    2014-01-01

    Fat accumulation is a complex phenotype affected by factors such as neuroendocrine signaling, feeding, activity, and reproductive output. Accordingly, the most informative screens for genes and compounds affecting fat accumulation would be those carried out in whole living animals. Caenorhabditis elegans is a well-established and effective model organism, especially for biological processes that involve organ systems and multicellular interactions, such as metabolism. Every cell in the transparent body of C. elegans is visible under a light microscope. Consequently, an accessible and reliable method to visualize worm lipid-droplet fat depots would make C. elegans the only metazoan in which genes affecting not only fat mass but also body fat distribution could be assessed at a genome-wide scale. Here we present a radical improvement in oil red O worm staining together with high-throughput image-based phenotyping. The three-step sample preparation method is robust, formaldehyde-free, and inexpensive, and requires only 15 minutes of hands-on time to process a 96-well plate. Together with our free and user-friendly automated image analysis package, this method enables C. elegans sample preparation and phenotype scoring at a scale that is compatible with genome-wide screens. Thus we present a feasible approach to small-scale phenotyping and large-scale screening for genetic and/or chemical perturbations that lead to alterations in fat quantity and distribution in whole animals. PMID:24784529

  11. Targeting efflux pumps to overcome antifungal drug resistance

    PubMed Central

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-01-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  12. High Throughput Experimental Materials Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy; Perkins, John; Schwarting, Marcus

    The mission of the High Throughput Experimental Materials Database (HTEM DB) is to enable discovery of new materials with useful properties by releasing large amounts of high-quality experimental data to public. The HTEM DB contains information about materials obtained from high-throughput experiments at the National Renewable Energy Laboratory (NREL).

  13. Just-in-Time Compound Pooling Increases Primary Screening Capacity without Compromising Screening Quality.

    PubMed

    Elkin, L L; Harden, D G; Saldanha, S; Ferguson, H; Cheney, D L; Pieniazek, S N; Maloney, D P; Zewinski, J; O'Connell, J; Banks, M

    2015-06-01

    Compound pooling, or multiplexing more than one compound per well during primary high-throughput screening (HTS), is a controversial approach with a long history of limited success. Many issues with this approach likely arise from long-term storage of library plates containing complex mixtures of compounds at high concentrations. Due to the historical difficulties with using multiplexed library plates, primary HTS often uses a one-compound-one-well approach. However, as compound collections grow, innovative strategies are required to increase the capacity of primary screening campaigns. Toward this goal, we have developed a novel compound pooling method that increases screening capacity without compromising data quality. This method circumvents issues related to the long-term storage of complex compound mixtures by using acoustic dispensing to enable "just-in-time" compound pooling directly in the assay well immediately prior to assay. Using this method, we can pool two compounds per well, effectively doubling the capacity of a primary screen. Here, we present data from pilot studies using just-in-time pooling, as well as data from a large >2-million-compound screen using this approach. These data suggest that, for many targets, this method can be used to vastly increase screening capacity without significant reduction in the ability to detect screening hits. © 2015 Society for Laboratory Automation and Screening.

  14. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine | Office of Cancer Genomics

    Cancer.gov

    Precision medicine is an approach that takes into account the influence of individuals' genes, environment, and lifestyle exposures to tailor interventions. Here, we describe the development of a robust precision cancer care platform that integrates whole-exome sequencing with a living biobank that enables high-throughput drug screens on patient-derived tumor organoids. To date, 56 tumor-derived organoid cultures and 19 patient-derived xenograft (PDX) models have been established from the 769 patients enrolled in an Institutional Review Board-approved clinical trial.

  15. An UPLC-ESI-MS/MS Assay Using 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate Derivatization for Targeted Amino Acid Analysis: Application to Screening of Arabidopsis thaliana Mutants.

    PubMed

    Salazar, Carolina; Armenta, Jenny M; Shulaev, Vladimir

    2012-07-06

    In spite of the large arsenal of methodologies developed for amino acid assessment in complex matrices, their implementation in metabolomics studies involving wide-ranging mutant screening is hampered by their lack of high-throughput, sensitivity, reproducibility, and/or wide dynamic range. In response to the challenge of developing amino acid analysis methods that satisfy the criteria required for metabolomic studies, improved reverse-phase high-performance liquid chromatography-mass spectrometry (RPHPLC-MS) methods have been recently reported for large-scale screening of metabolic phenotypes. However, these methods focus on the direct analysis of underivatized amino acids and, therefore, problems associated with insufficient retention and resolution are observed due to the hydrophilic nature of amino acids. It is well known that derivatization methods render amino acids more amenable for reverse phase chromatographic analysis by introducing highly-hydrophobic tags in their carboxylic acid or amino functional group. Therefore, an analytical platform that combines the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) pre-column derivatization method with ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) is presented in this article. For numerous reasons typical amino acid derivatization methods would be inadequate for large scale metabolic projects. However, AQC derivatization is a simple, rapid and reproducible way of obtaining stable amino acid adducts amenable for UPLC-ESI-MS/MS and the applicability of the method for high-throughput metabolomic analysis in Arabidopsis thaliana is demonstrated in this study. Overall, the major advantages offered by this amino acid analysis method include high-throughput, enhanced sensitivity and selectivity; characteristics that showcase its utility for the rapid screening of the preselected plant metabolites without compromising the quality of the metabolic data. The presented method enabled thirty-eight metabolites (proteinogenic amino acids and related compounds) to be analyzed within 10 min with detection limits down to 1.02 × 10-11 M (i.e., atomole level on column), which represents an improved sensitivity of 1 to 5 orders of magnitude compared to existing methods. Our UPLC-ESI-MS/MS method is one of the seven analytical platforms used by the Arabidopsis Metabolomics Consortium. The amino acid dataset obtained by analysis of Arabidopsis T-DNA mutant stocks with our platform is captured and open to the public in the web portal PlantMetabolomics.org. The analytical platform herein described could find important applications in other studies where the rapid, high-throughput and sensitive assessment of low abundance amino acids in complex biosamples is necessary.

  16. An UPLC-ESI-MS/MS Assay Using 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate Derivatization for Targeted Amino Acid Analysis: Application to Screening of Arabidopsis thaliana Mutants

    PubMed Central

    Salazar, Carolina; Armenta, Jenny M.; Shulaev, Vladimir

    2012-01-01

    In spite of the large arsenal of methodologies developed for amino acid assessment in complex matrices, their implementation in metabolomics studies involving wide-ranging mutant screening is hampered by their lack of high-throughput, sensitivity, reproducibility, and/or wide dynamic range. In response to the challenge of developing amino acid analysis methods that satisfy the criteria required for metabolomic studies, improved reverse-phase high-performance liquid chromatography-mass spectrometry (RPHPLC-MS) methods have been recently reported for large-scale screening of metabolic phenotypes. However, these methods focus on the direct analysis of underivatized amino acids and, therefore, problems associated with insufficient retention and resolution are observed due to the hydrophilic nature of amino acids. It is well known that derivatization methods render amino acids more amenable for reverse phase chromatographic analysis by introducing highly-hydrophobic tags in their carboxylic acid or amino functional group. Therefore, an analytical platform that combines the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) pre-column derivatization method with ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) is presented in this article. For numerous reasons typical amino acid derivatization methods would be inadequate for large scale metabolic projects. However, AQC derivatization is a simple, rapid and reproducible way of obtaining stable amino acid adducts amenable for UPLC-ESI-MS/MS and the applicability of the method for high-throughput metabolomic analysis in Arabidopsis thaliana is demonstrated in this study. Overall, the major advantages offered by this amino acid analysis method include high-throughput, enhanced sensitivity and selectivity; characteristics that showcase its utility for the rapid screening of the preselected plant metabolites without compromising the quality of the metabolic data. The presented method enabled thirty-eight metabolites (proteinogenic amino acids and related compounds) to be analyzed within 10 min with detection limits down to 1.02 × 10−11 M (i.e., atomole level on column), which represents an improved sensitivity of 1 to 5 orders of magnitude compared to existing methods. Our UPLC-ESI-MS/MS method is one of the seven analytical platforms used by the Arabidopsis Metabolomics Consortium. The amino acid dataset obtained by analysis of Arabidopsis T-DNA mutant stocks with our platform is captured and open to the public in the web portal PlantMetabolomics.org. The analytical platform herein described could find important applications in other studies where the rapid, high-throughput and sensitive assessment of low abundance amino acids in complex biosamples is necessary. PMID:24957640

  17. Developing a novel fiber optic fluorescence device for multiplexed high-throughput cytotoxic screening.

    PubMed

    Lee, Dennis; Barnes, Stephen

    2010-01-01

    The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.

  18. High-throughput metabolic stability studies in drug discovery by orthogonal acceleration time-of-flight (OATOF) with analogue-to-digital signal capture (ADC).

    PubMed

    Temesi, David G; Martin, Scott; Smith, Robin; Jones, Christopher; Middleton, Brian

    2010-06-30

    Screening assays capable of performing quantitative analysis on hundreds of compounds per week are used to measure metabolic stability during early drug discovery. Modern orthogonal acceleration time-of-flight (OATOF) mass spectrometers equipped with analogue-to-digital signal capture (ADC) now offer performance levels suitable for many applications normally supported by triple quadruple instruments operated in multiple reaction monitoring (MRM) mode. Herein the merits of MRM and OATOF with ADC detection are compared for more than 1000 compounds screened in rat and/or cryopreserved human hepatocytes over a period of 3 months. Statistical comparison of a structurally diverse subset indicated good agreement for the two detection methods. The overall success rate was higher using OATOF detection and data acquisition time was reduced by around 20%. Targeted metabolites of diazepam were detected in samples from a CLint determination performed at 1 microM. Data acquisition by positive and negative ion mode switching can be achieved on high-performance liquid chromatography (HPLC) peak widths as narrow as 0.2 min (at base), thus enabling a more comprehensive first pass analysis with fast HPLC gradients. Unfortunately, most existing OATOF instruments lack the software tools necessary to rapidly convert the huge amounts of raw data into quantified results. Software with functionality similar to open access triple quadrupole systems is needed for OATOF to truly compete in a high-throughput screening environment. Copyright 2010 John Wiley & Sons, Ltd.

  19. A compact disk-like centrifugal microfluidic system for high-throughput nanoliter-scale protein crystallization screening.

    PubMed

    Li, Gang; Chen, Qiang; Li, Junjun; Hu, Xiaojian; Zhao, Jianlong

    2010-06-01

    A centrifuge-based microfluidic system has been developed that enables automated high-throughput and low-volume protein crystallizations. In this system, protein solution was automatically and accurately metered and dispensed into nanoliter-sized multiple reaction chambers, and it was mixed with various types of precipitants using a combination of capillary effect and centrifugal force. It has the advantages of simple fabrication, easy operation, and extremely low waste. To demonstrate the feasibility of this system, we constructed a chip containing 24 units and used it to perform lysozyme and cyan fluorescent protein (CyPet) crystallization trials. The results demonstrate that high-quality crystals can be grown and harvested from such a nanoliter-volume microfluidic system. Compared to other microfluidic technologies for protein crystallization, this microfluidic system allows zero waste, simple structure and convenient operation, which suggests that our microfluidic disk can be applied not only to protein crystallization, but also to the miniaturization of various biochemical reactions requiring precise nanoscale control.

  20. Rapid 2,2'-bicinchoninic-based xylanase assay compatible with high throughput screening

    Treesearch

    William R. Kenealy; Thomas W. Jeffries

    2003-01-01

    High-throughput screening requires simple assays that give reliable quantitative results. A microplate assay was developed for reducing sugar analysis that uses a 2,2'-bicinchoninic-based protein reagent. Endo-1,4-â-D-xylanase activity against oat spelt xylan was detected at activities of 0.002 to 0.011 IU ml−1. The assay is linear for sugar...

  1. High-Throughput Toxicity Testing: New Strategies for ...

    EPA Pesticide Factsheets

    In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct additives, and food contact substances. With the rapidly growing use of new food additives, as well as innovation in food contact substance development, an interest in exploring the use of high-throughput chemical safety testing approaches has emerged. Currently, the field of toxicology is undergoing a paradigm shift in how chemical hazards can be evaluated. Since there are tens of thousands of chemicals in use, many of which have little to no hazard information and there are limited resources (namely time and money) for testing these chemicals, it is necessary to prioritize which chemicals require further safety testing to better protect human health. Advances in biochemistry and computational toxicology have paved the way for animal-free (in vitro) high-throughput screening which can characterize chemical interactions with highly specific biological processes. Screening approaches are not novel; in fact, quantitative high-throughput screening (qHTS) methods that incorporate dose-response evaluation have been widely used in the pharmaceutical industry. For toxicological evaluation and prioritization, it is the throughput as well as the cost- and time-efficient nature of qHTS that makes it

  2. IRAS: High-Throughput Identification of Novel Alternative Splicing Regulators.

    PubMed

    Zheng, S

    2016-01-01

    Alternative splicing is a fundamental regulatory process of gene expression. Defects in alternative splicing can lead to various diseases, and modification of disease-causing splicing events presents great therapeutic promise. Splicing outcome is commonly affected by extracellular stimuli and signaling cascades that converge on RNA-binding splicing regulators. These trans-acting factors recognize cis-elements in pre-mRNA transcripts to affect spliceosome assembly and splice site choices. Identification of these splicing regulators and/or upstream modulators has been difficult and traditionally done by piecemeal. High-throughput screening strategies to find multiple regulators of exon splicing have great potential to accelerate the discovery process, but typically confront low sensitivity and low specificity of screening assays. Here we describe a unique screening strategy, IRAS (identifying regulators of alternative splicing), using a pair of dual-output minigene reporters to allow for sensitive detection of exon splicing changes. Each dual-output reporter produces green fluorescent protein (GFP) and red fluorescent protein (RFP) fluorescent signals to assay the two spliced isoforms exclusively. The two complementary minigene reporters alter GFP/RFP output ratios in the opposite direction in response to splicing change. Applying IRAS in cell-based high-throughput screens allows sensitive and specific identification of splicing regulators and modulators for any alternative exons of interest. In comparison to previous high-throughput screening methods, IRAS substantially enhances the specificity of the screening assay. This strategy significantly eliminates false positives without sacrificing sensitive identification of true regulators of splicing. © 2016 Elsevier Inc. All rights reserved.

  3. Accelerating Virtual High-Throughput Ligand Docking: current technology and case study on a petascale supercomputer.

    PubMed

    Ellingson, Sally R; Dakshanamurthy, Sivanesan; Brown, Milton; Smith, Jeremy C; Baudry, Jerome

    2014-04-25

    In this paper we give the current state of high-throughput virtual screening. We describe a case study of using a task-parallel MPI (Message Passing Interface) version of Autodock4 [1], [2] to run a virtual high-throughput screen of one-million compounds on the Jaguar Cray XK6 Supercomputer at Oak Ridge National Laboratory. We include a description of scripts developed to increase the efficiency of the predocking file preparation and postdocking analysis. A detailed tutorial, scripts, and source code for this MPI version of Autodock4 are available online at http://www.bio.utk.edu/baudrylab/autodockmpi.htm.

  4. Integrated Magneto-Electrochemical Sensor for Exosome Analysis.

    PubMed

    Jeong, Sangmoo; Park, Jongmin; Pathania, Divya; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho

    2016-02-23

    Extracellular vesicles, including exosomes, are nanoscale membrane particles that carry molecular information on parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magneto-electrochemical assay: exosomes are immunomagnetically captured from patient samples and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables (i) highly sensitive, cell-specific exosome detection and (ii) sensor miniaturization and scale-up for high-throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the simultaneous profiling of multiple protein markers within an hour, outperforming conventional methods in assay sensitivity and speed.

  5. Integrated Magneto-Electrochemical Sensor for Exosome Analysis

    PubMed Central

    Jeong, Sangmoo; Park, Jongmin; Pathania, Divya; Castro, Cesar M.; Weissleder, Ralph; Lee, Hakho

    2016-01-01

    Extracellular vesicles, including exosomes, are nanoscale vesicles that carry molecular information of parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magnetic-electrochemical assay: exosomes are immunomagnetically captured from patient samples, and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables i) highly sensitive, cell-specific exosome detection, and ii) sensor miniaturization and scale-up for high throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device, and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the profiling of multiple protein markers simultaneously within an hour, outperforming conventional methods in assay sensitivity and speed. PMID:26808216

  6. External optical imaging of freely moving mice with green fluorescent protein-expressing metastatic tumors

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Baranov, Eugene; Shimada, Hiroshi; Moossa, A. R.; Hoffman, Robert M.

    2000-04-01

    We report here a new approach to genetically engineering tumors to become fluorescence such that they can be imaged externally in freely-moving animals. We describe here external high-resolution real-time fluorescent optical imaging of metastatic tumors in live mice. Stable high-level green flourescent protein (GFP)-expressing human and rodent cell lines enable tumors and metastasis is formed from them to be externally imaged from freely-moving mice. Real-time tumor and metastatic growth were quantitated from whole-body real-time imaging in GFP-expressing melanoma and colon carcinoma models. This GFP optical imaging system is highly appropriate for high throughput in vivo drug screening.

  7. A high-throughput assay of NK cell activity in whole blood and its clinical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate themore » status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.« less

  8. Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions.

