Mynott, Julia H; Suter, Phillip J; Theischinger, Gunther
2017-01-23
The larval taxonomy of Australian stoneflies (Plecoptera) shows a large disparity in knowledge when compared to the adult taxonomy with many species having undescribed larval forms. The importance of stoneflies as an indicator group for monitoring aquatic ecosystems means knowledge of the larval taxonomy and the ability to identify species is essential. This study combined morphology and mitochondrial gene sequences to associate the adult and larval life-stages for species of Dinotoperla Tillyard. Morphological identification of adult males was recognised for 17 of the 35 Dinotoperla species and combining molecular data with morphology confirmed eight new adult-larval life stage associations. Further, molecular data supported the larval taxonomy for five morphospecies which remain unassociated. The combination of molecular and morphological methods enabled the larval morphology to be reassessed for the genus Dinotoperla and this has led to the establishment of two new genera, Odontoperla, gen. nov. and Oedemaperla, gen. nov., and the new species Dinotoperla aryballoi, sp. nov, D. tasmaniensis, sp. nov. and Oedemaperla shackletoni, sp. nov. as well as the new or updated descriptions of the larvae of 31 species and a comprehensive dichotomous key to these larvae.
Chaki, Prosper P; Kannady, Khadija; Mtasiwa, Deo; Tanner, Marcel; Mshinda, Hassan; Kelly, Ann H; Killeen, Gerry F
2014-06-25
Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam's City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes.
2014-01-01
Background Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. Case description The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. Discussion and evaluation The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. Conclusions The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam’s City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes. PMID:24964790
Wood, Tamara M.
2009-01-01
A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.
Boys, Craig A.; Robinson, Wayne; Miller, Brett; Pflugrath, Brett; Baumgartner, Lee J.; Navarro, Anna; Brown, Richard; Deng, Zhiqun
2016-01-01
ABSTRACT Egg and larval fish that drift downstream are likely to encounter river infrastructure and consequently rapid decompression, which may result in significant injury. Pressure-related injury (or barotrauma) has been shown in juvenile fishes when pressure falls sufficiently below that at which the fish has acclimated. There is a presumption that eggs and larvae may be at least as, if not more, susceptible to barotrauma injury because they are far less-developed and more fragile than juveniles, but studies to date report inconsistent results and none have considered the relationship between pressure change and barotrauma over a sufficiently broad range of pressure changes to enable tolerances to be properly determined. To address this, we exposed eggs and larvae of three physoclistic species to rapid decompression in a barometric chamber over a broad range of discrete pressure changes. Eggs, but not larvae, were unaffected by all levels of decompression tested. At exposure pressures below ∼40 kPa, or ∼40% of surface pressure, swim bladder deflation occurred in all species and internal haemorrhage was observed in one species. None of these injuries killed the fish within 24 h, but subsequent mortality cannot be excluded. Consequently, if larval drift is expected where river infrastructure is present, adopting design or operational features which maintain exposure pressures at 40% or more of the pressure to which drifting larvae are acclimated may afford greater protection for resident fishes. PMID:27230649
Suzuki, Yuichiro; Squires, Diego C.; Riddiford, Lynn M.
2009-01-01
The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late- larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis. PMID:19022238
Lapraz, François; Rawlinson, Kate A; Girstmair, Johannes; Tomiczek, Bartłomiej; Berger, Jürgen; Jékely, Gáspár; Telford, Maximilian J; Egger, Bernhard
2013-10-09
Polyclad flatworms are an early branching clade within the rhabditophoran Platyhelminthes. They provide an interesting system with which to explore the evolution of development within Platyhelminthes and amongst Spiralia (Lophotrochozoa). Unlike most other flatworms, polyclads undergo spiral cleavage (similar to that seen in some other spiralian taxa), they are the only free-living flatworms where development via a larval stage occurs, and they are the only flatworms in which embryos can be reared outside of their protective egg case, enabling embryonic manipulations. Past work has focused on comparing early cleavage patterns and larval anatomy between polyclads and other spiralians. We have selected Maritigrella crozieri, the tiger flatworm, as a suitable polyclad species for developmental studies, because it is abundant and large in size compared to other species. These characteristics have facilitated the generation of a transcriptome from embryonic and larval material and are enabling us to develop methods for gene expression analysis and immunofluorescence techniques. Here we give an overview of M. crozieri and its development, we highlight the advantages and current limitations of this animal as a potential evo-devo model and discuss current lines of research.
2013-01-01
Polyclad flatworms are an early branching clade within the rhabditophoran Platyhelminthes. They provide an interesting system with which to explore the evolution of development within Platyhelminthes and amongst Spiralia (Lophotrochozoa). Unlike most other flatworms, polyclads undergo spiral cleavage (similar to that seen in some other spiralian taxa), they are the only free-living flatworms where development via a larval stage occurs, and they are the only flatworms in which embryos can be reared outside of their protective egg case, enabling embryonic manipulations. Past work has focused on comparing early cleavage patterns and larval anatomy between polyclads and other spiralians. We have selected Maritigrella crozieri, the tiger flatworm, as a suitable polyclad species for developmental studies, because it is abundant and large in size compared to other species. These characteristics have facilitated the generation of a transcriptome from embryonic and larval material and are enabling us to develop methods for gene expression analysis and immunofluorescence techniques. Here we give an overview of M. crozieri and its development, we highlight the advantages and current limitations of this animal as a potential evo-devo model and discuss current lines of research. PMID:24107307
Novel methodologies in marine fish larval nutrition.
Conceição, Luis E C; Aragão, Cláudia; Richard, Nadège; Engrola, Sofia; Gavaia, Paulo; Mira, Sara; Dias, Jorge
2010-03-01
Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of (14)C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for different species of larval fish.
NASA Astrophysics Data System (ADS)
Jansen-González, Sergio; Teixeira, Simone de Padua; Kjellberg, Finn; Pereira, Rodrigo A. Santinelo
2014-05-01
The receptacles of fig trees (Ficus spp.) can harbor a highly diversified and complex community of chalcid wasps. Functional groups of fig wasps (e.g. gallers, cleptoparasites and parasitoids) oviposit into the fig at different developmental stages, reflecting different feeding regimes for these insect larvae. There are few direct data available on larval feeding regimes and access to resources. We studied the gall induction and larval feeding strategy of an Idarnes (group flavicollis) species, a non-pollinating fig wasp (NPFW) associated to Ficus citrifolia P. Miller in Brazil. This Idarnes species shares with the pollinator characteristics such as time of oviposition, ovipositor insertion through flower and location of the egg inside plant ovaries. Nevertheless, we show that the gall induction differs considerably from that of the pollinating species. This Idarnes species relies on the induction of nucellus cell proliferation for gall formation and as the main larval resource. This strategy enables it to develop in both pollinated and unpollinated figs. The large differences between this NPFW and other fig wasps in how ovules are galled suggest that there are different ways to be a galler. A functional analysis of NPFW community structure may require descriptions of the histological processes associated with larval development.
larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.
Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit
2018-01-01
The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.
Büschges, A; Djokaj, S; Bässler, D; Bässler, U; Rathmayer, W
2000-01-01
The capacity of the larval insect nervous system to compensate for the permanent loss of one of the two excitatory motoneurons innervating a leg muscle was investigated in the locust (Locusta migratoria). In the fourth instar, the fast extensor tibiae (FETi) motoneuron in the mesothoracic ganglion was permanently removed by photoinactivation with a helium-cadmium laser. Subsequently, the animals were allowed to develop into adulthood. When experimental animals were tested as adults after final ecdysis, fast-contracting fibers in the most proximal region of the corresponding extensor muscle, which are normally predominantly innervated by FETi only, uniformly responded to activity of the slow extensor tibiae (SETi) neuron. In adult operated animals, single pulses to SETi elicited large junctional responses in the fibers which resulted in twitch contractions of these fibers similar to the responses to FETi activity in control animals. The total number of muscle fibers, their properties as histochemically determined contractional types (fast and slow), and their distribution were not affected by photoinactivation of FETi. Possible mechanisms enabling the larval neuromuscular system to compensate for the loss of FETi through functionally similar innervation by a different motoneuron, i.e. SETi, are discussed. Copyright 2000 John Wiley & Sons, Inc.
Wilson, G. Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene
2018-01-01
Background Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance. Methods Twelve experimental dams were constructed on the foreshore of the Koka Dam in Ethiopia. These were grouped into four daily water drawdown treatments, each with three replicates: no water-level drawdown (Group 1; Control), 10 mm.d-1 (Group 2), 15 mm.d-1 (Group 3) and 20 mm.d-1 (Group 4). Larval sampling was conducted weekly for a period of 6 weeks each in the main malaria transmission season (October to November 2013) and subsequent dry season (February to March 2014). Larval densities were compared among treatments over time using repeated measures Analysis of Variance (ANOVA). Results A total of 284 Anopheles mosquito larvae were collected from the experimental dams during the study period. Most (63.4%; n = 180) were collected during the main malaria transmission season while the remaining (36.6%; n = 104) were collected during the dry season. Larvae comprised four Anopheles species, dominated by Anopheles arabiensis (48.1% of total larval samples; n = 136) and An. pharoensis (33.2%; n = 94). Mean larval density was highest in control treatment dams with stable water levels throughout the study, and decreased significantly (P < 0.05) with increasing water drawdown rates in both seasons. During the main transmission season, anopheline larval density was generally lower by 30%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, compared with the control dams (Group 1). In the dry season, larval density was reduced by 45%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, when compared to the control dams. Conclusion Increased water drawdown rates were associated with lower mosquito larval abundance. Water level management could thus serve as a potential control measure for malaria vectors around reservoirs by regulating the persistence of shallow shoreline breeding habitats. Dam operators and water resource managers should consider incorporating water level management as a malaria control mechanism into routine dam operations to manage the risk of malaria transmission to human populations around reservoirs. PMID:29672560
Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption
Mullineaux, Lauren S.; Adams, Diane K.; Mills, Susan W.; Beaulieu, Stace E.
2010-01-01
The planktonic larval stage is a critical component of life history in marine benthic species because it confers the ability to disperse, potentially connecting remote populations and leading to colonization of new sites. Larval-mediated connectivity is particularly intriguing in deep-sea hydrothermal vent communities, where the habitat is patchy, transient, and often separated by tens or hundreds of kilometers. A recent catastrophic eruption at vents near 9°50′N on the East Pacific Rise created a natural clearance experiment and provided an opportunity to study larval supply in the absence of local source populations. Previous field observations have suggested that established vent populations may retain larvae and be largely self-sustaining. If this hypothesis is correct, the removal of local populations should result in a dramatic change in the flux, and possibly species composition, of settling larvae. Fortuitously, monitoring of larval supply and colonization at the site had been established before the eruption and resumed shortly afterward. We detected a striking change in species composition of larvae and colonists after the eruption, most notably the appearance of the gastropod Ctenopelta porifera, an immigrant from possibly more than 300 km away, and the disappearance of a suite of species that formerly had been prominent. This switch demonstrates that larval supply can change markedly after removal of local source populations, enabling recolonization via immigrants from distant sites with different species composition. Population connectivity at this site appears to be temporally variable, depending not only on stochasticity in larval supply, but also on the presence of resident populations. PMID:20385811
Ruiter, David E; Boyle, Elizabeth E; Zhou, Xin
2013-02-20
The North American Trichoptera larvae are poorly known at the species level, despite their importance in the understanding of freshwater fauna and critical use in biomonitoring. This study focused on morphological diagnoses for larvae occurring in the Churchill, Manitoba area, representing the largest larval association effort for the caddisflies at any given locality thus far. The current DNA barcode reference library of Trichoptera (available on the Barcode of Life Data Systems) was utilized to provide larval-adult associations. The present study collected an additional 23 new species records for the Churchill area, increasing the total Trichoptera richness to 91 species. We were able to associate 62 larval taxa, comprising 68.1% of the Churchill area Trichoptera taxa. This endeavor to identify immature life stage for the caddisflies enabled the development of morphological diagnoses, production of photographs and an appropriate taxonomic key to facilitate larval species analyses in the area. The use of DNA for associations of unknown larvae with known adults proved rapid and successful. This method should accelerate the state-of-knowledge for North American Trichoptera larvae as well as other taxonomic lineages. The morphological analysis should be useful for determination of material from the Churchill area.
Rao, Ashit; Seto, Jong; Berg, John K; Kreft, Stefan G; Scheffner, Martin; Cölfen, Helmut
2013-08-01
The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule. Copyright © 2013 Elsevier Inc. All rights reserved.
Schurich, Jessica A; Kumar, Sunil; Eisen, Lars; Moore, Chester G
2014-03-01
Remote sensing and Geographic Information System (GIS) data can be used to identify larval mosquito habitats and predict species distribution and abundance across a landscape. An understanding of the landscape features that impact abundance and dispersal can then be applied operationally in mosquito control efforts to reduce the transmission of mosquito-borne pathogens. In an effort to better understand the effects of landscape heterogeneity on the abundance of the West Nile virus (WNV) vector Culex tarsalis, we determined associations between GIS-based environmental data at multiple spatial extents and monthly abundance of adult Cx. tarsalis in Larimer County and Weld County, CO. Mosquito data were collected from Centers for Disease Control and Prevention miniature light traps operated as part of local WNV surveillance efforts. Multiple regression models were developed for prediction of monthly Cx. tarsalis abundance for June, July, and August using 4 years of data collected over 2007-10. The models explained monthly adult mosquito abundance with accuracies ranging from 51-61% in Fort Collins and 57-88% in Loveland-Johnstown. Models derived using landscape-level predictors indicated that adult Cx. tarsalis abundance is negatively correlated with elevation. In this case, low-elevation areas likely more abundantly include habitats for Cx. tarsalis. Model output indicated that the perimeter of larval sites is a significant predictor of Cx. tarsalis abundance at a spatial extent of 500 m in Loveland-Johnstown in all months examined. The contribution of irrigated crops at a spatial extent of 500 m improved model fit in August in both Fort Collins and Loveland-Johnstown. These results emphasize the significance of irrigation and the manual control of water across the landscape to provide viable larval habitats for Cx. tarsalis in the study area. Results from multiple regression models can be applied operationally to identify areas of larval Cx. tarsalis production (irrigated crops lands and standing water) and assign priority in larval treatments to areas with a high density of larval sites at relevant spatial extents around urban locations.
Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish.
Kim, Dal Hyung; Kim, Jungsoo; Marques, João C; Grama, Abhinav; Hildebrand, David G C; Gu, Wenchao; Li, Jennifer M; Robson, Drew N
2017-11-01
Calcium imaging with cellular resolution typically requires an animal to be tethered under a microscope, which substantially restricts the range of behaviors that can be studied. To expand the behavioral repertoire amenable to imaging, we have developed a tracking microscope that enables whole-brain calcium imaging with cellular resolution in freely swimming larval zebrafish. This microscope uses infrared imaging to track a target animal in a behavior arena. On the basis of the predicted trajectory of the animal, we applied optimal control theory to a motorized stage system to cancel brain motion in three dimensions. We combined this motion-cancellation system with differential illumination focal filtering, a variant of HiLo microscopy, which enabled us to image the brain of a freely swimming larval zebrafish for more than an hour. This work expands the repertoire of natural behaviors that can be studied with cellular-resolution calcium imaging to potentially include spatial navigation, social behavior, feeding and reward.
Shepherd, David; Harris, Robin; Williams, Darren W; Truman, James W
2016-09-01
During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult-specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167-5184) identified 24 adult-specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian-positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage-specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677-2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Harris, Robin; Williams, Darren W.; Truman, James W.
2016-01-01
During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult‐specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167–5184) identified 24 adult‐specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian‐positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage‐specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677–2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26878258
2014-04-30
105 x CHAPTER 1: General Introduction THE THERMAL ENVIRONMENT The ambient temperature at which an organism must function can...forces an organism to operate outside the optimal temperature range for which its physiological processes are optimized to function under. Thermal...a specific insecticide. Some of these influences are relatively intuitive. For instance, larval development in the presence of adequate nutritional
Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L
2016-02-01
Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassessment of chironomid communities.
Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.
2016-01-01
Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassesment of chironomid communities.
Honda, Takato; Lee, Chi-Yu; Honjo, Ken; Furukubo-Tokunaga, Katsuo
2016-01-01
The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain. PMID:27445732
Learning the specific quality of taste reinforcement in larval Drosophila.
Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram
2015-01-27
The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing-in any brain.
Dechorionation is a method used to enable image acquisition in embryonic and larval zebrafish studies. As it is assumed that dechorionation has no long-term effects on fish embryo development, it is important to determine if that assumption is correct. The present study explored ...
Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans†
Hulme, S. Elizabeth; Shevkoplyas, Sergey S.; McGuigan, Alison P.; Apfeld, Javier; Fontana, Walter
2011-01-01
This article describes the fabrication of a microfluidic device for the liquid culture of many individual nematode worms (Caenorhabditis elegans) in separate chambers. Each chamber houses a single worm from the fourth larval stage until death, and enables examination of a population of individual worms for their entire adult lifespans. Adjacent to the chambers, the device includes microfluidic worm clamps, which enable periodic, temporary immobilization of each worm. The device made it possible to track changes in body size and locomotion in individual worms throughout their lifespans. This ability to perform longitudinal measurements within the device enabled the identification of age-related phenotypic changes that correlate with lifespan in C. elegans. PMID:20162234
Larval green and white sturgeon swimming performance in relation to water-diversion flows
Verhille, Christine E.; Poletto, Jamilynn B.; Cocherell, Dennis E.; DeCourten, Bethany; Baird, Sarah; Cech, Joseph J.; Fangue, Nann A.
2014-01-01
Little is known of the swimming capacities of larval sturgeons, despite global population declines in many species due in part to fragmentation of their spawning and rearing habitats by man-made water-diversion structures. Larval green (Acipenser medirostris) and white sturgeon (Acipenser transmontanus) inhabit the highly altered Sacramento–San Joaquin watershed, making them logical species to examine vulnerability to entrainment by altered water flows. The risk of larval sturgeon entrainment is influenced by the ontogeny of swimming capacity and dispersal timing and their interactions with water-diversion structure operations. Therefore, the aim of this study was to describe and compare the ontogeny and allometry of larval green and white sturgeon swimming capacities until completion of metamorphosis into juveniles. Despite the faster growth rates and eventual larger size of larval white sturgeon, green sturgeon critical swimming velocities remained consistently, though modestly, greater than those of white sturgeon throughout the larval life stage. Although behavioural interactions with water-diversion structures are also important considerations, regarding swimming capacity, Sacramento–San Joaquin sturgeons are most vulnerable to entrainment in February–May, when white sturgeon early larvae are in the middle Sacramento River, and April–May, when green sturgeon early larvae are in the upper river. Green sturgeon migrating downstream to the estuary and bays in October–November are also susceptible to entrainment due to their movements combined with seasonal declines in their swimming capacity. An additional inter-species comparison of the allometric relationship between critical swimming velocities and total length with several sturgeon species found throughout the world suggests a similar ontogeny of swimming capacity with growth. Therefore, although dispersal and behaviour differ among river systems and sturgeon species, similar recommendations are applicable for managers seeking to balance water demands with restoration and conservation of sturgeons worldwide. PMID:27293652
Factors contributing to variability in larval ingress of Atlantic menhaden, Brevoortia tyrannus
NASA Astrophysics Data System (ADS)
Lozano, C.; Houde, E. D.
2013-02-01
Annual recruitment levels of age-0 juvenile Atlantic menhaden to Chesapeake Bay, which historically supported >65% of coastwide recruitment, have been consistently low since the 1980s. Diminished larval supply to the Bay is one hypothesized explanation. In a three-year ichthyoplankton survey at the Chesapeake Bay mouth, abundance of ingressing larvae varied nine-fold among years. Larvae were most abundant in 2007-2008 and less abundant in 2005-2006 and 2006-2007. High month-to-month variability in larval concentrations was attributable primarily to seasonality of occurrences. There was no defined spatial pattern in distribution of larvae across the 18-km-wide Bay mouth, but larvae at the south side were longer and older on average than larvae at the middle and north side. Environmental variables measured at the times of larval collections were not correlated consistently with temporal and spatial variability in abundance of larvae at ingress, highlighting complexity and suggesting that abundance may be controlled by processes occurring offshore during the pre-ingress phase. Moreover, the substantial differences in inter-annual abundances of larvae at the Bay mouth were not concordant with subsequent abundances of age-0 juveniles in the three survey years, indicating that important processes affecting recruitment of Atlantic menhaden operate after ingress, during the larval to juvenile transition stage.
Ganz, J; Baker, R P; Hamilton, M K; Melancon, E; Diba, P; Eisen, J S; Parthasarathy, R
2018-05-02
Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain. We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion. We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types. Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements. © 2018 John Wiley & Sons Ltd.
Sakai, Hiroki; Kirino, Yohei; Katsuma, Susumu; Aoki, Fugaku; Suzuki, Masataka G
2016-01-01
The gonad develops as a testis in male or an ovary in female. In the silkworm, B. mori , little is known about testis and ovary in the embryonic stages and early larval stages. In this study, we performed morphological and histomorphological observations of ovaries and testes from the late embryonic stage to the 1st instar larval stage. Results obtained with lack of accurate information on sex of examined individuals may be misleading, thus we performed phenotypic observations of gonads by utilizing sex-limited strain that enables us to easily discriminate female embryos from male ones based on those egg colors. In testis, four testicular follicles were clearly observed in the testis at the first instar larval stage, and boundary layers were formed between the testicular follicles. At the late embryonic stage, the testis consisted of four testicular follicles, while the boundary layers were still obscure. In ovary, four ovarioles were easily recognizable in the ovary at the first instar larval stage, and boundary layers were formed between the ovarioles. However, in the late embryonic stage, it was quite difficult to identify four ovarioles. Morphological characteristics were almost similar between testis and ovary in early developmental stages. Our present study demonstrates that the most reliable difference between testis and ovary in early developmental stages is the attaching point of the duct. Formation and development of the duct may be sensitive to the sex-determining signal and display sexual dimorphism in early embryonic stages.
Feller, K D; Cronin, T W
2014-09-15
Opaque screening pigments are a fundamental requisite for preserving resolution in image-forming eyes. Possession of any type of image-forming eye in a transparent, pelagic animal will thus undermine the ability of that animal to be invisible in the water column. Transparent, pelagic animals must therefore deal with the trade-off between the ability to see and the ability of other animals to see them. Stomatopod larvae, like many transparent crustaceans, possess specialized optics in their compound eyes that minimize the volume of the opaque retina. Though the volumes of these retinas are reduced, their opacity remains conspicuous to an observer. The light reflected from structures overlying the retinas of stomatopod crustacean larval eyes, referred to here as eyeshine, is hypothesized to further reduce the visibility of opaque retinas. Blue or green wavelengths of light are most strongly reflected in stomatopod larval eyeshine, suggesting a putative spectral matching to the light environment against which the larval eyes are viewed. We tested the efficacy of stomatopod crustacean larval eyeshine as an ocular camouflaging mechanism by photographing larvae in their natural light environment and analysing the contrast of eyes with the background light. To test for spectral matching between stomatopod larval eyeshine and the background light environment, we characterized the spectrum of eyeshine and calculated its performance using radiometric measurements collected at the time of each photographic series. These results are the first to demonstrate an operative mirror camouflage matched in both spectrum and radiance to the pelagic background light environment. © 2014. Published by The Company of Biologists Ltd.
The design of a community-based health education intervention for the control of Aedes aegypti.
Lloyd, L S; Winch, P; Ortega-Canto, J; Kendall, C
1994-04-01
This report describes the process used to develop locally appropriate educational materials and to implement the education component of a community-based Aedes aegypti control program in Merida, Yucatan, Mexico. The process is broken into five stages: formative research, developing recommendations for behavior change, development of educational messages, development and production of educational materials, and distribution of the materials. Appropriate terminology and taxonomies for dengue were obtained from open in-depth interviews; baseline data from a knowledge, beliefs, and practices questionnaire served to confirm this information. A larval survey of house lots was carried out to identify the Ae. aegypti larval production sites found on individual house lots. This enabled the program to target the most important larval habitats. Community groups were organized to work on the development of messages and production of the educational materials to be used. The education intervention was successful in stimulating changes in both knowledge and behavior, which were measured in the evaluations of the intervention. To be successful, community-based strategies must be flexible and adapted to the local setting because of ecologic, cultural, and social differences between localities.
Kaiser, Maria L; Koekemoer, Lizette L; Coetzee, Maureen; Hunt, Richard H; Brooke, Basil D
2010-12-14
Anopheles gambiae is a major vector of malaria in the West African region. Resistance to multiple insecticides has been recorded in An. gambiae S form in the Ahafo region of Ghana. A laboratory population (GAH) established using wild material from this locality has enabled a mechanistic characterization of each resistance phenotype as well as an analysis of another adaptive characteristic - staggered larval time-to-hatch. Individual egg batches obtained from wild caught females collected from Ghana and the Republic of the Congo were monitored for staggered larval time-to-hatch. In addition, early and late larval time-to-hatch sub-colonies were selected from GAH. These selected sub-colonies were cross-mated and their hybrid progeny were subsequently intercrossed and back-crossed to the parental strains. The insecticide susceptibilities of the GAH base colony and the time-to-hatch selected sub-colonies were quantified for four insecticide classes using insecticide bioassays. Resistance phenotypes were mechanistically characterized using insecticide-synergist bioassays and diagnostic molecular assays for known reduced target-site sensitivity mutations. Anopheles gambiae GAH showed varying levels of resistance to all insecticide classes. Metabolic detoxification and reduced target-site sensitivity mechanisms were implicated. Most wild-caught families showed staggered larval time-to-hatch. However, some families were either exclusively early hatching or late hatching. Most GAH larvae hatched early but many egg batches contained a proportion of late hatching larvae. Crosses between the time-to-hatch selected sub-colonies yielded ambiguous results that did not fit any hypothetical models based on single-locus Mendelian inheritance. There was significant variation in the expression of insecticide resistance between the time-to-hatch phenotypes. An adaptive response to the presence of multiple insecticide classes necessarily involves the development of multiple resistance mechanisms whose effectiveness may be enhanced by intra-population variation in the expression of resistance phenotypes. The variation in the expression of insecticide resistance in association with selection for larval time-to-hatch may induce this kind of enhanced adaptive plasticity as a consequence of pleiotropy, whereby mosquitoes are able to complete their aquatic life stages in a variable breeding environment using staggered larval time-to-hatch, giving rise to an adult population with enhanced variation in the expression of insecticide resistance.
Learning the specific quality of taste reinforcement in larval Drosophila
Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram
2015-01-01
The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing—in any brain. DOI: http://dx.doi.org/10.7554/eLife.04711.001 PMID:25622533
Gray, Elmer W; Wyatt, Roger D; Adler, Peter H; Smink, John; Cox, Julie E; Noblet, Ray
2012-06-01
Black fly suppression programs are conducted across a wide range of environmental conditions, targeting a variety of pest species with diverse life histories. Operational applications of Vectobac 12AS (Bacillus thuringiensis subsp. israelensis) were conducted during times characterized by water temperature and turbidity extremes. Applications were conducted in the Yellow River in central Wisconsin targeting Simulium annulus and S. johannseni when water temperatures were 1-2 degrees C. Applications were conducted in the Green River in western North Carolina targeting the S. jenningsi group after a rain event, when portions of the treatment zone experienced turbidities of 276 nephelometric turbidity units. Excellent larvicidal activity was observed in both programs, with 97% mortality or greater being observed at distances over 5 km downstream of a treatment site. Mortality data for larval black flies in 2 operational suppression programs conducted in 2011 demonstrated a negligible effect of near-freezing water temperatures and exceptionally high turbidity on Bti activity.
Ellsworth, Craig M.; Tyler, Torrey J.; VanderKooi, Scott P.
2010-01-01
A small irrigation diversion dam near Chiloquin, Oregon, was removed and replaced with a pump station to improve fish passage for Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) entering the Sprague River on their spawning migrations. During the developmental phase of the pump station, a need was identified to better understand the larval drift characteristics of these endangered catostomids in order to reduce entrainment into the irrigation system. The spatial, seasonal, and diel distribution of drifting larvae was measured during the 2004 spawning season at two proposed sites on the Williamson River where the pump station could be located. Larval drift for both species coincided with the irrigation season making them subject to entrainment into the irrigation system. Drift occurred almost exclusively at night with larvae entering the drift at sunset and exiting the drift at sunrise. Nighttime larval densities were concentrated near the surface and at midchannel at both sites. Densities were generally greater on the side of mid-channel with greater flow. During early morning sampling we detected a general shift in larval drift from surface to subsurface drift. We also observed an increase in larval densities towards the shore opposite from the proposed pump station at the upper site whereas larval densities remained high at midchannel at the lower site. During daytime sampling, the few larvae that were collected were distributed throughout the water column at both pump sites. This study found that larvae drifting during all time periods were generally distributed further across the cross section, deeper in the water column, and closer to where the proposed water withdrawal structure would be built at the downstream site when compared to the upstream site. Recommendations were provided to locate the withdrawal facility at the upstream site and operate it in a manner such that larval entrainment would likely be minimized.
Neural Circuits Underlying Fly Larval Locomotion
Kohsaka, Hiroshi; Guertin, Pierre A.; Nose, Akinao
2017-01-01
Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system. PMID:27928962
An open-source method to analyze optokinetic reflex responses in larval zebrafish.
Scheetz, Seth D; Shao, Enhua; Zhou, Yangzhong; Cario, Clinton L; Bai, Qing; Burton, Edward A
2018-01-01
Optokinetic reflex (OKR) responses provide a convenient means to evaluate oculomotor, integrative and afferent visual function in larval zebrafish models, which are commonly used to elucidate molecular mechanisms underlying development, disease and repair of the vertebrate nervous system. We developed an open-source MATLAB-based solution for automated quantitative analysis of OKR responses in larval zebrafish. The package includes applications to: (i) generate sinusoidally-transformed animated grating patterns suitable for projection onto a cylindrical screen to elicit the OKR; (ii) determine and record the angular orientations of the eyes in each frame of a video recording showing the OKR response; and (iii) analyze angular orientation data from the tracking program to yield a set of parameters that quantify essential elements of the OKR. The method can be employed without modification using the operating manual provided. In addition, annotated source code is included, allowing users to modify or adapt the software for other applications. We validated the algorithms and measured OKR responses in normal larval zebrafish, showing good agreement with published quantitative data, where available. We provide the first open-source method to elicit and analyze the OKR in larval zebrafish. The wide range of parameters that are automatically quantified by our algorithms significantly expands the scope of quantitative analysis previously reported. Our method for quantifying OKR responses will be useful for numerous applications in neuroscience using the genetically- and chemically-tractable zebrafish model. Published by Elsevier B.V.
Vector Control During Operation Restore Hope - Somalia
2008-11-16
Restore Hope, focusing primarily on pest battalion provided services including and vector control operations. Much of identification of the preventive...and usable arthropod Identification larval mosquito surveys were conducted, materials (i.e., keys) were nonexistent. but only in areas that were...bait would be mosquitoes. The pesticide used for placed adjacent to but away from troop mosquito control ( malathion - ULV) was areas, attracting flies
40 CFR 125.87 - As an owner or operator of a new facility, must I perform monitoring?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the detection of any seasonal and daily variations in the species and numbers of individuals that are... biweekly during the primary period of reproduction, larval recruitment, and peak abundance identified...
40 CFR 125.87 - As an owner or operator of a new facility, must I perform monitoring?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the detection of any seasonal and daily variations in the species and numbers of individuals that are... biweekly during the primary period of reproduction, larval recruitment, and peak abundance identified...
40 CFR 125.87 - As an owner or operator of a new facility, must I perform monitoring?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the detection of any seasonal and daily variations in the species and numbers of individuals that are... biweekly during the primary period of reproduction, larval recruitment, and peak abundance identified...
Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra
2018-06-01
Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.
NASA Astrophysics Data System (ADS)
Giménez, Luis
2002-12-01
Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.
NASA Astrophysics Data System (ADS)
Giménez, Luis
2003-01-01
Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.
Carvalho, Paulo S. M.; Noltie, Douglas B.; Tillitt, D.E.
2002-01-01
We developed a system for evaluation of visual function in larval and adult fish. Both optomotor (swimming) and optokinetic (eye movement) responses were monitored and recorded using a system of rotating stripes. The system allowed manipulation of factors such as width of the stripes used, rotation speed of the striped drum, and light illuminance levels within both the scotopic and photopic ranges. Precise control of these factors allowed quantitative measurements of visual acuity and motion detection. Using this apparatus, we tested the hypothesis that significant posthatch ontogenetic improvements in visual function occur in the medaka Oryzias latipes, and also that this species shows significant in ovo neuronal development. Significant improvements in the acuity angle alpha (ability to discriminate detail) were observed from approximately 5 degrees at hatch to 1 degree in the oldest adult stages. In addition, we measured a significant improvement in flicker fusion thresholds (motion detection skills) between larval and adult life stages within both the scotopic and photopic ranges of light illuminance. Ranges of flicker fusion thresholds (X±SD) at log I=1.96 (photopic) varied from 37.2±1.6 cycles/s in young adults to 18.6±1.6 cycles/s in young larvae 10 days posthatch. At log I=−2.54 (scotopic), flicker fusion thresholds varied from 5.8±0.7 cycles/s in young adults to 1.7±0.4 cycles/s in young larvae 10 days posthatch. Light sensitivity increased approximately 2.9 log units from early hatched larval stages to adults. The demonstrated ontogenetic improvements in visual function probably enable the fish to explore new resources, thereby enlarging their fundamental niche.
3D Finite Element Electrical Model of Larval Zebrafish ECG Signals
Crowcombe, James; Dhillon, Sundeep Singh; Hurst, Rhiannon Mary; Egginton, Stuart; Müller, Ferenc; Sík, Attila; Tarte, Edward
2016-01-01
Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions. PMID:27824910
Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors.
Rohlfs, Marko
2005-01-27
BACKGROUND: Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion). Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. RESULTS: Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches). CONCLUSION: Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights the necessity of investigating the role of inter-kingdom competition as a potential driving force in the evolution of spatial behaviour in insects.
NASA Astrophysics Data System (ADS)
Wang, M.; O'Rorke, R.; Waite, A. M.; Beckley, L. E.; Thompson, P.; Jeffs, A. G.
2014-03-01
The recent dramatic decline in settlement in the population of the spiny lobster, Panulirus cygnus, may be due to changes in the oceanographic processes that operate offshore of Western Australia. It has been suggested that this decline could be related to poor nutritional condition of the post-larvae, especially lipid which is accumulated in large quantities during the preceding extensive pelagic larval stage. The current study focused on investigations into the lipid content and fatty acid (FA) profiles of lobster phyllosoma larvae from three mid to late stages of larval development (stages VI, VII, VIII) sampled from two cyclonic and two anticyclonic eddies of the Leeuwin Current off Western Australia. The results showed significant accumulation of lipid and energy storage FAs with larval development regardless of location of capture, however, larvae from cyclonic eddies had more lipid and FAs associated with energy storage than larvae from anticyclonic eddies. FA food chain markers from the larvae indicated significant differences in the food webs operating in the two types of eddy, with a higher level of FA markers for production from flagellates and a lower level from copepod grazing in cyclonic versus anticyclonic eddies. The results indicate that the microbial food web operating in cyclonic eddies provides better feeding conditions for lobster larvae despite anticyclonic eddies being generally more productive and containing greater abundances of zooplankton as potential prey for lobster larvae. Gelatinous zooplankton, such as siphonophores, may play an important role in cyclonic eddies by accumulating dispersed microbial nutrients and making them available as larger prey for phyllosoma. The markedly superior nutritional condition of lobster larvae feeding in the microbial food web found in cyclonic eddies, could greatly influence their subsequent settlement and recruitment to the coastal fishery.
Garcia-Gonzalez, Eva; Genersch, Elke
2013-11-01
Paenibacillus larvae, the aetiological agent of American foulbrood (AFB) of honey bees, causes a fatal intestinal infection in larvae and invades the haemocoel by breaching the midgut. The peritrophic matrix lining the midgut epithelium in insects constitutes an effective barrier against abrasive food particles, xenobiotics, toxins and pathogens. Pathogens like P. larvae entering the host through the gut first need to overcome this barrier. To better understand AFB pathogenesis, we analysed the fate of the peritrophic matrix in honey bee larvae during P. larvae infection. Using histochemical techniques, we first established that chitin is a major component of the honey bee larval peritrophic matrix. Rearing larvae on a diet containing a fluorochrome blocking formation of the peritrophic matrix or a bacterial endochitinase revealed that a fully formed peritrophic matrix is essential for larval survival. Larvae infected by P. larvae showed total degradation of the peritrophic matrix enabling the bacteria to directly attack the epithelial cells. Carbon source utilization tests confirmed that P. larvae is able to metabolize colloidal chitin. We propose that P. larvae degrades the peritrophic matrix to allow direct access of the bacteria or of bacterial toxins to the epithelium to prepare the breakthrough of the epithelial layer. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boys, Craig A.; Robinson, Wayne; Miller, Brett
Egg and larval fish that drift downstream are likely to encounter river infrastructure and consequently rapid decompression, which may result in significant injury. In juvenile fish, pressure-related injury (or barotrauma) occurs when pressures fall sufficiently below the pressure at which the fish has acclimated. Because eggs and larvae are less-developed and more fragile than juveniles, there is a presumption that they may be at least as, if not more, susceptible to barotrauma injury, but studies to date report inconsistent results and none have considered the relationship between pressure change and barotrauma over a sufficiently broad range of pressure changes tomore » enable detrimental levels to be properly determined. To address this, we exposed eggs and larvae of three physoclistic species to rapid decompression in a barometric chamber over a broad range of discrete pressure changes. Eggs, but not larvae, were unaffected by all levels of decompression tested. At exposure pressures below ~40 kPa, or ~40% of atmospheric pressure, swim bladder deflation occurred in all species and internal haemorrhage was observed in one species. None of these injuries killed the fish within 24 hours, but subsequent mortality cannot be excluded. Consequently, if larval drift is expected, it seems prudent to maintain exposure pressures at river infrastructure at 40% or more of the pressure to which a drifting larvae has acclimated.« less
Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni
Wang, Bo; Collins, James J; Newmark, Phillip A
2013-01-01
Schistosomes infect hundreds of millions of people in the developing world. Transmission of these parasites relies on a stem cell-driven, clonal expansion of larvae inside a molluscan intermediate host. How this novel asexual reproductive strategy relates to current models of stem cell maintenance and germline specification is unclear. Here, we demonstrate that this proliferative larval cell population (germinal cells) shares some molecular signatures with stem cells from diverse organisms, in particular neoblasts of planarians (free-living relatives of schistosomes). We identify two distinct germinal cell lineages that differ in their proliferation kinetics and expression of a nanos ortholog. We show that a vasa/PL10 homolog is required for proliferation and maintenance of both populations, whereas argonaute2 and a fibroblast growth factor receptor-encoding gene are required only for nanos-negative cells. Our results suggest that an ancient stem cell-based developmental program may have enabled the evolution of the complex life cycle of parasitic flatworms. DOI: http://dx.doi.org/10.7554/eLife.00768.001 PMID:23908765
An integrated analysis of phenotypic selection on insect body size and development time.
Eck, Daniel J; Shaw, Ruth G; Geyer, Charles J; Kingsolver, Joel G
2015-09-01
Most studies of phenotypic selection do not estimate selection or fitness surfaces for multiple components of fitness within a unified statistical framework. This makes it difficult or impossible to assess how selection operates on traits through variation in multiple components of fitness. We describe a new generation of aster models that can evaluate phenotypic selection by accounting for timing of life-history transitions and their effect on population growth rate, in addition to survival and reproductive output. We use this approach to estimate selection on body size and development time for a field population of the herbivorous insect, Manduca sexta (Lepidoptera: Sphingidae). Estimated fitness surfaces revealed strong and significant directional selection favoring both larger adult size (via effects on egg counts) and more rapid rates of early larval development (via effects on larval survival). Incorporating the timing of reproduction and its influence on population growth rate into the analysis resulted in larger values for size in early larval development at which fitness is maximized, and weaker selection on size in early larval development. These results illustrate how the interplay of different components of fitness can influence selection on size and development time. This integrated modeling framework can be readily applied to studies of phenotypic selection via multiple fitness components in other systems. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Recent field research experience with B.t. against spruce budworm in the eastern U.S.
John B. Dimond
1985-01-01
Recent testing in the eastern U. S. has led quickly to the adoption of 12 BIU/acre as the best operational dosage rate, with operational spray emission rates reduced to a quart or less per acre. Some recent work suggests that older larval instars of the budworm are highly susceptible to B.t. sprays, and the effective "spray window" can be broadened when...
Developmental Environment Effects on Sexual Selection in Male and Female Drosophila melanogaster
Morimoto, Juliano; Pizzari, Tommaso; Wigby, Stuart
2016-01-01
The developmental environment can potentially alter the adult social environment and influence traits targeted by sexual selection such as body size. In this study, we manipulated larval density in male and female Drosophila melanogaster, which results in distinct adult size phenotypes–high (low) densities for small (large) adults–and measured sexual selection in experimental groups consisting of adult males and females from high, low, or a mixture of low and high larval densities. Overall, large adult females (those reared at low larval density) had more matings, more mates and produced more offspring than small females (those reared at high larval density). The number of offspring produced by females was positively associated with their number of mates (i.e. there was a positive female Bateman gradient) in social groups where female size was experimentally varied, likely due to the covariance between female productivity and mating rate. For males, we found evidence that the larval environment affected the relative importance of sexual selection via mate number (Bateman gradients), mate productivity, paternity share, and their covariances. Mate number and mate productivity were significantly reduced for small males in social environments where males were of mixed sizes, versus social environments where all males were small, suggesting that social heterogeneity altered selection on this subset of males. Males are commonly assumed to benefit from mating with large females, but in contrast to expectations we found that in groups where both the male and female size varied, males did not gain more offspring per mating with large females. Collectively, our results indicate sex-specific effects of the developmental environment on the operation of sexual selection, via both the phenotype of individuals, and the phenotype of their competitors and mates. PMID:27167120
FIM, a Novel FTIR-Based Imaging Method for High Throughput Locomotion Analysis
Otto, Nils; Löpmeier, Tim; Valkov, Dimitar; Jiang, Xiaoyi; Klämbt, Christian
2013-01-01
We designed a novel imaging technique based on frustrated total internal reflection (FTIR) to obtain high resolution and high contrast movies. This FTIR-based Imaging Method (FIM) is suitable for a wide range of biological applications and a wide range of organisms. It operates at all wavelengths permitting the in vivo detection of fluorescent proteins. To demonstrate the benefits of FIM, we analyzed large groups of crawling Drosophila larvae. The number of analyzable locomotion tracks was increased by implementing a new software module capable of preserving larval identity during most collision events. This module is integrated in our new tracking program named FIMTrack which subsequently extracts a number of features required for the analysis of complex locomotion phenotypes. FIM enables high throughput screening for even subtle behavioral phenotypes. We tested this newly developed setup by analyzing locomotion deficits caused by the glial knockdown of several genes. Suppression of kinesin heavy chain (khc) or rab30 function led to contraction pattern or head sweeping defects, which escaped in previous analysis. Thus, FIM permits forward genetic screens aimed to unravel the neural basis of behavior. PMID:23349775
Salim, Hasber; Rawi, Che Salmah Md; Ahmad, Abu Hassan; Al-Shami, Salman Abdo
2015-12-01
The effectiveness of the synthetic insecticides trichlorfon, lambda-cyhalothrin, cypermethrin emulsion concentrated (EC) and cypermethrin emulsion water based (EW) and a bio-insecticide, Bacillus thuringiensis subsp. kurstaki (Btk), was evaluated at 3, 7, 14 and 30 days after treatment (DAT) for the control of Metisa plana larvae in an oil palm (Elaeis guineensis) plantation in Malaysia. Although all synthetic insecticides effectively reduced the larval population of M. plana, trichlorfon, lambda-cyhalothrin and cypermethrin EC were the fastest-acting. The larval population dropped below the economic threshold level (ETL) 30 days after a single application of the synthetic insecticides. Application of Btk, however, gave poor results, with the larval population remaining above the ETL post treatment. In terms of operational productivity, ground spraying using power spray equipment was time-consuming and resulted in poor coverage. Power spraying may not be appropriate for controlling M. plana infestations in large fields. Using a power sprayer, one man could cover 2-3 ha per day. Hence, power spraying is recommended during outbreaks of infestation in areas smaller than 50 ha.
Salim, Hasber; Rawi, Che Salmah Md.; Ahmad, Abu Hassan; Al-Shami, Salman Abdo
2015-01-01
The effectiveness of the synthetic insecticides trichlorfon, lambda-cyhalothrin, cypermethrin emulsion concentrated (EC) and cypermethrin emulsion water based (EW) and a bio-insecticide, Bacillus thuringiensis subsp. kurstaki (Btk), was evaluated at 3, 7, 14 and 30 days after treatment (DAT) for the control of Metisa plana larvae in an oil palm (Elaeis guineensis) plantation in Malaysia. Although all synthetic insecticides effectively reduced the larval population of M. plana, trichlorfon, lambda-cyhalothrin and cypermethrin EC were the fastest-acting. The larval population dropped below the economic threshold level (ETL) 30 days after a single application of the synthetic insecticides. Application of Btk, however, gave poor results, with the larval population remaining above the ETL post treatment. In terms of operational productivity, ground spraying using power spray equipment was time-consuming and resulted in poor coverage. Power spraying may not be appropriate for controlling M. plana infestations in large fields. Using a power sprayer, one man could cover 2–3 ha per day. Hence, power spraying is recommended during outbreaks of infestation in areas smaller than 50 ha. PMID:26868711
Endocrine Toxicity of Trenbolone During Larval Development of Xenopus tropicalis
Trenbolone is a non-aromatizeable androgen agonist used extensively in the beef industry. It can be excreted from cattle in an active form and has been measured in aquatic systems associated with or near concentrated animal feeding operations. We characterized the effects of aque...
Environmentally relevant concentrations of microplastic particles influence larval fish ecology.
Lönnstedt, Oona M; Eklöv, Peter
2016-06-03
The widespread occurrence and accumulation of plastic waste in the environment have become a growing global concern over the past decade. Although some marine organisms have been shown to ingest plastic, few studies have investigated the ecological effects of plastic waste on animals. Here we show that exposure to environmentally relevant concentrations of microplastic polystyrene particles (90 micrometers) inhibits hatching, decreases growth rates, and alters feeding preferences and innate behaviors of European perch (Perca fluviatilis) larvae. Furthermore, individuals exposed to microplastics do not respond to olfactory threat cues, which greatly increases predator-induced mortality rates. Our results demonstrate that microplastic particles operate both chemically and physically on larval fish performance and development. Copyright © 2016, American Association for the Advancement of Science.
Trenbolone is a non-aromatizeable androgen agonist used extensively in the beef industry. It can be excreted from cattle in an active form and has been measured in aquatic systems associated with or near concentrated animal feeding operations. We characterized the effects of aque...
[Entomological surveillance in Mauritius].
Gopaul, R
1995-01-01
The entomological surveillance is an essential link in the fight against malaria in Mauritius. Because of the large number of malaria-infected travellers in Mauritius and the presence of the vector Anopheles arabiensis, the risk of local transmission is very real. The medical entomology division together with the malaria control unit and the health appointees exert a rigorous entomological surveillance of malaria. Field agents make entomological investigations of pilot villages and around the harbor and airport, where there have been cases of malaria, in addition to a few randomly chosen regions. All of the inhabited regions are accessible because of a good highway infrastructure, which enables a complete coverage for the entomological prospectives. Entomological controls are also conducted in the airplanes and the ships. All of the captured mosquitos and the harvested larva are transferred to a laboratory for identification, dissection or sensibility tests, etc. The larva of A. arabiensis have not yet developed resistance to Temephos and the adults are still sensitive to DDT. Thus, the larval habitats are treated with Temephos and DDT is sprayed in the residences where there have been native cases of malaria. The entomology division studies the ecology and the evolution of the larval habitats, as well as the impact of the anti-larval fight on the anophelene density. In addition to the chemical fight, a biological control is being tried with larva-eating fish such as Lebistes and Tilapia. In general, the anophelene density in Mauritius is low, but after the big summer rains, especially during a period of cyclones, there is a considerable increase of larval habitats and consequently a higher number of A. arabiensis. Therefore during this season, it is necessary to make an even more rigorous entomological surveillance. A. arabiensis has a strong exophile tendency even if it is endophage and exophage. This mosquito is zoophile, mostly towards cattle, and the zooprophylaxis must have a significant role in the regions with herds of cattle such as the western part of the island. However, the favorite larval habitat of A. arabiensis seems to be water on the flat roofs of solid houses. Therefore, the availability of such larval habitats across the country facilitates the vector-human contact. On the other islands forming part of the state of Mauritius, such as Rodriguez and Agaléga, there are no anopheles and therefore no risk of transmission of malaria. There still are entomological investigations on these islands periodically to assure that there is no accidental introduction of anopheles mosquitos.
Vogels, Chantal B F; Bukhari, Tullu; Koenraadt, Constantianus J M
2014-06-01
Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible. Copyright © 2014. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.
2016-03-01
Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.
Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish
Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian
2011-01-01
Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793
Kweka, Eliningaya J; Zhou, Guofa; Munga, Stephen; Lee, Ming-Chieh; Atieli, Harrysone E; Nyindo, Mramba; Githeko, Andrew K; Yan, Guiyun
2012-01-01
Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya. A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines. These findings suggest that implementation of effective larval control programme should be targeted with larval habitats succession information when larval habitats are fewer and manageable. Crop cycles and distance from habitats to household should be considered as effective information in planning larval control.
40 CFR 125.87 - As an owner or operator of a new facility, must I perform monitoring?
Code of Federal Regulations, 2010 CFR
2010-07-01
... biweekly during the primary period of reproduction, larval recruitment, and peak abundance identified... screen systems, you must monitor head loss across the screens and correlate the measured value with the... source water surface elevation (best professional judgment based on available hydrological data). The...
Čičková, Helena; Pastor, Berta; Kozánek, Milan; Martínez-Sánchez, Anabel; Rojo, Santos; Takáč, Peter
2012-01-01
The technology for biodegradation of pig manure by using houseflies in a pilot plant capable of processing 500–700 kg of pig manure per week is described. A single adult cage loaded with 25,000 pupae produced 177.7±32.0 ml of eggs in a 15-day egg-collection period. With an inoculation ratio of 0.4–1.0 ml eggs/kg of manure, the amount of eggs produced by a single cage can suffice for the biodegradation of 178–444 kg of manure. Larval development varied among four different types of pig manure (centrifuged slurry, fresh manure, manure with sawdust, manure without sawdust). Larval survival ranged from 46.9±2.1%, in manure without sawdust, to 76.8±11.9% in centrifuged slurry. Larval development took 6–11 days, depending on the manure type. Processing of 1 kg of wet manure produced 43.9–74.3 g of housefly pupae and the weight of the residue after biodegradation decreased to 0.18–0.65 kg, with marked differences among manure types. Recommendations for the operation of industrial-scale biodegradation facilities are presented and discussed. PMID:22431982
Zhu, Changqi C; Boone, Jason Q; Jensen, Philip A; Hanna, Scott; Podemski, Lynn; Locke, John; Doe, Chris Q; O'Connor, Michael B
2008-02-01
The Drosophila Activin-like ligands Activin-beta and Dawdle control several aspects of neuronal morphogenesis, including mushroom body remodeling, dorsal neuron morphogenesis and motoneuron axon guidance. Here we show that the same two ligands act redundantly through the Activin receptor Babo and its transcriptional mediator Smad2 (Smox), to regulate neuroblast numbers and proliferation rates in the developing larval brain. Blocking this pathway results in the development of larvae with small brains and aberrant photoreceptor axon targeting, and restoring babo function in neuroblasts rescued these mutant phenotypes. These results suggest that the Activin signaling pathway is required for producing the proper number of neurons to enable normal connection of incoming photoreceptor axons to their targets. Furthermore, as the Activin pathway plays a key role in regulating propagation of mouse and human embryonic stem cells, our observation that it also regulates neuroblast numbers and proliferation in Drosophila suggests that involvement of Activins in controlling stem cell propagation may be a common regulatory feature of this family of TGF-beta-type ligands.
Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori.
Guo, Huizhen; Cheng, Tingcai; Chen, Zhiwei; Jiang, Liang; Guo, Youbing; Liu, Jianqiu; Li, Shenglong; Taniai, Kiyoko; Asaoka, Kiyoshi; Kadono-Okuda, Keiko; Arunkumar, Kallare P; Wu, Jiaqi; Kishino, Hirohisa; Zhang, Huijie; Seth, Rakesh K; Gopinathan, Karumathil P; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Goldsmith, Marian R; Xia, Qingyou; Mita, Kazuei
2017-03-01
Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO 2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for finding genes involved in plant-insect interactions in Lepidoptera and establishing correlations between these genes and vital insect behaviors like host plant selection and courtship for mating. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Barrows, F.T.; Lellis, W.A.
2006-01-01
Two methods were developed for the production of larval fish diets. The first method, microextrusion marumerization (MEM), has been tested in laboratory feeding trials for many years and produces particles that are palatable and water stable. The second method, particle-assisted rotational agglomeration (PARA), produced diets that have lower density than diets produced by MEM. Each method was used to produce diets in the 250- to 400- and 400- to 700-??m range and compared with a reference diet (Fry Feed Kyowa* [FFK]) for feeding larval walleye in two experiments. The effect of substituting 4% of the fish meal with freeze-dried artemia fines was also investigated. In the first experiment, 30-d survival was greater (P < 0.05) for fish fed a diet produced by PARA without Artemia (49.1.0%) than for fish fed the same diet produced by MEM (27.6%). The addition of Artemia to a diet produced by MEM did not increase survival of larval walleye. Fish fed the reference diet had 24.4% survival. In the second experiment, there was an effect of both processing method and Artemia supplementation, and an interaction of these effects, on survival. Fish fed a diet produced by PARA without Artemia supplementation had 48.4% survival, and fish fed the same diet produced by MEM had only 19.6% survival. Inclusion of 4% freeze-dried Artemia improved (P < 0.04) survival of fish fed MEM particles but not those fed PARA particles. Fish fed FFK had greater weight gain than fish fed other diets in both experiments. Data indicate that the PARA method of diet processing produces smaller, lower density particles than the MEM process and that diets produced by the PARA process support higher survival of larval walleye with low capital and operating costs. ?? Copyright by the World Aquaculture Society 2006.
Strickman, D; Miller, M E; Kim, H C; Lee, K W
2000-06-01
Since 1993, more than 2,000 cases of vivax malaria have occurred in the Republic of Korea in an epidemic that ended nearly 20 malaria-free years. Most malaria has occurred in the northwestern part of the country, mainly affecting Korean military personnel. As a part of an operational surveillance effort, we sampled mosquitoes in and near the Demilitarized Zone (Paju County, Kyonggi Province) during the last 2 wk of July in 1996 and from May 15 to September 10 in 1997. The 1st year, landing collections were done at 5 different sites; the 2nd year, carbon-dioxide-baited light traps at 5 sites, larval collections in 10 adjacent fields, and landing collections at 1 site in the Demilitarized Zone were performed weekly. Of 17 species collected, Anopheles sinensis was consistently the most abundant mosquito, comprising 79-96% of mosquitoes. The diel pattern of biting by An. sinensis varied by location and season, with the majority of individuals biting late at night during warm weather (>20 degrees C) and early at night during cool weather. In contrast, Aedes vexans nipponii (the 2nd most abundant species) bit in the greatest numbers at the same time all season, from 2000 to 2300 h. Among the correlates with abundance of An. sinensis were average nighttime temperature 2 wk previous to the night in question, wind late at night (negatively correlated), and apparent size of the moon (negatively correlated). The data showed that the exact number of An. sinensis biting could not be estimated from numbers collected in carbon-dioxide-baited light traps. On the other hand, a threshold of 15 An. sinensis per trap night corresponded (88% accuracy) to a threshold of 12 mosquitoes biting 2 adjacent collectors per night. Larval collections were also significantly correlated with landing collections, despite inexact sampling methods and separation of the larval habitat from the site where landing collections were performed. Operational entomology assets using nighttime temperature records, carbon-dioxide-baited light traps, and larval collections should be able to target their efforts in Korea more efficiently.
Similarities and Differences for Swimming in Larval and Adult Lampreys.
McClellan, Andrew D; Pale, Timothée; Messina, J Alex; Buso, Scott; Shebib, Ahmad
2016-01-01
The spinal locomotor networks controlling swimming behavior in larval and adult lampreys may have some important differences. As an initial step in comparing the locomotor systems in lampreys, in larval animals the relative timing of locomotor movements and muscle burst activity were determined and compared to those previously published for adults. In addition, the kinematics for free swimming in larval and adult lampreys was compared in detail for the first time. First, for swimming in larval animals, the neuromechanical phase lag between the onsets or terminations of muscle burst activity and maximum concave curvature of the body increased with increasing distance along the body, similar to that previously shown in adults. Second, in larval lampreys, but not adults, absolute swimming speed (U; mm s(-1)) increased with animal length (L). In contrast, normalized swimming speed (U'; body lengths [bl] s(-1)) did not increase with L in larval or adult animals. In both larval and adult lampreys, U' and normalized wave speed (V') increased with increasing tail-beat frequency. Wavelength and mechanical phase lag did not vary significantly with tail-beat frequency but were significantly different in larval and adult animals. Swimming in larval animals was characterized by a smaller U/V ratio, Froude efficiency, and Strouhal number than in adults, suggesting less efficient swimming for larval animals. In addition, during swimming in larval lampreys, normalized lateral head movements were larger and normalized lateral tail movements were smaller than for adults. Finally, larval animals had proportionally smaller lateral surface areas of the caudal body and fin areas than adults. These differences are well suited for larval sea lampreys that spend most of the time buried in mud/sand, in which swimming efficiency is not critical, compared to adults that would experience significant selection pressure to evolve higher-efficiency swimming to catch up to and attach to fish for feeding as well as engage in long-distance migration during spawning. Finally, the differences in swim efficiency for larval and adult lampreys are compared to other animals employing the anguilliform mode of swimming.
Phylogenetic analyses of mode of larval development.
Hart, M
2000-12-01
Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.
Rider, S.J.; Margraf, F.J.
1998-01-01
We determined spatial and temporal foraging characteristics of larval bluegill sunfish (Lepomis macrochirus) and longear sunfish (Lepomis megalotis) in the upper Kanawha River, West Virginia during the summer of 1989. Stomach contents were examined among habitat types (i.e., main channel, main-channel border, and shoreline habitats) and depth (surface, middle, and bottom). Diet of larval bluegill sunfish was dominated by Chironomidae, temporally and spatially. Chironomidae dominated larval longear sunfish diet in main channel and main-channel border collections from all three depths. However, along the shoreline, larval longear sunfish diet was dominated by Cladocera.
