Sample records for enable selective permeation

  1. Phase Change Permeation Technology For Environmental Control Life Support Systems

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  2. The artificial membrane insert system as predictive tool for formulation performance evaluation.

    PubMed

    Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick

    2018-02-15

    In view of the increasing interest of pharmaceutical companies for cell- and tissue-free models to implement permeation into formulation testing, this study explored the capability of an artificial membrane insert system (AMI-system) as predictive tool to evaluate the performance of absorption-enabling formulations. Firstly, to explore the usefulness of the AMI-system in supersaturation assessment, permeation was monitored after induction of different degrees of loviride supersaturation. Secondly, to explore the usefulness of the AMI-system in formulation evaluation, a two-stage dissolution test was performed prior to permeation assessment. Different case examples were selected based on the availability of in vivo (intraluminal and systemic) data: (i) a suspension of posaconazole (Noxafil ® ), (ii) a cyclodextrin-based formulation of itraconazole (Sporanox ® ), and (iii) a micronized (Lipanthyl ® ) and nanosized (Lipanthylnano ® ) formulation of fenofibrate. The obtained results demonstrate that the AMI-system is able to capture the impact of loviride supersaturation on permeation. Furthermore, the AMI-system correctly predicted the effects of (i) formulation pH on posaconazole absorption, (ii) dilution on cyclodextrin-based itraconazole absorption, and (iii) food intake on fenofibrate absorption. Based on the applied in vivo/in vitro approach, the AMI-system combined with simple dissolution testing appears to be a time- and cost-effective tool for the early-stage evaluation of absorption-enabling formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Four-port gas separation membrane module assembly

    DOEpatents

    Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen

    2010-07-20

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  4. Rubidium extraction from seawater brine by an integrated membrane distillation-selective sorption system.

    PubMed

    Naidu, Gayathri; Jeong, Sanghyun; Johir, Md Abu Hasan; Fane, Anthony G; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2017-10-15

    The ultimate goal of seawater reverse osmosis (SWRO) brine management is to achieve minimal liquid discharge while recovering valuable resources. The suitability of an integrated system of membrane distillation (MD) with sorption for the recovery of rubidium (Rb + ) and simultaneous SWRO brine volume reduction has been evaluated for the first time. Polymer encapsulated potassium copper hexacyanoferrate (KCuFC(PAN)) sorbent exhibited a good selectivity for Rb + sorption with 10-15% increment at 55 °C (Langmuir Q max  = 125.11 ± 0.20 mg/g) compared to at 25 °C (Langmuir Q max  = 108.71 ± 0.20 mg/g). The integrated MD-KCuFC(PAN) system with periodic membrane cleaning, enabled concentration of SWRO brine to a volume concentration factor (VCF) of 2.9 (65% water recovery). A stable MD permeate flux was achieved with good quality permeate (conductivity of 15-20 μS/cm). Repeated cycles of MD-KCuFC(PAN) sorption with SWRO brine enabled the extraction of 2.26 mg Rb + from 12 L of brine (equivalent to 1.9 kg of Rb/day, or 0.7 tonne/yr from a plant producing 10,000 m 3 /day brine). KCuFC(PAN) showed a high regeneration and reuse capacity. NH 4 Cl air stripping followed by resorcinol formaldehyde (RF) resin filtration enabled to recover Rb + from the desorbed solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Carbon dioxide separation with a two-dimensional polymer membrane.

    PubMed

    Schrier, Joshua

    2012-07-25

    Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. The CO2 permeance is 3 × 10(5) gas permeation units (GPU). The CO2/N2 selectivity is 60, and the CO2/CH4 selectivity exceeds 500. The combination of high CO2 permeance and selectivity surpasses all known materials, enabling low-cost postcombustion CO2 capture, utilization of landfill gas, and horticulture applications.

  6. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.

    PubMed

    Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Micoli, Giuseppina; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2017-06-02

    Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation. We metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively. To our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.

  7. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation.

    PubMed

    Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang

    2014-05-01

    The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.

  8. Kainate receptor pore‐forming and auxiliary subunits regulate channel block by a novel mechanism

    PubMed Central

    Brown, Patricia M. G. E.; Aurousseau, Mark R. P.; Musgaard, Maria; Biggin, Philip C.

    2016-01-01

    Key points Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion‐channel block by facilitating blocker permeation.Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α‐helical region.Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism.Our findings have broad implications for work on polyamine block of other cation‐selective ion channels. Abstract Channel block and permeation by cytoplasmic polyamines is a common feature of many cation‐selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α‐helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation‐selective ion channels. PMID:26682513

  9. Evaluation of γ-cyclodextrin effect on permeation of lipophilic drugs: application of cellophane/fused octanol membrane.

    PubMed

    Muankaew, Chutimon; Jansook, Phatsawee; Loftsson, Thorsteinn

    2017-06-01

    According to the Biopharmaceutics Classification System, oral bioavailability of drugs is determined by their aqueous solubility and the ability of the dissolved drug molecules to permeate lipophilic biological membranes. Similarly topical bioavailability of ophthalmic drugs is determined by their solubility in the aqueous tear fluid and their ability to permeate the lipophilic cornea. Enabling pharmaceutical excipients such as cyclodextrins can have profound effect on the drug bioavailability. However, to fully appreciate such enabling excipients, the relationship between their effects and the physicochemical properties of the permeating drug needs to be known. In this study, the permeation enhancing effect of γ-cyclodextrin (γCD) on saturated drug solutions containing hydrocortisone (HC), irbesartan (IBS), or telmisartan (TEL) was evaluated using cellophane and fused cellulose-octanol membranes in a conventional Franz diffusion cell system. The flux (J), the flux ratio (J R ) and the apparent permeability coefficients (P app ) demonstrate that γCD increases drug permeability. However, its efficacy depends on the drug properties. Addition of γCD increased P app of HC (unionized) and IBS (partially ionized) through the dual membrane but decreased the P app of TEL (fully ionized) that displays low complexation efficacy. The dual cellophane-octanol membrane system was simple to use and gave reproducible results.

  10. Gas Permeation in Thin Glassy Polymer Films

    NASA Astrophysics Data System (ADS)

    Paul, Donald

    2011-03-01

    The development of asymmetric and composite membranes with very thin dense ``skins'' needed to achieve high gas fluxes enabled the commercial use of membranes for molecular level separations. It has been generally assumed that these thin skins, with thicknesses of the order of 100 nm, have the same permeation characteristics as films with thicknesses of 25 microns or more. Thick films are easily made in the laboratory and have been used extensively for measuring permeation characteristics to evaluate the potential of new polymers for membrane applications. There is now evidence that this assumption can be in very significant error, and use of thick film data to select membrane materials or predict performance should be done with caution. This presentation will summarize our work on preparing films of glassy polymers as thin as 20 nm and characterizing their behavior by gas permeation, ellipsometry and positron annihilation lifetime spectroscopy. Some of the most important polymers used commercially as gas separation membranes, i.e., Matrimid polyimide, polysulfone (PSF) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), have been made into well-defined thin films in our laboratories by spin casting techniques and their properties studied using the techniques we have developed. These thin films densify (or physically age) much faster than thicker films, and, as result, the permeability decreases, sometimes by several-fold over weeks or months for thin films. This means that the properties of these thin films can be very different from bulk films. The techniques, interpretations and implications of these observations will be discussed. In a broader sense, gas permeation measurements can be a powerful way of developing a better understanding of the effects of polymer chain confinement and/or surface mobility on the behavior of thin films.

  11. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Lin, Haiqing [Mountain View, CA; Thompson, Scott [Brecksville, OH; Daniels, Ramin [San Jose, CA

    2012-03-06

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  12. Conformational plasticity in the selectivity filter of the TRPV2 ion channel.

    PubMed

    Zubcevic, Lejla; Le, Son; Yang, Huanghe; Lee, Seok-Yong

    2018-05-01

    Transient receptor potential vanilloid (TRPV) channels are activated by ligands and heat and are involved in various physiological processes. In contrast to the architecturally related voltage-gated cation channels, TRPV1 and TRPV2 subtypes possess another activation gate at the selectivity filter that can open widely enough to permeate large organic cations. Despite recent structural advances, the mechanism of selectivity filter gating and permeation for both metal ions and large molecules by TRPV1 or TRPV2 is not well known. Here, we determined two crystal structures of rabbit TRPV2 in its Ca 2+ -bound and resiniferatoxin (RTx)- and Ca 2+ -bound forms, to 3.9 Å and 3.1 Å, respectively. Notably, our structures show that RTx binding leads to two-fold symmetric opening of the selectivity filter of TRPV2 that is wide enough for large organic cation permeation. Combined with functional characterizations, our studies reveal a structural basis for permeation of Ca 2+ and large organic cations in TRPV2.

  13. Urea-Aromatic Stacking and Concerted Urea Transport: Conserved Mechanisms in Urea Transporters Revealed by Molecular Dynamics.

    PubMed

    Padhi, Siladitya; Priyakumar, U Deva

    2016-10-11

    Urea transporters are membrane proteins that selectively allow urea molecules to pass through. It is not clear how these transporters allow rapid conduction of urea, a polar molecule, in spite of the presence of a hydrophobic constriction lined by aromatic rings. The current study elucidates the mechanism that is responsible for this rapid conduction by performing free energy calculations on the transporter dvUT with a cumulative sampling time of about 1.3 μs. A parallel arrangement of aromatic rings in the pore enables stacking of urea with these rings, which, in turn, lowers the energy barrier for urea transport. Such interaction of the rings with urea is proposed to be a conserved mechanism across all urea-conducting proteins. The free energy landscape for the permeation of multiple urea molecules reveals an interplay between interurea interaction and the solvation state of the urea molecules. This is for the first time that multiple molecule permeation through any small molecule transporter has been modeled.

  14. Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF

    NASA Astrophysics Data System (ADS)

    de Groot, Bert L.; Grubmüller, Helmut

    2001-12-01

    ``Real time'' molecular dynamics simulations of water permeation through human aquaporin-1 (AQP1) and the bacterial glycerol facilitator GlpF are presented. We obtained time-resolved, atomic-resolution models of the permeation mechanism across these highly selective membrane channels. Both proteins act as two-stage filters: Conserved fingerprint [asparagine-proline-alanine (NPA)] motifs form a selectivity-determining region; a second (aromatic/arginine) region is proposed to function as a proton filter. Hydrophobic regions near the NPA motifs are rate-limiting water barriers. In AQP1, a fine-tuned water dipole rotation during passage is essential for water selectivity. In GlpF, a glycerol-mediated ``induced fit'' gating motion is proposed to generate selectivity for glycerol over water.

  15. Operation of mixed conducting metal oxide membrane systems under transient conditions

    DOEpatents

    Carolan, Michael Francis [Allentown, PA

    2008-12-23

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

  16. α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels

    PubMed Central

    Li, Peiyao; Miao, Yong; Dani, Adish; Vig, Monika

    2016-01-01

    Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP–deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP–depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1. PMID:27335124

  17. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    DOE PAGES

    Engtrakul, Dr. Chaiwat; Hu, Michael Z.; Bischoff, Brian L; ...

    2016-01-01

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach utilized high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over 1-ring upgraded biomass pyrolysis hydrocarbons was observed due to amore » surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations suggesting that water can be selectively removed from the CFP product vapors.« less

  18. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.

    2016-10-20

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a resultmore » of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.« less

  19. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    PubMed

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (P<0.05). DF gel without dendrimer and ultrasound treatment to skin (passive delivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  20. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies.

    PubMed

    Elnaggar, Yosra Sr; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.

  1. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    PubMed Central

    Elnaggar, Yosra SR; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    2016-01-01

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. PMID:27822033

  2. Divalent ions are potential permeating blockers of the non-selective NaK ion channel: combined QM and MD based investigations.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2017-10-18

    The bacterial NaK ion channel is distinctly different from other known ion channels due to its inherent non-selective feature. One of the unexplored and rather interesting features is its ability to permeate divalent metal ions (such as Ca 2+ and Ba 2+ ) and not monovalent alkali metal ions. Several intriguing questions about the energetics and structural aspects still remain unanswered. For instance, what causes Ca 2+ to permeate as well as block the selectivity filter (SF) of the NaK ion channel and act as a "permeating blocker"? How and at what energetic cost does another chemical congener, Sr 2+ , as well as Ba 2+ , a potent blocker of the K + ion channel, permeate through the SF of the NaK ion channel? Finally, how do their translocation energetics differ from those of monovalent ions such as K + ? Here, in an attempt to address these outstanding issues, we elucidate the structure, binding and selectivity of divalent ions (Ca 2+ , Sr 2+ and Ba 2+ ) as they permeate through the SF of the NaK ion channel using all-atom molecular dynamics simulations and density functional theory based calculations. We unveil mechanistic insight into this translocation event using well-tempered metadynamics simulations in a polarizable environment using the mean-field model of water and incorporating electronic continuum corrections for ions via charge rescaling. The results show that, akin to K + coordination, Sr 2+ and Ba 2+ bind at the SF in a very similar fashion and remain octa-coordinated at all sites. Interestingly, differing from its local hydration structure, Ca 2+ interacts with eight carbonyls to remain at the middle of the S3 site. Furthermore, the binding of divalent metals at SF binding sites is more favorable than the binding of K + . However, their permeation through the extracellular entrance faces a considerably higher energetic barrier compared to that for K + , which eventually manifests their inherent blocking feature.

  3. Enhanced transdermal delivery of ondansetron using nanovesicular systems: Fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example.

    PubMed

    Habib, Basant A; Sayed, Sinar; Elsayed, Ghada M

    2018-03-30

    This study aimed to formulate suitable nanovesicles (NVs) for transdermal delivery of Ondansetron. It also illustrated a practical example for the importance of Box-Cox transformation. A 2 3 full factorial design was used to enable testing transfersomes, ethosomes, and transethosomes of Ondansetron simultaneously. The independent variables (IVs) studied were sodium taurocholate amount, ethanol volume in hydration medium and sonication time. The studied dependent variables (DVs) were: particle size (PS), zeta potential (ZP) and entrapment efficiency (EE). Polynomial equations were used to study the influence of IVs on each DV. Numerical multiple response optimization was applied to select an optimized formula (OF) with the goals of minimizing PS and maximizing ZP absolute value and EE. Box-Cox transformation was adopted to enable modeling PS raised to the power of 1.2 with an excellent prediction R 2 of 1.000. ZP and EE were adequately represented directly with prediction R 2 of 0.9549 and 0.9892 respectively. Response surface plots helped in explaining the influence of IVs on each DV. Two-sided 95% prediction interval test and percent deviation of actual values from predicted ones proved the validity of the elucidated models. The OF was a transfersomal formula with desirability of 0.866 and showed promising results in ex-vivo permeation study. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition

    PubMed Central

    Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew

    2015-01-01

    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications. PMID:26100977

  5. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    PubMed Central

    Kumar, Amit; Li, Xinran; Sandoval, Michael A; Rodriguez, B Leticia; Sloat, Brian R; Cui, Zhengrong

    2011-01-01

    Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection. PMID:21753877

  6. Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter.

    PubMed

    Bozzi, Aaron T; Bane, Lukas B; Weihofen, Wilhelm A; Singharoy, Abhishek; Guillen, Eduardo R; Ploegh, Hidde L; Schulten, Klaus; Gaudet, Rachelle

    2016-12-06

    The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimization of the Ussing chamber setup with excised rat intestinal segments for dissolution/permeation experiments of poorly soluble drugs.

    PubMed

    Forner, Kristin; Roos, Carl; Dahlgren, David; Kesisoglou, Filippos; Konerding, Moritz A; Mazur, Johanna; Lennernäs, Hans; Langguth, Peter

    2017-02-01

    Prediction of the in vivo absorption of poorly soluble drugs may require simultaneous dissolution/permeation experiments. In vivo predictive media have been modified for permeation experiments with Caco-2 cells, but not for excised rat intestinal segments. The present study aimed at improving the setup of dissolution/permeation experiments with excised rat intestinal segments by assessing suitable donor and receiver media. The regional compatibility of rat intestine in Ussing chambers with modified Fasted and Fed State Simulated Intestinal Fluids (Fa/FeSSIF mod ) as donor media was evaluated via several parameters that reflect the viability of the excised intestinal segments. Receiver media that establish sink conditions were investigated for their foaming potential and toxicity. Dissolution/permeation experiments with the optimized conditions were then tested for two particle sizes of the BCS class II drug aprepitant. Fa/FeSSIF mod were toxic for excised rat ileal sheets but not duodenal sheets, the compatibility with jejunal segments depended on the bile salt concentration. A non-foaming receiver medium containing bovine serum albumin (BSA) and Antifoam B was nontoxic. With these conditions, the permeation of nanosized aprepitant was higher than of the unmilled drug formulations. The compatibility of Fa/FeSSIF mod depends on the excised intestinal region. The chosen conditions enable dissolution/permeation experiments with excised rat duodenal segments. The experiments correctly predicted the superior permeation of nanosized over unmilled aprepitant that is observed in vivo. The optimized setup uses FaSSIF mod as donor medium, excised rat duodenal sheets as permeation membrane and a receiver medium containing BSA and Antifoam B.

  8. Pervaporation study for the dehydration of tetrahydrofuran-water mixtures by polymeric and ceramic membranes.

    PubMed

    McGinness, Colleen A; Slater, C Stewart; Savelski, Mariano J

    2008-12-01

    Pervaporation technology can effectively separate a tetrahydrofuran (THF) solvent-water waste stream at an azeotropic concentration. The performance of a Sulzer 2210 polyvinyl alcohol (PVA) membrane and a Pervatech BV silica membrane were studied, as the operating variables feed temperature and permeate pressure, were varied. The silica membrane was found to exhibit a flux of almost double that of the PVA membrane, but both membranes had comparable separation ability in purifying the solvent-water mixture. At benchmark feed conditions of 96 wt% THF and 4 wt% water, 50 degrees C and 10 torr permeate pressure, the silica membrane flux was 0.276 kg/m(2)hr and selectivity was 365. For both membranes, flux was found to increase at an exponential rate as the feed temperature increased from 20 to 60 degrees C. The flux through the silica membrane increases at a 6% faster rate than the PVA membrane. Flux decreased as permeate pressure was increased from 5 to 25 torr for both membranes. The amount of water in the permeate decreased exponentially as the permeate pressure was increased, but increased linearly with increasing temperature. Optimum conditions for flux and selectivity are at low permeate pressure and high feed temperature. When a small amount of salt is added to the feed solution, an increase in flux is observed. Overall models for flux and permeate concentration were created from the experimental data. The models were used to predict scale-up performance in separating an azeotropic feed waste to produce dehydrated THF solvent for reuse and a permeate stream with a dilute THF concentration.

  9. NOVEL CERAMIC-ORGANIC VAPOR PERMEATION MEMBRANES FOR VOC REMOVAL - PHASE II

    EPA Science Inventory

    Vapor permeation with highly permeable and organic-selective membranes is becoming an increasingly popular technique for preventing VOC emissions that are generated by a variety of stationary sources, including solvent and surface coating operations, gasoline storage operat...