    PubMed

    Weimar, M R; Cheung, J; Dey, D; McSweeney, C; Morrison, M; Kobayashi, Y; Whitman, W B; Carbone, V; Schofield, L R; Ronimus, R S; Cook, G M

    2017-08-01

    Hydrogenotrophic methanogens typically require strictly anaerobic culturing conditions in glass tubes with overpressures of H 2 and CO 2 that are both time-consuming and costly. To increase the throughput for screening chemical compound libraries, 96-well microtiter plate methods for the growth of a marine (environmental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen Methanobrevibacter species AbM4 were developed. A number of key parameters (inoculum size, reducing agents for medium preparation, assay duration, inhibitor solvents, and culture volume) were optimized to achieve robust and reproducible growth in a high-throughput microtiter plate format. The method was validated using published methanogen inhibitors and statistically assessed for sensitivity and reproducibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically active compounds and an in-house natural product library (120 compounds) were screened against M. maripaludis as a proof of utility. This screen identified a number of bioactive compounds, and MIC values were confirmed for some of them against M. maripaludis and M. AbM4. The developed method provides a significant increase in throughput for screening compound libraries and can now be used to screen larger compound libraries to discover novel methanogen-specific inhibitors for the mitigation of ruminant methane emissions. IMPORTANCE Methane emissions from ruminants are a significant contributor to global greenhouse gas emissions, and new technologies are required to control emissions in the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors of methanogens using high-throughput phenotypic (growth) screening against compound libraries (synthetic and natural products) is an attractive avenue. However, phenotypic inhibitor screening is currently hindered by our inability to grow methanogens in a high-throughput format. We have developed, optimized, and validated a high-throughput 96-well microtiter plate assay for growing environmental and rumen methanogens. Using this platform, we identified several new inhibitors of methanogen growth, demonstrating the utility of this approach to fast track the development of methanogen-specific inhibitors for controlling ruminant methane emissions. Copyright © 2017 American Society for Microbiology.

  9. Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles

    PubMed Central

    Lytton-Jean, Abigail K. R.; Han, Min Su; Mirkin, Chad A.

    2008-01-01

    We have designed a chip-based assay, using microarray technology, for determining the relative binding affinities of duplex and triplex DNA binders. This assay combines the high discrimination capabilities afforded by DNA-modified Au nanoparticles with the high-throughput capabilities of DNA microarrays. The detection and screening of duplex DNA binders are important because these molecules, in many cases, are potential anticancer agents as well as toxins. Triplex DNA binders are also promising drug candidates. These molecules, in conjunction with triplex forming oligonucleotides, could potentially be used to achieve control of gene expression by interfering with transcription factors that bind to DNA. Therefore, the ability to screen for these molecules in a high-throughput fashion could dramatically improve the drug screening process. The assay reported here provides excellent discrimination between strong, intermediate, and weak duplex and triplex DNA binders in a high-throughput fashion. PMID:17614366

  10. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries.

    PubMed

    Shankar, Manoharan; Priyadharshini, Ramachandran; Gunasekaran, Paramasamy

    2009-08-01

    An image analysis-based method for high throughput screening of an alpha-amylase mutant library using chromogenic assays was developed. Assays were performed in microplates and high resolution images of the assay plates were read using the Virtual Microplate Reader (VMR) script to quantify the concentration of the chromogen. This method is fast and sensitive in quantifying 0.025-0.3 mg starch/ml as well as 0.05-0.75 mg glucose/ml. It was also an effective screening method for improved alpha-amylase activity with a coefficient of variance of 18%.

  11. A catalog of putative adverse outcome pathways (AOPs) that ...

    EPA Pesticide Factsheets

    A number of putative AOPs for several distinct MIEs of thyroid disruption have been formulated for amphibian metamorphosis and fish swim bladder inflation. These have been entered into the AOP knowledgebase on the OECD WIKI. The EDSP has been actively advancing high-throughput screening for chemical activity toward estrogen, androgen and thyroid targets. However, it has been recently identified that coverage for thyroid-related targets is lagging behind estrogen and androgen assay coverage. As thyroid-related medium-high throughput assays are actively being developed for inclusion in the ToxCast chemical screening program, a parallel effort is underway to characterize putative adverse outcome pathways (AOPs) specific to these thyroid-related targets. This effort is intended to provide biological and ecological context that will enhance the utility of ToxCast high throughput screening data for hazard identification.

  12. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole

    2013-12-15

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.« less

  13. Quantitative maps of genetic interactions in yeast - comparative evaluation and integrative analysis.

    PubMed

    Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero

    2011-03-24

    High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.

  14. High-Throughput Screening for a Moderately Halophilic Phenol-Degrading Strain and Its Salt Tolerance Response

    PubMed Central

    Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di

    2015-01-01

    A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration) over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478

  15. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.

    PubMed

    Daher, Ahmad; de Groot, John

    2018-01-01

    Tumor heterogeneity is a major factor in glioblastoma's poor response to therapy and seemingly inevitable recurrence. Only two glioblastoma drugs have received Food and Drug Administration approval since 1998, highlighting the urgent need for new therapies. Profiling "omics" analyses have helped characterize glioblastoma molecularly and have thus identified multiple molecular targets for precision medicine. These molecular targets have influenced clinical trial design; many "actionable" mutation-focused trials are underway, but because they have not yet led to therapeutic breakthroughs, new strategies for treating glioblastoma, especially those with a pharmacological functional component, remain in high demand. In that regard, high-throughput screening that allows for expedited preclinical drug testing and the use of GBM models that represent tumor heterogeneity more accurately than traditional cancer cell lines is necessary to maximize the successful translation of agents into the clinic. High-throughput screening has been successfully used in the testing, discovery, and validation of potential therapeutics in various cancer models, but it has not been extensively utilized in glioblastoma models. In this report, we describe the basic aspects of high-throughput screening and propose a modified high-throughput screening model in which ex vivo and in vivo drug testing is complemented by post-screening pharmacological, pan-omic analysis to expedite anti-glioma drugs' preclinical testing and develop predictive biomarker datasets that can aid in personalizing glioblastoma therapy and inform clinical trial design. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  17. High Throughput Differential Scanning Fluorimetry (DSF) Formulation Screening with Complementary Dyes to Assess Protein Unfolding and Aggregation in Presence of Surfactants.

    PubMed

    McClure, Sean M; Ahl, Patrick L; Blue, Jeffrey T

    2018-03-05

    The purpose was to evaluate DSF for high throughput screening of protein thermal stability (unfolding/ aggregation) across a wide range of formulations. Particular focus was exploring PROTEOSTAT® - a commercially available fluorescent rotor dye - for detection of aggregation in surfactant containing formulations. Commonly used hydrophobic dyes (e.g. SYPRO™ Orange) interact with surfactants, complicating DSF measurements. CRM197 formulations were prepared and analyzed in standard 96-well plate rT-PCR system, using SYPRO™ Orange and PROTEOSTAT® dyes. Orthogonal techniques (DLS and IPF) are employed to confirm unfolding/aggregation in selected formulations. Selected formulations are subjected to non-thermal stresses (stirring and shaking) in plate based format to characterize aggregation with PROTEOSTAT®. Agreement is observed between SYPRO™ Orange (unfolding) and PROTEOSTAT® (aggregation) DSF melt temperatures across wide range of non-surfactant formulations. PROTEOSTAT® can clearly detect temperature induced aggregation in low concentration (0.2 mg/mL) CRM197 formulations containing surfactant. PROTEOSTAT® can be used to explore aggregation due to non-thermal stresses in plate based format amenable to high throughput screening. DSF measurements with complementary extrinsic dyes (PROTEOSTAT®, SYPRO™ Orange) are suitable for high throughput screening of antigen thermal stability, across a wide range of relevant formulation conditions - including surfactants -with standard, plate based rT-PCR instrumentation.

  18. HTS-Net: An integrated regulome-interactome approach for establishing network regulation models in high-throughput screenings

    PubMed Central

    Rioualen, Claire; Da Costa, Quentin; Chetrit, Bernard; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe

    2017-01-01

    High-throughput RNAi screenings (HTS) allow quantifying the impact of the deletion of each gene in any particular function, from virus-host interactions to cell differentiation. However, there has been less development for functional analysis tools dedicated to RNAi analyses. HTS-Net, a network-based analysis program, was developed to identify gene regulatory modules impacted in high-throughput screenings, by integrating transcription factors-target genes interaction data (regulome) and protein-protein interaction networks (interactome) on top of screening z-scores. HTS-Net produces exhaustive HTML reports for results navigation and exploration. HTS-Net is a new pipeline for RNA interference screening analyses that proves better performance than simple gene rankings by z-scores, by re-prioritizing genes and replacing them in their biological context, as shown by the three studies that we reanalyzed. Formatted input data for the three studied datasets, source code and web site for testing the system are available from the companion web site at http://htsnet.marseille.inserm.fr/. We also compared our program with existing algorithms (CARD and hotnet2). PMID:28949986

  19. A high-throughput screening approach for the optoelectronic properties of conjugated polymers.

    PubMed

    Wilbraham, Liam; Berardo, Enrico; Turcani, Lukas; Jelfs, Kim E; Zwijnenburg, Martijn A

    2018-06-25

    We propose a general high-throughput virtual screening approach for the optical and electronic properties of conjugated polymers. This approach makes use of the recently developed xTB family of low-computational-cost density functional tight-binding methods from Grimme and co-workers, calibrated here to (TD-)DFT data computed for a representative diverse set of (co-)polymers. Parameters drawn from the resulting calibration using a linear model can then be applied to the xTB derived results for new polymers, thus generating near DFT-quality data with orders of magnitude reduction in computational cost. As a result, after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order of thousands of polymers for target applications. We also demonstrate that the (opto)electronic properties of the conjugated polymers show only a very minor variation when considering different conformers and that the results of high-throughput screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied.

  20. Large-scale Topographical Screen for Investigation of Physical Neural-Guidance Cues

    NASA Astrophysics Data System (ADS)

    Li, Wei; Tang, Qing Yuan; Jadhav, Amol D.; Narang, Ankit; Qian, Wei Xian; Shi, Peng; Pang, Stella W.

    2015-03-01

    A combinatorial approach was used to present primary neurons with a large library of topographical features in the form of micropatterned substrate for high-throughput screening of physical neural-guidance cues that can effectively promote different aspects of neuronal development, including axon and dendritic outgrowth. Notably, the neuronal-guidance capability of specific features was automatically identified using a customized image processing software, thus significantly increasing the screening throughput with minimal subjective bias. Our results indicate that the anisotropic topographies promote axonal and in some cases dendritic extension relative to the isotropic topographies, while dendritic branching showed preference to plain substrates over the microscale features. The results from this work can be readily applied towards engineering novel biomaterials with precise surface topography that can serve as guidance conduits for neuro-regenerative applications. This novel topographical screening strategy combined with the automated processing capability can also be used for high-throughput screening of chemical or genetic regulatory factors in primary neurons.

  1. In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force

    NASA Astrophysics Data System (ADS)

    Menichetti, Roberto; Kanekal, Kiran H.; Kremer, Kurt; Bereau, Tristan

    2017-09-01

    The partitioning of small molecules in cell membranes—a key parameter for pharmaceutical applications—typically relies on experimentally available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics-based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400 000 compounds. The potential of mean force hereby becomes an easily accessible quantity—already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules.

  2. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells.

    PubMed

    Montanez-Sauri, Sara I; Sung, Kyung Eun; Berthier, Erwin; Beebe, David J

    2013-03-01

    During breast carcinoma progression, the three-dimensional (3D) microenvironment is continuously remodeled, and changes in the composition of the extracellular matrix (ECM) occur. High throughput screening platforms have been used to decipher the complexity of the microenvironment and to identify ECM components responsible for cancer progression. However, traditional screening platforms are typically limited to two-dimensional (2D) cultures, and often exclude the influence of ECM and stromal components. In this work, a system that integrates 3-dimensional cell culture techniques with an automated microfluidic platform was used to create a new ECM screening platform that cultures cells in more physiologically relevant 3D in vitro microenvironments containing stromal cells and different ECM molecules. This new ECM screening platform was used to culture T47D breast carcinoma cells in mono- and co-culture with human mammary fibroblasts (HMF) with seven combinations of three different ECM proteins (collagen, fibronectin, laminin). Differences in the morphology of T47D clusters, and the proliferation of T47D cells were found in ECM compositions rich in fibronectin or laminin. In addition, an MMP enzyme activity inhibition screening showed the capabilities of the platform for small molecule screening. The platform presented in this work enables screening for the effects of matrix and stromal compositions and show promises for providing new insights in the identification of key ECM components involved in breast cancer.

  3. Automated feature extraction for retinal vascular biometry in zebrafish using OCT angiography

    NASA Astrophysics Data System (ADS)

    Bozic, Ivan; Rao, Gopikrishna M.; Desai, Vineet; Tao, Yuankai K.

    2017-02-01

    Zebrafish have been identified as an ideal model for angiogenesis because of anatomical and functional similarities with other vertebrates. The scale and complexity of zebrafish assays are limited by the need to manually treat and serially screen animals, and recent technological advances have focused on automation and improving throughput. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo imaging of retinal vasculature in zebrafish. OCT-A summed voxel projections were low pass filtered and skeletonized to create an en face vascular map prior to connectivity analysis. Vascular segmentation was referenced to the optic nerve head (ONH), which was identified by automatically segmenting the retinal pigment epithelium boundary on the OCT structural volume. The first vessel branch generation was identified as skeleton segments with branch points closest to the ONH, and subsequent generations were found iteratively by expanding the search space outwards from the ONH. Biometric parameters, including length, curvature, and branch angle of each vessel segment were calculated and grouped by branch generation. Despite manual handling and alignment of each animal over multiple time points, we observe distinct qualitative patterns that enable unique identification of each eye from individual animals. We believe this OCT-based retinal biometry method can be applied for automated animal identification and handling in high-throughput organism-level pharmacological assays and genetic screens. In addition, these extracted features may enable high-resolution quantification of longitudinal vascular changes as a method for studying zebrafish models of retinal neovascularization and vascular remodeling.

  4. Screening of antifungal azole drugs and agrochemicals with an adapted alamarBlue-based assay demonstrates antibacterial activity of croconazole against Mycobacterium ulcerans.

    PubMed

    Scherr, Nicole; Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd

    2012-12-01

    An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans.

  5. Screening of Antifungal Azole Drugs and Agrochemicals with an Adapted alamarBlue-Based Assay Demonstrates Antibacterial Activity of Croconazole against Mycobacterium ulcerans

    PubMed Central

    Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd

    2012-01-01

    An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans. PMID:23006761

  6. High Throughput Screening for Inhibitors of Mycobacterium tuberculosis H37Rv

    PubMed Central

    ANANTHAN, SUBRAMANIAM; FAALEOLEA, ELLEN R.; GOLDMAN, ROBERT C.; HOBRATH, JUDITH V.; KWONG, CECIL D.; LAUGHON, BARBARA E.; MADDRY, JOSEPH A.; MEHTA, ALKA; RASMUSSEN, LYNN; REYNOLDS, ROBERT C.; SECRIST, JOHN A.; SHINDO, NICE; SHOWE, DUSTIN N.; SOSA, MELINDA I.; SULING, WILLIAM J.; WHITE, E. LUCILE

    2009-01-01

    SUMMARY There is an urgent need for the discovery and development of new antitubercular agents that target new biochemical pathways and treat drug resistant forms of the disease. One approach to addressing this need is through high throughput screening of medicinally relevant libraries against the whole bacterium in order to discover a variety of new, active scaffolds that will stimulate new biological research and drug discovery. Through the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (www.taacf.org), a large, medicinally relevant chemical library was screened against M. tuberculosis strain H37Rv. The screening methods and a medicinal chemistry analysis of the results are reported herein. PMID:19758845

  7. High-throughput screening for bioactive components from traditional Chinese medicine.

    PubMed

    Zhu, Yanhui; Zhang, Zhiyun; Zhang, Meng; Mais, Dale E; Wang, Ming-Wei

    2010-12-01

    Throughout the centuries, traditional Chinese medicine has been a rich resource in the development of new drugs. Modern drug discovery, which relies increasingly on automated high throughput screening and quick hit-to-lead development, however, is confronted with the challenges of the chemical complexity associated with natural products. New technologies for biological screening as well as library building are in great demand in order to meet the requirements. Here we review the developments in these techniques under the perspective of their applicability in natural product drug discovery. Methods in library building, component characterizing, biological evaluation, and other screening methods including NMR and X-ray diffraction are discussed.