Vela, María José; González-Gordillo, Juan Ignacio
2016-01-01
Abstract For most of the family Porcellanidae, which comprises 283 species, larval development remains to be described. Full development has been only described for 52 species, while part of the larval cycle has been described for 45 species. The importance of knowing the complete larval development of a species goes beyond allowing the identification of larval specimens collected in the plankton. Morphological larval data also constitute a support to cladistic techniques used in the establishment of the phylogenetic status (see Hiller et al. 2006, Marco-Herrero et al. 2013). Nevertheless, the literature on the larval development of this family is old and widely dispersed and in many cases it is difficult to collect the available information on a particular taxon. Towards the aim of facilitating future research, all information available on the larval development of porcellanids has been compiled. Following the taxonomic checklist of Porcellanidae proposed by Osawa and McLaughlin (2010), a checklist has been prepared that reflects the current knowledge about larval development of the group including larval stages and the method used to obtain the larvae, together with references. Those species for which the recognised names have been changed according to Osawa and McLaughlin (2010) are indicated. PMID:27081332
Evaluating sampling strategies for larval cisco (Coregonus artedi)
Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.
2008-01-01
To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reproduction, larval recruitment, and peak abundance identified during the Source Water Baseline Biological... across the screens and correlate the measured value with the design intake velocity. The head loss across... professional judgment based on available hydrological data). The maximum head loss across the screen for each...
Shenoi, V N; Ali, S Z; Prasad, N G
2016-02-01
In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Larval Connectivity and the International Management of Fisheries
Kough, Andrew S.; Paris, Claire B.; Butler, Mark J.
2013-01-01
Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries. PMID:23762273
Shamur, Eyal; Zilka, Miri; Hassner, Tal; China, Victor; Liberzon, Alex; Holzman, Roi
2016-06-01
Using videography to extract quantitative data on animal movement and kinematics constitutes a major tool in biomechanics and behavioral ecology. Advanced recording technologies now enable acquisition of long video sequences encompassing sparse and unpredictable events. Although such events may be ecologically important, analysis of sparse data can be extremely time-consuming and potentially biased; data quality is often strongly dependent on the training level of the observer and subject to contamination by observer-dependent biases. These constraints often limit our ability to study animal performance and fitness. Using long videos of foraging fish larvae, we provide a framework for the automated detection of prey acquisition strikes, a behavior that is infrequent yet critical for larval survival. We compared the performance of four video descriptors and their combinations against manually identified feeding events. For our data, the best single descriptor provided a classification accuracy of 77-95% and detection accuracy of 88-98%, depending on fish species and size. Using a combination of descriptors improved the accuracy of classification by ∼2%, but did not improve detection accuracy. Our results indicate that the effort required by an expert to manually label videos can be greatly reduced to examining only the potential feeding detections in order to filter false detections. Thus, using automated descriptors reduces the amount of manual work needed to identify events of interest from weeks to hours, enabling the assembly of an unbiased large dataset of ecologically relevant behaviors. © 2016. Published by The Company of Biologists Ltd.
Amino, Hisako; Osanai, Arihiro; Miyadera, Hiroko; Shinjyo, Noriko; Tomitsuka, Eriko; Taka, Hikari; Mineki, Reiko; Murayama, Kimie; Takamiya, Shinzaburo; Aoki, Takashi; Miyoshi, Hideto; Sakamoto, Kimitoshi; Kojima, Somei; Kita, Kiyoshi
2003-05-01
We recently reported that Ascaris suum mitochondria express stage-specific isoforms of complex II: the flavoprotein subunit and the small subunit of cytochrome b (CybS) of the larval complex II differ from those of adult enzyme, while two complex IIs share a common iron-sulfur cluster subunit (Ip). In the present study, A. suum larval complex II was highly purified to characterize the larval cytochrome b subunits in more detail. Peptide mass fingerprinting and N-terminal amino acid sequencing showed that the larval and adult cytochrome b (CybL) proteins are identical. In contrast, cDNA sequences revealed that the small subunit of larval cytochrome b (CybS(L)) is distinct from the adult CybS (CybS(A)). Furthermore, Northern analysis and immunoblotting showed stage-specific expression of CybS(L) and CybS(A) in larval and adult mitochondria, respectively. Enzymatic assays revealed that the ratio of rhodoquinol-fumarate reductase (RQFR) to succinate-ubiquinone reductase (SQR) activities and the K(m) values for quinones are almost identical for the adult and larval complex IIs, but that the fumarate reductase (FRD) activity is higher for the adult form than for the larval form. These results indicate that the adult and larval A. suum complex IIs have different properties than the complex II of the mammalian host and that the larval complex II is able to function as a RQFR. Such RQFR activity of the larval complex II would be essential for rapid adaptation to the dramatic change of oxygen availability during infection of the host.
Valicente, F H; Tuelher, E S; Pena, R C; Andreazza, R; Guimarães, M R F
2013-04-01
Cannibalism in the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) (FAW), is a limiting factor in a baculovirus production system. To detect the impact of cannibalism, a two-step bioassay was conducted with different larval ages of FAW fed on two food sources (corn and castor bean leaves) contaminated with the S. frugiperda multiple-embedded nucleopolyhedrovirus. In a first bioassay, the food source affected the cannibalism, being higher for all larval ages tested (5-, 6- and 7-day-old larvae) in larvae fed on corn than on those fed on castor bean leaves. Larval mortality, weight equivalent and larval equivalents (LEs) per hectare decreased as the larval age increased. Larval weight, occlusion bodies (OBs)/larva and total OBs increased when the larval age increased. In a second bioassay, in which only 6- and 7-day-old larvae were used because of the performance in the first bioassay, the cannibalism rates were affected by the interaction between food sources and time of feeding (48 and 72 h), reaching the highest values for 6- and 7-day-old larvae fed on corn leaves for 72 h. Mortality of the FAW was affected by the interaction between food sources, larval age and time of feeding. The lowest mortalities were on 7-day-old larvae when they were fed on castor bean leaves for 48 and 72 h. Larval weight, OBs/larva, total OBs and LEs were affected by the interaction between food sources and larval age. A significant correlation was observed between larval weight and OBs/larva that fed on both food sources, suggesting that larval weight can be used to achieve a concentration to be sprayed in 1 ha.
Morales-Ramos, Juan A; Rojas, M Guadalupe
2015-10-01
Crowding conditions of larvae may have a significant impact on commercial production efficiency of some insects, such as Tenebrio molitor L. (Coleoptera: Tenebrionidae). Although larval densities are known to affect developmental time and growth in T. molitor, no reports were found on the effects of crowding on food utilization. The effect of larval density on food utilization efficiency of T. molitor larvae was studied by measuring efficiency of ingested food conversion (ECI), efficiency of digested food conversion (EDC), and mg of larval weight gain per gram of food consumed (LWGpFC) at increasing larval densities (12, 24, 36, 48, 50, 62, 74, and 96 larvae per dm(2)) over four consecutive 3-wk periods. Individual larval weight gain and food consumption were negatively impacted by larval density. Similarly, ECI, ECD, and LWGpFC were negatively impacted by larval density. Larval ageing, measured as four consecutive 3-wk periods, significantly and independently impacted ECI, ECD, and LWGpFC in a negative way. General linear model analysis showed that age had a higher impact than density on food utilization parameters of T. molitor larvae. Larval growth was determined to be responsible for the age effects, as measurements of larval mass density (in grams of larvae per dm(2)) had a significant impact on food utilization parameters across ages and density treatments (in number of larvae per dm(2)). The importance of mass versus numbers per unit of area as measurements of larval density and the implications of negative effects of density on food utilization for insect biomass production are discussed. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Optogenetic Activation of Zebrafish Somatosensory Neurons using ChEF-tdTomato
Palanca, Ana Marie S.; Sagasti, Alvaro
2013-01-01
Larval zebrafish are emerging as a model for describing the development and function of simple neural circuits. Due to their external fertilization, rapid development, and translucency, zebrafish are particularly well suited for optogenetic approaches to investigate neural circuit function. In this approach, light-sensitive ion channels are expressed in specific neurons, enabling the experimenter to activate or inhibit them at will and thus assess their contribution to specific behaviors. Applying these methods in larval zebrafish is conceptually simple but requires the optimization of technical details. Here we demonstrate a procedure for expressing a channelrhodopsin variant in larval zebrafish somatosensory neurons, photo-activating single cells, and recording the resulting behaviors. By introducing a few modifications to previously established methods, this approach could be used to elicit behavioral responses from single neurons activated up to at least 4 days post-fertilization (dpf). Specifically, we created a transgene using a somatosensory neuron enhancer, CREST3, to drive the expression of the tagged channelrhodopsin variant, ChEF-tdTomato. Injecting this transgene into 1-cell stage embryos results in mosaic expression in somatosensory neurons, which can be imaged with confocal microscopy. Illuminating identified cells in these animals with light from a 473 nm DPSS laser, guided through a fiber optic cable, elicits behaviors that can be recorded with a high-speed video camera and analyzed quantitatively. This technique could be adapted to study behaviors elicited by activating any zebrafish neuron. Combining this approach with genetic or pharmacological perturbations will be a powerful way to investigate circuit formation and function. PMID:23407374
Isoe, Yasuko; Konagaya, Yumi; Yokoi, Saori; Kubo, Takeo; Takeuchi, Hideaki
2016-06-01
Adult medaka fish (Oryzias latipes) exhibit complex social behaviors that depend mainly on visual cues from conspecifics. The ontogeny of visually-mediated social behaviors from larval/juvenile to adult medaka fish, however, is unknown. In the present study, we established a simple behavioral paradigm to evaluate the swimming proximity to conspecifics based on visual cues in an inter-individual interaction of two medaka fish throughout life. When two fish were placed separately in a cylindrical tank with a concentric transparent wall, the two fish maintained close proximity to each other. A normal fish inside the tank maintained proximity to an optic nerve-cut fish outside of the tank, while the converse was not true. This behavioral paradigm enabled us to quantify visually-induced motivation of a single fish inside the tank. The proximity was detected from larval/juvenile to adult fish. Larval fish, however, maintained close proximity not only to conspecifics, but also to heterospecifics. As the growth stage increased, the degree of proximity to heterospecifics decreased, suggesting that shoaling preferences toward conspecifics and/or visual ability to recognize conspecifics is refined and established according to the growth stage. Furthermore, the proximity of adult female fish was affected by their reproductive status and social familiarity. Only before spawning, adult females maintained closer proximity to familiar males rather than to unfamiliar males, suggesting that proximity was affected by familiarity in a female-specific manner. This simple behavioral paradigm will contribute to our understanding of the neural basis of the development of visually-mediated social behavior using medaka fish.
Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.
Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R
2016-01-01
We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.
Drosophila adult and larval pheromones modulate larval food choice
Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François
2014-01-01
Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012
Location Isn’t Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment
Donahue, Megan J.; Karnauskas, Mandy; Toews, Carl; Paris, Claire B.
2015-01-01
Many species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness. Tracking virtual larvae from release to settlement and incorporating changes in larval behavior through ontogeny, we found that larval success was sensitive to the timing of spawning. Indeed, propagules released during the observed spawning period had higher larval success rates than those released outside the observed spawning period. In contrast, larval success rates were relatively insensitive to the spatial position of the release site. In addition, minimum (rather than mean) larval survival was maximized during the observed spawning period, indicating a reproductive strategy that minimizes the probability of recruitment failure. Given this landscape of larval fitness, we take an inverse optimization approach to define a biological objective function that reflects a tradeoff between the mean and variance of larval success in a temporally variable environment. Using this objective function, we suggest that the length of the spawning period can provide insight into the tradeoff between reproductive risk and reward. PMID:26103162
NASA Astrophysics Data System (ADS)
Hernandez, F. J., Jr.; Filbrun, J. E.; Fang, J.; Ransom, J. T.
2016-09-01
The Deepwater Horizon oil spill (DWHOS) spatially and temporally overlapped with the spawning of many fish species, including Red Snapper, one of the most economically important reef fish in the Gulf of Mexico. To investigate potential impacts of the DWHOS on larval Red Snapper, data from a long-term ichthyoplankton survey off the coast of Alabama were used to examine: (1) larval abundances among pre-impact (2007-2009), impact (2010), and post-impact (2011, 2013) periods; (2) proxies for larval condition (size-adjusted morphometric relationships and dry weight) among the same periods; and (3) the effects of background environmental variation on larval condition. We found that larval Red Snapper were in poorer body condition during 2010, 2011, and 2013 as compared to the 2007-2009 period, a trend that was strongly (and negatively) related to variation in Mobile Bay freshwater discharge. However, larvae collected during and after 2010 were in relatively poor condition even after accounting for variation in freshwater discharge and other environmental variables. By contrast, no differences in larval abundance were detected during these survey years. Taken together, larval supply did not change relative to the timing of the DWHOS, but larval condition was negatively impacted. Even small changes in condition can affect larval survival, so these trends may have consequences for recruitment of larvae to juvenile and adult life stages.
Wren, Johanna L K; Kobayashi, Donald R
2016-01-01
Most adult reef fish show site fidelity thus dispersal is limited to the mobile larval stage of the fish, and effective management of such species requires an understanding of the patterns of larval dispersal. In this study, we assess larval reef fish distributions in the waters west of the Big Island of Hawai'i using both in situ and model data. Catches from Cobb midwater trawls off west Hawai'i show that reef fish larvae are most numerous in offshore waters deeper than 3,000 m and consist largely of pre-settlement Pomacanthids, Acanthurids and Chaetodontids. Utilizing a Lagrangian larval dispersal model, we were able to replicate the observed shore fish distributions from the trawl data and we identified the 100 m depth strata as the most likely depth of occupancy. Additionally, our model showed that for larval shore fish with a pelagic larval duration longer than 40 days there was no significant change in settlement success in our model. By creating a general additive model (GAM) incorporating lunar phase and angle we were able to explain 67.5% of the variance between modeled and in situ Acanthurid abundances. We took steps towards creating a predictive larval distribution model that will greatly aid in understanding the spatiotemporal nature of the larval pool in west Hawai'i, and the dispersal of larvae throughout the Hawaiian archipelago.
NASA Astrophysics Data System (ADS)
Kim, Choong-Ki; Park, Kyeong; Powers, Sean P.; Graham, William M.; Bayha, Keith M.
2010-10-01
Among the various factors affecting recruitment of marine invertebrates and fish, larval transport may produce spatial and temporal patterns of abundance that are important determinants of management strategies. Here we conducted a field and modeling study to investigate the larval transport of eastern oyster, Crassostrea virginica, in Mobile Bay and eastern Mississippi Sound, Alabama. A three-dimensional larval transport model accounting for physical transport, biological movement of larvae, and site- and larval-specific conditions was developed. A hydrodynamic model was used to simulate physical transport, and biological movement was parameterized as a function of swimming and sinking velocity of oyster larvae. Site- and larval-specific conditions, including spawning location, spawning stock size, spawning time, and larval period, were determined based on the previous studies. The model reasonably reproduced the observed gradient in oyster spat settlement and bivalve larval concentration, although the model results were less dynamic than the data, probably owing to the simplified biological conditions employed in the model. A persistent gradient decreasing from west to east in the model results at time scales of overall average, season, and each survey in 2006 suggests that the larval supply may be responsible for the corresponding gradient in oyster spat settlement observed over the past 40 years. Biological movement increased larval retention near the spawning area, thus providing a favorable condition for local recruitment of oysters. Inclusion of biological movement, however, caused little change in the overall patterns of larval transport and still resulted in a west-east gradient, presumably because of frequent destratification in the shallow Mobile Bay system.
An electric beam trawl for the capture of larval lampreys
McLain, Alberton; Dahl, Frederick H.
1968-01-01
The chemicals used to control the sea lamprey, Petromyzon marinus, in the Great Lakes have drastically reduced populations of larval lampreys in tributary streams. These larvicides are too costly and difficult to apply, however, in inland lakes, estuaries, and bays. Populations of sea lampreys in these areas constitute a threat to the refinement of the control. The gear available to locate, ample, and evaluate larval populations in deep water are inefficient. Electric shockers, satisfactory for collecting ammocoetes in streams, are limited to shallow water. The use of mechanical devices such as the Petersen dredge, anchor dredge, and the orange-peel dredge is time consuming, inefficient, and relatively ineffective in providing reliable quantitative evaluation of population size and composition over large areas of bottom. A device was required to sample adequately many areas in a short period of time, regardless of the depth of water. Mobility also was essential to permit operation of the unit in the various Great Lakes and in inland waters. An electrified beam trawl has been developed that most nearly meets these requirements. It has been used successfully to collect larvae of the sea lamprey, American brook lamprey (Lampetra lamottei), northern brook lamprey (Ichthyomyzon fossor), and silver lamprey (I. unicuspis). Effectiveness of the trawl did not appear to differ with species.
Sarate, P.J.; Tamhane, V.A.; Kotkar, H.M.; Ratnakaran, N.; Susan, N.; Gupta, V.S.; Giri, A.P.
2012-01-01
Developmental patterns and survival of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), a polyphagous insect pest, have been studied with reference to the effect of diet on major gut digestive enzymes (amylases, proteases, and lipases). Significant correlations between nutritional quality of the diet and larval and pupal mass were observed when H. armigera larvae were fed on various host plants viz. legumes (chickpea and pigeonpea), vegetables (tomato and okra), flowers (rose and marigold), and cereals (sorghum and maize). Larvae fed on diets rich in proteins and/or carbohydrates (pigeonpea, chickpea, maize, and sorghum) showed higher larval mass and developed more rapidly than larvae fed on diets with low protein and carbohydrate content (rose, marigold, okra, and tomato). Low calorific value diets like rose and marigold resulted in higher mortality (25–35%) of H. armigera. Even with highly varying development efficiency and larval/pupal survival rates, H. armigera populations feeding on different diets completed their life cycles. Digestive enzymes of H. armigera displayed variable expression levels and were found to be regulated on the basis of macromolecular composition of the diet. Post—ingestive adaptations operating at the gut level, in the form of controlled release of digestive enzymes, might be a key factor contributing to the physiological plasticity in H. armigera. PMID:22954360
Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe
2016-01-01
In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future.
Influence of Biological Factors on Connectivity Patterns for Concholepas concholepas (loco) in Chile
Garavelli, Lysel; Colas, François; Verley, Philippe; Kaplan, David Michael; Yannicelli, Beatriz; Lett, Christophe
2016-01-01
In marine benthic ecosystems, larval connectivity is a major process influencing the maintenance and distribution of invertebrate populations. Larval connectivity is a complex process to study as it is determined by several interacting factors. Here we use an individual-based, biophysical model, to disentangle the effects of such factors, namely larval vertical migration, larval growth, larval mortality, adults fecundity, and habitat availability, for the marine gastropod Concholepas concholepas (loco) in Chile. Lower transport success and higher dispersal distances are observed including larval vertical migration in the model. We find an overall decrease in larval transport success to settlement areas from northern to southern Chile. This spatial gradient results from the combination of current direction and intensity, seawater temperature, and available habitat. From our simulated connectivity patterns we then identify subpopulations of loco along the Chilean coast, which could serve as a basis for spatial management of this resource in the future. PMID:26751574
1986-09-01
ing in the abandoned channels and seldom being encountered elsewhere. These fishes include the spotted gar, bowfin ( Amia calva ), black bull- head...two individuals of the bowfin ( Amia calva ) were collected in the 1979-1980 study, one by electroshocking in April 1979 at a re- vetted bank and one in a
Papadopoulos, Nikos T.; Abd-Alla, Adly M. M.; Cáceres, Carlos; Bourtzis, Kostas
2015-01-01
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a pest of worldwide substantial economic importance, as well as a Tephritidae model for sterile insect technique (SIT) applications. The latter is partially due to the development and utilization of genetic sexing strains (GSS) for this species, such as the Vienna 8 strain, which is currently used in mass rearing facilities worldwide. Improving the performance of such a strain both in mass rearing facilities and in the field could significantly enhance the efficacy of SIT and reduce operational costs. Recent studies have suggested that the manipulation of gut symbionts can have a significant positive effect on the overall fitness of insect strains. We used culture-based approaches to isolate and characterize gut-associated bacterial species of the Vienna 8 strain under mass rearing conditions. We also exploited one of the isolated bacterial species, Enterobacter sp., as dietary supplement (probiotic) to the larval diet, and we assessed its effects on fitness parameters under the standard operating procedures used in SIT operational programs. Probiotic application of Enterobacter sp. resulted in improvement of both pupal and adult productivity, as well as reduced rearing duration, particularly for males, without affecting pupal weight, sex ratio, male mating competitiveness, flight ability and longevity under starvation. PMID:26325068
Klepsatel, Peter; Procházka, Emanuel; Gáliková, Martina
2018-06-19
Conditions experienced during development have often long-lasting effects persisting into adulthood. In Drosophila, it is well-documented that larval crowding influences fitness-related traits such as body size, starvation resistance and lifespan. However, the underlying mechanism of this phenomenon is not well understood. Here, we show that the effects of increased larval density on life-history traits can be explained by decreased yeast availability in the diet during development. Yeast-poor larval diet alters various life-history traits and mimics the effects of larval crowding. In particular, reduced amount of yeast in larval diet prolongs developmental time, reduces body size, increases body fat content and starvation resistance, and prolongs Drosophila lifespan. Conversely, the effects of larval crowding can be rescued by increasing the concentration of the dietary yeast in the diet during development. Altogether, our results show that the well-known effects of larval crowding on life-history traits are mainly caused by the reduced availability of dietary yeasts due to increased larval competition. Copyright © 2018. Published by Elsevier Inc.
Rodríguez, A D; Rodríguez, M H; Meza, R A; Hernández, J E; Rejmankova, E; Savage, H M; Roberts, D R; Pope, K O; Legters, L
1993-03-01
Spatial and seasonal variations on Anopheles albimanus larval densities and their plant associations were investigated in larval habitats in southern Mexico between April 1989 and May 1990. Thirty-four plant groups were dominant in larval habitats. Dense larval populations were associated with 3 genera of plants, Cynodon, Echinocloa and Fimbristylis and no larvae were found in habitats with Salvinia and Rhizophora. Low significant positive or negative associations were documented with the other 12 plant genera. Larval habitats were classified according to the morphology of their dominant plants. Higher larval densities were observed in the groups characterized by relatively short emergent vegetation. The distribution of habitat-types within 5 identified vegetation units showed a significantly dependent relationship. For the entire study period, highest larval densities were detected in flooded pasture/grassland vegetation units. For all vegetation units, higher larval densities were found when the dominant plant type covered between 25-50% of the breeding site. The integration of data from habitat-types into vegetation units did not result in loss of information.
Quantitative species-level ecology of reef fish larvae via metabarcoding.
Kimmerling, Naama; Zuqert, Omer; Amitai, Gil; Gurevich, Tamara; Armoza-Zvuloni, Rachel; Kolesnikov, Irina; Berenshtein, Igal; Melamed, Sarah; Gilad, Shlomit; Benjamin, Sima; Rivlin, Asaph; Ohavia, Moti; Paris, Claire B; Holzman, Roi; Kiflawi, Moshe; Sorek, Rotem
2018-02-01
The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.
Schrader, Matthew; Jarrett, Benjamin J M; Kilner, Rebecca M
2015-04-01
Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density-dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Automated measurement of zebrafish larval movement
Cario, Clinton L; Farrell, Thomas C; Milanese, Chiara; Burton, Edward A
2011-01-01
Abstract The zebrafish is a powerful vertebrate model that is readily amenable to genetic, pharmacological and environmental manipulations to elucidate the molecular and cellular basis of movement and behaviour. We report software enabling automated analysis of zebrafish movement from video recordings captured with cameras ranging from a basic camcorder to more specialized equipment. The software, which is provided as open-source MATLAB functions, can be freely modified and distributed, and is compatible with multiwell plates under a wide range of experimental conditions. Automated measurement of zebrafish movement using this technique will be useful for multiple applications in neuroscience, pharmacology and neuropsychiatry. PMID:21646414
Automated measurement of zebrafish larval movement.
Cario, Clinton L; Farrell, Thomas C; Milanese, Chiara; Burton, Edward A
2011-08-01
The zebrafish is a powerful vertebrate model that is readily amenable to genetic, pharmacological and environmental manipulations to elucidate the molecular and cellular basis of movement and behaviour. We report software enabling automated analysis of zebrafish movement from video recordings captured with cameras ranging from a basic camcorder to more specialized equipment. The software, which is provided as open-source MATLAB functions, can be freely modified and distributed, and is compatible with multiwell plates under a wide range of experimental conditions. Automated measurement of zebrafish movement using this technique will be useful for multiple applications in neuroscience, pharmacology and neuropsychiatry.
Correlated evolution between mode of larval development and habitat in muricid gastropods.
Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam
2014-01-01
Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.
The importance of accounting for larval detectability in mosquito habitat-association studies.
Low, Matthew; Tsegaye, Admasu Tassew; Ignell, Rickard; Hill, Sharon; Elleby, Rasmus; Feltelius, Vilhelm; Hopkins, Richard
2016-05-04
Mosquito habitat-association studies are an important basis for disease control programmes and/or vector distribution models. However, studies do not explicitly account for incomplete detection during larval presence and abundance surveys, with potential for significant biases because of environmental influences on larval behaviour and sampling efficiency. Data were used from a dip-sampling study for Anopheles larvae in Ethiopia to evaluate the effect of six factors previously associated with larval sampling (riparian vegetation, direct sunshine, algae, water depth, pH and temperature) on larval presence and detectability. Comparisons were made between: (i) a presence-absence logistic regression where samples were pooled at the site level and detectability ignored, (ii) a success versus trials binomial model, and (iii) a presence-detection mixture model that separately estimated presence and detection, and fitted different explanatory variables to these estimations. Riparian vegetation was consistently highlighted as important, strongly suggesting it explains larval presence (-). However, depending on how larval detectability was estimated, the other factors showed large variations in their statistical importance. The presence-detection mixture model provided strong evidence that larval detectability was influenced by sunshine and water temperature (+), with weaker evidence for algae (+) and water depth (-). For larval presence, there was also some evidence that water depth (-) and pH (+) influenced site occupation. The number of dip-samples needed to determine if larvae were likely present at a site was condition dependent: with sunshine and warm water requiring only two dips, while cooler water and cloud cover required 11. Environmental factors influence true larval presence and larval detectability differentially when sampling in field conditions. Researchers need to be more aware of the limitations and possible biases in different analytical approaches used to associate larval presence or abundance with local environmental conditions. These effects can be disentangled using data that are routinely collected (i.e., multiple dip samples at each site) by employing a modelling approach that separates presence from detectability.
Larval fish assemblages across an upwelling front: Indication for active and passive retention
NASA Astrophysics Data System (ADS)
Tiedemann, Maik; Brehmer, Patrice
2017-03-01
In upwelling areas, enrichment, concentration and retention are physical processes that have major consequences for larval fish survival. While these processes generally increase larval survival, strong upwelling can also increase mortality due to an offshore transport of larvae towards unfavorable habitats. In 2013 a survey was conducted along the Senegalese coast to investigate the upwelling effect with regard to larval fish assemblages and possible larval fish retention. According to water column characteristics two distinct habitats during an upwelling event were discriminated, i.e. the inshore upwelled water and the transition area over the deepest part of the Senegalese shelf. Along the two areas 42,162 fish larvae were collected representing 133 species within 40 families. Highest larval fish abundances were observed in the inshore area and decreasing abundances towards the transition, indicating that certain fish species make use of the retentive function of the inner shelf area as spawning grounds. Two larval fish assemblages overlap both habitats, which are sharply delimited by a strong upwelling front. One assemblage inhabited the inshore/upwelling area characterized by majorly neritic and pelagic species (Sparidae spp., Sardinella aurita), that seem to take the advantage of a passive retention on the shelf. The second assemblage consisted of a mix of pelagic and mesopelagic species (Engraulis encrasicolus, Carangidae spp. and Myctophidae spp.). Some species of the second assemblage, e.g. horse mackerels (Trachurus trachurus and Trachurus trecae), large finned-lantern fish (Hygophum macrochir) and foureyed sole (Microchirus ocellatus), revealed larval peak occurrences at intermediate and deep water layers, where the near-ground upwelling layer is able to transport larvae back to the shelf. This indicates active larval retention for species that are dominant in the transition area. Diel vertical migration patterns of S. aurita, E. encrasicolus and M. ocellatus revealed that a larval fish species may adapt its behavior to the local environment and do not necessarily follow a diurnal cycle. Field observations are essential to be integrated in larval drift models, since the vertical and horizontal larval distribution will have major consequences for survival. Comprehending larval survival mechanisms is necessary for the ultimate goal to understand and predict recruitment.
Vegetative substrates used by larval northern pike in Rainy and Kabetogama Lakes, Minnesota
Anne L. Timm; Rodney B. Pierce
2015-01-01
Our objective was to identify characteristics of aquatic vegetative communities used as larval northern pike nursery habitat in Rainy and Kabetogama lakes, glacial shield reservoirs in northern Minnesota. Quatrefoil light traps fished at night were used to sample larval northern pike in 11 potential nursery areas. Larval northern pike were most commonly sampled among...
Aedes aegypti Larval Indices and Risk for Dengue Epidemics
Sanchez, Lizet; Vanlerberghe, Veerle; Alfonso, Lázara; Marquetti, María del Carmen; Guzman, María Guadalupe; Bisset, Juan; van der Stuyft, Patrick
2006-01-01
We assessed in a case-control study the test-validity of Aedes larval indices for the 2000 Havana outbreak. "Cases" were blocks where a dengue fever patient lived during the outbreak. "Controls" were randomly sampled blocks. Before, during, and after the epidemic, we calculated Breteau index (BI) and house index at the area, neighborhood, and block level. We constructed receiver operating characteristic (ROC) curves to determine their performance as predictors of dengue transmission. We observed a pronounced effect of the level of measurement. The BImax (maximum block BI in a radius of 100 m) at 2-month intervals had an area under the ROC curve of 71%. At a cutoff of 4.0, it significantly (odds ratio 6.00, p<0.05) predicted transmission with 78% sensitivity and 63% specificity. Analysis of BI at the local level, with human-defined boundaries, could be introduced in control programs to identify neighborhoods at high risk for dengue transmission. PMID:16704841
The use of cryopreserved sea urchin embryos (Paracentrotus lividus) in marine quality assessment.
Paredes, E; Bellas, J
2015-06-01
We have established for first time an ecotoxicological bioassay using cryopreserved sea urchin embryos (Paracentotus lividus) and provided a comparison to the already standardized sea urchin embryo-larval bioassay, using selected (organic and inorganic) pollutants and sediment elutriates from 4 different locations from Ria de Vigo harbour (Galicia, NW Iberian Peninsula). A cryopreservation protocol was designed in order to enable the successful cryopreservation and cryobanking of gametes and embryos to be used for marine quality assessment and ensure the accessibility to high quality reproductive material all year round, as an option to conditioning adults for out of season reproduction. The calculated EC50 using the cryopreserved blastula was 53.7 μg L(-1) for copper, 81.0 μg L(-1) for lead, 300.6 μg L(-1) for BP-3 and 300.6 μg L(-1) for 4-MBC. The sensitivity of the classic sea urchin embryo-larval bioassay was compared with the bioassay conducted with cryopreserved blastula. The results showed that the use of cryopreserved blastula bioassay allows detecting lower concentrations of pollutants in comparison with the classic bioassay. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variation in and responses to brood pheromone of the honey bee (Apis mellifera L.).
Metz, Bradley N; Pankiw, Tanya; Tichy, Shane E; Aronstein, Katherine A; Crewe, Robin M
2010-04-01
The 10 fatty acid ester components of brood pheromone were extracted from larvae of different populations of USA and South African honey bees and subjected to gas chromatography-mass spectrometry quantitative analysis. Extractable amounts of brood pheromone were not significantly different by larval population; however, differences in the proportions of components enabled us to classify larval population of 77% of samples correctly by discriminant analysis. Honeybee releaser and primer pheromone responses to USA, Africanized and-European pheromone blends were tested. Texas-Africanized and Georgia-European colonies responded with a significantly greater ratio of returning pollen foragers when treated with a blend from the same population than from a different population. There was a significant interaction of pheromone blend by adult population source among Georgia-European bees for modulation of sucrose response threshold, a primer response. Brood pheromone blend variation interacted with population for pollen foraging response of colonies, suggesting a self recognition cue for this pheromone releaser behavior. An interaction of pheromone blend and population for priming sucrose response thresholds among workers within the first week of adult life suggested a more complex interplay of genotype, ontogeny, and pheromone blend.
Symbiotic bacteria enable olive fly larvae to overcome host defences
Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Yuval, Boaz
2015-01-01
Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. PMID:26587275
Murphy, Hannah M; Warren-Myers, Fletcher W; Jenkins, Gregory P; Hamer, Paul A; Swearer, Stephen E
2014-08-01
In fishes, the growth-mortality hypothesis has received broad acceptance as a driver of recruitment variability. Recruitment is likely to be lower in years when the risk of starvation and predation in the larval stage is greater, leading to higher mortality. Juvenile snapper, Pagrus auratus (Sparidae), experience high recruitment variation in Port Phillip Bay, Australia. Using a 5-year (2005, 2007, 2008, 2010, 2011) data set of larval and juvenile snapper abundances and their daily growth histories, based on otolith microstructure, we found selective mortality acted on larval size at 5 days post-hatch in 4 low and average recruitment years. The highest recruitment year (2005) was characterised by no size-selective mortality. Larval growth of the initial larval population was related to recruitment, but larval growth of the juveniles was not. Selective mortality may have obscured the relationship between larval traits of the juveniles and recruitment as fast-growing and large larvae preferentially survived in lower recruitment years and fast growth was ubiquitous in high recruitment years. An index of daily mortality within and among 3 years (2007, 2008, 2010), where zooplankton were concurrently sampled with ichthyoplankton, was related to per capita availability of preferred larval prey, providing support for the match-mismatch hypothesis. In 2010, periods of low daily mortality resulted in no selective mortality. Thus both intra- and inter-annual variability in the magnitude and occurrence of selective mortality in species with complex life cycles can obscure relationships between larval traits and population replenishment, leading to underestimation of their importance in recruitment studies.
De Azevedo, Thiago S; Bourke, Brian Patrick; Piovezan, Rafael; Sallum, Maria Anice M
2018-05-08
We addressed the potential associations among the temporal and spatial distribution of larval habitats of Aedes (Stegomyia) aegypti, the presence of urban heat islands and socioeconomic factors. Data on larval habitats were collected in Santa Bárbara d'Oeste, São Paulo, Brazil, from 2004 to 2006, and spatial and temporal variations were analysed using a wavelet-based approach. We quantified urban heat islands by calculating surface temperatures using the results of wavelet analyses and grey level transformation from Thematic Mapper images (Landsat 5). Ae. aegypti larval habitats were geo-referenced corresponding to the wavelet analyses to test the potential association between geographical distribution of habitats and surface temperature. In an inhomogeneous spatial point process, we estimated the frequency of occurrence of larval habitats in relation to temperature. The São Paulo State Social Vulnerability Index in the municipality of Santa Barbára d'Oeste was used to test the potential association between presence of larval habitats and social vulnerability. We found abundant Ae. aegypti larval habitats in areas of higher surface temperature and social vulnerability and fewer larval habitats in areas with lower surface temperature and social vulnerability.
Abrunhosa, Fernando A; Simith, Darlan J B; Palmeira, Carlos A M; Arruda, Danielle C B
2008-12-01
Food supply is considered critical for a successful culturing of decapod larvae. However, some species may present yolk reserve sufficient to complete their larval development without external food supply (known as lecithotrophic larval development). In the present study, two experiments were carried out in order to verify whether the callianassid Lepidophthalmus siriboia have lecithotrophic behaviour or, if they need external food for their larval development: Experiment 1, larvae submitted to an initial feeding period and Experiment 2, larvae submitted to an initial starvation period. High survival rate was observed in both experiments, in which only 2 megalopae and 1 zoea III died. These results strongly suggest that larvae of L. siriboia are lecithotrophic as they have sufficiently large yolk reserve to complete their larval development, while the megalopa stage shows facultative lecithotrophy. The larval periods of each stage of the treatments were quite similar and, despite some significant differences in some larval periods, these can be related probably to larval rearing conditions, abiotic factors or, individual variability of larval health, as well as stress caused to the ovigerous females during embryogenesis.
Ellsworth, Craig M.; Tyler, Torrey J.; VanderKooi, Scott P.; Markle, Douglas F.
2009-01-01
In 2006, we collected larval Lost River sucker Deltistes luxatus (LRS), shortnose sucker Chasmistes brevirostris (SNS), and Klamath largescale sucker Catostomus snyderi (KLS) emigrating from spawning areas in the Williamson and Sprague Rivers. This work is part of a multi-year effort to characterize the relative abundance, drift timing, and length frequencies of larval suckers in this watershed prior to the removal of Chiloquin Dam on the lower Sprague River. Additional larval drift samples were collected from the Fremont Bridge on Lakeshore Drive on the south end of Upper Klamath Lake near its outlet to the Link River. Because of difficulties in distinguishing KLS larvae from SNS larvae, individuals identified as either of these two species were grouped together and reported as KLS-SNS in this report. We found that larval densities varied by site with the highest densities being collected at the most upstream site on the Sprague River at river kilometer (rkm) 108.0 near Beatty, Oregon (Beatty), and the most downstream sites near Chiloquin, Oregon; one site on the Sprague River at rkm 0.7 (Chiloquin) and the other site on the Williamson River at rkm 7.4 (Williamson). Larval catches were relatively small and sporadic at two other sites on the Sprague River located between Chiloquin and Beatty (Power Station at rkm 9.5 and Lone Pine at rkm 52.7) and one site on the Sycan River at rkm 4.7. Most larvae (79 percent) collected in 2006 were identified as LRS. More larvae and eggs were collected at Chiloquin than at any other site. The seasonal timing of larval drift varied by location; larvae generally were captured earlier at upstream sites than at downstream sites. Cumulative catch percentages of drifting larvae suggest that larval LRS emigrated earlier than KLS-SNS larvae at every site. Drift of LRS larvae at Beatty began 3 to 4 weeks earlier than at Chiloquin or Williamson. At Chiloquin, peak larval catches occurred 3 and 5 weeks after peak egg catches. The daily peak in larval drift at Chiloquin occurred approximately 1.5 to 2.0 hours after sunset. Nightly peak larval drift varied by location; larvae were captured earlier in the evening at sites closer to known spawning locations than sites farther away from these areas. The highest numerical catches of sucker-sized eggs were at Chiloquin indicating that this site is in close proximity to a spawning area. Numerical catches of older, more developed larval and juvenile suckers also were highest at Chiloquin. This may be due to the turbulent nature of this site, which could have swept larger fish into the drift. Proportional catches of older, more developed larval and juvenile suckers were highest at Sycan, Lone Pine, Power Station, and Fremont Bridge. This indicates these sites are located nearer to sucker nursery areas rather than spawning areas. Very few larval LRS were collected at Fremont Bridge at the south end of Upper Klamath Lake. Larval KLS-SNS densities at Fremont Bridge were the third highest of the seven sampling sites. Peak drift of larval KLS-SNS at Fremont Bridge occurred the week after peak drift of larval KLS-SNS at Williamson. Although inter-annual variation continues to appear in the larval drift data, our results continue to show consistent patterns of larval emigration in the drainage basin. In combination with data collected from the spawning movements and destinations of radio-tagged and PIT-tagged adult suckers, this larval drift data will provide a baseline standard by which to determine the effects of dam removal on the spawning distribution of endangered Klamath Basin suckers in the Sprague River.
Dada, Nsa; Jumas-Bilak, Estelle; Manguin, Sylvie; Seidu, Razak; Stenström, Thor-Axel; Overgaard, Hans J
2014-08-24
Domestic water storage containers constitute major Aedes aegypti breeding sites. We present for the first time a comparative analysis of the bacterial communities associated with Ae. aegypti larvae and water from domestic water containers. The 16S rRNA-temporal temperature gradient gel electrophoresis (TTGE) was used to identify and compare bacterial communities in fourth-instar Ae. aegypti larvae and water from larvae positive and negative domestic containers in a rural village in northeastern Thailand. Water samples were cultured for enteric bacteria in addition to TTGE. Sequences obtained from TTGE and bacterial cultures were clustered into operational taxonomic units (OTUs) for analyses. Significantly lower OTU abundance was found in fourth-instar Ae. aegypti larvae compared to mosquito positive water samples. There was no significant difference in OTU abundance between larvae and mosquito negative water samples or between mosquito positive and negative water samples. Larval samples had significantly different OTU diversity compared to mosquito positive and negative water samples, with no significant difference between mosquito positive and negative water samples. The TTGE identified 24 bacterial taxa, belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and TM7 (candidate phylum). Seven of these taxa were identified in larval samples, 16 in mosquito positive and 13 in mosquito negative water samples. Only two taxa, belonging to the phyla Firmicutes and Actinobacteria, were common to both larvae and water samples. Bacilli was the most abundant bacterial class identified from Ae. aegypti larvae, Gammaproteobacteria from mosquito positive water samples, and Flavobacteria from mosquito negative water samples. Enteric bacteria belonging to the class Gammaproteobacteria were sparsely represented in TTGE, but were isolated from both mosquito positive and negative water samples by selective culture. Few bacteria from water samples were identified in fourth-instar Ae. aegypti larvae, suggesting that established larval bacteria, most likely acquired at earlier stages of development, control the larval microbiota. Further studies at all larval stages are needed to fully understand the dynamics involved. Isolation of enteric bacteria from water samples supports earlier outcomes of E. coli contamination in Ae. aegypti infested domestic containers, suggesting the need to further explore the role of enteric bacteria in Ae. aegypti infestation.
Du, Lijuan; Zhou, Amy; Patel, Akshay; Rao, Mishal; Anderson, Kelsey; Roy, Sougata
2017-07-01
Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Addison, D S; Ritchie, S A; Webber, L A; Van Essen, F
1992-03-01
To test if eggshell density could be used as an index of aedine mosquito production, we compared eggshell density with the larval production of Aedes taeniorhynchus in Florida mangrove basin forests. Quantitative (n = 7) and categorical (n = 34) estimates of annual larval production were regressed against the number of eggshells per cc of soil. Significant regressions were obtained in both instances. Larval production was concentrated in zones with the highest eggshell density. We suggest that eggshell density and distribution can be used to identify oviposition sites and the sequence of larval appearance.
Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.
Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R
2016-01-01
There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.
McNeill, Mark R; van Koten, Chikako; Cave, Vanessa M; Chapman, David; Hodgson, Hamish
2016-01-01
To determine if host plant abundance determined the size of clover root weevil (CRW) Sitona obsoletus larval populations, a study was conducted over 4 years in plots sown in ryegrass ( Lolium perenne ) (cv. Nui) sown at either 6 or 30 kg/ha and white clover ( Trifolium repens ) sown at a uniform rate of 8 kg/ha. This provided a range of % white clover content to investigate CRW population establishment and impacts on white clover survival. Larval sampling was carried out in spring (October) when larval densities are near their spring peak at Lincoln (Canterbury, New Zealand) with % clover measured in autumn (April) and spring (September) of each year. Overall, mean larval densities measured in spring 2012-2015 were 310, 38, 59, and 31 larvae m -2 , respectively. There was a significant decline in larval populations between 2012 and 2013, but spring populations were relatively uniform thereafter. The mean % white clover measured in autumns of 2012 to 2015 was 17, 10, 3, and 11%, respectively. In comparison, mean spring % white clover from 2012 to 2015, averaged c. 5% each year. Analysis relating spring (October) larval populations to % white clover measured in each plot in autumn (April) found the 2012 larval population to be statistically significantly larger in the ryegrass 6 kg/ha plots than 30 kg/ha plots. Thereafter, sowing rate had no significant effect on larval populations. From 2013 to 2015, spring larval populations had a negative relationship with the previous autumn % white clover with the relationship highly significant for the 2014 data. When CRW larval populations in spring 2013 to 2015 were predicted from the 2013 to 2015 autumn % white clover, respectively, based on their positive relationship in 2012, the predicted densities were substantially larger than those observed. Conversely, when 2015 spring larval data and % clover was regressed against 2012-2014 larval populations, observed densities tended to be higher than predicted, but the numbers came closer to predicted for the 2013 and 2014 populations. These differences are attributed to a CRW population decline that was not accounted by % white clover changes, the CRW decline most likely due to biological control by the Braconid endoparasitoid Microctonus aethiopoides , which showed incremental increases in parasitism between 2012 and 2015, which in 2015 averaged 93%.
Paul.L. Dallara; Mary.L. Flint; Steven. J. Seybold
2012-01-01
By measuring and analyzing larval head capsule widths, we determined that a northern California population of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), has three larval instars. We also developed rules to classify P. juglandis larval instars. Overlap in the ranges of widths among...
Araújo, Maisa da-Silva; Gil, Luiz Herman S; e-Silva, Alexandre de-Almeida
2012-08-02
The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Overall, several larval and adult biological traits were significantly affected by larval food availability. Greater larval food supply led to enhance larval and production and larger mosquitoes with longer longevity and higher biting frequency. Thus, larval food availability can alter important biological traits that influence the vectorial capacity of An. darlingi.
Optimizing larval assessment to support sea lamprey control in the Great Lakes
Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam
2003-01-01
Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.
NASA Astrophysics Data System (ADS)
Zhang, Xinzhong; Haidvogel, Dale; Munroe, Daphne; Powell, Eric N.; Klinck, John; Mann, Roger; Castruccio, Frederic S.
2015-02-01
To study the primary larval transport pathways and inter-population connectivity patterns of the Atlantic surfclam, Spisula solidissima, a coupled modeling system combining a physical circulation model of the Middle Atlantic Bight (MAB), Georges Bank (GBK) and the Gulf of Maine (GoM), and an individual-based surfclam larval model was implemented, validated and applied. Model validation shows that the model can reproduce the observed physical circulation patterns and surface and bottom water temperature, and recreates the observed distributions of surfclam larvae during upwelling and downwelling events. The model results show a typical along-shore connectivity pattern from the northeast to the southwest among the surfclam populations distributed from Georges Bank west and south along the MAB shelf. Continuous surfclam larval input into regions off Delmarva (DMV) and New Jersey (NJ) suggests that insufficient larval supply is unlikely to be the factor causing the failure of the population to recover after the observed decline of the surfclam populations in DMV and NJ from 1997 to 2005. The GBK surfclam population is relatively more isolated than populations to the west and south in the MAB; model results suggest substantial inter-population connectivity from southern New England to the Delmarva region. Simulated surfclam larvae generally drift for over one hundred kilometers along the shelf, but the distance traveled is highly variable in space and over time. Surfclam larval growth and transport are strongly impacted by the physical environment. This suggests the need to further examine how the interaction between environment, behavior, and physiology affects inter-population connectivity. Larval vertical swimming and sinking behaviors have a significant net effect of increasing larval drifting distances when compared with a purely passive model, confirming the need to include larval behavior.
Walker, K; Lynch, M
2007-03-01
Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.
Currens, C.R.; Liss, W.J.; Hoffman, R.L.
2007-01-01
The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.
Hafs, Andrew W.; Horn, C.D.; Mazik, P.M.; Hartman, K.J.
2010-01-01
Potential effects of acid mine drainage (AMD) and thermal enrichment on the reproduction of fishes were investigated through a larval-trapping survey in the Stony River watershed, Grant County, WV. Trapping was conducted at seven sites from 26 March to 2 July 2004. Overall larval catch was low (379 individuals in 220 hours of trapping). More larval White Suckers were captured than all other species. Vectors fitted to nonparametric multidimensional scaling ordinations suggested that temperature was highly correlated to fish communities captured at our sites. Survival of larval Fathead Minnows was examined in situ at six sites from 13 May to 11 June 2004 in the same system. Larval survival was lower, but not significantly different between sites directly downstream of AMD-impacted tributaries (40% survival) and non-AMD sites (52% survival). The lower survival was caused by a significant mortality event at one site that coincided with acute pH depression in an AMD tributary immediately upstream of the site. Results from a Cox proportional hazard test suggests that low pH is having a significant negative influence on larval fish survival in this system. The results from this research indicate that the combination of low pH events and elevated temperature are negatively influencing the larval fish populations of the Stony River watershed. Management actions that address these problems would have the potential to substantially increase both reproduction rates and larval survival, therefore greatly enhancing the fishery.
Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni
NASA Astrophysics Data System (ADS)
Criales, M. M.; Anger, K.
1986-09-01
Larvae of the shrimps Crangon crangon L. and C. allmanni Kinahan were reared in the laboratory from hatching through metamorphosis. Effects of rearing methods (larval density, application of streptomycin, food) and of salinity on larval development were tested only in C. crangon, influence of temperature was studied in both species. Best results were obtained when larvae were reared individually, with a mixture of Artemia sp. and the rotifer Brachionus plicatilis as food. Streptomycin had partly negative effects and was thus not adopted for standard rearing techniques. All factors tested in this study influenced not only the rates of larval survival and moulting, but also morphogenesis. In both species, in particular in C. crangon, a high degree of variability in larval morphology and in developmental pathways was observed. Unsuitable conditions, e.g. crowding in mass culture, application of antibiotics, unsuitable food (rotifers, phytoplankton), extreme temperatures and salinities, tend to increase the number of larval instars and of morphological forms. The frequency of moulting is controlled mainly by temperature. Regression equations describing the relations between the durations of larval instars and temperature are given for both Crangon species. The number of moults is a linear function of larval age and a power function of temperature. There is high variation in growth (measured as carapace length), moulting frequency, morphogenesis, and survival among hatches originating from different females. The interrelations between these different measures of larval development in shrimps and prawns are discussed.
Bara, Jeffrey; Rapti, Zoi; Cáceres, Carla E; Muturi, Ephantus J
2015-01-01
Despite the growing awareness that larval competition can influence adult mosquito life history traits including susceptibility to pathogens, the net effect of larval competition on human risk of exposure to mosquito-borne pathogens remains poorly understood. We examined how intraspecific larval competition affects dengue-2 virus (DENV-2) extrinsic incubation period and vectorial capacity of its natural vector Aedes albopictus. Adult Ae. albopictus from low and high-larval density conditions were orally challenged with DENV-2 and then assayed for virus infection and dissemination rates following a 6, 9, or 12-day incubation period using real-time quantitative reverse transcription PCR. We then modeled the effect of larval competition on vectorial capacity using parameter estimates obtained from peer-reviewed field and laboratory studies. Larval competition resulted in significantly longer development times, lower emergence rates, and smaller adults, but did not significantly affect the extrinsic incubation period of DENV-2 in Ae. albopictus. Our vectorial capacity models suggest that the effect of larval competition on adult mosquito longevity likely has a greater influence on vectorial capacity relative to any competition-induced changes in vector competence. Furthermore, we found that large increases in the viral dissemination rate may be necessary to compensate for small competition-induced reductions in daily survivorship. Our results indicate that mosquito populations that experience stress from larval competition are likely to have a reduced vectorial capacity, even when susceptibility to pathogens is enhanced.
Bara, Jeffrey; Rapti, Zoi; Cáceres, Carla E.; Muturi, Ephantus J.
2015-01-01
Despite the growing awareness that larval competition can influence adult mosquito life history traits including susceptibility to pathogens, the net effect of larval competition on human risk of exposure to mosquito-borne pathogens remains poorly understood. We examined how intraspecific larval competition affects dengue-2 virus (DENV-2) extrinsic incubation period and vectorial capacity of its natural vector Aedes albopictus. Adult Ae. albopictus from low and high-larval density conditions were orally challenged with DENV-2 and then assayed for virus infection and dissemination rates following a 6, 9, or 12-day incubation period using real-time quantitative reverse transcription PCR. We then modeled the effect of larval competition on vectorial capacity using parameter estimates obtained from peer-reviewed field and laboratory studies. Larval competition resulted in significantly longer development times, lower emergence rates, and smaller adults, but did not significantly affect the extrinsic incubation period of DENV-2 in Ae. albopictus. Our vectorial capacity models suggest that the effect of larval competition on adult mosquito longevity likely has a greater influence on vectorial capacity relative to any competition-induced changes in vector competence. Furthermore, we found that large increases in the viral dissemination rate may be necessary to compensate for small competition-induced reductions in daily survivorship. Our results indicate that mosquito populations that experience stress from larval competition are likely to have a reduced vectorial capacity, even when susceptibility to pathogens is enhanced. PMID:25951173
Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sanchez, José D; Bond-Compeán, J Guillermo; Cold-Morgan, Michelle
2002-11-01
Cyanobacteria associated with Anopheles albimanus Wiedemann larval habitats from southern Chiapas, Mexico, were isolated and identified from water samples and larval midguts using selective medium BG-11. Larval breeding sites were classified according to their hydrology and dominant vegetation. Cyanobacteria isolated in water samples were recorded and analyzed according to hydrological and vegetation habitat breeding types, and mosquito larval abundance. In total, 19 cyanobacteria species were isolated from water samples. Overall, the most frequently isolated cyanobacterial taxa were Phormidium sp., Oscillatoria sp., Aphanocapsa cf. littoralis, Lyngbya lutea, P. animalis, and Anabaena cf. spiroides. Cyanobacteria were especially abundant in estuaries, irrigation canals, river margins and mangrove lagoons, and more cyanobacteria were isolated from Brachiaria mutica, Ceratophyllum demersum, and Hymenachne amplexicaulis habitats. Cyanobacteria were found in habitats with low to high An. albimanus larval abundance, but Aphanocapsa cf. littoralis was associated with habitats of low larval abundance. No correlation was found between water chemistry parameters and the presence of cyanobacteria, however, water temperature (29.2-29.4 degrees C) and phosphate concentration (79.8-136.5 ppb) were associated with medium and high mosquito larvae abundance. In An. albimanus larval midguts, only six species of cyanobacteria were isolated, the majority being from the most abundant cyanobacteria in water samples.
Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le
2013-01-01
The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.
Fitness consequences of larval traits persist across the metamorphic boundary.
Crean, Angela J; Monro, Keyne; Marshall, Dustin J
2011-11-01
Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life-history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry-over to influence postmetamorphic performance, suggesting that these life-history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata. Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Katz, Sefano M.; van de Water, Jeroen A.J.M.; Davies, Sarah W.; Hein, Margaux; Torda, Gergely; Matz, Mikhail V.; Beltran, Victor H.; Buerger, Patrick; Puill-Stephan, Eneour; Abrego, David; Bourne, David G.; Willis, Bette L.
2017-01-01
Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, larval cultivation, induction of larval settlement by crustose coralline algae, and inoculation of newly settled juveniles with their dinoflagellate symbiont Symbiodinium. Larval rearing densities at or below 0.2 larvae mL−1 were found to maximize larval survival and settlement success in culture tanks while minimizing maintenance effort. Induction of larval settlement via the addition of a ground mixture of diverse crustose coralline algae (CCA) is recommended, given the challenging nature of in situ CCA identification and our finding that non settlement-inducing CCA assemblages do not inhibit larval settlement if suitable assemblages are present. Although order of magnitude differences in infectivity were found between common Great Barrier Reef Symbiodinium clades C and D, no significant differences in Symbiodinium uptake were observed between laboratory-cultured and wild-harvested symbionts in each case. The technique presented here for Acropora millepora can be adapted for research and restoration efforts in a wide range of broadcast spawning coral species. PMID:28894640
Landeira, Jose M; Jiang, Guo-Chen; Chan, Tin-Yam; Shih, Tung-Wei; Gozález-Gordillo, J Ignacio
2015-09-07
The first four larval stages of the pandalid shrimp Chlorotocus crassicornis (A. Costa, 1871) are described and illustrated from laboratory-reared material obtained from ovigerous females collected in the southwestern Spain and south Taiwan. The second to fourth larval stages of this species are reported for the first time to science. Detailed examination of the first larval stages reveals that previous description misidentified some key larval characters which have prevented its identification in plankton samples. It is found that the zoeal morphology of Chlorotocus is not very different from other pandalid larvae, and in fact closely resembles Plesionika and Heterocarpus.
Dickson, Laura B.; Jiolle, Davy; Minard, Guillaume; Moltini-Conclois, Isabelle; Volant, Stevenn; Ghozlane, Amine; Bouchier, Christiane; Ayala, Diego; Paupy, Christophe; Moro, Claire Valiente; Lambrechts, Louis
2017-01-01
Conditions experienced during larval development of holometabolous insects can affect adult traits, but whether differences in the bacterial communities of larval development sites contribute to variation in the ability of insect vectors to transmit human pathogens is unknown. We addressed this question in the mosquito Aedes aegypti, a major arbovirus vector breeding in both sylvatic and domestic habitats in Sub-Saharan Africa. Targeted metagenomics revealed differing bacterial communities in the water of natural breeding sites in Gabon. Experimental exposure to different native bacterial isolates during larval development resulted in significant differences in pupation rate and adult body size but not life span. Larval exposure to an Enterobacteriaceae isolate resulted in decreased antibacterial activity in adult hemolymph and reduced dengue virus dissemination titer. Together, these data provide the proof of concept that larval exposure to different bacteria can drive variation in adult traits underlying vectorial capacity. Our study establishes a functional link between larval ecology, environmental microbes, and adult phenotypic variation in a holometabolous insect vector. PMID:28835919
Protein Equilibration through Somatic Ring Canals in Drosophila
McLean, Peter F.; Cooley, Lynn
2013-01-01
Although intercellular bridges resulting from incomplete cytokinesis were discovered in somatic Drosophila tissues decades ago, the impact of these structures on intercellular communication and tissue biology is largely unknown. In this work, we demonstrate that the ~250 nm diameter somatic ring canals permit diffusion of cytoplasmic contents between connected cells and across mitotic clone boundaries, and enable the equilibration of protein between transcriptionally mosaic follicle cells in the Drosophila ovary. We obtained similar, though more restricted, results in the larval imaginal discs. Our work illustrates the lack of cytoplasmic autonomy in these tissues and suggests a role for somatic ring canals in promoting homogeneous protein expression within the tissue. PMID:23704373
Trait-based Modeling of Larval Dispersal in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Jones, B.; Richardson, D.; Follows, M. J.; Hill, C. N.; Solow, A.; Ji, R.