  10. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    EPA Science Inventory

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

  11. Selective Permeation and Organic Extraction of Recombinant Green Fluorescent Protein (gfpuv) from Escherichia coli

    PubMed Central

    2002-01-01

    Background Transformed cells of Escherichia coli DH5-α with pGFPuv, induced by IPTG (isopropyl-β-d-thiogalactopyranoside), express the green fluorescent protein (gfpuv) during growth phases. E. coli subjected to the combination of selective permeation by freezing/thawing/sonication cycles followed by the three-phase partitioning extraction (TPP) method were compared to the direct application of TPP to the same culture of E. coli on releasing gfpuv from the over-expressing cells. Material and Methods Cultures (37°C/100 rpm/ 24 h; μ = 0.99 h-1 - 1.10 h-1) of transformed (pGFP) Escherichia coli DH5-α, expressing the green fluorescent protein (gfpuv, absorbance at 394 nm and emission at 509 nm) were sonicated in successive intervals of sonication (25 vibrations/pulse) to determine the maximum amount of gfpuv released from the cells. For selective permeation, the transformed previously frozen (-75°C) cells were subjected to three freeze/thaw (-20°C/ 0.83°C/min) cycles interlaid by sonication (3 pulses/ 6 seconds/ 25 vibrations). The intracellular permeate with gfpuv in extraction buffer (TE) solution (25 mM Tris-HCl, pH 8.0, 1 mM β-mercaptoethanol β-ME, 0.1 mM PMSF) was subjected to the three-phase partitioning (TPP) method with t-butanol and 1.6 M ammonium sulfate. Sonication efficiency was verified on the application to the cells previously treated by the TPP method. The intra-cell releases were mixed and eluted through methyl HIC column with a buffer solution (10 mM Tris-HCl, 10 mM EDTA, pH 8.0). Results The sonication maximum released amount obtained from the cells was 327.67 μg gfpuv/mL (20.73 μg gfpuv/mg total proteins – BSA), after 9 min of treatment. Through the selective permeation by three repeated freezing/thawing/sonication cycles applied to the cells, a close content of 241.19 μg gfpuv/mL (29.74 μg gfpuv/mg BSA) was obtained. The specific mass range of gfpuv released from the same cultures, by the three-phase partitioning (TPP) method, in relation to total proteins, was higher, between 107.28 μg/mg and 135.10 μg/mg. Conclusions The selective permeation of gfpuv by freezing/thawing/sonication followed by TPP separation method was equivalent to the amount of gfpuv extracted from the cells directly by TPP; although selective permeation extracts showed better elution through the HIC column. PMID:11972900

  12. Pervaporation and Vapor Permeation Tutorial: Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...

  13. Pervaporation & Vapor Permeation Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes which have been proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from dilute fermentation broths, solvent/biofu...

  14. Liquid membrane purification of biogas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumdar, S.; Guha, A.K.; Lee, Y.T.

    1991-03-01

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomingsmore » of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.« less

  15. Simulation of controllable permeation in PNIPAAm coated membranes

    NASA Astrophysics Data System (ADS)

    Ehrenhofer, Adrian; Wallmersperger, Thomas; Richter, Andreas

    2016-04-01

    Membranes separate fluid compartments and can comprise transport structures for selective permeation. In biology, channel proteins are specialized in their atomic structure to allow transport of specific compounds (selectivity). Conformational changes in protein structure allow the control of the permeation abilities by outer stimuli (gating). In polymeric membranes, the selectivity is due to electrostatic or size-exclusion. It can thus be controlled by size variation or electric charges. Controllable permeation can be useful to determine particle-size distributions in continuous flow, e.g. in microfluidics and biomedicine to gain cell diameter profiles in blood. The present approach uses patterned polyethylene terephthalate (PET) membranes with hydrogel surface coating for permeation control by size-exclusion. The thermosensitive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) is structured with a cross-shaped pore geometry. A change in the temperature of the water flow through the membrane leads to a pore shape variation. The temperature dependent behavior of PNIPAAm can be numerically modeled with a temperature expansion model, where the swelling and deswelling is depicted by temperature dependent expansion coefficients. In the present study, the free swelling behavior was implemented to the Finite Element tool ABAQUS for the complex composite structure of the permeation control membrane. Experimental values of the geometry characteristics were derived from microscopy images with the tool Image J and compared to simulation results. Numerical simulations using the derived thermo-mechanical model for different pore geometries (circular, rectangle, cross and triangle) were performed. With this study, we show that the temperature expansion model with values from the free swelling behavior can be used to adequately predict the deformation behavior of the complex membrane system. The predictions can be used to optimize the behavior of the membrane pores and the overall performance of the smart membrane.

  16. Resistance of gloves and protective clothing materials to permeation of cytostatic solutions.

    PubMed

    Krzemińska, Sylwia; Pośniak, Małgorzata; Szewczyńska, Małgorzata

    2018-01-15

    The objective of the work was to determine the resistance of selected protective clothing and glove materials to permeation of cytostatics such as docetaxel, fluorouracil, and doxorubicin. The following glove materials were used: natural rubber latex (code A), acrylonitrile-butadiene rubber (code B) and chloroprene rubber (code C). In addition, we tested a layered material composed of a non-woven polyester (PES), a polypropylene (PP) film, and a non-woven PP used for protective coats (code D). The cytostatics were analyzed by liquid chromatography with diode array detection. The tested samples were placed in a purpose-built permeation cell modified to be different from that specified in the standard EN 6529:2001. The tested materials were characterized by good resistance to solutions containing 2 out of the 3 selected cytostatics: doxorubicin and 5-fluorouracil, as indicated by a breakthrough time of over 480 min. Equally high resistance to permeation of the third cytostatic (docetaxel) was exhibited by natural rubber latex, acrylonitrile-butadiene rubber, and chloroprene rubber. However, docetaxel permeated much more readily through the clothing layered material, compromising its barrier properties. It was found that the presence of additional components in cytostatic preparations accelerated permeation through material samples, thus deteriorating their barrier properties. Int J Occup Med Environ Health 2018;31(3):341-350. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  18. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    PubMed

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels.

    PubMed

    Li, Peiyao; Miao, Yong; Dani, Adish; Vig, Monika

    2016-08-15

    Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP-deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP-depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1. © 2016 Li, Miao, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    He, Zhou; Wang, Kean

    2018-03-01

    In this study, we proposed and validated a novel and non-destructive experimental technology for measuring the permeation of binary gas mixture in nanoporous membranes. The traditional time lag rig was modified to examine the permeation characteristics of each gas component as well as that of the binary gas mixtures. The difference in boiling points of each species were explored. Binary gas mixtures of CO2/He were permeated through the nanoporous carbon molecular sieve membrane (CMSM). The results showed that, due to the strong interaction among different molecules and with the porous network of the membrane, the measured perm-selectivity or ‘true selectivity’ of a binary mixture can significantly deviate from the ‘ideal selectivity’ calculated form the permeation flux of each pure species, and this deviation is a complicated function of the molecular properties and operation conditions.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Cao; X Jin; H Huang

    The TrkH/TrkG/KtrB proteins mediate K{sup +} uptake in bacteria and probably evolved from simple K{sup +} channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K{sup +} channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K{sup +} and Rb{sup +} over smaller ions such as Na{sup +} or Li{sup +}. Immediately intracellular to the selectivitymore » filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K{sup +} flux. These results reveal the molecular basis of K{sup +} selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.« less

  2. Systems, compositions, and methods for fluid purification

    DOEpatents

    Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik

    2015-12-22

    Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.

  3. An overview on tritium permeation barrier development for WCLL blanket concept

    NASA Astrophysics Data System (ADS)

    Aiello, A.; Ciampichetti, A.; Benamati, G.

    2004-08-01

    The reduction of tritium permeation through blanket structural materials and cooling tubes has to be carefully evaluated to minimise radiological hazards. A strong effort has been made in the past to select the best technological solution for the realisation of tritium permeation barriers (TPB) on complex structures not directly accessible after the completion of the manufacturing process. The best solution was identified in aluminium rich coatings, which form Al 2O 3 at their surface. Two technologies were selected as reference for the realisation of coating in the WCLL blanket concept: the chemical vapour deposition (CVD) process developed on laboratory scale by CEA, and the hot dipping (HD) process developed by FZK. The results obtained during three years of tests on CVD and HD coated specimens in gas and liquid metal phase are summarised and discussed.

  4. UV-curable gels as topical nail medicines:In vivo residence, anti-fungal efficacy and influence of gel components on their properties.

    PubMed

    Kerai, L V; Hilton, S; Maugueret, M; Kazi, B B; Faull, J; Bhakta, S; Murdan, S

    2016-11-30

    UV-curable gels, used as nail cosmetics for their in vivo durability, were reported to be promising as topical nail medicines. Our first aim was thus to investigate whether such durability applies to drug-loaded formulations. This was found to be true. However, ethanol inclusion in the pharmaceutical formulation (to enable drug loading) reduced the in vivo residence. The second aim was therefore to determine any other effects of ethanol, and if ethanol could be avoided by the choice of monomers. Thus, three methacrylate monomers, ethyl methacrylate, isobornyl methacrylate and 2-hydroxyethyl methacrylate (HEMA) were selected, and their influence on the formulation properties were determined. Ethanol and the methacrylate monomer influenced some (but not all) of the formulation properties. The most significant was that HEMA could dissolve drug and enable the preparation of ethanol-free, drug-loaded formulations, which would benefit in vivo residence. The absence of ethanol reduced drug loading, release and ungual flux, but had no negative impact on the in vitro anti-fungal efficacy. Thus, judicious selection of gel components enabled the exclusion of ethanol. The long in vivo residence, little residual monomers, sufficient ungual permeation and in vitro anti-fungal activity of the gels indicates their potential as anti-onychomycotic topical medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters

    PubMed Central

    Cheng, Mary Hongying; Torres-Salazar, Delany; Gonzalez-Suarez, Aneysis D; Amara, Susan G; Bahar, Ivet

    2017-01-01

    Advances in structure-function analyses and computational biology have enabled a deeper understanding of how excitatory amino acid transporters (EAATs) mediate chloride permeation and substrate transport. However, the mechanism of structural coupling between these functions remains to be established. Using a combination of molecular modeling, substituted cysteine accessibility, electrophysiology and glutamate uptake assays, we identified a chloride-channeling conformer, iChS, transiently accessible as EAAT1 reconfigures from substrate/ion-loaded into a substrate-releasing conformer. Opening of the anion permeation path in this iChS is controlled by the elevator-like movement of the substrate-binding core, along with its wall that simultaneously lines the anion permeation path (global); and repacking of a cluster of hydrophobic residues near the extracellular vestibule (local). Moreover, our results demonstrate that stabilization of iChS by chemical modifications favors anion channeling at the expense of substrate transport, suggesting a mutually exclusive regulation mediated by the movement of the flexible wall lining the two regions. DOI: http://dx.doi.org/10.7554/eLife.25850.001 PMID:28569666

  6. Transdermal permeation of trimetazidine from nerodilol-based HPMC gel drug reservoir system across rat epidermis.

    PubMed

    Krishnaiah, Yellela S; Al-Saidan, Saleh M

    2008-01-01

    To study the in vitro transdermal permeation of trimetazidine from hydroxypropylmethyl cellulose (HPMC) gel drug reservoir system using nerodilol as a penetration enhancer. An HPMC gel containing selected concentrations of nerodilol (0, 2, 4 or 5% w/v) and 2.5% w/v of trimetazidine was prepared, and subjected to in vitro permeation studies across rat epidermis. The amount of trimetazidine permeated at different time intervals (1, 2, 4, 8, 12, 18 and 24 h) was estimated, and the data were analyzed to calculate various permeation parameters. There was an increase in the amount of trimetazidine (8,719.7 +/- 153.3 microg/cm(2))permeated across the rat epidermis up to 24 h (Q(24)) with an increase in nerodilol concentration (5% w/v) in HPMC gel drug reservoir. However, no significant difference (p > 0.05) was observed in the amount of drug permeated (Q(24)) with 5% w/v of nerodilol when compared to that obtained with 4% w/v of nerodilol (8,484.5 +/- 165.8 microg/cm(2)). Nerodilol, at a concentration of 4% w/v enhanced the flux of trimetazidine across rat epidermis by about 1.96 times when compared to control. The HPMC gel drug reservoir containing 4% w/v of nerodilol showed optimal transdermal permeation of trimetazidine. (c) 2007 S. Karger AG, Basel.

  7. Separation of organic azeotropic mixtures by pervaporation. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simplemore » distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center_dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.« less

  8. Separation of organic azeotropic mixtures by pervaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simplemore » distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.« less

  9. Phenylated polyimides prepared from 3,6-diarylpyromellitic dianhydride and aromatic diamines

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1992-01-01

    A new class of soluble phenylated polyimides made from 3,6-diarypyromellitic dianhydride and process for the manufacture of the 3,6-diarypyromellitic dianhydride starting material. The polyimides obtained with said dianhydride are readily soluble in appropriate organic solvents and are distinguished by excellent thermal, electrical and/or mechanical properties making the polyimides ideally suited as coating materials for microelectronic apparatii, as membranes for selective molecular separation or permeation or selective gas separation or permeation, or as reinforcing fibers in molecular composites, or as high modulus, high tensile strength fibers.

  10. Lysine-based surfactants as chemical permeation enhancers for dermal delivery of local anesthetics.

    PubMed

    Teixeira, Raquel S; Cova, Tânia F G G; Silva, Sérgio M C; Oliveira, Rita; Araújo, Maria J; Marques, Eduardo F; Pais, Alberto A C C; Veiga, Francisco J B

    2014-10-20

    The aim of this study is to investigate the efficacy of new, biocompatible, lysine-based surfactants as chemical permeation enhancers for two different local anesthetics, tetracaine and ropivacaine hydrochloride, topically administered. Results show that this class of surfactants strongly influences permeation, especially in the case of the hydrophilic and ionized drug, ropivacaine hydrochloride, that is not easily administered through the stratum corneum. It is also seen that the selected permeation enhancers do not have significant deleterious effects on the skin structure. A cytotoxicity profile for each compound was established from cytotoxicity studies. Molecular dynamics simulation results provided a rationale for the experimental observations, introducing a mechanistic view of the action of the surfactants molecules upon lipid membranes. Copyright © 2014. Published by Elsevier B.V.

  11. Selectivity trend of gas separation through nanoporous graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hongjun; Chen, Zhongfang; Dai, Sheng

    2015-04-15

    By means of molecular dynamics (MD) simulations, we demonstrate that porous graphene can efficiently separate gases according to their molecular sizes. The flux sequence from the classical MD simulation is H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4}, which generally follows the trend in the kinetic diameters. This trend is also confirmed from the fluxes based on the computed free energy barriers for gas permeation using the umbrella sampling method and kinetic theory of gases. Both brute-force MD simulations and free-energy calcualtions lead to the flux trend consistent with experiments. Case studies of two compositions of CO{sub 2}/N{sub 2} mixtures further demonstrate themore » separation capability of nanoporous graphene. - Graphical abstract: Classical molecular dynamics simulations show the flux trend of H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4} for their permeation through a porous graphene, in excellent agreement with a recent experiment. - Highlights: • Classical MD simulations show the flux trend of H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4} for their permeation through a porous graphene. • Free energy calculations yield permeation barriers for those gases. • Selectivities for several gas pairs are estimated from the free-energy barriers and the kinetic theory of gases. • The selectivity trend is in excellent agreement with a recent experiment.« less

  12. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  13. Selectivity Mechanism of the Voltage-gated Proton Channel, HV1

    NASA Astrophysics Data System (ADS)

    Dudev, Todor; Musset, Boris; Morgan, Deri; Cherny, Vladimir V.; Smith, Susan M. E.; Mazmanian, Karine; Decoursey, Thomas E.; Lim, Carmay

    2015-05-01

    Voltage-gated proton channels, HV1, trigger bioluminescence in dinoflagellates, enable calcification in coccolithophores, and play multifarious roles in human health. Because the proton concentration is minuscule, exquisite selectivity for protons over other ions is critical to HV1 function. The selectivity of the open HV1 channel requires an aspartate near an arginine in the selectivity filter (SF), a narrow region that dictates proton selectivity, but the mechanism of proton selectivity is unknown. Here we use a reduced quantum model to elucidate how the Asp-Arg SF selects protons but excludes other ions. Attached to a ring scaffold, the Asp and Arg side chains formed bidentate hydrogen bonds that occlude the pore. Introducing H3O+ protonated the SF, breaking the Asp-Arg linkage and opening the conduction pathway, whereas Na+ or Cl- was trapped by the SF residue of opposite charge, leaving the linkage intact, thus preventing permeation. An Asp-Lys SF behaved like the Asp-Arg one and was experimentally verified to be proton-selective, as predicted. Hence, interacting acidic and basic residues form favorable AspH0-H2O0-Arg+ interactions with hydronium but unfavorable Asp--X-/X+-Arg+ interactions with anions/cations. This proposed mechanism may apply to other proton-selective molecules engaged in bioenergetics, homeostasis, and signaling.

  14. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter.

    PubMed

    Barker, E L; Moore, K R; Rakhshan, F; Blakely, R D

    1999-06-15

    Mutation of a conserved Asp (D98) in the rat serotonin (5HT) transporter (rSERT) to Glu (D98E) led to decreased 5HT transport capacity, diminished coupling to extracellular Na+ and Cl-, and a selective loss of antagonist potencies (cocaine, imipramine, and citalopram but not paroxetine or mazindol) with no change in 5HT Km value. D98E, which extends the acidic side chain by one carbon, affected the rank-order potency of substrate analogs for inhibition of 5HT transport, selectively increasing the potency of two analogs with shorter alkylamine side chains, gramine, and dihydroxybenzylamine. D98E also increased the efficacy of gramine relative to 5HT for inducing substrate-activated currents in Xenopus laevis oocytes, but these currents were noticeably dependent on extracellular medium acidification. I-V profiles for substrate-independent and -dependent currents indicated that the mutation selectively impacts ion permeation coupled to 5HT occupancy. The ability of the D98E mutant to modulate selective aspects of substrate recognition, to perturb ion dependence as well as modify substrate-induced currents, suggests that transmembrane domain I plays a critical role in defining the permeation pathway of biogenic amine transporters.

  15. Role of pH in the recovery of bovine milk oligosaccharides from colostrum whey permeate by nanofiltration

    PubMed Central

    Cohen, Joshua L.; Barile, Daniela; Liu, Yan; de Moura Bell, Juliana M. L. N.