  8. Automated processing of zebrafish imaging data: a survey.

    PubMed

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  9. Automated Processing of Zebrafish Imaging Data: A Survey

    PubMed Central

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  10. Detection of COPB2 as a KRAS synthetic lethal partner through integration of functional genomics screens

    PubMed Central

    Christodoulou, Eleni G.; Yang, Hai; Lademann, Franziska; Pilarsky, Christian; Beyer, Andreas; Schroeder, Michael

    2017-01-01

    Mutated KRAS plays an important role in many cancers. Although targeting KRAS directly is difficult, indirect inactivation via synthetic lethal partners (SLPs) is promising. Yet to date, there are no SLPs from high-throughput RNAi screening, which are supported by multiple screens. Here, we address this problem by aggregating and ranking data over three independent high-throughput screens. We integrate rankings by minimizing the displacement and by considering established methods such as RIGER and RSA. Our meta analysis reveals COPB2 as a potential SLP of KRAS with good support from all three screens. COPB2 is a coatomer subunit and its knock down has already been linked to disabled autophagy and reduced tumor growth. We confirm COPB2 as SLP in knock down experiments on pancreas and colorectal cancer cell lines. Overall, consistent integration of high throughput data can generate candidate synthetic lethal partners, which individual screens do not uncover. Concretely, we reveal and confirm that COPB2 is a synthetic lethal partner of KRAS and hence a promising cancer target. Ligands inhibiting COPB2 may, therefore, be promising new cancer drugs. PMID:28415695

  11. Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)

    EPA Science Inventory

    High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...

  12. Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem.

    PubMed

    Han, Lianyi; Wang, Yanli; Bryant, Stephen H

    2008-09-25

    Recent advances in high-throughput screening (HTS) techniques and readily available compound libraries generated using combinatorial chemistry or derived from natural products enable the testing of millions of compounds in a matter of days. Due to the amount of information produced by HTS assays, it is a very challenging task to mine the HTS data for potential interest in drug development research. Computational approaches for the analysis of HTS results face great challenges due to the large quantity of information and significant amounts of erroneous data produced. In this study, Decision Trees (DT) based models were developed to discriminate compound bioactivities by using their chemical structure fingerprints provided in the PubChem system http://pubchem.ncbi.nlm.nih.gov. The DT models were examined for filtering biological activity data contained in four assays deposited in the PubChem Bioassay Database including assays tested for 5HT1a agonists, antagonists, and HIV-1 RT-RNase H inhibitors. The 10-fold Cross Validation (CV) sensitivity, specificity and Matthews Correlation Coefficient (MCC) for the models are 57.2 approximately 80.5%, 97.3 approximately 99.0%, 0.4 approximately 0.5 respectively. A further evaluation was also performed for DT models built for two independent bioassays, where inhibitors for the same HIV RNase target were screened using different compound libraries, this experiment yields enrichment factor of 4.4 and 9.7. Our results suggest that the designed DT models can be used as a virtual screening technique as well as a complement to traditional approaches for hits selection.

  13. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinzon, NM; Aukema, KG; Gralnick, JA

    A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone productionmore » as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high-throughput evaluation of bacterial and algal hydrophobic molecule production via Nile red fluorescence from lipids and esters was extended in this study to include hydrocarbons and ketones. This work demonstrated accurate, high-throughput detection of high-level bacterial long-chain ketone and hydrocarbon production by screening for increased fluorescence of the hydrophobic dye Nile red.« less

  14. High-throughput fabrication and screening improves gold nanoparticle chemiresistor sensor performance.

    PubMed

    Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard

    2015-02-09

    Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.

  15. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions.

    PubMed

    De Diego, Nuria; Fürst, Tomáš; Humplík, Jan F; Ugena, Lydia; Podlešáková, Kateřina; Spíchal, Lukáš

    2017-01-01

    High-throughput plant phenotyping platforms provide new possibilities for automated, fast scoring of several plant growth and development traits, followed over time using non-invasive sensors. Using Arabidops is as a model offers important advantages for high-throughput screening with the opportunity to extrapolate the results obtained to other crops of commercial interest. In this study we describe the development of a highly reproducible high-throughput Arabidopsis in vitro bioassay established using our OloPhen platform, suitable for analysis of rosette growth in multi-well plates. This method was successfully validated on example of multivariate analysis of Arabidopsis rosette growth in different salt concentrations and the interaction with varying nutritional composition of the growth medium. Several traits such as changes in the rosette area, relative growth rate, survival rate and homogeneity of the population are scored using fully automated RGB imaging and subsequent image analysis. The assay can be used for fast screening of the biological activity of chemical libraries, phenotypes of transgenic or recombinant inbred lines, or to search for potential quantitative trait loci. It is especially valuable for selecting genotypes or growth conditions that improve plant stress tolerance.

  16. Optimizing multi-dimensional high throughput screening using zebrafish

    PubMed Central

    Truong, Lisa; Bugel, Sean M.; Chlebowski, Anna; Usenko, Crystal Y.; Simonich, Michael T.; Massey Simonich, Staci L.; Tanguay, Robert L.

    2016-01-01

    The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. PMID:27453428

  17. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format.

    PubMed

    Xiao, Xiaodong; Chen, Yan; Mugabe, Sheila; Gao, Changshou; Tkaczyk, Christine; Mazor, Yariv; Pavlik, Peter; Wu, Herren; Dall'Acqua, William; Chowdhury, Partha Sarathi

    2015-01-01

    High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.

  18. High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility

    PubMed Central

    Herington, Jennifer L.; Swale, Daniel R.; Brown, Naoko; Shelton, Elaine L.; Choi, Hyehun; Williams, Charles H.; Hong, Charles C.; Paria, Bibhash C.; Denton, Jerod S.; Reese, Jeff

    2015-01-01

    The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility. PMID:26600013

  19. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less

  20. Effect-size measures as descriptors of assay quality in high-content screening: A brief review of some available methodologies

    USDA-ARS?s Scientific Manuscript database

    The field of high-content screening (HCS) typically uses measures of screen quality conceived for fairly straightforward high-throughput screening (HTS) scenarios. However, in contrast to HTS, image-based HCS systems rely on multidimensional readouts reporting biological responses associated with co...

  1. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens.

    PubMed

    Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub

    2017-04-25

    Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.

  2. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus.

    PubMed

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W; Noah, James W

    2014-04-01

    Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses.

  3. A BSL-4 High-Throughput Screen Identifies Sulfonamide Inhibitors of Nipah Virus

    PubMed Central

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E. Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W.

    2014-01-01

    Abstract Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses. PMID:24735442

  4. High-Throughput Screening of Therapeutic Neural Stimulation Targets: Toward Principles of Preventing and Treating Post-Traumatic Stress Disorder

    DTIC Science & Technology

    2009-09-01

    onset and averaged across all excited units tested (mean ± SE). 7 SUPPLEMENTAL EXPERIMENTAL PROCEDURES Virus design and production...to baseline level 355 ± 505 ms later. The level of post -light firing did not vary with repeated light exposure (p > 0.7, paired t- test comparing...High-Throughput Screening of Therapeutic Neural Stimulation Targets: Toward Principles of Preventing and Treating Post - Traumatic Stress Disorder

  5. High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.

    PubMed

    Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato

    2017-02-01

    Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.

  6. A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening.

    PubMed

    Neto, A I; Correia, C R; Oliveira, M B; Rial-Hermida, M I; Alvarez-Lorenzo, C; Reis, R L; Mano, J F

    2015-04-01

    We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.

  7. Development of a Rapid Fluorescence-Based High-Throughput Screening Assay to Identify Novel Kynurenine 3-Monooxygenase Inhibitor Scaffolds.

    PubMed

    Jacobs, K R; Guillemin, G J; Lovejoy, D B

    2018-02-01

    Kynurenine 3-monooxygenase (KMO) is a well-validated therapeutic target for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD) and Huntington's disease (HD). This work reports a facile fluorescence-based KMO assay optimized for high-throughput screening (HTS) that achieves a throughput approximately 20-fold higher than the fastest KMO assay currently reported. The screen was run with excellent performance (average Z' value of 0.80) from 110,000 compounds across 341 plates and exceeded all statistical parameters used to describe a robust HTS assay. A subset of molecules was selected for validation by ultra-high-performance liquid chromatography, resulting in the confirmation of a novel hit with an IC 50 comparable to that of the well-described KMO inhibitor Ro-61-8048. A medicinal chemistry program is currently underway to further develop our novel KMO inhibitor scaffolds.

  8. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells

    PubMed Central

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443

  9. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells.

    PubMed

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-10-14

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.

  10. From Classical to High Throughput Screening Methods for Feruloyl Esterases: A Review.

    PubMed

    Ramírez-Velasco, Lorena; Armendáriz-Ruiz, Mariana; Rodríguez-González, Jorge Alberto; Müller-Santos, Marcelo; Asaff-Torres, Ali; Mateos-Díaz, Juan Carlos

    2016-01-01

    Feruloyl esterases (FAEs) are a diverse group of hydrolases widely distributed in plants and microorganisms which catalyzes the cleavage and formation of ester bonds between plant cell wall polysaccharides and phenolic acids. FAEs have gained importance in biofuel, medicine and food industries due to their capability of acting on a large range of substrates for cleaving ester bonds and synthesizing highadded value molecules through esterification and transesterification reactions. During the past two decades extensive studies have been carried out on the production, characterization and classification of FAEs, however only a few reports of suitable High Throughput Screening assays for this kind of enzymes have been reported. This review is focused on a concise but complete revision of classical to High Throughput Screening methods for FAEs, highlighting its advantages and disadvantages, and finally suggesting future perspectives for this important research field.

  11. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi.

    PubMed

    Keenan, Martine; Alexander, Paul W; Chaplin, Jason H; Abbott, Michael J; Diao, Hugo; Wang, Zhisen; Best, Wayne M; Perez, Catherine J; Cornwall, Scott M J; Keatley, Sarah K; Thompson, R C Andrew; Charman, Susan A; White, Karen L; Ryan, Eileen; Chen, Gong; Ioset, Jean-Robert; von Geldern, Thomas W; Chatelain, Eric

    2013-10-01

    Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.

  12. Expedient Caution: Approximating Exposure and Dosimetry to Understand Chemical Risk (OSU EMT Research Day keynote presentation)

    EPA Science Inventory

    I describe research on high throughput exposure and toxicokinetics. These tools provide context for data generated by high throughput toxicity screening to allow risk-based prioritization of thousands of chemicals.

  13. MIPHENO: Data normalization for high throughput metabolic analysis.

    EPA Science Inventory

    High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course...

  14. High-Throughput Pharmacokinetics for Environmental Chemicals (SOT)

    EPA Science Inventory

    High throughput screening (HTS) promises to allow prioritization of thousands of environmental chemicals with little or no in vivo information. For bioactivity identified by HTS, toxicokinetic (TK) models are essential to predict exposure thresholds below which no significant bio...

  15. An Automated High-Throughput Metabolic Stability Assay Using an Integrated High-Resolution Accurate Mass Method and Automated Data Analysis Software.

    PubMed

    Shah, Pranav; Kerns, Edward; Nguyen, Dac-Trung; Obach, R Scott; Wang, Amy Q; Zakharov, Alexey; McKew, John; Simeonov, Anton; Hop, Cornelis E C A; Xu, Xin

    2016-10-01

    Advancement of in silico tools would be enabled by the availability of data for metabolic reaction rates and intrinsic clearance (CLint) of a diverse compound structure data set by specific metabolic enzymes. Our goal is to measure CLint for a large set of compounds with each major human cytochrome P450 (P450) isozyme. To achieve our goal, it is of utmost importance to develop an automated, robust, sensitive, high-throughput metabolic stability assay that can efficiently handle a large volume of compound sets. The substrate depletion method [in vitro half-life (t1/2) method] was chosen to determine CLint The assay (384-well format) consisted of three parts: 1) a robotic system for incubation and sample cleanup; 2) two different integrated, ultraperformance liquid chromatography/mass spectrometry (UPLC/MS) platforms to determine the percent remaining of parent compound, and 3) an automated data analysis system. The CYP3A4 assay was evaluated using two long t1/2 compounds, carbamazepine and antipyrine (t1/2 > 30 minutes); one moderate t1/2 compound, ketoconazole (10 < t1/2 < 30 minutes); and two short t1/2 compounds, loperamide and buspirone (t½ < 10 minutes). Interday and intraday precision and accuracy of the assay were within acceptable range (∼12%) for the linear range observed. Using this assay, CYP3A4 CLint and t1/2 values for more than 3000 compounds were measured. This high-throughput, automated, and robust assay allows for rapid metabolic stability screening of large compound sets and enables advanced computational modeling for individual human P450 isozymes. U.S. Government work not protected by U.S. copyright.

  16. Exclusion-Based Capture and Enumeration of CD4+ T Cells from Whole Blood for Low-Resource Settings.

    PubMed

    Howard, Alexander L; Pezzi, Hannah M; Beebe, David J; Berry, Scott M

    2014-06-01

    In developing countries, demand exists for a cost-effective method to evaluate human immunodeficiency virus patients' CD4(+) T-helper cell count. The TH (CD4) cell count is the current marker used to identify when an HIV patient has progressed to acquired immunodeficiency syndrome, which results when the immune system can no longer prevent certain opportunistic infections. A system to perform TH count that obviates the use of costly flow cytometry will enable physicians to more closely follow patients' disease progression and response to therapy in areas where such advanced equipment is unavailable. Our system of two serially-operated immiscible phase exclusion-based cell isolations coupled with a rapid fluorescent readout enables exclusion-based isolation and accurate counting of T-helper cells at lower cost and from a smaller volume of blood than previous methods. TH cell isolation via immiscible filtration assisted by surface tension (IFAST) compares well against the established Dynal T4 Quant Kit and is sensitive at CD4 counts representative of immunocompromised patients (less than 200 TH cells per microliter of blood). Our technique retains use of open, simple-to-operate devices that enable IFAST as a high-throughput, automatable sample preparation method, improving throughput over previous low-resource methods. © 2013 Society for Laboratory Automation and Screening.

  17. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  18. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.

    PubMed

    Kavlock, Robert; Dix, David

    2010-02-01

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals (U.S. EPA, 2009a). Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast) and exposure (ExpoCast), and creating virtual liver (v-Liver) and virtual embryo (v-Embryo) systems models. U.S. EPA-funded STAR centers are also providing bioinformatics, computational toxicology data and models, and developmental toxicity data and models. The models and underlying data are being made publicly available through the Aggregated Computational Toxicology Resource (ACToR), the Distributed Structure-Searchable Toxicity (DSSTox) Database Network, and other U.S. EPA websites. While initially focused on improving the hazard identification process, the CTRP is placing increasing emphasis on using high-throughput bioactivity profiling data in systems modeling to support quantitative risk assessments, and in developing complementary higher throughput exposure models. This integrated approach will enable analysis of life-stage susceptibility, and understanding of the exposures, pathways, and key events by which chemicals exert their toxicity in developing systems (e.g., endocrine-related pathways). The CTRP will be a critical component in next-generation risk assessments utilizing quantitative high-throughput data and providing a much higher capacity for assessing chemical toxicity than is currently available.

  19. EPA Project Updates: DSSTox and ToxCast Generating New ...

    EPA Pesticide Factsheets

    EPAs National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate data-mining, and data read-across. The DSSTox Structure-Browser, launched in September 2007, provides structure searchability across all published DSSTox toxicity-related inventory, and is enabling linkages between previously isolated toxicity data resources. As of early March 2008, the public DSSTox inventory as been integrated into PubChem, allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. The most recent DSSTox version of Carcinogenic Potency Database file (CPDBAS) illustrates ways in which various summary definitions of carcinogenic activity can be employed in modeling and data mining. Phase I of the ToxCast project is generating high-throughput screening data from several hundred biochemical and cell-based assays for a set of 320 chemicals, mostly pesticide actives, with rich toxicology profiles. Incorporating and expanding traditional SAR Concepts into this new high-throughput and data-rich would pose conceptual and practical challenges, but also holds great promise for improving predictive capabilities. EPA's National Center for Computational Toxicology is bu

  20. Abbott Physicochemical Tiering (APT)--a unified approach to HTS triage.

    PubMed

    Cox, Philip B; Gregg, Robert J; Vasudevan, Anil

    2012-07-15

    The selection of the highest quality chemical matter from high throughput screening (HTS) is the ultimate aim of any triage process. Typically there are many hundreds or thousands of hits capable of modulating a given biological target in HTS with a wide range of physicochemical properties that should be taken into consideration during triage. Given the multitude of physicochemical properties that define drug-like space, a system needs to be in place that allows for a rapid selection of chemical matter based on a prioritized range of these properties. With this goal in mind, we have developed a tool, coined Abbott Physicochemical Tiering (APT) that enables hit prioritization based on ranges of these important physicochemical properties. This tool is now used routinely at Abbott to help prioritize hits out of HTS during the triage process. Herein we describe how this tool was developed and validated using Abbott internal high throughput ADME data (HT-ADME). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Introducing Discrete Frequency Infrared Technology for High-Throughput Biofluid Screening

    NASA Astrophysics Data System (ADS)

    Hughes, Caryn; Clemens, Graeme; Bird, Benjamin; Dawson, Timothy; Ashton, Katherine M.; Jenkinson, Michael D.; Brodbelt, Andrew; Weida, Miles; Fotheringham, Edeline; Barre, Matthew; Rowlette, Jeremy; Baker, Matthew J.