2016-02-01
Population connectivity of marine species is the inter-generational movement of individuals among geographically separated subpopulations and is a crucial determinant of population dynamics, community structure, and optimal management strategies. For many marine species, population connectivity is largely determined by the dispersal patterns that emerge from a pelagic larval phase. These dispersal patterns are a result of interactions between the physical environment, adult spawning strategy, and larval ecology. Using a generalized trait-based model that represents the adult spawning strategy as a distribution of larval releases in time and space and the larval trait space with the pelagic larval duration, vertical swimming behavior, and settlement habitat preferences, we simulate dispersal patterns in the Gulf of Maine and surrounding regions. We implement this model as an individual-based simulation that tracks Lagrangian particles on a graphics processing unit as they move through hourly archived output from the Finite-Volume Community Ocean Model. The particles are released between the Hudson Canyon and Nova Scotia and the release distributions are determined using a novel method that minimizes the number of simulations required to achieve a predetermined level of precision for the connectivity matrices. The simulated larvae have a variable pelagic larval duration and exhibit multiple forms of dynamic depth-keeping behavior. We describe how these traits influence the dispersal trajectories and connectivity patterns among regions in the northwest Atlantic. Our description includes the probability of successful recruitment, patchiness of larval distributions, and the variability of these properties in time and space under a variety of larval dispersal strategies.
Meisner, Matthew H; Harmon, Jason P; Ives, Anthony R
2011-02-01
Cannibalism, where one species feeds on individuals of its own species, and intraguild predation (IGP), where a predator feeds on other predatory species, can both pose significant threats to natural enemies and interfere with their biological control of pests. Behavioral mechanisms to avoid these threats, however, could help maintain superior pest control. Here, we ask whether larvae of Coccinella septempunctata (Coleoptera: Coccinellidae) and Harmonia axyridis (Coleoptera: Coccinellidae) respond to larval tracks deposited by the other and whether this behavioral response reduces the threat of cannibalism and IGP. In petri dish experiments, we show that both H. axyridis and C. septempunctata avoid foraging in areas with conspecific larval tracks. Using a method of preventing larvae from depositing tracks, we then demonstrate that the frequency of cannibalism is greater for both species when larvae are prevented from depositing tracks compared with when the tracks are deposited. For multi-species interactions we show in petri dish experiments that C. septempunctata avoids H. axyridis larval tracks but H. axyridis does not avoid C. septempunctata larval tracks, demonstrating an asymmetry in response to larval tracks that parallels the asymmetry in aggressiveness between these species as intraguild predators. On single plants, we show that the presence of H. axyridis larval tracks reduces the risk of IGP by H. axyridis on C. septempunctata. Our study suggests that larval tracks can be used in more ways than previously described, in this case by changing coccinellid larval behavior in a way that reduces cannibalism and IGP. © 2011 Entomological Society of America
Cao, Fangjie; Wu, Peizhuo; Huang, Lan; Li, Hui; Qian, Le; Pang, Sen; Qiu, Lihong
2018-05-01
Previous study indicated that azoxystrobin had high acute toxicity to zebrafish, and larval zebrafish were more sensitive to azoxystrobin than adult zebrafish. The objective of the present study was to investigate short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish. After zebrafish embryos and adults were exposed to 0.01, 0.05 and 0.20 mg/L azoxystrobin (equal to 25, 124 and 496 nM azoxystrobin, respectively) for 8 days, the lethal effect, physiological responses, liver histology, mitochondrial ultrastructure, and expression alteration of genes related to mitochondrial respiration, oxidative stress, cell apoptosis and innate immune response were determined. The results showed that there was no significant effect on larval and adult zebrafish after exposure to 0.01 mg/L azoxystrobin. However, increased ROS, MDA concentration and il1b in larval zebrafish, as well as increased il1b, il8 and cxcl-c1c in adult zebrafish were induced after exposure to 0.05 mg/L azoxystrobin. Reduced mitochondrial complex III activity and ATP concentration, increased SOD activity, ROS and MDA concentration, decreased cytb, as well as increased sod1, sod2, cat, il1b, il8 and cxcl-c1c were observed both in larval and adult zebrafish after exposure to 0.20 mg/L azoxystrobin; meanwhile, increased p53, bax, apaf1 and casp9, alteration of liver histology and mitochondrial ultrastructure in larval zebrafish, and alteration of mitochondrial ultrastructure in adult zebrafish were also induced. The results demonstrated that azoxytrobin induced short-term developmental effects on larval zebrafish and adult zebrafish, including mitochondrial dysfunction, oxidative stress, cell apoptosis and innate immune response. Statistical analysis indicated that azoxystrobin induced more negative effects on larval zebrafish, which might be the reason for the differences of developmental toxicity between larval and adult zebrafish caused by azoxystrobin. These results provided a new insight into potential mechanisms of azoxystrobin in larval zebrafish and adult zebrafish. Copyright © 2018 Elsevier B.V. All rights reserved.
Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru
2010-03-01
Amphibian skin has osmoregulatory functions, with Na(+) crossing from outside to inside. Na(+) transport can be measured as the short-circuit current (SCC). We investigated the short-term and long-term effects of arginine vasotocin (AVT) and mesotocin (MT) (which modulate Na(+) transport) on the activation and development of an amiloride-blockable SCC (adult-type feature) in larval, adult, and corticoid-cultured larval bullfrog skins. We found: (1) AVT-receptor (AVT-R) and MT-receptor (MT-R) mRNAs could be detected in both larval and adult skins, (2) in the short term (within 60 min), the larval SCC (amiloride-stimulated SCC) was increased by AVT, forskolin, and MT, suggesting that AVT and MT did not activate the inactive ENaC (epithelial sodium channel) protein thought to be expressed in larval skin, (3) in the short term (within 90 min), AVT, forskolin, and MT stimulated the adult SCC (amiloride-blockable SCC), (4) AVT and MT increased both the larval and adult SCC via receptors insensitive to OPC-21268 (an antagonist of the V(1)-type receptor), OPC-31260 (an antagonist of the V(2)-type receptor), and ([d(CH(2))(5),Tyr(Me)(2),Thr(4),Orn(8),des-Gly-NH (2) (9) ]VT) (an antagonist of the oxytocin receptor), (5) culturing EDTA-treated larval skin with corticoids supplemented with AVT (1 microM) or MT (1 microM) for 2 weeks (long-term effects of AVT and MT) did not alter the corticoid-induced development of an amiloride-blockable SCC (adult-type feature). AVT and MT thus have the potential to stimulate SCC though channels that are already expressed, but they may not influence the development of the amiloride-blockable SCC (an adult-type feature) in larval skin.
Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.
2017-01-01
Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959
Bochdanovits, Zoltán; de Jong, Gerdien
2003-08-01
In Drosophila, both the phenotypic and evolutionary effect of temperature on adult size involves alterations to larval resource processing and affects other life-history traits, that is, development time but most notably, larval survival. Therefore, thermal evolution of adult body size might not be independent of simultaneous adaptation of larval traits to resource availability. Using experimental evolution lines adapted to high and low temperatures at different levels of food, we show that selection pressures interact in shaping larval resource processing. Evolution on poor food invariably leads to lower resource acquisition suggesting a cost to feeding behavior. However, following low temperature selection, lower resource acquisition led to a higher adult body size, probably by more efficient allocation to growth. In contrast, following high temperature selection, low resource acquisition benefited larval survival, possibly by reducing feeding-associated costs. We show that evolved differences to larval resource processing provide a possible proximate mechanism to variation in a suite of correlated life-history traits during adaptation to different climates. The implication for natural populations is that in nature, thermal evolution drives populations to opposite ends of an adult size versus larval survival trade-off by altering resource processing, if resource availability is limited.
Larval fish distribution in the St. Louis River estuary
Our objective was to determine what study design, environmental, and habitat variables contribute to the distribution and abundance of larval fish in the St. Louis River estuary. Larval fish habitat associations are poorly understood in Great Lakes coastal wetlands, yet critical ...
Konstantinidis, P; Hilton, E J; Matarese, A C
2016-08-01
Three newly discovered larval specimens of the genus Muraenolepis collected from the waters of the western Antarctic Peninsula are described. Knowledge of their natural history is sparse and information about their early life history is based on only a few larval stages. Here, the available literature on larval eel cods is reviewed, and the specimens placed in context. © 2016 The Fisheries Society of the British Isles.
Exposure to 2,4-decadienal negatively impacts upon marine invertebrate larval fitness.
Caldwell, Gary S; Lewis, Ceri; Olive, Peter J W; Bentley, Matthew G
2005-06-01
Diatoms liberate volatile, biologically active unsaturated aldehydes following cell damage, which negatively impact upon invertebrate reproductive processes such as fertilization, embryogenesis and larval survival. 2,4-Decadienal is frequently identified among the aldehydes produced and is one of the more biologically active. The majority of studies which have examined the toxic effects of diatom aldehydes to invertebrate reproduction have scored egg production and/or hatching success as indicators of biological impacts. There are very few studies which have dealt specifically with the impacts of diatom-derived aldehydes on larval fitness. Larval stages of the polychaetes Arenicola marina and Nereis virens and the echinoderms Asterias rubens and Psammechinus miliaris exposed to 2,4-decadienal at sub 1 microg ml(-1) concentrations suffered reduced survival over the incubation period (day 1-8 post fertilization) with detectable differences for the polychates at a concentration of 0.005 and 0.01-0.1 microg ml(-1) for the echinoderms. Susceptibility of larval N. virens was investigated using stage specific 24 h exposures at 2,4-decadienal concentrations up to 1.5 microg ml(-1). A clear stage specific effect was found, with earlier larval stages most vulnerable. Nectochaete larvae (9-10 d) showed no reduction in survival at the concentrations assayed. Fluctuating asymmetry (FA), defined as random deviations from perfect bilateral symmetry, was used to analyse fitness of larval P. miliaris exposed to 2,4-decadienal at concentrations of 0.1, 0.5 and 1 microg ml(-1). The degree and frequency of asymmetrical development increased with increasing 2,4-decadienal concentration. Equally, as FA increased larval survival decreased. These results provide further support for the teratogenic nature of 2,4-decadienal and its negative impact on invertebrate larval fitness.
Clay, T W; Grünbaum, D
2010-04-01
Many larvae and other plankton have complex and variable morphologies of unknown functional significance. We experimentally and theoretically investigated the functional consequences of the complex morphologies of larval sand dollars, Dendraster excentricus (Eschscholtz), for hydrodynamic interactions between swimming and turbulent water motion. Vertical shearing flows (horizontal gradients of vertical flow) tilt organisms with simple geometries (e.g. spheres, ellipsoids), causing these organisms to move horizontally towards downwelling water and compromising their abilities to swim upwards. A biomechanical model of corresponding hydrodynamic interactions between turbulence-induced shear and the morphologically complex four-, six- and eight-armed stages of sand dollar larvae suggests that the movements of larval morphologies differ quantitatively and qualitatively across stages and shear intensities: at shear levels typical of calm conditions in estuarine and coastal environments, all modeled larval stages moved upward. However, at higher shears, modeled four- and eight-armed larvae moved towards downwelling, whereas six-armed larvae moved towards upwelling. We also experimentally quantified larval movement by tracking larvae swimming in low-intensity shear while simultaneously mapping the surrounding flow fields. Four- and eight-armed larvae moved into downwelling water, but six-armed larvae did not. Both the model and experiments suggest that stage-dependent changes to larval morphology lead to differences in larval movement: four- and eight-armed stages are more prone than the six-armed stage to moving into downwelling water. Our results suggest a mechanism by which differences can arise in the vertical distribution among larval stages. The ability to mitigate or exploit hydrodynamic interactions with shear is a functional consequence that potentially shapes larval evolution and development.
de Oliveira, Suellen; Villela, Daniel Antunes Maciel; Dias, Fernando Braga Stehling; Moreira, Luciano Andrade
2017-01-01
Background Wolbachia has been deployed in several countries to reduce transmission of dengue, Zika and chikungunya viruses. During releases, Wolbachia-infected females are likely to lay their eggs in local available breeding sites, which might already be colonized by local Aedes sp. mosquitoes. Therefore, there is an urgent need to estimate the deleterious effects of intra and interspecific larval competition on mosquito life history traits, especially on the duration of larval development time, larval mortality and adult size. Methodology/principal findings Three different mosquito populations were used: Ae. aegypti infected with Wolbachia (wMelBr strain), wild Ae. aegypti and wild Ae. albopictus. A total of 21 treatments explored intra and interspecific larval competition with varying larval densities, species proportions and food levels. Each treatment had eight replicates with two distinct food levels: 0.25 or 0.50 g of Chitosan and fallen avocado leaves. Overall, overcrowding reduced fitness correlates of the three populations. Ae. albopictus larvae presented lower larval mortality, shorter development time to adult and smaller wing sizes than Ae. aegypti. The presence of Wolbachia had a slight positive effect on larval biology, since infected individuals had higher survivorship than uninfected Ae. aegypti larvae. Conclusions/significance In all treatments, Ae. albopictus outperformed both wild Ae. aegypti and the Wolbachia-infected group in larval competition, irrespective of larval density and the amount of food resources. The major force that can slow down Wolbachia invasion is the population density of wild mosquitoes. Given that Ae. aegypti currently dominates in Rio, in comparison with Ae. albopictus frequency, additional attention must be given to the population density of Ae. aegypti during releases to increase the likelihood of Wolbachia invasion. PMID:28991902
Thomas, Yoann; Dumas, Franck; Andréfouët, Serge
2014-01-01
Studying the larval dispersal of bottom-dwelling species is necessary to understand their population dynamics and optimize their management. The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia's atoll lagoons. This aquaculture relies on spat collection, a process that can be optimized by understanding which factors influence larval dispersal. Here, we investigate the sensitivity of P. margaritifera larval dispersal kernel to both physical and biological factors in the lagoon of Ahe atoll. Specifically, using a validated 3D larval dispersal model, the variability of lagoon-scale connectivity is investigated against wind forcing, depth and location of larval release, destination location, vertical swimming behavior and pelagic larval duration (PLD) factors. The potential connectivity was spatially weighted according to both the natural and cultivated broodstock densities to provide a realistic view of connectivity. We found that the mean pattern of potential connectivity was driven by the southwest and northeast main barotropic circulation structures, with high retention levels in both. Destination locations, spawning sites and PLD were the main drivers of potential connectivity, explaining respectively 26%, 59% and 5% of the variance. Differences between potential and realistic connectivity showed the significant contribution of the pearl oyster broodstock location to its own dynamics. Realistic connectivity showed larger larval supply in the western destination locations, which are preferentially used by farmers for spat collection. In addition, larval supply in the same sectors was enhanced during summer wind conditions. These results provide new cues to understanding the dynamics of bottom-dwelling populations in atoll lagoons, and show how to take advantage of numerical models for pearl oyster management. PMID:24740288
Observations on the reproductive and larval biology of Blennius pavo (Pisces: Teleostei)
NASA Astrophysics Data System (ADS)
Westernhagen, H.
1983-09-01
Social behaviour and spawning of adult Blennius pavo kept in the laboratory are described. Eggs are deposited in batches on the walls of artificial spawning places (PVC pipes). One male guards and tends the eggs of different females in one spawning place. Larval hatching occurs in groups according to oviposition. Minimum incubation temperature is around 14 15°C. Larval survival in 1-1 rearing jars is not related to larval total length but to density of larval stock. An experimental population of laboratory reared juvenile and adolescent B. pavo displays a male to female ratio of 1:1.4. Factors possibly influencing the sex ratio of this littoral fish are discussed in view of the situation in its natural environment.
Pumchan, A; Puangsomchit, A; Temyarasilp, P; Pluempanupat, W; Bullangpoti, V
2015-01-01
The aim of the study was to assess the bio-efficacy of four Alpinia galanga rhizome crude extracts against the second and third instars of Spodoptera litura, an important field pest. The growth of younger larvae was significantly affected while that of the older larval stage was less influenced. In both stages, the methanol crude extract showed the greatest efficiency which caused the highest number of abnormal adults to occur and produced a large LD₅₀ value (12.816 µg/ larvae) pupicidal percentage after treatment, whereas, hexane extract caused the highest mortality during the larval-pupal stage after treatment with an LD₅₀ value of 6.354 µg/ larvae. However, the larval development was not significantly different among all treated larvae compared to the control. This study suggests that secondary larval instars of S. litura are more susceptible to the larval growth inhibitory action of Alpinia galanga extracts and these extracts could also be applied for use in the management of pests.
Soundscape manipulation enhances larval recruitment of a reef-building mollusk
Bohnenstiehl, DelWayne R.; Eggleston, David B.
2015-01-01
Marine seafloor ecosystems, and efforts to restore them, depend critically on the influx and settlement of larvae following their pelagic dispersal period. Larval dispersal and settlement patterns are driven by a combination of physical oceanography and behavioral responses of larvae to a suite of sensory cues both in the water column and at settlement sites. There is growing evidence that the biological and physical sounds associated with adult habitats (i.e., the “soundscape”) influence larval settlement and habitat selection; however, the significance of acoustic cues is rarely tested. Here we show in a field experiment that the free-swimming larvae of an estuarine invertebrate, the eastern oyster, respond to the addition of replayed habitat-related sounds. Oyster larval recruitment was significantly higher on larval collectors exposed to oyster reef sounds compared to no-sound controls. These results provide the first field evidence that soundscape cues may attract the larval settlers of a reef-building estuarine invertebrate. PMID:26056624
NASA Astrophysics Data System (ADS)
Guan, Lu; Dower, John F.; McKinnell, Skip M.; Pepin, Pierre; Pakhomov, Evgeny A.; Hunt, Brian P. V.
2015-11-01
The concentration and composition of the larval fish assemblage in the Strait of Georgia (British Columbia, Canada) has changed between the early 1980s (1980 and 1981) and the late 2000s (2007, 2009 and 2010). During both periods, the spring larval fish assemblages were dominated by pelagic species: Clupea pallasi (Pacific herring), Merluccius productus (Pacific hake), Leuroglossus schmidti (northern smoothtongue) and Theragra chalcogramma (walleye Pollock). The average concentration of Merluccius productus, Theragra chalcogramma, Leuroglossus schmidti, and Sebastes spp. declined between the early 1980s and the late 2000s; in contrast, the absolute concentration and proportion of Pleuronectidae and several demersal fish taxa increased in the spring larval assemblage. Examination of the associations between larval fish assemblages and environmental fluctuations suggests that large-scale climate processes are potential contributors to variations in overall larval concentrations of the dominant taxa and assemblage composition in the Strait of Georgia.
Shiao, Shiuh-Feng; Yeh, Ta-Chuan
2008-07-01
Chrysomya megacephala and Chrysomya rufifacies are two predominant necrophagous species in Taiwan. Larvae of the latter can prey on other maggots, including that of their own species as facultative food. This facultative characteristic of C. rufifacies may enhance its competitive advantage over other maggots and could also change the situation of other coexisting colonies. In this study, these two species were colonized in the laboratory, and the main objective was to try to understand the effect of competition on larval development. According to our results, intraspecific competition mostly occurred as competition for food; when the rearing density was increased, larvae pupated earlier, resulting in a lighter adult dry weight. The tendencies were similar in both species, but C. megacephala developed smaller viable adults and had higher survivorship at high densities. Although C. rufifacies could use the food resource of cannibalism, its survivorship was still low. Our results also showed there were significant interactions between intraspecific competition and the density factor. However, with interspecific competition, the first-instar larvae of C. rufifacies invaded maggot masses of C. megacephala to feed together. The third instars of C. rufifacies were able to expel C. megacephala larvae from food by using a fleshy protrusion on their body surface; C. megacephala was usually forced to pupate earlier by shortening its larval stages. The results indicated that a temporary competitive advantage could only be obtained by C. rufifacies under a proper larval density. In addition, the effects on different larval stages, the responses to different competition intensities, and the temperature-dependent effects on interspecific competition are also discussed. In general, under mixed-species rearing at different temperatures and densities, larval duration, adult dry weight, and survivorship of both species decreased. However, our results did not completely agree with previous studies, and we suspect that the difference was partially caused by different experimental designs and different biological characters of different blow fly colonies. Our results also suggest that both the predation ability and defense or escape activity should be taken into account when evaluating larval competitive advantages. The durations of larval stages of these two species could be decreased by approximately 54 h when a single species was reared alone and food was limited; the largest reduction in larval duration, approximately 25 h in C. megacephala and 34 h in C. rufifacies, caused by interspecific competition was under a high larval density. In conclusion, competition decreased the larval duration of these two species by up to 2 d; this also draws attention to justifying the postmortem interval estimation of using larval developmental data when larval competition exists.
DOT National Transportation Integrated Search
2012-05-01
EnableATIS is looking ahead to a future operational environment that will support and enable an advanced, transformational traveler information services framework. This future framework is envisioned to be enabled with a much more robust pool of real...
Superresolution imaging of Drosophila tissues using expansion microscopy.
Jiang, Nan; Kim, Hyeon-Jin; Chozinski, Tyler J; Azpurua, Jorge E; Eaton, Benjamin A; Vaughan, Joshua C; Parrish, Jay Z
2018-06-15
The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.
NASA Astrophysics Data System (ADS)
Wong-Ala, J.; Neuheimer, A. B.; Hixon, M.; Powell, B.
2016-02-01
Connectivity estimates, which measure the exchange of individuals among populations, are necessary to create effective reserves for marine life. Connectivity can be influenced by a combination of biology (e.g. spawning time) and physics (e.g. currents). In the past a dispersal model was created in an effort to explain connectivity for the highly sought after reef fish Lau`ipala (Yellow Tang, Zebrasoma flavescens) around Hawai`i Island using physics alone, but this was shown to be insufficient. Here we created an individual based model (IBM) to describe Lau`ipala life history and behavior forced with ocean currents and temperature (via coupling to a physical model) to examine biophysical interactions. The IBM allows for tracking of individual fish from spawning to settlement, and individual variability in modeled processes. We first examined the influence of different reproductive (e.g. batch vs. constant spawners), developmental (e.g. pelagic larval duration), and behavioral (e.g. active vs. passive buoyancy control) traits on modeled connectivity estimates for larval reef fish around Hawai`i Island and compared results to genetic observations of parent-offspring pair distribution. Our model is trait-based which allows individuals to vary in life history strategies enabling mechanistic links between predictions and underlying traits and straightforward applications to other species and sites.
Uniting paradigms of connectivity in marine ecology.
Brown, Christopher J; Harborne, Alastair R; Paris, Claire B; Mumby, Peter J
2016-09-01
The connectivity of marine organisms among habitat patches has been dominated by two independent paradigms with distinct conservation strategies. One paradigm is the dispersal of larvae on ocean currents, which suggests networks of marine reserves. The other is the demersal migration of animals from nursery to adult habitats, requiring the conservation of connected ecosystem corridors. Here, we suggest that a common driver, wave exposure, links larval and demersal connectivity across the seascape. To study the effect of linked connectivities on fish abundance at reefs, we parameterize a demographic model for The Bahamas seascape using maps of habitats, empirically forced models of wave exposure and spatially realistic three-dimensional hydrological models of larval dispersal. The integrated empirical-modeling approach enabled us to study linked connectivity on a scale not currently possible by purely empirical studies. We find sheltered environments not only provide greater nursery habitat for juvenile fish but larvae spawned on adjacent reefs have higher retention, thereby creating a synergistic increase in fish abundance. Uniting connectivity paradigms to consider all life stages simultaneously can help explain the evolution of nursery habitat use and simplifies conservation advice: Reserves in sheltered environments have desirable characteristics for biodiversity conservation and can support local fisheries through adult spillover. © 2016 by the Ecological Society of America.
Costs and benefits of larval jumping behaviour of Bathyplectes anurus.
Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami
2016-02-01
Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yook Heng; Stuebing, R.B.
1990-08-01
Mining of metals creates a potential source of heavy metal contamination in the environment. An open pit copper mine situated in the Northwest of Sabah, East Malaysia has been known to pollute its surroundings especially with discharges involving heavy metals. Although extensive investigations of heavy metal pollution has been carried out, none of the studies performed so far has included amphibians as indicator of heavy metal contamination in the area. As amphibians live both on land and in water, a study on the heavy metal content of these animals will thus enable a more extensive evaluation of the degree ofmore » contamination by heavy metals. Bufo juxtasper was chosen since it inhabits the rocky streams and rivers which exist in both a polluted and non-polluted condition in Sabah. Its' tadpoles are herbivorous feeding mainly on plant detritus, while adults feed principally on ants (which are polyphagous). Furthermore the large adult size of Bufo juxtasper, in which the size of the liver has an allometric relationship with body size, may allow for differentiation between larval and adult uptake through regression analysis. Thus concentration of pollutants acquired only during the larval phase should show a declining or negative slope as a function of body size in adults.« less
Nuez-Ortín, Waldo G; Carter, Chris G; Nichols, Peter D; Wilson, Richard
2016-07-01
Understanding diet- and environmentally induced physiological changes in fish larvae is a major goal for the aquaculture industry. Proteomic analysis of whole fish larvae comprising multiple tissues offers considerable potential but is challenging due to the very large dynamic range of protein abundance. To extend the coverage of the larval phase of the Atlantic salmon (Salmo salar) proteome, we applied a two-step sequential extraction (SE) method, based on differential protein solubility, using a nondenaturing buffer containing 150 mM NaCl followed by a denaturing buffer containing 7 M urea and 2 M thiourea. Extracts prepared using SE and one-step direct extraction were characterized via label-free shotgun proteomics using nanoLC-MS/MS (LTQ-Orbitrap). SE partitioned the proteins into two fractions of approximately equal amounts, but with very distinct protein composition, leading to identification of ∼40% more proteins than direct extraction. This fractionation strategy enabled the most detailed characterization of the salmon larval proteome to date and provides a platform for greater understanding of physiological changes in whole fish larvae. The MS data are available via the ProteomeXchange Consortium PRIDE partner repository, dataset PXD003366. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grimaldo, Lenny; Feyrer, Frederick; Burns, Jillian; Maniscalco, Donna
2017-01-01
The southern-most reproducing Longfin Smelt population occurs in the San Francisco Estuary, California, USA. Long-term monitoring of estuarine habitat for this species has generally only considered deep channels, with little known of the role shallow waters play in supporting their early life stage. To address the need for focused research on shallow-water habitat, a targeted study of Longfin Smelt larvae in littoral habitat was conducted to identify potential rearing habitats during 2013 and 2014. Our study objectives were to (1) determine if larval densities vary between littoral habitats (tidal slough vs. open-water shoal), (2) determine how larval densities in littoral habitats vary with physicochemical and biological attributes, (3) determine if larval densities vary between littoral habitats and long-term monitoring channel collections, and (4) determine what factors predict larval rearing distributions from the long-term monitoring channel collections. Larval densities did not vary between littoral habitats but they did vary between years. Water temperature, salinity, and chlorophyll a were found important in predicting larval densities in littoral habitats. Larval densities do not vary between littoral and channel surveys; however, the analysis based on channel data suggests that Longfin Smelt are hatching and rearing in a much broader region and under higher salinities (∼2–12 psu) than previously recognized. Results of this study indicate that conservation efforts should consider how freshwater flow, habitat, climate, and food webs interact as mechanisms that influence Longfin Smelt recruitment in estuarine environments.
Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.
2014-01-01
Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.
NASA Astrophysics Data System (ADS)
McVeigh, Doreen M.; Eggleston, David B.; Todd, Austin C.; Young, Craig M.; He, Ruoying
2017-09-01
Many fundamental questions in marine ecology require an understanding of larval dispersal and connectivity, yet direct observations of larval trajectories are difficult or impossible to obtain. Although biophysical models provide an alternative approach, in the deep sea, essential biological parameters for these models have seldom been measured empirically. In this study, we used a biophysical model to explore the role of behaviorally mediated migration from two methane seep sites in the Gulf of Mexico on potential larval dispersal patterns and population connectivity of the deep-sea mussel ;Bathymodiolus; childressi, a species for which some biological information is available. Three possible larval dispersal strategies were evaluated for larvae with a Planktonic Larval Duration (PLD) of 395 days: (1) demersal drift, (2) dispersal near the surface early in larval life followed by an extended demersal period before settlement, and (3) dispersal near the surface until just before settlement. Upward swimming speeds varied in the model based on the best data available. Average dispersal distances for simulated larvae varied between 16 km and 1488 km. Dispersal in the upper water column resulted in the greatest dispersal distance (1173 km ± 2.00), followed by mixed dispersal depth (921 km ± 2.00). Larvae originating in the Gulf of Mexico can potentially seed most known seep metapopulations on the Atlantic continental margin, whereas larvae drifting demersally cannot (237 km ± 1.43). Depth of dispersal is therefore shown to be a critical parameter for models of deep-sea connectivity.
The effects of exposure in sandy beach surf zones on larval fishes.
Pattrick, P; Strydom, N A
2014-05-01
The influence of wind and wave exposure on larval fish assemblages within a large bay system was investigated. Larval fishes were sampled from two areas with vastly different exposure to waves and wind, namely the windward and leeward sectors of Algoa Bay. In total, 5702 larval fishes were collected using a modified larval seine. Of these, 4391 were collected in the leeward and 1311 in the windward sector of the bay, representing a total of 23 families and 57 species. Dominant fish families included Clinidae, Engraulidae, Kyphosidae, Mugilidae, Soleidae and Sparidae, similar to the situation elsewhere, highlighting continuity in the composition of larval fish assemblages and the utilization of surf zones by a specific group of larval fishes. Nineteen estuary-associated marine species occurred within the surf zones of Algoa Bay and dominated catches (86·7%) in terms of abundance. Postflexion larvae comprised > 80% of the catch, indicating the importance of the seemingly inhospitable surf zone environment for the early life stages of many fish species. The greatest species diversity was observed within the windward sector of the bay. Distance-based linear modelling identified wave period as the environmental variable explaining the largest proportion of the significant variation in the larval fish assemblage. The physical disturbance generated by breaking waves could create a suitable environment for fish larvae, sheltered from predators and with an abundance of food resources. © 2014 The Fisheries Society of the British Isles.
Fincel, Mark J.; Chipps, Steven R.; Graeb, Brian D. S.; Edwards, Kris R.
2013-01-01
Gizzard shad, Dorosoma cepedianum, have generally been restricted to the lower Missouri River impoundments in South Dakota. In recent years, gizzard shad numbers have increased in Lake Oahe, marking the northern-most natural population. These increases could potentially affect recreational fishes. Specifically, questions arise about larval gizzard shad growth dynamics and if age-0 gizzard shad in Lake Oahe will exhibit fast or slow growth, both of which can have profound effects on piscivore populations in this reservoir. In this study, we evaluated larval gizzard shad hatch timing, growth, and density in Lake Oahe. We collected larval gizzard shad from six sites from May to July 2008 and used sagittal otoliths to estimate the growth and back-calculate the hatch date. We found that larval gizzard shad hatched earlier in the upper part of the reservoir compared to the lower portion and that hatch date appeared to correspond to warming water temperatures. The peak larval gizzard shad density ranged from 0.6 to 33.6 (#/100 m3) and varied significantly among reservoir sites. Larval gizzard shad growth ranged from 0.24 to 0.57 (mm/d) and differed spatially within the reservoir. We found no relationship between the larval gizzard shad growth or density and small- or large-bodied zooplankton density (p > 0.05). As this population exhibits slow growth and low densities, gizzard shad should remain a suitable forage option for recreational fishes in Lake Oahe.
Reorientation and Swimming Stability in Sea Urchin Larvae
NASA Astrophysics Data System (ADS)
Wheeler, J.; Chan, K. Y. K.; Anderson, E.; Helfrich, K. R.; Mullineaux, L. S.; Sengupta, A.; Stocker, R.
2016-02-01
Many benthic marine invertebrates have two-phase life histories, relying on planktonic larval stages for dispersal and exchange of individuals between adult populations. The dispersal of planktonic larvae is determined by two factors: passive advection by the ambient flow and active motility. By modifying dispersal and ultimately settlement, larval motility influences where and when individuals recruit into benthic communities. Despite its ecological relevance, our understanding of larval motility and behavior in the plankton remains limited, especially regarding the interactions of larval motility and ambient turbulence. As most larvae are smaller than the Kolmogorov scale, they experience ocean turbulence in part as a time-changing viscous torque produced by local fluid shear. This torque causes larval reorientation, impacting swimming direction and potentially dispersal at the macroscale. It is therefore paramount to understand the mechanisms of larval reorientation and the stability of larvae against reorientation. Here we report on the larval reorientation behavior of the sea urchins Arbacia punctulata and Heliocidaris crassispina. Both species have life histories characterized by ontogenetic changes to internal density structure and morphology, which we hypothesized to impact stability. To test this hypothesis, we performed "flip chamber" experiments, in which larvae swim freely in a small chamber that is intermittently inverted, mimicking the overturning experienced by larvae in turbulence. We investigated the role of larval age, body size, species, morphology (number of arms), and motility (live versus dead) on the reorientation dynamics. Our work contributes to a more mechanistic understanding of the role of hydrodynamics in the motility and transport of planktonic larvae.
Cetin, Huseyin; Oz, Emre; Yanikoglu, Atila; Cilek, James E
2015-06-01
The residual effectiveness of VectoMax® WSP (a water-soluble pouch formulation containing a combination of Bacillus thuringiensis subsp. israelensis strain AM65-52 and B. sphaericus strain ABTS 1743) when applied to septic tanks against 3rd- and 4th-stage larvae of Culex pipiens L. was evaluated in this study. This formulation was evaluated at operational application rates of 1 pouch (10 g) and 2 pouches (20 g) per septic tank. Both application rates resulted in >96% control of larvae for 24 days. Operationally, VectoMax WSP has proven to be a useful tool for the nonchemical control of Culex species in septic tank environments.
Exposure of the estuarine shrimp, Ptiaemonetes pugio, to a juvenile hormone analogue (> 3 ug methoprene-1) throughout larval development inhibited successful completion of metamorphosis. Methoprene exposure retarded growth in early larval stages and postlarvae enhanced growth in ...
USDA-ARS?s Scientific Manuscript database
The waste artificial larval rearing media of the New World Screwworm, Cochliomyia hominivorax (Coquerel) were evaluated to determine their effectiveness as oviposition attractants. Various concentrations of waste larval media resulting from rearing screwworm larvae in gel and cellulose fiber-based ...
NASA Astrophysics Data System (ADS)
dos Santos, Antonina; Calado, Ricardo; Bartilotti, Cátia; Narciso, Luís
2004-04-01
The complete larval development (eight zoeae and megalopa) of Periclimenes sagittifer (Norman, 1861) (Decapoda: Palaemonidae: Pontoniinae) from laboratory-reared material is described and illustrated. The morphology of the first larval stage is compared with previous larval descriptions of other species in the genus (P. agag, P. americanus, P. calmani, P. diversipes, P. grandis and P. pandionis). The importance of chemical settlement cues for late stage Periclimenes larvae is discussed.
NASA Astrophysics Data System (ADS)
Chapman, E. G.; Foote, B. A.; Malukiewicz, J.; Hoeh, W. R.
2005-05-01
Sciomyzid larvae (Diptera: Acalyptratae) display a wide range of feeding behaviors, typically preying on a wide variety of gastropods. The genus Tetanocera is particularly interesting because its species occupy five larval feeding groups with each species' larvae living in one of two habitat types (aquatic or terrestrial). We constructed a molecular phylogeny for Tetanocera, estimated evolutionary transitions in larval feeding behaviors and habitats that occurred during Tetanocera phylogenesis, and investigated potential correlations among larval habitat and morphological characteristics. Approximately 3800 base pairs (both mitochondrial and nuclear) of sequence data were used to build the phylogeny. Larval feeding groups and habitat type were mapped onto the phylogeny and pair-wise comparisons were used to evaluate potential associations between habitat and morphology. Feeding and habitat groups within Tetanocera were usually not monophyletic and it was estimated that Tetanocera lineages made at least three independent aquatic to terrestrial transitions. These parallel habitat shifts were typically accompanied by parallel character state changes in four morphological characteristics (larval color and three posterior spiracular disc characters). These larval habitat-morphology associations were statistically significant and consistent with the action of natural selection in facilitating the morphological changes that occurred during aquatic to terrestrial habitat transitions in Tetanocera.
NASA Astrophysics Data System (ADS)
Thomas, Yoann; Dumas, Franck; Andréfouët, Serge
2016-12-01
The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia atoll lagoons. This aquaculture relies on spat collection, a process that experiences spatial and temporal variability and needs to be optimized by understanding which factors influence recruitment. Here, we investigate the sensitivity of P. margaritifera larval dispersal to both physical and biological factors in the lagoon of Ahe atoll. Coupling a validated 3D larval dispersal model, a bioenergetics larval growth model following the Dynamic Energy Budget (DEB) theory, and a population dynamics model, the variability of lagoon-scale connectivity patterns and recruitment potential is investigated. The relative contribution of reared and wild broodstock to the lagoon-scale recruitment potential is also investigated. Sensitivity analyses pointed out the major effect of the broodstock population structure as well as the sensitivity to larval mortality rate and inter-individual growth variability to larval supply and to the subsequent settlement potential. The application of the growth model clarifies how trophic conditions determine the larval supply and connectivity patterns. These results provide new cues to understand the dynamics of bottom-dwelling populations in atoll lagoons, their recruitment, and discuss how to take advantage of these findings and numerical models for pearl oyster management.
NASA Astrophysics Data System (ADS)
Calcagno, J. A.; Anger, K.; Lovrich, G. A.; Thatje, S.; Kaffenberger, A.
2004-02-01
The larval development and survival in the two subantarctic lithodid crabs Lithodes santolla (Jaquinot) and Paralomis granulosa (Molina) from the Argentine Beagle Channel were studied in laboratory cultures. In L. santolla, larval development lasted about 70 days, passing through three zoeal stages and the megalopa stage, with a duration of approximately 4, 7, 11 and 48 days, respectively. The larval development in P. granulosa is more abbreviated, comprising only two zoeal stages and the megalopa stage, with 6, 11 and 43 days' duration, respectively. In both species, we tested for effects of presence versus absence of food (Artemia nauplii) on larval development duration and survival rate. In P. granulosa, we also studied effects of different rearing conditions, such as individual versus mass cultures, as well as aerated versus unaerated cultures. No differences in larval development duration and survival were observed between animals subjected to those different rearing conditions. The lack of response to the presence or absence of potential food confirms, in both species, a complete lecithotrophic mode of larval development. Since lithodid crabs are of high economic importance in the artisanal fishery in the southernmost parts of South America, the knowledge of optimal rearing conditions for lithodid larvae is essential for future attempts at repopulating the collapsing natural stocks off Tierra del Fuego.
Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.
Dingeldein, Andrea L; White, J Wilson
2016-07-01
Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post-settlement behaviour, although not as we expected: higher quality larvae join groups more frequently (safer) but then forage more. Foraging is risky but may allow faster post-settlement growth, reducing mortality risk in the long run. This shows that behaviour likely serves as a mechanistic link connecting larval traits to post-settlement selective mortality. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
NASA Astrophysics Data System (ADS)
Ayata, Sakina-Dorothée; Ellien, Céline; Dumas, Franck; Dubois, Stanislas; Thiébaut, Éric
2009-06-01
The honeycomb worm Sabellaria alveolata forms biogenic reefs which constitute diversity hotspots on tidal flats. The largest known reefs in Europe, located in the Bay of Mont-Saint-Michel (English Channel), are suffering increasing anthropogenic disturbances which raise the question of their sustainability. As the ability to recover depends partly on the recolonization of damaged reefs by larval supply, evaluating larval dispersal and the connectivity between distant reefs is a major challenge for their conservation. In the present study, we used a 3D biophysical model to simulate larval dispersal under realistic hydroclimatic conditions and estimate larval retention and exchanges among the two reefs of different sizes within the bay. The model takes into account fine-scale hydrodynamic circulation (800×800 m 2), advection-diffusion larval transport, and gregarious settlement behaviour. According to the field data, larval dispersal was simulated for a minimal planktonic larval duration ranging from 4 to 8 weeks and the larval mortality was set to 0.09 d -1. The results highlighted the role played by a coastal eddy on larval retention within the bay, as suggested by previous in situ observations. Very different dispersal patterns were revealed depending on the spawning reef location, although the two reefs were located only 15 km apart. The settlement success of the larvae released from the smallest reef was mainly related to tidal conditions at spawning, with the highest settlement success for releases at neap tide. The settlement success of the larvae from the biggest reef was more dependent on meteorological conditions: favourable W and SW winds may promote a ten-fold increase in settlement success. Strong year-to-year variability was observed in settlers' numbers, with favourable environmental windows not always coinciding with the main reproductive periods of Sabellaria. Settlement kinetics indicated that the ability to delay metamorphosis could significantly improve the settlement success. Although bidirectional exchanges occurred between the two reefs, the highest settlers' numbers originated from the biggest reef because of its stronger reproductive output. Because of the recent decline of this reef due to increasing anthropogenic disturbances larval supply in the bay may not be sufficient enough to ensure the sustainability of the remarkable habitat formed by Sabellaria alveolata reefs.
Thia, Joshua A; Riginos, Cynthia; Liggins, Libby; Figueira, Will F; McGuigan, Katrina
2018-05-05
1.Complex life-cycles may evolve to dissociate distinct developmental phases in an organism's lifetime. However, genetic or environmental factors may restrict trait independence across life stages, constraining ontogenetic trajectories. Quantifying covariance across life-stages and their temporal variability is fundamental in understanding life-history phenotypes and potential distributions and consequences for selection. 2.We studied developmental constraints in an intertidal fish (Bathygobius cocosensis: Gobiidae) with a discrete pelagic larval phase and benthic juvenile phase. We tested whether traits occurring earlier in life affected those expressed later, and whether larval traits were decoupled from post-settlement juvenile traits. Sampling distinct cohorts from three annual breeding seasons afforded tests of temporally variability in trait covariance. 3.From otoliths (fish ear stones), we measured hatch size, larval duration, pelagic growth (larval traits) and early post-settlement growth (juvenile trait) in 124 juvenile B. cocoensis. We used path analyses to model trait relationships with respect to their chronological expression, comparing models among seasons. We also modelled the effect of season and hatch date on each individual trait to quantify their inherent variability. 4.Our path analyses demonstrated a decoupling of larval traits on juvenile growth. Within the larval phase, longer larval durations resulted in greater pelagic growth, and larger size-at-settlement. There was also evidence that larger hatch size might reduce larval durations, but this effect was only marginally significant. Although pelagic and post-settlement growth were decoupled, pelagic growth had post-settlement consequences: individuals with high pelagic growth were among the largest fish at settlement, and remained among the largest early post-settlement. We observed no evidence that trait relationships varied among breeding seasons, but larval duration differed among breeding seasons, and was shorter for larvae hatching later within each season. 5.Overall, we demonstrate mixed support for the expectation that traits in different life-stages are independent. While post-settlement growth was decoupled from larval traits, pelagic development had consequences for the size of newly settled juveniles. Temporal consistency in trait covariances implies that genetic and/or environmental factors influencing them were stable over our three-year study. Our work highlights the importance of individual developmental experiences and temporal variability in understanding population distributions of life-history traits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
SPED light sheet microscopy: fast mapping of biological system structure and function
Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl
2016-01-01
The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363
Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh
2016-09-01
Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies.We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we show that long-term laboratory populations of D. melanogaster, descended from some of the populations used in the earlier studies, evolve essentially the same set of traits as the D. ananassae and D. n. nasuta crowding-adapted populations when subjected to a similar larval density at low absolute volumes of food. As in the case of D. ananassae and D. n. nasuta, and in stark contrast to earlier studies with D. melanogaster, these crowding-adapted populations of D. melanogaster did not evolve greater larval feeding rates as a correlate of increased competitive ability. The present results clearly suggest that the suite of phenotypes through which the evolution of greater competitive ability is achieved in fruitflies depends critically not just on larval density per unit volume of food, but also on the total amount of food available in the culture vials. We discuss these results in the context of an hypothesis about how larval density and the height of the food column in culture vials might interact to alter the fitness costs and benefits of increased larval feeding rates, thus resulting in different routes to the evolution of greater competitive ability, depending on the details of exactly how the larval crowding was implemented.
Govoetchan, Renaud; Gnanguènon, Virgile; Ogouwalé, Euloge; Oké-Agbo, Frédéric; Azondékon, Roseric; Sovi, Arthur; Attolou, Roseline; Badirou, Kefilath; Youssouf, Ramziyath Agbanrin; Ossè, Razaki; Akogbéto, Martin
2014-03-31
The dynamics of mosquito populations depends on availability of suitable surface water for oviposition. It is well known that suitable management of mosquito larval habitats in the sub-Saharan countries, particularly during droughts, could help to suppress vector densities and malaria transmission. We conducted a field survey to investigate the spatial and seasonal distribution of mosquito larval habitats and identify drought-refugia for anopheline larvae. A GIS approach was used to identify, geo-reference and follow up longitudinally from May 2012 to May 2013, all mosquito breeding sites in two rural sites (Yondarou and Thui), one urban (Kossarou), and one peri-urban (Pèdè) site at Kandi, a municipality in northeastern Benin. In Kandi, droughts are excessive with no rain for nearly six months and a lot of sunshine. A comprehensive record of mosquito larval habitats was conducted periodically in all sites for the identification of drought-refugia of anopheline larval stages. With geospatialisation data, seasonal larval distribution maps were generated for each study site with the software ArcGIS version 10.2. Overall, 187 mosquito breeding sites were identified of which 29.95% were recorded during drought. In rural, peri-urban and urban sites, most of the drought-refugia of anopheline larvae were domestic in nature (61.54%). Moreover, in rural settings, anopheline larvae were also sampled in cisterns and wells (25% of larval habitats sampled during drought in Yondarou and 20% in Thui). The mapping showed a significant decrease in the spatial distribution of mosquito larval habitats in rural, peri-urban and urban sites during drought, except in Yondarou (rural) where the aridity did not seem to influence the distribution of larval habitats. Our data showed that the main drought-refugia of anopheline larvae were of a domestic nature as well as wells and cisterns. A suitable management of mosquito larvae in sub-Saharan countries, particularly during droughts, should target such larval habitats for a meaningful impact on the dynamics of mosquito populations and malaria transmission.
Offshore-onshore linkages in the larval life history of sole in the Gulf of Lions (NW-Mediterranean)
NASA Astrophysics Data System (ADS)
Morat, Fabien; Letourneur, Yves; Blamart, Dominique; Pécheyran, Christophe; Darnaude, Audrey M.; Harmelin-Vivien, Mireille
2014-08-01
Understanding individual dispersion from offshore natal areas to coastal nurseries during pelagic larval life is especially important for the sustainable management of exploited marine fish species. For several years, the hatching period, the larval life duration, the average growth rate and the otolith chemical composition (δ13C, δ18O, Sr:Ca and Ba:Ca) during the larval life were studied for young of the year (YOY) of sole collected in three main nurseries of the Gulf of Lions (GoL) (Thau, Mauguio and Berre). We investigated the spatial variation in the origin of the sole larvae which colonised the nurseries around the GoL, and whether temporal differences in environmental conditions during this life stage affected growth and larval life duration. The hatching period ranges from October to March, depending on year and site. Average ages at metamorphosis varied between 43 and 50 days, with the lowest and highest values consistently found for Mauguio and Berre, respectively. Otolith growth rates ranged between 2.7 and 3.2 μm d-1, with the lowest values in Thau and Mauguio and the highest in Berre. Otolith chemical composition during the larval life also varied, suggesting contrasted larval environmental histories in YOY among nurseries. In fishes from Berre and Mauguio, larval life was more influenced by the Rhône River, showing consistently higher larval Ba:Ca ratios (10/23 μmol mol-1) and lower δ13C (-6.5/-6.1‰) and δ18O values (-1.6/0.1‰) than for Thau (with Ba:Ca ratios < 8 μmol mol-1, δ13C ˜-2.3‰ and δ18O ˜1.5‰). Differences in larval otolith composition were observed for 2004, with higher Ba:Ca and lower δ13C and δ18O values than in the two other years. These differences were explained by changes in composition and chemical signatures of water masses after an exceptional flooding event of the Rhône River in late 2003.
NASA Technical Reports Server (NTRS)
Farrell, E. R.; Fernandes, J.; Keshishian, H.
1996-01-01
In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.
Liu, Gang; Huan, Pin; Liu, Baozhong
2017-06-01
Among the potential larval shell formation genes in mollusks, most are expressed in cells surrounding the shell field during the early phase of shell formation. The only exception (cgi-tyr1) is expressed in the whole larval mantle and thus represents a novel type of expression pattern. This study reports another gene with such an expression pattern. The gene encoded a SoxC homolog of the Pacific oyster Crassostrea gigas and was named cgi-soxc. Whole-mount in situ hybridization revealed that the gene was highly expressed in the whole larval mantle of early larvae. Based on its spatiotemporal expression, cgi-soxc is hypothesized to be involved in periostracum biogenesis, biomineralization, and regulation of cell proliferation. Furthermore, we investigated the interrelationship between cgi-soxc expression and two additional potential shell formation genes, cgi-tyr1 and cgi-gata2/3. The results confirmed co-expression of the three genes in the larval mantle of early D-veliger. Nevertheless, cgi-gata2/3 was only expressed in the mantle edge, and the other two genes were expressed in all mantle cells. Based on the spatial expression patterns of the three genes, two cell groups were identified from the larval mantle (tyr1 + /soxc + /gata2/3 + cells and tyr1 + /soxc + /gata2/3 - cells) and are important to study the differentiation and function of this tissue. The results of this study enrich our knowledge on the structure and function of larval mantle and provide important information to understand the molecular mechanisms of larval shell formation.
Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow.
Parrott, Joanne L; Bartlett, Adrienne J; Balakrishnan, Vimal K
2016-03-01
The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4-10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Davies, Kimberley T A; Gentleman, W C; DiBacco, C; Johnson, C L
2015-09-01
This study examined whether a measured increase in average body size of adult sea scallops inside three fishery closed areas on Georges Bank (GB), United States (US), was sufficient to increase larval supply to closed areas and open fishing areas in both US and Canadian areas of the Bank. The effects of adult scallop density-at-size and fecundity-at-size on egg production were compared among open and closed fishery areas, countries, and time periods before and after the closed areas were established. Estimated egg production was then used to define spawning conditions in a coupled biological-physical larval tracking model that simulated larval development, mortality, and dispersal. Results showed that order of magnitude increases in larval settlement after closure were facilitated by increases in size-dependant egg production inside and dispersal from Closed Areas I and II, but not Nantucket Lightship Closed Area. The distributions of both egg production and larval settlement became more uniform across the Bank, causing the relative contribution of Canadian larvae to US scallop aggregations to decrease after establishment of Closed Areas I and II. Decreases in small and medium-sized scallop density in Canada and decreases in large scallops over the US-Southern Flank after closure caused local declines in egg production but were not sufficient to negatively affect larval settlement at the regional scale. Our model suggests that the establishment of fishery closed areas on GB considerably strengthened larval supply and settlement within and among several adult scallop aggregations.
NASA Astrophysics Data System (ADS)
Davies, Kimberley T. A.; Gentleman, W. C.; DiBacco, C.; Johnson, C. L.
2015-09-01
This study examined whether a measured increase in average body size of adult sea scallops inside three fishery closed areas on Georges Bank (GB), United States (US), was sufficient to increase larval supply to closed areas and open fishing areas in both US and Canadian areas of the Bank. The effects of adult scallop density-at-size and fecundity-at-size on egg production were compared among open and closed fishery areas, countries, and time periods before and after the closed areas were established. Estimated egg production was then used to define spawning conditions in a coupled biological-physical larval tracking model that simulated larval development, mortality, and dispersal. Results showed that order of magnitude increases in larval settlement after closure were facilitated by increases in size-dependant egg production inside and dispersal from Closed Areas I and II, but not Nantucket Lightship Closed Area. The distributions of both egg production and larval settlement became more uniform across the Bank, causing the relative contribution of Canadian larvae to US scallop aggregations to decrease after establishment of Closed Areas I and II. Decreases in small and medium-sized scallop density in Canada and decreases in large scallops over the US-Southern Flank after closure caused local declines in egg production but were not sufficient to negatively affect larval settlement at the regional scale. Our model suggests that the establishment of fishery closed areas on GB considerably strengthened larval supply and settlement within and among several adult scallop aggregations.
Fraker, Michael E.; Anderson, Eric J.; May, Cassandra J.; Chen, Kuan-Yu; Davis, Jeremiah J.; DeVanna, Kristen M.; DuFour, Mark R.; Marschall, Elizabeth A.; Mayer, Christine M.; Miner, Jeffery G.; Pangle, Kevin L.; Pritt, Jeremy J.; Roseman, Edward F.; Tyson, Jeffrey T.; Zhao, Yingming; Ludsin, Stuart A
2015-01-01
Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.
USDA-ARS?s Scientific Manuscript database
In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diet are often complex and may interact with one another, necessitating the use of a geometric framework for und...
Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...
Mechanistic insights into the effects of climate change on larval cod.
Kristiansen, Trond; Stock, Charles; Drinkwater, Kenneth F; Curchitser, Enrique N
2014-05-01
Understanding the biophysical mechanisms that shape variability in fisheries recruitment is critical for estimating the effects of climate change on fisheries. In this study, we used an Earth System Model (ESM) and a mechanistic individual-based model (IBM) for larval fish to analyze how climate change may impact the growth and survival of larval cod in the North Atlantic. We focused our analysis on five regions that span the current geographical range of cod and are known to contain important spawning populations. Under the SRES A2 (high emissions) scenario, the ESM-projected surface ocean temperatures are expected to increase by >1 °C for 3 of the 5 regions, and stratification is expected to increase at all sites between 1950-1999 and 2050-2099. This enhanced stratification is projected to decrease large (>5 μm ESD) phytoplankton productivity and mesozooplankton biomass at all 5 sites. Higher temperatures are projected to increase larval metabolic costs, which combined with decreased food resources will reduce larval weight, increase the probability of larvae dying from starvation and increase larval exposure to visual and invertebrate predators at most sites. If current concentrations of piscivore and invertebrate predators are maintained, larval survival is projected to decrease at all five sites by 2050-2099. In contrast to past observed responses to climate variability in which warm anomalies led to better recruitment in cold-water stocks, our simulations indicated that reduced prey availability under climate change may cause a reduction in larval survival despite higher temperatures in these regions. In the lower prey environment projected under climate change, higher metabolic costs due to higher temperatures outweigh the advantages of higher growth potential, leading to negative effects on northern cod stocks. Our results provide an important first large-scale assessment of the impacts of climate change on larval cod in the North Atlantic. © 2013 John Wiley & Sons Ltd.
Hernández-Ávila, Iván; Cambon-Bonavita, Marie-Anne; Pradillon, Florence
2015-01-01
Alvinocaridid shrimps are endemic species inhabiting hydrothermal vents and/or cold seeps. Although indirect evidences (genetic and lipid markers) suggest that their larval stages disperse widely and support large scale connectivity, larval life and mechanisms underlying dispersal are unknown in alvinocaridids. Here we provide for the first time detailed descriptions of the first larval stage (zoea I) of four alvinocaridid species: Rimicaris exoculata and Mirocaris fortunata from the Mid-Atlantic Ridge, Alvinocaris muricola from the Congo Basin and Nautilocaris saintlaurentae from the Western Pacific. The larvae were obtained from onboard hatching of brooding females (either at atmospheric pressure or at habitat pressure in hyperbaric chambers) and from the water column near adult habitats, sampled with plankton pumps or sediment traps. Major characteristics of the alvinocaridid larvae include undeveloped mandible and almost complete absence of setation in the inner margin of the mouth parts and maxillipeds. Although the larvae are very similar between the four species studied, some morphological features could be used for species identification. In addition, undeveloped mouthparts and the large amount of lipid reserves strongly support the occurrence of primary lecithotrophy in the early stage of alvinocaridids. Although lecithotrophy in decapod crustaceans is usually associated with abbreviated larval development, as a mechanism of larval retention, morphological and physiological evidences suggest the occurrence of an extended and lecithotrophic larval stage in the Alvinocarididae. These traits permit the colonization of widely dispersed and fragmented environments of hydrothermal vents and cold seeps. Distribution of larval traits along the phylogenetic reconstruction of the Alvinocarididae and related families suggest that lecithotrophy/planktotrophy and extended/abbreviated development have evolved independently along related families in all potential combinations. However, the Alvinocarididae is the only taxa with a combination of lecithotrophy and extended larval development. PMID:26710075
Oliphant, Andrew; Hauton, Chris; Thatje, Sven
2013-01-01
Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30°C to assess their thermal scope for development. Larvae developed at 17, 25, and 30°C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as ‘repeat’ instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25°C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20°C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of importance for life-history ecology in response to environmental change, as well as for aquaculture applications. PMID:24069450
Oliphant, Andrew; Hauton, Chris; Thatje, Sven
2013-01-01
Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30 °C to assess their thermal scope for development. Larvae developed at 17, 25, and 30 °C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as 'repeat' instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25 °C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20 °C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of importance for life-history ecology in response to environmental change, as well as for aquaculture applications.
The Neuro-Ecology of Drosophila Pupation Behavior
Del Pino, Francisco; Jara, Claudia; Pino, Luis; Godoy-Herrera, Raúl
2014-01-01
Many species of Drosophila form conspecific pupa aggregations across the breeding sites. These aggregations could result from species-specific larval odor recognition. To test this hypothesis we used larval odors of D. melanogaster and D. pavani, two species that coexist in the nature. When stimulated by those odors, wild type and vestigial (vg) third-instar larvae of D. melanogaster pupated on conspecific larval odors, but individuals deficient in the expression of the odor co-receptor Orco randomly pupated across the substrate, indicating that in this species, olfaction plays a role in pupation site selection. Larvae are unable to learn but can smell, the Syn97CS and rut strains of D. melanogaster, did not respond to conspecific odors or D. pavani larval cues, and they randomly pupated across the substrate, suggesting that larval odor-based learning could influence the pupation site selection. Thus, Orco, Syn97CS and rut loci participated in the pupation site selection. When stimulated by conspecific and D. melanogaster larval cues, D. pavani larvae also pupated on conspecific odors. The larvae of D. gaucha, a sibling species of D. pavani, did not respond to D. melanogaster larval cues, pupating randomly across the substrate. In nature, D. gaucha is isolated from D. melanogaster. Interspecific hybrids, which result from crossing pavani female with gaucha males clumped their pupae similarly to D. pavani, but the behavior of gaucha female x pavani male hybrids was similar to D. gaucha parent. The two sibling species show substantial evolutionary divergence in organization and functioning of larval nervous system. D. melanogaster and D. pavani larvae extracted information about odor identities and the spatial location of congener and alien larvae to select pupation sites. We hypothesize that larval recognition contributes to the cohabitation of species with similar ecologies, thus aiding the organization and persistence of Drosophila species guilds in the wild. PMID:25033294
Measuring larval nematode contamination on cattle pastures: Comparing two herbage sampling methods.