    2016-01-01

    Milk oligosaccharides are associated with improved health outcomes in infants. Nanofiltration (NF) is used for isolation of bovine milk oligosaccharides (BMO). The study aim was to improve the recovery of BMO from lactose-hydrolyzed colostrum whey permeate. The retention factors of carbohydrates at various pH and transmembrane pressures were determined for a nanofiltration membrane, which was used at pilot scale to purify BMO. Carbohydrates were quantified by liquid chromatography and characterized using nano-LC-Chip-QToF mass spectrometry. BMO purity was improved from an initial 4% in colostrum whey permeate to 98%, with 99.8% permeation of monosaccharides and 96% recovery of oligosaccharides, represented by 23 unique BMO compounds identified in the final retentate. The pH during NF was a determining factor in the selectivity of carbohydrate separation. This NF method can be applied to conventional cheese-whey permeate and other milk types for extraction of bioactive oligosaccharides providing new options for the dairy industry. PMID:28652648

  16. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules

    PubMed Central

    Lawrence, Marlon G.; Altenburg, Michael K.; Sanford, Ryan; Willett, Julian D.; Bleasdale, Benjamin; Ballou, Byron; Wilder, Jennifer; Li, Feng; Miner, Jeffrey H.; Berg, Ulla B.; Smithies, Oliver

    2017-01-01

    How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson’s or Alport’s proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm. PMID:28246329

  17. Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: a comparative study.

    PubMed

    Lan, Yi; Li, Hui; Chen, Yan-yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing

    2014-11-01

    Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineole

  18. Preparation of Essential Oil-Based Microemulsions for Improving the Solubility, pH Stability, Photostability, and Skin Permeation of Quercetin.

    PubMed

    Lv, Xia; Liu, Tiantian; Ma, Huipeng; Tian, Yan; Li, Lei; Li, Zhen; Gao, Meng; Zhang, Jianbin; Tang, Zeyao

    2017-11-01

    Quercetin can bring many benefits to skin based on its various bioactivities. However, the therapeutic effect of quercetin is limited due to the poor water solubility, pH instability, light instability, and skin permeation. The aim of the present work was applying essential oil-based microemulsions to improve the solubility, pH stability, photostability, and skin permeation of quercetin for topical application. Peppermint oil (PO-ME), clove oil (CO-ME), and rosemary oil (RMO-ME) were selected as model essential oils. Microemulsions composed of Cremophor EL/1,2-propanediol/essential oils (47:23:30, w/w) were selected as model formulations, based on the pseudo-ternary phase diagram and the characterizations. In the solubility study, the solubility of quercetin was improved dozens of times by microemulsions. Quercetin was found instable under alkaline condition, with 50% degraded in the solution of pH 13. However, PO-ME, CO-ME, and RMO-ME could protect quercetin from the hydroxide ions, with 47, 9, and 12% of quercetin degraded. In the photostability study, the essential oil-based microemulsions showed the capability of protecting quercetin from degradation under UV radiation. Where more than 67% of quercetin was degraded in aqueous solution, while less than 7% of quercetin degraded in microemulsions. At last, the in vitro skin permeation study showed that the essential oil-based microemulsions could enhance the permeation capacity of quercetin by 2.5-3 times compared to the aqueous solution. Hence, the prepared essential oil microemulsions could improve the solubility, pH stability, photostability, and skin permeation of quercetin, which will be beneficial for its topical application.

  19. Ion-Exchanged SAPO-34 membranes for Krypton-Xenon Separation: Control of Permeation Properties and Fabrication of Hollow Fiber Membranes

    DOE PAGES

    Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei; ...

    2018-01-29

    Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO- 34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance, via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 gas permeation units (GPU) to 26.3 GPU with ideal Kr/Xe selectivities > 20 at 298 K. Cation-exchanged membranes show largemore » (>50%) increases in selectivity at ambient or slight sub-ambient conditions. The adsorption, diffusion, and permeation characteristics of ionexchanged SAPO-34 materials and membranes are investigated in detail, with potassium exchanged SAPO-34 membranes showing particularly attractive performance. Lastly, we then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.« less

  20. Ion-Exchanged SAPO-34 membranes for Krypton-Xenon Separation: Control of Permeation Properties and Fabrication of Hollow Fiber Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei

    Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO- 34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance, via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 gas permeation units (GPU) to 26.3 GPU with ideal Kr/Xe selectivities > 20 at 298 K. Cation-exchanged membranes show largemore » (>50%) increases in selectivity at ambient or slight sub-ambient conditions. The adsorption, diffusion, and permeation characteristics of ionexchanged SAPO-34 materials and membranes are investigated in detail, with potassium exchanged SAPO-34 membranes showing particularly attractive performance. Lastly, we then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.« less

  1. Terbinafine Hydrochloride Trans-ungual Delivery via Nanovesicular Systems: In Vitro Characterization and Ex Vivo Evaluation.

    PubMed

    Elsherif, Noha Ibrahim; Shamma, Rehab Nabil; Abdelbary, Ghada

    2017-02-01

    Treating a nail infection like onychomycosis is challenging as the human nail plate acts as a formidable barrier against all drug permeation. Available oral and topical treatments have several setbacks. Terbinafine hydrochloride (TBH), belonging to the allylamine class, is mainly used for treatment of onychomycosis. This study aims to formulate TBH in a nanobased spanlastic vesicular carrier that enables and enhances the drug delivery through the nail. The nanovesicles were formulated by ethanol injection method, using either Span® 60 or Span® 65, together with Tween 80 or sodium deoxycholate as an edge activator. A full factorial design was implemented to study the effect of different formulation and process variables on the prepared TBH-loaded spanlastic nanovesicles. TBH entrapment efficiency percentages, particle size diameter, percentage drug released after 2 h and 8 h were selected as dependent variables. Optimization was performed using Design-Expert® software to obtain an optimized formulation with high entrapment efficiency (62.35 ± 8.91%), average particle size of 438.45 ± 70.5 nm, and 29.57 ± 0.93 and 59.53 ± 1.73% TBH released after 2 and 8 h, respectively. The optimized formula was evaluated using differential scanning calorimetry and X-ray diffraction and was also morphologically examined using transmission electron microscopy. An ex vivo study was conducted to determine the permeation and retainment of the optimized formulation in a human cadaver nail plate, and confocal laser scanning microscope was used to show the extent of formulation permeation. In conclusion, the results confirmed that spanlastics exhibit promising results for the trans-ungual delivery of TBH.

  2. Rapid permeation measurement system for the production control of monolayer and multilayer films

    NASA Astrophysics Data System (ADS)

    Botos, J.; Müller, K.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    Plastics have been used for packaging films for a long time. Until now the development of new formulations for film applications, including process optimization, has been a time-consuming and cost-intensive process for gases like oxygen (O2) or carbon dioxide (CO2). By using helium (He) the permeation measurement can be accelerated from hours or days to a few minutes. Therefore a manometric measuring system for tests according to ISO 15105-1 is coupled with a mass spectrometer to determine the helium flow rate and to calculate the helium permeation rate. Due to the accelerated determination the permeation quality of monolayer and multilayer films can be measured atline. Such a system can be used to predict for example the helium permeation rate of filled polymer films. Defined quality limits for the permeation rate can be specified as well as the prompt correction of process parameters if the results do not meet the specification. This method for process control was tested on a pilot line with a corotating twin-screw extruder for monolayer films. Selected process parameters were varied iteratively without changing the material formulation to obtain the best process parameter set and thus the lowest permeation rate. Beyond that the influence of different parameters on the helium permeation rate was examined on monolayer films. The results were evaluated conventional as well as with artificial neuronal networks in order to determine the non-linear correlation between all process parameters.

  3. In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions--evidence for a wash-in effect.

    PubMed

    Misik, Jan; Pavlikova, Ruzena; Josse, Denis; Cabal, Jiri; Kuca, Kamil

    2012-09-01

    Misuse of various chemicals, such as chemical warfare agents, industrial chemicals or pesticides during warfare or terrorists attacks requires adequate protection. Thus, development and evaluation of novel decontamination dispositives and techniques are needed. In this study, in vitro permeation and decontamination of a potentially hazardous compound paraoxon, an active metabolite of organophosphorus pesticide parathion, was investigated. Skin permeation and decontamination experiments were carried out in modified Franz diffusion cells. Pig skin was used as a human skin model. Commercially produced detergent-based washing solutions FloraFree(™) and ArgosTM were used as decontamination means. The experiments were done under "warm", "cold", "dry" and "wet" skin conditions in order to determine an effect of various physical conditions on skin permeation of paraoxon and on a subsequent decontamination process. There was no significant difference in skin permeation of paraoxon under warm, cold and dry conditions, whereas wet conditions provided significantly higher permeation rates. In the selected conditions, decontamination treatments performed 1 h after a skin exposure did not decrease the agent volume that permeated through the skin. An exception were wet skin conditions with non-significant decontamination efficacy 18 and 28% for the FloraFree(™) and Argos(™) treatment, respectively. In contrast, the skin permeation of paraoxon under warm, cold and dry conditions increased up to 60-290% following decontamination compared to non-decontaminated controls. This has previously been described as a skin wash-in effect.

  4. Selective Permeating Properties of Butanol and Water through Polystyrene- b-polydimethylsiloxane- b-polystyrene Pervaporation Membranes

    NASA Astrophysics Data System (ADS)

    Shin, Chaeyoung; Baer, Zachary; Chen, X. Chelsea; Ozcam, A. Evren; Clark, Douglas; Balsara, Nitash

    2015-03-01

    Polystyrene- b-polydimethylsiloxane- b-polystyrene (SDS) membranes have been studied in butanol-water binary pervaporation experiments and pervaporation experiments integrated with viable fermentation broths. Polydimethylsiloxane has been widely known to be a suitable material for separating organic chemicals from aqueous solutions, and it thus provides a continuous matrix phase in SDS membranes for permeation of small molecules. The polystyrene block provides mechanical stability to maintain the membrane structure in the pervaporation membranes. We take advantage of these features to fabricate a thin and butanol-selective SDS membrane for in situ product removal in fermentation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael Z.; Engtrakul, Chaiwat; Bischoff, Brian L.

    A new class of inorganic-based membranes, i.e., High-Performance Architectured Surface Selective (HiPAS) membranes, is introduced to provide high perm-selective flux by exploiting unique separation mechanisms induced by superhydrophobic or superhydrophilic surface interactions and confined capillary condensation in enlarged membrane pores (~8 nm). The super-hydro-tunable HiPAS membranes were originally developed for the purpose of bio-oil/biofuel processing to achieve selective separations at higher flux relative to size selective porous membranes (e.g., inorganic zeolite-based membranes) and better high-temperature tolerance than polymer membranes (>250 C) for hot vapor processing. Due to surface-enhanced separation selectivity, HiPAS membranes can thus possibly enable larger pores to facilitatemore » large-flux separations by increasing from sub-nanometer pores to mesopores (2-50 nm) for vapor phase or micron-scale pores for liquid phase separations. In this paper, we describe an innovative membrane concept and a materials synthesis strategy to fabricate HiPAS membranes, and demonstrate selective permeation in both vapor- and liquid-phase applications. High permeability and selectivity were demonstrated using surrogate mixtures, such as ethanol-water, toluene-water, and toluene-phenol-water. The overall membrane evaluation results show promise for the future processing of biomass pyrolysis and upgraded product vapors and condensed liquid bio-oil intermediates.« less

  6. Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups.

    PubMed

    Li, Zhan; Liu, Yanqi; Zhao, Yang; Zhang, Xin; Qian, Lijuan; Tian, Longlong; Bai, Jing; Qi, Wei; Yao, Huijun; Gao, Bin; Liu, Jie; Wu, Wangsuo; Qiu, Hongdeng

    2016-10-18

    Graphene-coated plastic substrates, such as polyethylene terephthalate (PET), are regularly used in flexible electronic devices. Here we demonstrate a new application of the graphene-coated nanoporous PET membrane for the selective separation of metal ions in an ion exchange manner. Irradiation with swift heavy ions is used to perforate graphene and PET substrate. This process could create graphene nanopores with carboxyl groups, thus forming conical holes in the PET after chemical etching to support graphene nanopores. Therefore, a monolayer nanoporous graphene membrane with a PET substrate is constructed successfully to investigate its ionic selective separation. We find that the permeation ratio of ions strongly depends on the temperature and H + concentration in the driving solution. An electric field can increase the permeation ratio of ions through the graphene nanopores, but it inhibits the ion selective separation. Moreover, the structure of the graphene nanopore with carboxyl groups is resolved at the density functional theory level. The results show the asymmetric structure of the nanopore with carboxyl groups, and the analysis indicates that the ionic permeation can be attributed to the ion exchange between metal ions and protons on the two sides of graphene nanopores. These results would be beneficial to the design of membrane separation materials made from graphene with efficient online and offline bulk separation.

  7. Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production.

    PubMed

    Jin, Yiqiong; Parashar, Archana; Mason, Beth; Bressler, David C

    2016-12-01

    Whey permeate was used as a co-substrate to replace part of the wheat for ethanol production by Saccharomyces cerevisiae. The simultaneous saccharification and fermentation was achieved with β-galactosidase added at the onset of the fermentation to promote whey lactose hydrolysis. Aspergillus oryzae and Kluyveromyces lactis β-galactosidases were two enzymes selected and used in the co-fermentation of wheat and whey permeate for the comparison of their effectiveness on lactose hydrolysis. The possibility of co-fermentations in both STARGEN and jet cooking systems was investigated in 5L bioreactors. Ethanol yields from the co-fermentations of wheat and whey permeate were evaluated. It was found that A. oryzae β-galactosidase was more efficient for lactose hydrolysis during the co-fermentation and that whey permeate supplementation can contribute to ethanol yield in co-fermentations with wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. How azobenzene photoswitches restore visual responses to the blind retina

    PubMed Central

    Tochitsky, Ivan; Helft, Zachary; Meseguer, Victor; Fletcher, Russell B.; Vessey, Kirstan A.; Telias, Michael; Denlinger, Bristol; Malis, Jonatan; Fletcher, Erica L.; Kramer, Richard H.

    2016-01-01

    Summary Azobenzene photoswitches confer light sensitivity onto retinal ganglion cells (RGCs) in blind mice, making these compounds promising candidates as vision-restoring drugs in humans with degenerative blindness. Remarkably, photosensitization manifests only in animals with photoreceptor degeneration and is absent from those with intact rods and cones. Here we show that P2X receptors mediate the entry of photoswitches into RGCs where they associate with voltage-gated ion channels, enabling light to control action potential firing. All charged photoswitch compounds require permeation through P2X receptors, whose gene expression is upregulated in the blind retina. Photoswitches and membrane-impermeant fluorescent dyes likewise penetrate through P2X receptors to label a subset of RGCs in the degenerated retina. Electrophysiological recordings and mapping of fluorescently-labeled RGC dendritic projections together indicate that photosensitization is highly selective for OFF-RGCs. Hence P2X receptors are a natural conduit allowing cell type-selective and degeneration-specific delivery of photoswitches to restore visual function in blinding disease. PMID:27667006

  9. Tadalafil-loaded nanostructured lipid carriers using permeation enhancers.

    PubMed

    Baek, Jong-Suep; Pham, Cuong Viet; Myung, Chang-Seon; Cho, Cheong-Weon

    2015-11-30

    Tadalafil is a phosphodiesterase-5 inhibitor indicated for the treatment of erectile dysfunction. In this study, we prepared and evaluated transdermal nanostructured lipid carriers (NLC) to improve the skin permeability of tadalafil. Tadalafil-loaded NLC dispersions were prepared using glyceryl monostearate as a solid lipid, oleic acid as a liquid lipid, and Tween 80 as a surfactant. We characterized the dispersions according to particle size, polydispersity index, zeta potential, encapsulation efficiency, and transmission electron microscopy. In vitro skin permeation studies were carried out using Franz diffusion cells, and cytotoxicity was examined using HaCaT keratinocyte cell lines. Tadalafil skin permeability increased for all tadalafil-loaded NLC formulations. The tadalafil-loaded NLC dispersion with ethanol and limonene as skin permeation enhancers exhibited the highest flux (∼4.8-fold) compared to that observed with tadalafil solution alone. Furthermore, a tadalafil-loaded NLC gel with selected permeation enhancers showed tolerance against toxicity in HaCaT cells. These results suggest that the NLC formulations with ethanol and limonene as skin permeation enhancers could be a promising dermal delivery carrier for tadalafil. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Changes in chemical permeation of disposable latex, nitrile, and vinyl gloves exposed to simulated movement.

    PubMed

    Phalen, Robert N; Le, Thi; Wong, Weng Kee

    2014-01-01

    Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. The aim of this study was to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ≤ 0.001) in breakthrough time (BT) was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ≤ 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. Glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves.

  11. Changes in Chemical Permeation of Disposable Latex, Nitrile and Vinyl Gloves Exposed to Simulated Movement

    PubMed Central

    Phalen, Robert N.; Le, Thi; Wong, Weng Kee

    2014-01-01

    Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. This study was aimed to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ≤ 0.001) in breakthrough time was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ≤ 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. In conclusion, glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves. PMID:24689368

  12. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation.

    PubMed

    Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-10-01

    Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    NASA Astrophysics Data System (ADS)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  14. Lampung natural zeolite filled cellulose acetate membrane for pervaporation of ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Iryani, D. A.; Wulandari, N. F.; Cindradewi, AW; Ginting, S. Br; Ernawati, E.; Hasanudin, U.

    2018-03-01

    Pervaporation of ethanol–water can be cost-competitive in the production of renewable biomass ethanol. For the purpose of improving the pervaporation performance of polymeric membranes, we prepared cellulose acetate (CA) filled Lampung Natural Zeolite (LNZ) membranes by incorporating LNZ into CA for pervaporation separation of ethanol-water mixtures. The characteristics and performance of these filled membranes in the varied ratio of CA:LNZ (30:0, 30:5, 30:10, 30: 20, 20:20 and 40:10) wt% were investigated. The prepared membranes were characterized for pervaporation membrane performance such as %water content and membrane swelling degree. Further, the permeation flux and selectivity of membrane were also observed. The results of investigation show that water content of membrane tends to increase with increase of LNZ content. However, the swelling degree of membrane decrease compared than that of CA control membrane. The permeation flux and the selectivity of membranes tend to increase continuously. The CA membrane with ratio of CA:LNZ 30:20 shows the highest selectivity of 80.42 with a permeation flux of 0.986 kg/(m2 h) and ethanol concentration of 99.08 wt%.

  15. What happens in the skin? Integrating skin permeation kinetics into studies of developmental and reproductive toxicity following topical exposure.