    2016-02-01

    Accurate early diagnosis is critical to patient survival, management and quality of life. Biofluids are key to early diagnosis due to their ease of collection and intimate involvement in human function. Large-scale mid-IR imaging of dried fluid deposits offers a high-throughput molecular analysis paradigm for the biomedical laboratory. The exciting advent of tuneable quantum cascade lasers allows for the collection of discrete frequency infrared data enabling clinically relevant timescales. By scanning targeted frequencies spectral quality, reproducibility and diagnostic potential can be maintained while significantly reducing acquisition time and processing requirements, sampling 16 serum spots with 0.6, 5.1 and 15% relative standard deviation (RSD) for 199, 14 and 9 discrete frequencies respectively. We use this reproducible methodology to show proof of concept rapid diagnostics; 40 unique dried liquid biopsies from brain, breast, lung and skin cancer patients were classified in 2.4 cumulative seconds against 10 non-cancer controls with accuracies of up to 90%.

  2. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi

    2012-05-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.

  3. 384 Hanging Drop Arrays Give Excellent Z-factors and Allow Versatile Formation of Co-culture Spheroids

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651

  4. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    PubMed

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Optimization and high-throughput screening of antimicrobial peptides.

    PubMed

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  6. Increasing Electrochemiluminescence Intensity of a Wireless Electrode Array Chip by Thousands of Times Using a Diode for Sensitive Visual Detection by a Digital Camera.

    PubMed

    Qi, Liming; Xia, Yong; Qi, Wenjing; Gao, Wenyue; Wu, Fengxia; Xu, Guobao

    2016-01-19

    Both a wireless electrochemiluminescence (ECL) electrode microarray chip and the dramatic increase in ECL by embedding a diode in an electromagnetic receiver coil have been first reported. The newly designed device consists of a chip and a transmitter. The chip has an electromagnetic receiver coil, a mini-diode, and a gold electrode array. The mini-diode can rectify alternating current into direct current and thus enhance ECL intensities by 18 thousand times, enabling a sensitive visual detection using common cameras or smart phones as low cost detectors. The detection limit of hydrogen peroxide using a digital camera is comparable to that using photomultiplier tube (PMT)-based detectors. Coupled with a PMT-based detector, the device can detect luminol with higher sensitivity with linear ranges from 10 nM to 1 mM. Because of the advantages including high sensitivity, high throughput, low cost, high portability, and simplicity, it is promising in point of care testing, drug screening, and high throughput analysis.

  7. Performance Studies on Distributed Virtual Screening

    PubMed Central

    Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.

    2014-01-01

    Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219

  8. Multiplexed analysis of protein-ligand interactions by fluorescence anisotropy in a microfluidic platform.

    PubMed

    Cheow, Lih Feng; Viswanathan, Ramya; Chin, Chee-Sing; Jennifer, Nancy; Jones, Robert C; Guccione, Ernesto; Quake, Stephen R; Burkholder, William F

    2014-10-07

    Homogeneous assay platforms for measuring protein-ligand interactions are highly valued due to their potential for high-throughput screening. However, the implementation of these multiplexed assays in conventional microplate formats is considerably expensive due to the large amounts of reagents required and the need for automation. We implemented a homogeneous fluorescence anisotropy-based binding assay in an automated microfluidic chip to simultaneously interrogate >2300 pairwise interactions. We demonstrated the utility of this platform in determining the binding affinities between chromatin-regulatory proteins and different post-translationally modified histone peptides. The microfluidic chip assay produces comparable results to conventional microtiter plate assays, yet requires 2 orders of magnitude less sample and an order of magnitude fewer pipetting steps. This approach enables one to use small samples for medium-scale screening and could ease the bottleneck of large-scale protein purification.

  9. Functional annotation of chemical libraries across diverse biological processes.

    PubMed

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  10. Fluorescence polarization-based assay using N-glycan-conjugated quantum dots for screening in hemagglutinin blockers for influenza A viruses.

    PubMed

    Okamatsu, Masatoshi; Feng, Fei; Ohyanagi, Tatsuya; Nagahori, Noriko; Someya, Kazuhiko; Sakoda, Yoshihiro; Miura, Nobuaki; Nishimura, Shin-Ichiro; Kida, Hiroshi

    2013-02-01

    Attachment of influenza virus to susceptible cells is mediated by viral protein hemagglutinin (HA), which recognizes cell surface glycoconjugates that terminate in α-sialosides. To develop anti-influenza drugs based on inhibition of HA-mediated infection, novel fluorescent nanoparticles displaying multiple biantennary N-glycan chains with α-sialosides (A2-PC-QDs) that have high affinity for the HA were designed and constructed. The A2-PC-QDs enabled an easy and efficient fluorescence polarization (FP) assay for detection of interaction with the HA and competitive inhibition even by small molecule compounds against A2-PC-QDs-HA binding. The quantum dot (QD)-based FP assay established in the present study is a useful tool for high-throughput screening and to accelerate the development of novel and more effective blockers of the viral attachment of influenza virus. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays

    EPA Science Inventory

    High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...

  12. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae

    PubMed Central

    2011-01-01

    We describe a new selection method based on BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, fluorescence activated cell sorting (FACS) and microplate-based isolation of lipid-rich microalgae from an environmental sample. Our results show that direct sorting onto solid medium upon FACS can save about 3 weeks during the scale-up process as compared with the growth of the same cultures in liquid medium. This approach enabled us to isolate a biodiverse collection of several axenic and unialgal cultures of different phyla. PMID:22192119

  13. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae.

    PubMed

    Pereira, Hugo; Barreira, Luísa; Mozes, André; Florindo, Cláudia; Polo, Cristina; Duarte, Catarina V; Custódio, Luísa; Varela, João

    2011-12-22

    We describe a new selection method based on BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, fluorescence activated cell sorting (FACS) and microplate-based isolation of lipid-rich microalgae from an environmental sample. Our results show that direct sorting onto solid medium upon FACS can save about 3 weeks during the scale-up process as compared with the growth of the same cultures in liquid medium. This approach enabled us to isolate a biodiverse collection of several axenic and unialgal cultures of different phyla.

  14. Current Trends on Medical and Pharmaceutical Applications of Inkjet Printing Technology.

    PubMed

    Scoutaris, Nicolaos; Ross, Steven; Douroumis, Dennis

    2016-08-01

    Inkjet printing is an attractive material deposition and patterning technology that has received significant attention in the recent years. It has been exploited for novel applications including high throughput screening, pharmaceutical formulations, medical devices and implants. Moreover, inkjet printing has been implemented in cutting-edge 3D-printing healthcare areas such as tissue engineering and regenerative medicine. Recent inkjet advances enabled 3D printing of artificial cartilage and skin, or cell constructs for transplantation therapies. In the coming years inkjet printing is anticipated to revolutionize personalized medicine and push the innovation portfolio by offering new paths in patient - specific treatments.

  15. Low-cost fluorimetric determination of radicals based on fluorogenic dimerization of the natural phenol sesamol.

    PubMed

    Makino, Yumi; Uchiyama, Seiichi; Ohno, Ken-ichi; Arakawa, Hidetoshi

    2010-02-15

    A novel fluorimetric method for determining radicals using the natural phenol sesamol as a fluorogenic reagent is reported. In this assay, sesamol was reacted with aqueous radicals to yield one isomer of a sesamol dimer exclusively. The dimer emitted purple fluorescence near 400 nm around neutral pH, where it assumed the monoanionic form. This method was applied to the straightforward detection of radical nitric oxide (NO). The ready availability of sesamol should enable rapid implementation of applications utilizing this new assay, particularly in high-throughput analysis or screening.

  16. RNAi in the mouse: rapid and affordable gene function studies in a vertebrate system.

    PubMed

    Rytlewski, Julie A; Beronja, Slobodan

    2015-01-01

    The addition of RNA interference (RNAi) to the mammalian genomic toolbox has significantly expanded our ability to use higher-order models in studies of development and disease. The mouse, in particular, has benefited most from RNAi technology. Unique combinations of RNAi vectors and delivery methods now offer a broad platform for gene silencing in transgenic mice, enabling the design of new physiologically relevant models. The era of RNAi mice has accelerated the pace of genetic study and made high-throughput screens not only feasible but also affordable. © 2014 Wiley Periodicals, Inc.

  17. High Throughput Genotoxicity Profiling of the US EPA ToxCast Chemical Library

    EPA Science Inventory

    A key aim of the ToxCast project is to investigate modern molecular and genetic high content and high throughput screening (HTS) assays, along with various computational tools to supplement and perhaps replace traditional assays for evaluating chemical toxicity. Genotoxicity is a...

  18. Engineering a vitamin B12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti.

    PubMed

    Cai, Yingying; Xia, Miaomiao; Dong, Huina; Qian, Yuan; Zhang, Tongcun; Zhu, Beiwei; Wu, Jinchuan; Zhang, Dawei

    2018-05-11

    As a very important coenzyme in the cell metabolism, Vitamin B 12 (cobalamin, VB 12 ) has been widely used in food and medicine fields. The complete biosynthesis of VB 12 requires approximately 30 genes, but overexpression of these genes did not result in expected increase of VB 12 production. High-yield VB 12 -producing strains are usually obtained by mutagenesis treatments, thus developing an efficient screening approach is urgently needed. By the help of engineered strains with varied capacities of VB 12 production, a riboswitch library was constructed and screened, and the btuB element from Salmonella typhimurium was identified as the best regulatory device. A flow cytometry high-throughput screening system was developed based on the btuB riboswitch with high efficiency to identify positive mutants. Mutation of Sinorhizobium meliloti (S. meliloti) was optimized using the novel mutation technique of atmospheric and room temperature plasma (ARTP). Finally, the mutant S. meliloti MC5-2 was obtained and considered as a candidate for industrial applications. After 7 d's cultivation on a rotary shaker at 30 °C, the VB 12 titer of S. meliloti MC5-2 reached 156 ± 4.2 mg/L, which was 21.9% higher than that of the wild type strain S. meliloti 320 (128 ± 3.2 mg/L). The genome of S. meliloti MC5-2 was sequenced, and gene mutations were identified and analyzed. To our knowledge, it is the first time that a riboswitch element was used in S. meliloti. The flow cytometry high-throughput screening system was successfully developed and a high-yield VB 12 producing strain was obtained. The identified and analyzed gene mutations gave useful information for developing high-yield strains by metabolic engineering. Overall, this work provides a useful high-throughput screening method for developing high VB 12 -yield strains.

  19. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers.

    PubMed

    Avonto, Cristina; Chittiboyina, Amar G; Rua, Diego; Khan, Ikhlas A

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, 'HTS-DCYA assay', is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Automated Analysis of siRNA Screens of Virus Infected Cells Based on Immunofluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    We present an image analysis approach as part of a high-throughput microscopy screening system based on cell arrays for the identification of genes involved in Hepatitis C and Dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in cells, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behavior of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.

  1. A Simple Method for High Throughput Chemical Screening in Caenorhabditis Elegans

    PubMed Central

    Lucanic, Mark; Garrett, Theo; Gill, Matthew S.; Lithgow, Gordon J.

    2018-01-01

    Caenorhabditis elegans is a useful organism for testing chemical effects on physiology. Whole organism small molecule screens offer significant advantages for identifying biologically active chemical structures that can modify complex phenotypes such as lifespan. Described here is a simple protocol for producing hundreds of 96-well culture plates with fairly consistent numbers of C. elegans in each well. Next, we specified how to use these cultures to screen thousands of chemicals for effects on the lifespan of the nematode C. elegans. This protocol makes use of temperature sensitive sterile strains, agar plate conditions, and simple animal handling to facilitate the rapid and high throughput production of synchronized animal cultures for screening. PMID:29630057

  2. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-05-01

    The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO 2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single-cell resolution in a non-invasive and interference-free manner. Here high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen-sufficient and nitrogen-deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae-based biofuel production. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  3. The stabilisation of purified, reconstituted P-glycoprotein by freeze drying with disaccharides.

    PubMed

    Heikal, Adam; Box, Karl; Rothnie, Alice; Storm, Janet; Callaghan, Richard; Allen, Marcus

    2009-02-01

    The drug efflux pump P-glycoprotein (P-gp) (ABCB1) confers multidrug resistance, a major cause of failure in the chemotherapy of tumours, exacerbated by a shortage of potent and selective inhibitors. A high throughput assay using purified P-gp to screen and characterise potential inhibitors would greatly accelerate their development. However, long-term stability of purified reconstituted ABCB1 can only be reliably achieved with storage at -80 degrees C. For example, at 20 degrees C, the activity of ABCB1 was abrogated with a half-life of <1 day. The aim of this investigation was to stabilise purified, reconstituted ABCB1 to enable storage at higher temperatures and thereby enable design of a high throughput assay system. The ABCB1 purification procedure was optimised to allow successful freeze drying by substitution of glycerol with the disaccharides trehalose or maltose. Addition of disaccharides resulted in ATPase activity being retained immediately following lyophilisation with no significant difference between the two disaccharides. However, during storage trehalose preserved ATPase activity for several months regardless of the temperature (e.g. 60% retention at 150 days), whereas ATPase activity in maltose purified P-gp was affected by both storage time and temperature. The data provide an effective mechanism for the production of resilient purified, reconstituted ABCB1.

  4. Human Genomic Loci Important in Common Infectious Diseases: Role of High-Throughput Sequencing and Genome-Wide Association Studies

    PubMed Central

    Sserwadda, Ivan; Amujal, Marion; Namatovu, Norah

    2018-01-01

    HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers. PMID:29755620

  5. Novel method for high-throughput colony PCR screening in nanoliter-reactors

    PubMed Central

    Walser, Marcel; Pellaux, Rene; Meyer, Andreas; Bechtold, Matthias; Vanderschuren, Herve; Reinhardt, Richard; Magyar, Joseph; Panke, Sven; Held, Martin

    2009-01-01

    We introduce a technology for the rapid identification and sequencing of conserved DNA elements employing a novel suspension array based on nanoliter (nl)-reactors made from alginate. The reactors have a volume of 35 nl and serve as reaction compartments during monoseptic growth of microbial library clones, colony lysis, thermocycling and screening for sequence motifs via semi-quantitative fluorescence analyses. nl-Reactors were kept in suspension during all high-throughput steps which allowed performing the protocol in a highly space-effective fashion and at negligible expenses of consumables and reagents. As a first application, 11 high-quality microsatellites for polymorphism studies in cassava were isolated and sequenced out of a library of 20 000 clones in 2 days. The technology is widely scalable and we envision that throughputs for nl-reactor based screenings can be increased up to 100 000 and more samples per day thereby efficiently complementing protocols based on established deep-sequencing technologies. PMID:19282448

  6. High-Throughput All-Optical Analysis of Synaptic Transmission and Synaptic Vesicle Recycling in Caenorhabditis elegans

    PubMed Central

    Wabnig, Sebastian; Liewald, Jana Fiona; Yu, Szi-chieh; Gottschalk, Alexander

    2015-01-01

    Synaptic vesicles (SVs) undergo a cycle of biogenesis and membrane fusion to release transmitter, followed by recycling. How exocytosis and endocytosis are coupled is intensively investigated. We describe an all-optical method for identification of neurotransmission genes that can directly distinguish SV recycling factors in C. elegans, by motoneuron photostimulation and muscular RCaMP Ca2+ imaging. We verified our approach on mutants affecting synaptic transmission. Mutation of genes affecting SV recycling (unc-26 synaptojanin, unc-41 stonin, unc-57 endophilin, itsn-1 intersectin, snt-1 synaptotagmin) showed a distinct ‘signature’ of muscle Ca2+ dynamics, induced by cholinergic motoneuron photostimulation, i.e. faster rise, and earlier decrease of the signal, reflecting increased synaptic fatigue during ongoing photostimulation. To facilitate high throughput, we measured (3–5 times) ~1000 nematodes for each gene. We explored if this method enables RNAi screening for SV recycling genes. Previous screens for synaptic function genes, based on behavioral or pharmacological assays, allowed no distinction of the stage of the SV cycle in which a protein might act. We generated a strain enabling RNAi specifically only in cholinergic neurons, thus resulting in healthier animals and avoiding lethal phenotypes resulting from knockdown elsewhere. RNAi of control genes resulted in Ca2+ measurements that were consistent with results obtained in the respective genomic mutants, albeit to a weaker extent in most cases, and could further be confirmed by opto-electrophysiological measurements for mutants of some of the genes, including synaptojanin. We screened 95 genes that were previously implicated in cholinergic transmission, and several controls. We identified genes that clustered together with known SV recycling genes, exhibiting a similar signature of their Ca2+ dynamics. Five of these genes (C27B7.7, erp-1, inx-8, inx-10, spp-10) were further assessed in respective genomic mutants; however, while all showed electrophysiological phenotypes indicative of reduced cholinergic transmission, no obvious SV recycling phenotypes could be uncovered for these genes. PMID:26312752

  7. Target enrichment and high-throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond-Blackfan anaemia.

    PubMed

    Gerrard, Gareth; Valgañón, Mikel; Foong, Hui En; Kasperaviciute, Dalia; Iskander, Deena; Game, Laurence; Müller, Michael; Aitman, Timothy J; Roberts, Irene; de la Fuente, Josu; Foroni, Letizia; Karadimitris, Anastasios

    2013-08-01

    Diamond-Blackfan anaemia (DBA) is caused by inactivating mutations in ribosomal protein (RP) genes, with mutations in 13 of the 80 RP genes accounting for 50-60% of cases. The remaining 40-50% cases may harbour mutations in one of the remaining RP genes, but the very low frequencies render conventional genetic screening as challenging. We, therefore, applied custom enrichment technology combined with high-throughput sequencing to screen all 80 RP genes. Using this approach, we identified and validated inactivating mutations in 15/17 (88%) DBA patients. Target enrichment combined with high-throughput sequencing is a robust and improved methodology for the genetic diagnosis of DBA. © 2013 John Wiley & Sons Ltd.