Verschave, S H; Levecke, B; Duchateau, L; Vercruysse, J; Charlier, J
2015-06-15
Assessing levels of pasture larval contamination is frequently used to study the population dynamics of the free-living stages of parasitic nematodes of livestock. Direct quantification of infective larvae (L3) on herbage is the most applied method to measure pasture larval contamination. However, herbage collection remains labour intensive and there is a lack of studies addressing the variation induced by the sampling method and the required sample size. The aim of this study was (1) to compare two different sampling methods in terms of pasture larval count results and time required to sample, (2) to assess the amount of variation in larval counts at the level of sample plot, pasture and season, respectively and (3) to calculate the required sample size to assess pasture larval contamination with a predefined precision using random plots across pasture. Eight young stock pastures of different commercial dairy herds were sampled in three consecutive seasons during the grazing season (spring, summer and autumn). On each pasture, herbage samples were collected through both a double-crossed W-transect with samples taken every 10 steps (method 1) and four random located plots of 0.16 m(2) with collection of all herbage within the plot (method 2). The average (± standard deviation (SD)) pasture larval contamination using sampling methods 1 and 2 was 325 (± 479) and 305 (± 444)L3/kg dry herbage (DH), respectively. Large discrepancies in pasture larval counts of the same pasture and season were often seen between methods, but no significant difference (P = 0.38) in larval counts between methods was found. Less time was required to collect samples with method 2. This difference in collection time between methods was most pronounced for pastures with a surface area larger than 1 ha. The variation in pasture larval counts from samples generated by random plot sampling was mainly due to the repeated measurements on the same pasture in the same season (residual variance component = 6.2), rather than due to pasture (variance component = 0.55) or season (variance component = 0.15). Using the observed distribution of L3, the required sample size (i.e. number of plots per pasture) for sampling a pasture through random plots with a particular precision was simulated. A higher relative precision was acquired when estimating PLC on pastures with a high larval contamination and a low level of aggregation compared to pastures with a low larval contamination when the same sample size was applied. In the future, herbage sampling through random plots across pasture (method 2) seems a promising method to develop further as no significant difference in counts between the methods was found and this method was less time consuming. Copyright © 2015 Elsevier B.V. All rights reserved.
Christiansen-Jucht, Céline; Parham, Paul E; Saddler, Adam; Koella, Jacob C; Basáñez, María-Gloria
2014-11-05
Malaria transmission depends on vector life-history parameters and population dynamics, and particularly on the survival of adult Anopheles mosquitoes. These dynamics are sensitive to climatic and environmental factors, and temperature is a particularly important driver. Data currently exist on the influence of constant and fluctuating adult environmental temperature on adult Anopheles gambiae s.s. survival and on the effect of larval environmental temperature on larval survival, but none on how larval temperature affects adult life-history parameters. Mosquito larvae and pupae were reared individually at different temperatures (23 ± 1°C, 27 ± 1°C, 31 ± 1°C, and 35 ± 1°C), 75 ± 5% relative humidity. Upon emergence into imagoes, individual adult females were either left at their larval temperature or placed at a different temperature within the range above. Survival was monitored every 24 hours and data were analysed using non-parametric and parametric methods. The Gompertz distribution fitted the survivorship data better than the gamma, Weibull, and exponential distributions overall and was adopted to describe mosquito mortality rates. Increasing environmental temperature during the larval stages decreased larval survival (p < 0.001). Increases of 4°C (from 23°C to 27°C, 27°C to 31°C, and 31°C to 35°C), 8°C (27°C to 35°C) and 12°C (23°C to 35°C) statistically significantly increased larval mortality (p < 0.001). Higher environmental temperature during the adult stages significantly lowered adult survival overall (p < 0.001), with increases of 4°C and 8°C significantly influencing survival (p < 0.001). Increasing the larval environment temperature also significantly increased adult mortality overall (p < 0.001): a 4°C increase (23°C to 27°C) did not significantly affect adult survival (p > 0.05), but an 8°C increase did (p < 0.05). The effect of a 4°C increase in larval temperature from 27°C to 31°C depended on the adult environmental temperature. The data also suggest that differences between the temperatures of the larval and adult environments affects adult mosquito survival. Environmental temperature affects Anopheles survival directly during the juvenile and adult stages, and indirectly, since temperature during larval development significantly influences adult survival. These results will help to parameterise more reliable mathematical models investigating the potential impact of temperature and global warming on malaria transmission.
Bi, Zhenzhen; Gong, Yanting; Huang, Xiaojuan; Yu, Hongshi; Bai, Liqun; Hu, Jiafu
2015-01-01
To understand the efficacy of emamectin benzoate, avermectin, milbemectin, and thiacloprid on the reproduction and development of Bursaphelenchus xylophilus, seven parameters, namely population growth, fecundity, egg hatchability, larval lethality, percent larval development, body size, and sexual ratio, were investigated using sublethal (LC20) doses of these compounds in the laboratory. Emamectin benzoate treatment led to a significant suppression in population size, brood size, and percent larval development with 411, 3.50, and 49.63%, respectively, compared to 20850, 24.33, and 61.43% for the negative control. The embryonic and larval lethality increased obviously from 12.47% and 13.70% to 51.37% and 75.30%, respectively. In addition, the body length was also significantly reduced for both males and females in the emamectin benzoate treatment. Avermectin and milbemectin were also effective in suppressing population growth by increasing larval lethality and reducing larval development, although they did not affect either brood size or embryonic lethality. Body length for both male and female worms was increased by avermectin. Thiacloprid caused no adverse reproductive effects, although it suppressed larval development. Sexual ratio was not affected by any of these four nematicides. Our results indicate that emamectin benzoate, milbemectin, and avermectin are effective against the reproduction of B. xylophilus. We think these three nematicides can be useful for the control of pine wilt disease. PMID:26170474
Bi, Zhenzhen; Gong, Yanting; Huang, Xiaojuan; Yu, Hongshi; Bai, Liqun; Hu, Jiafu
2015-06-01
To understand the efficacy of emamectin benzoate, avermectin, milbemectin, and thiacloprid on the reproduction and development of Bursaphelenchus xylophilus, seven parameters, namely population growth, fecundity, egg hatchability, larval lethality, percent larval development, body size, and sexual ratio, were investigated using sublethal (LC20) doses of these compounds in the laboratory. Emamectin benzoate treatment led to a significant suppression in population size, brood size, and percent larval development with 411, 3.50, and 49.63%, respectively, compared to 20850, 24.33, and 61.43% for the negative control. The embryonic and larval lethality increased obviously from 12.47% and 13.70% to 51.37% and 75.30%, respectively. In addition, the body length was also significantly reduced for both males and females in the emamectin benzoate treatment. Avermectin and milbemectin were also effective in suppressing population growth by increasing larval lethality and reducing larval development, although they did not affect either brood size or embryonic lethality. Body length for both male and female worms was increased by avermectin. Thiacloprid caused no adverse reproductive effects, although it suppressed larval development. Sexual ratio was not affected by any of these four nematicides. Our results indicate that emamectin benzoate, milbemectin, and avermectin are effective against the reproduction of B. xylophilus. We think these three nematicides can be useful for the control of pine wilt disease.
Alfalfa weevil (Coleoptera:Curculionidae) management in alfalfa by spring grazing with cattle.
Buntin, G D; Bouton, J H
1996-12-01
The effect of continuous, intensive grazing by cattle in the 1st alfalfa growth cycle on larval densities of the alfalfa weevil, Hyera postica (Gyllenhal), was evaluated in "Alfagraze' and "Apollo' alfalfa, which are tolerant and not tolerant to grazing, respectively. In small-cage exclusion trials, grazing reduced larval numbers in 1991 by 65% in Alfagraze and by 32% in Apollo. Larval numbers in 1992 were low (< or = 0.6 larvae per stem) and were not reduced significantly by grazing. Grazing and use of early insecticide treatments of permethrin or carbofuran at low rates with < or = 7-d grazing restrictions to suppress larval numbers before grazing also were examined in large-plot exclusion trails in 1993 and 1994. Grazing reduced larval densities by 60% in 1993 and 45% in 1994 during a 3-wk period beginning 3 wk after grazing was initiated. However, alfalfa weevil larvae caused moderate leaf injury in 1993 and severe injury in 1994 before grazing reduced larval numbers. Use of permethrin at 0.11 kg (AI)/ha or carbofuran or chlorpyrifos at 0.28 kg (AI)/ha effectively reduced larval numbers and prevented leaf injury before grazing began. Therefore, a combination of an early application of an insecticide treatment with a short grazing restriction followed by continuous grazing will control alfalfa weevil larvae while allowing cattle to graze and directly use forage of grazing-tolerant alfalfa.
Detecting larval export from marine reserves
Pelc, R. A.; Warner, R. R.; Gaines, S. D.; Paris, C. B.
2010-01-01
Marine reserve theory suggests that where large, productive populations are protected within no-take marine reserves, fished areas outside reserves will benefit through the spillover of larvae produced in the reserves. However, empirical evidence for larval export has been sparse. Here we use a simple idealized coastline model to estimate the expected magnitude and spatial scale of larval export from no-take marine reserves across a range of reserve sizes and larval dispersal scales. Results suggest that, given the magnitude of increased production typically found in marine reserves, benefits from larval export are nearly always large enough to offset increased mortality outside marine reserves due to displaced fishing effort. However, the proportional increase in recruitment at sites outside reserves is typically small, particularly for species with long-distance (on the order of hundreds of kilometers) larval dispersal distances, making it very difficult to detect in field studies. Enhanced recruitment due to export may be detected by sampling several sites at an appropriate range of distances from reserves or at sites downcurrent of reserves in systems with directional dispersal. A review of existing empirical evidence confirms the model's suggestion that detecting export may be difficult without an exceptionally large differential in production, short-distance larval dispersal relative to reserve size, directional dispersal, or a sampling scheme that encompasses a broad range of distances from the reserves. PMID:20181570
Lukoschek, Vimoksalehi; Cross, Peter; Torda, Gergely; Zimmerman, Rachel; Willis, Bette L.
2013-01-01
Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR) in February 2011, bringing wind speeds of up to 285 km hr−1 and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E.) hard coral cover ranged from just 2.1 (0.2) % to 5.3 (0.4) % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter) were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E.) hard coral cover ranged from 18.2 (2.4) % to 30.0 (1.0) % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E.) recruitment of acroporids to settlement tiles declined from 25.3 (4.8) recruits tile−1 in the pre-cyclone spawning event (2010) to 15.4 (2.2) recruits tile−1 in the first post-cyclone spawning event (2011). Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E.) and sheltered sites (15.6±2.2 S.E.), despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future. PMID:23755223
Lukoschek, Vimoksalehi; Cross, Peter; Torda, Gergely; Zimmerman, Rachel; Willis, Bette L
2013-01-01
Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR) in February 2011, bringing wind speeds of up to 285 km hr⁻¹ and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E.) hard coral cover ranged from just 2.1 (0.2) % to 5.3 (0.4) % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter) were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E.) hard coral cover ranged from 18.2 (2.4) % to 30.0 (1.0) % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E.) recruitment of acroporids to settlement tiles declined from 25.3 (4.8) recruits tile⁻¹ in the pre-cyclone spawning event (2010) to 15.4 (2.2) recruits tile⁻¹ in the first post-cyclone spawning event (2011). Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E.) and sheltered sites (15.6±2.2 S.E.), despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future.
van Broekhoven, Sarah; Oonincx, Dennis G A B; van Huis, Arnold; van Loon, Joop J A
2015-02-01
Insects receive increasing attention as an alternative protein-rich food source for humans. Producing edible insects on diets composed of organic by-products could increase sustainability. In addition, insect growth rate and body composition, and hence nutritional quality, can be altered by diet. Three edible mealworm species Tenebrio molitor L., Zophobas atratus Fab. and Alphitobius diaperinus Panzer were grown on diets composed of organic by-products originating from beer brewing, bread/cookie baking, potato processing and bioethanol production. Experimental diets differed with respect to protein and starch content. Larval growth and survival was monitored. Moreover, effects of dietary composition on feed conversion efficiency and mealworm crude protein and fatty acid profile were assessed. Diet affected mealworm development and feed conversion efficiency such that diets high in yeast-derived protein appear favourable, compared to diets used by commercial breeders, with respect to shortening larval development time, reducing mortality and increasing weight gain. Diet also affected the chemical composition of mealworms. Larval protein content was stable on diets that differed 2-3-fold in protein content, whereas dietary fat did have an effect on larval fat content and fatty acid profile. However, larval fatty acid profile did not necessarily follow the same trend as dietary fatty acid composition. Diets that allowed for fast larval growth and low mortality in this study led to a comparable or less favourable n6/n3 fatty acid ratio compared to control diets used by commercial breeders. In conclusion, the mealworm species used in this study can be grown successfully on diets composed of organic by-products. Diet composition did not influence larval protein content, but did alter larval fat composition to a certain extent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kulkarni, P S; Gramapurohit, N P
2017-09-15
Corticosterone (CORT), a principal glucocorticoid in amphibians, is known to regulate diverse physiological processes including growth and metamorphosis of anuran tadpoles. Environmental stressors activate the neuroendocrine stress axis (hypothalamus-pituitary-interrenal axis, HPI) leading to an acute increase in CORT, which in turn, helps in coping with particular stress. However, chronic increase in CORT can negatively affect other physiological processes such as growth and metamorphosis. Herein, we studied the effect of exogenous CORT on larval growth, antipredator behaviour and metamorphic traits of Hylarana indica. Embryonic exposure to 5 or 20μg/L CORT did not affect their development, hatching duration as well as larval growth and metamorphosis. Exposure of tadpoles to 10 or 20μg/L CORT throughout larval development caused slower growth and development leading to increased body mass at stage 37. However, body and tail morphology of tadpoles was not affected. Interestingly, larval exposure to 5, 10 or 20μg/L CORT enhanced their antipredator response against kairomones in a concentration-dependent manner. Further, larval exposure to increasing concentrations of CORT resulted in the emergence of heavier froglets at 10 and 20μg/L while, delaying metamorphosis at all concentrations. Interestingly, the heavier froglets had shorter hindlimbs and consequently shorter jump distances. Tadpoles exposed to 20μg/L CORT during early, mid or late larval stages grew and developed slowly but tadpole morphology was not altered. Interestingly, exposure during early or mid-larval stages resulted in an enhanced antipredator response. These individuals metamorphosed later but at higher body mass while SVL was unaffected. Copyright © 2016 Elsevier Inc. All rights reserved.
Do larval fishes exhibit diel drift patterns in a large, turbid river?
Reeves, K.S.; Galat, D.L.
2010-01-01
Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.
Beetz, Susann; Holthusen, Traute K; Koolman, Jan; Trenczek, Tina
2008-02-01
We determined the changes in hemocyte titer and in the abundance of hemocyte types of the tobacco hornworm Manduca sexta during the fourth and fifth larval stadium and the beginning of the pupal stadium. As we analyzed the samples of individual insects at daily intervals, we were able to correlate phenotypical features, body weight, as well as total protein content and lysozyme activity in the hemolymph with the observations on hemocytes. In the course of the fifth larval stadium, the hemocyte titer decreased slightly and declined further after pupation. Using calculated values for total hemocyte numbers, females had about five times and males three times more hemocytes in the circulating population at the beginning of the wandering stage (in the middle of the fifth larval stadium) than immediately after the last larval--larval molt (from the fourth to the fifth larval stadium). This sexual difference was mainly due to an increase in the number of plasmatocytes, which was more prominent in females than in males. Granular cells were dominant in early fifth larval stadium while plasmatocytes were the most abundant cells in pupae. Oenocytoids and spherule cells disappeared during the wandering stage. Lysozyme activity in the hemolymph rose to a maximum during the wandering stage, with females having lysozyme values twice as high as those for males. These changes in lysozyme activity, however, did not correlate with the increase of total hemolymph protein titer which occurred already at the beginning of the wandering stage. We postulate that changes in hemocyte titers are under direct hormonal control, which has to be proven in future experiments. (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Jones, G. P.; Almany, G. R.; Russ, G. R.; Sale, P. F.; Steneck, R. S.; van Oppen, M. J. H.; Willis, B. L.
2009-06-01
The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.
Becker, Heiko C.; Vidal, Stefan
2017-01-01
The rape stem weevil, Ceutorhynchus napi Gyll., is a serious pest of winter oilseed rape (Brassica napus L.) crops in Europe causing severe yield loss. In currently used oilseed rape cultivars no resistance to C. napi has been identified. Resynthesized lines of B. napus have potential to broaden the genetic variability and may improve resistance to insect pests. In this study, the susceptibility to C. napi of three cultivars, one breeding line and five resynthesized lines of oilseed rape was compared in a semi-field plot experiment under multi-choice conditions. Plant acceptance for oviposition was estimated by counting the number of C. napi larvae in stems. The larval instar index and the dry body mass were assessed as indicators of larval performance. The extent of larval feeding within stems was determined by the stem injury coefficient. Morphological stem traits and stem contents of glucosinolates were assessed as potential mediators of resistance. The resynthesized line S30 had significantly fewer larvae than the cultivars Express617 and Visby and the resynthesized lines L122 and L16. The low level of larval infestation in S30 was associated with a low larval instar and stem injury index. Low numbers of larvae were not correlated with the length or diameter of stems, and the level of stem glucosinolates. As indicated by the low larval infestation and slow larval development the resistance of S30 to C. napi is based on both antixenotic and antibiotic properties of the genotypes. The resynthesized line S30 should therefore be introduced into B. napus breeding programs to enhance resistance against C. napi. PMID:28686731
Reiter, M.E.; Lapointe, D.A.
2009-01-01
Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 20012003 to identify all potential larval mosquito habitat within two 100+ ha mesic-dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; 'Ainahou Ranch and Mauna Loa Strip Road. At 'Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally-occurring sites. Additionally, moderate-size (???20-22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger- and smaller-volume habitat (<50%). Less than 20% of trees surveyed at ' Ainahou Ranch had treeholes and few mosquito larvae were detected. Aerial surveys at 'Ainahou Ranch detected 56% (95% CI: 42-68%) of the potential larval habitat identified in ground surveys. At Mauna Loa Strip Road, Cx. quinquefasciatus larvae were only found in the rock holes of small intermittent stream drainages that made up 20% (5 of 25) of the total potential larval habitat. The volume of the potential larval habitat did not influence the probability of mosquito occurrence at Mauna Loa Strip Road. Our results suggest that Cx. quinquefasciatus abundance, and subsequently avian malaria, may be controlled by larval habitat reduction in the mesic-dry landscapes of Hawai'i where anthropogenic sources predominate.
Survival dynamics of scleractinian coral larvae and implications for dispersal
NASA Astrophysics Data System (ADS)
Graham, E. M.; Baird, A. H.; Connolly, S. R.
2008-09-01
Survival of pelagic marine larvae is an important determinant of dispersal potential. Despite this, few estimates of larval survival are available. For scleractinian corals, few studies of larval survival are long enough to provide accurate estimates of longevity. Moreover, changes in mortality rates during larval life, expected on theoretical grounds, have implications for the degree of connectivity among reefs and have not been quantified for any coral species. This study quantified the survival of larvae from five broadcast-spawning scleractinian corals ( Acropora latistella, Favia pallida, Pectinia paeonia, Goniastrea aspera, and Montastraea magnistellata) to estimate larval longevity, and to test for changes in mortality rates as larvae age. Maximum lifespans ranged from 195 to 244 d. These longevities substantially exceed those documented previously for coral larvae that lack zooxanthellae, and they exceed predictions based on metabolic rates prevailing early in larval life. In addition, larval mortality rates exhibited strong patterns of variation throughout the larval stage. Three periods were identified in four species: high initial rates of mortality; followed by a low, approximately constant rate of mortality; and finally, progressively increasing mortality after approximately 100 d. The lifetimes observed in this study suggest that the potential for long-distance dispersal may be substantially greater than previously thought. Indeed, detection of increasing mortality rates late in life suggests that energy reserves do not reach critically low levels until approximately 100 d after spawning. Conversely, increased mortality rates early in life decrease the likelihood that larvae transported away from their natal reef will survive to reach nearby reefs, and thus decrease connectivity at regional scales. These results show how variation in larval survivorship with age may help to explain the seeming paradox of high genetic structure at metapopulation scales, coupled with the maintenance of extensive geographic ranges observed in many coral species.
Acidification reduced growth rate but not swimming speed of larval sea urchins.
Chan, Kit Yu Karen; García, Eliseba; Dupont, Sam
2015-05-15
Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many benthic marine invertebrates. This key ecological function is modulated by larval development dynamics, biomechanics of the resulting morphology, and behavioral choices. Studies on ocean acidification effects on larval stages have yet to address this important interaction between development and swimming under environmentally-relevant flow conditions. Our video motion analysis revealed that pH covering present and future natural variability (pH 8.0, 7.6 and 7.2) did not affect age-specific swimming of larval green urchin Strongylocentrotus droebachiensis in still water nor in shear, despite acidified individuals being significantly smaller in size (reduced growth rate). This maintenance of speed and stability in shear was accompanied by an overall change in size-corrected shape, implying changes in swimming biomechanics. Our observations highlight strong evolutionary pressure to maintain swimming in a varying environment and the plasticity in larval responses to environmental change.
Jiang, Guo-Chen; Chan, Tin-Yam; Shih, Tung-Wei
2017-01-01
The larvae of the deep-sea pandalid shrimp Plesionika grandis Doflein, 1902 were successfully reared in the laboratory for the first time. The larvae reached the eighth zoeal stage in 36 days, both of which are longest records for the genus. Early larval stages of P. grandis bear the general characters of pandalid shrimps and differ from the other two species of Plesionika with larval morphology known in the number of spines on the anteroventral margin of carapace, number of tubercles on antennule, endopod segmentation in antenna, and third maxilliped setation. Although members in Plesionika are often separated into species groups, members of the same species group do not necessarily have similar early larval morphology. Since the zoea VIII of P. grandis still lacks pleopods and fifth pereiopod, this shrimp likely has at least 12 zoeal stages and a larval development of 120 days.
Circatrigintan instead of lunar periodicity of larval release in a brooding coral species.
Linden, Bart; Huisman, Jef; Rinkevich, Baruch
2018-04-04
Larval release by brooding corals is often assumed to display lunar periodicity. Here, we show that larval release of individual Stylophora pistillata colonies does not comply with the assumed tight entrainment by the lunar cycle, and can better be classified as a circatrigintan pattern. The colonies exhibited three distinct reproductive patterns, characterized by short intervals, long intervals and no periodicity between reproductive peaks, respectively. Cross correlation between the lunar cycle and larval release of the periodic colonies revealed an approximately 30-day periodicity with a variable lag of 5 to 10 days after full moon. The observed variability indicates that the lunar cycle does not provide a strict zeitgeber. Other factors such as water temperature and solar radiation did not correlate significantly with the larval release. The circatrigintan patterns displayed by S. pistillata supports the plasticity of corals and sheds new light on discussions on the fecundity of brooding coral species.
Arakane, Y; Muthukrishnan, S; Kramer, K J; Specht, C A; Tomoyasu, Y; Lorenzen, M D; Kanost, M; Beeman, R W
2005-10-01
Functional analysis of the two chitin synthase genes, TcCHS1 and TcCHS2, in the red flour beetle, Tribolium castaneum, revealed unique and complementary roles for each gene. TcCHS1-specific RNA interference (RNAi) disrupted all three types of moult (larval-larval, larval-pupal and pupal-adult) and greatly reduced whole-body chitin content. Exon-specific RNAi showed that splice variant 8a of TcCHS1 was required for both the larval-pupal and pupal-adult moults, whereas splice variant 8b was required only for the latter. TcCHS2-specific RNAi had no effect on metamorphosis or on total body chitin content. However, RNAi-mediated down-regulation of TcCHS2, but not TcCHS1, led to cessation of feeding, a dramatic shrinkage in larval size and reduced chitin content in the midgut.
USDA-ARS?s Scientific Manuscript database
Contrasting agents, either algae or inert soil, cause turbidity, which is important in the tank culture of larval cannibalistic fish. Optimization of turbidity is critical to successful tank culture of new larval fish, which should include 100 mg/L of sub 5 um particle size in the assessed range. ...
This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...
This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...
Tariq, K; Noor, M; Hori, M; Ali, A; Hussain, A; Peng, W; Chang, C-J; Zhang, H
2017-12-01
Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.
Fast versus slow larval growth in an invasive marine mollusc: does paternity matter?
Le Cam, Sabrina; Pechenik, Jan A; Cagnon, Mathilde; Viard, Frédérique
2009-01-01
Reproductive strategies and parental effects play a major role in shaping early life-history traits. Although polyandry is a common reproductive strategy, its role is still poorly documented in relation to paternal effects. Here, we used as a case study the invasive sessile marine gastropod Crepidula fornicata, a mollusc with polyandry and extreme larval growth variation among sibling larvae. Based on paternity analyses, the relationships between paternal identity and the variations in a major early life-history trait in marine organisms, that is, larval growth, were investigated. Using microsatellite markers, paternities of 437 fast- and slow-growing larvae from 6 broods were reliably assigned to a set of 20 fathers. No particular fathers were found responsible for the specific growth performances of their offspring. However, the range of larval growth rates within a brood was significantly correlated to 1) an index of sire diversity and 2) the degree of larvae relatedness within broods. Multiple paternity could thus play an important role in determining the extent of pelagic larval duration and consequently the range of dispersal distances achieved during larval life. This study also highlighted the usefulness of using indices based on fathers' relative contribution to the progeny in paternity studies.
Feeding ecology of pelagic larval Burbot in Northern Lake Huron, Michigan
George, Ellen M.; Roseman, Edward F.; Davis, Bruce M.; O'Brien, Timothy P.
2013-01-01
Burbot Lota lota are a key demersal piscivore across the Laurentian Great Lakes whose populations have declined by about 90% in recent decades. Larval Burbot typically hatch in the early spring and rely on abundant crustacean zooplankton prey. We examined the stomach contents of larval Burbot from inshore (≤15 m) and offshore sites (37 and 91 m) in northern Lake Huron, Michigan. Concurrent zooplankton vertical tows at the same sites showed that the prey community was dominated by calanoid copepods, dreissenid mussel veligers, and rotifers. Burbot consumed mostly cyclopoid copepods, followed by copepod nauplii and calanoid copepods. Chesson's index of selectivity was calculated and compared among sites and months for individual Burbot. According to this index, larval Burbot exhibited positive selection for cyclopoid copepods and copepod nauplii and negative selection for calanoid copepods, cladocerans, rotifers, and dreissenid veligers. This selectivity was consistent across sites and throughout the sampling period. Burbot displayed little variation in their prey preferences during the larval stage, which suggests that the recent shifts in zooplankton abundance due to the invasion of the predatory zooplankter Bythotrephes longimanus and competition from invasive Rainbow Smelt Osmerus mordax could negatively impact larval Burbot populations.
Zhang, Dongjing; Zhang, Meichun; Wu, Yu; Gilles, Jeremie R L; Yamada, Hanano; Wu, Zhongdao; Xi, Zhiyong; Zheng, Xiaoying
2017-11-13
Standardized larval rearing units for mosquito production are essential for the establishment of a mass-rearing facility. Two larval rearing units, developed respectively by the Guangzhou Wolbaki Biotech Co. Ltd. (Wolbaki) and Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (FAO/IAEA-IPCL), are tested to assess their potential uses to mass-rear the larval stages of Aedes albopictus in support of the establishment of a medium-scale mosquito facility for the application of mosquito genetic control strategies. The triple Wolbachia-infected Ae. albopictus strain (HC strain) was used in this study. The effects of larval densities of two larval rearing trays (corresponding to 2.4, 3.0 and 3.6 larvae/cm 2 ) and tray size/position (top, middle and bottom layers) on the pupae production and larval survival were assessed when trays were stacked within the larval rearing units. The male pupae production, female pupae contamination after sex separation, and male mating competitiveness were also studied by using both larval rearing units in their entirety. The optimal larval rearing density for Wolbaki-tray (Wol-tray) was 6,600 larvae (equal to 3.0 larvae/cm 2 ) and 18,000 larvae (3.6 larvae/cm 2 ) for the FAO/IAEA-IPCL tray (IAEA-tray). No significant difference in pupae production was observed when trays were stacked within top, middle or bottom layers for both units. At thirty-four hours after the first pupation, the average male pupae production was (0.89 × 10 5 ) for the Wol-unit and (3.16 × 10 5 ) for the IAEA-unit. No significant difference was observed in female pupae contamination between these two units. The HC males showed equal male mating competitiveness to wild type males for mating with wild type females in large cages, regardless of whether they were reared in the Wol-unit or IAEA-unit. The current study has indicated that both the Wol-unit and IAEA-unit are suitable for larvae mass-rearing for Ae. albopictus. However, the IAEA-unit, with higher male production and less space required compared to the Wol-unit, is recommended to be used in support of the establishment of a medium-sized mosquito facility.
Teh, Chien Huey; Nazni, Wasi Ahmad; Nurulhusna, Ab Hamid; Norazah, Ahmad; Lee, Han Lim
2017-02-16
Antimicrobial resistance is currently a major global issue. As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, particularly against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). The ability of fly larvae to thrive in septic habitats has prompted us to determine the antibacterial activity and minimum inhibitory concentrations (MICs) of larval extract of flies, namely Lucilia cuprina, Sarcophaga peregrina and Musca domestica against 4 pathogenic bacteria [Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa and Escherichia coli] via a simple and sensitive antibacterial assay, resazurin-based turbidometric (TB) assay as well as to demonstrate the preliminary chemical profile of larval extracts using gas chromatography-mass spectrophotometry (GC-MS). The resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml -1 . Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica. The resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.
Chung, J Sook; Maurer, Leah; Bratcher, Meagan; Pitula, Joseph S; Ogburn, Matthew B
2012-09-03
Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5' and 3' RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-1 was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. We report the ontogenetic variation in CasAQP-1 expression during the larval development of C. sapidus and the induction of its expression at early larval stages in the exposure of hyposalinity. However, it remains to be determined if the increase in CasAQP-1 expression at later larval stages may have a role in adaptation to hyposalinity.
NASA Astrophysics Data System (ADS)
Weiss, Monika; Thatje, Sven; Heilmayer, Olaf
2010-06-01
Phenotypic plasticity is an important but often ignored ability that enables organisms, within species-specific physiological limits, to respond to gradual or sudden extrinsic changes in their environment. In the marine realm, the early ontogeny of decapod crustaceans is among the best known examples to demonstrate a temperature-dependent phenotypic response. Here, we present morphometric results of larvae of the hairy crab Cancer setosus, the embryonic development of which took place at different temperatures at two different sites (Antofagasta, 23°45' S; Puerto Montt, 41°44' S) along the Chilean Coast. Zoea I larvae from Puerto Montt were significantly larger than those from Antofagasta, when considering embryonic development at the same temperature. Larvae from Puerto Montt reared at 12 and 16°C did not differ morphometrically, but sizes of larvae from Antofagasta kept at 16 and 20°C did, being larger at the colder temperature. Zoea II larvae reared in Antofagasta at three temperatures (16, 20, and 24°C) showed the same pattern, with larger larvae at colder temperatures. Furthermore, larvae reared at 24°C, showed deformations, suggesting that 24°C, which coincides with temperatures found during strong EL Niño events, is indicative of the upper larval thermal tolerance limit. C. setosus is exposed to a wide temperature range across its distribution range of about 40° of latitude. Phenotypic plasticity in larval offspring does furthermore enable this species to locally respond to the inter-decadal warming induced by El Niño. Morphological plasticity in this species does support previously reported energetic trade-offs with temperature throughout early ontogeny of this species, indicating that plasticity may be a key to a species’ success to occupy a wide distribution range and/or to thrive under highly variable habitat conditions.
The role of internal waves in larval fish interactions with potential predators and prey
NASA Astrophysics Data System (ADS)
Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy
2014-09-01
Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.
Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle
Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro
2015-01-01
Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor. PMID:26195792
Schultz, Luke; Heck, Michael; Kowalski, Brandon M; Eagles-Smith, Collin A.; Coates, Kelly C.; Dunham, Jason B.
2017-01-01
Nonnative fishes have been increasingly implicated in the decline of native fishes in the Pacific Northwest. Smallmouth Bass Micropterus dolomieu were introduced into the Umpqua River in southwest Oregon in the early 1960s. The spread of Smallmouth Bass throughout the basin coincided with a decline in counts of upstream-migrating Pacific Lampreys Entosphenus tridentatus. This suggested the potential for ecological interactions between Smallmouth Bass and Pacific Lampreys, as well as freshwater-resident Western Brook Lampreys Lampetra richardsoni. To evaluate the potential effects of Smallmouth Bass on lampreys, we sampled diets of Smallmouth Bass and used bioenergetics models to estimate consumption of larval lampreys in a segment of Elk Creek, a tributary to the lower Umpqua River. We captured 303 unique Smallmouth Bass (mean: 197 mm and 136 g) via angling in July and September. We combined information on Smallmouth Bass diet and energy density with other variables (temperature, body size, growth, prey energy density) in a bioenergetics model to estimate consumption of larval lampreys. Larval lampreys were found in 6.2% of diet samples, and model estimates indicated that the Smallmouth Bass we captured consumed 925 larval lampreys in this 2-month study period. When extrapolated to a population estimate of Smallmouth Bass in this segment, we estimated 1,911 larval lampreys were consumed between July and September. Although the precision of these estimates was low, this magnitude of consumption suggests that Smallmouth Bass may negatively affect larval lamprey populations.
Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle.
Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro
2015-08-04
Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor.
Treml, Eric A; Ford, John R; Black, Kerry P; Swearer, Stephen E
2015-01-01
Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. Although we have made significant advances in our understanding of the spatial and temporal dynamics of these individual processes, developing an approach that integrates the entire population connectivity process from reproduction, through dispersal, and to the recruitment of individuals has been difficult. We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes. The spatial characteristics of marine population connectivity are primarily influenced by larval mortality, the duration of the pelagic larval stage, and the settlement competency characteristics, with significant variability imposed by the geographic setting and the timing of larval release. The relative influence and the direction and strength of the main effects were strongly consistent among 10 connectivity-based metrics. These important intrinsic factors (mortality, length of the pelagic larval stage, and the extent of the precompetency window) and the spatial and temporal variability represent key research priorities for advancing our understanding of the connectivity process and metapopulation outcomes.
Using larval fish community structure to guide long-term monitoring of fish spawning activity
Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.
2015-01-01
Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.
A simple approximation for larval retention around reefs
NASA Astrophysics Data System (ADS)
Cetina-Heredia, Paulina; Connolly, Sean R.
2011-09-01
Estimating larval retention at individual reefs by local scale three-dimensional flows is a significant problem for understanding, and predicting, larval dispersal. Determining larval dispersal commonly involves the use of computationally demanding and expensively calibrated/validated hydrodynamic models that resolve reef wake eddies. This study models variation in larval retention times for a range of reef shapes and circulation regimes, using a reef-scale three-dimensional hydrodynamic model. It also explores how well larval retention time can be estimated based on the "Island Wake Parameter", a measure of the degree of flow turbulence in the wake of reefs that is a simple function of flow speed, reef dimension, and vertical diffusion. The mean residence times found in the present study (0.48-5.64 days) indicate substantial potential for self-recruitment of species whose larvae are passive, or weak swimmers, for the first several days after release. Results also reveal strong and significant relationships between the Island Wake Parameter and mean residence time, explaining 81-92% of the variability in retention among reefs across a range of unidirectional flow speeds and tidal regimes. These findings suggest that good estimates of larval retention may be obtained from relatively coarse-scale characteristics of the flow, and basic features of reef geomorphology. Such approximations may be a valuable tool for modeling connectivity and meta-population dynamics over large spatial scales, where explicitly characterizing fine-scale flows around reef requires a prohibitive amount of computation and extensive model calibration.
NASA Astrophysics Data System (ADS)
Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.
We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.
Developing an expanded vector control toolbox for malaria elimination
Tatarsky, Allison; Diabate, Abdoulaye; Chaccour, Carlos J; Marshall, John M; Okumu, Fredros O; Brunner, Shannon; Newby, Gretchen; Williams, Yasmin A; Malone, David; Tusting, Lucy S; Gosling, Roland D
2017-01-01
Vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) accounts for most of the malaria burden reductions achieved recently in low and middle-income countries (LMICs). LLINs and IRS are highly effective, but are insufficient to eliminate malaria transmission in many settings because of operational constraints, growing resistance to available insecticides and mosquitoes that behaviourally avoid contact with these interventions. However, a number of substantive opportunities now exist for rapidly developing and implementing more diverse, effective and sustainable malaria vector control strategies for LMICs. For example, mosquito control in high-income countries is predominantly achieved with a combination of mosquito-proofed housing and environmental management, supplemented with large-scale insecticide applications to larval habitats and outdoor spaces that kill off vector populations en masse, but all these interventions remain underused in LMICs. Programmatic development and evaluation of decentralised, locally managed systems for delivering these proactive mosquito population abatement practices in LMICs could therefore enable broader scale-up. Furthermore, a diverse range of emerging or repurposed technologies are becoming available for targeting mosquitoes when they enter houses, feed outdoors, attack livestock, feed on sugar or aggregate into mating swarms. Global policy must now be realigned to mobilise the political and financial support necessary to exploit these opportunities over the decade ahead, so that national malaria control and elimination programmes can access a much broader, more effective set of vector control interventions. PMID:28589022
1985-10-01
fishes in the tailwater in relation to hydropower generation were apparent. The stomach contents of fishes in the holding tank (representing...tailwater or they may be flushed out of the tailwater. 26. Consumption of tailwater biota by fish appears to be related to daily flow regimes associated...macroinvertebrates ingested by the four species of fish investigated in this study were predomi- nantly larval stages of periphyton scrapers. Growth of tailwater
Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M
2015-08-05
Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.
Real-time ichthyoplankton drift in Northeast Arctic cod and Norwegian spring-spawning herring.
Vikebø, Frode B; Ådlandsvik, Bjørn; Albretsen, Jon; Sundby, Svein; Stenevik, Erling Kåre; Huse, Geir; Svendsen, Einar; Kristiansen, Trond; Eriksen, Elena
2011-01-01
Individual-based biophysical larval models, initialized and parameterized by observations, enable numerical investigations of various factors regulating survival of young fish until they recruit into the adult population. Exponentially decreasing numbers in Northeast Arctic cod and Norwegian Spring Spawning herring early changes emphasizes the importance of early life history, when ichthyoplankton exhibit pelagic free drift. However, while most studies are concerned with past recruitment variability it is also important to establish real-time predictions of ichthyoplankton distributions due to the increasing human activity in fish habitats and the need for distribution predictions that could potentially improve field coverage of ichthyoplankton. A system has been developed for operational simulation of ichthyoplankton distributions. We have coupled a two-day ocean forecasts from the Norwegian Meteorological Institute with an individual-based ichthyoplankton model for Northeast Arctic cod and Norwegian Spring Spawning herring producing daily updated maps of ichthyoplankton distributions. Recent years observed spawning distribution and intensity have been used as input to the model system. The system has been running in an operational mode since 2008. Surveys are expensive and distributions of early stages are therefore only covered once or twice a year. Comparison between model and observations are therefore limited in time. However, the observed and simulated distributions of juvenile fish tend to agree well during early fall. Area-overlap between modeled and observed juveniles September 1(st) range from 61 to 73%, and 61 to 71% when weighted by concentrations. The model system may be used to evaluate the design of ongoing surveys, to quantify the overlap with harmful substances in the ocean after accidental spills, as well as management planning of particular risky operations at sea. The modeled distributions are already utilized during research surveys to estimate coverage success of sampled biota and immediately after spills from ships at sea.
Real-Time Ichthyoplankton Drift in Northeast Arctic Cod and Norwegian Spring-Spawning Herring
Vikebø, Frode B.; Ådlandsvik, Bjørn; Albretsen, Jon; Sundby, Svein; Stenevik, Erling Kåre; Huse, Geir; Svendsen, Einar; Kristiansen, Trond; Eriksen, Elena
2011-01-01
Background Individual-based biophysical larval models, initialized and parameterized by observations, enable numerical investigations of various factors regulating survival of young fish until they recruit into the adult population. Exponentially decreasing numbers in Northeast Arctic cod and Norwegian Spring Spawning herring early changes emphasizes the importance of early life history, when ichthyoplankton exhibit pelagic free drift. However, while most studies are concerned with past recruitment variability it is also important to establish real-time predictions of ichthyoplankton distributions due to the increasing human activity in fish habitats and the need for distribution predictions that could potentially improve field coverage of ichthyoplankton. Methodology/Principal Findings A system has been developed for operational simulation of ichthyoplankton distributions. We have coupled a two-day ocean forecasts from the Norwegian Meteorological Institute with an individual-based ichthyoplankton model for Northeast Arctic cod and Norwegian Spring Spawning herring producing daily updated maps of ichthyoplankton distributions. Recent years observed spawning distribution and intensity have been used as input to the model system. The system has been running in an operational mode since 2008. Surveys are expensive and distributions of early stages are therefore only covered once or twice a year. Comparison between model and observations are therefore limited in time. However, the observed and simulated distributions of juvenile fish tend to agree well during early fall. Area-overlap between modeled and observed juveniles September 1st range from 61 to 73%, and 61 to 71% when weighted by concentrations. Conclusions/Significance The model system may be used to evaluate the design of ongoing surveys, to quantify the overlap with harmful substances in the ocean after accidental spills, as well as management planning of particular risky operations at sea. The modeled distributions are already utilized during research surveys to estimate coverage success of sampled biota and immediately after spills from ships at sea. PMID:22110633
Soleimani-Ahmadi, Moussa; Vatandoost, Hassan; Hanafi-Bojd, Ahmad-Ali; Zare, Mehdi; Safari, Reza; Mojahedi, Abdolrasul; Poorahmad-Garbandi, Fatemeh
2013-07-01
To determine the effects of environmental parameters of larval habitats on distribution and abundance of anopheline mosquitoes in Rudan county of Iran. This cross-sectional study was conducted during the mosquito breeding season from February 2010 to October 2011. The anopheline larvae were collected using the standard dipping method. The specimens were identified using a morphological-based key. Simultaneously with larval collection, environmental parameters of the larval habitats including water current and turbidity, sunlight situation, and substrate type of habitats were recorded. Water samples were taken from breeding sites during larval collection. Before collection of samples, the water temperature was measured. The water samples were analysed for turbidity, conductivity, total alkalinity, total dissolved solid, pH and ions including chloride, sulphate, calcium, and magnesium. Statistical correlation analysis and ANOVA test were used to analyze the association between environmental parameters and larval mosquito abundance. In total 2 973 larvae of the genus Anopheles were collected from 25 larval habitats and identified using morphological characters. They comprised of six species: An. dthali (53.21%), An. stephensi (24.22%), An. culicifacies (14.06%), An. superpictus (4.07%), An. turkhudi (3.30%), and An. apoci (1.14%). The most abundant species was An. dthali which were collected from all of the study areas. Larvae of two malaria vectors, An. dthali and An. stephensi, co-existed and collected in a wide range of habitats with different physico-chemical parameters. The most common larval habitats were man-made sites such as sand mining pools with clean and still water. The anopheline mosquitoes also preferred permanent habitats in sunlight with sandy substrates. The results indicated that there was a significant relationship between mean physico-chemical parameters such as water temperature, conductivity, total alkalinity, sulphate, chloride, and mosquito distribution and abundance. The results of this study showed a correlation between certain environmental parameters and mosquito larvae abundance, and these parameters should be considered in planning and implementing larval control programs. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.
Kirschman, Lucas J; McCue, Marshall D; Boyles, Justin G; Warne, Robin W
2017-09-15
Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life-stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13 C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I axis may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones - the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13 C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, decreased fat stores and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13 C-labelled protein stores. These results provide evidence for a proximate cause of the physiological trade-off between larval growth and development, and provide insight into the energetic and nutrient costs that shape fitness trade-offs across life stages. © 2017. Published by The Company of Biologists Ltd.
DNA Metabarcoding of Amazonian Ichthyoplankton Swarms.
Maggia, M E; Vigouroux, Y; Renno, J F; Duponchelle, F; Desmarais, E; Nunez, J; García-Dávila, C; Carvajal-Vallejos, F M; Paradis, E; Martin, J F; Mariac, C
2017-01-01
Tropical rainforests harbor extraordinary biodiversity. The Amazon basin is thought to hold 30% of all river fish species in the world. Information about the ecology, reproduction, and recruitment of most species is still lacking, thus hampering fisheries management and successful conservation strategies. One of the key understudied issues in the study of population dynamics is recruitment. Fish larval ecology in tropical biomes is still in its infancy owing to identification difficulties. Molecular techniques are very promising tools for the identification of larvae at the species level. However, one of their limits is obtaining individual sequences with large samples of larvae. To facilitate this task, we developed a new method based on the massive parallel sequencing capability of next generation sequencing (NGS) coupled with hybridization capture. We focused on the mitochondrial marker cytochrome oxidase I (COI). The results obtained using the new method were compared with individual larval sequencing. We validated the ability of the method to identify Amazonian catfish larvae at the species level and to estimate the relative abundance of species in batches of larvae. Finally, we applied the method and provided evidence for strong temporal variation in reproductive activity of catfish species in the Ucayalí River in the Peruvian Amazon. This new time and cost effective method enables the acquisition of large datasets, paving the way for a finer understanding of reproductive dynamics and recruitment patterns of tropical fish species, with major implications for fisheries management and conservation.
Whole-brain serial-section electron microscopy in larval zebrafish.
Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian
2017-05-18
High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.
In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters.
Hama, Kotaro; Provost, Elayne; Baranowski, Timothy C; Rubinstein, Amy L; Anderson, Jennifer L; Leach, Steven D; Farber, Steven A
2009-02-01
Optical clarity of larvae makes the zebrafish ideal for real-time analyses of vertebrate organ function through the use of fluorescent reporters of enzymatic activities. A key function of digestive organs is to couple the generation of enzymes with mechanical processes that enable nutrient availability and absorption. However, it has been extremely difficult, and in many cases not possible, to directly observe digestive processes in a live vertebrate. Here we describe a new method to visualize intestinal protein and lipid processing simultaneously in live zebrafish larvae using a quenched fluorescent protein (EnzChek) and phospholipid (PED6). By employing these reagents, we found that wild-type larvae exhibit significant variation in intestinal phospholipase and protease activities within a group but display a strong correlation between the activities within individuals. Furthermore, we found that pancreas function is essential for larval digestive protease activity but not for larval intestinal phospholipase activity. Although fat-free (ffr) mutant larvae were previously described to exhibit impaired lipid processes, we found they also had significantly reduced protease activity. Finally, we selected and evaluated compounds that were previously suggested to have altered phospholipase activity and are known or suspected to have inflammatory effects in the intestinal tract including nonsteroidal anti-inflammatory drugs, and identified a compound that significantly increases intestinal phospholipid processing. Thus the multiple fluorescent reporter-based methodology facilitates the rapid analysis of digestive organ function in live zebrafish larvae.
Whole-brain serial-section electron microscopy in larval zebrafish
NASA Astrophysics Data System (ADS)
Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian
2017-05-01
High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.
Harwood, James F; Farooq, Muhammad; Turnwall, Brent T; Richardson, Alec G
2015-07-01
The principal vectors of chikungunya and dengue viruses typically oviposit in water-filled artificial and natural containers, including tree holes. Despite the risk these and similar tree hole-inhabiting mosquitoes present to global public health, surprisingly few studies have been conducted to determine an efficient method of applying larvicides specifically to tree holes. The Stihl SR 450, a backpack sprayer commonly utilized during military and civilian vector control operations, may be suitable for controlling larval tree-hole mosquitoes, as it is capable of delivering broadcast applications of granular and liquid dispersible formulations of Bacillus thuringiensis var. israelensis (Bti) to a large area relatively quickly. We compared the application effectiveness of two granular (AllPro Sustain MGB and VectoBac GR) and two liquid (Aquabac XT and VectoBac WDG) formulations of Bti in containers placed on bare ground, placed beneath vegetative cover, and hung 1.5 or 3 m above the ground to simulate tree holes. Aedes aegypti (L.) larval mortality and Bti droplet and granule density data (when appropriate) were recorded for each formulation. Overall, granular formulations of Bti resulted in higher mortality rates in the simulated tree-hole habitats, whereas applications of granular and liquid formulations resulted in similar levels of larval mortality in containers placed on the ground in the open and beneath vegetation. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Functional impacts of ocean acidification in an ecologically critical foundation species.
Gaylord, Brian; Hill, Tessa M; Sanford, Eric; Lenz, Elizabeth A; Jacobs, Lisa A; Sato, Kirk N; Russell, Ann D; Hettinger, Annaliese
2011-08-01
Anthropogenic CO(2) is reducing the pH and altering the carbonate chemistry of seawater, with repercussions for marine organisms and ecosystems. Current research suggests that calcification will decrease in many species, but compelling evidence of impaired functional performance of calcium carbonate structures is sparse, particularly in key species. Here we demonstrate that ocean acidification markedly degrades the mechanical integrity of larval shells in the mussel Mytilus californianus, a critical community member on rocky shores throughout the northeastern Pacific. Larvae cultured in seawater containing CO(2) concentrations expected by the year 2100 (540 or 970 ppm) precipitated weaker, thinner and smaller shells than individuals raised under present-day seawater conditions (380 ppm), and also exhibited lower tissue mass. Under a scenario where mussel larvae exposed to different CO(2) levels develop at similar rates, these trends suggest a suite of potential consequences, including an exacerbated vulnerability of new settlers to crushing and drilling attacks by predators; poorer larval condition, causing increased energetic stress during metamorphosis; and greater risks from desiccation at low tide due to shifts in shell area to body mass ratios. Under an alternative scenario where responses derive exclusively from slowed development, with impacted individuals reaching identical milestones in shell strength and size by settlement, a lengthened larval phase could increase exposure to high planktonic mortality rates. In either case, because early life stages operate as population bottlenecks, driving general patterns of distribution and abundance, the ecological success of this vital species may be tied to how ocean acidification proceeds in coming decades.
Fish Inner Ear Otolith Growth Under Real Microgravity (Spaceflight) and Clinorotation
NASA Astrophysics Data System (ADS)
Anken, Ralf; Brungs, Sonja; Grimm, Dennis; Knie, Miriam; Hilbig, Reinhard
2016-06-01
Using late larval stages of cichlid fish ( Oreochromis mossambicus) we have shown earlier that the biomineralization of otoliths is adjusted towards gravity by means of a neurally guided feedback loop. Centrifuge experiments, e.g., revealed that increased gravity slows down otolith growth. Microgravity thus should yield an opposite effect, i.e., larger than normal otoliths. Consequently, late larval cichlids (stage 14, vestibular system operational) were subjected to real microgravity during the 12 days FOTON-M3 spaceflight mission (OMEGAHAB-hardware). Controls were kept at 1 g on ground within an identical hardware. Animals of another batch were subsequently clinorotated within a submersed fast-rotating clinostat with one axis of rotation (2d-clinostat), a device regarded to simulate microgravity. Temperature and light conditions were provided in analogy to the spaceflight experiment. Controls were maintained at 1 g within the same aquarium. After all experiments, animals had reached late stage 21 (fish can swim freely). Maintenance under real microgravity during spaceflight resulted in significantly larger than normal otoliths (both lapilli and sagittae, involved in sensing gravity and the hearing process, respectively). This result is fully in line with an earlier spaceflight study in the course of which otoliths from late-staged swordtails Xiphophorus helleri were analyzed. Clinorotation resulted in larger than 1 g sagittae. However, no effect on lapilli was obtained. Possibly, an effect was present but too light to be measurable. Overall, spaceflight obviously induces an adaptation of otolith growth, whereas clinorotation does not fully mimic conditions of microgravity regarding late larval cichlids.
NASA Astrophysics Data System (ADS)
Hvid Ribergaard, Mads; Anker Pedersen, Søren; Ådlandsvik, Bjørn; Kliem, Nicolai
2004-08-01
The ocean circulation on the West Greenland shelf are modelled using a 3D finite element circulation model forced by wind data from the Danish Meteorological Institute-High-Resolution Limited Area Model operational atmospheric model for the Greenland area and tides at the open boundary. Residual anticyclonic eddies are generated around the shelf banks north of 64∘N and areas of permanent upwelling are located west of the shelf banks. The potential distances of shrimp larvae transport from larval release to settling at the bottom were studied, using a particle-tracking model. Particles released (hatched shrimp larvae) south of 62∘N had a probability of about 2% of being lost to the Canadian Shelf, whereas for particles released north of 64∘N almost none were lost from the West Greenland Shelf. The particles tended to have long retention times at the shelf banks caused by the residual anticyclonic eddies. The retention times increased slightly for particles tracked at depths from 80 to 30 m with minor implications for potential transport distances of larval shrimp and plankton.
Suthar, Jaydipbhai
2016-01-01
Pseudoterranovosis is a well-known human disease caused by anisakid larvae belonging to the genus Pseudoterranova. Human infection occurs after consuming infected fish. Hence the presence of Pseudoterranova larvae in the flesh of the fish can cause serious losses and problems for the seafood, fishing and fisheries industries. The accurate identification of Pseudoterranova larvae in fish is important, but challenging because the larval stages of a number of different genera, including Pseudoterranova, Terranova and Pulchrascaris, look similar and cannot be differentiated from each other using morphological criteria, hence they are all referred to as Terranova larval type. Given that Terranova larval types in seafood are not necessarily Pseudoterranova and may not be dangerous, the aim of the present study was to investigate the occurrence of Terranova larval types in Australian marine fish and to determine their specific identity. A total of 137 fish belonging to 45 species were examined. Terranova larval types were found in 13 species, some of which were popular edible fish in Australia. The sequences of the first and second internal transcribed spacers (ITS-1 and ITS-2 respectively) of the Terranova larvae in the present study showed a high degree of similarity suggesting that they all belong to the same species. Due to the lack of a comparable sequence data of a well identified adult in the GenBank database the specific identity of Terranova larval type in the present study remains unknown. The sequence of the ITS regions of the Terranova larval type in the present study and those of Pseudoterranova spp. available in GenBank are significantly different, suggesting that larvae found in the present study do not belong to the genus Pseudoterranova, which is zoonotic. This study does not rule out the presence of Pseudoterranova larvae in Australian fish as Pseudoterranova decipiens E has been reported in adult form from seals in Antarctica and it is known that they have seasonal presence in Australian southern coasts. The genetic distinction of Terranova larval type in the present study from Pseudoterranova spp. along with the presence of more species of elasmobranchs in Australian waters (definitive hosts of Terranova spp. and Pulchrascaris spp.) than seals (definitive hosts of Pseudoterranova spp.) suggest that Terranova larval type in the present study belong to either genus Terranova or Pulchrascaris, which are not known to cause disease in humans. The present study provides essential information that could be helpful to identify Australian Terranova larval types in future studies. Examination and characterisation of further specimens, especially adults of Terranova and Pulchrascaris, is necessary to fully elucidate the identity of these larvae. PMID:27014510
Vázquez-Martínez, M Guadalupe; Rodríguez, Mario H; Arredondo-Jiménez, Juan I; Méndez-Sánchez, José D
2003-06-01
The capability of Phormidium animalis, a cyanobacterium commonly found in larval habitats of Anopheles albimanus in southern Mexico, to support larval development of this mosquito was investigated. First-stage larvae were reared under insectary conditions with P. animalis ad libitum and their development was compared with larvae fed with wheat germ. The time of pupation and adult mosquito size, assessed by wing length, were similar in both groups, but fewer adult mosquitoes were obtained from larvae fed with the cyanobacteria. Nevertheless, these observations indicate that P. animalis is ingested and assimilated by larval An. albimanus, making this cyanobacterium a good candidate for genetic engineering for the introduction of mosquitocidal toxins for malaria control in the region.
Fillinger, Ulrike; Kannady, Khadija; William, George; Vanek, Michael J; Dongus, Stefan; Nyika, Dickson; Geissbühler, Yvonne; Chaki, Prosper P; Govella, Nico J; Mathenge, Evan M; Singer, Burton H; Mshinda, Hassan; Lindsay, Steven W; Tanner, Marcel; Mtasiwa, Deo; de Castro, Marcia C; Killeen, Gerry F
2008-01-01
Background As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed. Methods A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards. Results The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6–37.6%; p = 0.04). Conclusion This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience. PMID:18218148
Larval cannibalism and pupal defense against cannibalism in two species of tenebrionid beetles.
Ichikawa, Toshio; Kurauchi, Toshiaki
2009-08-01
Cannibalism of pupae by larvae has been documented In many species of Insects, but the features of larval cannibalism and pupal defensive mechanisms against larval cannibalism have been largely Ignored. Pupae of tenebrionld beetles rotate their abdominal segments in a circular motion in response to the tactile stimulation of appendages, including legs, antennae, maxillary pulps, and wings. When the pupal abdominal rotation responses of Tenebrio molitor and Zophobas atratus were completely blocked by transecting the ventral nerve cord (VNC) of the pupae, the appendages of the paralytic pupae became initial, major targets for attack by larval cannibals. The majority of 20 paralytic pupae was cannibalized by 100 larvae within 6 h, and almost all the pupae were killed within 2-3 days. In contrast, only a few pupae of Z. atratus and several pupae of T. molitor were cannibalized when the VNC was Intact. The abdominal rotation response of the pupae thus functions as an effective defense against larval cannibalism.
A review of postfeeding larval dispersal in blowflies: implications for forensic entomology
NASA Astrophysics Data System (ADS)
Gomes, Leonardo; Godoy, Wesley Augusto Conde; von Zuben, Claudio José
2006-05-01
Immature and adult stages of blowflies are one of the primary invertebrate consumers of decomposing animal organic matter. When the food supply is consumed or when the larvae complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as postfeeding larval dispersal. Several important ecological and physiological aspects of this process were studied since the work by Green (Ann Appl Biol 38:475, 1951) 50 years ago. An understanding of postfeeding larval dispersal can be useful for determining the postmortem interval (PMI) of human cadavers in legal medicine, particularly because this interval may be underestimated if older dispersing larvae or those that disperse longer, faster, and deeper are not taken into account. In this article, we review the process of postfeeding larval dispersal and its implications for legal medicine, in particular showing that aspects such as burial behavior and competition among species of blowflies can influence this process and consequently, the estimation of PMI.
Evolved differences in larval social behavior mediated by novel pheromones
Mast, Joshua D; De Moraes, Consuelo M; Alborn, Hans T; Lavis, Luke D; Stern, David L
2014-01-01
Pheromones, chemical signals that convey social information, mediate many insect social behaviors, including navigation and aggregation. Several studies have suggested that behavior during the immature larval stages of Drosophila development is influenced by pheromones, but none of these compounds or the pheromone-receptor neurons that sense them have been identified. Here we report a larval pheromone-signaling pathway. We found that larvae produce two novel long-chain fatty acids that are attractive to other larvae. We identified a single larval chemosensory neuron that detects these molecules. Two members of the pickpocket family of DEG/ENaC channel subunits (ppk23 and ppk29) are required to respond to these pheromones. This pheromone system is evolving quickly, since the larval exudates of D. simulans, the sister species of D. melanogaster, are not attractive to other larvae. Our results define a new pheromone signaling system in Drosophila that shares characteristics with pheromone systems in a wide diversity of insects. DOI: http://dx.doi.org/10.7554/eLife.04205.001 PMID:25497433
J.P. Sagar; D.H. Olson; R.A. Schmitz
2007-01-01
The purpose of this study was to estimate the variation in growth and survival that occur during the larval stage of Dicamptodon tenebrosus. We used mark-recapture to assess the rates of apparent survival and growth for two larval age classes (first-years and second/third-years), in winter and summer seasons and in the presence of culverts. By...