    PubMed

    Dancik, Yuri; Bigliardi, Paul L; Bigliardi-Qi, Mei

    2015-12-01

    Animal-based developmental and reproductive toxicological studies involving skin exposure rarely incorporate information on skin permeation kinetics. For practical reasons, animal studies cannot investigate the many factors which can affect human skin permeation and systemic uptake kinetics in real-life scenarios. Traditional route-to-route extrapolation is based on the same types of experiments and requires assumptions regarding route similarity. Pharmacokinetic modeling based on skin physiology and structure is the most efficient way to incorporate the variety of intrinsic skin and exposure-dependent parameters occurring in clinical and occupational settings into one framework. Physiologically-based pharmacokinetic models enable the integration of available in vivo, in vitro and in silico data to quantitatively predict the kinetics of uptake at the site of interest, as needed for 21st century toxicology and risk assessment. As demonstrated herein, proper interpretation and integration of these data is a multidisciplinary endeavor requiring toxicological, risk assessment, mathematical, pharmaceutical, biological and dermatological expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections

    PubMed Central

    Al-Subaie, Mutlaq M; Hosny, Khaled M; El-Say, Khalid Mohamed; Ahmed, Tarek A; Aljaeid, Bader M

    2015-01-01

    This study aimed to formulate an optimized acyclovir (ACV) nanoemulsion hydrogel in order to provide a solution for the slow, variable, and incomplete oral drug absorption in patient suffering from herpes simplex viral infection. Solubility of ACV in different oils, surfactants, and cosurfactants was explored utilizing a cubic model mixture design to obtain a nanoemulsion with minimum globule size. Preparation of an optimized ACV nanoemulsion hydrogel using a three-factor, three-level Box–Behnken statistical design was conducted. The molecular weight of chitosan (X1), percentage of chitosan (X2), and percentage of Eugenol as a skin permeation enhancer (X3) were selected to study their effects on hydrogel spreadability (Y1) and percent ACV permeated through rat skin after 2.5 hours (Y2). A pharmacokinetic study of the optimized ACV nanoemulsion hydrogel was conducted in rats. Mixtures of clove oil and castor oil (3:1 ratio), Tween 80 and Span 80 (3:1 ratio), and propylene glycol and Myo-6V (3:1 ratio) were selected as the oil, surfactant, and cosurfactant phases, respectively. Statistical analysis indicated that the molecular weight of chitosan has a significant antagonistic effect on spreadability, but has no significant effect on the percent ACV permeated. The percentage of chitosan also has a significant antagonistic effect on the spreadability and percent ACV permeated. On the other hand, the percentage of Eugenol has a significant synergistic effect on percent ACV permeated, with no effect on spreadability. The ex vivo study demonstrated that the optimized ACV nanoemulsion hydrogel showed a twofold and 1.5-fold higher permeation percentage than the control gel and marketed cream, respectively. The relative bioavailability of the optimized ACV nanoemulsion hydrogel improved to 535.2% and 244.6% with respect to the raw ACV hydrogel and marketed cream, respectively, confirming improvement of the relative bioavailability of ACV in the formulated nanoemulsion hydrogel. PMID:26109856

  17. Film-forming formulations containing porous silica for the sustained delivery of actives to the skin.

    PubMed

    Heck, Rouven; Hermann, Sabrina; Lunter, Dominique J; Daniels, Rolf

    2016-11-01

    The purpose of this study was to develop film-forming formulations facilitating long-term treatment of chronic pruritus with capsaicinoids. To this end, an oily solution of nonivamide was loaded into porous silica particles which were then suspended in the dispersion of a sustained release polymer. Such formulations form a film when applied to the skin and encapsulate the drug loaded silica particles in a dry polymeric matrix. Dermal delivery and permeation of the antipruritic drug nonivamide (NVA) are controlled by the matrix. The film-forming formulations were examined regarding homogeneity, storage stability, substantivity and ex vivo skin permeation. Confocal Raman spectral imaging proved the stability of silica-based film-forming formulations over a period of 6 months. Substantivity was found to be enhanced substantially compared to a conventional semisolid formulation. Permeation rates of nonivamide from film-forming formulations through the skin are much lower compared to those achieved with a conventional immediate release formulation with the same drug amount. Due to the drug reservoir in the polymer matrix, a sustained permeation is enabled. Film-forming formulations may therefore improve the treatment of chronic pruritus with capsaicinoids by enhancing patient compliance through a sustained release regime. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of asymmetric polydimethylsiloxane-polyvinylidene fluoride composite membrane and incorporated with acetone-butanol-ethanol fermentation for butanol recovery.

    PubMed

    Xue, Chuang; Du, Guang-Qing; Chen, Li-Jie; Ren, Jian-Gang; Bai, Feng-Wu

    2014-10-20

    The polydimethylsiloxane-polyvinylidene fluoride (PDMS-PVDF) composite membrane was studied for its pervaporation performance to removal of butanol from butanol/ABE solution, fermentation broth as well as incorporated with acetone-butanol-ethanol (ABE) fermentation. The total flux and butanol titer in permeate through the PDMS-PVDF membrane were up to 769.6 g/m(2)h and 323.5 g/L at 80 °C, respectively. The butanol flux and total flux increased with increasing the feed temperature as well as the feed butanol titer. The butanol separation factor and butanol titer in permeate decreased slightly in the presence of acetone and ethanol in the feed due to their preferential dissolution and competitive permeation through the membrane. In fed-batch fermentation incorporated with pervaporation, butanol titer and flux in permeate maintained at a steady level with the range of 139.9-154.0 g/L and 13.3-16.3 g/m(2)h, respectively, which was attributed to the stable butanol titer in fermentation broth as well as the excellent hydrophobic nature of the PDMS-PVDF matrix. Therefore, the PDMS-PVDF composite membrane had a great potential in the in situ product recovery with ABE fermentation, enabling the economic production of biobutanol. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Improved Ocular Delivery of Nepafenac by Cyclodextrin Complexation.

    PubMed

    Shelley, Haley; Grant, Makenzie; Smith, Forrest T; Abarca, Eva M; Jayachandra Babu, R

    2018-06-13

    Nepafenac is a nonsteroidal anti-inflammatory drug (NSAID), currently only available as 0.1% ophthalmic suspension (Nevanac®). This study utilized hydroxypropyl-β-cyclodextrin (HPBCD) to increase the water solubility and trans-corneal permeation of nepafenac. The nepafenac-HPBCD complexation in the liquid and solid states were confirmed by phase solubility, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR) analyses. Nepafenac 0.1% ophthalmic solution was formulated using HPBCD (same pH and osmolality as that of Nevanac®) and pig eye trans-corneal permeation was studied versus Nevanac®. Furthermore, nepafenac content in cornea, sclera, iris, lens, aqueous humor, choroid, ciliary body, retina, and vitreous humor was studied in a continuous isolated pig eye perfusion model in comparison to the suspension and Nevanac®. Permeation studies using porcine corneas revealed that the solution formulation had a permeation rate 18 times higher than Nevanac®. Furthermore, the solution had 11 times higher corneal retention than Nevanac®. Drug distribution studies using porcine eyes revealed that the solution formulation enables detectable levels in various ocular tissues while the drug was undetectable by Nevanac®. The ocular solution formulation had a significantly higher drug concentration in the cornea compared to the suspension or Nevanac®.

  20. Structures, Design and Test: Materials

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Marshall has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils, or adhesives on the same placement machine. The deve!opment of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks.

  1. Integrating Computational Science Tools into a Thermodynamics Course

    ERIC Educational Resources Information Center

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of…

  2. Selection of sorption material for tests of pesticide permeation through protective clothing fabrics.

    PubMed

    Krzemińska, Sylwia; Nazimek, Teresa

    2004-01-01

    The paper presents the results of studies on selecting a solid sorption material for absorbing liquid crop protection agents which permeate samples of protective clothing fabrics. The sorption materials were investigated and selected with an assumption that they should have a high recovery coefficient for biologically active substances, used as active ingredients in crop protection agents, at a presumed, acceptably high level. The selected substances were determined with a gas chromatograph equipped with an electron capture detector (dichlorvos, cypermethrin and 2,4-D) and a nitrogen-phosphorus detector (carbofuran). The tests demonstrated that polypropylene melt-blown type unwoven cloth had high recovery coefficients for all 4 active ingredients proposed for the study. The highest recovery coefficient, -.97, was obtained for carbofuran. The recovery coefficients obtained for the 3 remaining substances were lower: .89 for cypermethrin and 2,4-D, and .84 for dichlorvos.

  3. Impact of swelling characteristics on the permselective ...

    EPA Pesticide Factsheets

    The removal of water from organic solvents and biofuels, including lower alcohols (i.e., methanol, ethanol, propanol, and butanol), is necessary for the production, blending, and reuse of those organic compounds. Water forms an azeotrope with many hydrophilic solvents, complicating the separation of water/solvent mixtures. The use of water-selective membranes in a pervaporation or vapor permeation process enables the removal of water from the solvents, even when an azeotrope is present. Common hydrophilic polymer membranes often swell in water, resulting in permeabilities and selectivities that are dependent on the water content of the feed mixture. Recent work has shown the benefit of overcoating a hydrophilic water-permselective membrane with a non-swelling perfluoropolymer film [1,2]. The perfluoropolymer layer reduces the activity of water the hydrophilic polymer layer experiences, thereby reducing swelling in that layer and increasing the water selectivity of the multi-layer membrane relative to the selectivity of the base hydrophilic polymer, usually at the expense of permeability. In this work, the effect of overcoating the hydrophilic layer with polymer films of various swelling characteristics was modelled. Top layers that swell in the solvent offer some advantages, particularly with regard to the water permeance of the multi-layer composite. 1. Huang, Y.; Baker, R. W.; Wijmans, J. G. Perfluoro-coated hydrophilic membranes with improved selectivity. In

  4. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only themore » channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.« less

  5. Ion-Induced Defect Permeation of Lipid Membranes

    PubMed Central

    Vorobyov, Igor; Olson, Timothy E.; Kim, Jung H.; Koeppe, Roger E.; Andersen, Olaf S.; Allen, Toby W.

    2014-01-01

    We have explored the mechanisms of uncatalyzed membrane ion permeation using atomistic simulations and electrophysiological recordings. The solubility-diffusion mechanism of membrane charge transport has prevailed since the 1960s, despite inconsistencies in experimental observations and its lack of consideration for the flexible response of lipid bilayers. We show that direct lipid bilayer translocation of alkali metal cations, Cl–, and a charged arginine side chain analog occurs via an ion-induced defect mechanism. Contrary to some previous suggestions, the arginine analog experiences a large free-energy barrier, very similar to those for Na+, K+, and Cl–. Our simulations reveal that membrane perturbations, due to the movement of an ion, are central for explaining the permeation process, leading to both free-energy and diffusion-coefficient profiles that show little dependence on ion chemistry and charge, despite wide-ranging hydration energies and the membrane’s dipole potential. The results yield membrane permeabilities that are in semiquantitative agreement with experiments in terms of both magnitude and selectivity. We conclude that ion-induced defect-mediated permeation may compete with transient pores as the dominant mechanism of uncatalyzed ion permeation, providing new understanding for the actions of a range of membrane-active peptides and proteins. PMID:24507599

  6. Influence of gas-liquid two-phase flow on angiotensin-I converting enzyme inhibitory peptides separation by ultra-filtration.

    PubMed

    Charoenphun, Narin; Youravong, Wirote

    2017-01-01

    Membrane fouling is a major problem in ultra-filtration systems and two-phase flow is a promising technique for permeate flux enhancement. The objective of this research was to study the use of an ultra-filtration (UF) system to enrich angiotensin-I converting enzyme (ACE) inhibitory peptides from tilapia protein hydrolysate. To select the most appropriate membrane and operating condition, the effects of membrane molecular weight cut-off (MWCO), transmembrane pressure (TMP) and cross-flow velocity (CFV) on permeate flux and ACE inhibitory peptide separation were studied. Additionally, the gas-liquid two-phase flow technique was applied to investigate its effect on the process capability. The results showed that the highest ACE inhibitory activity was obtained from permeate of the 1 kDa membrane. In terms of TMP and CFV, the permeate flux tended to increase with TMP and CFV. The use of gas-liquid two-phase flow as indicated by shear stress number could reduce membrane fouling and increase the permeate flux up to 42%, depending on shear stress number. Moreover, the use of a shear stress number of 0.039 led to an augmentation in ACE inhibitory activity of permeates. Operating conditions using a shear stress number of 0.039 were recommended for enrichment of ACE inhibitory peptides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics.

    PubMed

    Wells, David B; Abramkina, Volha; Aksimentiev, Aleksei

    2007-09-28

    The transport of biomolecules across cell boundaries is central to cellular function. While structures of many membrane channels are known, the permeation mechanism is known only for a select few. Molecular dynamics (MD) is a computational method that can provide an accurate description of permeation events at the atomic level, which is required for understanding the transport mechanism. However, due to the relatively short time scales accessible to this method, it is of limited utility. Here, we present a method for all-atom simulation of electric field-driven transport of large solutes through membrane channels, which in tens of nanoseconds can provide a realistic account of a permeation event that would require a millisecond simulation using conventional MD. In this method, the average distribution of the electrostatic potential in a membrane channel under a transmembrane bias of interest is determined first from an all-atom MD simulation. This electrostatic potential, defined on a grid, is subsequently applied to a charged solute to steer its permeation through the membrane channel. We apply this method to investigate permeation of DNA strands, DNA hairpins, and alpha-helical peptides through alpha-hemolysin. To test the accuracy of the method, we computed the relative permeation rates of DNA strands having different sequences and global orientations. The results of the G-SMD simulations were found to be in good agreement in experiment.

  8. Transbuccal peptide delivery: stability and in vitro permeation studies on endomorphin-1.

    PubMed

    Bird, A P; Faltinek, J R; Shojaei, A H

    2001-05-18

    The purpose of this study was to investigate the feasibility of buccal delivery of a model peptide, endomorphin-1 (ENI), using stability and in vitro permeation studies. ENI is a recently isolated mu-opiate receptor agonist with high selectivity and specificity for this receptor subtype. Stability studies were conducted in various buffers and the drug was shown to be stable in both acidic and basic buffer systems. In the presence of full thickness porcine buccal epithelium, ENI was unstable with only 23.4+/-15.7% intact drug present after 6 h. The region responsible for this degradation was found to coincide with the major barrier region of the buccal epithelium as delineated through stability experiments in the presence of partial thickness buccal epithelium. Various peptidase inhibitors were used to isolate the enzyme(s) responsible for this degradation. Diprotin-A, a potent inhibitor of dipeptidyl peptidase IV, provided significant inhibition of the degradation of ENI in the presence of buccal epithelium. In vitro permeation studies revealed that the permeability coefficient of ENI across porcine buccal epithelium was 5.67+/-4.74x10(-7) cm/s. The enzymatic degradation of ENI was found not to be rate limiting to the drug's permeation across buccal epithelium, as diprotin-A did not increase the permeation of ENI. Sodium glycocholate as well as sodium taurocholate were also ineffective in enhancing the permeation of ENI across porcine buccal epithelium.

  9. Superhydrophobic and superhydrophilic surface-enhanced separation performance of porous inorganic membranes for biomass-to-biofuel conversion applications

    DOE PAGES

    Hu, Michael Z.; Engtrakul, Chaiwat; Bischoff, Brian L.; ...

    2016-11-14

    A new class of inorganic-based membranes, i.e., High-Performance Architectured Surface Selective (HiPAS) membranes, is introduced to provide high perm-selective flux by exploiting unique separation mechanisms induced by superhydrophobic or superhydrophilic surface interactions and confined capillary condensation in enlarged membrane pores (~8 nm). The super-hydro-tunable HiPAS membranes were originally developed for the purpose of bio-oil/biofuel processing to achieve selective separations at higher flux relative to size selective porous membranes (e.g., inorganic zeolite-based membranes) and better high-temperature tolerance than polymer membranes (>250 C) for hot vapor processing. Due to surface-enhanced separation selectivity, HiPAS membranes can thus possibly enable larger pores to facilitatemore » large-flux separations by increasing from sub-nanometer pores to mesopores (2-50 nm) for vapor phase or micron-scale pores for liquid phase separations. In this paper, we describe an innovative membrane concept and a materials synthesis strategy to fabricate HiPAS membranes, and demonstrate selective permeation in both vapor- and liquid-phase applications. High permeability and selectivity were demonstrated using surrogate mixtures, such as ethanol-water, toluene-water, and toluene-phenol-water. The overall membrane evaluation results show promise for the future processing of biomass pyrolysis and upgraded product vapors and condensed liquid bio-oil intermediates.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berardinelli, S.P.; Rusczek, R.A.; Mickelsen, R.L.

    The National Institute for Occupational Safety and Health (NIOSH), in cooperation with Monsanto Chemical Company, conducted an on-site evaluation of chemical protective clothing at Monsanto's Nitro, West Virginia plant. The Monsanto plant manufactures additives for the rubber industry including antioxidants, pre-vulcanization inhibitors, accelerators, etc. This survey evaluated six raw materials that have a potential for skin absorption: aniline, cyclohexylamine, diisorpropylamine, tertiary butylamine, morpholine and carbon disulfide. Five generic glove materials were tested against these chemicals; nitrile, neoprene, polyvinylchloride, natural latex and natural rubber. The NIOSH chemical permeation portable test system was used to generate breakthrough time data. The results weremore » compared to permeation data reported in the literature that were obtained by using the ASTM F739-85 test method. The test data demonstrated that aniline has too low a vapor pressure for reliable analysis on the portable direct reading detectors used. The chemical permeation test system, however provided comparable, reliable permeation data for the other tested chemicals. Monsanto has used this data to better select chemical protective clothing for its intended use.« less

  11. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion

    PubMed Central

    Shakeel, Faiyaz; Baboota, Sanjula; Ahuja, Alka; Ali, Javed; Shafiq, Sheikh

    2008-01-01

    Background Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral bioavailability of around 40% (Capsule). Therefore the aim of the present investigation was to assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic (bioavailability) studies on Wistar male rats. Results FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant decrease in activation energy (2.373 kcal/mol) for celecoxib permeation across rat skin indicated that the stratum corneum lipid bilayers were significantly disrupted (p < 0.05). Photomicrograph of skin sample showed the disruption of lipid bilayers as distinct voids and empty spaces were visible in the epidermal region. The absorption of celecoxib through transdermally applied nanoemulsion and nanoemulsion gel resulted in 3.30 and 2.97 fold increase in bioavailability as compared to oral capsule formulation. Conclusion Results of skin permeation mechanism and pharmacokinetic studies indicated that the nanoemulsions can be successfully used as potential vehicles for enhancement of skin permeation and bioavailability of poorly soluble drugs. PMID:18613981

  12. Preparation and evaluation of microemulsion-based transdermal delivery of Cistanche tubulosa phenylethanoid glycosides

    PubMed Central

    Yang, Jianhua; Xu, Huanhuan; Wu, Shanshan; Ju, Bowei; Zhu, Dandan; Yan, Yao; Wang, Mei; Hu, Junping

    2017-01-01

    The primary aim of the present study was to develop a novel microemulsion (ME) formulation to deliver phenylethanoid glycoside (PG) for use in skin lighteners and sunscreens. The oil phase was selected on the basis of drug solubility, while the surfactant and cosurfactant were screened and selected on the basis of their solubilizing capacity and the efficiency with which they formed MEs. Pseudoternary phase diagrams were constructed to evaluate ME regions and five formulations of oil-in-water MEs were selected as vehicles. In vitro skin permeation experiments were performed to optimize the ME formulation and to evaluate its permeability in comparison to that of saline solution. The physicochemical properties of the optimized ME and the permeating ability of PG delivered by this ME were also investigated. The optimized ME formulation was composed of isopropyl myristate (7%, w/w), Cremorphor EL (21%, w/w), propylene glycol (7%, w/w) and water (65%, w/w). The cumulative amount of PG that permeated through excised mouse skin when carried by ME was ~1.68 times that when PG was carried by saline solution only. The cumulative amount of PG in the microemulsion (4149.650±37.3 µg·cm−2) was significantly greater than that of PG in the saline solution (2288.63±20.9 µg·cm−2). Furthermore, the permeability coefficient indicated that optimized microemulsion was a more efficient carrier for transdermal delivery of PG than the control solution (8.87±0.49 cm/hx10−3 vs. 5.41±0.12 cm/hx10−3). Taken together, the permeating ability of ME-carried PG was significantly increased compared with saline solution. PMID:28138704

  13. Hydrogen separation process

    DOEpatents

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  14. Design, Synthesis of Novel Lipids as Chemical Permeation Enhancers and Development of Nanoparticle System for Transdermal Drug Delivery

    PubMed Central

    Shah, Punit P.; Etukala, Jagan Reddy; Vemuri, Adithi; Singh, Mandip

    2013-01-01

    In the present study, we designed and developed novel lipids that include (Z)-1-(Octadec-9-en-1-yl)-pyrrolidine (Cy5T), 1, 1-Di-((Z)-octadec-9-en-1-yl)pyrrolidin-1-ium iodide (Cy5), (Z)-1-(Octadec-9-en-1-yl)-piperidine (Cy6T), and 1, 1-Di-((Z)-octadec-9-en-1-yl) piperidin-1-ium iodide (Cy6) to enhance the transdermal permeation of some selected drugs. Firstly, we evaluated the transdermal permeation efficacies of these lipids as chemical permeation enhancers in vehicle formulations for melatonin, ß-estradiol, caffeine, α-MSH, and spantide using franz diffusion cells. Among them Cy5 lipid was determined to be the most efficient by increasing the transdermal permeation of melatonin, ß-estradiol, caffeine, α-MSH, and spantide by 1.5 to 3.26-fold more at the epidermal layer and 1.3 to 2.5-fold more at the dermal layer, in comparison to either NMP or OA. Hence we developed a nanoparticle system (cy5 lipid ethanol drug nanoparticles) to evaluate any further improvement in the drug penetration. Cy5 lipid formed uniformly sized nanoparticles ranging from 150–200 nm depending on the type of drug. Further, Cy5 based nanoparticle system significantly (p<0.05) increased the permeation of all the drugs in comparison to the lipid solution and standard permeation enhancers. There were about 1.54 to 22-fold more of drug retained in the dermis for the Cy5 based nanoparticles compared to OA/NMP standard enhancers and 3.87 to 66.67-fold more than lipid solution. In addition, epifluorescent microscopic analysis in rhodamine-PE permeation studies confirmed the superior permeation enhancement of LEDs (detection of fluorescence up to skin depth of 340 μm) more than lipid solution, which revealed fluorescence up to skin depth of only 260 μm. In summary the present findings demonstrate that i) cationic lipid with 5 membered amine heterocyclic ring has higher permeating efficacy than the 6 membered amine hertocyclic ring. ii) The nanoparticle system prepared with Cy5 showed significant (p<0.05) increase in the permeation of the drugs than the control penetration enhancers, oleic acid and NMP. PMID:24349315

  15. Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes.