  8. Optimizing multi-dimensional high throughput screening using zebrafish.

    PubMed

    Truong, Lisa; Bugel, Sean M; Chlebowski, Anna; Usenko, Crystal Y; Simonich, Michael T; Simonich, Staci L Massey; Tanguay, Robert L

    2016-10-01

    The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Novel KCNQ2 channel activators discovered using fluorescence-based and automated patch-clamp-based high-throughput screening techniques

    PubMed Central

    Yue, Jin-feng; Qiao, Guan-hua; Liu, Ni; Nan, Fa-jun; Gao, Zhao-bing

    2016-01-01

    Aim: To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators. Methods: KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique. Results: From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 μmol/L and 1.37±0.06 μmol/L, respectively. Conclusion: The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators. PMID:26725738

  10. High Throughput Assays and Exposure Science (ISES annual meeting)

    EPA Science Inventory

    High throughput screening (HTS) data characterizing chemical-induced biological activity has been generated for thousands of environmentally-relevant chemicals by the US inter-agency Tox21 and the US EPA ToxCast programs. For a limited set of chemicals, bioactive concentrations r...

  11. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    EPA Science Inventory

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  12. Accounting For Uncertainty in The Application Of High Throughput Datasets

    EPA Science Inventory

    The use of high throughput screening (HTS) datasets will need to adequately account for uncertainties in the data generation process and propagate these uncertainties through to ultimate use. Uncertainty arises at multiple levels in the construction of predictors using in vitro ...

  13. 20180312 - Uncertainty and Variability in High-Throughput Toxicokinetics for Risk Prioritization (SOT)

    EPA Science Inventory

    Streamlined approaches that use in vitro experimental data to predict chemical toxicokinetics (TK) are increasingly being used to perform risk-based prioritization based upon dosimetric adjustment of high-throughput screening (HTS) data across thousands of chemicals. However, ass...

  14. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons.

    PubMed

    Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P

    2014-12-01

    Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.

  15. Development and application of a fluorescent glucose uptake assay for the high-throughput screening of non-glycoside SGLT2 inhibitors.

    PubMed

    Wu, Szu-Huei; Yao, Chun-Hsu; Hsieh, Chieh-Jui; Liu, Yu-Wei; Chao, Yu-Sheng; Song, Jen-Shin; Lee, Jinq-Chyi

    2015-07-10

    Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 μM by high-throughput screening of 41,000 compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting

    DOE PAGES

    Jung, Seung-Yong; Notton, Timothy; Fong, Erika; ...

    2015-01-07

    Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min -1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.

  17. Automated recycling of chemistry for virtual screening and library design.

    PubMed

    Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian

    2012-07-23

    An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.

  18. A kinase-focused compound collection: compilation and screening strategy.

    PubMed

    Sun, Dongyu; Chuaqui, Claudio; Deng, Zhan; Bowes, Scott; Chin, Donovan; Singh, Juswinder; Cullen, Patrick; Hankins, Gretchen; Lee, Wen-Cherng; Donnelly, Jason; Friedman, Jessica; Josiah, Serene

    2006-06-01

    Lead identification by high-throughput screening of large compound libraries has been supplemented with virtual screening and focused compound libraries. To complement existing approaches for lead identification at Biogen Idec, a kinase-focused compound collection was designed, developed and validated. Two strategies were adopted to populate the compound collection: a ligand shape-based virtual screening and a receptor-based approach (structural interaction fingerprint). Compounds selected with the two approaches were cherry-picked from an existing high-throughput screening compound library, ordered from suppliers and supplemented with specific medicinal compounds from internal programs. Promising hits and leads have been generated from the kinase-focused compound collection against multiple kinase targets. The principle of the collection design and screening strategy was validated and the use of the kinase-focused compound collection for lead identification has been added to existing strategies.

  19. Integration of an In Situ MALDI-Based High-Throughput Screening Process: A Case Study with Receptor Tyrosine Kinase c-MET.

    PubMed

    Beeman, Katrin; Baumgärtner, Jens; Laubenheimer, Manuel; Hergesell, Karlheinz; Hoffmann, Martin; Pehl, Ulrich; Fischer, Frank; Pieck, Jan-Carsten

    2017-12-01

    Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated "in-line reader" for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.

  20. Polymer-Based Dense Fluidic Networks for High Throughput Screening with Ultrasensitive Fluorescence Detection

    PubMed Central

    Okagbare, Paul I.; Soper, Steven A.

    2011-01-01

    Microfluidics represents a viable platform for performing High Throughput Screening (HTS) due to its ability to automate fluid handling and generate fluidic networks with high number densities over small footprints appropriate for the simultaneous optical interrogation of many screening assays. While most HTS campaigns depend on fluorescence, readers typically use point detection and serially address the assay results significantly lowering throughput or detection sensitivity due to a low duty cycle. To address this challenge, we present here the fabrication of a high density microfluidic network packed into the imaging area of a large field-of-view (FoV) ultrasensitive fluorescence detection system. The fluidic channels were 1, 5 or 10 μm (width), 1 μm (depth) with a pitch of 1–10 μm and each fluidic processor was individually addressable. The fluidic chip was produced from a molding tool using hot embossing and thermal fusion bonding to enclose the fluidic channels. A 40X microscope objective (numerical aperture = 0.75) created a FoV of 200 μm, providing the ability to interrogate ~25 channels using the current fluidic configuration. An ultrasensitive fluorescence detection system with a large FoV was used to transduce fluorescence signals simultaneously from each fluidic processor onto the active area of an electron multiplying charge-coupled device (EMCCD). The utility of these multichannel networks for HTS was demonstrated by carrying out the high throughput monitoring of the activity of an enzyme, APE1, used as a model screening assay. PMID:20872611

  1. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.

    PubMed

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-09-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  2. Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications

    PubMed Central

    Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152

  3. Microfluidic cell chips for high-throughput drug screening

    PubMed Central

    Chi, Chun-Wei; Ahmed, AH Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-01-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell–drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838

  4. High-Throughput Screening Using a Whole-Cell Virus Replication Reporter Gene Assay to Identify Inhibitory Compounds against Rift Valley Fever Virus Infection.

    PubMed

    Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus

    2016-04-01

    Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. © 2016 Society for Laboratory Automation and Screening.

  5. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.

    PubMed

    Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J

    2017-04-01

    Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A simple cell-based high throughput screening (HTS) assay for inhibitors of Salmonella enterica RNA polymerase containing the general stress response regulator RpoS (σS).

    PubMed

    Campos-Gomez, Javier; Benitez, Jorge A

    2018-07-01

    RNA polymerase containing the stress response regulator σ S subunit (RpoS) plays a key role in bacterial survival in hostile environments in nature and during infection. Here we devise and validate a simple cell-based high throughput luminescence assay for this holoenzyme suitable for screening large chemical libraries in a robotic platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Identification and validation of vesicant therapeutic targets using a high, throughput siRNA screening approach

    DTIC Science & Technology

    2014-12-24

    toxlet.2011.04.007 Rogers JV, Choi YW, Kiser RC et al (2004) Microarray analysis of gene expression in murine skin exposed to sulfur mustard. J Bio...Chemotactic factors released in culture by intact developing and healing skin lesions produced in rabbits by the irritant sulfur mustard. Inflam- mation 21(2...Project ID Number CBM.CUTOC.04.10. RC 00114. ABSTRACT See reprint. 15. SUBJECT TERMS sulfur mustard, cutaneous injury, siRNA, high-throughput screening

  8. Fun with High Throughput Toxicokinetics (CalEPA webinar)

    EPA Science Inventory

    Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21. These chemicals are tested in part because there are limited or no data on hazard, exposure, or toxicokinetics (TK). TK models aid in predicting tissue concentrations ...

  9. HTTK: R Package for High-Throughput Toxicokinetics

    EPA Science Inventory

    Thousands of chemicals have been profiled by high-throughput screening programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics. Toxicokinetic models aid in predicting tissue concent...

  10. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins.

    PubMed

    Hassig, Christian A; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E; Brown, Susan G; Baire, Beeraiah; Michel, Andrew R; Hoye, Thomas R; Francis, Subhashree; Georg, Gunda I; Walters, Michael A; Divlianska, Daniela B; Roth, Gregory P; Wright, Amy E; Reed, John C

    2014-09-01

    Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach. © 2014 Society for Laboratory Automation and Screening.

  11. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges

    PubMed Central

    Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun

    2015-01-01

    The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061

  12. Ion channel pharmacology under flow: automation via well-plate microfluidics.

    PubMed

    Spencer, C Ian; Li, Nianzhen; Chen, Qin; Johnson, Juliette; Nevill, Tanner; Kammonen, Juha; Ionescu-Zanetti, Cristian

    2012-08-01

    Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format.

  13. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems.

    PubMed

    Howes, Amy L; Richardson, Robyn D; Finlay, Darren; Vuori, Kristiina

    2014-01-01

    3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery.

  14. 3-Dimensional Culture Systems for Anti-Cancer Compound Profiling and High-Throughput Screening Reveal Increases in EGFR Inhibitor-Mediated Cytotoxicity Compared to Monolayer Culture Systems

    PubMed Central

    Howes, Amy L.; Richardson, Robyn D.; Finlay, Darren; Vuori, Kristiina

    2014-01-01

    3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery. PMID:25247711

  15. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density

    DOE PAGES

    Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; ...

    2015-07-01

    We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using thismore » system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. Moreover, a fragment mini-library was screened to observe two known lysozyme We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.ds using both co-crystallization and soaking. We used a A similar approach to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component.« less

  16. High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research pr...

  17. Use of High-Throughput Testing and Approaches for Evaluating Chemical Risk-Relevance to Humans

    EPA Science Inventory

    ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational models that integrate knowledge of biological systems and in vivo toxicities. Many of these assays probe signaling pathways and cellular processes critical to...

  18. High-Throughput Simulation of Environmental Chemical Fate for Exposure Prioritization

    EPA Science Inventory

    The U.S. EPA must consider lists of hundreds to thousands of chemicals when allocating resources to identify risk in human populations and the environment. High-throughput screening assays to characterize biological activity in vitro have allowed the ToxCastTM program to identify...

  19. Incorporating Population Variability and Susceptible Subpopulations into Dosimetry for High-Throughput Toxicity Testing

    EPA Science Inventory

    Momentum is growing worldwide to use in vitro high-throughput screening (HTS) to evaluate human health effects of chemicals. However, the integration of dosimetry into HTS assays and incorporation of population variability will be essential before its application in a risk assess...

  20. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening

    PubMed Central

    Li, Guoliang; Yuan, Hui; Zhang, Hongchao; Li, Yanjun; Xie, Xixian; Chen, Ning

    2017-01-01

    In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.7 and 30.3 g/L uridine after 30 h in shake-flask and 48 h in fed-batch fermentation, respectively, which represented a 4.4- and 8.7-fold increase over the parent strain. Sequence analysis of the pyrimidine nucleotide biosynthetic operon in the representative mutants showed that proline 1016 and glutamate 949 in the large subunit of B. subtilis carbamoyl phosphate synthetase were of importance for the allosteric regulation caused by uridine 5′-monophosphate. The proposed mutation method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain uridine-overproducing strain. PMID:28472077

  1. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening.

    PubMed

    Fan, Xiaoguang; Wu, Heyun; Li, Guoliang; Yuan, Hui; Zhang, Hongchao; Li, Yanjun; Xie, Xixian; Chen, Ning

    2017-01-01

    In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.7 and 30.3 g/L uridine after 30 h in shake-flask and 48 h in fed-batch fermentation, respectively, which represented a 4.4- and 8.7-fold increase over the parent strain. Sequence analysis of the pyrimidine nucleotide biosynthetic operon in the representative mutants showed that proline 1016 and glutamate 949 in the large subunit of B. subtilis carbamoyl phosphate synthetase were of importance for the allosteric regulation caused by uridine 5'-monophosphate. The proposed mutation method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain uridine-overproducing strain.

  2. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    PubMed

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system.

  3. High-throughput screening for combinatorial thin-film library of thermoelectric materials.

    PubMed

    Watanabe, Masaki; Kita, Takuji; Fukumura, Tomoteru; Ohtomo, Akira; Ueno, Kazunori; Kawasaki, Masashi

    2008-01-01

    A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.

  4. A quantitative literature-curated gold standard for kinase-substrate pairs

    PubMed Central

    2011-01-01

    We describe the Yeast Kinase Interaction Database (KID, http://www.moseslab.csb.utoronto.ca/KID/), which contains high- and low-throughput data relevant to phosphorylation events. KID includes 6,225 low-throughput and 21,990 high-throughput interactions, from greater than 35,000 experiments. By quantitatively integrating these data, we identified 517 high-confidence kinase-substrate pairs that we consider a gold standard. We show that this gold standard can be used to assess published high-throughput datasets, suggesting that it will enable similar rigorous assessments in the future. PMID:21492431

  5. The ToxCast Pathway Database for Identifying Toxicity Signatures and Potential Modes of Action from Chemical Screening Data

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), through its ToxCast program, is developing predictive toxicity approaches that will use in vitro high-throughput screening (HTS), high-content screening (HCS) and toxicogenomic data to predict in vivo toxicity phenotypes. There are ...

  6. Development of carbon plasma-coated multiwell plates for high-throughput mass spectrometric analysis of highly lipophilic fermentation products.

    PubMed

    Heinig, Uwe; Scholz, Susanne; Dahm, Pia; Grabowy, Udo; Jennewein, Stefan

    2010-08-01

    Classical approaches to strain improvement and metabolic engineering rely on rapid qualitative and quantitative analyses of the metabolites of interest. As an analytical tool, mass spectrometry (MS) has proven to be efficient and nearly universally applicable for timely screening of metabolites. Furthermore, gas chromatography (GC)/MS- and liquid chromatography (LC)/MS-based metabolite screens can often be adapted to high-throughput formats. We recently engineered a Saccharomyces cerevisiae strain to produce taxa-4(5),11(12)-diene, the first pathway-committing biosynthetic intermediate for the anticancer drug Taxol, through the heterologous and homologous expression of several genes related to isoprenoid biosynthesis. To date, GC/MS- and LC/MS-based high-throughput methods have been inherently difficult to adapt to the screening of isoprenoid-producing microbial strains due to the need for extensive sample preparation of these often highly lipophilic compounds. In the current work, we examined different approaches to the high-throughput analysis of taxa-4(5),11(12)-diene biosynthesizing yeast strains in a 96-deep-well format. Carbon plasma coating of standard 96-deep-well polypropylene plates allowed us to circumvent the inherent solvent instability of commonly used deep-well plates. In addition, efficient adsorption of the target isoprenoid product by the coated plates allowed rapid and simple qualitative and quantitative analyses of the individual cultures. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Automated Monitoring and Analysis of Social Behavior in Drosophila

    PubMed Central

    Dankert, Heiko; Wang, Liming; Hoopfer, Eric D.; Anderson, David J.; Perona, Pietro

    2009-01-01

    We introduce a method based on machine vision for automatically measuring aggression and courtship in Drosophila melanogaster. The genetic and neural circuit bases of these innate social behaviors are poorly understood. High-throughput behavioral screening in this genetically tractable model organism is a potentially powerful approach, but it is currently very laborious. Our system monitors interacting pairs of flies, and computes their location, orientation and wing posture. These features are used for detecting behaviors exhibited during aggression and courtship. Among these, wing threat, lunging and tussling are specific to aggression; circling, wing extension (courtship “song”) and copulation are specific to courtship; locomotion and chasing are common to both. Ethograms may be constructed automatically from these measurements, saving considerable time and effort. This technology should enable large-scale screens for genes and neural circuits controlling courtship and aggression. PMID:19270697

  8. The Joint European Compound Library: boosting precompetitive research.

    PubMed

    Besnard, Jérémy; Jones, Philip S; Hopkins, Andrew L; Pannifer, Andrew D

    2015-02-01

    The Joint European Compound Library (JECL) is a new high-throughput screening collection aimed at driving precompetitive drug discovery and target validation. The JECL has been established with a core of over 321,000 compounds from the proprietary collections of seven pharmaceutical companies and will expand to around 500,000 compounds. Here, we analyse the physicochemical profile and chemical diversity of the core collection, showing that the collection is diverse and has a broad spectrum of predicted biological activity. We also describe a model for sharing compound information from multiple proprietary collections, enabling diversity and quality analysis without disclosing structures. The JECL is available for screening at no cost to European academic laboratories and SMEs through the IMI European Lead Factory (http://www.europeanleadfactory.eu/). Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    PubMed Central

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  10. Robotic implementation of assays: tissue-nonspecific alkaline phosphatase (TNAP) case study.