Michael J. Firko; Janes Leslie Hayes
1990-01-01
We examined relationships between larval weight and degree of resistance to cypermethrin in tobacco budworm, Heliothis virescens (F.). Laboratory-reared larvae (9.0-175.4 mg) were treated with either 0.1 or 1.0 mg cypermethrin in acetone. Degree of debilitation of each larva was assessed at intervals from 0.5 h to 5 d after treatment cumulative...
USDA-ARS?s Scientific Manuscript database
The larval feeding requirements and biology of the generalist predatory muscid fly Coenosia attenuata were investigated at 25 deg C. Larval C. attenuata were fed 2nd-, 3rd-, and 4th-instar (L2, L3, and L4) larvae of the fungus gnat Bradysia impatiens at variable rates to determine minimum and optimu...
Hoar, Bryanne M; Eberhardt, Alexander G; Kutz, Susan J
2012-09-01
Larval inhibition is a common strategy of Trichostrongylidae nematodes that may increase survival of larvae during unfavourable periods and concentrate egg production when conditions are favourable for development and transmission. We investigated the propensity for larval inhibition in a population of Ostertagia gruehneri, the most common gastrointestinal Trichostrongylidae nematode of Rangifer tarandus. Initial experimental infections of 4 reindeer with O. gruehneri sourced from the Bathurst caribou herd in Arctic Canada suggested that the propensity for larval inhibition was 100%. In the summer of 2009 we infected 12 additional reindeer with the F1 and F2 generations of O. gruehneri sourced from the previously infected reindeer to further investigate the propensity of larval inhibition. The reindeer were divided into 2 groups and half were infected before the summer solstice (17 June) and half were infected after the solstice (16 July). Reindeer did not shed eggs until March 2010, i.e. 8 and 9 months post-infection. These results suggest obligate larval inhibition for at least 1 population of O. gruehneri, a phenomenon that has not been conclusively shown for any other trichostrongylid species. Obligate inhibition is likely to be an adaptation to both the Arctic environment and to a migratory host and may influence the ability of O. gruehneri to adapt to climate change.
NASA Astrophysics Data System (ADS)
Ingram, G. Walter; Alvarez-Berastegui, Diego; Reglero, Patricia; Balbín, Rosa; García, Alberto; Alemany, Francisco
2017-06-01
Fishery independent indices of bluefin tuna larvae in the Western Mediterranean Sea are presented utilizing ichthyoplankton survey data collected from 2001 through 2005 and 2012 through 2013. Indices were developed using larval catch rates collected using two different types of bongo sampling, by first standardizing catch rates by gear/fishing-style and then employing a delta-lognormal modeling approach. The delta-lognormal models were developed three ways: 1) a basic larval index including the following covariates: time of day, a systematic geographic area variable, month and year; 2) a standard environmental larval index including the following covariates: mean water temperature over the mixed layer depth, mean salinity over the mixed layer depth, geostrophic velocity, time of day, a systematic geographic area variable, month and year; and 3) a habitat-adjusted larval index including the following covariates: a potential habitat variable, time of day, a systematic geographic area variable, month and year. Results indicated that all three model-types had similar precision in index values. However, the habitat-adjusted larval index demonstrated a high correlation with estimates of spawning stock biomass from the previous stock assessment model, and, therefore, is recommended as a tuning index in future stock assessment models.
NASA Astrophysics Data System (ADS)
Mcveigh, H.; Waller, J. D.
2016-02-01
The Gulf of Maine is experiencing a rapid warming in sea surface temperature and a marked decrease in pH. This study aimed to quantify the impact of elevated temperature and acidification on the larval development of the iconic American lobster (Homarus americanus). Experimental conditions were reflective of current and IPCC predicted levels of temperature and pCO2 to be reached by the end of the century. Larvae were measured for growth (carapace length), development time, and survivorship over the larval duration. Treatments of elevated temperatures experienced decreased development time across the larval stages of H. americanus. Consequently mortality increased at a significantly higher rate under elevated temperature. An increase in larval mortality may decrease recruitment to the commercial fishery, thus impacting the most valuable single species in the state of Maine. Furthermore, experimental pCO2 treatments yielded a significantly decreased development time between larval stages II and III, yet did not have a significant impact on carapace length or mortality. This study indicates that warmer temperatures may have a greater influence than decreased pH on larval development and survival. Determining how this species may respond to changing climactic conditions will better inform the sustainability efforts of such a critical marine fishery.
Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín
2016-07-12
Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms.
Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín
2016-01-01
Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms. PMID:27406923
Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test
Hardy, Sarah M.; Smith, Craig R.; Thurnherr, Andreas M.
2015-01-01
Low food availability is a major structuring force in deep-sea benthic communities, sustaining only very low densities of organisms in parts of the abyss. These low population densities may result in an Allee effect, whereby local reproductive success is inhibited, and populations are maintained by larval dispersal from bathyal slopes. This slope–abyss source–sink (SASS) hypothesis suggests that the abyssal seafloor constitutes a vast sink habitat with macrofaunal populations sustained only by an influx of larval ‘refugees' from source areas on continental slopes, where higher productivity sustains greater population densities. Abyssal macrofaunal population densities would thus be directly related to larval inputs from bathyal source populations. We evaluate three predictions derived from the SASS hypothesis: (i) slope-derived larvae can be passively transported to central abyssal regions within a single larval period, (ii) projected larval export from slopes to the abyss reproduces global patterns of macrofaunal abundance and (iii) macrofaunal abundance decreases with distance from the continental slope. We find that abyssal macrofaunal populations are unlikely to be sustained solely through influx of larvae from slope sources. Rather, local reproduction probably sustains macrofaunal populations in relatively high-productivity abyssal areas, which must also be considered as potential larval source areas for more food-poor abyssal regions. PMID:25948686
Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes
2015-09-01
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.
Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes
2015-01-01
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs. PMID:26517655
Gunathilaka, P A D H N; Uduwawala, U M H U; Udayanga, N W B A L; Ranathunge, R M T B; Amarasinghe, L D; Abeyewickreme, W
2017-11-23
Larval diet quality and rearing conditions have a direct and irreversible effect on adult traits. Therefore, the current study was carried out to optimize the larval diet for mass rearing of Aedes aegypti, for Sterile Insect Technique (SIT)-based applications in Sri Lanka. Five batches of 750 first instar larvae (L 1) of Ae. aegypti were exposed to five different concentrations (2-10%) of International Atomic Energy Agency (IAEA) recommended the larval diet. Morphological development parameters of larva, pupa, and adult were detected at 24 h intervals along with selected growth parameters. Each experiment was replicated five times. General Linear Modeling along with Pearson's correlation analysis were used for statistical treatments. Significant differences (P < 0.05) among the larvae treated with different concentrations were found using General Linear Modeling in all the stages namely: total body length and the thoracic length of larvae; cephalothoracic length and width of pupae; thoracic length, thoracic width, abdominal length and the wing length of adults; along with pupation rate and success, sex ratio, adult success, fecundity and hatching rate of Ae. aegypti. The best quality adults can be produced at larval diet concentration of 10%. However, the 8% larval diet concentration was most suitable for adult male survival.
Building a Beetle: How Larval Environment Leads to Adult Performance in a Horned Beetle
Reaney, Leeann T.; Knell, Robert J.
2015-01-01
The link between the expression of the signals used by male animals in contests with the traits which determine success in those contests is poorly understood. This is particularly true in holometabolous insects such as horned beetles where signal expression is determined during metamorphosis and is fixed during adulthood, whereas performance is influenced by post-eclosion feeding. We used path analysis to investigate the relationships between larval and adult nutrition, horn and body size and fitness-related traits such as strength and testes mass in the horned beetle Euoniticellus intermedius. In males weight gain post-eclosion had a central role in determining both testes mass and strength. Weight gain was unaffected by adult nutrition but was strongly correlated with by horn length, itself determined by larval resource availability, indicating strong indirect effects of larval nutrition on the adult beetle’s ability to assimilate food and grow tissues. Female strength was predicted by a simple path diagram where strength was determined by eclosion weight, itself determined by larval nutrition: weight gain post-eclosion was not a predictor of strength in this sex. Based on earlier findings we discuss the insulin-like signalling pathway as a possible mechanism by which larval nutrition could affect adult weight gain and thence traits such as strength. PMID:26244874
Identification of mosquito larval habitats in high resolution satellite data
NASA Astrophysics Data System (ADS)
Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.
2003-09-01
Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.
Wang, Xiaoming; Liu, Tong; Wu, Yang; Zhong, Daibin; Zhou, Guofa; Su, Xinghua; Xu, Jiabao; Sotero, Charity F; Sadruddin, Adnan A; Wu, Kun; Chen, Xiao-Guang; Yan, Guiyun
2018-05-30
Interactions between bacterial microbiota and mosquitoes play an important role in mosquitoes' capacity to transmit pathogens. However, microbiota assemblages within mosquitoes and the impact of microbiota in environments on mosquito development and survival remain unclear. This study examined microbiota assemblages and the effects of aquatic environment microbiota on the larval development of the Aedes albopictus mosquito, an important dengue virus vector. Life table studies have found that reducing bacterial load in natural aquatic habitats through water filtering and treatment with antibiotics significantly reduced the larva-to-adult emergence rate. This finding was consistent in two types of larval habitats examined-discarded tires and flowerpots, suggesting that bacteria play a crucial role in larval development. Pyrosequencing of the bacterial 16S rRNA gene was used to determine the diversity of bacterial communities in larval habitats and the resulting numbers of mosquitoes under both laboratory and field conditions. The microbiota profiling identified common shared bacteria among samples from different years; further studies are needed to determine whether these bacteria represent a core microbiota. The highest microbiota diversity was found in aquatic habitats, followed by mosquito larvae, and the lowest in adult mosquitoes. Mosquito larvae ingested their bacterial microbiota and nutrients from aquatic habitats of high microbiota diversity. Taken together, the results support the observation that Ae. albopictus larvae are able to utilize diverse bacteria from aquatic habitats and that live bacteria from aquatic habitats play an important role in larval mosquito development and survival. These findings provide new insights into bacteria's role in mosquito larval ecology. © 2018 John Wiley & Sons Ltd.
Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.
Barhoumi, Badreddine; Clérandeau, Christelle; Landi, Laure; Pichon, Anaïk; Le Bihanic, Florane; Poirier, Dominique; Anschutz, Pierre; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme
2016-09-01
Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC. © 2016 SETAC.
Ebner, F; Hepworth, M R; Rausch, S; Janek, K; Niewienda, A; Kühl, A; Henklein, P; Lucius, R; Hamelmann, E; Hartmann, S
2014-11-01
Gastrointestinal nematodes are currently being evaluated as a novel therapeutic in the treatment of chronic human inflammatory disorders, due to their unique ability to induce immunoregulatory pathways in their hosts. In particular, administration of ova from the pig whipworm Trichuris suis (T. suis; TSO) has been proposed for the treatment of allergic, inflammatory and autoimmune disorders. Despite these advances, the biological pathways through which TSO therapy modulates the host immune system in the context of human disease remain undefined. We characterized the dominant proteins present in the excretory/secretory (E/S) products of first-stage (L1) T. suis larvae (Ts E/S) using LC-MS/MS analysis and examined the immunosuppressive properties of whole larval Ts E/S in vitro and in a murine model of allergic airway disease. Administration of larval Ts E/S proteins in vivo during the allergen sensitization phase was sufficient to suppress airway hyperreactivity, bronchiolar inflammatory infiltrate and allergen-specific IgE production. Three proteins in larval Ts E/S were unambiguously identified. The immunomodulatory function of larval Ts E/S was found to be partially dependent on the immunoregulatory cytokine IL-10. Taken together, these data demonstrate that the released proteins of larval T. suis have significant immunomodulatory capacities and efficiently dampen allergic airway hyperreactivity. Thus, the therapeutic potential of defined larval E/S proteins should be exploited for the treatment of human allergic disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effects of beach morphology and waves on onshore larval transport
NASA Astrophysics Data System (ADS)
Fujimura, A.; Reniers, A.; Paris, C. B.; Shanks, A.; MacMahan, J.; Morgan, S.
2015-12-01
Larvae of intertidal species grow offshore, and migrate back to the shore when they are ready to settle on their adult substrates. In order to reach the habitat, they must cross the surf zone, which is characterized as a semi-permeable barrier. This is accomplished through physical forcing (i.e., waves and current) as well as their own behavior. Two possible scenarios of onshore larval transport are proposed: Negatively buoyant larvae stay in the bottom boundary layer because of turbulence-dependent sinking behavior, and are carried toward the shore by streaming of the bottom boundary layer; positively buoyant larvae move to the shore during onshore wind events, and sink to the bottom once they encounter high turbulence (i.e., surf zone edge), where they are carried by the bottom current toward the shore (Fujimura et al. 2014). Our biophysical Lagrangian particle tracking model helps to explain how beach morphology and wave conditions affect larval distribution patterns and abundance. Model results and field observations show that larval abundance in the surf zone is higher at mildly sloped, rip-channeled beaches than at steep pocket beaches. Beach attributes are broken up to examine which and how beach configuration factors affect larval abundance. Modeling with alongshore uniform beaches with variable slopes reveal that larval populations in the surf zone are negatively correlated with beach steepness. Alongshore variability enhances onshore larval transport because of increased cross-shore water exchange by rip currents. Wave groups produce transient rip currents and enhance cross-shore exchange. Effects of other wave components, such as wave height and breaking wave rollers are also considered.
Effects of metal and predator stressors in larval southern toads (Anaxyrus terrestris).
Rumrill, Caitlin T; Scott, David E; Lance, Stacey L
2016-08-01
Natural and anthropogenic stressors typically do not occur in isolation; therefore, understanding ecological risk of contaminant exposure should account for potential interactions of multiple stressors. Realistically, common contaminants can also occur chronically in the environment. Because parental exposure to stressors may cause transgenerational effects on offspring, affecting their ability to cope with the same or novel environmental stressors, the exposure histories of generations preceding that being tested should be considered. To examine multiple stressor and parental exposure effects we employed a 2 × 2 × 2 factorial design in outdoor 1000-L mesocosms (n = 24). Larval southern toads (Anaxyrus terrestris), bred from parents collected from reference and metal-contaminated sites, were exposed to two levels of both an anthropogenic (copper-0, 30 µg/L Cu) and natural (predator cue - present/absent) stressor and reared to metamorphosis. Toads from the metal-contaminated parental source population were smaller at metamorphosis and had delayed development; i.e., a prolonged larval period. Similarly, larval Cu exposure also reduced size at metamorphosis and prolonged the larval period. We, additionally, observed a significant interaction between larval Cu and predator-cue exposure on larval period, wherein delayed emergence was only present in the 30-µg/L Cu treatments in the absence of predator cues. The presence of parental effects as well as an interaction between aquatic stressors on commonly measured endpoints highlight the importance of conducting multistressor studies across generations to obtain data that are more relevant to field conditions in order to determine population-level effects of contaminant exposure.
Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I
2015-01-01
An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.
Effects of climate change on the survival of larval cod
NASA Astrophysics Data System (ADS)
Kristiansen, T.; Stock, C. A.; Drinkwater, K. F.; Curchitser, E. N.
2011-12-01
Understanding how climate change may impact important commercial fisheries is critical for developing sustainable fisheries management strategies. In this study, we used simulations from an Earth System Model (NOAA GFDL ESM2.1) coupled with an individual-based model (IBM) for larval fish to provide a first assessment of the potential importance of climate-change driven changes in primary productivity and temperature on cod recruitment in the North Atlantic to the year 2100. ESM model output was averaged for 5 regions, each with an area of 5x5 on a latitude-longitude grid, and representing the geographic boundaries of the current cod range. The physical and environmental data were incorporated into a mechanistic IBM used to simulate the critical early phases in the life of larval fish (e.g. cod) in a changing environment. Large phytoplankton production was predicted to decrease in most regions, thereby lowering the number of meso-zooplankton in the water column. Meso-zooplankton is the most important prey item for larval cod and a reduction in their numbers have strong impacts on larval cod survival. The combination of lowered prey abundance with increased energy requirement for growth and metabolism through increased temperature had a negative impact on cod recruitment in all modeled regions of the North Atlantic. The probability of survival past the larval stages was reduced with 20-30% at all five spawning grounds by the year 2100. Together, these results suggest climate change could have significant impacts on the survival of larval cod in the North Atlantic.
NASA Astrophysics Data System (ADS)
Hilbig, Reinhard; Anken, Ralf; Grimm, Dennis
In view of space exploration and long-term satellite missions, a new generation of multi-modular, multi-organism bioregenerative life support system with different experimental units (Modul.LES) is planned, and subunits are under construction. Modul.LES will be managed via telemetry and remote control and therefore is a fully automated experimental platform for different kinds of investigations. After several forerunner projects like AquaCells (2005), C.E.B.A.S. (1998, 2003) or Aquahab (OHB-System AG the Oreochromis Mossambicus Eu-glena Gracilis Aquatic Habitat (OmegaHab) was successfully flown in 2007 in course of the FOTON-M3 Mission. It was a 3 chamber controlled life support system (CLSS), compris-ing a bioreactor with the green algae Euglena gracilis, a fish chamber with larval cichlid fish Oreochromis mossambicus and a filter chamber with biodegrading bacteria. The sensory super-vision of housekeeping management was registered and controlled by telemetry. Additionally, all scientific data and videos of the organisms aboard were stored and sequentially transmitted to relay stations. Based on the effective performance of OmegaHab, this system was chosen for a reflight on Bion-M1 in 2012. As Bion-M1 is a long term mission (appr. 4 weeks), this CLSS (OmegaHab-XP) has to be redesigned and refurbished with enhanced performance. The number of chambers has been increased from 3 to 4: an algae bioreactor, a fish tank for adult and larval fish (hatchery inserted), a nutrition chamber with higher plants and crustaceans and a filter chamber. The OmegaHab-XP is a full automated system with an extended satellite downlink for video monitoring and housekeeping data acquisition, but no uplink for remote control. OmegaHab-XP provides numerous physical and chemical parameters which will be monitored regarding the state of the biological processes and thus enables the automated con-trol aboard. Besides the two basic parameters oxygen content and temperature, products of the nitrogene-cycle (concentration of ammonium, nitrite and nitrate) as well as conductivity will be measured. For this long term mission an external food supply as has been used with OmegaHab is not sufficient and, therefore, in OmegaHab-XP a nutrition compartment has been added. OmegaHab-XP is a multi-trophic system, designed as a basic concept and test-bed for future multi-modular platform Modul.LES. OmegaHab-XP comprises four different trophic lev-els. The algae experimental container is used as CO2 / O2 exchanger and serves as oxygen source for all heterotrophic organisms. The fish compartment is divided into two areas -namely a hatchery (larval cichlid fish Oreochromis mossambicus) and a fish tank (subadult cichlids). Once the yolk sack is resorbed (stage 19) the juvenile fish are capable to leave the hatchery via escapements into the fish compartment. In order to enable the development of fish from larval yolk sack stages to subadult fish a nutrition compartment is enclosed: In this nutrition compartment the crustacean Hyalella azteca will reproduce and build up a stable population by feeding on the Rigid Hornwort (Ceratophyllum demersum). Younger crustaceans can cross the barrier to the fish tank and can serve as nutrition for fully developed subadult fish. Waste products of all organisms will be assimilated by the water snail Biomphalaria glabrata. The scientific concept of Modul.LES is to establish a multidisciplinary framework of scientists and areas of scientific research (biophysics, molecular-organismic biology, biochemistry etc.) to analyze impacts of g on plants and animals.
NASA Astrophysics Data System (ADS)
Davies, Sarah W.; Strader, Marie E.; Kool, Johnathan T.; Kenkel, Carly D.; Matz, Mikhail V.
2017-09-01
Remote populations can influence connectivity and may serve as refugia from climate change. We investigated two reef-building corals ( Pseudodiploria strigosa and Orbicella franksi) from the Flower Garden Banks (FGB), the most isolated, high-latitude Caribbean reef system, which, until recently, retained high coral cover. We characterized coral size-frequency distributions, quantified larval mortality rates and onset of competence ex situ, estimated larval production, and created detailed biophysical models incorporating these parameters to evaluate the source-sink dynamics at the FGB from 2009 to 2012. Estimated mortality rates were similar between species, but pre-competency differed dramatically; P. strigosa was capable of metamorphosis within 2.5 d post-fertilization (dpf) and was competent at least until 8 dpf, while O. franksi was not competent until >20 dpf and remained competent up to 120 dpf. To explore the effect of such contrasting life histories on connectivity, we modeled larval dispersal from the FGB assuming pelagic larval durations (PLD) of either 3-20 d, approximating laboratory-measured pre-competency of P. strigosa, or 20-120 d, approximating pre-competency observed in O. franksi. Surprisingly, both models predicted similar probabilities of local retention at the FGB, either by direct rapid reseeding or via long-term persistence in the Loop Current with larvae returning to the FGB within a month. However, our models predicted that short PLDs would result in complete isolation from the rest of the Caribbean, while long PLDs allowed for larval export to more distant northern Caribbean reefs, highlighting the importance of quantifying larval pre-competency dynamics when parameterizing biophysical models to predict larval connectivity. These simulations suggest that FGB coral populations are likely to be largely self-sustaining and highlight the potential of long-PLD corals, such as endangered Orbicella, to act as larval sources for other degraded Caribbean reefs.
Walsh, Harvey J; Richardson, David E; Marancik, Katrin E; Hare, Jonathan A
2015-01-01
Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services.
Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Gimnig, John E; Pereira-Ribeiro, Cleomar; Santos-Neves, Maycon Sebastião Alberto; Silva-do-Nascimento, Teresa Fernandes
2017-11-16
Many indigenous villages in the Amazon basin still suffer from a high malaria burden. Despite this health situation, there are few studies on the bionomics of anopheline larvae in such areas. This publication aims to identify the main larval habitats of the most abundant anopheline species and to assess their associations with some environmental factors. We conducted a 19-month longitudinal study from January 2013 to July 2014, sampling anopheline larvae in two indigenous Yanomami communities, comprised of four villages each. All natural larval habitats were surveyed every two months with a 350 ml manual dipper, following a standardized larval sampling methodology. In a third study area, we conducted two field expeditions in 2013 followed by four systematic collections during the long dry season of 2014-2015. We identified 177 larval habitats in the three study areas, from which 9122 larvae belonging to 13 species were collected. Although species abundance differed between villages, An. oswaldoi (s.l.) was overall the most abundant species. Anopheles darlingi, An. oswaldoi (s.l.), An. triannulatus (s.s.) and An. mattogrossensis were primarily found in larval habitats that were partially or mostly sun-exposed. In contrast, An. costai-like and An. guarao-like mosquitoes were found in more shaded aquatic habitats. Anopheles darlingi was significantly associated with proximity to human habitations and larval habitats associated with river flood pulses and clear water. This study of anopheline larvae in the Brazilian Yanomami area detected high heterogeneities at micro-scale levels regarding species occurrence and densities. Sun exposure was a major modulator of anopheline occurrence, particularly for An. darlingi. Lakes associated with the rivers, and particularly oxbow lakes, were the main larval habitats for An. darlingi and other secondary malaria vectors. The results of this study will serve as a basis to plan larval source management activities in remote indigenous communities of the Amazon, particularly for those located within low-order river-floodplain systems.
Bunnell, David B.; Hale, R. Scott; Vanni, Michael J.; Stein, Roy A.
2006-01-01
Stock-recruit models typically use only spawning stock size as a predictor of recruitment to a fishery. In this paper, however, we used spawning stock size as well as larval density and key environmental variables to predict recruitment of white crappies Pomoxis annularis and black crappies P. nigromaculatus, a genus notorious for variable recruitment. We sampled adults and recruits from 11 Ohio reservoirs and larvae from 9 reservoirs during 1998-2001. We sampled chlorophyll as an index of reservoir productivity and obtained daily estimates of water elevation to determine the impact of hydrology on recruitment. Akaike's information criterion (AIC) revealed that Ricker and Beverton-Holt stock-recruit models that included chlorophyll best explained the variation in larval density and age-2 recruits. Specifically, spawning stock catch per effort (CPE) and chlorophyll explained 63-64% of the variation in larval density. In turn, larval density and chlorophyll explained 43-49% of the variation in age-2 recruit CPE. Finally, spawning stock CPE and chlorophyll were the best predictors of recruit CPE (i.e., 74-86%). Although larval density and recruitment increased with chlorophyll, neither was related to seasonal water elevation. Also, the AIC generally did not distinguish between Ricker and Beverton-Holt models. From these relationships, we concluded that crappie recruitment can be limited by spawning stock CPE and larval production when spawning stock sizes are low (i.e., CPE , 5 crappies/net-night). At higher levels of spawning stock sizes, spawning stock CPE and recruitment were less clearly related. To predict recruitment in Ohio reservoirs, managers should assess spawning stock CPE with trap nets and estimate chlorophyll concentrations. To increase crappie recruitment in reservoirs where recruitment is consistently poor, managers should use regulations to increase spawning stock size, which, in turn, should increase larval production and recruits to the fishery.
Hollar, Amy R.; Choi, Jinyoung; Grimm, Adam T.; Buchholz, Daniel R.
2011-01-01
Spadefoot toad species display extreme variation in larval period duration, due in part to evolution of thyroid hormone (TH) physiology. Specifically, desert species with short larval periods have higher tail tissue content of TH and exhibit increased responsiveness to TH. To address the molecular basis of larval period differences, we examined TH receptor (TR) expression across species. Based on the dual function model for the role of TR in development, we hypothesized that desert spadefoot species with short larval periods would have 1) late onset of TR expression prior to the production of endogenous TH and 2) higher TR levels when endogenous TH becomes available. To test these hypotheses, we cloned fragments of TRα and TRβ genes from the desert spadefoot toads Scaphiopus couchii and Spea multiplicata and their non-desert relative Pelobates cultripes and measured their mRNA levels in tails using quantitative PCR in the absence (premetamorphosis) or presence (natural metamorphosis) of TH. All species express TRα and TRβ from the earliest stages measured (from just after hatching), but S. couchii, which has the shortest larval period, had more TRα throughout development compared to P. cultripes, which has the longest larval period. TRβ mRNA levels were similar across species. Exogenous T3 treatment induced faster TH-response gene expression kinetics in S. couchii compared to the other species, consistent with its increased TRα mRNA expression and indicative of a functional consequence of more TRα activity at the molecular level. To directly test whether higher TRα expression may contribute to shorter larval periods, we overexpressed TRα via plasmid injection into tail muscle cells of the model frog Xenopus laevis and found an increased rate of muscle cell death in response to TH. These results suggest that increased TRα expression evolved in S. couchii and contribute to its higher metamorphic rates. PMID:21651912
NASA Astrophysics Data System (ADS)
Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.
2017-09-01
Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population connectivity via larval dispersal to sustain reef-fish populations within these networks.
Mwangangi, Joseph M; Shililu, Josephat; Muturi, Ephantus J; Muriu, Simon; Jacob, Benjamin; Kabiru, Ephantus W; Mbogo, Charles M; Githure, John; Novak, Robert J
2010-08-09
The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance. These results suggest that agricultural practices have significant influence on mosquito species diversity and abundance and that certain habitat characteristics favor production of malaria vectors. These factors should be considered when implementing larval control strategies which should be targeted based on habitat productivity and water management.
2015-01-01
Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services. PMID:26398900
Complex effect of projected sea temperature and wind change on flatfish dispersal.
Lacroix, Geneviève; Barbut, Léo; Volckaert, Filip A M
2018-01-01
Climate change not only alters ocean physics and chemistry but also affects the biota. Larval dispersal patterns from spawning to nursery grounds and larval survival are driven by hydrodynamic processes and shaped by (a)biotic environmental factors. Therefore, it is important to understand the impacts of increased temperature rise and changes in wind speed and direction on larval drift and survival. We apply a particle-tracking model coupled to a 3D-hydrodynamic model of the English Channel and the North Sea to study the dispersal dynamics of the exploited flatfish (common) sole (Solea solea). We first assess model robustness and interannual variability in larval transport over the period 1995-2011. Then, using a subset of representative years (2003-2011), we investigate the impact of climate change on larval dispersal, connectivity patterns and recruitment at the nursery grounds. The impacts of five scenarios inspired by the 2040 projections of the Intergovernmental Panel on Climate Change are discussed and compared with interannual variability. The results suggest that 33% of the year-to-year recruitment variability is explained at a regional scale and that a 9-year period is sufficient to capture interannual variability in dispersal dynamics. In the scenario involving a temperature increase, early spawning and a wind change, the model predicts that (i) dispersal distance (+70%) and pelagic larval duration (+22%) will increase in response to the reduced temperature (-9%) experienced by early hatched larvae, (ii) larval recruitment at the nursery grounds will increase in some areas (36%) and decrease in others (-58%) and (iii) connectivity will show contrasting changes between areas. At the regional scale, our model predicts considerable changes in larval recruitment (+9%) and connectivity (retention -4% and seeding +37%) due to global change. All of these factors affect the distribution and productivity of sole and therefore the functioning of the demersal ecosystem and fisheries management. © 2017 John Wiley & Sons Ltd.
Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Quinlan, Henry R.; Berglund, Eric K.
2014-01-01
The relative importance of predation and food availability as contributors to larval cisco (Coregonus artedi) mortality in Lake Superior were investigated using a visual foraging model to evaluate potential predation pressure by rainbow smelt (Osmerus mordax) and a bioenergetic model to evaluate potential starvation risk. The models were informed by observations of rainbow smelt, larval cisco, and zooplankton abundance at three Lake Superior locations during the period of spring larval cisco emergence and surface-oriented foraging. Predation risk was highest at Black Bay, ON, where average rainbow smelt densities in the uppermost 10 m of the water column were >1000 ha−1. Turbid conditions at the Twin Ports, WI-MN, affected larval cisco predation risk because rainbow smelt remained suspended in the upper water column during daylight, placing them alongside larval cisco during both day and night hours. Predation risk was low at Cornucopia, WI, owing to low smelt densities (<400 ha−1) and deep light penetration, which kept rainbow smelt near the lakebed and far from larvae during daylight. In situ zooplankton density estimates were low compared to the values used to develop the larval coregonid bioenergetics model, leading to predictions of negative growth rates for 10 mm larvae at all three locations. The model predicted that 15 mm larvae were capable of attaining positive growth at Cornucopia and the Twin Ports where low water temperatures (2–6 °C) decreased their metabolic costs. Larval prey resources were highest at Black Bay but warmer water temperatures there offset the benefit of increased prey availability. A sensitivity analysis performed on the rainbow smelt visual foraging model showed that it was relatively insensitive, while the coregonid bioenergetics model showed that the absolute growth rate predictions were highly sensitive to input parameters (i.e., 20% parameter perturbation led to order of magnitude differences in model estimates). Our modelling indicated that rainbow smelt predation may limit larval cisco survival at Black Bay and to a lesser extent at Twin Ports, and that starvation may be a major source of mortality at all three locations. The framework we describe has the potential to further our understanding of the relative importance of starvation and predation on larval fish survivorship, provided information on prey resources available to larvae are measured at sufficiently fine spatial scales and the models provide a realistic depiction of the dynamic processes that the larvae experience.
Mamai, Wadaka; Hood-Nowotny, Rebecca; Maiga, Hamidou; Ali, Adel Barakat; Bimbile-Somda, Nanwintoun S; Soma, Diloma Dieudonné; Yamada, Hanano; Lees, Rosemary Susan; Gilles, Jeremie R L
2017-06-01
Countries around the world are showing increased interest in applying the sterile insect technique against mosquito disease vectors. Many countries in which mosquitoes are endemic, and so where vector control using the sterile insect technique may be considered, are located in arid zones where water provision can be costly or unreliable. Water reuse provides an alternate form of water supply. In order to reduce the cost of mass rearing of Anopheles arabiensis mosquitoes, the possibility of recycling and reusing larval rearing water was explored. The used rearing water ('dirty water') was collected after the tilting of rearing trays for collection of larvae/pupae, and larvae/pupae separation events and underwent treatment processes consisting of ultrafiltration and reverse osmosis. First-instar An. arabiensis larvae were randomly assigned to different water-type treatments, 500 larvae per laboratory rearing tray: 'clean' dechlorinated water, routinely used in rearing; dirty water; and 'recycled' dirty water treated using reverse osmosis and ultrafiltration. Several parameters of insect quality were then compared: larval development, pupation rate, adult emergence, body size and longevity. Water quality of the samples was analyzed in terms of ammonia, nitrite, nitrate, sulphate, dissolved oxygen, chloride, and phosphate concentrations after the larvae had all pupated or died. Surface water temperatures were also recorded continuously during larval development. Pupation rates and adult emergence were similar in all water treatments. Adult body sizes of larvae reared in recycled water were similar to those reared in clean water, but larger than those reared in the dirty larval water treatment, whereas the adult longevity of larvae reared in recycled water was significantly increased relative to both 'clean' and 'dirty' water. Dirty larval water contained significantly higher concentrations of ammonium, sulfate, phosphate and chloride and lower levels of dissolved oxygen than clean water. These parameters significantly varied during the period of larval development. After dirty water was recycled by ultrafiltration and reverse osmosis, all the parameters measured were the same as those in clean water. This study demonstrated the potential for using recycled larval rearing water to supplement clean dechlorinated water supplies. Recycling used water improved its quality and of the reared mosquitoes. As water demands and environmental pressures grow, recycling of larval rearing water will improve the sustainability and affordability of mosquito mass-rearing. Copyright © 2017 Elsevier B.V. All rights reserved.
McCann, Robert S; Messina, Joseph P; MacFarlane, David W; Bayoh, M Nabie; Gimnig, John E; Giorgi, Emanuele; Walker, Edward D
2017-07-17
Spatial determinants of malaria risk within communities are associated with heterogeneity of exposure to vector mosquitoes. The abundance of adult malaria vectors inside people's houses, where most transmission takes place, should be associated with several factors: proximity of houses to larval habitats, structural characteristics of houses, indoor use of vector control tools containing insecticides, and human behavioural and environmental factors in and near houses. While most previous studies have assessed the association of larval habitat proximity in landscapes with relatively low densities of larval habitats, in this study these relationships were analysed in a region of rural, lowland western Kenya with high larval habitat density. 525 houses were sampled for indoor-resting mosquitoes across an 8 by 8 km study area using the pyrethrum spray catch method. A predictive model of larval habitat location in this landscape, previously verified, provided derivations of indices of larval habitat proximity to houses. Using geostatistical regression models, the association of larval habitat proximity, long-lasting insecticidal nets (LLIN) use, house structural characteristics (wall type, roof type), and peridomestic variables (cooking in the house, cattle near the house, number of people sleeping in the house) with mosquito abundance in houses was quantified. Vector abundance was low (mean, 1.1 adult Anopheles per house). Proximity of larval habitats was a strong predictor of Anopheles abundance. Houses without an LLIN had more female Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus than houses where some people used an LLIN (rate ratios, 95% CI 0.87, 0.85-0.89; 0.84, 0.82-0.86; 0.38, 0.37-0.40) and houses where everyone used an LLIN (RR, 95% CI 0.49, 0.48-0.50; 0.39, 0.39-0.40; 0.60, 0.58-0.61). Cooking in the house also reduced Anopheles abundance across all species. The number of people sleeping in the house, presence of cattle near the house, and house structure modulated Anopheles abundance, but the effect varied with Anopheles species and sex. Variation in the abundance of indoor-resting Anopheles in rural houses of western Kenya varies with clearly identifiable factors. Results suggest that LLIN use continues to function in reducing vector abundance, and that larval source management in this region could lead to further reductions in malaria risk by reducing the amount of an obligatory resource for mosquitoes near people's homes.
Gürtler, Ricardo E.; Garelli, Fernando M.; Coto, Héctor D.
2009-01-01
Background Dengue has propagated widely through the Americas. Most countries have not been able to maintain permanent larval mosquito control programs, and the long-term effects of control actions have rarely been documented. Methodology The study design was based on a before-and-after citywide assessment of Aedes aegypti larval indices and the reported incidence of dengue in Clorinda, northeastern Argentina, over 2003–2007. Interventions were mainly based on focal treatment with larvicides of every mosquito developmental site every four months (14 cycles), combined with limited source reduction efforts and ultra-low-volume insecticide spraying during emergency operations. The program conducted 120,000 house searches for mosquito developmental sites and 37,000 larvicide applications. Principal Findings Random-effects regression models showed that Breteau indices declined significantly in nearly all focal cycles compared to pre-intervention indices clustered by neighborhood, after allowing for lagged effects of temperature and rainfall, baseline Breteau index, and surveillance coverage. Significant heterogeneity between neighborhoods was revealed. Larval indices seldom fell to 0 shortly after interventions at the same blocks. Large water-storage containers were the most abundant and likely to be infested. The reported incidence of dengue cases declined from 10.4 per 10,000 in 2000 (by DEN-1) to 0 from 2001 to 2006, and then rose to 4.5 cases per 10,000 in 2007 (by DEN-3). In neighboring Paraguay, the reported incidence of dengue in 2007 was 30.6 times higher than that in Clorinda. Conclusions Control interventions exerted significant impacts on larval indices but failed to keep them below target levels during every summer, achieved sustained community acceptance, most likely prevented new dengue outbreaks over 2003–2006, and limited to a large degree the 2007 outbreak. For further improvement, a shift is needed towards a multifaceted program with intensified coverage and source reduction efforts, lids or insecticide-treated covers to water-storage containers, and a broad social participation aiming at long-term sustainability. PMID:19399168
Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)
Shang, Chunfeng; Yang, Wenbin; Bai, Lu; Du, Jiulin
2017-01-01
The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here, we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish. PMID:28930070
Digestion in sea urchin larvae impaired under ocean acidification
NASA Astrophysics Data System (ADS)
Stumpp, Meike; Hu, Marian; Casties, Isabel; Saborowski, Reinhard; Bleich, Markus; Melzner, Frank; Dupont, Sam
2013-12-01
Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.
Methods for conducting bioassays using embryos and larvae of Pacific herring, Clupea pallasi.
Dinnel, Paul A; Middaugh, Douglas P; Schwarck, Nathan T; Farren, Heather M; Haley, Richard K; Hoover, Richard A; Elphick, James; Tobiason, Karen; Marshall, Randall R
2011-02-01
The rapid decrease of several stocks of Pacific herring, Clupea pallasi, in Puget Sound, Washington, has led to concerns about the effects of industrial and nonpoint source contamination on the embryo and larval stages of this and related forage fish species. To address these concerns, the state of Washington and several industries have funded efforts to develop embryo and larval bioassay protocols that can be used by commercial laboratories for routine effluent testing. This article presents the results of research to develop herring embryo and larval bioassay protocols. Factors evaluated during protocol development included temperature, salinity, dissolved oxygen (DO), light intensity, photoperiod, larval feeding regimes, use of brine and artificial sea salts, gonad sources, collection methods, and egg quality.
NASA Astrophysics Data System (ADS)
Liu, Jing-Ke; Wang, Wen-Qi; Li, Kui-Ran; Lei, Ji-Lin
2002-12-01
The effects of natural fish oil, DHA oil and soybean lecithin in microparticulate diets on stress tolerance of larval gilthead seabream ( Sparus aurata) were investigated after 15 days feeding trials. The tolerance of larval gilthead seabream to various stress factors such as exposure to air (lack of dissolved oxygen), changes in water temperature (low) and salinity (high) were determined. This study showed that microparticulate diet with natural fish oil and soybean lecithin was the most effective for increasing the tolerance of larval gilthead seabream to various stresses, and that microparticulate diet with natural fish oil and palmitic acid (16∶0) was more effective than microparticulate diet with DHA oil and soybean lecithin.
Fast online deconvolution of calcium imaging data
Zhou, Pengcheng; Paninski, Liam
2017-01-01
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. PMID:28291787
Enabling Operational Reach and Endurance: The Use of Contractors During World War II
2016-05-26
Enabling Operational Reach and Endurance: The Use of Contractors During World War II A...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Enabling Operational Reach and Endurance: The Use of Contractors During World War II 5b. GRANT NUMBER 5c...Army Operating Concept does not address the use or incorporation of contractors to augment force structure in the event of a militarized response
NASA Astrophysics Data System (ADS)
Nicolle, Amandine; Dumas, Franck; Foveau, Aurélie; Foucher, Eric; Thiébaut, Eric
2013-06-01
The king scallop ( Pecten maximus) is one of the most important benthic species of the English Channel as it constitutes the first fishery in terms of landings in this area. To support strategies of spatial fishery management, we develop a high-resolution biophysical model to study scallop dispersal in two bays along the French coasts of the English Channel (i.e. the bay of Saint-Brieuc and the bay of Seine) and to quantify the relative roles of local hydrodynamic processes, temperature-dependent planktonic larval duration (PLD) and active swimming behaviour (SB). The two bays are chosen for three reasons: (1) the distribution of the scallop stocks in these areas is well known from annual scallop stock surveys, (2) these two bays harbour important fisheries and (3) scallops in these two areas present some differences in terms of reproductive cycle and spawning duration. The English Channel currents and temperature are simulated for 10 years (2000-2010) with the MARS-3D code and then used by the Lagrangian module of MARS-3D to model the transport. Results were analysed in terms of larval distribution at settlement and connectivity rates. While larval transport in the two bays depended both on the tidal residual circulation and the wind-induced currents, the relative role of these two hydrodynamic processes varied among bays. In the bay of Saint-Brieuc, the main patterns of larval dispersal were due to tides, the wind being only a source of variability in the extent of larval patch and the local retention rate. Conversely, in the bay of Seine, wind-induced currents altered both the direction and the extent of larval transport. The main effect of a variable PLD in relation to the thermal history of each larva was to reduce the spread of dispersal and consequently increase the local retention by about 10 % on average. Although swimming behaviour could influence larval dispersal during the first days of the PLD when larvae are mainly located in surface waters, it has a minor role on larval distribution at settlement and retention rates. The analysis of the connectivity between subpopulations within each bay allows identifying the main sources of larvae which depend on both the characteristics of local hydrodynamics and the spatial heterogeneity in the reproductive outputs.
Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.
2013-01-01
Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.
Development and infectious disease in hosts with complex life cycles.
Searle, Catherine L; Xie, Gisselle Yang; Blaustein, Andrew R
2013-01-01
Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd). We sought to determine how conditions at the larval stage can affect variation in development and patterns of Bd infection across amphibian life stages. We used outdoor experimental mesocosms to simulate natural pond habitats and manipulated the presence of Bd, the larval density, and the number of host species in larvae of two co-occurring amphibian species (Rana cascadae and Pseudacris regilla). We found that infection differed between species throughout development; P. regilla consistently had higher infection severity compared to R. cascadae. Additionally, while up to 100% of larvae were infected, only 18.2% of R. cascadae and 81.5% of P. regilla were infected after metamorphosis. This indicates that amphibians have the ability to recover from Bd infection as they undergo metamorphosis. Higher larval densities in P. regilla led to a shorter larval period, and individuals with a shorter larval period had lower infection severity. This led to a trend where P. regilla larvae reared at high densities tended to have lower infection prevalence after metamorphosis. We also found that exposure to Bd increased larval mortality and prolonged the larval period in P. regilla, indicating that P. regilla are susceptible to the negative effects of Bd as larvae. This study demonstrates that host density, species composition, and pathogen exposure may all interact to influence development and infection in hosts with complex life cycles.
NASA Astrophysics Data System (ADS)
Llopiz, Joel K.; Hobday, Alistair J.
2015-03-01
Scombroid fishes, including tunas, mackerels, and billfishes, constitute some of the most important fisheries in lower latitudes around the world. Though the early life stages of these taxa are relatively well-studied, worldwide patterns in larval feeding dynamics and how such patterns relate to environmental conditions are poorly resolved. We present a synthesis of feeding success (i.e. feeding incidences) and diets of larval scombroids from around the world, and relate these results to water column and sea surface properties for the several regions in which larval feeding studies have been conducted. Feeding success of larval tunas was shown to be distinctly different among regions. In some locations (the Straits of Florida and the Mediterranean Sea), nearly no larvae had empty guts, whereas in other locations (the Gulf of California and off NW Australia) 40-60% of larvae were empty. Diets were consistently narrow in each region (dominated by cyclopoid copepods, appendicularians, nauplii, and other fish larvae), and were usually, but not always, similar for a given scombroid taxon among regions (though diets differed among taxa). Larval habitat conditions were often similar among the 9 regions examined, but some clear differences included low levels of eddy kinetic energy and cooler waters (at the surface and at depth) in the Mediterranean, and lower chlorophyll concentrations around the Nansei Islands, Japan and off NW Australia where feeding success was low. When observed zooplankton abundances are also taken into account, the compiled results on feeding and environmental conditions indicate a bottom-up influence on feeding success. Moreover, the variability among regions highlights the potential for region-specific mechanisms regulating larval survival and, ultimately, levels of adult recruitment.
Passive larval transport explains recent gene flow in a Mediterranean gorgonian
NASA Astrophysics Data System (ADS)
Padrón, Mariana; Costantini, Federica; Baksay, Sandra; Bramanti, Lorenzo; Guizien, Katell
2018-06-01
Understanding the patterns of connectivity is required by the Strategic Plan for Biodiversity 2011-2020 and will be used to guide the extension of marine protection measures. Despite the increasing accuracy of ocean circulation modelling, the capacity to model the population connectivity of sessile benthic species with dispersal larval stages can be limited due to the potential effect of filters acting before or after dispersal, which modulates offspring release or settlement, respectively. We applied an interdisciplinary approach that combined demographic surveys, genetic methods (assignment tests and coalescent-based analyses) and larval transport simulations to test the relative importance of demographics and ocean currents in shaping the recent patterns of gene flow among populations of a Mediterranean gorgonian ( Eunicella singularis) in a fragmented rocky habitat (Gulf of Lion, NW Mediterranean Sea). We show that larval transport is a dominant driver of recent gene flow among the populations, and significant correlations were found between recent gene flow and larval transport during an average single dispersal event when the pelagic larval durations (PLDs) ranged from 7 to 14 d. Our results suggest that PLDs that efficiently connect populations distributed over a fragmented habitat are filtered by the habitat layout within the species competency period. Moreover, a PLD ranging from 7 to 14 d is sufficient to connect the fragmented rocky substrate of the Gulf of Lion. The rocky areas located in the centre of the Gulf of Lion, which are currently not protected, were identified as essential hubs for the distribution of migrants in the region. We encourage the use of a range of PLDs instead of a single value when estimating larval transport with biophysical models to identify potential connectivity patterns among a network of Marine Protected Areas or even solely a seascape.
Tethered by Self-Generated Flow: Mucus String Augmented Feeding Current Generation in Larval Oysters
NASA Astrophysics Data System (ADS)
Jiang, H.; Wheeler, J.; Anderson, E.
2016-02-01
Marine zooplankton live in a nutritionally dilute environment. To survive, they must process an enormous volume of water relative to their own body volume for food. To achieve this, many zooplankters including copepods, invertebrate larvae, and protists create a feeding current to concentrate and transport food items to their food gathering structures. To enhance the efficiency of the feeding current, these zooplankters often rely on certain "tethering" mechanisms to retard their translational motion for producing a strong feeding current. The tethering force may include excess weight due to gravity, force from attachment to solid surfaces, and drag experienced by strategically placed morphological structures. Larval oysters are known from previous studies to release mucus strings during feeding, presumably for supplying a tethering force to enhance their feeding-current efficiency. But the underlying mechanism is unclear. In this study, we used a high-speed microscale imaging system (HSMIS) to observe the behavior of freely swimming and feeding larval oysters. We also used HSMIS to measure larval imposed feeding currents via a micro-particle image velocimetry (µPIV) technique. HSMIS allows observations along a vertically oriented focal plane in a relatively large water vessel with unprecedented spatial and temporal resolutions. Our high-speed videos show that a feeding larval oyster continuously released a long mucus string into its feeding current that flows downward; the feeding current subsequently dragged the mucus string downward. Analysis of our µPIV data combined with a hydrodynamic model further suggests that the drag force experienced by the mucus string in the feeding current contributes significantly to the tethering force required to generate the feeding current. Thus, mucus strings in larval oysters act as "anchors" in larval self-generated flow to actively tether the feeding larvae.
Yamane, Hitomi; Nishikawa, Akio
2013-08-01
During Xenopus laevis metamorphosis, larval-to-adult muscle conversion depends on the differential responses of adult and larval myogenic cells to thyroid hormone. Essential differences in cell growth, differentiation, and hormone-dependent life-or-death fate have been reported between cultured larval (tail) and adult (hindlimb) myogenic cells. A previous study revealed that tail notochord cells suppress terminal differentiation in adult (but not larval) myogenic cells. However, little is known about the differences in expression patterns of myogenic regulatory factors (MRF) and the satellite cell marker Pax7 between adult and larval myogenic cells. In the present study, we compared mRNA expression of these factors between the two types. At first, reverse transcription polymerase chain reaction analysis of hindlimb buds showed sequential upregulation of myf5, myogenin, myod, and mrf4 during stages 50-54, when limb buds elongate and muscles begin to form. By contrast, in the tail, there was no such increase during the same period. Secondary, these results were duplicated in vitro: adult myogenic cells upregulated myf5, myod, and pax7 in the early culture period, followed by myogenin upregulation and myotube differentiation, while larval myogenic cells did not upregulate these genes and precociously started myotube differentiation. Thirdly, myf5 upregulation and early-phase proliferation in adult myogenic cells were potently inhibited by the presence of notochord cells, suggesting that notochord cells suppress adult myogenesis through inhibiting the transition from Myf5(-) stem cells to Myf5(+) committed myoblasts. All of the data presented here suggest that myf5 upregulation can be a good criterion for the activation of adult myogenesis during X. laevis metamorphosis.
Ontogenetic changes in responses to settlement cues by Anemonefish
NASA Astrophysics Data System (ADS)
Dixson, D. L.; Munday, P. L.; Pratchett, M.; Jones, G. P.
2011-12-01
Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred naïve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.
Neo, Mei Lin; Erftemeijer, Paul L. A.; van Beek, Jan K. L.; van Maren, Dirk S.; Teo, Serena L-M.; Todd, Peter A.
2013-01-01
Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1–68.6 settled individuals per 10,000 m2). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks. PMID:23555597
Grundel, Ralph; Pavlovic, Noel B.; Sulzman, Christina L.
1998-01-01
Larvae of the Karner blue butterfly, Lycaeides melissa samuelis, feed solely on wild lupine, Lupinus perennis, from the emergence to summer senescence of the plant. Wild lupine is most abundant in open areas but Karner blue females oviposit more frequently on lupines growing in moderate shade. Can differences in lupine quality between open and shaded areas help explain this disparity in resource use? Furthermore, many lupines are senescent before the second larval brood completes development. How does lupine senescence affect larval growth? We addressed these questions by measuring growth rates of larvae fed lupines of different phenological stages and lupines growing under different shade conditions. The habitat conditions under which lupines grew and plant phenological stage did not generally affect final larval or pupal weight but did significantly affect duration of the larval period. Duration was shortest for larvae fed leaves from flowering lupines and was negatively correlated with leaf nitrogen concentration. Ovipositing in areas of moderate shade should increase second-brood larval exposure to flowering lupines. In addition, larval growth was significantly faster on shade-grown lupines that were in seed than on similar sun-grown lupines. These are possible advantages of the higher-than-expected oviposition rate on shade-grown lupines. Given the canopy-related trade-off between lupine abundance and quality, maintenance of canopy heterogeneity is an important conservation management goal. Larvae were also fed leaves growing in poor soil conditions and leaves with mildew infection. These and other feeding treatments that we anticipated would inhibit larval growth often did not. In particular, ant-tended larvae exhibited the highest weight gain per amount of lupine eaten and a relatively fast growth rate. This represents an advantage of ant tending to Karner blue larvae.
Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry.
Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M
2011-11-01
The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ben Ahmed, Walid; Henchiri, Mohsen; Mastouri, Amna; Slim S'himi, Najet
2018-04-01
Calcified aquatic larval cases were recognized and identified in the Pleistocene tufa masses of Jebel El Mida, Gafsa, southern Tunisia. These larval constructions belong to three main insect families: caddisflies (Trichoptera, Hydropsychidae), midges (Diptera, Chironomidae) and aquatic moths (Lepidoptera, Pyralidae) that inhabited tubes in the tufa and spun nets. Each insect community has its distinctive characteristics of larval constructions that allow their recognition. The larval constructions recognized comprise fixed and portable (for caddisflies) dwelling cases and silken retreats and feeding capture nets. These last-mentioned are almost completely eroded and only remnants are preserved. The spatial distribution of these larval cases within the tufa is not random but, rather imposed by some specific paleohydraulic conditions. It's the reason why aquatic insect larval constructions are considered as prominent tool for the reconstruction of tufa and travertine depositional environments. Chironomid fixed dwelling cases (diameters range from 0.6 mm for clustered tubes to 3 mm) indicate the deposition of tufa under lotic (flowing) or lentic (standing) water conditions. The later hydraulic condition is shared with hydropsychids with fixed retreats (0.2-4 mm in diameter). Portable case-building caddisflies (case length ranging from 5 to 20 mm, and diameter from 3 to 5 mm at the cephalic end) prefer lentic conditions and are almost completely missing in high-energy flowing water locations that are preferred by pyralids (tubes are between 5 and 10 mm long and 3 mm in diameter). These insect families benefit from inhabiting the tufa by the availability of construction materials of their cases and the necessary space for their development.
Sharp, K H; Sneed, J M; Ritchie, K B; Mcdaniel, L; Paul, V J
2015-04-01
Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces. © 2015 Marine Biological Laboratory.
McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia
2016-01-01
Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and resistance to natural enemies.
Gorrepati, Lakshmi; Thompson, Kenneth W; Eisenmann, David M
2013-05-01
The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.
Gorrepati, Lakshmi; Thompson, Kenneth W.; Eisenmann, David M.
2013-01-01
The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development. PMID:23633508
Landaeta, Mauricio F; Bustos, Claudia A; Contreras, Jorge E; Salas-Berríos, Franco; Palacios-Fuentes, Pámela; Alvarado-Niño, Mónica; Letelier, Jaime; Balbontín, Fernando
2015-05-01
During austral spring 2011, a survey was carried out in the inland sea (41°30'-44°S) of north Patagonia, South Pacific, studying a northern basin (NB: Reloncaví Fjord, Reloncaví Sound and Ancud Gulf) characterized by estuarine regime with stronger vertical stratification and warmer (11-14 °C) and most productive waters, and a southern basin (SB: Corcovado Gulf and Guafo mouth), with more oceanic water influence, showed mixed conditions of the water column, colder (11-10.5 °C) and less productive waters. Otolith microstructure and gut content analysis of larval lightfish Maurolicus parvipinnis and rockfish Sebastes oculatus were studied. Larval M. parvipinnis showed similar growth rates in both regions (0.13-0.15 mm d(-1)), but in NB larvae were larger-at-age than in SB. Larval S. oculatus showed no differences in size-at-age and larval growth (0.16 and 0.11 mm d(-1) for NB and SB, respectively). M. parvipinnis larvae from NB had larger number of prey items (mostly invertebrate eggs), similar total volume in their guts and smaller prey size than larvae collected in SB (mainly calanoid copepods). Larval S. oculatus had similar number, volume and body width of prey ingested at both basins, although prey ingestion rate by size was 5 times larger in NB than in SB, and prey composition varied from nauplii in NB to copepodites in SB. This study provides evidence that physical-biological interactions during larval stages of marine fishes from Chilean Patagonia are species-specific, and that in some cases large size-at-age correspond to increasing foraging success. Copyright © 2015 Elsevier Ltd. All rights reserved.
Validation of a New Larval Rearing Unit for Aedes albopictus (Diptera: Culicidae) Mass Rearing
Gilles, Jérémie R. L.; Bellini, Romeo
2014-01-01
The mosquito larval rearing unit developed at the Insect Pest Control Laboratory (IPCL) of the FAO/IAEA Joint Division was evaluated for its potential use for Aedes albopictus (Skuse, 1895) mass rearing in support of the development of a sterile insect technique (SIT) package for this species. The use of the mass rearing trays and rack did not adversely affect larval development, pupation and survival rates and allowed the management of large larval rearing colonies with reduced space requirements in comparison with classical individual trays. The effects of larval density, water temperature and diet composition on pupal production and size differentiation for sex separation efficacy were analyzed for individual mass rearing trays as well as multiple trays stacked within the dedicated rack unit. Best results were obtained using eighteen thousand larvae per tray at a density of 3 larvae per ml of deionized water at a temperature of 28°C on a diet consisting of 50% tuna meal, 36% bovine liver powder, 14% brewer's yeast and, as an additive, 0.2 gr of Vitamin Mix per 100 ml of diet solution. Pupae were harvested on the sixth day from larval introduction at L1 stage and males were separated out by the use of a 1400 µm sieve with 99.0% accuracy with a recovery rate of ca. 25% of the total available males. With the use of this larval rearing unit, an average production of 100,000 male pupae per week can be achieved in just 2 square meter of laboratory space. Compared to previous laboratory rearing method, the same pupal production and sex separation efficacy could only be achieved by use of ca. 200 plastic trays which required the space of two 5 square meter climatic-controlled rooms. PMID:24647347
Kato, Makoto
2016-01-01
Dipteran larval morphology exhibits overwhelming variety, affected by their diverse feeding habits and habitat use. In particular, larval mouthpart morphology is associated with feeding behavior, providing key taxonomic traits. Despite most larval Brachycera being carnivorous, a basal brachyceran family, Rhagionidae, contains bryophyte-feeding taxa with multiple feeding habits. To elucidate the life history, biology, and morphological evolution of the bryophyte-feeding rhagionids, the larval feeding behavior and morphology, and the adult oviposition behavior of four species belonging to three genera of Spaniinae (Spania Meigen, Litoleptis Chillcott and Ptiolina Zetterstedt) are described. Moreover, changes of the larval morphology associated with the evolution of bryophyte-feeding are traced by molecular phylogenetic analyses. Spania and Litoleptis (thallus-miners of thallose liverworts) share a toothed form of apical mandibular sclerite with an orifice on its dorsal surface, which contrasts to those of the other members of Rhagionidae possessing a blade-like mandibular hook with an adoral groove; whereas, Ptiolina (stem borer of mosses) exhibits a weak groove on the adoral surface of mandible and highly sclerotized maxilla with toothed projections. Based on the larval feeding behavior of the thallus-miners, it is inferred that the toothed mandibles with the dorsal orifice facilitate scraping plant tissue and then imbibing it with a great deal of the sap. A phylogeny indicated that the bryophyte-feeding genera formed a clade with Spaniopsis and was sister to Symphoromyia, which presumably are detritivores. This study indicates that the loss or reduction of adoral mandibular groove and mandibular brush is coincident with the evolution of bryophyte-feeding, and it is subsequently followed by the occurrence of dorsal mandibular orifice and the loss of creeping welts accompanying the evolution of thallus-mining. PMID:27812169
A.R. Mason; H.G. Paul
1994-01-01
Procedures for monitoring larval populations of the Douglas-fir tussock moth and the western spruce budworm are recommended based on many years experience in sampling these species in eastern Oregon and Washington. It is shown that statistically reliable estimates of larval density can be made for a population by sampling host trees in a series of permanent plots in a...