    PubMed

    Uragami, Tadashi; Saito, Tomoyuki; Miyata, Takashi

    2015-04-20

    The permeation and separation characteristics of an ethanol/water azeotrope through chitosan membranes of different molecular weights and degrees of deacetylation during pervaporation were investigated. The normalized permeation rate decreased with increasing molecular weight up to 90 kDa, but at over 90 kDa, the rate increased. On the other hand, the water/ethanol selectivity increased with increasing molecular weight up to 90 kDa but decreased at over 90 kDa. With increasing degree of deacetylation, the water/ethanol permselectivity increased significantly, but the normalized permeation rate decreased. The characteristics of chitosan membranes are discussed based on their chemical and physical structures such as the contact angle, density, degree of swelling, and glass transition temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Potential of Mean Force Calculations of Solute Permeation Across UT-B and AQP1: A Comparison between Molecular Dynamics and 3D-RISM.

    PubMed

    Ariz-Extreme, Igor; Hub, Jochen S

    2017-02-23

    Membrane channels facilitate the efficient and selective flux of various solutes across biological membranes. A common approach to investigate the selectivity of a channel has been the calculation of potentials of mean force (PMFs) for solute permeation across the pore. PMFs have been frequently computed from molecular dynamics (MD) simulations, yet the three-dimensional reference interaction site model (3D-RISM) has been suggested as a computationally efficient alternative to MD. Whether the two methods yield comparable PMFs for solute permeation has remained unclear. In this study, we calculated potentials of mean force for water, ammonia, urea, molecular oxygen, and methanol across the urea transporter B (UT-B) and aquaporin-1 (AQP1), using 3D-RISM, as well as using MD simulations and umbrella sampling. To allow direct comparison between the PMFs from 3D-RISM and MD, we ensure that all PMFs refer to a well-defined reference area in the bulk or, equivalently, to a well-defined density of channels in the membrane. For PMFs of water permeation, we found reasonable agreement between the two methods, with differences of ≲3 kJ mol -1 . In contrast, we found stark discrepancies for the PMFs for all other solutes. Additional calculations confirm that discrepancies between MD and 3D-RISM are not explained by the choice for the closure relation, the definition the reaction coordinate (center of mass-based versus atomic site-based), details of the molecule force field, or fluctuations of the protein. Comparison of the PMFs suggests that 3D-RISM may underestimate effects from hydrophobic solute-channel interactions, thereby, for instance, missing the urea binding sites in UT-B. Furthermore, we speculate that the orientational averages inherent to 3D-RISM might lead to discrepancies in the narrow channel lumen. These findings suggest that current 3D-RISM solvers provide reasonable estimates for the PMF for water permeation, but that they are not suitable to study the selectivity of membrane channels with respect to uncharged nonwater solutes.

  17. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Healy, Anne Marie; Cabral, Lucio Mendes; de Sousa, Valeria Pereira

    2016-10-15

    In the present study, in vitro permeation experiments in a Franz diffusion cell were performed using different synthetic polymeric membranes and pig ear skin to evaluate a rivastigmine (RV) transdermal drug delivery system. In vitro-in vivo correlations (IVIVC) were examined to determine the best model membrane. In vitro permeation studies across different synthetic membranes and skin were performed for the Exelon(®) Patch (which contains RV), and the results were compared. Deconvolution of bioavailability data using the Wagner-Nelson method enabled the fraction of RV absorbed to be determined and a point-to-point IVIVC to be established. The synthetic membrane, Strat-M™, showed a RV permeation profile similar to that obtained with pig ear skin (R(2)=0.920). Studies with Strat-M™ resulted in a good and linear IVIVC (R(2)=0.991) when compared with other synthetic membranes that showed R(2) values less than 0.90. The R(2) for pig ear skin was 0.982. Strat-M™ membrane was the only synthetic membrane that adequately simulated skin barrier performance and therefore it can be considered to be a suitable alternative to human or animal skin in evaluating transdermal drug transport, potentially reducing the number of studies requiring human or animal samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of borneol on the transdermal permeation of drugs with differing lipophilicity and molecular organization of stratum corneum lipids.

    PubMed

    Yi, Qi-Feng; Yan, Jin; Tang, Si-Yuan; Huang, Hui; Kang, Li-Yang

    2016-01-01

    The aim of the present paper was to investigate the promoting activity of borneol on the transdermal permeation of drugs with differing lipophilicity, and probe its alterations in molecular organization of stratum corneum (SC) lipids. The toxicity of borneol was evaluated in epidermal keratinocyte HaCaT and dermal fibroblast CCC-HSF-1 cell cultures and compared to known enhancers, and its irritant profile was also assessed by transepidermal water loss (TEWL) evaluation. The promoting effect of borneol on the transdermal permeation of five model drugs, namely 5-fluorouracil, antipyrine, aspirin, salicylic acid and ibuprofen, which were selected based on their lipophilicity denoted by logp value, were performed using in vitro skin permeation studies. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was employed to monitor the borneol-induced alteration in molecular organization of SC lipids. The enhancer borneol displayed lower cytotoxicity or irritation in comparison to the well-established and standard enhancer Azone. Borneol could effectively promote the transdermal permeation of five model drugs, and its enhancement ratios were found to be parabolic curve with the logp values of drugs, which exhibited the optimum permeation activity for relatively hydrophilic drugs (an estimated logp value of -0.5 ∼0.5). The molecular mechanism studies suggested that borneol could perturb the structure of SC lipid alkyl chains, and extract part of SC lipids, resulting in the alteration in the skin permeability barrier.

  19. Effect of alcohol on skin permeation and metabolism of an ester-type prodrug in Yucatan micropig skin.

    PubMed

    Fujii, Makiko; Ohara, Rieko; Matsumi, Azusa; Ohura, Kayoko; Koizumi, Naoya; Imai, Teruko; Watanabe, Yoshiteru

    2017-11-15

    We studied the effect that three alcohols, ethanol (EA), propanol (PA), and isopropanol (IPA), have on the skin permeation of p-hydroxy benzoic acid methyl ester (HBM), a model ester-type prodrug. HBM was applied to Yucatan micropig skin in a saturated phosphate buffered solution with or without 10% alcohol, and HBM and related materials in receptor fluid and skin were determined with HPLC. In the absence of alcohol, p-hydroxy benzoic acid (HBA), a metabolite of HBM, permeated the skin the most. The three alcohols enhanced the penetration of HBM at almost the same extent. The addition of 10% EA or PA to the HBM solution led to trans-esterification into the ethyl ester or propyl ester of HBA, and these esters permeated skin as well as HBA and HBM did. In contrast, the addition of 10% IPA promoted very little trans-esterification. Both hydrolysis and trans-esterification in the skin S9 fraction were inhibited by BNPP, an inhibitor of carboxylesterase (CES). Western blot and native PAGE showed the abundant expression of CES in micropig skin. Both hydrolysis and trans-esterification was simultaneously catalyzed by CES during skin permeation. Our data indicate that the alcohol used in dermal drug preparations should be selected not only for its ability to enhance the solubility and permeation of the drug, but also for the effect on metabolism of the drug in the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Testing of Disposable Protective Garments Against Isocyanate Permeation From Spray Polyurethane Foam Insulation.

    PubMed

    Mellette, Michael P; Bello, Dhimiter; Xue, Yalong; Yost, Michael; Bello, Anila; Woskie, Susan

    2018-05-12

    Diisocyanates (isocyanates), including methylene diphenyl diisocyanate (MDI), are the primary reactive components of spray polyurethane foam (SPF) insulation. They are potent immune sensitizers and a leading cause of occupational asthma. Skin exposure to isocyanates may lead to both irritant and allergic contact dermatitis and possibly contribute to systemic sensitization. More than sufficient evidence exists to justify the use of protective garments to minimize skin contact with aerosolized and raw isocyanate containing materials during SPF applications. Studies evaluating the permeation of protective garments following exposure to SPF insulation do not currently exist. To conduct permeation testing under controlled conditions to assess the effectiveness of common protective gloves and coveralls during SPF applications using realistic SPF product formulations. Five common disposable garment materials [disposable latex gloves (0.07 mm thickness), nitrile gloves (0.07 mm), vinyl gloves (0.07 mm), polypropylene coveralls (0.13 mm) and Tyvek coveralls (0.13 mm)] were selected for testing. These materials were cut into small pieces and assembled into a permeation test cell system and coated with a two-part slow-rise spray polyurethane foam insulation. Glass fiber filters (GFF) pretreated with 1-(9-anthracenylmethyl)piperazine) (MAP) were used underneath the garment to collect permeating isocyanates. GFF filters were collected at predetermined test intervals between 0.75 and 20.00 min and subsequently analyzed using liquid chromatography-tandem mass spectrometry. For each garment material, we assessed (i) the cumulative concentration of total isocyanate, including phenyl isocyanate and three MDI isomers, that effectively permeated the material over the test time; (ii) estimated breakthrough detection time, average permeation rate, and standardized breakthrough time; from which (iii) recommendations were developed for the use of similar protective garments following contamination by two-component spray polyurethane foam systems and the limitations of such protective garments were identified. Each type of protective garment material demonstrated an average permeation rate well below the ASTM method F-739 standardized breakthrough rate threshold of 100.0 ng/cm2 min-1. Disposable latex gloves displayed the greatest total isocyanate permeation rate (4.11 ng/cm2 min-1), followed by the vinyl and nitrile gloves, respectively. The Tyvek coverall demonstrated a greater average rate of isocyanate permeation than the polypropylene coveralls. Typical isocyanate loading was in the range of 900 to 15,000 ng MDI/cm2. Permeation test data collected during this study indicated that each type of protective garment evaluated, provided a considerable level of protection (i.e. 10-110-fold reduction from the level of direct exposure) against the isocyanate component of the SPF insulation mixture. Nitrile gloves and polypropylene coveralls demonstrated the lowest rate of permeation and the lowest cumulative permeation of total isocyanate for each garment type.

  1. Anion-Cation Permeability Correlates with Hydrated Counterion Size in Glycine Receptor Channels

    PubMed Central

    Sugiharto, Silas; Lewis, Trevor M.; Moorhouse, Andrew J.; Schofield, Peter R.; Barry, Peter H.

    2008-01-01

    The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl− or \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter. PMID:18708455

  2. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    PubMed

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Screening programme to select a resin for Gravity Probe-B composites

    NASA Technical Reports Server (NTRS)

    Will, E. T.

    1992-01-01

    The Gravity Probe-B (GP-B) program undertook a screening program to select a possible replacement resin for the E-787 resin currently used in composite neck tubes and support struts. The goal was to find a resin with good cryogenic and structural properties, low-helium permeation and an easily repeatable fabrication process. Cycom 92, SCI REZ 081 and RS-3 were selected for comparison with E-787. Identical composite tubes made from each resin and gamma-alumina fiber (85 percent Al2O3, 15 percent SiO2) were evaluated for cryogenic and structural performance and for processability. Cryogenic performance was evaluated by measuring low-temperature permeation and leaks to determine cryogenic strain behavior. Structural performance was evaluated by comparing the resin-dominated shear strength of the composites. Processability was evaluated from fabrication comments and GP-B's own experience. SCI REZ 081 was selected as the best overall resin with superior strength and cryogenic performance and consistent processability.

  4. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    PubMed

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  5. Emotional Indoctrination through Sentimental Narrative in Spanish Primary Education Textbooks during the Franco Dictatorship (1939-1959)

    ERIC Educational Resources Information Center

    Mahamud, Kira

    2016-01-01

    This paper aims to highlight the prominence and relevance attached by the Franco dictatorial regime to emotions and sentiments in primary education textbooks. The authors of school textbooks employed a singular writing style, which enabled them to permeate the regime's ideology within the primary education community and classroom. Overcoming the…

  6. Analysis of the enablers of capacities to produce primary health care-based reforms in Latin America: a multiple case study

    PubMed Central

    Báscolo, Ernesto Pablo; Yavich, Natalia; Denis, Jean-Louis

    2016-01-01

    Abstract Background Primary health care (PHC)-based reforms have had different results in Latin America. Little attention has been paid to the enablers of collective action capacities required to produce a comprehensive PHC approach. Objective To analyse the enablers of collective action capacities to transform health systems towards a comprehensive PHC approach in Latin American PHC-based reforms. Methods We conducted a longitudinal, retrospective case study of three municipal PHC-based reforms in Bolivia and Argentina. We used multiple data sources and methodologies: document review; interviews with policymakers, managers and practitioners; and household and services surveys. We used temporal bracketing to analyse how the dynamic of interaction between the institutional reform process and the collective action characteristics enabled or hindered the enablers of collective action capacities required to produce the envisioned changes. Results The institutional structuring dynamics and collective action capacities were different in each case. In Cochabamba, there was an ‘interrupted’ structuring process that achieved the establishment of a primary level with a selective PHC approach. In Vicente López, there was a ‘path-dependency’ structuring process that permitted the consolidation of a ‘primary care’ approach, but with limited influence in hospitals. In Rosario, there was a ‘dialectic’ structuring process that favoured the development of the capacities needed to consolidate a comprehensive PHC approach that permeates the entire system. Conclusion The institutional change processes achieved the development of a primary health care level with different degrees of consolidation and system-wide influence given how the characteristics of each collective action enabled or hindered the ‘structuring’ processes. PMID:27209640

  7. Assessment of a New Silicon Carbide Tubular Honeycomb Membrane for Treatment of Olive Mill Wastewaters

    PubMed Central

    Fraga, Maria C.; Sanches, Sandra; Crespo, João G.; Pereira, Vanessa J.

    2017-01-01

    Extremely high removals of total suspended solids and oil and grease were obtained when olive mill wastewaters were filtered using new silicon carbide tubular membranes. These new membranes were used at constant permeate flux to treat real olive mill wastewaters at pilot scale. The filtration conditions were evaluated and optimized in terms of the selection of the permeate flux and flux maintenance strategies employed—backpulsing and backwashing—in order to reduce fouling formation. The results obtained reveal that the combination of backpulses and backwashes helps to maintain the permeate flux, avoids transmembrane pressure increase and decreases the cake resistance. Moreover, membrane cleaning procedures were compared and the main agents responsible for fouling formation identified. Results also show that, under total recirculation, despite an increased concentration of pollutants in the feed stream, the quality of the permeate is maintained. Membrane filtration using silicon carbide membranes is an effective alternative to dissolved air flotation and can be applied efficiently to remove total suspended solids and oil and grease from olive mill wastewaters. PMID:28264453

  8. Assessment of a New Silicon Carbide Tubular Honeycomb Membrane for Treatment of Olive Mill Wastewaters.

    PubMed

    Fraga, Maria C; Sanches, Sandra; Crespo, João G; Pereira, Vanessa J

    2017-02-27

    Extremely high removals of total suspended solids and oil and grease were obtained when olive mill wastewaters were filtered using new silicon carbide tubular membranes. These new membranes were used at constant permeate flux to treat real olive mill wastewaters at pilot scale. The filtration conditions were evaluated and optimized in terms of the selection of the permeate flux and flux maintenance strategies employed-backpulsing and backwashing-in order to reduce fouling formation. The results obtained reveal that the combination of backpulses and backwashes helps to maintain the permeate flux, avoids transmembrane pressure increase and decreases the cake resistance. Moreover, membrane cleaning procedures were compared and the main agents responsible for fouling formation identified. Results also show that, under total recirculation, despite an increased concentration of pollutants in the feed stream, the quality of the permeate is maintained. Membrane filtration using silicon carbide membranes is an effective alternative to dissolved air flotation and can be applied efficiently to remove total suspended solids and oil and grease from olive mill wastewaters.

  9. Development of tritium permeation barriers on Al base in Europe

    NASA Astrophysics Data System (ADS)

    Benamati, G.; Chabrol, C.; Perujo, A.; Rigal, E.; Glasbrenner, H.

    The development of the water cooled lithium lead (WCLL) DEMO fusion reactor requires the production of a material capable of acting as a tritium permeation barrier (TPB). In the DEMO blanket reactor permeation barriers on the structural material are required to reduce the tritium permeation from the Pb-17Li or the plasma into the cooling water to acceptable levels (<1 g/d). Because of experimental work previously performed, one of the most promising TPB candidates is A1 base coatings. Within the EU a large R&D programme is in progress to develop a TPB fabrication technique, compatible with the structural materials requirements and capable of producing coatings with acceptable performances. The research is focused on chemical vapour deposition (CVD), hot dipping, hot isostatic pressing (HIP) technology and spray (this one developed also for repair) deposition techniques. The final goal is to select a reference technique to be used in the blanket of the DEMO reactor and in the ITER test module fabrication. The activities performed in four European laboratories are summarised here.