    PubMed

    Chung, Thomas D Y

    2013-01-01

    Laboratory automation and robotics have "industrialized" the execution and completion of large-scale, enabling high-capacity and high-throughput (100 K-1 MM/day) screening (HTS) campaigns of large "libraries" of compounds (>200 K-2 MM) to complete in a few days or weeks. Critical to the success these HTS campaigns is the ability of a competent assay development team to convert a validated research-grade laboratory "benchtop" assay suitable for manual or semi-automated operations on a few hundreds of compounds into a robust miniaturized (384- or 1,536-well format), well-engineered, scalable, industrialized assay that can be seamlessly implemented on a fully automated, fully integrated robotic screening platform for cost-effective screening of hundreds of thousands of compounds. Here, we provide a review of the theoretical guiding principles and practical considerations necessary to reduce often complex research biology into a "lean manufacturing" engineering endeavor comprising adaption, automation, and implementation of HTS. Furthermore we provide a detailed example specifically for a cell-free in vitro biochemical, enzymatic phosphatase assay for tissue-nonspecific alkaline phosphatase that illustrates these principles and considerations.

  11. The Harvard Clean Energy Project: High-throughput screening of organic photovoltaic materials using cheminformatics, machine learning, and pattern recognition

    NASA Astrophysics Data System (ADS)

    Olivares-Amaya, Roberto; Hachmann, Johannes; Amador-Bedolla, Carlos; Daly, Aidan; Jinich, Adrian; Atahan-Evrenk, Sule; Boixo, Sergio; Aspuru-Guzik, Alán

    2012-02-01

    Organic photovoltaic devices have emerged as competitors to silicon-based solar cells, currently reaching efficiencies of over 9% and offering desirable properties for manufacturing and installation. We study conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices with a molecular library motivated by experimental feasibility. We use quantum mechanics and a distributed computing approach to explore this vast molecular space. We will detail the screening approach starting from the generation of the molecular library, which can be easily extended to other kinds of molecular systems. We will describe the screening method for these materials which ranges from descriptor models, ubiquitous in the drug discovery community, to eventually reaching first principles quantum chemistry methods. We will present results on the statistical analysis, based principally on machine learning, specifically partial least squares and Gaussian processes. Alongside, clustering methods and the use of the hypergeometric distribution reveal moieties important for the donor materials and allow us to quantify structure-property relationships. These efforts enable us to accelerate materials discovery in organic photovoltaics through our collaboration with experimental groups.

  12. A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy.

    PubMed

    Chen, Robert; Rishi, Harneet S; Potapov, Vladimir; Yamada, Masaki R; Yeh, Vincent J; Chow, Thomas; Cheung, Celia L; Jones, Austin T; Johnson, Terry D; Keating, Amy E; DeLoache, William C; Dueber, John E

    2015-11-20

    Dramatic progress has been made in the design and build phases of the design-build-test cycle for engineering cells. However, the test phase usually limits throughput, as many outputs of interest are not amenable to rapid analytical measurements. For example, phenotypes such as motility, morphology, and subcellular localization can be readily measured by microscopy, but analysis of these phenotypes is notoriously slow. To increase throughput, we developed microscopy-readable barcodes (MiCodes) composed of fluorescent proteins targeted to discernible organelles. In this system, a unique barcode can be genetically linked to each library member, making possible the parallel analysis of phenotypes of interest via microscopy. As a first demonstration, we MiCoded a set of synthetic coiled-coil leucine zipper proteins to allow an 8 × 8 matrix to be tested for specific interactions in micrographs consisting of mixed populations of cells. A novel microscopy-readable two-hybrid fluorescence localization assay for probing candidate interactions in the cytosol was also developed using a bait protein targeted to the peroxisome and a prey protein tagged with a fluorescent protein. This work introduces a generalizable, scalable platform for making microscopy amenable to higher-throughput library screening experiments, thereby coupling the power of imaging with the utility of combinatorial search paradigms.

  13. Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast™ High-Throughput Data

    PubMed Central

    Auerbach, Scott; Filer, Dayne; Reif, David; Walker, Vickie; Holloway, Alison C.; Schlezinger, Jennifer; Srinivasan, Supriya; Svoboda, Daniel; Judson, Richard; Bucher, John R.; Thayer, Kristina A.

    2016-01-01

    Background: Diabetes and obesity are major threats to public health in the United States and abroad. Understanding the role that chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals for testing beyond those already implicated in the literature is challenging. This review is intended to help researchers generate hypotheses about chemicals that may contribute to diabetes and to obesity-related health outcomes by summarizing relevant findings from the U.S. Environmental Protection Agency (EPA) ToxCast™ high-throughput screening (HTS) program. Objectives: Our aim was to develop new hypotheses around environmental chemicals of potential interest for diabetes- or obesity-related outcomes using high-throughput screening data. Methods: We identified ToxCast™ assay targets relevant to several biological processes related to diabetes and obesity (insulin sensitivity in peripheral tissue, pancreatic islet and β cell function, adipocyte differentiation, and feeding behavior) and presented chemical screening data against those assay targets to identify chemicals of potential interest. Discussion: The results of this screening-level analysis suggest that the spectrum of environmental chemicals to consider in research related to diabetes and obesity is much broader than indicated by research papers and reviews published in the peer-reviewed literature. Testing hypotheses based on ToxCast™ data will also help assess the predictive utility of this HTS platform. Conclusions: More research is required to put these screening-level analyses into context, but the information presented in this review should facilitate the development of new hypotheses. Citation: Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. 2016. Prioritizing environmental chemicals for obesity and diabetes outcomes research: a screening approach using ToxCast™ high-throughput data. Environ Health Perspect 124:1141–1154; http://dx.doi.org/10.1289/ehp.1510456 PMID:26978842

  14. Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast™ High-Throughput Data.

    PubMed

    Auerbach, Scott; Filer, Dayne; Reif, David; Walker, Vickie; Holloway, Alison C; Schlezinger, Jennifer; Srinivasan, Supriya; Svoboda, Daniel; Judson, Richard; Bucher, John R; Thayer, Kristina A

    2016-08-01

    Diabetes and obesity are major threats to public health in the United States and abroad. Understanding the role that chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals for testing beyond those already implicated in the literature is challenging. This review is intended to help researchers generate hypotheses about chemicals that may contribute to diabetes and to obesity-related health outcomes by summarizing relevant findings from the U.S. Environmental Protection Agency (EPA) ToxCast™ high-throughput screening (HTS) program. Our aim was to develop new hypotheses around environmental chemicals of potential interest for diabetes- or obesity-related outcomes using high-throughput screening data. We identified ToxCast™ assay targets relevant to several biological processes related to diabetes and obesity (insulin sensitivity in peripheral tissue, pancreatic islet and β cell function, adipocyte differentiation, and feeding behavior) and presented chemical screening data against those assay targets to identify chemicals of potential interest. The results of this screening-level analysis suggest that the spectrum of environmental chemicals to consider in research related to diabetes and obesity is much broader than indicated by research papers and reviews published in the peer-reviewed literature. Testing hypotheses based on ToxCast™ data will also help assess the predictive utility of this HTS platform. More research is required to put these screening-level analyses into context, but the information presented in this review should facilitate the development of new hypotheses. Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. 2016. Prioritizing environmental chemicals for obesity and diabetes outcomes research: a screening approach using ToxCast™ high-throughput data. Environ Health Perspect 124:1141-1154; http://dx.doi.org/10.1289/ehp.1510456.

  15. Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells

    PubMed Central

    Venkatachalam, Veena; Kralj, Joel M.; Dib-Hajj, Sulayman D.; Waxman, Stephen G.; Cohen, Adam E.

    2013-01-01

    Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators. PMID:24391999

  16. Cell-free translational screening of an expression sequence tag library of Clonorchis sinensis for novel antigen discovery.

    PubMed

    Kasi, Devi; Catherine, Christy; Lee, Seung-Won; Lee, Kyung-Ho; Kim, Yu Jung; Ro Lee, Myeong; Ju, Jung Won; Kim, Dong-Myung

    2017-05-01

    The rapidly evolving cloning and sequencing technologies have enabled understanding of genomic structure of parasite genomes, opening up new ways of combatting parasite-related diseases. To make the most of the exponentially accumulating genomic data, however, it is crucial to analyze the proteins encoded by these genomic sequences. In this study, we adopted an engineered cell-free protein synthesis system for large-scale expression screening of an expression sequence tag (EST) library of Clonorchis sinensis to identify potential antigens that can be used for diagnosis and treatment of clonorchiasis. To allow high-throughput expression and identification of individual genes comprising the library, a cell-free synthesis reaction was designed such that both the template DNA and the expressed proteins were co-immobilized on the same microbeads, leading to microbead-based linkage of the genotype and phenotype. This reaction configuration allowed streamlined expression, recovery, and analysis of proteins. This approach enabled us to identify 21 antigenic proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:832-837, 2017. © 2017 American Institute of Chemical Engineers.

  17. Environmental surveillance and monitoring the next frontier for pathway-based high throughput screening

    EPA Science Inventory

    In response to a proposed vision and strategy for toxicity testing in the 21st century nascent high throughput toxicology (HTT) programs have tested thousands of chemicals in hundreds of pathway-based biological assays. Although, to date, use of HTT data for safety assessment of ...

  18. 20180311 - Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells (SOT)

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  19. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Science Inventory

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  20. High-Throughput Simulation of Environmental Chemical Fate for Exposure Prioritization (Annual Meeting of ISES)

    EPA Science Inventory

    The U.S. EPA must consider thousands of chemicals when allocating resources to assess risk in human populations and the environment. High-throughput screening assays to characterize biological activity in vitro are being implemented in the ToxCastTM program to rapidly characteri...

  1. Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    EPA Science Inventory

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compare...

  2. High Throughput Assays for Exposure Science (NIEHS OHAT Staff Meeting presentation)

    EPA Science Inventory

    High throughput screening (HTS) data that characterize chemically induced biological activity have been generated for thousands of chemicals by the US interagency Tox21 and the US EPA ToxCast programs. In many cases there are no data available for comparing bioactivity from HTS w...

  3. Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  4. Differentiating pathway-specific from nonspecific effects in high-throughput toxicity data: A foundation for prioritizing adverse outcome pathway development

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with potential ...

  5. “httk”: EPA’s Tool for High Throughput Toxicokinetics (CompTox CoP)

    EPA Science Inventory

    Thousands of chemicals have been pro?led by high-throughput screening programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics. Toxicokinetic models aid in predicting tissue concentr...

  6. Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing

    EPA Science Inventory

    In vitro high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. ...

  7. Using Alternative Approaches to Prioritize Testing for the Universe of Chemicals with Potential for Human Exposure (WC9)

    EPA Science Inventory

    One use of alternative methods is to target animal use at only those chemicals and tests that are absolutely necessary. We discuss prioritization of testing based on high-throughput screening assays (HTS), QSAR modeling, high-throughput toxicokinetics (HTTK), and exposure modelin...

  8. Harnessing High-Throughput Monitoring Methods to Strengthen 21st Century Risk-Based Evaluations (SETAC Presentation)

    EPA Science Inventory

    Over the past ten years, the US government has invested in high-throughput (HT) methods to screen chemicals for biological activity. Under the interagency Tox21 consortium and the US Environmental Protection Agency’s (EPA) ToxCast™ program, thousands of chemicals have...

  9. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.

    PubMed

    Xue, Hui-Ying; Ji, Li-Juan; Gao, Ai-Mei; Liu, Ping; He, Jing-Dong; Lu, Xiao-Jie

    2016-02-01

    CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) systems have emerged as versatile and convenient (epi)genome editing tools and have become an important player in medical genetic research. CRISPR-Cas9 and its variants such as catalytically inactivated Cas9 (dead Cas9, dCas9) and scaffold-incorporating single guide sgRNA (scRNA) have been applied in various genomic screen studies. CRISPR screens enable high-throughput interrogation of gene functions in health and diseases. Compared with conventional RNAi screens, CRISPR screens incur less off-target effects and are more versatile in that they can be used in multiple formats such as knockout, knockdown and activation screens, and can target coding and non-coding regions throughout the genome. This powerful screen platform holds the potential of revolutionising functional genomic studies in the near future. Herein, we introduce the mechanisms of (epi)genome editing mediated by CRISPR-Cas9 and its variants, introduce the procedures and applications of CRISPR screen in functional genomics, compare it with conventional screen tools and at last discuss current challenges and opportunities and propose future directions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Plate-based diversity subset screening: an efficient paradigm for high throughput screening of a large screening file.

    PubMed

    Bell, Andrew S; Bradley, Joseph; Everett, Jeremy R; Knight, Michelle; Loesel, Jens; Mathias, John; McLoughlin, David; Mills, James; Sharp, Robert E; Williams, Christine; Wood, Terence P

    2013-05-01

    The screening files of many large companies, including Pfizer, have grown considerably due to internal chemistry efforts, company mergers and acquisitions, external contracted synthesis, or compound purchase schemes. In order to screen the targets of interest in a cost-effective fashion, we devised an easy-to-assemble, plate-based diversity subset (PBDS) that represents almost the entire computed chemical space of the screening file whilst comprising only a fraction of the plates in the collection. In order to create this file, we developed new design principles for the quality assessment of screening plates: the Rule of 40 (Ro40) and a plate selection process that insured excellent coverage of both library chemistry and legacy chemistry space. This paper describes the rationale, design, construction, and performance of the PBDS, that has evolved into the standard paradigm for singleton (one compound per well) high-throughput screening in Pfizer since its introduction in 2006.

  11. Functional screening assays with neurons generated from pluripotent stem cell-derived neural stem cells.

    PubMed

    Efthymiou, Anastasia; Shaltouki, Atossa; Steiner, Joseph P; Jha, Balendu; Heman-Ackah, Sabrina M; Swistowski, Andrzej; Zeng, Xianmin; Rao, Mahendra S; Malik, Nasir

    2014-01-01

    Rapid and effective drug discovery for neurodegenerative disease is currently impeded by an inability to source primary neural cells for high-throughput and phenotypic screens. This limitation can be addressed through the use of pluripotent stem cells (PSCs), which can be derived from patient-specific samples and differentiated to neural cells for use in identifying novel compounds for the treatment of neurodegenerative diseases. We have developed an efficient protocol to culture pure populations of neurons, as confirmed by gene expression analysis, in the 96-well format necessary for screens. These differentiated neurons were subjected to viability assays to illustrate their potential in future high-throughput screens. We have also shown that organelles such as nuclei and mitochondria could be live-labeled and visualized through fluorescence, suggesting that we should be able to monitor subcellular phenotypic changes. Neurons derived from a green fluorescent protein-expressing reporter line of PSCs were live-imaged to assess markers of neuronal maturation such as neurite length and co-cultured with astrocytes to demonstrate further maturation. These studies confirm that PSC-derived neurons can be used effectively in viability and functional assays and pave the way for high-throughput screens on neurons derived from patients with neurodegenerative disorders.

  12. Membrane-on-a-chip: microstructured silicon/silicon-dioxide chips for high-throughput screening of membrane transport and viral membrane fusion.

    PubMed

    Kusters, Ilja; van Oijen, Antoine M; Driessen, Arnold J M

    2014-04-22

    Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with physiological relevant lipid compositions on microstructured Si/SiO2 chips that allow for high-throughput screening of both membrane transport and viral membrane fusion. Simultaneous observation of hundreds of single-membrane channels yields statistical information revealing population heterogeneities of the pore assembly and conductance of the bacterial toxin α-hemolysin (αHL). The influence of lipid composition and ionic strength on αHL pore formation was investigated at the single-channel level, resolving features of the pore-assembly pathway. Pore formation is inhibited by a specific antibody, demonstrating the applicability of the platform for drug screening of bacterial toxins and cell-penetrating agents. Furthermore, fusion of H3N2 influenza viruses with suspended lipid bilayers can be observed directly using a specialized chip architecture. The presented micropore arrays are compatible with fluorescence readout from below using an air objective, thus allowing high-throughput screening of membrane transport in multiwell formats in analogy to plate readers.

  13. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.

    PubMed

    Browne, Patience; Judson, Richard S; Casey, Warren M; Kleinstreuer, Nicole C; Thomas, Russell S

    2015-07-21

    The U.S. Environmental Protection Agency (EPA) is considering high-throughput and computational methods to evaluate the endocrine bioactivity of environmental chemicals. Here we describe a multistep, performance-based validation of new methods and demonstrate that these new tools are sufficiently robust to be used in the Endocrine Disruptor Screening Program (EDSP). Results from 18 estrogen receptor (ER) ToxCast high-throughput screening assays were integrated into a computational model that can discriminate bioactivity from assay-specific interference and cytotoxicity. Model scores range from 0 (no activity) to 1 (bioactivity of 17β-estradiol). ToxCast ER model performance was evaluated for reference chemicals, as well as results of EDSP Tier 1 screening assays in current practice. The ToxCast ER model accuracy was 86% to 93% when compared to reference chemicals and predicted results of EDSP Tier 1 guideline and other uterotrophic studies with 84% to 100% accuracy. The performance of high-throughput assays and ToxCast ER model predictions demonstrates that these methods correctly identify active and inactive reference chemicals, provide a measure of relative ER bioactivity, and rapidly identify chemicals with potential endocrine bioactivities for additional screening and testing. EPA is accepting ToxCast ER model data for 1812 chemicals as alternatives for EDSP Tier 1 ER binding, ER transactivation, and uterotrophic assays.