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Gonzalez-Nuevo, G.; Gonzalez-Pola, C.; Cabal, J.
2009-05-01
Ichthyoplankton and mesozooplankton were sampled and fluorescence and physical environmental variables were measured off the NW and N Iberian Peninsula coasts, during April 2005. A total of 51 species of fish larvae, belonging to 26 families, were recorded. Sardina pilchardus, with 43.8% and 58.7% of the total fish egg and larval catches, respectively, dominated the ichthyoplankton assemblage. The study area was divided by a cross-shelf frontal structure into two hydrographic regions that coincided with the Atlantic and Cantabrian geographic regions. Ichthyoplankton abundance was higher in the Cantabrian region while larval diversity was higher in the Atlantic region. This was the main alongshore variability in the structure of the larval fish assemblage. Nevertheless, the stronger variability, related with the presence of a shelf-slope front, was found in the central-eastern Cantabrian region where two major larval fish assemblages, an "outer" and a "coastal", were distinguished. The Atlantic region, where the shelf-slope front was not found, was inhabited by a single larval fish assemblage. Canonical correspondence analysis revealed that, off the NW and N Iberian Peninsula coasts, the horizontal distribution of larval fish species in early spring may be explained by a limited number of environmental variables. Of these, the most important were the physical variables depth and sea surface temperature.
Gonzalez, Paula V; Alvarez Costa, Agustín; Masuh, Héctor M
2017-05-01
Aedes aegypti (L.) is the primary vector of dengue, yellow fever, Zika, and chikungunya viruses, whereas Anopheles pseudopunctipennis (Theobald) is the principal vector for malaria in Latin America. The larval stage of these mosquitoes occurs in very different development habitats, and the study of their respective behaviors could give us valuable information to improve larval control. The aim of this study was to set up a bioassay to study basic larval behaviors using a video-tracking software. Larvae of An. pseudopunctipennis came from two localities in Salta Province, Argentina, while Ae. aegypti larvae were of the Rockefeller laboratory strain. Behaviors of individual fourth-instar larvae were documented in an experimental petri dish arena using EthoVision XT10.1 video-tracking software. The overall level of movement of larval An. pseudopunctipennis was lower than that for Ae. aegypti, and, while moving, larval An. pseudopunctipennis spent significantly more time swimming near the wall of the arena (thigmotaxis). This is the first study that analyzes the behavior of An. pseudopunctipennis larvae. The experimental system described here may be useful for future studies on the effect of physiological, toxicological, and chemosensory stimuli on larval behaviors. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Saili, Katerine S.; Corvi, Margaret M.; Weber, Daniel N.; Patel, Ami U.; Das, Siba R.; Przybyla, Jennifer; Anderson, Kim A.; Tanguay, Robert L.
2011-01-01
Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The zebrafish model was employed to investigate the neurobehavioral effects of developmental bisphenol A (BPA) exposure. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development. Two control compounds, 17β-estradiol (an estrogen receptor ligand) and GSK4716 (a synthetic estrogen related receptor gamma ligand), were included. Larval toxicity assays were used to determine appropriate BPA, 17β-estradiol, and GSK4716 concentrations for behavior testing. BPA tissue uptake was analyzed using HPLC and lower doses were extrapolated using a linear regression analysis. Larval behavior tests were conducted using a ViewPoint Zebrabox. Adult learning tests were conducted using a custom-built T-maze. BPA exposure to ≤30 μM was nonteratogenic in zebrafish. Neurodevelopmental BPA exposure to 0.01, 0.1, or 1 μM led to larval hyperactivity or learning deficits in adult zebrafish. Exposure to 0.1 μM 17β-estradiol or GSK4716 also led to larval hyperactivity. This study demonstrates the efficacy of using the larval zebrafish model for studying the neurobehavioral effects of low-dose developmental BPA exposure. PMID:22108044
Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi
2014-04-01
The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability. © 2013 John Wiley & Sons Ltd.
Cetin, Huseyin; Yanikoglu, Atila; Cilek, James E
2005-06-01
The naturally-derived insecticide spinosad (Conserve SC) was evaluated against larval Culex pipiens L. (Diptera: Culicidae) under laboratory and field conditions in Antalya, Turkey. Laboratory bioassays showed that the 24 h LC50 and LC90 against late 3rd and early 4th instars were estimated at 0.027 and 0.111 parts per million, respectively, while adult emergence was eliminated at concentrations above 0.06 ppm. Larval mortality from septic tanks that were treated with spinosad at rates of 25, 50, 100, and 200 g ai/ha ranged between 22 to 78% 1 day after application. At 7 days post-treatment, larval mortality ranged from 2 to 50% and at 14 days mortality was <10% for all treatments. Larval bioassays of the water from those septic tanks treated at 100 and 200 g ai/ha resulted in an elimination of Cx. pipiens larvae 7 days after treatment. After this time, larval reduction declined to 79 and 83%, respectively, 14 days after treatment. Larval reduction in septic tanks treated at the two lowest rates (i.e. 25 and 50 g ai/ha) ranged from 14 to 74% during the 14-day study. These results indicated that spinosad can be considered an effective larvicide for treatment of septic tanks against Cx. pipiens.
Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D
2008-01-01
During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.
Nguyen, L T H; Janssen, C R
2002-02-01
Embryo-larval toxicity tests with the African catfish (Clarias gariepinus) were performed to assess the comparative sensitivity of different endpoints. Measured test responses included embryo and larval survival, hatching, morphological development, and larval growth. Chromium, cadmium, copper, sodium pentachlorphenol (NaPCP), and malathion were used as model toxicants. Hatching was not affected by any of the chemicals tested, and embryo survival was only affected by chromium at > or = 36 mg/L. The growth of larvae was significantly reduced at > or = 11 mg/L Cr, > or = 0.63 mg/L Cu, > or = 0.03 mg/L NaPCP, and > or = 1.25 mg/L malathion. Morphological development of C. gariepinus was affected by all of the toxicants tested. Different types of morphological aberrations were observed, i.e., reduction of pigmentation in fish exposed to cadmium and copper, yolk sac edema in fish exposed to NaPCP and malathion, and deformation of the notochord in fish exposed to chromium and malathion. The sensitivity of the endpoints measured can be summarized as follows: growth > abnormality > larval survival > embryo survival > hatching.
Gender-related family head schooling and Aedes aegypti larval breeding risk in southern Mexico.
Danis-Lozano, Rogelio; Rodríguez, Mario H; Hernández-Avila, Mauricio
2002-01-01
To investigate if family head genre-associated education is related to the risk of domiciliary Aedes aegypti larval breeding in a dengue-endemic village of Southern Mexico. A family head was considered to have a low education level if he/she had not completed elementary school. To estimate larval breeding risk within each household, a three-category Maya index was constructed using a weighted estimation of controllable and disposable domestic water containers. A socio-economic index was constructed based on household construction characteristics. Low-level education of either family head was associated to higher larval breeding risk. Households with low-educated mothers had more larval breeding containers. These associations persisted after adjusting for household socio-economic level. These results indicate that households with female family heads with low education levels accumulate more containers that favor Ae. aegypti breeding, and that education campaigns for dengue control should be addressed to this part of the population. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.
Leonardi, M G; Casartelli, M; Fiandra, L; Parenti, P; Giordana, B
2001-12-01
Nutrient absorption and its modulation are critical for animal growth. In this paper, we demonstrate that leucine methyl ester (Leu-OMe) can greatly increase the activity of the transport system responsible for the absorption of most essential amino acids in the larval midgut of the silkworm Bombyx mori. We investigated leucine uptake activation by Leu-OMe in brush border membrane vesicles and in the apical membrane of epithelial cells in the midgut incubated in vitro. Moreover, the addition of this strong activator of amino acid absorption to diet significantly affected larval growth. Silkworms fed on artificial diet supplemented with Leu-OMe reached maximum body weight 12-18 h before control larvae, and produced cocoon shells up to 20% heavier than those of controls. The activation of amino acid absorption plays an essential role in larval development so that larval growth and cocoon production similar to controls reared on an artificial diet with 25% of dry mulberry leaf powder were observed in silkworms fed on an artificial diet with only 5% of mulberry powder. Arch. Copyright 2001 Wiley-Liss, Inc.
Diel variation of larval fish abundance in the Amazon and Rio Negro.
Araujo-Lima, C A; da Silva, V V; Petry, P; Oliveira, E C; Moura, S M
2001-08-01
Many streams and large rivers present higher ichthyoplankton densities at night. However, in some rivers this does not occur and larvae are equally abundant during the day. Larval drift diel variation is an important information for planning sampling programs for evaluating larval distribution and production. The aim of this study was to test whether the abundance of larval fish was different at either period. We tested it by comparing day and night densities of characiform, clupeiform and siluriform larvae during five years in the Amazon and one year in Rio Negro. We found that larvae of three species of characiform and larvae of siluriform were equally abundant during day and night in the Amazon. Conversely, the catch of Pellona spp. larvae was significantly higher during the day. In Rio Negro, however, larval abundance was higher during the night. These results imply that day samplings estimate adequately the abundance of these characiform and siluriform larvae in the Amazon, but not Pellona larvae. Evaluations of larved densities of Rio Negro will have to consider night sampling.
Paul, Valerie J.; Kuffner, Ilsa B.; Walters, Linda J.; Ritson-Williams, Raphael; Beach, Kevin S.; Becerro, Mikel A.
2011-01-01
Competition between corals and macroalgae is often assumed to occur on reefs, especially those that have undergone shifts from coral to algal dominance; however, data examining these competitive interactions, especially during the early life-history stages of corals, are scarce. We conducted a series of field and outdoor seawater-table experiments to test the hypothesis that allelopathy (chemical inhibition) mediates interactions between 2 common brown macroalgae, Dictyota pulchella and D. pinnatifida, and the coral Porites astreoides at different life-history stages of the coral. D. pinnatifida significantly reduced larval survival and larval recruitment. The extracts of both D. pinnatifida and D. pulchella significantly reduced larval survival, and the extract of D. pulchella also negatively influenced larval recruitment. There was no measurable effect of the crude extracts from Dictyota spp. on the photophysiology of adult corals. Our results provide evidence that these Dictyota species chemically compete with P. astreoides by negatively affecting larval settlement and recruitment as well as the survival of larvae and new recruits. Macroalgae may perpetuate their dominance on degraded reefs by chemically inhibiting the process of coral recruitment.
Lambert, Anne; François, Loïc; Barth, Paul; Gillet, Benjamin; Hughes, Sandrine; Piganeau, Gwenaël; Leulier, Francois; Viriot, Laurent
2017-01-01
Larval recruitment, the transition of pelagic larvae into reef-associated juveniles, is a critical step for the resilience of marine fish populations but its molecular control is unknown. Here, we investigate whether thyroid-hormones (TH) and their receptors (TR) coordinate the larval recruitment of the coral-reef-fish Acanthurus triostegus. We demonstrate an increase of TH-levels and TR-expressions in pelagic-larvae, followed by a decrease in recruiting juveniles. We generalize these observations in four other coral reef-fish species. Treatments with TH or TR-antagonist, as well as relocation to the open-ocean, disturb A. triostegus larvae transformation and grazing activity. Likewise, chlorpyrifos, a pesticide often encountered in coral-reefs, impairs A. triostegus TH-levels, transformation, and grazing activity, hence diminishing this herbivore’s ability to control the spread of reef-algae. Larval recruitment therefore corresponds to a TH-controlled metamorphosis, sensitive to endocrine disruption. This provides a framework to understand how larval recruitment, critical to reef-ecosystems maintenance, is altered by anthropogenic stressors. PMID:29083300
Emergence flux declines disproportionately to larval density along a stream metals gradient
Schmidt, Travis S.; Kraus, Johanna M.; Walters, David M.; Wanty, Richard B.
2013-01-01
Effects of contaminants on adult aquatic insect emergence are less well understood than effects on insect larvae. We compared responses of larval density and adult emergence along a metal contamination gradient. Nonlinear threshold responses were generally observed for larvae and emergers. Larval densities decreased significantly at low metal concentrations but precipitously at concentrations of metal mixtures above aquatic life criteria (Cumulative Criterion Accumulation Ratio (CCAR) ≥ 1). In contrast, adult emergence declined precipitously at low metal concentrations (CCAR ≤ 1), followed by a modest decline above this threshold. Adult emergence was a more sensitive indicator of the effect of low metals concentrations on aquatic insect communities compared to larvae, presumably because emergence is limited by a combination of larval survival and other factors limiting successful emergence. Thus effects of exposure to larvae are not manifest until later in life (during metamorphosis and emergence). This loss in emergence reduces prey subsidies to riparian communities at concentrations considered safe for aquatic life. Our results also challenge the widely held assumption that adult emergence is a constant proportion of larval densities in all streams.
Gruner, S. V.; Slone, D.H.; Capinera, J.L.; Turco, M. P.
2017-01-01
Calliphorid species form larval aggregations that are capable of generating heat above ambient temperature. We wanted to determine the relationship between volume, number of larvae, and different combinations of instars on larval mass heat generation. We compared different numbers of Chrysomya megacephala (F.) larvae (40, 100, 250, 600, and 2,000), and different combinations of instars (∼50/50 first and second instars, 100% second instars, ∼50/50 second and third instars, and 100% third instars) at two different ambient temperatures (20 and 30 °C). We compared 13 candidate multiple regression models that were fitted to the data; the models were then scored and ranked with Akaike information criterion and Bayesian information criterion. The results indicate that although instar, age, treatment temperature, elapsed time, and number of larvae in a mass were significant, larval volume was the best predictor of larval mass temperatures. The volume of a larval mass may need to be taken into consideration for determination of a postmortem interval.
Slade, Jeffrey W.; Adams, Jean V.; Christie, Gavin C.; Cuddy, Douglas W.; Fodale, Michael F.; Heinrich, John W.; Quinlan, Henry R.; Weise, Jerry G.; Weisser, John W.; Young, Robert J.
2003-01-01
Before 1995, Great Lakes streams were selected for lampricide treatment based primarily on qualitative measures of the relative abundance of larval sea lampreys, Petromyzon marinus. New integrated pest management approaches required standardized quantitative measures of sea lamprey. This paper evaluates historical larval assessment techniques and data and describes how new standardized methods for estimating abundance of larval and metamorphosed sea lampreys were developed and implemented. These new methods have been used to estimate larval and metamorphosed sea lamprey abundance in about 100 Great Lakes streams annually and to rank them for lampricide treatment since 1995. Implementation of these methods has provided a quantitative means of selecting streams for treatment based on treatment cost and estimated production of metamorphosed sea lampreys, provided managers with a tool to estimate potential recruitment of sea lampreys to the Great Lakes and the ability to measure the potential consequences of not treating streams, resulting in a more justifiable allocation of resources. The empirical data produced can also be used to simulate the impacts of various control scenarios.
Larval fish dynamics in spring pools in middle Tennessee
Bettoli, Phillip William; Goldsworthy, C.A.
2011-01-01
We used lighted larval traps to assess reproduction by fishes inhabiting nine spring pools in the Barrens Plateau region of middle Tennessee between May and September 2004. The traps (n = 162 deployments) captured the larval or juvenile forms of Etheostoma crossopterum (Fringed Darter) (n = 188), Gambusia affinis (Western Mosquitofish) (n = 139), Hemitremia flammea (Flame Chub) (n = 55), the imperiled Fundulus julisia (Barrens Topminnow) (n = 10), and Forbesichthys agassizii (Spring Cavefish) (n = 1). The larval forms of four other species (Families Centrarchidae, Cyprinidae, and Cottidae) were not collected, despite the presence of adults. Larval Barrens Topminnow hatched over a protracted period (early June through late September); in contrast, hatching intervals were much shorter for Fringed Darter (mid-May through early June). Flame Chub hatching began before our first samples in early May and concluded by late-May. Juvenile Western Mosquitofish were collected between early June and late August. Our sampling revealed that at least two species (Flame Chub and Fringed Darter) were able to reproduce and recruit in habitats harboring the invasive Western Mosquitofish, while Barrens Topminnow could not.
NASA Astrophysics Data System (ADS)
Polte, Patrick; Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena
2017-02-01
General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones.
Larval Chigger Mites Collected from Small Mammals in 3 Provinces, Korea
Lee, In-Yong; Song, Hyeon-Je; Choi, Yeon-Joo; Shin, Sun-Hye; Choi, Min-Kyung; Kwon, So-Hyun; Shin, E-Hyun; Park, Chan; Kim, Heung-Chul; Klein, Terry A.; Park, Kyung-Hee
2014-01-01
A total of 9,281 larval chigger mites were collected from small mammals captured at Hwaseong-gun, Gyeonggi-do (Province) (2,754 mites from 30 small mammals), Asan city, Chungcheongnam-do (3,358 mites from 48 mammals), and Jangseong-gun, Jeollanam-do (3,169 for 62 mammals) from April-November 2009 in the Republic of Korea (= Korea) and were identified to species. Leptotrombidium pallidum was the predominant species in Hwaseong (95.8%) and Asan (61.2%), while Leptotrombidium scutellare was the predominant species collected from Jangseong (80.1%). Overall, larval chigger mite indices decreased from April (27.3) to June (4.9), then increased in September (95.2) and to a high level in November (169.3). These data suggest that L. pallidum and L. scutellare are the primary vectors of scrub typhus throughout their range in Korea. While other species of larval chigger mites were also collected with some implications in the transmission of Orientia tsutsugamushi, they only accounted for 11.2% of all larval chigger mites collected from small mammals. PMID:24850971
A sampler for capturing larval and juvenile Atlantic menhaden
Hedrick, J.D.; Hedrick, L.R.; Margraf, F.J.
2005-01-01
Interest in capturing larval and juvenile Atlantic menhaden Brevoortia tyrannus for use in laboratory studies required the design and construction of a sampling device that would allow us to make collections of live fish from open-water areas. Our device for capturing 1-2.5-in larval-juvenile fish was constructed of a stainless steel frame that supported a 9.84-ft-long (3-m-long)5 cone plankton net with a 3.28-ft-diameter (1-m-diameter) opening and a 0.04-in (1-mm) mesh size. Although the plankton net was similar to that used during typical larval fish collections, the cod end was constructed of Plexiglas and was nearly watertight; this prevented impingement and injury to larval fish and provided a calm-water environment. The cod end was designed for quick release from the plankton net, and the entire cod end could be submerged into a 75-gal onboard holding tank. This design and technique obviated the netting or emerging of fish from the water until they were returned to the laboratory. ?? Copyright by the American Fisheries Society 2005.
Polte, Patrick; Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena
2017-01-01
General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones. PMID:28205543
NASA Astrophysics Data System (ADS)
Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C. S.; Waichel, Breno L.
2016-01-01
Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.
Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C.S.; Waichel, Breno L.
2016-01-01
Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian–Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea. PMID:26765261
Mouro, Lucas D; Zatoń, Michał; Fernandes, Antonio C S; Waichel, Breno L
2016-01-14
Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.
Diel periodicity of drift of larval fishes in tributaries of Lake Ontario
Johnson, J. H.; McKenna, J.E.
2007-01-01
Diel patterns of downstream drift were examined during mid-June in three tributaries of Lake Ontario. Larval fishes were collected in drift nets that were set in each stream for 72 consecutive hours and emptied at 4-h intervals. Fantail darter (Ethostoma flabellare) and blacknose dace (Rhinichthys atractulus) were the two most abundant native stream fishes and were two of the three species collected in the ichthyoplankton drift. Fantail darter larvae comprised 100%, 98.9%, and 70.2% of the ichthyoplankton in the three streams. Most larval fishes (96%) drifted at night with peak catches occurring at 2400h in Orwell Brook and Trout Brook and 0400h in Little Sandy Creek. Based on stream temperatures, peak spawning and larval drift of blacknose dace probably occurred later in the season.
Visual implant elastomer mark retention through metamorphosis in amphibian larvae
Campbell Grant, Evan H.
2008-01-01
Questions in population ecology require the study of marked animals, and marks are assumed to be permanent and not overlooked by observers. I evaluated retention through metamorphosis of visual implant elastomer marks in larval salamanders and frogs and assessed error in observer identification of these marks. I found 1) individual marks were not retained in larval wood frogs (Rana sylvatica), whereas only small marks were likely to be retained in larval salamanders (Eurycea bislineata), and 2) observers did not always correctly identify marked animals. Evaluating the assumptions of marking protocols is important in the design phase of a study so that correct inference can be made about the population processes of interest. This guidance should be generally useful to the design of mark–recapture studies, with particular application to studies of larval amphibians.
Effects of hypervitaminosis of vitamin B3 on silkworm biology.
Etebari, Kayvan; Matindoost, Leila
2004-12-01
A high-dose of vitamin B(3) in silkworm diet interrupts larval feeding and normal growth. High mortality of larvae occurs during molting and they cannot complete this process normally. Also the larvae exhibit nicotinamide hypervitaminosis symptoms such as immobility, dyspepsia, darkening of the skin, inability to excrete normally, exerting brownish fluid from anus and swelling of rectal muscles. Maximum larval weights in 1, 2 and 3 g/l treatments were 2.9, 1.6 and 1.2 g respectively, while maximum larval weight in the control was 5.6 g. Larval stage compared to control had increased 18, 26 and 31 days respectively. The concentration increase of uric acid in haemolymph demonstrates the hyperuricemia, while other measured biochemical compounds show significant decrease; sodium and potassium did not change significantly.
Quentin, J C; Seureau, C; Railhac, C
1983-01-01
A habronemid nematode in birds of prey, Milvus migrans Bonaparti and Accipiter badius Linné, in Togo, is identified as Cyrnea (Procyrnea) mansioni (Seurat, 1914). Larval development is experimentally studied in the orthopteran Acrididae Tylotropidius patagiatus Karsch. The first three larval stages are described and illustrated. The biology of this spiruroid nematode is distinguished by the unusual rapidity of larval development (infective larvae at 10 days). Comparison of the life cycle of C. mansioni with life cycles of other Habronemid Nematodes parasitizing birds, points out an evolution of larvae from primitive forms of large size and slow development to evolved forms of small size and rapid development. Observations concerning the encapsulation of infective larvae in the intermediate host confirm this larval evolution.
Pandey, Siddharth; Das, M K; Dhiman, Ramesh C
2016-01-01
The Ramgarh district of Jharkhand state, India is highly malarious owing to abundance of different malaria vector species, namely Anopheles culicifacies, An. fluviatilis and An. annularis. In spite of high prevalence of malaria vectors in Ramgarh, their larval ecology and climatic conditions affecting malaria dynamics have never been studied. Therefore, the objective of this study was to identify the diversity of potential breeding habitats and breeding preferences of anopheline vectors in the Ramgarh district. Anopheles immature collection was carried out at potential aquatic habitats in Ramgarh and Gola sites using the standard dipper on fortnightly basis from August 2012 to July 2013. The immatures were reared till adult emergence and further identified using standard keys. Temperature of outdoor and water bodies was recorded through temperature data loggers, and rainfall through standard rain gauges installed at each site. A total of 6495 immature specimens representing 17 Anopheles species including three malaria vectors, viz. An. culicifacies, An. fluviatilis and An. annularis were collected from 11 types of breeding habitats. The highly preferred breeding habitats of vector anophelines were river bed pools, rivulets, wells, ponds, river margins, ditches and irrigation channels. Larval abundance of vector species showed site-specific variation with temperature and rainfall patterns throughout the year. The Shannon-Weiner diversity index ranged from 0.19 to 1.94 at Ramgarh site and 0.16 to 1.76 at Gola site. The study revealed that malaria vector species have been adapted to breed in a wide range of water bodies. The regular monitoring of such specific vector breeding sites under changing ecological and environmental conditions will be useful in guiding larval control operations selectively for effective vector/ malaria control.
Soriano, S V; Pierangeli, N B; Pianciola, L A; Mazzeo, M; Lazzarini, L E; Debiaggi, M F; Bergagna, H F J; Basualdo, J A
2015-01-01
Cystic echinococcosis caused by Echinococcus granulosus sensu lato is one of the most important helminth zoonoses in the world; it affects both humans and livestock. The disease is endemic in Argentina and highly endemic in the province of Neuquén. Considerable genetic and phenotypic variation has been demonstrated in E. granulosus, and ten different genotypes (G1-G10) have been identified using molecular tools. Echinococcus granulosus sensu lato may be considered a species complex, comprised of E. granulosus sensu stricto (G1-G3), E. equinus (G4), E. ortleppi (G5) and E. canadensis (G6-G10). In endemic areas, the characterization of cystic echinococcosis molecular epidemiology is important in order to apply adequate control strategies. A cut-off value for larval large hook total length to distinguish E. granulosus sensu stricto isolates from those produced by other species of the complex was defined for the first time. Overall, 1780 larval hooks of 36 isolates obtained from sheep (n= 11, G1), goats (n= 10, G6), cattle (n= 5, G6) and pigs (n= 10, G7) were analysed. Validation against molecular genotyping as gold standard was carried out using the receiver operating characteristic (ROC) curve analysis. The optimum cut-off value was defined as 26.5 μm. The proposed method showed high sensitivity (97.8%) and specificity (91.1%). Since in most endemic regions the molecular epidemiology of echinococcosis includes the coexistence of the widely distributed E. granulosus sensu stricto G1 strain and other species of the complex, this technique could be useful as a quick and economical tool for epidemiological and surveillance field studies, when fertile cysts are present.
Brooke, Basil D.
2018-01-01
Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide susceptible) and SENN DDT (insecticide resistant), were reared in maximum acceptable toxicity concentrations, (MATC—the highest legally accepted concentration) of cadmium chloride, lead nitrate and copper nitrate. Following these exposures, time to pupation, adult size and longevity were determined. Larvae reared in double the MATC were assessed for changes in malathion and deltamethrin tolerance, measured by lethal time bottle bioassay, as well as changes in detoxification enzyme activity. As defence against oxidative stress has previously been demonstrated to affect the expression of insecticide resistance, catalase, glutathione peroxidase and superoxide dismutase activity was assessed. The relative metal toxicity to metal naïve larvae was also assessed. SENN DDT larvae were more tolerant of metal pollution than SENN larvae. Pupation in SENN larvae was significantly reduced by metal exposure, while adult longevity was not affected. SENN DDT showed decreased adult size after larval metal exposure. Adult insecticide tolerance was increased after larval metal exposure, and this effect appeared to be mediated by increased β-esterase, cytochrome P450 and superoxide dismutase activity. These data suggest an enzyme-mediated positive link between tolerance to metal pollutants and insecticide resistance in adult mosquitoes. Furthermore, exposure of larvae to metal pollutants may have operational consequences under an insecticide-based vector control scenario by increasing the expression of insecticide resistance in adults. PMID:29408922
Dynamic expression of ancient and novel molluscan shell genes during ecological transitions
Jackson, Daniel J; Wörheide, Gert; Degnan, Bernard M
2007-01-01
Background The Mollusca constitute one of the most morphologically and ecologically diverse metazoan phyla, occupying a wide range of marine, terrestrial and freshwater habitats. The evolutionary success of the molluscs can in part be attributed to the evolvability of the external shell. Typically, the shell first forms during embryonic and larval development, changing dramatically in shape, colour and mineralogical composition as development and maturation proceeds. Major developmental transitions in shell morphology often correlate with ecological transitions (e.g. from a planktonic to benthic existence at metamorphosis). While the genes involved in molluscan biomineralisation are beginning to be identified, there is little understanding of how these are developmentally regulated, or if the same genes are operational at different stages of the mollusc's life. Results Here we relate the developmental expression of nine genes in the tissue responsible for shell production – the mantle – to ecological transitions that occur during the lifetime of the tropical abalone Haliotis asinina (Vetigastropoda). Four of these genes encode evolutionarily ancient proteins, while four others encode secreted proteins with little or no identity to known proteins. Another gene has been previously described from the mantle of another haliotid vetigastropod. All nine genes display dynamic spatial and temporal expression profiles within the larval shell field and juvenile mantle. Conclusion These expression data reflect the regulatory complexity that underlies molluscan shell construction from larval stages to adulthood, and serves to highlight the different ecological demands placed on each stage. The use of both ancient and novel genes in all stages of shell construction also suggest that a core set of shell-making genes was provided by a shared metazoan ancestor, which has been elaborated upon to produce the range of molluscan shell types we see today. PMID:17845714
Cecala, Kristen K.; Maerz, John C.; Halstead, Brian J.; Frisch, John R.; Gragson, Ted L.; Hepinstall-Cymerman, Jeffrey; Leigh, David S.; Jackson, C. Rhett; Peterson, James T.; Pringle, Catherine M.
2018-01-01
Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fine‐scale changes in patch characteristics that are conditional on the watershed context. Here, we address how populations of two salamander species are affected by interactions among hierarchical processes operating at different scales within a rapidly changing landscape of the southern Appalachian Mountains. We modeled reach‐level occupancy of larval and adult black‐bellied salamanders (Desmognathus quadramaculatus) and larval Blue Ridge two‐lined salamanders (Eurycea wilderae) as a function of 17 different terrestrial and aquatic predictor variables that varied in spatial extent. We found that salamander occurrence varied widely among streams within fully forested catchments, but also exhibited species‐specific responses to changes in local conditions. While D. quadramaculatus declined predictably in relation to losses in forest cover, larval occupancy exhibited the strongest negative response to forest loss as well as decreases in elevation. Conversely, occupancy of E. wilderae was unassociated with watershed conditions, only responding negatively to higher proportions of fast‐flowing stream habitat types. Evaluation of hierarchical relationships demonstrated that most fine‐scale variables were closely correlated with broad watershed‐scale variables, suggesting that local reach‐scale factors have relatively smaller effects within the context of the larger landscape. Our results imply that effective management of southern Appalachian stream salamanders must first focus on the larger scale condition of watersheds before management of local‐scale conditions should proceed. Our findings confirm the results of some studies while refuting the results of others, which may indicate that prescriptive recommendations for range‐wide management of species or the application of a single management focus across large geographic areas is inappropriate.
Dissection and staining of Drosophila larval ovaries.
Maimon, Iris; Gilboa, Lilach
2011-05-13
Many organs depend on stem cells for their development during embryogenesis and for maintenance or repair during adult life. Understanding how stem cells form, and how they interact with their environment is therefore crucial for understanding development, homeostasis and disease. The ovary of the fruit fly Drosophila melanogaster has served as an influential model for the interaction of germ line stem cells (GSCs) with their somatic support cells (niche) (1, 2). The known location of the niche and the GSCs, coupled to the ability to genetically manipulate them, has allowed researchers to elucidate a variety of interactions between stem cells and their niches (3-12). Despite the wealth of information about mechanisms controlling GSC maintenance and differentiation, relatively little is known about how GSCs and their somatic niches form during development. About 18 somatic niches, whose cellular components include terminal filament and cap cells (Figure 1), form during the third larval instar (13-17). GSCs originate from primordial germ cells (PGCs). PGCs proliferate at early larval stages, but following the formation of the niche a subgroup of PGCs becomes GSCs (7, 16, 18, 19). Together, the somatic niche cells and the GSCs make a functional unit that produces eggs throughout the lifetime of the organism. Many questions regarding the formation of the GSC unit remain unanswered. Processes such as coordination between precursor cells for niches and stem cell precursors, or the generation of asymmetry within PGCs as they become GSCs, can best be studied in the larva. However, a methodical study of larval ovary development is physically challenging. First, larval ovaries are small. Even at late larval stages they are only 100μm across. In addition, the ovaries are transparent and are embedded in a white fat body. Here we describe a step-by-step protocol for isolating ovaries from late third instar (LL3) Drosophila larvae, followed by staining with fluorescent antibodies. We offer some technical solutions to problems such as locating the ovaries, staining and washing tissues that do not sink, and making sure that antibodies penetrate into the tissue. This protocol can be applied to earlier larval stages and to larval testes as well.
Janssens, Lizanne; Tüzün, Nedim; Stoks, Robby
2017-11-01
Under global change organisms are exposed to multiple, potentially interacting stressors. Especially interactions between successive stressors are poorly understood and recently suggested to depend on their timing of exposure. We particularly need studies assessing the impact of exposure to relevant stressors at various life stages and how these interact. We investigated the single and combined impacts of a heat wave (mild [25 °C] and extreme [30 °C]) during the egg stage, followed by successive exposure to esfenvalerate (ESF) and a heat wave during the larval stage in damselflies. Each stressor caused mortality. The egg heat wave and larval ESF exposure had delayed effects on survival, growth and lipid peroxidation (MDA). This resulted in deviations from the prediction that stressors separated by a long time interval would not interact: the egg heat wave modulated the interaction between the stressors in the larval stage. Firstly, ESF caused delayed mortality only in larvae that had been exposed to the extreme egg heat wave and this strongly depended upon the larval heat wave treatment. Secondly, ESF only increased MDA in larvae not exposed to the egg heat wave. We found little support for the prediction that when there is limited time between stressors, synergistic interactions should occur. The intermediate ESF concentration only caused delayed mortality when combined with the larval heat wave, and the lowest ESF concentrations only increased oxidative damage when followed by the mild larval heat wave. Survival selection mitigated the interaction patterns between successive stressors that are individually lethal, and therefore should be included in a predictive framework for the time-scale dependence of the outcome of multistressor studies with pollutants. The egg heat wave shaping the interaction pattern between successive pesticide exposure and a larval heat wave highlights the connectivity between the concepts of 'heat-induced pesticide sensitivity' and 'pesticide-induced heat sensitivity'. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cheng, Jack Y K; Chiu, Sam L H; Lo, Irene M C
2017-09-01
In order to foster sustainable management of food waste, innovations in food waste valorization technologies are crucial. Black soldier fly (BSF) bioconversion is an emerging technology that can turn food waste into high-protein fish feed through the use of BSF larvae. The conventional method of BSF bioconversion is to feed BSF larvae with food waste directly without any moisture adjustment. However, it was reported that difficulty has been experienced in the separation of the residue (larval excreta and undigested material) from the insect biomass due to excessive moisture. In addition to the residue separation problem, the moisture content of the food waste may also affect the growth and survival aspects of BSF larvae. This study aims to determine the most suitable moisture content of food waste that can improve residue separation as well as evaluate the effects of the moisture content of food waste on larval growth and survival. In this study, pre-consumer and post-consumer food waste with different moisture content (70%, 75% and 80%) was fed to BSF larvae in a temperature-controlled rotary drum reactor. The results show that the residue can be effectively separated from the insect biomass by sieving using a 2.36mm sieve, for both types of food waste at 70% and 75% moisture content. However, sieving of the residue was not feasible for food waste at 80% moisture content. On the other hand, reduced moisture content of food waste was found to slow down larval growth. Hence, there is a trade-off between the sieving efficiency of the residue and the larval growth rate. Furthermore, the larval survival rate was not affected by the moisture content of food waste. A high larval survival rate of at least 95% was achieved using a temperature-controlled rotary drum reactor for all treatment groups. The study provides valuable insights for the waste management industry on understanding the effects of moisture content when employing BSF bioconversion for food waste recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Temereva, Elena N; Tsitrin, Eugeni B
2013-04-24
The phoronid larva, which is called the actinotrocha, is one of the most remarkable planktotrophic larval types among marine invertebrates. Actinotrochs live in plankton for relatively long periods and undergo catastrophic metamorphosis, in which some parts of the larval body are consumed by the juvenile. The development and organization of the muscular system has never been described in detail for actinotrochs and for other stages in the phoronid life cycle. In Phoronopsis harmeri, muscular elements of the preoral lobe and the collar originate in the mid-gastrula stage from mesodermal cells, which have immigrated from the anterior wall of the archenteron. Muscles of the trunk originate from posterior mesoderm together with the trunk coelom. The organization of the muscular system in phoronid larvae of different species is very complex and consists of 14 groups of muscles. The telotroch constrictor, which holds the telotroch in the larval body during metamorphosis, is described for the first time. This unusual muscle is formed by apical myofilaments of the epidermal cells. Most larval muscles are formed by cells with cross-striated organization of myofibrils. During metamorphosis, most elements of the larval muscular system degenerate, but some of them remain and are integrated into the juvenile musculature. Early steps of phoronid myogenesis reflect the peculiarities of the actinotroch larva: the muscle of the preoral lobe is the first muscle to appear, and it is important for food capture. The larval muscular system is organized in differently in different phoronid larvae, but always exhibits a complexity that probably results from the long pelagic life, planktotrophy, and catastrophic metamorphosis. Degeneration of the larval muscular system during phoronid metamorphosis occurs in two ways, i.e., by complete or by incomplete destruction of larval muscular elements. The organization and remodeling of the muscular system in phoronids exhibits the combination of protostome-like and deuterostome-like features. This combination, which has also been found in the organization of some other systems in phoronids, can be regarded as an important characteristic and one that probably reflects the basal position of phoronids within the Lophotrochozoa.
2013-01-01
Background The phoronid larva, which is called the actinotrocha, is one of the most remarkable planktotrophic larval types among marine invertebrates. Actinotrochs live in plankton for relatively long periods and undergo catastrophic metamorphosis, in which some parts of the larval body are consumed by the juvenile. The development and organization of the muscular system has never been described in detail for actinotrochs and for other stages in the phoronid life cycle. Results In Phoronopsis harmeri, muscular elements of the preoral lobe and the collar originate in the mid-gastrula stage from mesodermal cells, which have immigrated from the anterior wall of the archenteron. Muscles of the trunk originate from posterior mesoderm together with the trunk coelom. The organization of the muscular system in phoronid larvae of different species is very complex and consists of 14 groups of muscles. The telotroch constrictor, which holds the telotroch in the larval body during metamorphosis, is described for the first time. This unusual muscle is formed by apical myofilaments of the epidermal cells. Most larval muscles are formed by cells with cross-striated organization of myofibrils. During metamorphosis, most elements of the larval muscular system degenerate, but some of them remain and are integrated into the juvenile musculature. Conclusion Early steps of phoronid myogenesis reflect the peculiarities of the actinotroch larva: the muscle of the preoral lobe is the first muscle to appear, and it is important for food capture. The larval muscular system is organized in differently in different phoronid larvae, but always exhibits a complexity that probably results from the long pelagic life, planktotrophy, and catastrophic metamorphosis. Degeneration of the larval muscular system during phoronid metamorphosis occurs in two ways, i.e., by complete or by incomplete destruction of larval muscular elements. The organization and remodeling of the muscular system in phoronids exhibits the combination of protostome-like and deuterostome-like features. This combination, which has also been found in the organization of some other systems in phoronids, can be regarded as an important characteristic and one that probably reflects the basal position of phoronids within the Lophotrochozoa. PMID:23617418
NASA Astrophysics Data System (ADS)
Urzúa, Ángel; Anger, Klaus
2013-06-01
The "brown shrimp", Crangon crangon (Linnaeus 1758), is a benthic key species in the North Sea ecosystem, supporting an intense commercial fishery. Its reproductive pattern is characterized by a continuous spawning season from mid-winter to early autumn. During this extended period, C. crangon shows significant seasonal variations in egg size and embryonic biomass, which may influence larval quality at hatching. In the present study, we quantified seasonal changes in dry weight (W) and chemical composition (CHN, protein and lipid) of newly hatched larvae of C. crangon. Our data revealed significant variations, with maximum biomass values at the beginning of the hatching season (February-March), a decrease throughout spring (April-May) and a minimum in summer (June-September). While all absolute values of biomass and biochemical constituents per larva showed highly significant differences between months ( P < 0.001), CHN, protein and lipid concentrations (expressed as percentage values of dry weight) showed only marginally significant differences ( P < 0.05). According to generalized additive models (GAM), key variables of embryonic development exerted significant effects on larval condition at hatching: The larval carbon content (C) was positively correlated with embryonic carbon content shortly after egg-laying ( r 2 = 0.60; P < 0.001) and negatively with the average incubation temperature during the period of embryonic development ( r 2 = 0.35; P < 0.001). Additionally, water temperature ( r 2 = 0.57; P < 0.001) and food availability (phytoplankton C; r 2 = 0.39; P < 0.001) at the time of hatching were negatively correlated with larval C content at hatching. In conclusion, "winter larvae" hatching from larger "winter eggs" showed higher initial values of biomass compared to "summer larvae" originating from smaller "summer eggs". This indicates carry-over effects persisting from the embryonic to the larval phase. Since "winter larvae" are more likely exposed to poor nutritional conditions, intraspecific variability in larval biomass at hatching is interpreted as part of an adaptive reproductive strategy compensating for strong seasonality in plankton production and transitory periods of larval food limitation.
Rank, Nathan Egan
1994-04-01
Several species of willow leaf beetles use hostplant salicin to produce a defensive secretion that consists of salicylaldehyde. Generalist arthropod predators such as ants, ladybird beetles, and spiders are repelled by this secretion. The beetle larvae produce very little secretion when they feed on willows that lack salicylates, and salicin-using beetles prefer salicylate-rich willows over salicylate-poor ones. This preference may exist because the larvae are better defended against natural enemies on salicylate-rich willows. If this is true, the larvae should survive longer on those willows in nature. However, this prediction has not been tested. I determined the larval growth and survival of Chrysomela aeneicollis (Coleoptera: Chrysomelidae) on five willow species (Salix boothi, S. drummondiana, S. geyeriana, S. lutea, and S. orestera). These species differed in their salicylate chemistries and in leaf toughness but not in water content. The water content varied among the individual plants. Larval growth of C. aeneicollis did not differ among the five species in the laboratory, but it varied among the individual plants and it was related to the water content. In the field, C. aeneicollis larvae developed equally rapidly on the salicylate-poor S. lutea and on the salicylate-rich S. orestera. Larval survival was greater on S. orestera than on S. lutea in one year (1986), but there was no difference between them during three succeeding years. In another survivorship experiment, larval survival was low on the medium-salicylate S. geyeriana, but high on the salicylate-poor S. boothi and on S. orestera. Larval survival in the field was related to the larval growth and water content that had been previously measured in the laboratory. These results showed that the predicted relationship between the host plant chemistry and larval survival did not usually exist for C. aeneicollis. One possible reason for this was that the most important natural enemies were specialist predators that were unaffected by the host-derived defensive secretion. One specialist predator, Symmorphus cristatus (Hymenoptera: Eumenidae), probably caused much of the mortality observed in this study. I discuss the importance of other specialist predators to salicin-using leaf beetles.
Jacob, Benjamin G; Novak, Robert J; Toe, Laurent; Sanfo, Moussa S; Afriyie, Abena N; Ibrahim, Mohammed A; Griffith, Daniel A; Unnasch, Thomas R
2012-01-01
The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l. a major black-fly vector of Onchoceriasis, postulate models relating observational ecological-sampled parameter estimators to prolific habitats without accounting for residual intra-cluster error correlation effects. Generally, this correlation comes from two sources: (1) the design of the random effects and their assumed covariance from the multiple levels within the regression model; and, (2) the correlation structure of the residuals. Unfortunately, inconspicuous errors in residual intra-cluster correlation estimates can overstate precision in forecasted S.damnosum s.l. riverine larval habitat explanatory attributes regardless how they are treated (e.g., independent, autoregressive, Toeplitz, etc). In this research, the geographical locations for multiple riverine-based S. damnosum s.l. larval ecosystem habitats sampled from 2 pre-established epidemiological sites in Togo were identified and recorded from July 2009 to June 2010. Initially the data was aggregated into proc genmod. An agglomerative hierarchical residual cluster-based analysis was then performed. The sampled clustered study site data was then analyzed for statistical correlations using Monthly Biting Rates (MBR). Euclidean distance measurements and terrain-related geomorphological statistics were then generated in ArcGIS. A digital overlay was then performed also in ArcGIS using the georeferenced ground coordinates of high and low density clusters stratified by Annual Biting Rates (ABR). This data was overlain onto multitemporal sub-meter pixel resolution satellite data (i.e., QuickBird 0.61m wavbands ). Orthogonal spatial filter eigenvectors were then generated in SAS/GIS. Univariate and non-linear regression-based models (i.e., Logistic, Poisson and Negative Binomial) were also employed to determine probability distributions and to identify statistically significant parameter estimators from the sampled data. Thereafter, Durbin-Watson test statistics were used to test the null hypothesis that the regression residuals were not autocorrelated against the alternative that the residuals followed an autoregressive process in AUTOREG. Bayesian uncertainty matrices were also constructed employing normal priors for each of the sampled estimators in PROC MCMC. The residuals revealed both spatially structured and unstructured error effects in the high and low ABR-stratified clusters. The analyses also revealed that the estimators, levels of turbidity and presence of rocks were statistically significant for the high-ABR-stratified clusters, while the estimators distance between habitats and floating vegetation were important for the low-ABR-stratified cluster. Varying and constant coefficient regression models, ABR- stratified GIS-generated clusters, sub-meter resolution satellite imagery, a robust residual intra-cluster diagnostic test, MBR-based histograms, eigendecomposition spatial filter algorithms and Bayesian matrices can enable accurate autoregressive estimation of latent uncertainity affects and other residual error probabilities (i.e., heteroskedasticity) for testing correlations between georeferenced S. damnosum s.l. riverine larval habitat estimators. The asymptotic distribution of the resulting residual adjusted intra-cluster predictor error autocovariate coefficients can thereafter be established while estimates of the asymptotic variance can lead to the construction of approximate confidence intervals for accurately targeting productive S. damnosum s.l habitats based on spatiotemporal field-sampled count data.
Mankin, R W; Moore, A
2010-08-01
Adult and larval Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae: Dynastinae) were acoustically detected in live and dead palm trees and logs in recently invaded areas of Guam, along with Nasutitermes luzonicus Oshima (Isoptera: Termitidae), and other small, sound-producing invertebrates and invertebrates. The low-frequency, long-duration sound-impulse trains produced by large, active O. rhinoceros and the higher frequency, shorter impulse trains produced by feeding N. luzonicus had distinctive spectral and temporal patterns that facilitated their identification and discrimination from background noise, as well as from roaches, earwigs, and other small sound-producing organisms present in the trees and logs. The distinctiveness of the O. rhinoceros sounds enables current usage of acoustic detection as a tactic in Guam's ongoing O. rhinoceros eradication program.
DNA Metabarcoding of Amazonian Ichthyoplankton Swarms
Maggia, M. E.; Vigouroux, Y.; Renno, J. F.; Duponchelle, F.; Desmarais, E.; Nunez, J.; García-Dávila, C.; Carvajal-Vallejos, F. M.; Paradis, E.; Martin, J. F.; Mariac, C.
2017-01-01
Tropical rainforests harbor extraordinary biodiversity. The Amazon basin is thought to hold 30% of all river fish species in the world. Information about the ecology, reproduction, and recruitment of most species is still lacking, thus hampering fisheries management and successful conservation strategies. One of the key understudied issues in the study of population dynamics is recruitment. Fish larval ecology in tropical biomes is still in its infancy owing to identification difficulties. Molecular techniques are very promising tools for the identification of larvae at the species level. However, one of their limits is obtaining individual sequences with large samples of larvae. To facilitate this task, we developed a new method based on the massive parallel sequencing capability of next generation sequencing (NGS) coupled with hybridization capture. We focused on the mitochondrial marker cytochrome oxidase I (COI). The results obtained using the new method were compared with individual larval sequencing. We validated the ability of the method to identify Amazonian catfish larvae at the species level and to estimate the relative abundance of species in batches of larvae. Finally, we applied the method and provided evidence for strong temporal variation in reproductive activity of catfish species in the Ucayalí River in the Peruvian Amazon. This new time and cost effective method enables the acquisition of large datasets, paving the way for a finer understanding of reproductive dynamics and recruitment patterns of tropical fish species, with major implications for fisheries management and conservation. PMID:28095487
NASA Astrophysics Data System (ADS)
Sommer, C.
1990-09-01
The morphology and histology of the planula larva of Eudendrium racemosum (Cavolini) and its metamorphosis into the primary polyp are described from light microscopic observations. The planula hatches as a differentiated gastrula. During the lecithotrophic larval period, large ectodermal mucous cells, embedded between epitheliomuscular cells, secrete a sticky slime. Two granulated cell types occur in the ectoderm that are interpreted as secretory and sensorynervous cells, but might also be representatives of only one cell type with a multiple function. The entoderm consists of yolk-storing gastrodermal cells, digestive gland cells, interstitial cells, cnidoblasts, and premature cnidocytes. The larva starts metamorphosis by affixing its blunt aboral pole to a substratum. While the planula flattens down, the mucous cells penetrate the mesolamella and migrate through the entoderm into the gastral cavity where they are lysed. Subsequently, interstitial cells, cnidoblasts, and premature cnidocytes migrate in the opposite direction, i.e. from entoderm to ectoderm. Then, the polypoid body organization, comprising head (hydranth), stem and foot, all covered by peridermal secretion, becomes recognisable. An oral constriction divides the hypostomal portion of the gastral cavity from the stomachic portion. Within the hypostomal entoderm, cells containing secretory granules differentiate. Following growth and the multiplication of tentacles, the head periderm disappears. A ring of gland cells differentiates at the hydranth's base. The positioning of cnidae in the tentacle ectoderm, penetration of the mouth opening and the multiplication of digestive gland cells enable the polyp to change from lecithotrophic to planktotrophic nutrition.
In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters
Hama, Kotaro; Provost, Elayne; Baranowski, Timothy C.; Rubinstein, Amy L.; Anderson, Jennifer L.; Leach, Steven D.; Farber, Steven A.
2009-01-01
Optical clarity of larvae makes the zebrafish ideal for real-time analyses of vertebrate organ function through the use of fluorescent reporters of enzymatic activities. A key function of digestive organs is to couple the generation of enzymes with mechanical processes that enable nutrient availability and absorption. However, it has been extremely difficult, and in many cases not possible, to directly observe digestive processes in a live vertebrate. Here we describe a new method to visualize intestinal protein and lipid processing simultaneously in live zebrafish larvae using a quenched fluorescent protein (EnzChek) and phospholipid (PED6). By employing these reagents, we found that wild-type larvae exhibit significant variation in intestinal phospholipase and protease activities within a group but display a strong correlation between the activities within individuals. Furthermore, we found that pancreas function is essential for larval digestive protease activity but not for larval intestinal phospholipase activity. Although fat-free (ffr) mutant larvae were previously described to exhibit impaired lipid processes, we found they also had significantly reduced protease activity. Finally, we selected and evaluated compounds that were previously suggested to have altered phospholipase activity and are known or suspected to have inflammatory effects in the intestinal tract including nonsteroidal anti-inflammatory drugs, and identified a compound that significantly increases intestinal phospholipid processing. Thus the multiple fluorescent reporter-based methodology facilitates the rapid analysis of digestive organ function in live zebrafish larvae. PMID:19056761
Narayanan, K; Jayaraj, S
2002-07-01
A significant difference was noticed in the yield of polyhedral occlusion bodies (POBs) in various larval instars of H. armigera when three different doses of the nuclear polyhedrosis virus (NPV) were administered. The yield of POBs from a single larva ranged from 0.35 x 10(6) to 25033.33 x 10(6) with a mean of 18422.33 x 10(6) for fourth instar inoculated. Positive correlation existed between larval weight and number of POBs recovered. The regression analysis indicated POBs recovered responded with predictable manner to the weight of different larval instars and the various concentration of virus administered. The medium lethal time increased in the instars of the larva advanced with a minimum of 3.5 and maximum of 8 days in the first and fifth instars respectively.
Xue, Rui-De; Qualls, Whitney A
2013-01-01
Seven commercial synthetic disinfectant and antibacterial soap products were evaluated as mosquito larvicides against Culex quinquefasciatus Say in the laboratory. Three aerosol disinfectant products, at 0.01% concentration resulted in 58-76% mortality of laboratory-reared fourth instar mosquito larvae at 24 h posttreatment. Four antibacterial soap products at 0.0001% concentration resulted in 88-100% larval mortality at 24 h posttreatment. The active ingredient of the antibacterial soap products, triclosan (0.1%) resulted in 74% larval mortality. One of the antibacterial soap products, Equate caused the highest mosquito larval mortality in the laboratory. Equate antibacterial soap at the application rate of 0.000053 ppm resulted in 90% mortality of the introduced fourth instar larvae of Cx. quinquesfasicatus in the outdoor pools. In laboratory and field bioassays, the antibacterial soap resulted in significant larval mosquito mortality.
Couret, Janelle; Dyer, M.C.; Mather, T.N.; Han, S.; Tsao, J.I.; LeBrun, R.A.; Ginsberg, Howard
2017-01-01
Measuring rates of acquisition of the Lyme disease pathogen, Borrelia burgdorferi sensu lato Johnson, Schmid, Hyde, Steigerwalt & Brenner, by the larval stage of Ixodes scapularis Say is a useful tool for xenodiagnoses of B. burgdorferi in vertebrate hosts. In the nymphal and adult stages of I. scapularis, the duration of attachment to hosts has been shown to predict both body engorgement during blood feeding and the timing of infection with B. burgdorferi. However, these relationships have not been established for the larval stage of I. scapularis. We sought to establish the relationship between body size during engorgement of larval I. scapularis placed on B. burgdorferi-infected, white-footed mice (Peromyscus leucopus Rafinesque) and the presence or absence of infection in larvae sampled from hosts over time. Body size, time, and their interaction were the best predictors of larval infection with B. burgdorferi. We found that infected larvae showed significantly greater engorgement than uninfected larvae as early as 24 h after placement on a host. These findings may suggest that infection with B. burgdorferi affects the larval feeding process. Alternatively, larvae that engorge more rapidly on hosts may acquire infections faster. Knowledge of these relationships can be applied to improve effective xenodiagnosis of B. burgdorferi in white-footed mice. Further, these findings shed light on vector–pathogen–host interactions during an understudied part of the Lyme disease transmission cycle.
Predator-induced larval cloning in the sand dollar Dendraster excentricus: might mothers matter?
Vaughn, Dawn
2009-10-01
Predator-induced cloning in echinoid larvae, with reduced size a consequence of cloning, is a dramatic modification of development and a novel response to risks associated with prolonged planktonic development. Recent laboratory studies demonstrate that exposure to stimuli from predators (i.e., fish mucus) induces cloning in the pluteus larvae (plutei) of Dendraster excentricus. However, the timing and incidence of cloning and size reduction of unrelated conspecific plutei differed across experiments. A variable cloning response suggests the effects of such factors as cue quality, egg provisioning, maternal experience, and genetic background, indicating that the potential advantages of cloning as an adaptive response to predators are not available to all larvae. This study tested the hypothesis that cloning in D. excentricus plutei is maternally influenced. Plutei from three half-sibling larval families (different mothers, same father) were exposed to fish mucus for 9 days during early development. Cloning was inferred in a percentage of plutei from each family; however, the rate and success of cloning differed significantly among the larval half-siblings. Unexpectedly, all mucus-treated plutei were smaller and developmentally delayed when compared to all plutei reared in the absence of a mucus stimulus. Thus, while the results from this study support the hypothesis of an influence of mothers on cloning of larval offspring, reduced larval size was a uniform response to fish mucus and did not indicate an effect of mothers. Hypotheses of the developmental effects of fish mucus on larval size with or without successful cloning are discussed.
Simons, Rachel D; Page, Henry M; Zaleski, Susan; Miller, Robert; Dugan, Jenifer E; Schroeder, Donna M; Doheny, Brandon
2016-01-01
Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD) of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.
Wang, Simon; Yoo, SooHyun; Kim, Hae-Yoon; Wang, Mannan; Zheng, Clare; Parkhouse, Wade; Krieger, Charles; Harden, Nicholas
2015-01-20
Discs large (Dlg) is a conserved member of the membrane-associated guanylate kinase family, and serves as a major scaffolding protein at the larval neuromuscular junction (NMJ) in Drosophila. Previous studies have shown that the postsynaptic distribution of Dlg at the larval NMJ overlaps with that of Hu-li tai shao (Hts), a homologue to the mammalian adducins. In addition, Dlg and Hts are observed to form a complex with each other based on co-immunoprecipitation experiments involving whole adult fly lysates. Due to the nature of these experiments, however, it was unknown whether this complex exists specifically at the NMJ during larval development. Proximity Ligation Assay (PLA) is a recently developed technique used mostly in cell and tissue culture that can detect protein-protein interactions in situ. In this assay, samples are incubated with primary antibodies against the two proteins of interest using standard immunohistochemical procedures. The primary antibodies are then detected with a specially designed pair of oligonucleotide-conjugated secondary antibodies, termed PLA probes, which can be used to generate a signal only when the two probes have bound in close proximity to each other. Thus, proteins that are in a complex can be visualized. Here, it is demonstrated how PLA can be used to detect in situ protein-protein interactions at the Drosophila larval NMJ. The technique is performed on larval body wall muscle preparations to show that a complex between Dlg and Hts does indeed exist at the postsynaptic region of NMJs.
Rovenko, B M; Lushchak, V I; Lushchak, O V
2013-01-01
The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40-50% increased content of protein carbonyl groups and by 60-70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes--glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.
NASA Astrophysics Data System (ADS)
Zarrad, Rafik; Alemany, Francisco; Rodriguez, José-María; Jarboui, Othman; Lopez-Jurado, José-Luis; Balbin, Rosa
2013-02-01
The structure of the summer larval fish assemblage off the eastern coast of Tunisia and its relation to environmental conditions was studied, from ichthyoplankton samples taken during a survey conducted between 23rd June and 9th July 2008. A total of 68 larval fish taxa were identified, 52 to species level. The taxonomic composition and abundance of the larval fish assemblage showed high spatial heterogeneity. Mesoscale hydrographic features, such as eddies, seem to play an important role in the spatial distribution of fish larvae in the area, enhancing concentration and retention. The larval fish assemblage was dominated by the small pelagic species Sardinella aurita (26.6% of the total larval fish abundance), followed by Engraulis encrasicolus (22.6%), Spicara spp. (8.6%) and Mullus barbatus (6.8%). Shannon-Weaver index (H') ranged between 0 and 2.62. The highest values were found offshore, at 95 miles east of Sousse, over depths around 250 m. The diversity was higher in this region as a result of transport by currents and retention by eddies. It has also been shown that the eastern coast of Tunisia is a spawning ground for the tuna species Auxis rochei, Thunnus thynnus and Thunnus alalunga. Larvae of mesopelagic fishes represented 5.46% of the total abundance, with Cyclothone braueri, Ceratoscopelus maderensis and Lampanyctus crocodilus being the most important species. Canonical correspondence analysis (CCA) indicated that depth was the most important environmental factor in explaining species distribution.