  10. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  11. Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation.

    PubMed

    El-Hadidy, Gladious Naguib; Ibrahim, Howida Kamal; Mohamed, Magdi Ibrahim; El-Milligi, Mohamed Farid

    2012-01-01

    This work was undertaken to investigate microemulsion (ME) as a topical delivery system for the poorly water-soluble voriconazole. Different ME components were selected for the preparation of plain ME systems with suitable rheological properties for topical use. Two permeation enhancers were incorporated, namely sodium deoxycholate or oleic acid. Drug-loaded MEs were evaluated for their physical appearance, pH, rheological properties and in vitro permeation studies using guinea pig skin. MEs based on polyoxyethylene(10)oleyl ether (Brij 97) as the surfactant showed pseudoplastic flow with thixotropic behavior and were loaded with voriconazole. Jojoba oil-based MEs successfully prolonged voriconazole release up to 4 h. No significant changes in physical or rheological properties were recorded on storage for 12 months at ambient conditions. The presence of permeation enhancers favored transdermal rather than dermal delivery. Sodium deoxycholate was more effective than oleic acid for enhancing the voriconazole permeation. Voriconazole-loaded MEs, with and without enhancers, showed significantly better antifungal activity against Candida albicans than voriconazole supersaturated solution. In conclusion, the studied ME formulae could be promising vehicles for topical delivery of voriconazole.

  12. Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam

    2011-05-01

    We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.

  13. Comparative Study of the Energetics of Ion Permeation in Kv1.2 and KcsA Potassium Channels

    PubMed Central

    Baştuğ, Turgut; Kuyucak, Serdar

    2011-01-01

    Biological ion channels rely on a multi-ion transport mechanism for fast yet selective permeation of ions. The crystal structure of the KcsA potassium channel provided the first microscopic picture of this process. A similar mechanism is assumed to operate in all potassium channels, but the validity of this assumption has not been well investigated. Here, we examine the energetics of ion permeation in Shaker Kv1.2 and KcsA channels, which exemplify the six-transmembrane voltage-gated and two-transmembrane inward-rectifier channels. We study the feasibility of binding a third ion to the filter and the concerted motion of ions in the channel by constructing the potential of mean force for K+ ions in various configurations. For both channels, we find that a pair of K+ ions can move almost freely within the filter, but a relatively large free-energy barrier hinders the K+ ion from stepping outside the filter. We discuss the effect of the CMAP dihedral energy correction that was recently incorporated into the CHARMM force field on ion permeation dynamics. PMID:21281577

  14. Separation membrane development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.W.

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  15. Organic fluid permeation through fluoropolymer membranes

    DOEpatents

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  16. Detailed Investigation of Separation Performance of a MMM for Removal of Higher Hydrocarbons under Varying Operating Conditions

    PubMed Central

    Mushardt, Heike; Müller, Marcus; Shishatskiy, Sergey; Wind, Jan; Brinkmann, Torsten

    2016-01-01

    Mixed-matrix membranes (MMMs) are promising candidates to improve the competitiveness of membrane technology against energy-intensive conventional technologies. In this work, MMM composed of poly(octylmethylsiloxane) (POMS) and activated carbon (AC) were investigated with respect to separation of higher hydrocarbons (C3+) from permanent gas streams. Membranes were prepared as thin film composite membranes on a technical scale and characterized via scanning electron microscopy (SEM) and permeation measurements with binary mixtures of n-C4H10/CH4 under varying operating conditions (feed and permeate pressure, temperature, feed gas composition) to study the influence on separation performance. SEM showed good contact and absence of defects. Lower permeances but higher selectivities were found for MMM compared to pure POMS membrane. Best results were obtained at high average fugacity and activity of n-C4H10 with the highest selectivity estimated to be 36.4 at n-C4H10 permeance of 12 mN3/(m2·h·bar). Results were complemented by permeation of a multi-component mixture resembling a natural gas application, demonstrating the superior performance of MMM. PMID:26927194

  17. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: formulation and in vitro evaluation using PAMPA and Caco-2 approaches.

    PubMed

    Piazzini, Vieri; Monteforte, Elena; Luceri, Cristina; Bigagli, Elisabetta; Bilia, Anna Rita; Bergonzi, Maria Camilla

    2017-11-01

    The purpose of this study was to develop new formulation for an improved oral delivery of Vitex agnus-castus (VAC) extract. After the optimization and validation of analytical method for quali-quantitative characterization of extract, nanoemulsion (NE) was selected as lipid-based nanocarrier. The composition of extract-loaded NE resulted in triacetin as oil phase, labrasol as surfactant, cremophor EL as co-surfactant and water. NE contains until 60 mg/mL of extract. It was characterized by DLS and TEM analyses and its droplets appear dark with an average diameter of 11.82 ± 0.125 nm and a polydispersity index (PdI) of 0.117 ± 0.019. The aqueous solubility of the extract was improved about 10 times: the extract is completely soluble in the NE at the concentration of 60 mg/mL, while its solubility in water results less than 6 mg. The passive intestinal permeation was tested by using parallel artificial membrane permeation assay (PAMPA) and the permeation across Caco-2 cells after preliminary cytotoxicity studies were also evaluated. NE shows a good solubilizing effect of the constituents of the extract, compared with aqueous solution. The total amount of constituents permeated from NE to acceptor compartment is greater than that permeated from saturated aqueous solution. Caco-2 test confirmed PAMPA results and they revealed that NE was successful in increasing the permeation of VAC extract. This formulation could improve oral bioavailability of extract due to enhanced solubility and permeability of phytocomplex.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngo, Van; Wang, Yibo; Haas, Stephan

    Crystal structures of several bacterial Na v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na vAb channel. This approach provided new insight into the mechanism of selective ion permeation inmore » bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K + ions can block the entrance to the selectivity filter of Na vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K +, three Na + ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na + ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K + block is equivalent to large applied potentials experimentally measured for two bacterial Na v channels to induce inward currents of K + ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.« less

  19. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.

    PubMed

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  20. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel

    NASA Astrophysics Data System (ADS)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  1. Connexin Channel Permeability to Cytoplasmic Molecules

    PubMed Central

    Harris, Andrew L.

    2007-01-01

    Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made ∼30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly and expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex - 30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: What specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those interactions determine which cytoplasmic molecules can permeate and how well. At this time, the nature of those interactions is unclear. One hopes that with more detailed permeability and structural information, the specific molecular mechanisms of the selectivity can be elucidated. PMID:17470375

  2. A survey on selection, use, maintenance, and management of chemical protective gloves at workplaces in Japan.

    PubMed

    Kabe, Isamu; Tsuruoka, Hiroko; Kochi, Takeshi; Koga, Yasuo; Eguchi, Masafumi; Matsui, Tomomi; Ito, Rie; Tokujitani, Yoko; Miyauchi, Hiroyuki; Tanaka, Shigeru

    2017-10-05

    The aim of this study was to survey the selection, use, and maintenance of chemical protective gloves (CPGs) at real workplaces. Subjects comprised 817 workers using CPGs at seven domestic manufacturing plants in Japan. We administered an anonymous questionnaire survey comprising the following aspect related to CPGs: environment of use, conditions of use, method of selection, knowledge/awareness pertaining to their use, method of use, precautionary measures associated with their use, maximum time of use, and maintenance. We compared responses provided by management staff and field workers. Chi square test was used for the analysis. Respondents included 661 (80.9%) manufacturing workers, 121 (14.8%) managers or supervisors, and 35 (4.3%) others. In total, 70.5% organic solvents, 28.9% acid or/and alkali, 18.1% dust, and 10.3% carcinogenic substances were the chemical substances handled using CPGs. The reason for deciding to wear CPGs was "the use of chemical substances" for 46.5%, "notice in safety data sheet (SDS) " for 29.8%, and "management staffs' guidance" for 21.4% respondents. "The grasp of chemical substances" was 70.1% (91.1% excluding "not applicable" ). "Warning of caution on skin and eyes" was indicated by 69.5% (91.0%) and "educational reasons for use of CPGs" was accepted by 68.1% (90.7%) respondents. On the other hand, the rate of responses such as "obtaining permeability test results of target substances" and "mixed substances are selected considering substances with short permeation time" was 25.2% (38.4%) and 29.2% (48.4%), respectively. The rate of "yes" as a response in the item concerning "permeation test" was low. On comparing the response provided by the management staff and field workers, the rate of "the permeation test result of the target substance was obtained" was 27.7% for management staff and 41.2% for field workers (p = 0.022). Regarding the cuffs of CPGs, the rate of "to fold back and to prevent sagging" and "mounted with tape" were 30.5% and 21.8% for management staff and 50.2% and 42.2% for field workers (p = 0.001 and p = 0.001), respectively. This survey results suggested that the knowledge of "permeation test" of CPGs was not yet popular at industrial workplaces. It is necessary to disseminate knowledge related to "permeation test" to the users from manufacturers of CPGs. Additionally, the employer should appoint an administrator to ensure that CPGs are worn and increase the understanding of correct knowledge and usage of CPGs among workers.

  3. Enantioselective penetration enhancing effect of carvone on the in vitro transdermal permeation of nicorandil.

    PubMed

    Krishnaiah, Yellela S R; Nada, Aly

    2012-01-01

    The objective was to investigate the difference in penetration enhancing effect of R-carvone, S-carvone and RS-carvone on the in vitro transdermal drug permeation. In vitro permeation studies were carried out across neonatal rat epidermis from 2%w/v HPMC (hydroxypropyl methylcellulose) gel containing 4%w/v of nicorandil (a model drug) and a selected concentration (12%w/v) of either R-carvone, S-carvone or RS-carvone against a control. The stratum corneum (SC) of rats was treated with vehicle (70%v/v ethanol-water) or ethanolic solutions of 12%w/v R-carvone, S-carvone or RS-carvone. The enhancement ratio (ER) of R-carvone, S-carvone and RS-carvone when compared to control was about 37.1, 31.2 and 29.9, respectively indicating enantioselective penetration enhancing effect of carvone enantiomers. Furthermore, there was a significant decrease in the lag time required to produce a steady-state flux of nicorandil with S-carvone when compared to R-carvone and RS-carvone. DSC and FT-IR studies indicate that the investigated enantiomers of carvone exhibit a difference in their ability to affect the cellular organization of SC lipids and proteins thereby showing enantioselective transdermal drug permeation. It was concluded that R-carvone exhibited a higher penetration enhancing activity on transdermal permeation of nicorandil when compared to its S-isomer or racemic mixture.

  4. Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate.

    PubMed

    Refai, Hanan; Hassan, Doaa; Abdelmonem, Rehab

    2017-11-01

    Vaginal administration of sildenafil citrate has shown recently to develop efficiently the uterine lining with subsequent successful embryo implantation following in vitro fertilization. The aim of the present study was to develop sildenafil-loaded liposomes coated with bioadhesive polymers for enhanced vaginal retention and improved drug permeation. Three liposomal formulae were prepared by thin-film method using different phospholipid:cholesterol ratios. The optimal liposomal formulation was coated with bioadhesive polymers (chitosan and HPMC). A marked increase in liposomal size and zeta potential was observed for all coated liposomal formulations. HPMC-coated liposomes showed the greater bioadhesion and higher entrapment efficiency than chitosan-coated formulae. The in vitro release studies showed prolonged release of sildenafil from coated liposomes as compared to uncoated liposomes and sildenafil solution. Ex vivo permeation study revealed the enhanced permeation of coated relative to uncoated liposomes. Chitosan-coated formula demonstrated highest drug permeation and was thus selected for further investigations. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of the liposomes by chitosan. Histopathological in vivo testing proved the efficacy of chitosan-coated liposomes to improve blood flow to the vaginal endometrium and to increase endometrial thickness. Chitosan-coated liposomes can be considered as potential novel drug delivery system intended for the vaginal administration of sildenafil, which would prolong system's retention at the vaginal site and enhance the permeation of sildenafil to uterine blood circulation.

  5. Skin permeation enhancement effects of the gel and whole-leaf materials of Aloe vera, Aloe marlothii and Aloe ferox.

    PubMed

    Fox, Lizelle T; Gerber, Minja; du Preez, Jan L; du Plessis, Jeanetta; Hamman, Josias H

    2015-01-01

    The aim of this study was to investigate the in-vitro permeation enhancement effects of the gel and whole-leaf materials of Aloe vera, Aloe marlothii and Aloe ferox using ketoprofen as a marker compound. The permeation studies were conducted across excised female abdominal skin in Franz diffusion cells, and the delivery of ketoprofen into the stratum corneum-epidermis and epidermis-dermis layers of the skin was investigated using a tape-stripping technique. A. vera gel showed the highest permeation-enhancing effect on ketoprofen (enhancement ratio or ER = 2.551) when compared with the control group, followed by A. marlothii gel (ER = 1.590) and A. ferox whole-leaf material (ER = 1.520). Non-linear curve fitting calculations indicated that the drug permeation-enhancing effect of A. vera gel can be attributed to an increased partitioning of the drug into the skin, while A. ferox whole leaf modified the diffusion characteristics of the skin for ketoprofen. The tape stripping results indicated that A. marlothii whole leaf delivered the highest concentration of the ketoprofen into the different skin layers. Of the selected aloe species investigated, A. vera gel material showed the highest potential as transdermal drug penetration enhancer across human skin. © 2014 Royal Pharmaceutical Society.

  6. Formulation of sage essential oil (Salvia officinalis, L.) monoterpenes into chitosan hydrogels and permeation study with GC-MS analysis.

    PubMed

    Kodadová, Alexandra; Vitková, Zuzana; Herdová, Petra; Ťažký, Anton; Oremusová, Jarmila; Grančai, Daniel; Mikuš, Peter

    2015-01-01

    This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.

  7. Novel serine-based gemini surfactants as chemical permeation enhancers of local anesthetics: A comprehensive study on structure-activity relationships, molecular dynamics and dermal delivery.

    PubMed

    Teixeira, Raquel S; Cova, Tânia F G G; Silva, Sérgio M C; Oliveira, Rita; do Vale, M Luísa C; Marques, Eduardo F; Pais, Alberto A C C; Veiga, Francisco J B

    2015-06-01

    This work aims at studying the efficacy of a series of novel biocompatible, serine-based surfactants as chemical permeation enhancers for two different local anesthetics, tetracaine and ropivacaine, combining an experimental and computational approach. The surfactants consist of gemini molecules structurally related, but with variations in headgroup charge (nonionic vs. cationic) and in the hydrocarbon chain lengths (main and spacer chains). In vitro permeation and molecular dynamics studies combined with cytotoxicity profiles were performed to investigate the permeation of both drugs, probe skin integrity, and rationalize the interactions at molecular level. Results show that these enhancers do not have significant deleterious effects on the skin structure and do not cause relevant changes on cell viability. Permeation across the skin is clearly improved using some of the selected serine-based gemini surfactants, namely the cationic ones with long alkyl chains and shorter spacer. This is noteworthy in the case of ropivacaine hydrochloride, which is not easily administered through the stratum corneum. Molecular dynamics results provide a mechanistic view of the surfactant action on lipid membranes that essentially corroborate the experimental observations. Overall, this study suggests the viability of these serine-based surfactants as suitable and promising delivery agents in pharmaceutical formulations. Copyright © 2015. Published by Elsevier B.V.

  8. Nitrite transport into pig erythrocytes and its potential biological role.

    PubMed

    Jensen, F B

    2005-07-01

    To study nitrite transport and its oxygenation dependency in pig erythrocytes, as this is fundamental to the possible participation of nitrite in blood flow regulation via its reduction to nitric oxide by deoxygenated haemoglobin (Hb). Pig red blood cells (RBCs) were tonometer-equilibrated to physiological pCO2 in oxygenated and deoxygenated states. Nitrite was added and the kinetics of NO2- influx and methaemoglobin (metHb) formation were assessed at variable temperature and haematocrit. Nitrite quickly permeated and equilibrated across the membrane, and then continued to enter RBCs as a consequence of its intracellular removal (via reactions with Hb to form nitrate and metHb in oxygenated cells, and NO and metHb in deoxygenated cells). The membrane permeation as such showed little oxygenation dependency, but as metHb formation was significantly higher in oxygenated than deoxygenated RBCs, nitrite transport tended to be largest into oxygenated RBCs. This contrasts with a preferential permeation of deoxygenated RBCs in some fish species. Nitrite transport showed low temperature sensitivity but was speeded up at low haematocrit via more rapid intracellular nitrite removal (metHb formation). Nitrite influx was not affected by inhibitors of facilitated diffusion (DIDS, phloretin and PCMB) and may occur via conductive transport. Extracellular pH was stable during nitrite transport. Nitrite extensively permeates both oxygenated and deoxygenated pig RBCs, which may enable a dual function of nitrite entry: viz. conversion to NO at low pO2 to promote blood flow and detoxification to non-toxic nitrate at inappropriate high nitrite levels.

  9. Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes

    PubMed Central

    Li, Jinghui; Chen, Zhuo; Umar, Ahmad; Liu, Yang; Shang, Ying; Zhang, Xiaokai; Wang, Yao

    2017-01-01

    Crosslinking is an effective way to fabricate high-selective CO2 separation membranes because of its unique crosslinking framework. Thus, it is essentially significant to study the influence of crosslinking degree on the permeation selectivities of CO2. Herein, we report a successful and facile synthesis of a series of polyethylene oxide (PEO)-based diblock copolymers (BCP) incorporated with an unique UV-crosslinkable chalcone unit using Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) process. The membranes of as-prepared BCPs show superior carbon dioxide (CO2) separation properties as compared to nitrogen (N2) after UV-crosslinking. Importantly, the influence of different proportions of crosslinked chalcone on CO2 selectivities was systematically investigated, which revealed that CO2 selectivities increased obviously with the enhancement of chalcone fractions within a certain limit. Further, the CO2 selectivities of block copolymer with the best block proportion was studied by varying the crosslinking time which confirmed that the high crosslinking degree exhibited a better CO2/N2 (αCO2/N2) selectivities. A possible mechanism model revealing that the crosslinking degree played a key role in the gas separation process was also proposed. PMID:28051190

  10. Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes

    NASA Astrophysics Data System (ADS)

    Li, Jinghui; Chen, Zhuo; Umar, Ahmad; Liu, Yang; Shang, Ying; Zhang, Xiaokai; Wang, Yao

    2017-01-01

    Crosslinking is an effective way to fabricate high-selective CO2 separation membranes because of its unique crosslinking framework. Thus, it is essentially significant to study the influence of crosslinking degree on the permeation selectivities of CO2. Herein, we report a successful and facile synthesis of a series of polyethylene oxide (PEO)-based diblock copolymers (BCP) incorporated with an unique UV-crosslinkable chalcone unit using Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) process. The membranes of as-prepared BCPs show superior carbon dioxide (CO2) separation properties as compared to nitrogen (N2) after UV-crosslinking. Importantly, the influence of different proportions of crosslinked chalcone on CO2 selectivities was systematically investigated, which revealed that CO2 selectivities increased obviously with the enhancement of chalcone fractions within a certain limit. Further, the CO2 selectivities of block copolymer with the best block proportion was studied by varying the crosslinking time which confirmed that the high crosslinking degree exhibited a better CO2/N2 (αCO2/N2) selectivities. A possible mechanism model revealing that the crosslinking degree played a key role in the gas separation process was also proposed.