  14. Two High Throughput Screen Assays for Measurement of TNF-α in THP-1 Cells

    PubMed Central

    Leister, Kristin P; Huang, Ruili; Goodwin, Bonnie L; Chen, Andrew; Austin, Christopher P; Xia, Menghang

    2011-01-01

    Tumor Necrosis Factor-α (TNF-α), a secreted cytokine, plays an important role in inflammatory diseases and immune disorders, and is a potential target for drug development. The traditional assays for detecting TNF-α, enzyme linked immunosorbent assay (ELISA) and radioimmunoassay, are not suitable for the large size compound screens. Both assays suffer from a complicated protocol, multiple plate wash steps and/or excessive radioactive waste. A simple and quick measurement of TNF-α production in a cell based assay is needed for high throughput screening to identify the lead compounds from the compound library. We have developed and optimized two homogeneous TNF-α assays using the HTRF (homogeneous time resolved fluorescence) and AlphaLISA assay formats. We have validated the HTRF based TNF-α assay in a 1536-well plate format by screening a library of 1280 pharmacologically active compounds. The active compounds identified from the screen were confirmed in the AlphaLISA TNF-α assay using a bead-based technology. These compounds were also confirmed in a traditional ELISA assay. From this study, several beta adrenergic agonists have been identified as TNF-α inhibitors. We also identified several novel inhibitors of TNF-α, such as BTO-1, CCG-2046, ellipticine, and PD 169316. The results demonstrated that both homogeneous TNF-α assays are robust and suitable for high throughput screening. PMID:21643507

  15. Ultra High Throughput Screening of Natural Product Extracts to Identify Pro-apoptotic Inhibitors of Bcl-2 Family Proteins

    PubMed Central

    Hassig, Christian A.; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W.; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J.; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E.; Brown, Susan G.; Baire, Beeraiah; Michel, Andrew R.; Hoye, Thomas R.; Francis, Subhashree; Georg, Gunda I.; Walters, Michael A.; Divlianska, Daniela B.; Roth, Gregory P.; Wright, Amy E.; Reed, John C.

    2015-01-01

    Anti-apoptotic Bcl-2 family proteins are validated cancer targets comprised of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). While several isoform-selective inhibitors have been developed using structure-based design or high throughput screening (HTS) of synthetic chemical libraries, no large scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six anti-apoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally-relevant PPIs. The screens were conducted in 1,536-well format and displayed satisfactory overall HTS statistics, with Z’-factor values ranging from 0.72 to 0.83, and a hit confirmation rate between 16-64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra high throughput screening using natural product sources and highlight some of the challenges associated with this approach. PMID:24870016

  16. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen

    PubMed Central

    Adissu, Hibret A.; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M.; Clarke, Kay; Karp, Natasha A.; Project, Sanger Mouse Genetics; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K.; McKerlie, Colin

    2014-01-01

    The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice. PMID:24652767

  17. Utility of High Throughput Screening Techniques to Predict Stability of Monoclonal Antibody Formulations During Early Stage Development.

    PubMed

    Goldberg, Deborah S; Lewus, Rachael A; Esfandiary, Reza; Farkas, David C; Mody, Neil; Day, Katrina J; Mallik, Priyanka; Tracka, Malgorzata B; Sealey, Smita K; Samra, Hardeep S

    2017-08-01

    Selecting optimal formulation conditions for monoclonal antibodies for first time in human clinical trials is challenging due to short timelines and reliance on predictive assays to ensure product quality and adequate long-term stability. Accelerated stability studies are considered to be the gold standard for excipient screening, but they are relatively low throughput and time consuming. High throughput screening (HTS) techniques allow for large amounts of data to be collected quickly and easily, and can be used to screen solution conditions for early formulation development. The utility of using accelerated stability compared to HTS techniques (differential scanning light scattering and differential scanning fluorescence) for early formulation screening was evaluated along with the impact of excipients of various types on aggregation of monoclonal antibodies from multiple IgG subtypes. The excipient rank order using quantitative HTS measures was found to correlate with accelerated stability aggregation rate ranking for only 33% (by differential scanning fluorescence) to 42% (by differential scanning light scattering) of the antibodies tested, due to the high intrinsic stability and minimal impact of excipients on aggregation rates and HTS data. Also explored was a case study of employing a platform formulation instead of broader formulation screening for early formulation development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Development and Validation of a High Throughput System for Discovery of Antigens for Autoantibody Detection

    PubMed Central

    Macdonald, Isabel K.; Allen, Jared; Murray, Andrea; Parsy-Kowalska, Celine B.; Healey, Graham F.; Chapman, Caroline J.; Sewell, Herbert F.; Robertson, John F. R.

    2012-01-01

    An assay employing a panel of tumor-associated antigens has been validated and is available commercially (EarlyCDT®-Lung) to aid the early detection of lung cancer by measurement of serum autoantibodies. The high throughput (HTP) strategy described herein was pursued to identify new antigens to add to the EarlyCDT-Lung panel and to assist in the development of new panels for other cancers. Two ligation-independent cloning vectors were designed and synthesized, producing fusion proteins suitable for the autoantibody ELISA. We developed an abridged HTP version of the validated autoantibody ELISA, determining that results reflected the performance of the EarlyCDT assay, by comparing results on both formats. Once validated this HTP ELISA was utilized to screen multiple fusion proteins prepared on small-scale, by a HTP expression screen. We determined whether the assay performance for these HTP protein batches was an accurate reflection of the performance of R&D or commercial batches. A HTP discovery platform for the identification and optimal production of tumor- associated antigens which detects autoantibodies has been developed and validated. The most favorable conditions for the exposure of immunogenic epitopes were assessed to produce discriminatory proteins for use in a commercial ELISA. This process is rapid and cost-effective compared to standard cloning and screening technologies and enables rapid advancement in the field of autoantibody assay discovery. This approach will significantly reduce timescale and costs for developing similar panels of autoantibody assays for the detection of other cancer types with the ultimate aim of improved overall survival due to early diagnosis and treatment. PMID:22815807

  19. Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids.

    PubMed

    Fleischer, Heidi; Thurow, Kerstin

    2013-03-01

    A rapid determination of the enantiomeric excess of proteinogenic amino acids is of great importance in various fields of chemical and biologic research and industries. Owing to their different biologic effects, enantiomers are interesting research subjects in drug development for the design of new and more efficient pharmaceuticals. Usually, the enantiomeric composition of amino acids is determined by conventional analytical methods such as liquid or gas chromatography or capillary electrophoresis. These analytical techniques do not fulfill the requirements of high-throughput screening due to their relative long analysis times. The method presented allows a fast analysis of chiral amino acids without previous time consuming chromatographic separation. The analytical measurements base on parallel kinetic resolution with pseudoenantiomeric mass tagged auxiliaries and were carried out by mass spectrometry with electrospray ionization. All 19 chiral proteinogenic amino acids were tested and Pro, Ser, Trp, His, and Glu were selected as model substrates for verification measurements. The enantiomeric excesses of amino acids with non-polar and aliphatic side chains as well as Trp and Phe (aromatic side chains) were determined with maximum deviations of the expected value less than or equal to 10ee%. Ser, Cys, His, Glu, and Asp were determined with deviations lower or equal to 14ee% and the enantiomeric excess of Tyr were calculated with 17ee% deviation. The total screening process is fully automated from the sample pretreatment to the data processing. The method presented enables fast measurement times about 1.38 min per sample and is applicable in the scope of high-throughput screenings.

  20. Human Papillomavirus Biology, Pathogenesis, and Potential for Drug Discovery: A Literature Review for HIV Nurse Clinical Scientists.

    PubMed

    Walhart, Tara

    2015-01-01

    Persistent oncogenic human papillomavirus (HPV) infection increases the probability that precancerous anal high-grade squamous intraepithelial lesions will progress to invasive anal cancer. Anal neoplasia associated with HPV disproportionately affects HIV-infected individuals, especially men who have sex with men. Prevention is limited to HPV vaccine recommendations, highlighting the need for new treatments. The purpose of this review is to provide HIV information to nurse clinical scientists about HPV-related cancer to highlight the connection between: (a) HPV biology and pathogenesis and (b) the development of drugs and novel therapeutic methods using high-throughput screening. PubMed and CINAHL were used to search the literature to determine HPV-related epidemiology, biology, and use of high-throughput screening for drug discovery. Several events in the HPV life cycle have the potential to be developed into biologic targets for drug discovery using the high-throughput screening technique, which has been successfully used to identify compounds to inhibit HPV infections. Copyright © 2015 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  1. Deciphering the glycosaminoglycan code with the help of microarrays.

    PubMed

    de Paz, Jose L; Seeberger, Peter H

    2008-07-01

    Carbohydrate microarrays have become a powerful tool to elucidate the biological role of complex sugars. Microarrays are particularly useful for the study of glycosaminoglycans (GAGs), a key class of carbohydrates. The high-throughput chip format enables rapid screening of large numbers of potential GAG sequences produced via a complex biosynthesis while consuming very little sample. Here, we briefly highlight the most recent advances involving GAG microarrays built with synthetic or naturally derived oligosaccharides. These chips are powerful tools for characterizing GAG-protein interactions and determining structure-activity relationships for specific sequences. Thereby, they contribute to decoding the information contained in specific GAG sequences.

  2. Distributed databases for materials study of thermo-kinetic properties

    NASA Astrophysics Data System (ADS)

    Toher, Cormac

    2015-03-01

    High-throughput computational materials science provides researchers with the opportunity to rapidly generate large databases of materials properties. To rapidly add thermal properties to the AFLOWLIB consortium and Materials Project repositories, we have implemented an automated quasi-harmonic Debye model, the Automatic GIBBS Library (AGL). This enables us to screen thousands of materials for thermal conductivity, bulk modulus, thermal expansion and related properties. The search and sort functions of the online database can then be used to identify suitable materials for more in-depth study using more precise computational or experimental techniques. AFLOW-AGL source code is public domain and will soon be released within the GNU-GPL license.

  3. Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry.

    PubMed

    Soulard, Patricia; McLaughlin, Meg; Stevens, Jessica; Connolly, Brendan; Coli, Rocco; Wang, Leyu; Moore, Jennifer; Kuo, Ming-Shang T; LaMarr, William A; Ozbal, Can C; Bhat, B Ganesh

    2008-10-03

    Several recent reports suggest that stearoyl-CoA desaturase 1 (SCD1), the rate-limiting enzyme in monounsaturated fatty acid synthesis, plays an important role in regulating lipid homeostasis and lipid oxidation in metabolically active tissues. As several manifestations of type 2 diabetes and related metabolic disorders are associated with alterations in intracellular lipid partitioning, pharmacological manipulation of SCD1 activity might be of benefit in the treatment of these disease states. In an effort to identify small molecule inhibitors of SCD1, we have developed a mass spectrometry based high-throughput screening (HTS) assay using deuterium labeled stearoyl-CoA substrate and induced rat liver microsomes. The methodology developed allows the use of a nonradioactive substrate which avoids interference by the endogenous SCD1 substrate and/or product that exist in the non-purified enzyme source. Throughput of the assay was up to twenty 384-well assay plates per day. The assay was linear with protein concentration and time, and was saturable for stearoyl-CoA substrate (K(m)=10.5 microM). The assay was highly reproducible with an average Z' value=0.6. Conjugated linoleic acid and sterculic acid, known inhibitors of SCD1, exhibited IC(50) values of 0.88 and 0.12 microM, respectively. High-throughput mass spectrometry screening of over 1.7 million compounds in compressed format demonstrated that the enzyme target is druggable. A total of 2515 hits were identified (0.1% hit rate), and 346 were confirmed active (>40% inhibition of total SCD activity at 20 microM--14% conformation rate). Of the confirmed hits 172 had IC(50) values of <10 microM, including 111 <1 microM and 48 <100 nM. A large number of potent drug-like (MW<450) hits representing six different chemical series were identified. The application of mass spectrometry to high-throughput screening permitted the development of a high-quality screening protocol for an otherwise intractable target, SCD1. Further medicinal chemistry and characterization of SCD inhibitors should lead to the development of reagents to treat metabolic disorders.

  4. Noise Reduction in High-Throughput Gene Perturbation Screens

    USDA-ARS?s Scientific Manuscript database

    Motivation: Accurate interpretation of perturbation screens is essential for a successful functional investigation. However, the screened phenotypes are often distorted by noise, and their analysis requires specialized statistical analysis tools. The number and scope of statistical methods available...

  5. Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture.

    PubMed

    Wagner, K; Springer, B; Pires, V P; Keller, P M

    2018-05-03

    The rising incidence of invasive fungal infections and the expanding spectrum of fungal pathogens makes early and accurate identification of the causative pathogen a daunting task. Diagnostics using molecular markers enable rapid identification of fungi, offer new insights into infectious disease dynamics, and open new possibilities for infectious disease control and prevention. We performed a retrospective study using clinical specimens (N = 233) from patients with suspected fungal infection previously subjected to culture and/or internal transcribed spacer (ITS) PCR. We used these specimens to evaluate a high-throughput screening method for fungal detection using automated DNA extraction (QIASymphony), fungal ribosomal small subunit (18S) rDNA RT-PCR and amplicon sequencing. Fungal sequences were compared with sequences from the curated, commercially available SmartGene IDNS database for pathogen identification. Concordance between 18S rDNA RT-PCR and culture results was 91%, and congruence between 18S rDNA RT-PCR and ITS PCR results was 94%. In addition, 18S rDNA RT-PCR and Sanger sequencing detected fungal pathogens in culture negative (N = 13) and ITS PCR negative specimens (N = 12) from patients with a clinically confirmed fungal infection. Our results support the use of the 18S rDNA RT-PCR diagnostic workflow for rapid and accurate identification of fungal pathogens in clinical specimens.

  6. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.

    PubMed

    Ozcelikkale, Altug; Moon, Hye-Ran; Linnes, Michael; Han, Bumsoo

    2017-09-01

    Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  7. High-throughput screening of dye-ligands for chromatography.

    PubMed

    Kumar, Sunil; Punekar, Narayan S

    2014-01-01

    Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.

  8. A High-Throughput Assay for Screening of Natural Products that Enhanced Tumoricidal Activity of NK Cells.

    PubMed

    Gong, Chenyuan; Ni, Zhongya; Yao, Chao; Zhu, Xiaowen; Ni, Lulu; Wang, Lixin; Zhu, Shiguo

    2015-01-01

    Recently, immunotherapy has shown a lot of promise in cancer treatment and different immune cell types are involved in this endeavor. Among different immune cell populations, NK cells are also an important component in unleashing the therapeutic activity of immune cells. Therefore, in order to enhance the tumoricidal activity of NK cells, identification of new small-molecule natural products is important. Despite the availability of different screening methods for identification of natural products, a simple, economic and high-throughput method is lacking. Hence, in this study, we have developed a high-throughput assay for screening and indentifying natural products that can enhance NK cell-mediated killing of cancer cells. We expanded human NK cell population from human peripheral blood mononuclear cells (PBMCs) by culturing these PBMCs with membrane-bound IL-21 and CD137L engineered K562 cells. Next, expanded NK cells were co-cultured with non-small cell lung cancer (NSCLC) cells with or without natural products and after 24 h of co-culturing, harvested supernatants were analyzed for IFN-γ secretions by ELISA method. We screened 502 natural products and identified that 28 candidates has the potential to induce IFN-γ secretion by NK cells to varying degrees. Among the 28 natural product candidates, we further confirmed and analyzed the potential of one molecule, andrographolide. It actually increased IFN-γ secretion by NK cells and enhanced NK cell-mediated killing of NSCLC cells. Our results demonstrated that this IFN-γ based high-throughput assay for screening of natural products for NK cell tumoricidal activity is a simple, economic and reliable method.

  9. Recent advances in quantitative high throughput and high content data analysis.

    PubMed

    Moutsatsos, Ioannis K; Parker, Christian N

    2016-01-01

    High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.

  10. Sensitive high-throughput screening for the detection of reducing sugars.

    PubMed

    Mellitzer, Andrea; Glieder, Anton; Weis, Roland; Reisinger, Christoph; Flicker, Karlheinz

    2012-01-01

    The exploitation of renewable resources for the production of biofuels relies on efficient processes for the enzymatic hydrolysis of lignocellulosic materials. The development of enzymes and strains for these processes requires reliable and fast activity-based screening assays. Additionally, these assays are also required to operate on the microscale and on the high-throughput level. Herein, we report the development of a highly sensitive reducing-sugar assay in a 96-well microplate screening format. The assay is based on the formation of osazones from reducing sugars and para-hydroxybenzoic acid hydrazide. By using this sensitive assay, the enzyme loads and conversion times during lignocellulose hydrolysis can be reduced, thus allowing higher throughput. The assay is about five times more sensitive than the widely applied dinitrosalicylic acid based assay and can reliably detect reducing sugars down to 10 μM. The assay-specific variation over one microplate was determined for three different lignocellulolytic enzymes and ranges from 2 to 8%. Furthermore, the assay was combined with a microscale cultivation procedure for the activity-based screening of Pichia pastoris strains expressing functional Thermomyces lanuginosus xylanase A, Trichoderma reesei β-mannanase, or T. reesei cellobiohydrolase 2. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Candidiasis and the impact of flow cytometry on antifungal drug discovery.

    PubMed

    Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A

    2017-11-01

    Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.