Puggioli, Arianna; Balestrino, F; Damiens, D; Lees, R S; Soliban, S M; Madakacherry, O; Dindo, M L; Bellini, R; Gilles, J R L
2013-07-01
A fundamental step in establishing a mass production system is the development of a larval diet that promotes high adult performance at a reasonable cost. To identify a suitable larval diet for Aedes albopictus (Skuse), three diets were compared: a standard laboratory diet used at the Centro Agricoltura Ambiente, Italy (CAA) and two diets developed specifically for mosquito mass rearing at the FAO/IAEA Laboratory, Austria. The two IAEA diets, without affecting survival to the pupal stage, resulted in a shorter time to pupation and to emergence when compared with the CAA diet. At 24 h from pupation onset, 50 and 90% of the male pupae produced on the CAA and IAEA diets, respectively, had formed and could be collected. The diet received during the larval stage affected the longevity of adult males with access to water only, with best results observed when using the CAA larval diet. However, similar longevity among diet treatments was observed when males were supplied with sucrose solution. No differences were observed in the effects of larval diet on adult male size or female fecundity and fertility. Considering these results, along with the relative costs of the three diets, the IAEA 2 diet is found to be the preferred choice for mass rearing of Aedes albopictus, particularly if a sugar meal can be given to adult males before release, to ensure their teneral reserves are sufficient for survival, dispersal, and mating in the field.
Lardeux, Frederic; Sechan, Yves; Loncke, Stepiiane; Deparis, Xavier; Cheffort, Jules; Faaruia, Marc
2002-05-01
An integrated larval mosquito control program was carried out in Tiputa village on Rangiroa atoll of French Polynesia. Mosquito abundance before and after treatment was compared with the abundance in an untreated village. Mosquito larval habitats consisted of large concrete or polyurethane cisterns, wells, and 200-liter drums. Depending on the target species, larval habitat category, its configuration, and purpose (drinking consumption or not), abatement methods consisted of sealing the larval habitats with mosquito gauze, treating them with 1% Temephos, covering the water with a 10-cm thick layer of polystyrene beads or introducing fish (Poecillia reticulata Rosen & Bailey). All premises of the chosen village were treated and a health education program explained basic mosquito ecology and the methods of control. A community health agent was trained to continue the control program at the end of the experiment. Entomological indices from human bait collections and larval surveys indicated that mosquito populations were reduced significantly, compared with concurrent samples from the untreated control village, and that mosquito control remained effective for 6 mo after treatment. Effects of the treatment were noticed by the inhabitants in terms of a reduction in the number of mosquito bites. In the Polynesian context, such control programs may succeed in the long-term only if strong political decisions are taken at the village level, if a community member is designated as being responsible for maintaining the program, and if the inhabitants are motivated sufficiently by the mosquito nuisance to intervene.
Larval Settlement: The Role of Surface Topography for Sessile Coral Reef Invertebrates
Whalan, Steve; Abdul Wahab, Muhammad A.; Sprungala, Susanne; Poole, Andrew J.; de Nys, Rocky
2015-01-01
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates. PMID:25671562
Kind, T V
2005-01-01
Three types of Calliphora larval hemocytes have been revealed to be involved in phagocytosis of abiotic foreign particles: thrombocytoids, larval plasmatocytes and plasmatocytes I. Thrombocytoids are the quickest to respond to the appearance of invaders. The onset of test particle entrapment by thrombocytoid cytoplasmic fragments was observed, depending on the larval age within 0.5-5.0 min after injection. Separated fragments were fused, forming strands or roundish agglutinates. Phagocytosis of carbon, carmine or Indian ink particles by larval plasmatocytes occurs far more lately, and no earlier than 20-30 min after injection. Plasmatocytes I are capable of foreign particles adhesion on their surface, with a subsequent morule formation, and of engulfing these particles. These two events start in different time periods: adhesion occurs in 5-10 min, while phagocytosis is observed in 1--3 h. The rate of test particle entrapment and stability of agglutinales clearly depends on the larval age. The most pronounced reaction of hemocytes to foreign particles may be observed by the end of feeding and crop emptying. The second, somewhat less expressed rise of activity occurs in mature larvae not long before the onset of pupariation. Diapause induction is accompanied by reducing activities of both plasmatocytes and thrompocytoids. The importance of different hemocyte types in cellular immune reaction of Calliphora vicina larvae, and co-ordination between plasmatocytes and thrombocytoids are discussed.
Larval settlement: the role of surface topography for sessile coral reef invertebrates.
Whalan, Steve; Wahab, Muhammad A Abdul; Sprungala, Susanne; Poole, Andrew J; de Nys, Rocky
2015-01-01
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.
Öztürk, H E; Güven, Ö; Karaca, I
2015-01-01
In this study, biological activity of entomopathogenic fungi (4 strains) isolated from the Colorado potato beetle and the commercial biopesticides containing entomopathogenic fungi; Priority® (Paecilomyces fumosoroseus), Nibortem® (Verticillium lecanii), Nostalgist® (Beauveria bassiana), Bio-Magic* (Metarhizium anisopliae), Bio-Nematon* (Paeciliomyces sp.) and plant extracts; Nimbedicine EC* (Azadiractin) were determined against Leptinotarsa decemlineata under laboratory conditions. An Imidacloprid active ingredient commercial insecticide was also used to compare the insecticidal activity and distilled water was used as control. The biological control agents were applied to 2nd-3rd larval instars, 4th larval instars and adults with spray and leaf dipping methods. Single concentration (10⁸ conidia/mL⁻¹) of entomopathogenic fungi and recommended dose of bioinsecticides were prepared for application. The number of dead insects were determined at 3, 5, and 7 days after applications. Experiments were conducted at 25 ±1° C and 60% ± 5 relative humidity with 16:8 h light: dark conditions. Entomopathogenic fungi and bioinsecticides were found to be more effective on larval stage than 4th larval instars and adults. In spray methods, Bio-Magic®, Nibortem®, and Nostalgist® caused 96.4%, 92.9% and 82.1% mortality on 2nd larval instars and 20%, 36.7% and 33.3% mortality on adults, respectively. All local fungal isolates (B. bassiana) applied on 2nd and 4th larval instars caused 100% mortality. Adults showed 58.6-86.2% mortality.
Embryogenesis and Larval Biology of the Cold-Water Coral Lophelia pertusa
Strömberg, Susanna M.; Dahl, Mikael P.; Lundälv, Tomas; Brooke, Sandra
2014-01-01
Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼160 µm large neutral or negatively buoyant eggs, to 120–270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6–8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s−1) initially residing in the upper part of the water column, with bottom probing behavior starting 3–5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations. PMID:25028936
Rausch, R L; D'Alessandro, A; Rausch, V R
1981-09-01
In Colombia, the natural intermediate host of Echinococcus vogeli Rausch and Bernstein, 1972 is the paca, Cuniculus paca L. (Rodentia: Dasyproctidae). The larval cestode develops in the liver of the host, where it usually is situated superficially, partly exposed beneath Glisson's capsule. The infective larva consists of a subspherical to asymmetrical, fluid-filled vesicle, up to 30 mm in diameter, enclosed by a thick laminated membrane. It typically contains numerous chambers, often interconnected, produced by endogenous proliferation of germinal and laminated tissue, within which brood capsules arise in an irregular pattern from the germinal layer. Invasive growth by means of exogenous proliferation, typical of infections in man, was not observed in the natural intermediate host. The development of the larval cestode is described on the basis of material from pacas, supplemented by observations on early-stage lesions in experimentally infected nutrias, Myocastor coypus (Molina) (Rodentia: Capromyidae). The tissue response is characterized for early-stage, mature (infective), and degenerating larvae in the comparatively long-lived intermediate host. In addition to previously reported differences in size and form of rostellar hooks, other morphologic characteristics are defined by which the larval stage of E. vogeli is distinguished from that of E. oligarthrus (Diesing, 1863). Pathogenesis by the larval E. vogeli in man, like that by the larval E. multilocularis Leuckart, 1863, is the consequence of atypical proliferation of vesicles attributable to parasite-host incompatibility.
Qiao, Liang; Xiong, Gao; Wang, Ri-xin; He, Song-zhen; Chen, Jie; Tong, Xiao-ling; Hu, Hai; Li, Chun-lin; Gai, Ting-ting; Xin, Ya-qun; Liu, Xiao-fan; Chen, Bin; Xiang, Zhong-huai; Lu, Cheng; Dai, Fang-yin
2014-04-01
Cuticular proteins (CPs) are crucial components of the insect cuticle. Although numerous genes encoding cuticular proteins have been identified in known insect genomes to date, their functions in maintaining insect body shape and adaptability remain largely unknown. In the current study, positional cloning led to the identification of a gene encoding an RR1-type cuticular protein, BmorCPR2, highly expressed in larval chitin-rich tissues and at the mulberry leaf-eating stages, which is responsible for the silkworm stony mutant. In the Dazao-stony strain, the BmorCPR2 allele is a deletion mutation with significantly lower expression, compared to the wild-type Dazao strain. Dysfunctional BmorCPR2 in the stony mutant lost chitin binding ability, leading to reduced chitin content in larval cuticle, limitation of cuticle extension, abatement of cuticle tensile properties, and aberrant ratio between internodes and intersegmental folds. These variations induce a significant decrease in cuticle capacity to hold the growing internal organs in the larval development process, resulting in whole-body stiffness, tightness, and hardness, bulging intersegmental folds, and serious defects in larval adaptability. To our knowledge, this is the first study to report the corresponding phenotype of stony in insects caused by mutation of RR1-type cuticular protein. Our findings collectively shed light on the specific role of cuticular proteins in maintaining normal larval body shape and will aid in the development of pest control strategies for the management of Lepidoptera.
Gonzalez, Rosalinda; Dunham, Jason B.; Lightcap, Scott W.; McEnroe, Jeffery R.
2017-01-01
The influences of large wood on Pacific salmon are well-studied, but studies of nonsalmonid species such as lampreys are uncommon. To address this need, we evaluated the potential effects of large wood on larval lampreys (Pacific Lamprey, Entosphenus tridentatus; and potentially Western Brook Lamprey Lampetra richardsoni), as well as juvenile Coho Salmon Oncorhynchus kisutch, in a small coastal Oregon stream. Our objectives were to 1) identify in-stream habitat characteristics associated with the presence of larval lampreys and abundance of juvenile Coho Salmon; and 2) evaluate how these characteristics were associated with in-stream wood. To address habitat use, we quantified presence of larval lampreys in 92 pools and abundance of juvenile Coho Salmon in 44 pools during summer low flows. We focused on a study reach where large wood was introduced into the stream between 2008 and 2009. Results indicated that presence of larval lampreys was significantly associated with availability of fine sediment and deeper substrate. The abundance of juvenile Coho Salmon (fish/pool) was strongly associated with pool surface area and to a weaker extent with the proportion of cobble and boulder substrates in pools. Pools with wood, regardless of whether they were formed by wood, had significantly greater coverage of fine sediment, deeper substrate, and greater pool surface area. Taken together, these results suggest that in-stream wood can provide habitat associated with presence of larval lampreys and greater abundance of juvenile Coho Salmon.
Spaethe, Johannes; Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research. PMID:29085743
Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands.
Russell, Tanya L; Burkot, Thomas R; Bugoro, Hugo; Apairamo, Allan; Beebe, Nigel W; Chow, Weng K; Cooper, Robert D; Collins, Frank H; Lobo, Neil F
2016-03-15
There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm(2)) when compared with the lowest density (1 larva per 38 cm(2)). The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most productive larval sites of this malaria vector, were "few, fixed and findable" and theoretically, therefore, amenable to successful LSM. However, the immense scale and complexity of these ecosystems in which An. farauti larvae are found raises questions regarding the ability to effectively control the larvae, as incomplete larviciding could trigger density dependent effects resulting in increased larval survivorship. While LSM has the potential to significantly contribute to malaria control of this early and outdoor biting vector, more information on the distribution of larvae within these extensive habitats is required to maximize the effectiveness of LSM.
Darling, John A; Tsai, Yi-Hsin Erica; Blakeslee, April M H; Roman, Joe
2014-10-01
Biological invasions offer unique opportunities to investigate evolutionary dynamics at the peripheries of expanding populations. Here, we examine genetic patterns associated with admixture between two distinct invasive lineages of the European green crab, Carcinus maenas L., independently introduced to the northwest Atlantic. Previous investigations based on mitochondrial DNA sequences demonstrated that larval dispersal driven by advective currents could explain observed southward displacement of an admixture zone between the two invasions. Comparison of published mitochondrial results with new nuclear data from nine microsatellite loci, however, reveals striking discordance in their introgression patterns. Specifically, introgression of mitochondrial genomes relative to nuclear background suggests that demographic processes such as sex-biased reproductive dynamics and population size imbalances-and not solely larval dispersal-play an important role in driving the evolution of the genetic cline. In particular, the unpredicted introgression of mitochondrial alleles against the direction of mean larval dispersal in the region is consistent with recent models invoking similar demographic processes to explain movements of genes into invading populations. These observations have important implications for understanding historical shifts in C. maenas range limits, and more generally for inferences of larval dispersal based on genetic data.
Hypothalamic Projections to the Optic Tectum in Larval Zebrafish
Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.
2018-01-01
The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362
Ichthyoplankton transport from the African coast to the Canary Islands
NASA Astrophysics Data System (ADS)
Brochier, Timothée; Mason, Evan; Moyano, Marta; Berraho, Amina; Colas, Francois; Sangrà, Pablo; Hernández-León, Santiago; Ettahiri, Omar; Lett, Christophe
2011-08-01
The Canary Upwelling System (CUS), a major eastern boundary upwelling system, sustains large cross-border fisheries of small pelagic fish, which poses the question of stock connectivity. Studies suggest that ichthyoplankton transport from the northwest African coast to the Canary Islands (CI) is facilitated by coastal-upwelling associated filaments. Here we analyze connections between larval supply to the CI and sardine and anchovy populations that spawn over the continental shelf. For both species, ichthyoplankton observations (1) at the shelf and (2) near the island of Gran Canaria (GC) are used. Predictions of ichthyoplankton transport to GC are obtained from the Ichthyop Lagrangian transport model, which is forced by a high-resolution hydrodynamic model (ROMS) that reproduces the regional circulation. Results show that upwelling filaments play an important role in the transport of larvae to GC. However, (1) filaments are not the only mechanism, and (2) filament presence does not necessarily imply larval transport. Anchovy and sardine larval presence at GC appears to be independent of the respective adult spawning seasonality. Combining of observed and modeled data does not succeed in reproducing the observed larval patterns at GC. Various hypotheses are proposed to explain this discrepancy in larval transport to GC.
Paul, V.J.; Kuffner, I.B.; Walters, L.J.; Ritson-Williams, R.; Beach, K.S.; Becerro, M.A.
2011-01-01
Competition between corals and macroalgae is often assumed to occur on reefs, especially those that have undergone shifts from coral to algal dominance; however, data examining these competitive interactions, especially during the early life-history stages of corals, are scarce. We conducted a series of field and outdoor seawater-table experiments to test the hypothesis that allelopathy (chemical inhibition) mediates interactions between 2 common brown macroalgae, Dictyota pulchella and D. pinnatifida, and the coral Porites astreoides at different life-history stages of the coral. D. pinnatifida significantly reduced larval survival and larval recruitment. The extracts of both D. pinnatifida and D. pulchella significantly reduced larval survival, and the extract of D. pulchella also negatively influenced larval recruitment. There was no measurable effect of the crude extracts from Dictyota spp. on the photophysiology of adult corals. Our results provide evidence that these Dictyota species chemically compete with P. astreoides by negatively affecting larval settlement and recruitment as well as the survival of larvae and new recruits. Macroalgae may perpetuate their dominance on degraded reefs by chemically inhibiting the process of coral recruitment. ?? 2011 Inter-Research.
Lester, Sarah E; Ruttenberg, Benjamin I
2005-01-01
We address the conflict in earlier results regarding the relationship between dispersal potential and range size. We examine all published pelagic larval duration data for tropical reef fishes. Larval duration is a convenient surrogate for dispersal potential in marine species that are sedentary as adults and that therefore only experience significant dispersal during their larval phase. Such extensive quantitative dispersal data are only available for fishes and thus we use a unique dataset to examine the relationship between dispersal potential and range size. We find that dispersal potential and range size are positively correlated only in the largest ocean basin, the Indo-Pacific, and that this pattern is driven primarily by the spatial distribution of habitat and dispersal barriers. Furthermore, the relationship strengthens at higher taxonomic levels, suggesting an evolutionary mechanism. We document a negative correlation between species richness and larval duration at the family level in the Indo-Pacific, implying that speciation rate may be negatively related to dispersal potential. If increased speciation rate within a taxonomic group results in smaller range sizes within that group, speciation rate could regulate the association between range size and dispersal potential. PMID:16007745
Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.
Guggiana-Nilo, Drago A; Engert, Florian
2016-01-01
For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.
Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish
Guggiana-Nilo, Drago A.; Engert, Florian
2016-01-01
For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828
NASA Astrophysics Data System (ADS)
Li, Jiaqi; Jiang, Zengjie; Zhang, Jihong; Mao, Yuze; Bian, Dapeng; Fang, Jianguang
2014-11-01
We evaluated the effect of pH on larval development in larval Pacific oyster ( Crassostrea gigas) and blood cockle ( Arca inflata Reeve). The larvae were reared at pH 8.2 (control), 7.9, 7.6, or 7.3 beginning 30 min or 24 h post fertilization. Exposure to lower pH during early embryonic development inhibited larval shell formation in both species. Compared with the control, larvae took longer to reach the D-veliger stage when reared under pH 7.6 and 7.3. Exposure to lower pH immediately after fertilization resulted in significantly delayed shell formation in the Pacific oyster larvae at pH 7.3 and blood cockle larvae at pH 7.6 and 7.3. However, when exposure was delayed until 24 h post fertilization, shell formation was only inhibited in blood cockle larvae reared at pH 7.3. Thus, the early embryonic stages were more sensitive to acidified conditions. Our results suggest that ocean acidification will have an adverse effect on embryonic development in bivalves. Although the effects appear subtle, they may accumulate and lead to subsequent issues during later larval development.
Ellsworth, Craig M.; Martin, Barbara A.
2012-01-01
Data presented in this report is a continuation of a research project that began in 2004. Larval drift parameters measured in 2009 and 2010 were similar to those measured from 2004 to 2008. Most larvae and eggs were collected at the two drift sites downstream of the former Chiloquin Dam (river kilometer 0.7 on the Sprague River and river kilometer 7.4 on the Williamson River). Mean and peak sample densities increased with proximity to Upper Klamath Lake. Peak larval densities continued to be collected between 1 and 3 hours after sunset at Chiloquin, which is the drift site nearest a known spawning area. Catch distribution of larvae and eggs in the lower Sprague and Williamson Rivers suggests that most SNS and LRS spawning continues to occur downstream of the site of the former Chiloquin Dam. The sizes and growth stages indicate that larval emigration from spawning areas resulting from drift occurs within a few days after swim-up. Larval suckers appear to move downstream quickly until they reach suitable rearing habitat.
Larval diet affects mosquito development and permissiveness to Plasmodium infection.
Linenberg, Inbar; Christophides, George K; Gendrin, Mathilde
2016-12-02
The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke's Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing.
Hypothalamic Projections to the Optic Tectum in Larval Zebrafish.
Heap, Lucy A; Vanwalleghem, Gilles C; Thompson, Andrew W; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K
2017-01-01
The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.
Darling, John A.; Tsai, Yi-Hsin Erica; Blakeslee, April M. H.; Roman, Joe
2014-01-01
Biological invasions offer unique opportunities to investigate evolutionary dynamics at the peripheries of expanding populations. Here, we examine genetic patterns associated with admixture between two distinct invasive lineages of the European green crab, Carcinus maenas L., independently introduced to the northwest Atlantic. Previous investigations based on mitochondrial DNA sequences demonstrated that larval dispersal driven by advective currents could explain observed southward displacement of an admixture zone between the two invasions. Comparison of published mitochondrial results with new nuclear data from nine microsatellite loci, however, reveals striking discordance in their introgression patterns. Specifically, introgression of mitochondrial genomes relative to nuclear background suggests that demographic processes such as sex-biased reproductive dynamics and population size imbalances—and not solely larval dispersal—play an important role in driving the evolution of the genetic cline. In particular, the unpredicted introgression of mitochondrial alleles against the direction of mean larval dispersal in the region is consistent with recent models invoking similar demographic processes to explain movements of genes into invading populations. These observations have important implications for understanding historical shifts in C. maenas range limits, and more generally for inferences of larval dispersal based on genetic data. PMID:26064543
Brodnik, Reed M.; Fraker, Michael E.; Anderson, Eric J.; Carreon-Martinez, Lucia; DeVanna, Kristen M.; Heath, Dan D.; Reichert, Julie M.; Roseman, Edward F.; Ludsin, Stuart A.
2016-01-01
Ability to quantify connectivity among spawning subpopulations and their relative contribution of recruits to the broader population is a critical fisheries management need. By combining microsatellite and age information from larval yellow perch (Perca flavescens) collected in the Lake St. Clair – Detroit River system (SC-DRS) and western Lake Erie with a hydrodynamic backtracking approach, we quantified subpopulation structure, connectivity, and contributions of recruits to the juvenile stage in western Lake Erie during 2006-2007. After finding weak (yet stable) genetic structure between the SC-DRS and two western Lake Erie subpopulations, microsatellites also revealed measurable recruitment of SC-DRS larvae to the juvenile stage in western Lake Erie (17-21% during 2006-2007). Consideration of pre-collection larval dispersal trajectories, using hydrodynamic backtracking, increased estimated contributions to 65% in 2006 and 57% in 2007. Our findings highlight the value of complementing subpopulation discrimination methods with hydrodynamic predictions of larval dispersal by revealing the SC-DRS as a source of recruits to western Lake Erie and also showing that connectivity through larval dispersal can affect the structure and dynamics of large-lake fish populations.
Growing Pains: Development of the Larval Nocifensive Response in Drosophila
SULKOWSKI, MIKOLAJ J.; KUROSAWA, MATHIEU S.; OX, DANIEL N.
2014-01-01
The ability to perceive and avoid harmful substances or stimuli is key to an organism’s survival. The neuronal cognate of the perception of pain is known as nociception, and the reflexive motion to avoid pain is termed the nocifensive response. As the nocifensive response is an ancient and evolutionarily conserved behavioral response to nociceptive stimuli, it is amenable to study in relatively simple and genetically tractable model systems such as Drosophila. Recent studies have taken advantage of the useful properties of Drosophila larvae to begin elucidating the neuronal connectivity and molecular machinery underlying the nocifensive response. However, these studies have primarily utilized the third-instar larval stage, and many mutations that potentially influence nociception survive only until earlier larval stages. Here we characterize the nocifensive responses of Drosophila throughout larval development and find dramatic changes in the nature of the behavior. Notably, we find that prior to the third instar, larvae are unable to perform the characteristic “corkscrew-like roll” behavior. Also, we identify an avoidance behavior consistent with a nocifensive response that is present immediately after larval hatching, representing a paradigm that may be useful in examining mutations with an early lethal phenotype. PMID:22186918
2017-01-01
Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, measurements of transcription do not necessarily reflect gene translation, the process of ultimate importance in understanding cellular function. To circumvent this limitation, biochemical tagging of ribosome subunits to isolate ribosome-associated mRNA has been developed. However, this approach, called TRAP, lacks quantitative resolution compared to a superior technology, ribosome profiling. Here, we report the development of an optimized ribosome profiling approach in Drosophila. We first demonstrate successful ribosome profiling from a specific tissue, larval muscle, with enhanced resolution compared to conventional TRAP approaches. We next validate the ability of this technology to define genome-wide translational regulation. This technology is leveraged to test the relative contributions of transcriptional and translational mechanisms in the postsynaptic muscle that orchestrate the retrograde control of presynaptic function at the neuromuscular junction. Surprisingly, we find no evidence that significant changes in the transcription or translation of specific genes are necessary to enable retrograde homeostatic signaling, implying that post-translational mechanisms ultimately gate instructive retrograde communication. Finally, we show that a global increase in translation induces adaptive responses in both transcription and translation of protein chaperones and degradation factors to promote cellular proteostasis. Together, this development and validation of tissue-specific ribosome profiling enables sensitive and specific analysis of translation in Drosophila. PMID:29194454
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.
2011-01-01
A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.
The protective role of endogenous bacterial communities in chironomid egg masses and larvae
Senderovich, Yigal; Halpern, Malka
2013-01-01
Insects of the family Chironomidae, also known as chironomids, are distributed worldwide in a variety of water habitats. These insects display a wide range of tolerance toward metals and organic pollutions. Bacterial species known for their ability to degrade toxicants were identified from chironomid egg masses, leading to the hypothesis that bacteria may contribute to the survival of chironomids in polluted environments. To gain a better understanding of the bacterial communities that inhabit chironomids, the endogenous bacteria of egg masses and larvae were studied by 454-pyrosequencing. The microbial community of the egg masses was distinct from that of the larval stage, most likely due to the presence of one dominant bacterial Firmicutes taxon, which consisted of 28% of the total sequence reads from the larvae. This taxon may be an insect symbiont. The bacterial communities of both the egg masses and the larvae were found to include operational taxonomic units, which were closely related to species known as toxicant degraders. Furthermore, various bacterial species with the ability to detoxify metals were isolated from egg masses and larvae. Koch-like postulates were applied to demonstrate that chironomid endogenous bacterial species protect the insect from toxic heavy metals. We conclude that chironomids, which are considered pollution tolerant, are inhabited by stable endogenous bacterial communities that have a role in protecting their hosts from toxicants. This phenomenon, in which bacteria enable the continued existence of their host in hostile environments, may not be restricted only to chironomids. PMID:23804150
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal Hemchandra
2015-01-01
Many UAS will operate at lower altitude (Class G, below 2000 feet). There is an urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal H.
2015-01-01
Many UAS will operate at lower altitude (Class G, below 2000 feet)There is urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.
The neural basis of visual behaviors in the larval zebrafish
Portugues, Ruben; Engert, Florian
2015-01-01
We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. PMID:19896836
Taylor, D S; Richmond, C D; Hunt, J B
1999-03-01
Larval mosquito production was monitored for 16 months in the furrows of a 13.4-ha citrus grove in east-central Florida used for disposal of secondary-treated sewage effluent. Twenty-one species of mosquito were collected, and the 2 most abundant species were Culex nigripalpus and Aedes vexans. An unplanned removal of all brush and trees from the site during the study resulted in an overall decline in larval production, but species diversity remained the same.
Martemyanov, Vyacheslav V.; Pavlushin, Sergey V.; Dubovskiy, Ivan M.; Yushkova, Yuliya V.; Morosov, Sergey V.; Chernyak, Elena I.; Efimov, Vadim M.; Ruuhola, Teija; Glupov, Victor V.
2015-01-01
The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects’ fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content) on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula—gypsy moth Lymantria dispar—nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus. PMID:26115118
Vestrum, Ragnhild I; Attramadal, Kari J K; Winge, Per; Li, Keshuai; Olsen, Yngvar; Bones, Atle M; Vadstein, Olav; Bakke, Ingrid
2018-01-01
We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod ( Gadus morhua ) larvae, and that recirculating aquaculture systems (RAS) are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS). The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria) in FTS larvae (34 ± 9% of total reads). Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like , pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the carrying capacity of the system, and ensuring long retention times for both bacteria and water in the system.
Microbial composition affects the performance of an artificial Tephritid larval diet.
Rempoulakis, P; Sela Saldinger, S; Nemny-Lavy, E; Pinto, R; Birke, A; Nestel, D
2017-09-20
The present study investigated the patterns of microorganisms in an artificial larval diet during Dacus ciliatus (Diptera; Tephritidae) larval development. Microbial population contents in the diet of total heterotrophic bacteria, yeast and molds, coliform and lactobacilli, and their dynamics during development, were monitored. Initially, the microbial composition in diet trays failing to produce viable pupae and in trays successfully producing pupae and adult flies was characterized. The failing diet trays contained large populations of lactobacilli that increased during larval development, and low populations of coliforms. In contrast, the successful diet showed an increasing population of coliforms and a low, or undetected, population of lactobacilli. To study the hypothesis that lactobacilli affect D. ciliatus larval development, we conducted controlled inoculation experiments in which Lactobacillus plantarum was added into fresh diet at the time of egg seeding. L. plantarum inoculated trays showed no production of D. ciliatus. Control trays without lactobacilli inoculation showed variable results. One tray successfully produced viable pupae and adults, and showed a slight and slow increase in the indigenous populations of lactobacilli. The second tray, however, failed to produce pupae and showed a fast increase of the indigenous lactobacilli to very high levels. Monitored pH trends in L. plantarum-inoculated diet showed a sharp pH decrease during the first 4 days of larval development from 5 to less than 4 units, while successful diet, producing viable D. ciliatus pupae and adults, showed a moderate pH drop during most of the larval development period. The paper discusses the possible ecological interactions between D. ciliatus larvae, the microbial content of the diet and the physical properties of the diet. The discussion also points out at the usefulness of this approach in understanding and managing mass production parameters of tephritid fruit flies industrial diets used for Sterile Insect Technique.
Vestrum, Ragnhild I.; Attramadal, Kari J. K.; Winge, Per; Li, Keshuai; Olsen, Yngvar; Bones, Atle M.; Vadstein, Olav; Bakke, Ingrid
2018-01-01
We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod (Gadus morhua) larvae, and that recirculating aquaculture systems (RAS) are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS). The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria) in FTS larvae (34 ± 9% of total reads). Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like, pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the carrying capacity of the system, and ensuring long retention times for both bacteria and water in the system. PMID:29765364
Isari, Stamatina; Pearman, John K; Casas, Laura; Michell, Craig T; Curdia, Joao; Berumen, Michael L; Irigoien, Xabier
2017-01-01
An important aspect of population dynamics for coral reef fishes is the input of new individuals from the pelagic larval pool. However, the high biodiversity and the difficulty of identifying larvae of closely related species represent obstacles to more fully understanding these populations. In this study, we combined morphology and genetic barcoding (Cytochrome Oxidase I gene) to characterize the seasonal patterns of the larval fish community at two sites in close proximity to coral reefs in the central-north Red Sea: one shallower inshore location (50 m depth) and a nearby site located in deeper and more offshore waters (~ 500 m depth). Fish larvae were collected using oblique tows of a 60 cm-bongo net (500 μm mesh size) every month for one year (2013). During the warmer period of the year (June-November), the larval fish stock was comparable between sampling sites. However, during the colder months, abundances were higher in the inshore than in the offshore waters. Taxonomic composition and temporal variation of community structure differed notably between sites, potentially reflecting habitat differences, reproductive patterns of adults, and/or advective processes in the area. Eleven out of a total of 62 recorded families comprised 69-94% of the fish larval community, depending on sampling site and month. Richness of taxa was notably higher in the inshore station compared to the offshore, particularly during the colder period of the year and especially for the gobiids and apogonids. Two mesopelagic taxa (Vinciguerria sp. and Benthosema spp.) comprised an important component of the larval community at the deeper site with only a small and sporadic occurrence in the shallower inshore waters. Our data provide an important baseline reference for the larval fish communities of the central Red Sea, representing the first such study from Saudi Arabian waters.
Designing connected marine reserves in the face of global warming.
Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge
2018-02-01
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity. © 2017 John Wiley & Sons Ltd.
Pearman, John K.; Casas, Laura; Michell, Craig T.; Curdia, Joao; Berumen, Michael L.; Irigoien, Xabier
2017-01-01
An important aspect of population dynamics for coral reef fishes is the input of new individuals from the pelagic larval pool. However, the high biodiversity and the difficulty of identifying larvae of closely related species represent obstacles to more fully understanding these populations. In this study, we combined morphology and genetic barcoding (Cytochrome Oxidase I gene) to characterize the seasonal patterns of the larval fish community at two sites in close proximity to coral reefs in the central-north Red Sea: one shallower inshore location (50 m depth) and a nearby site located in deeper and more offshore waters (~ 500 m depth). Fish larvae were collected using oblique tows of a 60 cm-bongo net (500 μm mesh size) every month for one year (2013). During the warmer period of the year (June-November), the larval fish stock was comparable between sampling sites. However, during the colder months, abundances were higher in the inshore than in the offshore waters. Taxonomic composition and temporal variation of community structure differed notably between sites, potentially reflecting habitat differences, reproductive patterns of adults, and/or advective processes in the area. Eleven out of a total of 62 recorded families comprised 69–94% of the fish larval community, depending on sampling site and month. Richness of taxa was notably higher in the inshore station compared to the offshore, particularly during the colder period of the year and especially for the gobiids and apogonids. Two mesopelagic taxa (Vinciguerria sp. and Benthosema spp.) comprised an important component of the larval community at the deeper site with only a small and sporadic occurrence in the shallower inshore waters. Our data provide an important baseline reference for the larval fish communities of the central Red Sea, representing the first such study from Saudi Arabian waters. PMID:28771590
Nguyen, Nguyen H; Fitzgibbon, Quinn P; Quinn, Jane; Smith, Greg; Battaglene, Stephen; Knibb, Wayne
2018-05-04
One of the major impediments to spiny lobster aquaculture is the high cost of hatchery production due to the long and complex larval cycle and poor survival during the many moult stages, especially at metamorphosis. We examined if the key trait of larval survival can be improved through selection by determining if genetic variance exists for this trait. Specifically, we report, for the first time, genetic parameters (heritability and correlations) for early survival rates recorded at five larval phases; early-phyllosoma stages (instars 1-6; S1), mid-phyllosoma stages (instars; 7-12; S2), late-phyllosoma stages (instars 13-17; S3), metamorphosis (S4) and puerulus stage (S5) in hatchery-reared spiny lobster Sagmariasus verreauxi. The data were collected from a total of 235,060 larvae produced from 18 sires and 30 dams over nine years (2006 to 2014). Parentage of the offspring and full-sib families was verified using ten microsatellite markers. Analysis of variance components showed that the estimates of heritability for all the five phases of larval survival obtained from linear mixed model were generally similar to those obtained from threshold logistic generalised models (0.03-0.47 vs. 0.01-0.50). The heritability estimates for survival traits recorded in the early larval phases (S1 and S2) were higher than those estimated in later phases (S3, S4 and S5). The existence of the additive genetic component in larval survival traits indicate that they could be improved through selection. Both phenotypic and genetic correlations among the five survival measures studied were moderate to high and positive. The genetic associations between successive rearing periods were stronger than those that are further apart. Our estimates of heritability and genetic correlations reported here in a spiny lobster species indicate that improvement in the early survival especially during metamorphosis can be achieved through genetic selection in this highly economic value species.
Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti
Bond, J. G.; Ramírez-Osorio, A.; Marina, C. F.; Fernández-Salas, I.; Liedo, P.; Dor, A.
2017-01-01
Aedes aegypti is a major vector of arboviruses that may be controlled on an area-wide basis using the sterile insect technique (SIT). Larval diet is a major factor in mass-rearing for SIT programs. We compared dietary effects on immature development and adult fitness-related characteristics for an International Atomic Energy Agency (IAEA) diet, developed for rearing Ae. albopictus, and a standardized laboratory rodent diet (LRD), under a 14:10 h (light:dark) photoperiod ("light" treatment) or continuous darkness during larval rearing. Larval development was generally fastest in the IAEA diet, likely reflecting the high protein and lipid content of this diet. The proportion of larvae that survived to pupation or to adult emergence did not differ significantly between diets or light treatments. Insects from the LRD-dark treatment produced the highest proportion of male pupae (93% at 24 h after the beginning of pupation) whereas adult sex ratio from the IAEA diet tended to be more male-biased than that of the LRD diet. Adult longevity did not differ significantly with larval diet or light conditions, irrespective of sex. In other aspects the LRD diet generally performed best. Adult males from the LRD diet were significantly larger than those from the IAEA diet, irrespective of light treatment. Females from the LRD diet had ~25% higher fecundity and ~8% higher egg fertility compared to those from the IAEA diet. Adult flight ability did not differ between larval diets, and males had a similar number of copulations with wild females, irrespective of larval diet. The LRD diet had lower protein and fat content but a higher carbohydrate and energetic content than the IAEA diet. We conclude that the LRD diet is a low-cost standardized diet that is likely to be suitable for mass-rearing of Ae. aegypti for area-wide SIT-based vector control. PMID:29095933
Harnden, Laura M; Tomberlin, Jeffery K
2016-09-01
The black soldier fly, Hermetia illucens, is recognised for its use in a forensic context as a means for estimating the time of colonisation and potentially postmortem interval of decomposing remains. However, little data exist on this species outside of its use in waste management. This study offers a preliminary assessment of the development, and subsequent validation, of H. illucens. Larvae of H. illucens were reared at three temperatures (24.9°C, 27.6°C and 32.2°C) at 55% RH on beef loin muscle, pork loin muscle and a grain-based diet (control). Each of the temperatures and diets were found to significantly (P<0.05) affect all stages of immature growth except for pupation time. Overall, those reared on the pork diet required on average ≈23.1% and ≈139.7% more degree hours to complete larval development than those reared on the beef and grain-based diets, respectively. Larvae reared at 27.6°C and 32.2°C required on average ≈8.7% more degree hours to complete development and had a final larval weight ≈30% greater than larvae reared at 24.9°C. The validity of the laboratory larval length and weight data sets was assessed via estimating the age of field-reared larvae. Grain-diet data lacked accuracy when used to estimate larval age in comparison to estimates made with beef and pork-diet data, which were able to predict larval age for ≈55.6% and ≈88.9% of sampling points, respectively, when length and weight data were used in conjunction. Field-reared larval sizes exceeded the maximum observed under laboratory conditions in almost half of the samples, which reduced estimate accuracy. Future research should develop additional criteria for identifying development of each specific instar, which may aid in improving the accuracy and precision of larval age estimates for this species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Larval feeding behavior and ant association in frosted elfin, Callophrys irus (Lycaenidae)
Albanese, G.; Nelson, M.W.; Vickery, P.D.; Sievert, P.R.
2007-01-01
Callophrys irus is a rare and declining lycaenid found in the eastern U.S., inhabiting xeric and open habitats maintained by disturbance. Populations are localized and monophagous. We document a previously undescribed larval feeding behavior in both field and lab reared larvae in which late instar larvae girdled the main stem of the host plant. Girdled stems provide a unique feeding sign that was useful in detecting the presence of larvae in the field. We also observed frequent association of field larvae with several species of ants and provide a list of ant species. We suggest two hypotheses on the potential benefits of stem-girdling to C. irus larvae: 1) Stem girdling provides phloem sap as a larval food source and increases the leaf nutrient concentration, increasing larval growth rates and providing high quality honeydew for attending ants; 2) Stem girdling reduces stem toxicity by inhibiting transport of toxins from roots to the stem.
Bossuyt, Franky; Milinkovitch, Michel C.
2000-01-01
Recent studies have reported that independent adaptive radiations can lead to identical ecomorphs. Our phylogenetic analyses of nuclear and mitochondrial DNA sequences here indicate that a major radiation of ranid frogs on Madagascar produced morphological, physiological, and developmental characters that are remarkably similar to those that independently evolved on the Indian subcontinent. We demonstrate further that, in several cases, adult and larval stages each evolved sets of characters which are not only convergent between independent lineages, but also allowed both developmental stages to invade the same adaptive zone. It is likely that such covariations are produced by similar selective pressures on independent larval and adult characters rather than by genetic or functional linkage. We briefly discuss why larval/adult covariations might constitute an important evolutionary phenomenon in species for which more than one developmental stage potentially has access to multiple environmental conditions. PMID:10841558
Dowdall, S M J; Proudman, C J; Love, S; Klei, T R; Matthews, J B
2003-12-01
Cyathostomins are important equine gastrointestinal parasites. Mass emergence of mucosal stage larvae causes a potentially fatal colitis. Mucosal stages are undetectable non-invasively. An assay that would estimate mucosal larval stage infection would greatly assist in treatment, control and prognosis. Previously, we identified two putative diagnostic antigens (20 and 25 kDa) in somatic larval preparations. Here, we describe their purification and antigen-specific IgG(T) responses to them. Western blots confirmed the purity of the antigens and showed that epitopes in the 20 kDa complex were specific to larval cyathostomins. No cross-reactive antigens appeared to be present in Parascaris equorum or Strongyloides westeri species. Low levels of cross-reactivity were observed in Strongylus edentatus and Strongylus vulgaris species. Use of purified antigens greatly reduced background binding in equine sera. These results indicate that both antigen complexes may be of use in a diagnostic assay.
Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs.
Hanken, J; Klymkowsky, M W; Alley, K E; Jennings, D H
1997-01-01
The Puerto Rican direct-developing frog Eleutherodactylus coqui (Leptodactylidae) displays a novel mode of jaw muscle development for anuran amphibians. Unlike metamorphosing species, several larval-specific features never form in E. coqui; embryonic muscle primordia initially assume an abbreviated, mid-metamorphic configuration that is soon remodelled to form the adult morphology before hatching. Also lacking are both the distinct population of larval myofibres and the conspicuous, larval-to-adult myofibre turnover that are characteristic of muscle development in metamorphosing species. These modifications are part of a comprehensive alteration in embryonic cranial patterning that has accompanied life history evolution in this highly speciose lineage. Embryonic 'repatterning' in Eleutherodactylus may reflect underlying developmental mechanisms that mediate the integrated evolution of complex structures. Such mechanisms may also facilitate, in organisms with a primitively complex life cycle, the evolutionary dissociation of embryonic, larval, and adult features. PMID:9332017
Harder, Tilmann; Lau, Stanley Chun Kwan; Dahms, Hans-Uwe; Qian, Pei-Yuan
2002-10-01
The bacterial component of marine biofilms plays an important role in the induction of larval settlement in the polychaete Hydroides elegans. In this study, we provide experimental evidence that bacterial metabolites comprise the chemical signal for larval settlement. Bacteria were isolated from biofilms, purified and cultured according to standard procedures. Bacterial metabolites were isolated from spent culture broth by chloroform extraction as well as by closed-loop stripping and adsorption of volatile components on surface-modified silica gel. A pronounced biological activity was exclusively observed when concentrated metabolites were adsorbed on activated charcoal. Larvae did not respond to waterbome metabolites when prevented from contacting the bacterial film surface. These results indicate that an association of the chemical signal with a sorbent-like substratum may be an essential cofactor for the expression of biological activity. The functional role of bacterial exopolymers as an adsorptive matrix for larval settlement signals is discussed.
The structure and timescales of heat perception in larval zebrafish.
Haesemeyer, Martin; Robson, Drew N; Li, Jennifer M; Schier, Alexander F; Engert, Florian
2015-11-25
Avoiding temperatures outside the physiological range is critical for animal survival, but how temperature dynamics are transformed into behavioral output is largely not understood. Here, we used an infrared laser to challenge freely swimming larval zebrafish with "white-noise" heat stimuli and built quantitative models relating external sensory information and internal state to behavioral output. These models revealed that larval zebrafish integrate temperature information over a time-window of 400 ms preceding a swimbout and that swimming is suppressed right after the end of a bout. Our results suggest that larval zebrafish compute both an integral and a derivative across heat in time to guide their next movement. Our models put important constraints on the type of computations that occur in the nervous system and reveal principles of how somatosensory temperature information is processed to guide behavioral decisions such as sensitivity to both absolute levels and changes in stimulation.
NASA Astrophysics Data System (ADS)
Waldbusser, George G.; Brunner, Elizabeth L.; Haley, Brian A.; Hales, Burke; Langdon, Christopher J.; Prahl, Frederick G.
2013-05-01
Acidified waters are impacting commercial oyster production in the U.S. Pacific Northwest, and favorable carbonate chemistry conditions are predicted to become less frequent. Within 48 h of fertilization, unshelled Pacific oyster (Crassostrea gigas) larvae precipitate roughly 90% of their body weight as calcium carbonate. We measured stable carbon isotopes in larval shell and tissue and in algal food and seawater dissolved inorganic carbon in a longitudinal study of larval development and growth. Using these data and measured biochemical composition of larvae, we show that sensitivity of initial shell formation to ocean acidification results from diminished ability to isolate calcifying fluid from surrounding seawater, a limited energy budget and a strong kinetic demand for calcium carbonate precipitation. Our results highlight an important link between organism physiology and mineral kinetics in larval bivalves and suggest the consideration of mineral kinetics may improve understanding winners and losers in a high CO2 world.
NASA Technical Reports Server (NTRS)
Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald
2004-01-01
The distribution of Anopheles mosquito habitats and land use in northern Belize is examined with satellite data. -A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats. Eleocharis spp. marsh is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of T-ha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. This expansion of Anopheles vestitipennis larval habitat may in turn cause an increase in malaria risk in the region.
Survey of larval fish in the Michigan waters of Lake Erie, 1975 and 1976. Final report, 1975-1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waybrant, R.C.; Shauver, J.M.
1979-08-01
Surveys in 1975 and 1976 in the Michigan waters of Lake Erie assessed the relative abundance and distribution of larval fish. Seasonal fluctuations, patterns of distribution, and depth preferences were noted for the 24 larval fish taxa identified. Special emphasis was placed on four target species, walleye (Stizostedion vitreum), yellow perch (Perca flavescens), white bass (Morone chrysops) and channel catfish (Ictalurus punctatus). Of these 4 species only yellow perch and white bass were found more than occasionally. Of the remaining 20 species collected during the study only 5 were regularly captured. The northern and southern extremes of the study areamore » held many more fish than the central portion. The 0- to 12-ft depth zone had the largest concentrations of larval fish and concentrations gradually decreased as the depth increased.« less
Rabatel, Andréane; Febvay, Gérard; Gaget, Karen; Duport, Gabrielle; Baa-Puyoulet, Patrice; Sapountzis, Panagiotis; Bendridi, Nadia; Rey, Marjolaine; Rahbé, Yvan; Charles, Hubert; Calevro, Federica; Colella, Stefano
2013-04-10
Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch over to the late embryonic stages in pea aphid development. Our data show that, in the development of A. pisum, a specific host gene set regulates the biosynthetic pathways of amino acids, demonstrating how the regulation of gene expression enables an insect to control the production of metabolites crucial for its own development and symbiotic metabolism.
Safely Enabling Low-Altitude Airspace Operations
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal
2015-01-01
Near-term Goal: Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal: Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).
Microbial larvicides for malaria control in The Gambia
Majambere, Silas; Lindsay, Steven W; Green, Clare; Kandeh, Balla; Fillinger, Ulrike
2007-01-01
Background Mosquito larval control may prove to be an effective tool for incorporating into integrated vector management (IVM) strategies for reducing malaria transmission. Here the efficacy of microbial larvicides against Anopheles gambiae s.l. was tested in preparation for a large-scale larviciding programme in The Gambia. Methods The impact of water-dispersible (WDG) and corn granule (CG) formulations of commercial Bacillus sphaericus strain 2362 (Bs; VectoLex®) and Bacillus thuringiensis var.israelensis strain AM65-52 (Bti; VectoBac®) on larval development were tested under laboratory and field conditions to (1) identify the susceptibility of local vectors, (2) evaluate the residual effect and re-treatment intervals, (3) test the effectiveness of the microbials under operational application conditions and (4) develop a method for large-scale application. Results The major malaria vectors were highly susceptible to both microbials. The lethal concentration (LC) to kill 95% of third instar larvae of Anopheles gambiae s.s. after 24 hours was 0.023 mg/l (14.9 BsITU/l) for Bs WDG and 0.132 mg/l (396 ITU/l) for Bti WDG. In general Bs had little residual effect under field conditions even when the application rate was 200 times greater than the LC95. However, there was a residual effect up to 10 days in standardized field tests implemented during the dry season. Both microbials achieved 100% mortality of larvae 24–48 hours post-application but late instar larvae were detected 4 days after treatment. Pupae development was reduced by 94% (95% Confidence Interval = 90.8–97.5%) at weekly re-treatment intervals. Field tests showed that Bs had no residual activity against anopheline larvae. Both microbials provided complete protection when applied weekly. The basic training of personnel in identification of habitats, calibration of application equipment and active larviciding proved to be successful and achieved full coverage and control of mosquito larvae for three months under fully operational conditions. Conclusion Environmentally safe microbial larvicides can significantly reduce larval abundance in the natural habitats of The Gambia and could be a useful tool for inclusion in an IVM programme. The costs of the intervention in this setting could be reduced with formulations that provide a greater residual effect. PMID:17555570
Barr, Garrett E; Babbitt, Kimberly J
2002-10-01
We sampled eight streams in the White Mountain National Forest, New Hampshire, throughout their elevational reach for larval salamanders and predatory fish to examine the effects of abiotic factors and predation on the distribution and abundance of larval salamanders. Eurycea bislineata (two-lined salamander) and Salvelinus fontinalis (brook trout) abundance varied among and within streams. Eurycea bislineata showed a negative association with S. fontinalis across spatial scales (micro-scale, among quadrats; meso-scale, among pool/riffle pairs; macro-scale, among streams). At the smallest scale, the average density of larval E. bislineata was greatest in microhabitats with relatively high boulder cover and low sand and bare rock cover only in the presence of S. fontinalis; no such relationship was observed in the absence of S. fontinalis. In a mesocosm experiment, larval salamander survival was higher in enclosures containing cobbles than enclosures containing a gravel mix, illustrating the advantage of coarse substrates with interstitial spaces that are inaccessible to predatory fish. At the meso-scale, E. bislineata larvae were less abundant in stream sections with S. fontinalis than those without. Among streams, those with many S. fontinalis had fewer E. bislineata. Of the abiotic parameters measured, water temperature and pH were positively related to E. bislineata presence, and elevation, water temperature, pH, canopy cover, and gradient were positively related to E. bislineata abundance. Larval Plethodontid salamanders can reach high densities and appear to have strong interactions with stream biota, thus their functional role in stream communities deserves further attention.
Lemon, W C; Levine, R B
1997-06-01
During the metamorphosis of Manduca sexta the larval nervous system is reorganized to allow the generation of behaviors that are specific to the pupal and adult stages. In some instances, metamorphic changes in neurons that persist from the larval stage are segment-specific and lead to expression of segment-specific behavior in later stages. At the larval-pupal transition, the larval abdominal bending behavior, which is distributed throughout the abdomen, changes to the pupal gin trap behavior which is restricted to three abdominal segments. This study suggests that the neural circuit that underlies larval bending undergoes segment specific modifications to produce the segmentally restricted gin trap behavior. We show, however, that non-gin trap segments go through a developmental change similar to that seen in gin trap segments. Pupal-specific motor patterns are produced by stimulation of sensory neurons in abdominal segments that do not have gin traps and cannot produce the gin trap behavior. In particular, sensory stimulation in non-gin trap pupal segments evokes a motor response that is faster than the larval response and that displays the triphasic contralateral-ipsilateral-contralateral activity pattern that is typical of the pupal gin trap behavior. Despite the alteration of reflex activity in all segments, developmental changes in sensory neuron morphology are restricted to those segments that form gin traps. In non-gin trap segments, persistent sensory neurons do not expand their terminal arbors, as do sensory neurons in gin trap segments, yet are capable of eliciting gin trap-like motor responses.
Pote, John M; Nielsen, Anne L; Grieshop, Matthew J
2016-08-01
Rhynchaenus pallicornis (Say) is a pest of commercially grown apples in the upper Midwest. This historic pest has resurged and caused severe yield loss on farms using certified organic production practices. The life history and potential monitoring methods of R. pallicornis are presented. Seasonal abundance data were collected through beat and visual sampling. A phenological model was developed for R. pallicornis. The minimum developmental threshold of R. pallicornis was determined to be 3.5°C with a required degree-day accumulation of 125°D for first adult emergence. Larval damage was observed on >60% of leaves in unmanaged orchards and affected significantly fewer basal leaf clusters (near the trunk), than medially or apically located clusters. Of 2,900 R. pallicornis larval mines collected over two years at three different sites, 18.0% produced at least one adult parasitoid, but the targeted larval stage is unknown. Measurements of R. pallicornis larval head capsules and the simple frequency method were used to determine three larval instars of R. pallicornis The number of larval instars could also be accurately determined by observing the presence or absence of two sets of thoracic sclerites. Pyramid traps, yellow sticky cards baited with olfactory cues (pear essence, benzaldehyde, and an aggregation of adult R. pallicornis) were evaluated as R. pallicornis monitoring tools. None of the traps or lures tested significantly affected the number of adult R. pallicornis per trap. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Alderks, Peter W; Sisneros, Joseph A
2013-01-01
The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2) = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.
NASA Technical Reports Server (NTRS)
Fernandes, J. J.; Keshishian, H.
1996-01-01
The six Dorsal Longitudinal flight Muscles (DLMs) of Drosophila develop from three larval muscles that persist into metamorphosis and serve as scaffolds for the formation of the adult fibers. We have examined the effect of muscle scaffold ablation on the development of DLMs during metamorphosis. Using markers that are specific to muscle and myoblasts we show that in response to the ablation, myoblasts which would normally fuse with the larval muscle, fuse with each other instead, to generate the adult fibers in the appropriate regions of the thorax. The development of these de novo DLMs is delayed and is reflected in the delayed expression of erect wing, a transcription factor thought to control differentiation events associated with myoblast fusion. The newly arising muscles express the appropriate adult-specific Actin isoform (88F), indicating that they have the correct muscle identity. However, there are frequent errors in the number of muscle fibers generated. Ablation of the larval scaffolds for the DLMs has revealed an underlying potential of the DLM myoblasts to initiate de novo myogenesis in a manner that resembles the mode of formation of the Dorso-Ventral Muscles, DVMs, which are the other group of indirect flight muscles. Therefore, it appears that the use of larval scaffolds is a superimposition on a commonly used mechanism of myogenesis in Drosophila. Our results show that the role of the persistent larval muscles in muscle patterning involves the partitioning of DLM myoblasts, and in doing so, they regulate formation of the correct number of DLM fibers.
Contreras, Esteban G.; Sierralta, Jimena
2018-01-01
Background Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called ‘brain sparing’. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Results Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Conclusions Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals. PMID:29621246
Contreras, Esteban G; Sierralta, Jimena; Glavic, Alvaro
2018-01-01
Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.
DeBoer, Jason A.; Webber, Christa M.; Dixon, Taylor A.; Pope, Kevin L.
2016-01-01
Reservoirs can be dynamic systems, often prone to unpredictable and extreme water-level fluctuations, and can be environments where survival is difficult for zooplankton and larval fish. Although numerous studies have examined the effects of extreme reservoir drawdown on water quality, few have examined extreme drawdown on both abiotic and biotic characteristics. A fissure in the dam at Red Willow Reservoir in southwest Nebraska necessitated an extreme drawdown; the water level was lowered more than 6 m during a two-month period, reducing reservoir volume by 76%. During the subsequent low-water period (i.e., post-drawdown), spring sampling (April–June) showed dissolved oxygen concentration was lower, while turbidity and chlorophyll-a concentration were greater, relative to pre-drawdown conditions. Additionally, there was an overall increase in zooplankton density, although there were differences among taxa, and changes in mean size among taxa, relative to pre-drawdown conditions. Zooplankton assemblage composition had an average dissimilarity of 19.3% from pre-drawdown to post-drawdown. The ratio of zero to non-zero catches was greater post-drawdown for larval common carp and for all larval fishes combined, whereas we observed no difference for larval gizzard shad. Larval fish assemblage composition had an average dissimilarity of 39.7% from pre-drawdown to post-drawdown. Given the likelihood that other dams will need repair or replacement in the near future, it is imperative for effective reservoir management that we anticipate the likely abiotic and biotic responses of reservoir ecosystems as these management actions will continue to alter environmental conditions in reservoirs.
Duan, Jian J; Larson, Kristi; Watt, Tim; Gould, Juli; Lelito, Jonathan P
2013-12-01
Competition for food, mates, and space among different individuals of the same insect species can affect density-dependent regulation of insect abundance or population dynamics. The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) trees, with its larvae feeding in serpentine galleries between the interface of sapwood and phloem tissues of ash trees. Using artificial infestation of freshly cut logs of green ash (Fraxinus pennsylvanica Marshall) and tropical ash (Fraxinus uhdei [Wenzig] Lingelsh) with a series of egg densities, we evaluated the mechanism and outcome of intraspecific competition in larvae of A. planipennis in relation to larval density and host plant species. Results from our study showed that as the egg densities on each log (1.5-6.5 cm in diameter and 22-25 cm in length) increased from 200 to 1,600 eggs per square meter of surface area, larval survivorship declined from ≍68 to 10% for the green ash logs, and 86 to 55% for tropical ash logs. Accordingly, larval mortality resulting from cannibalism, starvation, or both, significantly increased as egg density increased, and the biomass of surviving larvae significantly decreased on both ash species. When larval density was adjusted to the same level, however, larval mortality from intraspecific competition was significantly higher and mean biomasses of surviving larvae was significantly lower in green ash than in tropical ash. The role of intraspecific competition of A. planipennis larvae in density-dependent regulation of its natural population dynamics is discussed.
Tomic-Carruthers, Nada
2007-08-01
The root-feeding weevil Hylobius transversovittatus Goeze (Coleoptera: Curculionidae) is used for biological control of the invasive plant purple loosestrife, Luthrum salicaria L. (Lythraceae). A simple rearing system for this weevil was developed with the goals of improving production techniques and increasing the availability of insects for field introduction. Additionally, the dietary effects of digestible and indigestible carbohydrates were explored. A meridic diet for rearing H. transversovittatus was formulated through nutritional alterations of a boll weevil, Anthonomus grandis grandis Boheman, diet. Diet attractiveness was evaluated on two levels: first, by recording the incidence of initial tunneling, and second, by estimating the larval establishment rate. The performance of test diet formulations was further assessed by measuring developmental and survival rates of H. transversovittatus. Sucrose, starch, and three types of indigestible carbohydrates were tested as components to improve diet performance. Physical properties of the diet, modified by fillers in test formulations, produced major effects on the initial tunneling of hatchlings. The establishment of hatchlings was affected by chemical properties of the diet. Increases in sucrose concentration decreased larval establishment, decreased the rate of larval development, and decreased larval survival. However, omitting sucrose from the diet, or replacing it with starch, increased mortality of first instars. In advanced stages of larval development, omitting sucrose from the diet did not significantly affect larval survival. The developmental rate of larvae was increased when the amount of digestible carbohydrate was reduced. To date, seven generations of the univoltine H. transversovittatus have been successfully produced on this new meridic diet.
Eggleton, M.A.; Ramirez, R.; Hargrave, C.W.; Gido, K.B.; Masoner, J.R.; Schnell, G.D.; Matthews, W.J.