  11. Development of solid dispersions of artemisinin for transdermal delivery.

    PubMed

    Shahzad, Yasser; Sohail, Sadia; Arshad, Muhammad Sohail; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-11-30

    Solid dispersions of the poorly soluble drug artemisinin were developed using polymer blends of polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) with the aim of enhancing solubility and in vitro permeation of artemisinin through skin. Formulations were characterised using a combination of molecular dynamics (MD) simulations, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Solubility of artemisinin was determined in two solvents: de-ionised water and phosphate buffered saline (PBS; pH 7.4), while in vitro drug permeation studies were carried out using rabbit skin as a model membrane. MD simulations revealed miscibility between the drug and polymers. DSC confirmed the molecular dispersion of the drug in the polymer blend. Decrease in crystallinity of artemisinin with respect to polymer content and the absence of specific drug-polymer interactions were confirmed using XRD and FT-IR, respectively. The solubility of artemisinin was dramatically enhanced for the solid dispersions, as was the permeation of artemisinin from saturated solid-dispersion vehicles relative to that from saturated solutions of the pure drug. The study suggests that high energy solid forms of artemisinin could possibly enable transdermal delivery of artemisinin. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Mucoadhesive buccal tablets containing silymarin Eudragit-loaded nanoparticles: formulation, characterisation and ex vivo permeation.

    PubMed

    El-Nahas, Amira E; Allam, Ahmed N; El-Kamel, Amal H

    2017-08-01

    Eudragit-loaded silymarin nanoparticles (SNPs) and their formulation into buccal mucoadhesive tablets were investigated to improve the low bioavailability of silymarin through buccal delivery. Characterisation of SNPs and silymarin buccal tablets (SBTs) containing the optimised NPs were performed. Ex vivo permeability of nominated SBTs were assessed using chicken pouch mucosa compared to SNPs and drug suspension followed by histopathological examination. Selected SNPs had a small size (<150 nm), encapsulation effciency (>77%) with drug release of about 90% after 6 h. For STBs, all physicochemical parameters were satisfactory for different polymers used. DSC and FT-IR studies suggested the presence of silymarin in an amorphous state. Ex vivo permeation significantly emphasised the great enhancement of silymarin permeation after NPs formation and much more increase after formulating into BTs relative to the corresponding drug dispersion with confirmed membrane integrity. Incorporation of SNPs into BTs could be an efficient vehicle for delivery of silymarin.

  13. Chemical Resistance of Disposable Nitrile Gloves Exposed to Simulated Movement

    PubMed Central

    Phalen, Robert N.; Wong, Weng Kee

    2012-01-01

    Large discrepancies between laboratory permeation testing and field exposures have been reported, with indications that hand movement could account for a portion of these differences. This study evaluated the influence of simulated movement on chemical permeation of 30 different disposable nitrile glove products. Products were investigated out-of-box and with exposure to simulated whole-glove movement. Permeation testing was conducted using ethanol as a surrogate test chemical. A previously designed pneumatic system was used to simulate hand movement. No movement and movement tests were matched-paired to control for environmental conditions, as were statistical analyses. Permeation data were collected for a 30-min exposure period or until a breakthrough time (BT) and steady-state permeation rate (SSPR) could be determined. A third parameter, area under the curve at 30 min (AUC-30), was used to estimate potential worker exposure. With movement, a significant decrease in BT (p ≤ 0.05), ranging from 6–33%, was observed for 28 products. The average decrease in BT was 18% (p ≤ 0.001). With movement, a significant increase in SSPR (p ≤ 0.05), ranging from 1–78%, was observed with 25 products. The average increase in SSPR was 18% (p ≤ 0.001). Significant increases in AUC-30 (p ≤ 0.05), ranging from 23–277%, were also observed for all products where it could be calculated. On average, there was a 58% increase (p ≤ 0.001). The overall effect of movement on permeation through disposable nitrile gloves was significant. Simulated movement significantly shortened the BT, increased the SSPR, and increased the cumulative 30-min exposure up to three times. Product variability also accounted for large differences, up to 40 times, in permeation and cumulative exposure. Glove selection must take these factors into account. It cannot be assumed that all products will perform in a similar manner. PMID:23009187

  14. EFFECT OF HYDROPHILIC AND HYDROPHOBIC POLYMER ON IN VITRO DISSOLUTION AND PERMEATION OF BISOPROLOL FUMARATE THROUGH TRANSDERMAL PATCH.

    PubMed

    Shabbir, Maryam; Ali, Sajid; Raza, Moosa; Sharif, Ali; Akhtar, Furoan Muhammad; Manan, Abdul; Fazli, Ali Raza; Younas, Neelofar; Manzoor, Iqra

    2017-01-01

    A matrix transdermal patch of bisoprolol fumarate was formulated with different concentrations of Eudragit RS 100 and Methocel E5 with PEG 400 as plasticizer by solvent evaporation technique. Tween 80 was added to the optimized patch to evaluate the effect of permeation enhancer at different concentration through the excised rabbit's skin. The patches were analyzed for weight variation, drug content, swelling index, erosion studies, moisture content, moisture uptake, water vapor transmission rate (WVTR) and water vapor permeability (WVP). In vitro dissolution test was carried out in USP dissolution apparatus V to select the optimized formulation. In vitr skin permeation studies were done in Franz diffusion cell using rabbit skin as a model membrane. The cumulative drug release and flux were determined to compare the result of test patches with a control patch. The greatest enhancement ratio (ER) was obtained in F03-PE with 30% Tween 80. F03-PE seemed to follow zero order kinetics with super case II mechanism of drug release. Statistical ANOVA suggested that there was a significant difference in formulations, steady flux and cumulative permeation rate at different Tween 80 concentrations.

  15. Evaluation of Microemulsion and Lamellar Liquid Crystalline Systems for Transdermal Zidovudine Delivery.

    PubMed

    Carvalho, André Luis Menezes; Silva, José Alexsandro da; Lira, Ana Amélia Moreira; Conceição, Tamara Matos Freire; Nunes, Rogéria de Souza; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Sarmento, Victor Hugo Vitorino; Leal, Leila Bastos; de Santana, Davi Pereira

    2016-07-01

    This study proposed to investigate and to compare colloidal carrier systems containing Zidovudine (3'-azido-3'-deoxythymidine) (AZT) for transdermal administration and optimization of antiretroviral therapy. Microemulsion (ME) and lamellar phase (LP) liquid crystal were obtained and selected from pseudoternary diagrams previously developed. Small-angle X-ray scattering and rheology analysis confirmed the presence of typical ME and liquid crystalline structures with lamellar arrangement, respectively. Both colloidal carrier systems, ME, and LP remained stable, homogeneous, and isotropic after AZT addition. In vitro permeation study (using pig ear skin) showed that the amount of permeated drug was higher for ME compared to the control and LP, obtaining a permeation enhancing effect on the order of approximately 2-fold (p < 0.05). Microscopic examination after in vivo skin irritation studies using mice suggested few histological changes in the skin of animals treated with the ME compared to the control group (hydrogel). Thus, ME proved to be adequate and have promising effects, being able to promote the drug permeation without causing apparent skin irritation. On the order hand, LP functioned as a drug reservoir reducing AZT partitioning into the skin. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Bio-based topical system for enhanced salicylic acid delivery: preparation and performance of gels.

    PubMed

    Langasco, Rita; Spada, Gianpiera; Tanriverdi, Sakine Tuncay; Rassu, Giovanna; Giunchedi, Paolo; Özer, Özgen; Gavini, Elisabetta

    2016-08-01

    New salicylic acid (SA)-loaded gels were developed using excipients made from renewable materials, and our goal was to improve drug permeation in the topical treatment of acne vulgaris. We studied the preparation parameters to obtain suitable gel formulations. Only naturally occurring polymers were used as gelling agents. Two hydrogels and three lipogels were selected and characterized in terms of drug loading, pH, viability cells, rheology, mechanical properties and in vitro permeation; these hydrogels and lipogels were compared with the traditional ointment. We also evaluated skin parameters before and after gel application. The formulations that we studied are non-Newtonian fluids; they have high drug loading and suitable mechanical properties. Lipogels exhibit a slower and more linear in vitro permeation profile compared with hydrogels. The different vehicles that we used affected drug permeation and improve patient compliance. Cytotoxicity studies suggest that all of the formulations are non-toxic. Lipogels demonstrate appropriate technological features and improved performance compared with the traditional ointment with regard to their composition. Lipogels may represent a new bio-based topical system for SA delivery. The use of 'green' excipients leads to 'skin-friendly' formulations that are able to satisfy environmental safety. © 2016 Royal Pharmaceutical Society.

  17. Ion-binding properties of the ClC chloride selectivity filter

    PubMed Central

    Lobet, Séverine; Dutzler, Raimund

    2006-01-01

    The ClC channels are members of a large protein family of chloride (Cl−) channels and secondary active Cl− transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl− ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl− channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction. PMID:16341087

  18. Catalyzed CO.sub.2-transport membrane on high surface area inorganic support

    DOEpatents

    Liu, Wei

    2014-05-06

    Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

  19. Crystal structure of the epithelial calcium channel TRPV6.

    PubMed

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  20. Method for producing a selectively permeable separation module

    DOEpatents

    Stone, Mark L.; Orme, Christopher J.; Peterson, Eric S.

    2000-03-14

    A method and apparatus is provided for casting a polymeric membrane on the inside surface of porous tubes to provide a permeate filter system capable of withstanding hostile operating conditions and having excellent selectivity capabilities. Any polymer in solution, by either solvent means or melt processing means, is capable of being used in the present invention to form a thin polymer membrane having uniform thickness on the inside surface of a porous tube. Multiple tubes configured as a tubular module can also be coated with the polymer solution. By positioning the longitudinal axis of the tubes in a substantially horizontal position and rotating the tube about the longitudinal axis, the polymer solution coats the inside surface of the porous tubes without substantially infiltrating the pores of the porous tubes, thereby providing a permeate filter system having enhanced separation capabilities.

  1. Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.

    PubMed

    Cimini, Alessio; Moresi, Mauro

    2016-10-01

    In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, v S = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J * ) of 32 or 37 L/m 2 /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity <1 EBC unit, but a significant reduction in density, viscosity, color, extract, and foam half-life with respect to their corresponding retentates. The 0.8-μm asymmetric membrane module might be selected, its corresponding permeate having quite a good turbidity and medium reduction in the aforementioned beer quality parameters. Moreover, it exhibited J * values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m 2 /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined. © 2016 Institute of Food Technologists®.

  2. On the permeation of large organic cations through the pore of ATP-gated P2X receptors

    PubMed Central

    Harkat, Mahboubi; Peverini, Laurie; Dunning, Kate; Beudez, Juline; Martz, Adeline; Calimet, Nicolas; Specht, Alexandre; Cecchini, Marco; Chataigneau, Thierry; Grutter, Thomas

    2017-01-01

    Pore dilation is thought to be a hallmark of purinergic P2X receptors. The most commonly held view of this unusual process posits that under prolonged ATP exposure the ion pore expands in a striking manner from an initial small-cation conductive state to a dilated state, which allows the passage of larger synthetic cations, such as N-methyl-d-glucamine (NMDG+). However, this mechanism is controversial, and the identity of the natural large permeating cations remains elusive. Here, we provide evidence that, contrary to the time-dependent pore dilation model, ATP binding opens an NMDG+-permeable channel within milliseconds, with a conductance that remains stable over time. We show that the time course of NMDG+ permeability superimposes that of Na+ and demonstrate that the molecular motions leading to the permeation of NMDG+ are very similar to those that drive Na+ flow. We found, however, that NMDG+ “percolates” 10 times slower than Na+ in the open state, likely due to a conformational and orientational selection of permeating molecules. We further uncover that several P2X receptors, including those able to desensitize, are permeable not only to NMDG+ but also to spermidine, a large natural cation involved in ion channel modulation, revealing a previously unrecognized P2X-mediated signaling. Altogether, our data do not support a time-dependent dilation of the pore on its own but rather reveal that the open pore of P2X receptors is wide enough to allow the permeation of large organic cations, including natural ones. This permeation mechanism has considerable physiological significance. PMID:28442564

  3. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels

    PubMed Central

    Jun, Ikhyun; Cheng, Mary Hongying; Sim, Eunji; Jung, Jinsei; Suh, Bong Lim; Kim, Yonjung; Son, Hankil; Park, Kyungsoo; Kim, Chul Hoon; Yoon, Joo‐Heon; Whitcomb, David C.; Bahar, Ivet

    2016-01-01

    Key points Cellular stimuli can modulate the ion selectivity of some anion channels, such as CFTR, ANO1 and the glycine receptor (GlyR), by changing pore size.Ion selectivity of CFTR, ANO1 and GlyR is critically affected by the electric permittivity and diameter of the channel pore.Pore size change affects the energy barriers of ion dehydration as well as that of size‐exclusion of anion permeation.Pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of CFTR, ANO1 and GlyR.Dynamic change in P HC O3/ Cl may mediate many physiological and pathological processes. Abstract Chloride (Cl−) and bicarbonate (HCO3 −) are two major anions and their permeation through anion channels plays essential roles in our body. However, the mechanism of ion selection by the anion channels is largely unknown. Here, we provide evidence that pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of anion channels by reducing energy barriers of size‐exclusion and ion dehydration of HCO3 − permeation. Molecular, physiological and computational analyses of major anion channels, such as cystic fibrosis transmembrane conductance regulator (CFTR), anoctamin‐1(ANO1/TMEM16A) and the glycine receptor (GlyR), revealed that the ion selectivity of anion channels is basically determined by the electric permittivity and diameter of the pore. Importantly, cellular stimuli dynamically modulate the anion selectivity of CFTR and ANO1 by changing the pore size. In addition, pore dilatation by a mutation in the pore‐lining region alters the anion selectivity of GlyR. Changes in pore size affected not only the energy barriers of size exclusion but that of ion dehydration by altering the electric permittivity of water‐filled cavity in the pore. The dynamic increase in P HC O3/ Cl by pore dilatation may have many physiological and pathophysiological implications ranging from epithelial HCO3 − secretion to neuronal excitation. PMID:26663196

  4. Development of a two-stage membrane-based wash-water reclamation subsystem

    NASA Technical Reports Server (NTRS)

    Mccray, S. B.

    1988-01-01

    A two-stage membrane-based subsystem was designed and constructed to enable the recycle of wash waters generated in space. The first stage is a fouling-resistant tube-side-feed hollow-fiber ultrafiltration module, and the second stage is a spiral-wound reverse-osmosis module. Throughout long-term tests, the subsystem consistently produced high-quality permeate, processing actual wash water to 95 percent recovery.

  5. Conserved Aromatic Residue Confers Cation Selectivity in Claudin-2 and Claudin-10b*

    PubMed Central

    Li, Jiahua; Zhuo, Min; Pei, Lei; Yu, Alan S. L.

    2013-01-01

    In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl− permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl− permeability. The Y67F mutant restored the Na+ permeability, Cl− permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore. PMID:23760508

  6. Selectivity and permeation of alkali metal ions in K+-channels.

    PubMed

    Furini, Simone; Domene, Carmen

    2011-06-24

    Ion conduction in K(+)-channels is usually described in terms of concerted movements of K(+) progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K(+)-channels are known to be highly selective for K(+) over Na(+), some K(+) channels conduct Na(+) in the absence of K(+). Other ions are known to permeate K(+)-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K(+)-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb(+) translocation show at atomic level why experimental Rb(+) conductance is slightly lower than that of K(+). In contrast to K(+) or Rb(+), external Na(+) block K(+) currents, and the sites where Na(+) transport is hindered are characterized. Translocation of K(+)/Na(+) mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na(+), excluding Na(+) from a channel already loaded with K(+). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Design of a transdermal delivery system for aspirin as an antithrombotic drug.

    PubMed

    Ammar, H O; Ghorab, M; El-Nahhas, S A; Kamel, R

    2006-12-11

    Aspirin has become the gold standard to which newer antiplatelet drugs are compared for reducing risks of cardiovascular diseases, while keeping low cost. Oral aspirin has a repertoire of gastrointestinal side effects even at low doses and requires high frequent dosing because it undergoes extensive presystemic metabolism. Transdermal delivery offers an alternative route that bypasses the gut and may be more convenient and safer for aspirin delivery especially during long-term use. This study comprised formulation of aspirin in different topical bases. Release studies revealed that hydrocarbon gel allowed highest drug release. In vitro permeation studies revealed high drug permeation from hydrocarbon gel. Several chemical penetration enhancers were monitored for augmenting the permeation from this base. Combination of propylene glycol and alcohol showed maximum enhancing effect and, hence, was selected for biological investigation. The biological performance of the selected formulation was assessed by measuring the inhibition of platelet aggregation relevant to different dosage regimens aiming to minimize both drug dose and frequency of application. The results demonstrated the feasibility of successfully influencing platelet function and revealed that the drug therapeutic efficacy in transdermal delivery system is dose independent. Biological performance was re-assessed after storage and the results revealed stability and persistent therapeutic efficacy.

  8. Biomimetic Dissolution: A Tool to Predict Amorphous Solid Dispersion Performance.

    PubMed

    Puppolo, Michael M; Hughey, Justin R; Dillon, Traciann; Storey, David; Jansen-Varnum, Susan

    2017-11-01

    The presented study describes the development of a membrane permeation non-sink dissolution method that can provide analysis of complete drug speciation and emulate the in vivo performance of poorly water-soluble Biopharmaceutical Classification System class II compounds. The designed membrane permeation methodology permits evaluation of free/dissolved/unbound drug from amorphous solid dispersion formulations with the use of a two-cell apparatus, biorelevant dissolution media, and a biomimetic polymer membrane. It offers insight into oral drug dissolution, permeation, and absorption. Amorphous solid dispersions of felodipine were prepared by hot melt extrusion and spray drying techniques and evaluated for in vitro performance. Prior to ranking performance of extruded and spray-dried felodipine solid dispersions, optimization of the dissolution methodology was performed for parameters such as agitation rate, membrane type, and membrane pore size. The particle size and zeta potential were analyzed during dissolution experiments to understand drug/polymer speciation and supersaturation sustainment of felodipine solid dispersions. Bland-Altman analysis was performed to measure the agreement or equivalence between dissolution profiles acquired using polymer membranes and porcine intestines and to establish the biomimetic nature of the treated polymer membranes. The utility of the membrane permeation dissolution methodology is seen during the evaluation of felodipine solid dispersions produced by spray drying and hot melt extrusion. The membrane permeation dissolution methodology can suggest formulation performance and be employed as a screening tool for selection of candidates to move forward to pharmacokinetic studies. Furthermore, the presented model is a cost-effective technique.