  12. An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics.

    PubMed

    Horman, Shane R; To, Jeremy; Orth, Anthony P

    2013-12-01

    There has been increasing interest in the development of cellular behavior models that take advantage of three-dimensional (3D) cell culture. To enable assessment of differential perturbagen impacts on cell growth in 2D and 3D, we have miniaturized and adapted for high-throughput screening (HTS) the soft agar colony formation assay, employing a laser-scanning cytometer to image and quantify multiple cell types simultaneously. The assay is HTS compatible, providing high-quality, image-based, replicable data for multiple, co-cultured cell types. As proof of concept, we subjected colorectal carcinoma colonies in 3D soft agar to a mini screen of 1528 natural product compounds. Hit compounds from the primary screen were rescreened in an HTS 3D co-culture matrix containing colon stromal cells and cancer cells. By combining tumor cells and normal, nontransformed colon epithelial cells in one primary screening assay, we were able to obtain differential IC50 data, thereby distinguishing tumor-specific compounds from general cytotoxic compounds. Moreover, we were able to identify compounds that antagonized tumor colony formation in 3D only, highlighting the importance of this assay in identifying agents that interfere with 3D tumor structural growth. This screening platform provides a fast, simple, and robust method for identification of tumor-specific agents in a biologically relevant microenvironment.

  13. Correction of Microplate Data from High-Throughput Screening.

    PubMed

    Wang, Yuhong; Huang, Ruili

    2016-01-01

    High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.

  14. Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells.

    PubMed

    Shembekar, Nachiket; Hu, Hongxing; Eustace, David; Merten, Christoph A

    2018-02-20

    Monoclonal antibodies are a main player in modern drug discovery. Many antibody screening formats exist, each with specific advantages and limitations. Nonetheless, it remains challenging to screen antibodies for the binding of cell-surface receptors (the most important class of all drug targets) or for the binding to target cells rather than purified proteins. Here, we present a high-throughput droplet microfluidics approach employing dual-color normalized fluorescence readout to detect antibody binding. This enables us to obtain quantitative data on target cell recognition, using as little as 33 fg of IgG per assay. Starting with an excess of hybridoma cells releasing unspecific antibodies, individual clones secreting specific binders (of target cells co-encapsulated into droplets) could be enriched 220-fold after sorting 80,000 clones in a single experiment. This opens the way for therapeutic antibody discovery, especially since the single-cell approach is in principle also applicable to primary human plasma cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A 100K well screen for a muscarinic receptor using the Epic label-free system--a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors.

    PubMed

    Dodgson, K; Gedge, L; Murray, D C; Coldwell, M

    2009-01-01

    Seven-transmembrane receptors (7TMRs) are a family of proteins of great interest as therapeutic targets because of their abundance on the cell surface, diverse effects in modulating cell behavior and success as a key class of drugs. We have evaluated the Epic label-free system for the purpose of identifying antagonists of the muscarinic M3 receptor. We compared the data generated from the label-free technology with data for the same compounds in a calcium flux assay. We have shown that this technology can be used for high throughput screening (HTS) of 7TMRs and as an orthogonal approach to enable rapid evaluation of HTS outputs. A number of compounds have been identified which were not found in a functional HTS measuring the output from a single pathway, which may offer new approaches to inhibiting responses through this receptor.

  16. UCSF Small Molecule Discovery Center: innovation, collaboration and chemical biology in the Bay Area.

    PubMed

    Arkin, Michelle R; Ang, Kenny K H; Chen, Steven; Davies, Julia; Merron, Connie; Tang, Yinyan; Wilson, Christopher G M; Renslo, Adam R

    2014-05-01

    The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.

  17. Detecting and removing multiplicative spatial bias in high-throughput screening technologies.

    PubMed

    Caraus, Iurie; Mazoure, Bogdan; Nadon, Robert; Makarenkov, Vladimir

    2017-10-15

    Considerable attention has been paid recently to improve data quality in high-throughput screening (HTS) and high-content screening (HCS) technologies widely used in drug development and chemical toxicity research. However, several environmentally- and procedurally-induced spatial biases in experimental HTS and HCS screens decrease measurement accuracy, leading to increased numbers of false positives and false negatives in hit selection. Although effective bias correction methods and software have been developed over the past decades, almost all of these tools have been designed to reduce the effect of additive bias only. Here, we address the case of multiplicative spatial bias. We introduce three new statistical methods meant to reduce multiplicative spatial bias in screening technologies. We assess the performance of the methods with synthetic and real data affected by multiplicative spatial bias, including comparisons with current bias correction methods. We also describe a wider data correction protocol that integrates methods for removing both assay and plate-specific spatial biases, which can be either additive or multiplicative. The methods for removing multiplicative spatial bias and the data correction protocol are effective in detecting and cleaning experimental data generated by screening technologies. As our protocol is of a general nature, it can be used by researchers analyzing current or next-generation high-throughput screens. The AssayCorrector program, implemented in R, is available on CRAN. makarenkov.vladimir@uqam.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors.

    PubMed

    Myers, Stephanie M; Bawn, Ruth H; Bisset, Louise C; Blackburn, Timothy J; Cottyn, Betty; Molyneux, Lauren; Wong, Ai-Ching; Cano, Celine; Clegg, William; Harrington, Ross W; Leung, Hing; Rigoreau, Laurent; Vidot, Sandrine; Golding, Bernard T; Griffin, Roger J; Hammonds, Tim; Newell, David R; Hardcastle, Ian R

    2016-08-08

    The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP progressive binding system, and used to identify hits from a library of 57 617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and reassay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38α kinase.

  19. High content screening of ToxCast compounds using Vala Sciences’ complex cell culturing systems (SOT)

    EPA Science Inventory

    US EPA’s ToxCast research program evaluates bioactivity for thousands of chemicals utilizing high-throughput screening assays to inform chemical testing decisions. Vala Sciences provides high content, multiplexed assays that utilize quantitative cell-based digital image analysis....

  20. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  1. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE PAGES

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...

    2017-10-10

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  2. Life in the fast lane: high-throughput chemistry for lead generation and optimisation.

    PubMed

    Hunter, D

    2001-01-01

    The pharmaceutical industry has come under increasing pressure due to regulatory restrictions on the marketing and pricing of drugs, competition, and the escalating costs of developing new drugs. These forces can be addressed by the identification of novel targets, reductions in the development time of new drugs, and increased productivity. Emphasis has been placed on identifying and validating new targets and on lead generation: the response from industry has been very evident in genomics and high throughput screening, where new technologies have been applied, usually coupled with a high degree of automation. The combination of numerous new potential biological targets and the ability to screen large numbers of compounds against many of these targets has generated the need for large diverse compound collections. To address this requirement, high-throughput chemistry has become an integral part of the drug discovery process. Copyright 2002 Wiley-Liss, Inc.

  3. Screening_mgmt: a Python module for managing screening data.

    PubMed

    Helfenstein, Andreas; Tammela, Päivi

    2015-02-01

    High-throughput screening is an established technique in drug discovery and, as such, has also found its way into academia. High-throughput screening generates a considerable amount of data, which is why specific software is used for its analysis and management. The commercially available software packages are often beyond the financial limits of small-scale academic laboratories and, furthermore, lack the flexibility to fulfill certain user-specific requirements. We have developed a Python module, screening_mgmt, which is a lightweight tool for flexible data retrieval, analysis, and storage for different screening assays in one central database. The module reads custom-made analysis scripts and plotting instructions, and it offers a graphical user interface to import, modify, and display the data in a uniform manner. During the test phase, we used this module for the management of 10,000 data points of various origins. It has provided a practical, user-friendly tool for sharing and exchanging information between researchers. © 2014 Society for Laboratory Automation and Screening.

  4. Automatic and integrated micro-enzyme assay (AIμEA) platform for highly sensitive thrombin analysis via an engineered fluorescence protein-functionalized monolithic capillary column.

    PubMed

    Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo

    2015-04-21

    Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.

  5. qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development.

    PubMed

    Chen, Si; Weddell, Jared; Gupta, Pavan; Conard, Grace; Parkin, James; Imoukhuede, Princess I

    2017-01-01

    Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical factor in nanosensor development is deciding which biomarker to target, as most diseases present several biomarkers. Biomarker-targeting decisions can be informed via an understanding of biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker quantification. Flow cytometry overcomes both these IHC challenges by offering biomarker expression on a cell-by-cell basis, and when combined with calibration standards, providing quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the key components for applying qFlow cytometry to detect biomarkers within the angiogenic vascular endothelial growth factor receptor family. The key aspects of the qFlow cytometry methodology include: antibody specificity testing, immunofluorescent cell labeling, saturation analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and cell-by-cell data. Together, these methods enable high-throughput quantification of biomarker expression.

  6. Recent advances in inkjet dispensing technologies: applications in drug discovery.

    PubMed

    Zhu, Xiangcheng; Zheng, Qiang; Yang, Hu; Cai, Jin; Huang, Lei; Duan, Yanwen; Xu, Zhinan; Cen, Peilin

    2012-09-01

    Inkjet dispensing technology is a promising fabrication methodology widely applied in drug discovery. The automated programmable characteristics and high-throughput efficiency makes this approach potentially very useful in miniaturizing the design patterns for assays and drug screening. Various custom-made inkjet dispensing systems as well as specialized bio-ink and substrates have been developed and applied to fulfill the increasing demands of basic drug discovery studies. The incorporation of other modern technologies has further exploited the potential of inkjet dispensing technology in drug discovery and development. This paper reviews and discusses the recent developments and practical applications of inkjet dispensing technology in several areas of drug discovery and development including fundamental assays of cells and proteins, microarrays, biosensors, tissue engineering, basic biological and pharmaceutical studies. Progression in a number of areas of research including biomaterials, inkjet mechanical systems and modern analytical techniques as well as the exploration and accumulation of profound biological knowledge has enabled different inkjet dispensing technologies to be developed and adapted for high-throughput pattern fabrication and miniaturization. This in turn presents a great opportunity to propel inkjet dispensing technology into drug discovery.

  7. The High-Throughput Stochastic Human Exposure and Dose Simulation Model (SHEDS-HT) & The Chemical and Products Database (CPDat)

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation Model – High-Throughput (SHEDS-HT) is a U.S. Environmental Protection Agency research tool for predicting screening-level (low-tier) exposures to chemicals in consumer products. This course will present an overview of this m...

  8. Forecasting Exposure in Order to Use High Throughput Hazard Data in a Risk-based Context (WC9)

    EPA Science Inventory

    The ToxCast program and Tox21 consortium have evaluated over 8000 chemicals using in vitro high-throughput screening (HTS) to identify potential hazards. Complementary exposure science needed to assess risk, and the U.S. Environmental Protection Agency (EPA)’s ExpoCast initiative...

  9. Differentiating pathway-specific from non-specific effects in high-throughput toxicity data: A foundation for prioritizing adverse outcome pathway development

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with pote...

  10. Differentiating pathway-based toxicity from non-specific effects in high throughput data: A foundation for prioritizing targets for AOP development.

    EPA Science Inventory

    The Environmental Protection Agency has implemented a high throughput screening program, ToxCast, to quickly evaluate large numbers of chemicals for their effects on hundreds of different biological targets. To understand how these measurements relate to adverse effects in an or...

  11. High Throughput PBTK: Evaluating EPA’s Open-Source Data and Tools for Dosimetry and Exposure Reconstruction

    EPA Science Inventory

    Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics (TK). While HTS generates in vitro bioactivity d...

  12. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  13. Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, Focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

    EPA Science Inventory

    The focus of this meeting is the SAP's review and comment on the Agency's proposed high-throughput computational model of androgen receptor pathway activity as an alternative to the current Tier 1 androgen receptor assay (OCSPP 890.1150: Androgen Receptor Binding Rat Prostate Cyt...

  14. A Biologically Informed Framework for the Analysis of the PPAR Signaling Pathway using a Bayesian Network

    EPA Science Inventory

    The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...

  15. ToxCast Assay Network (TCAN) Viewer: A Visualization Tool for High-throughput Assay Chemical Data (SOT)

    EPA Science Inventory

    USEPA’s ToxCast program has generated high-throughput bioactivity screening (HTS) data on thousands of chemicals. The ToxCast program has described and annotated the HTS assay battery with respect to assay design and target information (e.g., gene target). Recent stakeholder and ...

  16. Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1H-benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors.

    PubMed

    Cernak, Tim; Gesmundo, Nathan J; Dykstra, Kevin; Yu, Yang; Wu, Zhicai; Shi, Zhi-Cai; Vachal, Petr; Sperbeck, Donald; He, Shuwen; Murphy, Beth Ann; Sonatore, Lisa; Williams, Steven; Madeira, Maria; Verras, Andreas; Reiter, Maud; Lee, Claire Heechoon; Cuff, James; Sherer, Edward C; Kuethe, Jeffrey; Goble, Stephen; Perrotto, Nicholas; Pinto, Shirly; Shen, Dong-Ming; Nargund, Ravi; Balkovec, James; DeVita, Robert J; Dreher, Spencer D

    2017-05-11

    Miniaturization and parallel processing play an important role in the evolution of many technologies. We demonstrate the application of miniaturized high-throughput experimentation methods to resolve synthetic chemistry challenges on the frontlines of a lead optimization effort to develop diacylglycerol acyltransferase (DGAT1) inhibitors. Reactions were performed on ∼1 mg scale using glass microvials providing a miniaturized high-throughput experimentation capability that was used to study a challenging S N Ar reaction. The availability of robust synthetic chemistry conditions discovered in these miniaturized investigations enabled the development of structure-activity relationships that ultimately led to the discovery of soluble, selective, and potent inhibitors of DGAT1.

  17. High-Throughput, Motility-Based Sorter for Microswimmers such as C. elegans

    PubMed Central

    Yuan, Jinzhou; Zhou, Jessie; Raizen, David M.; Bau, Haim H.

    2015-01-01

    Animal motility varies with genotype, disease, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method is implemented in a simple microfluidic device capable of sorting thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriches for known C. elegans motility mutants. Furthermore, using this device, we isolate low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates C. elegans sleep. By performing genetic complementation tests, we demonstrate that our motility-based sorting device efficiently isolates mutants for the same gene identified by tedious visual inspection of behavior on an agar surface. Therefore, our motility-based sorter is capable of performing high throughput gene discovery approaches to investigate fundamental biological processes. PMID:26008643

  18. Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO

    PubMed Central

    Oh, Kwang Seok; Woo, Seong Ihl

    2011-01-01

    A chemiluminescence-based analyzer of NOx gas species has been applied for high-throughput screening of a library of catalytic materials. The applicability of the commercial NOx analyzer as a rapid screening tool was evaluated using selective catalytic reduction of NO gas. A library of 60 binary alloys composed of Pt and Co, Zr, La, Ce, Fe or W on Al2O3 substrate was tested for the efficiency of NOx removal using a home-built 64-channel parallel and sequential tubular reactor. The NOx concentrations measured by the NOx analyzer agreed well with the results obtained using micro gas chromatography for a reference catalyst consisting of 1 wt% Pt on γ-Al2O3. Most alloys showed high efficiency at 275 °C, which is typical of Pt-based catalysts for selective catalytic reduction of NO. The screening with NOx analyzer allowed to select Pt-Ce(X) (X=1–3) and Pt–Fe(2) as the optimal catalysts for NOx removal: 73% NOx conversion was achieved with the Pt–Fe(2) alloy, which was much better than the results for the reference catalyst and the other library alloys. This study demonstrates a sequential high-throughput method of practical evaluation of catalysts for the selective reduction of NO. PMID:27877438

  19. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening.

    PubMed

    Wagle, Neil; Xian, Jun; Shishova, Ekaterina Y; Wei, Jie; Glicksman, Marcie A; Cuny, Gregory D; Stein, Ross L; Cohen, David E

    2008-12-01

    Phosphatidylcholine transfer protein (PC-TP, also referred to as StarD2) is a highly specific intracellular lipid-binding protein that catalyzes the transfer of phosphatidylcholines between membranes in vitro. Recent studies have suggested that PC-TP in vivo functions to regulate fatty acid and glucose metabolism, possibly via interactions with selected other proteins. To begin to address the relationship between activity in vitro and biological function, we undertook a high-throughput screen to identify small-molecule inhibitors of the phosphatidylcholine transfer activity of PC-TP. After adapting a fluorescence quench assay to measure phosphatidylcholine transfer activity, we screened 114,752 compounds of a small-molecule library. The high-throughput screen identified 14 potential PC-TP inhibitors. Of these, 6 compounds exhibited characteristics consistent with specific inhibition of PC-TP activity, with IC(50) values that ranged from 4.1 to 95.0muM under conditions of the in vitro assay. These compounds should serve as valuable reagents to elucidate the biological function of PC-TP. Because mice with homozygous disruption of the PC-TP gene (Pctp) are sensitized to insulin action and relatively resistant to the development of atherosclerosis, these inhibitors may also prove to be of value in the management of diabetes and atherosclerotic cardiovascular diseases.

  20. Mass spectrometry-driven drug discovery for development of herbal medicine.

    PubMed

    Zhang, Aihua; Sun, Hui; Wang, Xijun

    2018-05-01

    Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes. © 2016 Wiley Periodicals, Inc.

Top