2005-01-01
We sampled larval, juvenile and adult fishes from littoral-zone areas of a large reservoir (Lake Texoma, Oklahoma-Texas) (1) to characterize environmental factors that influenced fish community structure, (2) to examine how consistent fish-environment relationships were through ontogeny (i.e., larval vs. juvenile and adult), and (3) to measure the concordance of larval communities sampled during spring to juvenile and adult communities sampled at the same sites later in the year. Larval, juvenile and adult fish communities were dominated by Atherinidae (mainly inland silverside, Menidia beryllina) and Moronidae (mainly juvenile striped bass, Morone saxatilis) and were consistently structured along a gradient of site exposure to prevailing winds and waves. Larval, juvenile and adult communities along this gradient varied from atherinids and moronids at highly exposed sites to mostly centrarchids (primarily Lepomis and Micropterus spp.) at protected sites. Secondarily, zooplankton densities, water clarity, and land-use characteristics were related to fish community structure. Rank correlation analyses and Mantel tests indicated that the spatial consistency and predictability of fish communities was high as larval fishes sampled during spring were concordant with juvenile and adult fishes sampled at the same sites during summer and fall in terms of abundance, richness, and community structure. We propose that the high predictability and spatial consistency of littoral-zone fishes in Lake Texoma was a function of relatively simple communities (dominated by 1-2 species) that were structured by factors, such as site exposure to winds and waves, that varied little through time. ?? Springer 2005.
Stephens, C. R.; Juliano, S. A.
2012-01-01
Estimating a mosquito’s vector competence, or likelihood of transmitting disease, if it takes an infectious blood meal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus and Aedes aegypti larvae were reared in low intra-specific, high intra-specific, or high inter-specific competition treatments at either 22°C or 32°C. The right wing of each dried female was removed and photographed. Nineteen landmarks and twenty semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26–49%. Accounting for wing size produced no increase in classification success. There appeared to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Aedes albopictus and Aedes aegypti. PMID:22897054
Composition of the Essential Oil of Salvia ballotiflora (Lamiaceae) and Its Insecticidal Activity.
Cárdenas-Ortega, Norma Cecilia; González-Chávez, Marco Martín; Figueroa-Brito, Rodolfo; Flores-Macías, Antonio; Romo-Asunción, Diana; Martínez-González, Diana Elizabeth; Pérez-Moreno, Víctor; Ramos-López, Miguel Angel
2015-05-05
Essential oils can be used as an alternative to using synthetic insecticides for pest management. Therefore, the insectistatic and insecticidal activities of the essential oil of aerial parts of Salvia ballotiflora (Lamiaceae) were tested against the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). The results demonstrated insecticidal and insectistatical activities against this insect pest with concentrations at 80 µg·mL(-1) resulting in 20% larval viability and 10% pupal viability. The larval viability fifty (LV50) corresponded to a concentration of 128.8 µg·mL(-1). This oil also increased the duration of the larval phase by 5.5 days and reduced the pupal weight by 29.2% withrespect to the control. The GC-MS analysis of the essential oil of S. ballotiflora showed its main components to be caryophyllene oxide (15.97%), and β-caryophyllene (12.74%), which showed insecticidal and insectistatical activities against S. frugiperda. The insecticidal activity of β-caryophyllene began at 80 µg·mL(-1), giving a larval viability of 25% and viability pupal of 20%. The insectistatic activity also started at 80 µg·mL(-1) reducing the pupal weight by 22.1% with respect to control. Caryophyllene oxide showed insecticidal activity at 80 µg·mL(-1) giving a larval viability of 35% and viability pupal of 20%.The insectistatic activity started at 400 µg·mL(-1) and increased the larval phase by 8.8% days with respect to control. The LV50 values for these compounds were 153.1 and 146.5 µg·mL(-1), respectively.
NASA Astrophysics Data System (ADS)
de Putron, Samantha J.; Lawson, Julia M.; White, Kascia Q. L.; Costa, Matthew T.; Geronimus, Miriam V. B.; MacCarthy, Anne
2017-06-01
Recent research has documented phenotypic differences among larvae released from corals with a brooding reproductive mode, both among species and within broods from a single species. We studied larvae released from the common Atlantic coral Porites astreoides in Bermuda to further evaluate phenotypic variability. Inter-site differences were investigated in larvae from conspecifics at a rim and patch reef site. Larvae were collected daily for one lunar cycle from several colonies per site each year over 5 yr. Larval volume varied with reef site of origin, with colonies from the rim reef site producing larger larvae than colonies from the patch reef site. This inter-site variation in larval size could not be explained by corallite size and may be a response to different environmental conditions at the sites. Larvae from both reef sites also varied in size depending on lunar day of release over 4 yr of study. Regardless of site of origin, smaller larvae were released earlier in the lunar cycle. Over 1 yr of study, lipid and zooxanthellae content and settlement success after 48 h covaried with larval size. However, there may be a trade-off between larger larvae and reduced fecundity. Overall, larvae released from colonies from the rim reef site were larger and had greater settlement success than those from colonies from the patch reef site. This study documents larval phenotypic variability and a distinct inter-site difference in larval ecology among conspecifics within the same geographic area, which may have implications for recruitment success, population dynamics, and resilience.
Selecting Great Lakes streams for lampricide treatment based on larval sea lamprey surveys
Christie, Gavin C.; Adams, Jean V.; Steeves, Todd B.; Slade, Jeffrey W.; Cuddy, Douglas W.; Fodale, Michael F.; Young, Robert J.; Kuc, Miroslaw; Jones, Michael L.
2003-01-01
The Empiric Stream Treatment Ranking (ESTR) system is a data-driven, model-based, decision tool for selecting Great Lakes streams for treatment with lampricide, based on estimates from larval sea lamprey (Petromyzon marinus) surveys conducted throughout the basin. The 2000 ESTR system was described and applied to larval assessment surveys conducted from 1996 to 1999. A comparative analysis of stream survey and selection data was conducted and improvements to the stream selection process were recommended. Streams were selected for treatment based on treatment cost, predicted treatment effectiveness, and the projected number of juvenile sea lampreys produced. On average, lampricide treatments were applied annually to 49 streams with 1,075 ha of larval habitat, killing 15 million larval and 514,000 juvenile sea lampreys at a total cost of $5.3 million, and marginal and mean costs of $85 and $10 per juvenile killed. The numbers of juvenile sea lampreys killed for given treatment costs showed a pattern of diminishing returns with increasing investment. Of the streams selected for treatment, those with > 14 ha of larval habitat targeted 73% of the juvenile sea lampreys for 60% of the treatment cost. Suggested improvements to the ESTR system were to improve accuracy and precision of model estimates, account for uncertainty in estimates, include all potentially productive streams in the process (not just those surveyed in the current year), consider the value of all larvae killed during treatment (not just those predicted to metamorphose the following year), use lake-specific estimates of damage, and establish formal suppression targets.
DENSITY-DEPENDENT EVOLUTION OF LIFE-HISTORY TRAITS IN DROSOPHILA MELANOGASTER.
Bierbaum, Todd J; Mueller, Laurence D; Ayala, Francisco J
1989-03-01
Populations of Drosophila melanogaster were maintained for 36 generations in r- and K-selected environments in order to test the life-history predictions of theories on density-dependent selection. In the r-selection environment, populations were reduced to low densities by density-independent adult mortality, whereas populations in the K-selection environment were maintained at their carrying capacity. Some of the experimental results support the predictions or r- and K-selection theory; relative to the r-selected populations, the K-selected populations evolved an increased larval-to-adult viability, larger body size, and longer development time at high larval densities. Mueller and Ayala (1981) found that K-selected populations also have a higher rate of population growth at high densities. Other predictions of the thoery are contradicted by the lack of differences between the r and K populations in adult longevity and fecundity and a slower rate of development for r-selected individuals at low densities. The differences between selected populations in larval survivorship, larval-to-adult development time, and adult body size are strongly dependent on larval density, and there is a significant interaction between populations and larval density for each trait. This manifests an inadequacy of the theory on r- and K-selection, which does not take into account such interactions between genotypes and environments. We describe mechanisms that may explain the evolution of preadult life-history traits in our experiment and discuss the need for changes in theories of density-dependent selection. © 1989 The Society for the Study of Evolution.
Sumner-Rooney, Lauren H.; Sigwart, Julia D.
2015-01-01
The discovery of a sensory organ, the Schwabe organ, was recently reported as a unifying feature of chitons in the order Lepidopleurida. It is a patch of pigmented tissue located on the roof of the pallial cavity, beneath the velum on either side of the mouth. The epithelium is densely innervated and contains two types of potential sensory cells. As the function of the Schwabe organ remains unknown, we have taken a cross-disciplinary approach, using anatomical, histological and behavioural techniques to understand it. In general, the pigmentation that characterises this sensory structure gradually fades after death; however, one particular concentrated pigment dot persists. This dot is positionally homologous to the larval eye in chiton trochophores, found in the same neuroanatomical location, and furthermore the metamorphic migration of the larval eye is ventral in species known to possess Schwabe organs. Here we report the presence of a discrete subsurface epithelial structure in the region of the Schwabe organ in Leptochiton asellus that histologically resembles the chiton larval eye. Behavioural experiments demonstrate that Leptochiton asellus with intact Schwabe organs actively avoid an upwelling light source, while Leptochiton asellus with surgically ablated Schwabe organs and a control species lacking the organ (members of the other extant order, Chitonida) do not (Kruskal-Wallis, H = 24.82, df = 3, p < 0.0001). We propose that the Schwabe organ represents the adult expression of the chiton larval eye, being retained and elaborated in adult lepidopleurans. PMID:26366861
NASA Astrophysics Data System (ADS)
Garavelli, Lysel; Kaplan, David Michael; Colas, François; Stotz, Wolfgang; Yannicelli, Beatriz; Lett, Christophe
2014-05-01
Along the coast of Chile, fisheries targeting the marine gastropod Concholepas concholepas, commonly named “loco”, were highly valuable until the end of the 80s when catches declined significantly. Since the late 90s, a management plan based on territorial-user-rights areas has been implemented, with limited effect on stock recovery. More effective loco conservation and management is impeded by lack of information regarding connectivity via larval dispersal between these individually-managed areas. To develop a regional view of loco connectivity, we integrate loco life history information into a biophysical, individual-based larval dispersal model. This model is used to evaluate scales of loco connectivity and seasonality in connectivity patterns, as well as to partition the coast into largely disconnected subpopulations using a recently developed connectivity-matrix clustering algorithm. We find mean dispersal distances ranging from 170 to 220 km depending on release depth of larvae and planktonic larval duration. Settlement success levels depend quantitatively on the physical and biological processes included in the model, but connectivity patterns remain qualitatively similar. Model estimates of settlement success peak for larval release dates in late austral autumn, consistent with field results and with favorable conditions for larval coastal retention due to weak upwelling during austral autumn. Despite the relatively homogeneous Chilean coastline, distinct subpopulations with minimal connectivity between them are readily identifiable. Barriers to connectivity that are robust to changes in model configuration exist at 23°S and 29°S latitudes. These zones are all associated with important headlands and embayments of the Chilean coast.
Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G
2016-02-15
Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. Copyright © 2015 Elsevier Inc. All rights reserved.
Emlet, R B
1995-02-01
Nonfeeding larvae of the echinoid Heliocidaris erythrogramma were raised in culture and examined for expression of a larval skeleton and for the arrangement of the ciliated band. Opaque larvae were fixed, cleared, and examined under polarized light for evidence of calcification. By 35 hr after fertilization (at 22 degrees C), a pair of triradiate spicules was present at the posterior end of the larvae. Each member of this pair formed a fenestrated spicule as it grew laterally. This pair and another pair which formed subsequently, were arranged across a plane of bilateral symmetry orthagonal to the juvenile oral aboral axis. These paired larval spicules can be identified as reduced expressions of postoral and posterodorsal rods found in plutei, and their expression indicates that the juvenile rudiment of H. erythrogramma forms on the left side and that larval body axes are conserved in this modified larva. By 44 hr the ciliated band formed as an incomplete transverse loop of three segments at the posterior end and on the dorsal surface of the ovoid larva. Cilia in these segments grew to lengths of 45-50 microns, longer than other swimming and feeding cilia reported for echinoderm larvae. Band segments are interpreted as expressions of epaulettes (specialized swimming bands) rather than the feeding ciliated band of the pluteus. The ciliated band segments and the larval spicules are both bilaterally symmetrical with respect to the same plane and indicate conserved larval bilateral symmetry despite the major asymmetry of the fates of cells on either side of this plane in their contribution to juvenile development.
Remotely Sensing Larval Population Dynamics of Rice Field Anophelines
NASA Technical Reports Server (NTRS)
Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.
1997-01-01
The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.
Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce
2016-12-01
The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.
Gypsy moth larval defense mechanisms against pathogenic microorganisms
Kathleen S. Shields; Tariq M. Butt
1991-01-01
We investigated the response of gypsy moth, Lymantria dispar, larval hemocytes to L. dispar nuclear polyhedrosis virus (LdMNPV) administered per os and by injection, and to injected hyphal bodies and natural protoplasts of some entomopathogenic, entomophthoralean fungi.
Behavorial assessments of larval zebrafish neurotoxicology
Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...
Predicting developmental neurotoxicity in rodents from larval zebrafish - - and vice versa
The complexity of standard mammalian developmental neurotoxicity tests limits evaluation of large numbers of chemicals. Less complex, more rapid assays using larval zebrafish are gaining popularity for evaluating the developmental neurotoxicity of chemicals; there remains, howeve...
2012-01-01
Background Anopheles arabiensis (Diptera: Culicidae) is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats. Methods In an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties. Results Whilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7]) was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]). Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat. Conclusions If the larval ecology of An. arabiensis is in general very complex and factors affecting breeding site productivity sometimes not easy to highlight, our results, however, highlight lower populations of An. arabiensis immatures compared to those reported in comparable studies conducted in the African continent. Overall, this low larval abundance, resulting from both abiotic and biotic factors, suggests that vector control measures targeting larval habitats are likely to be successful in Reunion, but these could be better implemented by taking environmental variability into account. PMID:22608179
Zulkosky, Ann M.; Ruggieri, Joseph P.; Terracciano, Stephen A.; Brownawell, Bruce J.; McElroy, Anne E.
2005-01-01
Acute toxicity and immune response, combined with temperature stress effects, were evaluated in larval and juvenile American lobsters (Homarus americanus) exposed to malathion, resmethrin and methoprene. These pesticides were used to control West Nile virus in New York in 1999, the same year the American lobster population collapsed in western Long Island Sound (LIS). Whereas the suite of pesticides used for mosquito control changed in subsequent years, a field study was also conducted to determine pesticide concentrations in surface waters on Long Island and in LIS after operational applications. The commercial formulations used in 2002 and 2003—Scourge, Anvil and Altosid—contain the active ingredients resmethrin, sumithrin and methoprene, respectively. Concentrations of the synergist piperonyl butoxide (PBO) were also measured as a proxy for pesticide exposure. Acute mortality in Stage I-II larval lobsters demonstrated that they are extremely sensitive to continuous resmethrin exposure. Resmethrin LC50s for larval lobsters determined under flow-through conditions varied from 0.26–0.95 μg L−1 in 48- and 96-h experiments at 16°C, respectively. Increased temperature (24°C) did not significantly alter resmethrin toxicity. Malathion and methoprene were less toxic than resmethrin. The 48-h LC50 for malathion was 3.7 μg L−1 and methoprene showed no toxicity at the highest (10 μg L−1) concentration tested. Phenoloxidase activity was used as a measure of immune response for juvenile lobsters exposed to sublethal pesticide concentrations. In continuous exposures to sublethal doses of resmethrin (0.03 μg L−1) or malathion (1 μg L−1) for 7 d at 16 or 22°C, temperature had a significant effect on phenoloxidase activity (P ≤ 0.006) whereas pesticide exposure did not (P = 0.880). The analytical methods developed using high performance liquid chromatography coupled to time-of-flight mass spectroscopy (LC-TOF-MS) provided high sensitivity with mass detection limits of 0.1–0.3 ng L−1. Pesticide levels were often detected in the ng L−1 range in Long Island surface waters and western LIS (except in open waters), but rarely at concentrations found to be toxic in flow-through laboratory exposures, even immediately after spray events.
A microfluidic array for high-content screening at whole-organism resolution
NASA Astrophysics Data System (ADS)
Migliozzi, D.; Cornaglia, M.; Mouchiroud, L.; Auwerx, J.; Gijs, M. A. M.
2018-02-01
A main step for the development and the validation of medical drugs is the screening on whole organisms, which gives the systemic information that is missing when using cellular models. Among the organisms of choice, Caenorhabditis elegansis a soil worm which catches the interest of researchers who study systemic physiopathology (e.g. metabolic and neurodegenerative diseases) because: (1) its large genetic homology with humans supports translational analysis; (2) worms are much easier to handle and grow in large amounts compared to rodents, for which (3) the costs and (4) the ethical concerns are substantial.C. elegansis therefore well suited for large screens, dose-response analysis and target-discovery involving an entire organism. We have developed and tested a microfluidic array for high-content screening, enabling the selection of small populations of its first larval stage in many separated chambers divided into channels for multiplexed screens. With automated protocols for feeding, drug administration and image acquisition, our chip enables the study of the nematodes throughout their entire lifespan. By using a paralyzing agent and a mitochondrial-stress inducer as case studies, we have demonstrated large field-of-view motility analysis, and worm-segmentation/signal-detection for mode-of-action quantification with genetically-encoded fluorescence reporters.
Expanding Larval Fish DNA Metabarcoding to All the Great Lakes
Fish larvae represent a largely untapped community for detecting and monitoring breeding non-native species, mainly due to the difficulty of identifying larvae to species through morphological methods. Molecular genetic methods offer means to identify larval specimens to species ...
Larval nematodes found in amphibians from northeastern Argentina.
González, C E; Hamann, M I
2010-11-01
Five species of amphibians, Leptodactylus podicipinus, Scinax acuminatus, S. nasicus, Rhinella fernandezae and Pseudis paradoxa, were collected in Corrientes province, Argentina and searched for larval nematodes. All larval nematodes were found as cysts in the serous of the stomach of hosts. Were identified one superfamily, Seuratoidea; one genus, Spiroxys (Superfamily Gnathostomatoidea) and one family, Rhabdochonidae (Superfamily Thelazioidea). We present a description and illustrations of these taxa. These nematodes have an indirect life cycle and amphibians are infected by consuming invertebrate, the intermediate hosts. The genus Spiroxys and superfamily Seuratoidea were reported for the first time for Argentinean amphibians.
The neural basis of visual behaviors in the larval zebrafish.
Portugues, Ruben; Engert, Florian
2009-12-01
We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.
Montezano, Débora Goulart; Specht, Alexandre; Sosa–Gómez, Daniel Ricardo; Roque–Specht, Vânia Ferreira; de Barros, Neiva Monteiro
2014-01-01
Abstract This study aimed to detail the temporal and morphological parameters of the immature stages of southern armyworm Spodoptera eridania (Stoll, 1782) with larvae feed on artificial diet, under controlled conditions (25 ± 1°C, 70 ± 10% relative humidity and 14-h photophase) and gather information about their larval host plants. The viability of the egg, larval, pupal, and prepupal stages was 97.82, 93.62, 96.42, and 97.03%, respectively. The average duration of the egg, larval, pupal, and pre–pupal stages was 4.00, 16.18, 1.58, and 9.17 d, respectively. During the larval stage, 43.44% of females passed through seven instars, observing that the female’s development was significant slower than males. The female larvae that developed through six and seven instars exhibited a mean growth rate of 1.52 and 1.44, respectively. Female pupae were significantly larger, exhibiting faster development than males. The rearing method proved to be adequate, providing more detailed observations of the biological cycle, especially at the larval stage, and resulting in an overall survival of almost 85%. Two hundred two plant species belonging to 58 families are listed as natural hosts for S. eridania , mainly including Asteraceae, Fabaceae, Solanaceae, Poaceae, Amaranthaceae, and Malvaceae. PMID:25525103
Coupling suitable prey field to in situ fish larval condition and abundance in a subtropical estuary
NASA Astrophysics Data System (ADS)
Machado, Irene; Calliari, Danilo; Denicola, Ana; Rodríguez-Graña, Laura
2017-03-01
Survival of fish larvae is influenced by the suitability of the prey field and its variability in time and space. Relationships among food quality, quantity and recruitment have been explored in temperate ecosystems where spawning and secondary production are strongly seasonal, but for subtropical estuaries the mechanisms responsible for larval survival remain poorly identified. This study evaluated the nutritional condition (feeding incidence and AARS activity) and abundance of a multi-specific assemblage of fish larvae from a subtropical estuary in South America (Solís Grande, Uruguay) during the fish reproductive season; and related both variables to prey abundance, composition, size and fatty acids content. The larval assemblage was composed of 13 species belonging to different functional groups and composition varied seasonally. Contrary to expectations larval condition did not match an increase in prey quality. Food availability was high throughout the study period, although significant changes existed in the size and taxonomic structure of the prey assemblage. The temporal succession of complementary factors - temperature, prey composition, abundance and quality - promoted a wide window of opportunity for larvae, where quality seemed to have compensated quantity. Such combination of factors could allow an extended larval survival along the spawning season. These findings underline the importance of a better understanding of subtropical estuaries as nursery areas.
NASA Astrophysics Data System (ADS)
Bas, Claudia; Luppi, Tomás; Spivak, Eduardo; Schejter, Laura
2009-08-01
The estuarine brachyuran crab Neohelice granulata export their larvae from the parental intertidal population of the Mar Chiquita coastal lagoon, and probably other populations, to marine waters. The degree of larval dispersion or self-recruitment of populations is unknown. We evaluated the presence of all larval stages of N. granulata in coastal waters of Argentina between 37.9° and 35.8° S, at two different spatial scales: a broad scale of tens to hundreds of kilometers from the Río de la Plata estuary in the north, to Mar Chiquita lagoon in the south, and a small scale of hundreds of meters to some kilometers around the mouth of Mar Chiquita, during spring and summer. Additionally, we registered the larval composition and density at San Clemente creek population, in Samborombon Bay (Río de la Plata estuary), every 3 h along a 30-hour period. Evidence indicates that larval release of N. granulata is temporally synchronized with nocturnal ebb tides and all development from Zoea I to Zoea IV occur in areas close to the parental population, even with very different oceanographic characteristics. A possible mechanism based on salinity selection and wind-driven transport is proposed for such behavior, and some considerations related to the connectivity of present populations are made.
Bakke, Ingrid; Coward, Eivind; Andersen, Tom; Vadstein, Olav
2015-10-01
Marine fish larvae are immature upon hatching, and share their environment with high numbers of bacteria. The microbial communities associated with developing fish larvae might be structured by other factors than those important in developing terrestrial animals. Here, we analysed the beta (β)-diversity of the microbiota associated with developing cod larvae and compared it with the bacterial communities in water and live feed by applying pyrosequencing of bar coded v4 16S rDNA amplicons. A total of 15 phyla were observed in the cod larval microbiota. Proteobacteria was the most abundant, followed by Firmicutes, Bacteroidetes and Actinobacteria. The composition and diversity of the cod larval microbiota changed considerably with age. The temporal and spatial patterns of β-diversity could not be explained by stochastic processes, and did not coincide with changes in the rearing conditions. Furthermore, the larval microbiota was highly distinct from the water and the live feed microbiota, particularly at early developmental stages. However, the similarity between larval and water microbiota increased with age. This study suggests that strong selection in the host structures the cod larval microbiota. The changes in community structure observed with increasing age can be explained by altered selection pressure due to development of the intestinal system. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Monahan, C M; Taylor, H W; Chapman, M R; Klei, T R
1994-12-01
Protection from Strongylus vulgaris infection through immunization with radiation-attenuated third-stage larvae (L3) or crude soluble homogenates from larval or adult stages was examined. Yearling ponies raised parasite-free were divided into 3 immunization groups: radiation-attenuated L3; soluble adult somatic extracts; larval somatic extracts with excretory/secretory products (E/S) from in vitro culture; and 1 medium control group. Ponies were immunized twice; attenuated larvae were administered orally and somatic extracts or controls injected intramuscularly with adjuvant. Approximately 6 wk following the second immunization, all ponies were challenged. Necrospy examinations were performed 6 wk following challenge. Irradiated larvae recipients had the fewest postchallenge clinical signs and lesions and were 91% protected from infection determined by larval recoveries from arterial dissections. Soluble antigen recipients and controls had similar larval recoveries and thus equal susceptibility to challenge. Soluble antigen recipients had more severe clinical signs and lesions than controls, suggesting that parenteral immunization exacerbated postchallenge inflammatory responses. Protection by immunization with irradiated larvae was associated with an anamnestic eosinophilia and postimmunization antibody recognition of S. vulgaris L3 surface antigens. Histologic staining of eosinophils within tissues of this group suggested that this immunization induced a cytophilic antibody response that facilitated degranulation.
Developmental analysis of the dopamine-containing neurons of the Drosophila brain
Hartenstein, Volker; Cruz, Louie; Lovick, Jennifer K.; Guo, Ming
2016-01-01
The Drosophila dopaminergic (DA) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. In this paper, we analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain which provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages while others do not become DA-positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA-positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage which can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. PMID:27350102
Velcro-Like System Used to Fix a Protective Faecal Shield on Weevil Larvae.
Skuhrovec, Jiří; Stejskal, Robert; Trnka, Filip; di Giulio, Andrea
2017-01-01
The last instar larva and pupa of Eucoeliodes mirabilis (A. Villa & G. B. Villa, 1835) (Curculionidae: Ceutorhynchini) are described using drawings and SEM images and are compared and keyed with already described larvae of 58 other ceutorhynchinae taxa. The larval body has an effective combination of morphological adaptations that assist a unique biological defensive strategy. All larval stages of E. mirabilis feed ectophytically on leaves of Euonymus europaeus L. (Celastraceae), and the larval body is covered with a thick faecal shield. The fixation of this protective shield on the larval back is performed by a peculiar dorsal microsculpture composed of a dense carpet of microtrichia on the thorax and abdomen, which serves effectively as a velcro system. Because of this strategy, macrosetae on the larval and pupal body of E. mirabilis are completely reduced. Larvae of E. mirabilis also have distinct morphological adaptations for protecting the spiracles against intrusion of faeces and avoiding occlusion of the tracheal system: a) microtrichia around spiracles are slightly shorter, distinctly stronger and are arranged with high-density and in clusters and b) spiracles are protected by an external safety valve. This strategy of E. mirabilis larvae is unique, although somewhat similar to that of Criocerinae and Blepharida-group leave beetles (Galerucinae) (both Coleoptera: Chrysomelidae), but with distinctly different morphological adaptations.
YOSHINO, TIMOTHY P.; DINGUIRARD, NATHALIE; DE MORAES MOURÃO, MARINA
2013-01-01
SUMMARY With rapid developments in DNA and protein sequencing technologies, combined with powerful bioinformatics tools, a continued acceleration of gene identification in parasitic helminths is predicted, potentially leading to discovery of new drug and vaccine targets, enhanced diagnostics and insights into the complex biology underlying host-parasite interactions. For the schistosome blood flukes, with the recent completion of genome sequencing and comprehensive transcriptomic datasets, there has accumulated massive amounts of gene sequence data, for which, in the vast majority of cases, little is known about actual functions within the intact organism. In this review we attempt to bring together traditional in vitro cultivation approaches and recent emergent technologies of molecular genomics, transcriptomics and genetic manipulation to illustrate the considerable progress made in our understanding of trematode gene expression and function during development of the intramolluscan larval stages. Using several prominent trematode families (Schistosomatidae, Fasciolidae, Echinostomatidae), we have focused on the current status of in vitro larval isolation/cultivation as a source of valuable raw material supporting gene discovery efforts in model digeneans that include whole genome sequencing, transcript and protein expression profiling during larval development, and progress made in the in vitro manipulation of genes and their expression in larval trematodes using transgenic and RNA interference (RNAi) approaches. PMID:19961646
Zambonino-Infante, José L; Claireaux, Guy; Ernande, Bruno; Jolivet, Aurélie; Quazuguel, Patrick; Sévère, Armelle; Huelvan, Christine; Mazurais, David
2013-05-07
An individual's environmental history may have delayed effects on its physiology and life history at later stages in life because of irreversible plastic responses of early ontogenesis to environmental conditions. We chose a marine fish, the common sole, as a model species to study these effects, because it inhabits shallow marine areas highly exposed to environmental changes. We tested whether temperature and trophic conditions experienced during the larval stage had delayed effects on life-history traits and resistance to hypoxia at the juvenile stage. We thus examined the combined effect of global warming and hypoxia in coastal waters, which are potential stressors to many estuarine and coastal marine fishes. Elevated temperature and better trophic conditions had a positive effect on larval growth and developmental rates; warmer larval temperature had a delayed positive effect on body mass and resistance to hypoxia at the juvenile stage. The latter suggests a lower oxygen demand of individuals that had experienced elevated temperatures during larval stages. We hypothesize that an irreversible plastic response to temperature occurred during early ontogeny that allowed adaptive regulation of metabolic rates and/or oxygen demand with long-lasting effects. These results could deeply affect predictions about impacts of global warming and eutrophication on marine organisms.
Velcro-Like System Used to Fix a Protective Faecal Shield on Weevil Larvae
Stejskal, Robert; Trnka, Filip; di Giulio, Andrea
2017-01-01
The last instar larva and pupa of Eucoeliodes mirabilis (A. Villa & G. B. Villa, 1835) (Curculionidae: Ceutorhynchini) are described using drawings and SEM images and are compared and keyed with already described larvae of 58 other ceutorhynchinae taxa. The larval body has an effective combination of morphological adaptations that assist a unique biological defensive strategy. All larval stages of E. mirabilis feed ectophytically on leaves of Euonymus europaeus L. (Celastraceae), and the larval body is covered with a thick faecal shield. The fixation of this protective shield on the larval back is performed by a peculiar dorsal microsculpture composed of a dense carpet of microtrichia on the thorax and abdomen, which serves effectively as a velcro system. Because of this strategy, macrosetae on the larval and pupal body of E. mirabilis are completely reduced. Larvae of E. mirabilis also have distinct morphological adaptations for protecting the spiracles against intrusion of faeces and avoiding occlusion of the tracheal system: a) microtrichia around spiracles are slightly shorter, distinctly stronger and are arranged with high-density and in clusters and b) spiracles are protected by an external safety valve. This strategy of E. mirabilis larvae is unique, although somewhat similar to that of Criocerinae and Blepharida-group leave beetles (Galerucinae) (both Coleoptera: Chrysomelidae), but with distinctly different morphological adaptations. PMID:28125664
Environmental factors limiting fertilisation and larval success in corals
NASA Astrophysics Data System (ADS)
Woods, Rachael M.; Baird, Andrew H.; Mizerek, Toni L.; Madin, Joshua S.
2016-12-01
Events in the early life history of reef-building corals, including fertilisation and larval survival, are susceptible to changes in the chemical and physical properties of sea water. Quantifying how changes in water quality affect these events is therefore important for understanding and predicting population establishment in novel and changing environments. A review of the literature identified that levels of salinity, temperature, pH, suspended sediment, nutrients and heavy metals affect coral early life-history stages to various degrees. In this study, we combined published experimental data to determine the relative importance of sea water properties for coral fertilisation success and larval survivorship. Of the water properties manipulated in experiments, fertilisation success was most sensitive to suspended sediment, copper, salinity, phosphate and ammonium. Larval survivorship was sensitive to copper, lead and salinity. A combined model was developed that estimated the joint probability of both fertilisation and larval survivorship in sea water with different chemical and physical properties. We demonstrated the combined model using water samples from Sydney and Lizard Island in Australia to estimate the likelihood of larvae surviving through both stages of development to settlement competency. Our combined model could be used to recommend targets for water quality in coastal waterways as well as to predict the potential for species to expand their geographical ranges in response to climate change.
Huang, Qingchun; Kong, Yuping; Liu, Manhui; Feng, Jun; Liu, Yang
2008-01-01
The effect of oxadiazolyl 3(2H)-pyridazinone (ODP), a new insect growth regulator, on growth of larvae of the armyworm, Pseudaletia separata Walker (Lepidoptera: Noctuidae) was evaluated in comparison to the insecticide, toosendanin, a tetranortriterpenoid extracted from the bark of Melia toosendan that has multiple effects on insects. The digestive physiological properties of these compounds on insects were investigated by feeding them maize leaves dipped in these compounds. The results showed that ODP inhibited the growth of P. separata significantly, causing a slowed development and a prolonged larval period, smaller body size and sluggish behavior, delayed pupation and a reduced eclosion rate of pupae and adults. Moreover, ODP strongly inhibited the activities of weak alkaline trypsine-like enzyme, chymotrypsin-like enzyme and alpha amylase in the midguts of fifth instar P. separata larvae, in vivo, and inhibited the activity of alpha amylase, in vitro. These data suggest that ODP has severe consequences on the larval carbohydrate assimilation and/or nutrient intake and thereby causes inhibition of larval growth. The regulatory action of ODP on larval growth development was similar to that of toosendanin; both could be used to decrease the growth of insect populations. PMID:20337556
Myofiber turnover is used to retrofit frog jaw muscles during metamorphosis.
Alley, K E
1989-01-01
Metamorphic reorganization of the head in anuran amphibians entails abrupt restructuring of the jaw complex as larval feeding structures are transformed into their adult configurations. In this morphometric study, light microscopy wa used to analyze the larval maturation and metamorphic transfiguration of the adductor jaw muscles in the leopard frog (Rana pipiens). Larval jaw muscles, first established during embryogenesis, continue to grow by fiber addition until prometamorphosis, stage XII. Thereafter, fiber number remains stable but additional muscle growth continues by hypertrophy of the individual fibers until metamorphic climax. During metamorphic stages XIX-XXIII, a complete involution of all larval myofibers occurs. Simultaneously, within the same muscle beds, a second wave of myogenesis produces myoblasts which are the precursors of adult jaw myofibers. New muscle fibers continue to be added to these muscles well after the completion of metamorphosis; however, the total duration of the postmetamorphic myogenic period has not been defined. These observations provide clear evidence that the entir population of primary myofibers used in larval oral activity disappears from the adductor muscle beds and is replaced by a second wave of myogenesis commencing during climax. These findings indicate that the adductor jaw muscles are prepared for adult feeding by a complicated cellular process that retrofits existing muscle beds with a completely new complement of myofibers.
Ocean Acidification Impacts Larval and Juvenile Growth in the Native Oyster Ostrea lurida
NASA Astrophysics Data System (ADS)
Hettinger, A.; Hoey, J. A.; Sanford, E.; Gaylord, B.; Hill, T. M.; Russell, A. D.
2008-12-01
The impacts of ocean acidification have only recently been recognized as a human-induced stressor on marine ecosystems. Ocean acidification can disrupt calcification in organisms that precipitate calcareous structures, including many ecologically and economically important species. We examined how decreased levels of carbonate saturation affected larval and juvenile growth and settlement in the native oyster Ostrea lurida. Larvae were cultured at three carbonate saturation levels that represent present day CO2 concentrations (380 ppm) and two future projected pCO2 scenarios (540 and 970 ppm). These treatments were maintained for 20 days throughout larval duration until settlement occurred. Larval and juvenile growth were determined by calculating change in shell area. Larvae exposed to 970 ppm grew 12% less than larvae held under control conditions (380 ppm). In addition, growth varied among larvae produced by different parents, suggesting that impacts of ocean acidification might vary intraspecifically. Juvenile growth (i.e., new shell added following settlement) was significantly different among CO2 treatments, and juveniles exposed to 970 ppm grew 24% less than juveniles held under control conditions (380 ppm). Carry-over effects from the larval stage influence juvenile growth, and because post-settlement mortality is often high for marine invertebrates, ocean acidification may negatively impact the size of native oyster populations.
The recovery of coral genetic diversity in the Sunda Strait following the 1883 eruption of Krakatau
NASA Astrophysics Data System (ADS)
Starger, C. J.; Barber, P. H.; Ambariyanto; Baker, A. C.
2010-09-01
Surveys of microsatellite variation show that genetic diversity has largely recovered in two reef-building corals, Pocillopora damicornis and Seriatopora hystrix (Scleractinia: Pocilloporidae), on reefs which were decimated by the eruption of the volcano Krakatau in 1883. Assignment methods and gene flow estimates indicate that the recolonization of Krakatau occurred mainly from the closest upstream reef system, Pulau Seribu, but that larval input from other regions has also occurred. This pattern is clearer in S. hystrix, which is traditionally the more dispersal-limited species. Despite these observed patterns of larval dispersal, self-recruitment appears to now be the most important factor in supplying larvae to coral populations in Krakatau. This suggests that the colonization of devastated reefs can occur quickly through larval dispersal; however, their survival requires local sources of larvae for self-recruitment. This research supports the observation that the recovery of genetic diversity in coral reef animals can occur on the order of decades and centuries rather than millennia. Conservation measures aimed at sustaining coral reef populations in Krakatau and elsewhere should include both the protection of upstream source populations for larval replenishment should disaster occur as well as the protection of large adult colonies to serve as local larval sources.
Investigating phenology of larval fishes in St. Louis River ...
As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages across different habitats and at multiple temporal scales. To optimize early detection monitoring we need to understand temporal and spatial patterns of larval fishes related to their development and dispersion, as well as the environmental factors that influence them. In 2016 we designed an experiment to assess the phenological variability in larval fish abundance and assemblages amongst shallow water habitats. Specifically, we sought to contrast different thermal environments and turbidity levels, as well as assess the importance of vegetation in these habitats. To evaluate phenological differences we sampled larval fish bi-weekly at nine locations from mid-May to mid-July. Sampling locations were split between upper estuary and lower estuary to contrast river versus seiche influenced habitats. To assess differences in thermal environments, temperature was monitored every 15 minutes at each sampling location throughout the study, beginning in early April. Our design also included sampling at both vegetated (or pre-vegetated) and non-vegetated stations within each sampling location throughout the study to assess the importance of this habitat variable. Hydroacoustic surveys (Biosonics) were
Rezagholinejad, Sadaf; Arshad, Aziz; Amin, S M Nurul; Ara, Roushon
2016-07-01
The composition of fish larvae and their diversity in different habitats are very important for fisheries management. Larval fishes were investigated in a mangrove estuary of Marudu Bay, Sabah, Malaysia from October 2012 to September 2013 at five different sites. Monthly samples of fish larvae were collected at five sampling sites by a plankton net with a mouth opening of 40.5 cm in diameter. In total, 3879 larval fish were caught in the investigated area. The mean density of ichthyoplankton at this area was 118 larvae/100 m(3). The fish larval assemblage comprised of 20 families whereas 13 families occurred at St1, 16 at St2, 16 at St3, 12 at St4 and 16 at St5. The top major families were Sillaginidae, Engraulidae, Mugilidae and Sparidae with Sillaginidae consisted 44% of total larval composition. St3 with 143 larvae/100 m(3) had the highest density amongst the stations which was due to higher abundance of Sillaginidae. Shannon-Wiener diversity index represented significant variation during monsoon and inter-monsoon seasons, peaking in the months December-January and May-June. However, Shannon-Wiener index, evenness and family richness showed significant differences among stations and months (p < 0.05).
Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E
2015-06-03
Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis. Copyright © 2015 the authors 0270-6474/15/358662-10$15.00/0.
Kweka, Eliningaya J; Munga, Stephen; Himeidan, Yousif; Githeko, Andrew K; Yan, Guyuin
2015-07-05
Mosquito larval source management (LSM) is likely to be more effective when adequate information such as dominant species, seasonal abundance, type of productive habitat, and land use type are available for targeted sites. LSM has been an effective strategy for reducing malaria morbidity in both urban and rural areas in Africa where sufficient proportions of larval habitats can be targeted. In this study, we conducted longitudinal larval source surveillance in the western Kenya highlands, generating data which can be used to establish cost-effective targeted intervention tools. One hundred and twenty-four (124) positive larval habitats were monitored weekly and sampled for mosquito larvae over the 85-week period from 28 July 2009 to 3 March 2011. Two villages in the western Kenya highlands, Mbale and Iguhu, were included in the study. After preliminary sampling, habitats were classified into four types: hoof prints (n = 21; 17 % of total), swamps (n = 32; 26%), abandoned goldmines (n = 35; 28%) and drainage ditches (n = 36; 29%). Positive habitats occurred in two land use types: farmland (66) and pasture (58). No positive larval habitats occurred in shrub land or forest. A total of 46,846 larvae were sampled, of which 44.1% (20,907) were from abandoned goldmines, 30.9% (14,469) from drainage ditches, 22.4% (10,499) from swamps and 2.1% (971) from hoof prints. In terms of land use types, 57.2% (26,799) of the sampled larvae were from pasture and 42.8% (20,047) were from farmland. Of the specimens identified morphologically, 24,583 (52.5%) were Anopheles gambiae s.l., 11,901 (25.4%) were Culex quinquefasciatus, 5628 (12%) were An. funestus s.l. and 4734 (10.1%) were other anopheline species (An. coustani, An. squamosus, An. ziemanni or An. implexus). Malaria vector dynamics varied seasonally, with An.gambiae s.s. dominating during wet season and An.arabiensis during dry season. An increased proportion of An. arabiensis was observed compared to previous studies. These results suggest that long-term monitoring of larval habitats can establish effective surveillance systems and tools. Additionally, the results suggest that larval control is most effective in the dry season due to habitat restriction, with abandoned goldmines, drainage ditches and swamps being the best habitats to target. Both farmland and pasture should be targeted for effective larval control. An increased proportion of An. arabiensis in the An. gambiae complex was noticed in this study for the very first time in the western Kenya highlands; hence, further control tools should be in place for effective control of An. arabiensis.
Enabulele, Egie E; Lawton, Scott P; Walker, Anthony J; Kirk, Ruth S
2018-03-01
Lecithodendrium linstowi is one of the most prevalent and abundant trematodes of bats, but the larval stages and intermediate hosts have not been identified. We present the first molecular and morphological characterization of the cercariae of L. linstowi based on a phylogenetic analysis of partial fragments of LSU and ITS2 rDNA. The first intermediate host was incriminated as Radix balthica by DNA barcoding using cox1 and ITS2 sequences, although the snail morphologically resembled Radix peregra, emphasizing the requirement for molecular identification of lymnaeids as important intermediate hosts of medical and veterinary impact. The application of molecular data in this study has enabled linkage of life cycle stages and accurate incrimination of the first intermediate host.
Calcium imaging of neural circuits with extended depth-of-field light-sheet microscopy
Quirin, Sean; Vladimirov, Nikita; Yang, Chao-Tsung; Peterka, Darcy S.; Yuste, Rafael; Ahrens, Misha B.
2016-01-01
Increasing the volumetric imaging speed of light-sheet microscopy will improve its ability to detect fast changes in neural activity. Here, a system is introduced for brain-wide imaging of neural activity in the larval zebrafish by coupling structured illumination with cubic phase extended depth-of-field (EDoF) pupil encoding. This microscope enables faster light-sheet imaging and facilitates arbitrary plane scanning—removing constraints on acquisition speed, alignment tolerances, and physical motion near the sample. The usefulness of this method is demonstrated by performing multi-plane calcium imaging in the fish brain with a 416 × 832 × 160 µm field of view at 33 Hz. The optomotor response behavior of the zebrafish is monitored at high speeds, and time-locked correlations of neuronal activity are resolved across its brain. PMID:26974063
Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation
Rihel, Jason; Prober, David A.; Arvanites, Anthony; Lam, Kelvin; Zimmerman, Steven; Jang, Sumin; Haggarty, Stephen J.; Kokel, David; Rubin, Lee L.; Peterson, Randall T.; Schier, Alexander F.
2010-01-01
A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multi-dimensional nature of observed phenotypes enabled the hierarchical clustering of molecules according to shared behaviors. Behavioral profiling revealed conserved functions of psychotropic molecules and predicted the mechanisms of action of poorly characterized compounds. In addition, behavioral profiling implicated new factors such as ether-a-go-go-related gene (ERG) potassium channels and immunomodulators in the control of rest and locomotor activity. These results demonstrate the power of high-throughput behavioral profiling in zebrafish to discover and characterize psychotropic drugs and to dissect the pharmacology of complex behaviors. PMID:20075256
Cross-taxa distinctions in aquatic toxicity between representative species for risk assessment
Standard ecological risk assessment practices often rely on larval and juvenile fish toxicity data as representative of the amphibian aquatic stage. Although empirical evidence suggests fish early life stage tests frequently are sufficiently sensitive to protect larval amphibian...
Morphological features to distinguish the larval stage of invasive Ruffe from native fish species
Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....
Rearing and Maintaining Midge Cultures (Chironomus tentans) for Laboratory Studies.
ERIC Educational Resources Information Center
Hein, John; Mahadeva, Madhu N.
1992-01-01
The life history of the Chironomus tentans can be observed in easily established and maintained laboratory cultures. Projects for the classroom include observing hydration of an egg mass; embryonic development, hatching and larval feeding; larval activity; and mating activity. (MDH)
Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...
Safely Enabling Low-Altitude Airspace Operations: Unmanned Aerial System Traffic Management (UTM)
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal
2015-01-01
Near-term Goal Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years Long-term Goal Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).
Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S. S.; Qian, Pei-Yuan
2012-01-01
The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process. PMID:23056329
Alderks, Peter W.; Sisneros, Joseph A.
2013-01-01
The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r2 = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or −15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140–150 dB re 1 µPa or −33 to −23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9–2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages. PMID:24340003
The scent of danger: arginine as an olfactory cue of reduced predation risk.
Ferrer, Ryan P; Zimmer, Richard K
2007-05-01
Animal perception of chemosensory cues is a function of ecological context. Larvae of the California newt (Taricha torosa), for example, exhibit predator-avoidance behavior in response to a chemical from cannibalistic adults. The poison tetrodotoxin (TTX), well known as an adult chemical defense, stimulates larval escape to refuges. Although they are cannibals, adult newts feed preferentially on worms (Eisenia rosea) over conspecific young. Hence, larval avoidance reactions to TTX are suppressed in the presence of odor from these alternative prey. The free amino acid, arginine, is abundant in fluids emitted by injured worms. Here, we demonstrate that arginine is a natural suppressant of TTX-stimulated larval escape behavior. Compared to a tapwater control, larvae initiated vigorous swimming in response to 10(-7) mol l(-1) TTX. This excitatory response was eliminated when larval nasal cavities were blocked with an inert gel, but not when gel was placed on the forehead (control). In additional trials, a binary mixture of arginine and 10(-7) mol l(-1) TTX failed to induce larval swimming. The inhibitory effect of arginine was, however, dose dependent. An arginine concentration as low as 0.3-times that of TTX was significantly suppressant. Further analysis showed that suppression by arginine of TTX-stimulated behavior was eliminated by altering the positively-charged guanidinium moiety, but not by modifying the carbon chain, carboxyl group, or amine group. These results are best explained by a mechanism of competitive inhibition between arginine and TTX for common, olfactory receptor binding sites. Although arginine alone has no impact on larval behavior, it nevertheless signals active adult predation on alternative prey, and hence, reduced cannibalism risk.
Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique
2012-01-01
Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225
NASA Astrophysics Data System (ADS)
Guadalupe Vázquez, M.; Bas, Claudia C.; Kittlein, Marcelo; Spivak, Eduardo D.
2015-05-01
The invasive shrimp Palaemon macrodactylus is associated mainly with brackish waters. Previous studies raised the question if tolerance to low salinities differs between larvae and adults. To answer this question, the combined effects of two temperatures (20 and 25 °C) and four salinities (5, 12, 23 and 34 psu) on survival and development of larvae that hatched at the beginning, in the midpoint and near the end of a reproductive season (denoted early, middle season and late larvae respectively) were examined. The three types of larvae were able to survive and reach juvenile phase at salinities between 12 and 34 psu and at both temperatures. At 5 psu all larvae died, but 45% molted at least once. Temperature and salinity to a lesser extent, had effects on the duration of development and on the number of larval stages in all larval types. Development was longer at the lower temperature, especially in middle season and late larvae. Most early larvae reached the juvenile phase through 5 larval stages; the number of larval stages of middle season and late larvae was higher at 20 °C and in late larvae also low salinity produced extra stages. Low salinity (12 psu) and, in early and middle season larvae, low temperature produced lighter and smaller individuals. Response of larvae to environmental factors seems to be related in part to the previous conditions (maternal effects and/or embryo development conditions). The narrower salinity tolerance of larvae compared to adults and the ability of zoea I to survive at least some days at 5 psu may be related with an export larval strategy.
Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A
2015-08-01
Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kung, Tiffany S.; Richardson, Jason R.; Cooper, Keith R.; White, Lori A.
2015-01-01
Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25–0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3–72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032
Slater, Garett P.; Rajamohan, Arun; Yocum, George D.; Greenlee, Kendra J.; Bowsher, Julia H.
2017-01-01
ABSTRACT In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient. PMID:28396492
Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement
He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan
2012-01-01
The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts. PMID:23115639
Lippai, Mónika; Csikós, György; Maróy, Péter; Lukácsovich, Tamás; Juhász, Gábor; Sass, Miklós
2008-05-01
In holometabolous insects including Drosophila melanogaster a wave of autophagy triggered by 20-hydroxyecdysone is observed in the larval tissues during the third larval stage of metamorphosis. We used this model system to study the genetic regulation of autophagy. We performed a genetic screen to select P-element insertions that affect autophagy in the larval fat body. Light and electron microscopy of one of the isolated mutants (l(3)S005042) revealed the absence of autophagic vesicles in their fat body cells during the third larval stage. We show that formation of autophagic vesicles cannot be induced by 20-hydroxyecdysone in the tissues of mutant flies and represent evidence demonstrating that the failure to form autophagic vesicles is due to the insertion of a P-element into the gene coding SNF4Agamma, the Drosophila homologue of the AMPK (AMP-activated protein kinase) gamma subunit. The ability to form autophagic vesicles (wild-type phenotype) can be restored by remobilization of the P-element in the mutant. Silencing of SNF4Agamma by RNAi suppresses autophagic vesicle formation in wild-type flies. We raised an antibody against SNF4Agamma and showed that this gene product is constitutively present in the wild-type larval tissues during postembryonal development. SNF4Agamma is nearly absent from the cells of homozygous mutants. SNF4Agamma translocates into the nuclei of fat body cells at the onset of the wandering stage concurrently with the beginning of the autophagic process. Our results demonstrate that SNF4Agamma has an essential role in the regulation of autophagy in Drosophila larval fat body cells.
Johnson, Wayne A.; Carder, Justin W.
2012-01-01
A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses. PMID:22403719
Kangassalo, Katariina; Valtonen, Terhi M; Sorvari, Jouni; Kecko, Sanita; Pölkki, Mari; Krams, Indrikis; Krama, Tatjana; Rantala, Markus J
2018-06-29
Organisms in the wild are likely to face multiple immune challenges as well as additional ecological stressors, yet their interactive effects on immune function are poorly understood. Insects are found to respond to cues of increased infection risk by enhancing their immune capacity. However, such adaptive plasticity in immune function may be limited by physiological and environmental constraints. Here, we investigated the effects of two environmental stressors - poor larval diet and an artificial parasite-like immune challenge at the pupal stage - on adult immune function, growth and development in the greater wax moth (Galleria mellonella). Males whose immune system was activated with an artificial parasite-like immune challenge had weaker immune response - measured as strength of encapsulation response - as adults compared to the control groups, but only when raised in high-nutrition larval diet. Immune activation did not negatively affect adult immune response in males reared in low-nutrition larval diet, indicating that poor larval diet improved the capacity of the insects to respond to repeated immune challenges. Low-nutrition larval diet also had a positive independent effect on immune capacity in females, yet it negatively affected development time and adult body mass in both sexes. As in the nature immune challenges are rarely isolated, and adverse nutritional environment may indicate an elevated risk of infection, resilience to repeated immune challenges as a response to poor nutritional environment could provide a significant fitness advantage. The present study highlights the importance of considering environmental context when investigating effects of immune activation in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Habitat use by larval fishes in a temperate South African surf zone
NASA Astrophysics Data System (ADS)
Watt-Pringle, Peter; Strydom, Nadine A.
2003-12-01
Larval fishes were sampled in the Kwaaihoek surf zone on the south east coast of South Africa. On six occasions between February and May 2002, larval fishes were collected in two habitat types identified in the inner surf zone using a modified beach-seine net. The surf zone habitats were classified as either sheltered trough areas or adjacent exposed surf areas. Temperature, depth and current measurements were taken at all sites. Trough habitats consisted of a depression in surf topography characterised by reduced current velocities and greater average depth than adjacent surf areas. In total, 325 larval fishes were collected. Of these, 229 were collected in trough and 96 in surf habitats. At least 22 families and 37 species were represented in the catch. Dominant families were the Mugilidae, Sparidae, Atherinidae, and Engraulidae. Dominant species included Liza tricuspidens and Liza richardsonii (Mugilidae), Rhabdosargus holubi and Sarpa salpa (Sparidae), Atherina breviceps (Atherinidae) and Engraulis japonicus (Engraulide). Mean CPUE of postflexion larvae of estuary-dependent species was significantly greater in trough areas. The proportion of postflexion larval fishes in trough habitat was significantly greater than that of preflexion stages, a result that was not apparent in surf habitat sampled. CPUE of postflexion larvae of estuary-dependent fishes was negatively correlated with current magnitude and positively correlated with habitat depth. Mean body length of larval fishes was significantly greater in trough than in surf habitats. These results provide evidence that the CPUE of postflexion larvae of estuary-dependent fishes is higher in trough habitat in the surf zone and this may be indicative of active habitat selection for areas of reduced current velocity/wave action. The implications of this behaviour for estuarine recruitment processes are discussed.
Burgess, E P J; Barraclough, E I; Kean, A M; Walter, C; Malone, L A
2011-10-01
To investigate the biosafety to insects of transgenic Pinus radiata D. Don containing the antibiotic resistance marker gene nptII and the reproductive control gene leafy, bioassays were conducted with an endemic lepidopteran pest of New Zealand plantation pine forests and a hymenopteran endoparasitoid. Larvae of the common forest looper, Pseudocoremia suavis (Butler), were fed from hatching on P. radiata needles from either one of two nptII-leafy transgenic clones, or an isogenic unmodified control line. For both unparasitized P. suavis and those parasitized by Meteorus pulchricornis (Wesmael), consuming transgenic versus control pine had no impact on larval growth rate or mass at any age, larval duration, survival, pupation or successful emergence as an adult. Total larval duration was 1 d (3%) longer in larvae fed nptII-2 than nptII-1, but this difference was considered trivial and neither differed from the control. In unparasitized P. suavis larvae, pine type consumed did not affect rate of pupation or adult emergence, pupal mass, or pupal duration. Pine type had no effect on the duration or survival of M. pulchricornis larval or pupal stages, mass of cocoons, stage at which they died, adult emergence, or fecundity. Parasitism by M. pulchricornis reduced P. suavis larval growth rate, increased the duration of the third larval stadium, and resulted in the death of all host larvae before pupation. The lack of impact of an exclusive diet of nptII-leafy transgenic pines on the life history of P. suavis and M. pulchricornis suggests that transgenic plantation pines expressing nptII are unlikely to affect insect populations in the field.
Amani, Hamid; Yaghoobi-Ershadi, Mohammad Reza; Kassiri, Hamid
2014-01-01
Objective To determine ecology and characteristics of the larval habitats of the genus Anopheles (Dipetra: Culicidae) in Aligudarz County, western Iran. Methods This descriptive cross-sectional research was carried out to study the anopheline larvae ecology in seven rural districts, Aligudarz County, from late April to late November 1997. Larvae were captured using the dipping method. Larval breeding places characteristics were noted according to water situation (turbid or clean, stagnant or running), substrate type, site type (man-made or natural), sunlight situation, site situation (transient or permanent, with or without vegetation). Results A total of 9 620 3rd and 4th instar larvae of Anopheles from 115 breeding places in 22 villages were captured, which belonged to the following species: Anopheles stephensi, Anopheles d'thali, Anopheles apoci, Anopheles superpictus (forms A and B), Anopheles marterii sogdianus, Anopheles turkhodi, Anopheles maculipennis S.L and Anopheles claviger. Anopheles stephensi, Anopheles maculipennis S.L and Anopheles apoci were collected for the first time in this county. Anopheles superpictus (93.18%) was the most prevailed one and dispersed over the entire region. Larval habitats consisted of nine natural and three artificial larval habitats. The most important larval habitats were river edges (54.8%), rice fields (12.2%), and grassland (8.7%) with permanent or transient, stagnant or running and clean water, with or without vegetation, sand or mud substrate in full sunlight area. Conclusions Regarding this research, river edges and rice fields are the most important breeding places of malaria vectors in Aligudarz County. It is worthy of note in larvicidal programs. PMID:25183088
2012-01-01
Background In the fruit fly, Drosophila melanogaster, serotonin functions both as a neurotransmitter to regulate larval feeding, and in the development of the stomatogastric feeding circuit. There is an inverse relationship between neuronal serotonin levels during late embryogenesis and the complexity of the serotonergic fibers projecting from the larval brain to the foregut, which correlate with perturbations in feeding, the functional output of the circuit. Dopamine does not modulate larval feeding, and dopaminergic fibers do not innervate the larval foregut. Since dopamine can function in central nervous system development, separate from its role as a neurotransmitter, the role of neuronal dopamine was assessed on the development, and mature function, of the 5-HT larval feeding circuit. Results Both decreased and increased neuronal dopamine levels in late embryogenesis during development of this circuit result in depressed levels of larval feeding. Perturbations in neuronal dopamine during this developmental period also result in greater branch complexity of the serotonergic fibers innervating the gut, as well as increased size and number of the serotonin-containing vesicles along the neurite length. This neurotrophic action for dopamine is modulated by the D2 dopamine receptor expressed during late embryogenesis in central 5-HT neurons. Animals carrying transgenic RNAi constructs to knock down both dopamine and serotonin synthesis in the central nervous system display normal feeding and fiber architecture. However, disparate levels of neuronal dopamine and serotonin during development of the circuit result in abnormal gut fiber architecture and feeding behavior. Conclusions These results suggest that dopamine can exert a direct trophic influence on the development of a specific neural circuit, and that dopamine and serotonin may interact with each other to generate the neural architecture necessary for normal function of the circuit. PMID:22413901
Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo
Ohno, Yoshikazu; Otaki, Joji M.
2015-01-01
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings. PMID:26107809
Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo.
Ohno, Yoshikazu; Otaki, Joji M
2015-01-01
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.
The safety of 17a-methyltestosterone administered in feed to larval Nile tilapia
USDA-ARS?s Scientific Manuscript database
Techniques developed to control sexual differentiation in fishes have typically involved androgen or estrogen (i.e., steroid) treatment, which directs sexual differentiation toward males or females. Treatment regimens have included immersion of larval fish in water containing a steroid, incorporati...