  9. In vitro-in vivo correlation in skin permeation.

    PubMed

    Mohammed, D; Matts, P J; Hadgraft, J; Lane, M E

    2014-02-01

    In vitro skin permeation studies have been used extensively in the development and optimisation of delivery of actives in vivo. However, there are few reported correlations of such in vitro studies with in vivo data. The aim of this study was to investigate the skin permeation of a model active, niacinamide, both in vitro and in vivo. Conventional diffusion cell studies were conducted in human skin to determine niacinamide permeation from a range of vehicles which included dimethyl isosorbide (DMI), propylene glycol (PG), propylene glycol monolaurate (PGML), N-methyl 2-pyrrolidone (NMP), Miglyol 812N® (MG), and mineral oil (MO). Single, binary or ternary systems were examined. The same vehicles were subsequently examined to investigate niacinamide delivery in vivo. For this proof-of-concept study one donor was used for the in vitro studies and one volunteer for the in vivo investigations to minimise biovariability. Analysis of in vitro samples was conducted using HPLC and in vivo uptake of niacinamide was evaluated using Confocal Raman spectroscopy (CRS). The amount of niacinamide permeated through skin in vitro was linearly proportional to the intensity of the niacinamide signal determined in the stratum corneum in vivo. A good correlation was observed between the signal intensities of selected vehicles and niacinamide signal intensity. The findings provide further support for the use of CRS to monitor drug delivery into and across the skin. In addition, the results highlight the critical role of the vehicle and its disposition in skin for effective dermal delivery.

  10. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Antonini, David

    2008-01-01

    This viewgraph presentation describes a comparative packaging study for use on long duration space missions. The topics include: 1) Purpose; 2) Deliverables; 3) Food Sample Selection; 4) Experimental Design Matrix; 5) Permeation Rate Comparison; and 6) Packaging Material Information.

  11. Ion-Gated Gas Separation through Porous Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Ziqi; Mahurin, Shannon M.; Dai, Sheng

    Porous graphene holds great promise as an atom-thin, high-permeance membrane for gas separation, but to precisely control the pore size at three to five angstroms proves challenging. Here we propose an ion-gated graphene membrane comprising a monolayer of ionic liquid coated porous graphene to dynamically modulate the pore size to achieve selective gas separation. This approach enables the otherwise non-selective large pores on the order of 1 nm in size to be selective for gases whose diameters range from three to four angstroms. We show from molecular dynamics simulations that CO 2, N 2 and CH 4 all can permeatemore » through a 1-nm pore in graphene without any selectivity. But when a monolayer of [emim][BF 4] is deposited on the porous graphene, CO 2 has much higher permeance than the other two gases. We find that the anion dynamically modulates the pore size by hovering above the pore and provides affinity for CO 2 while the larger cation (which cannot go through the pore) holds the anion in place via electrostatic attraction. This composite membrane is especially promising for CO 2/CH 4 separation, with a CO 2/CH 4 selectivity of about 42 and CO 2 permeance ~105 GPU (gas permeation unit). We further demonstrate that selectivity and permeance can be tuned by the anion size. The present work points toward a promising direction of using the atom-thin ionic-liquid/porous-graphene hybrid membrane for high-permeance, selective gas separation that allows a greater flexibility in substrate pore size control.« less

  12. Ion-Gated Gas Separation through Porous Graphene

    DOE PAGES

    Tian, Ziqi; Mahurin, Shannon M.; Dai, Sheng; ...

    2017-02-10

    Porous graphene holds great promise as an atom-thin, high-permeance membrane for gas separation, but to precisely control the pore size at three to five angstroms proves challenging. Here we propose an ion-gated graphene membrane comprising a monolayer of ionic liquid coated porous graphene to dynamically modulate the pore size to achieve selective gas separation. This approach enables the otherwise non-selective large pores on the order of 1 nm in size to be selective for gases whose diameters range from three to four angstroms. We show from molecular dynamics simulations that CO 2, N 2 and CH 4 all can permeatemore » through a 1-nm pore in graphene without any selectivity. But when a monolayer of [emim][BF 4] is deposited on the porous graphene, CO 2 has much higher permeance than the other two gases. We find that the anion dynamically modulates the pore size by hovering above the pore and provides affinity for CO 2 while the larger cation (which cannot go through the pore) holds the anion in place via electrostatic attraction. This composite membrane is especially promising for CO 2/CH 4 separation, with a CO 2/CH 4 selectivity of about 42 and CO 2 permeance ~105 GPU (gas permeation unit). We further demonstrate that selectivity and permeance can be tuned by the anion size. The present work points toward a promising direction of using the atom-thin ionic-liquid/porous-graphene hybrid membrane for high-permeance, selective gas separation that allows a greater flexibility in substrate pore size control.« less

  13. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation

    NASA Astrophysics Data System (ADS)

    Nordin, Nik Abdul Hadi Md; Ismail, Ahmad Fauzi; Misdan, Nurasyikin; Nazri, Noor Aina Mohd

    2017-10-01

    Tunability of metal-organic frameworks (MOFs) properties enables them to be tailored for specific applications. In this study, zeolitic imidazole framework 8 (ZIF-8), sub-class of MOF, underwent pre-synthesis and post-synthesis modifications. The pre-synthesis modification using GO (ZIF-8/GO) shows slight decrease in textural properties, while the post-synthesis modification using amine solution (ZIF-8/NH2) resulted in superior BET surface area and pore volume. Mixed matrix membranes (MMMs) derived from polysulfone (PSf) and the modified ZIF-8s were then prepared via dry/wet phase inversion. The polymer chain flexibility of the resulted MMMs shows rigidification, where ZIF-8/NH2 as filler resulting higher rigidification compared to ZIF-8/GO. The MMMs were further subjected to pure CO2 and CH4 gas permeation experiments. The PSf/ZIF-8/NH2 shows superior CO2/CH4 selectivity (88% increased) while sacrificing CO2 permeance due to combination of severe polymer chain rigidification and the presence of CO2-philic group, amine. Whereas, the PSf/ZIF-8/GO possess 64% increase in CO2 permeance without notable changes in CO2/CH4 selectivity.

  14. Optimization of formulation variables of benzocaine liposomes using experimental design.

    PubMed

    Mura, Paola; Capasso, Gaetano; Maestrelli, Francesca; Furlanetto, Sandra

    2008-01-01

    This study aimed to optimize, by means of an experimental design multivariate strategy, a liposomal formulation for topical delivery of the local anaesthetic agent benzocaine. The formulation variables for the vesicle lipid phase uses potassium glycyrrhizinate (KG) as an alternative to cholesterol and the addition of a cationic (stearylamine) or anionic (dicethylphosphate) surfactant (qualitative factors); the percents of ethanol and the total volume of the hydration phase (quantitative factors) were the variables for the hydrophilic phase. The combined influence of these factors on the considered responses (encapsulation efficiency (EE%) and percent drug permeated at 180 min (P%)) was evaluated by means of a D-optimal design strategy. Graphic analysis of the effects indicated that maximization of the selected responses requested opposite levels of the considered factors: For example, KG and stearylamine were better for increasing EE%, and cholesterol and dicethylphosphate for increasing P%. In the second step, the Doehlert design, applied for the response-surface study of the quantitative factors, pointed out a negative interaction between percent ethanol and volume of the hydration phase and allowed prediction of the best formulation for maximizing drug permeation rate. Experimental P% data of the optimized formulation were inside the confidence interval (P < 0.05) calculated around the predicted value of the response. This proved the suitability of the proposed approach for optimizing the composition of liposomal formulations and predicting the effects of formulation variables on the considered experimental response. Moreover, the optimized formulation enabled a significant improvement (P < 0.05) of the drug anaesthetic effect with respect to the starting reference liposomal formulation, thus demonstrating its actually better therapeutic effectiveness.

  15. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    PubMed

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  16. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    PubMed

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. Copyright © 2016. Published by Elsevier B.V.

  17. Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors

    PubMed Central

    Shipley, RJ; Waters, SL; Ellis, MJ

    2010-01-01

    The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)–poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 µm. The experimental data is used to determine a membrane permeability, of k = 1.86 × 10−16 m2, and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Ql,in, lumen outlet pressure, P1, and ECS outlet pressure, P0, is1 where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation 1 to specify operating conditions for their bioreactor. PMID:20641054

  18. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    NASA Astrophysics Data System (ADS)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  19. Production of egg white protein hydrolysates with improved antioxidant capacity in a continuous enzymatic membrane reactor: optimization of operating parameters by statistical design.

    PubMed

    Jakovetić Tanasković, Sonja; Luković, Nevena; Grbavčić, Sanja; Stefanović, Andrea; Jovanović, Jelena; Bugarski, Branko; Knežević-Jugović, Zorica

    2018-01-01

    This study focuses on the influence of operating conditions on Alcalase-catalyzed egg white protein hydrolysis performed in a continuously stirred tank reactor coupled with ultrafiltration module (10 kDa). The permeate flow rate did not significantly affect the degree of hydrolysis (DH), but a significant increase in process productivity was apparent above flow rate of 1.9 cm 3 min -1 . By contrast, an increase in enzyme/substrate ( E / S ) ratio provided an increase in DH, but a negative correlation was observed between E / S ratio and productivity. The relationship between operating conditions and antioxidant properties of the hydrolysates, measured by three methods, was studied using Box-Behnken experimental design and response surface methodology. The statistical analysis showed that each variable (impeller speed, E / S ratio, and permeate flow rate) had a significant effect on the antioxidant capacity of all tested systems. Nevertheless, obtained response functions revealed that antioxidative activity measured by DPPH, ABTS and FRAP methods were affected differently by the same operating conditions. High impeller speeds and low permeate flow rates favor ABTS while high impeller speeds and high permeate flow rates had a positive effect on the DPPH scavenging activity. On the other hand, the best results obtained with FRAP method were achieved under moderate operating conditions. The integration of the reaction and ultrafiltration membrane separation in a continuous manner appears to be a right approach to improve and intensify the enzymatic process, enabling the production of peptides with desired antioxidant activity.

  20. Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors.

    PubMed

    Shipley, R J; Waters, S L; Ellis, M J

    2010-10-01

    The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)-poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 microm. The experimental data is used to determine a membrane permeability, of k = 1.86 x 10(-16) m(2), and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Q (l,in), lumen outlet pressure, P (1), and ECS outlet pressure, P (0), is P(1) - P(0) = Q(l),in (Ac + B) where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation (1) to specify operating conditions for their bioreactor.

  1. Continuous aqueous tritium monitor

    DOEpatents

    McManus, Gary J.; Weesner, Forrest J.

    1989-05-30

    An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture and selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration.

  2. Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel

    PubMed Central

    Haas, Stephan; Farley, Robert A.

    2014-01-01

    The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation. PMID:24465882

  3. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation

    NASA Astrophysics Data System (ADS)

    Maddah, Hisham; Chogle, Aman

    2017-10-01

    This paper is a comprehensive review of biofouling in reverse osmosis modules where we have discussed the mechanism of biofouling. Water crisis is an issue of pandemic concern because of the steady rise in demand of drinking water. Overcoming biofouling is vital since we need to optimize expenses and quality of potable water production. Various kinds of microorganisms responsible for biofouling have been identified to develop better understanding of their attacking behavior enabling us to encounter the problem. Both primitive and advanced detection techniques have been studied for the monitoring of biofilm development on reverse osmosis membranes. Biofouling has a negative impact on membrane life as well as permeate flux and quality. Thus, a mathematical model has been presented for the calculation of normalized permeate flux for evaluating the extent of biofouling. It is concluded that biofouling can be controlled by the application of several physical and chemical remediation techniques.

  4. Development of poloxamer gel formulations via hot-melt extrusion technology.

    PubMed

    Mendonsa, Nicole S; Murthy, S Narasimha; Hashemnejad, Seyed Meysam; Kundu, Santanu; Zhang, Feng; Repka, Michael A

    2018-02-15

    Poloxamer gels are conventionally prepared by the "hot" or the "cold" process. But these techniques have some disadvantages such as high energy consumption, requires expensive equipment and often have scale up issues. Therefore, the objective of this work was to develop poloxamer gels by hot-melt extrusion technology. The model drug selected was ketoprofen. The formulations developed were 30% and 40% poloxamer gels. Of these formulations, the 30% poloxamer gels were selected as ideal gels. DSC and XRD studies showed an amorphous nature of the drug after extrusion. It was observed from the permeation studies that with increasing poloxamer concentration, a decrease in drug permeation was obtained. Other studies conducted for the formulations included in-vitro release studies, texture analysis, rheological studies and pH measurements. In conclusion, the hot-melt extrusion technology could be successfully employed to develop poloxamer gels by overcoming the drawbacks associated with the conventional techniques. Published by Elsevier B.V.

  5. Aquaporin water channels – from atomic structure to clinical medicine

    PubMed Central

    Agre, Peter; King, Landon S; Yasui, Masato; Guggino, Wm B; Ottersen, Ole Petter; Fujiyoshi, Yoshinori; Engel, Andreas; Nielsen, Søren

    2002-01-01

    The water permeability of biological membranes has been a longstanding problem in physiology, but the proteins responsible for this remained unknown until discovery of the aquaporin 1 (AQP1) water channel protein. AQP1 is selectively permeated by water driven by osmotic gradients. The atomic structure of human AQP1 has recently been defined. Each subunit of the tetramer contains an individual aqueous pore that permits single-file passage of water molecules but interrupts the hydrogen bonding needed for passage of protons. At least 10 mammalian aquaporins have been identified, and these are selectively permeated by water (aquaporins) or water plus glycerol (aquaglyceroporins). The sites of expression coincide closely with the clinical phenotypes – ranging from congenital cataracts to nephrogenic diabetes insipidus. More than 200 members of the aquaporin family have been found in plants, microbials, invertebrates and vertebrates, and their importance to the physiology of these organisms is being uncovered. PMID:12096044

  6. Phage protein-targeted cancer nanomedicines

    PubMed Central

    Petrenko, V.A.; Jayanna, P.K.

    2015-01-01

    Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review. PMID:24269681

  7. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors

    NASA Astrophysics Data System (ADS)

    Moon, Geon Dae; Joo, Ji Bong; Yin, Yadong

    2013-11-01

    A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production.A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images and additional electrochemical data. See DOI: 10.1039/c3nr04339h

  8. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases

    PubMed Central

    Dutra Rosolen, Michele; Gennari, Adriano; Volpato, Giandra; Volken de Souza, Claucia Fernanda

    2015-01-01

    This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C), at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry. PMID:26587283

  9. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases.

    PubMed

    Dutra Rosolen, Michele; Gennari, Adriano; Volpato, Giandra; Volken de Souza, Claucia Fernanda

    2015-01-01

    This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C), at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry.

  10. Stainless Steel Permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchenauer, Dean A.; Karnesky, Richard A.

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of themore » role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.« less

  11. Method of separating organic contaminants from fluid feedstreams with polyphosphazene membranes

    DOEpatents

    McCaffrey, Robert R.; Cummings, Daniel G.

    1991-01-01

    A method is provided for separating halogenated hydrocarbons from a fluid feedstream. The fluid feedstream is flowed across a first surface of a polyphosphazene semipermeable membrane. At least one halogenated hydrocarbon from the fluid feedstream permeates through the polyphosphazene semipermeable membrane to a second opposed surface of the semipermeable membrane. Then the permeated polar hydrocarbon is removed from the second opposed surface of the polyphosphazene semipermeable membrane. Outstanding and unexpected separation selectivities on the order of 10,000 were obtained for methylene chloride when a methylene chloride in water feedstream was flowed across the polyphosphazene semipermeable membrane in the invented method.

  12. K + block is the mechanism of functional asymmetry in bacterial Na v channels

    DOE PAGES

    Ngo, Van; Wang, Yibo; Haas, Stephan; ...

    2016-01-04

    Crystal structures of several bacterial Na v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na vAb channel. This approach provided new insight into the mechanism of selective ion permeation inmore » bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K + ions can block the entrance to the selectivity filter of Na vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K +, three Na + ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na + ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K + block is equivalent to large applied potentials experimentally measured for two bacterial Na v channels to induce inward currents of K + ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes.« less

  13. K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Nav Channels

    PubMed Central

    Ngo, Van; Wang, Yibo; Haas, Stephan; Noskov, Sergei Y.; Farley, Robert A.

    2016-01-01

    Crystal structures of several bacterial Nav channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Nav channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial NavAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of NavAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Nav channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes. PMID:26727271

  14. Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies.

    PubMed

    Wang, Zheng; Mu, Hong-Jie; Zhang, Xue-Mei; Ma, Peng-Kai; Lian, Sheng-Nan; Zhang, Feng-Pu; Chu, Sheng-Ying; Zhang, Wen-Wen; Wang, Ai-Ping; Wang, Wen-Yan; Sun, Kao-Xiang

    2015-01-01

    Rotigotine is a potent and selective D1, D2, and D3 dopaminergic receptor agonist. Due to an extensive first-pass effect, it has a very low oral bioavailability (approximately 0.5% in rats). The present investigation aimed to develop a microemulsion-based hydrogel for transdermal rotigotine delivery with lower application site reactions. Pseudoternary phase diagrams were constructed to determine the region of oil in water (o/w)-type microemulsion. Central composite design was used to support the pseudoternary phase diagrams and to select homogeneous and stable microemulsions with an optimal amount of rotigotine permeation within 24 hours. In vitro skin permeation experiments were performed, using Franz diffusion cells, to compare rotigotine-loaded microemulsions with rotigotine solutions in oil. The optimized formulation was used to prepare a microemulsion-based hydrogel, which was subjected to bioavailability and skin irritancy studies. The selected formulations of rotigotine-loaded microemulsions had enhanced flux and permeation coefficients compared with rotigotine in oil. The optimum microemulsion contained 68% water, 6.8% Labrafil(®), 13.44% Cremophor(®) RH40, 6.72% Labrasol(®), and 5.04% Transcutol(®) HP; the drug-loading rate was 2%. To form a microemulsion gel, 1% Carbomer 1342 was added to the microemulsion. The bioavailability of the rotigotine-loaded microemulsion gel was 105.76%±20.52% with respect to the marketed rotigotine patch (Neupro(®)). The microemulsion gel irritated the skin less than Neupro. A rotigotine microemulsion-based hydrogel was successfully developed, and an optimal formulation for drug delivery was identified. This product could improve patient compliance and have broad marketability.

  15. Human Skin Permeation Studies with PPARγ Agonist to Improve Its Permeability and Efficacy in Inflammatory Processes.

    PubMed

    Silva-Abreu, Marcelle; Espinoza, Lupe Carolina; Rodríguez-Lagunas, María José; Fábrega, María-José; Espina, Marta; García, María Luisa; Calpena, Ana Cristina

    2017-11-28

    Rosacea is the most common inflammatory skin disease. It is characterized by erythema, inflammatory papules and pustules, visible blood vessels, and telangiectasia. The current treatment has limitations and unsatisfactory results. Pioglitazone (PGZ) is an agonist of peroxisome proliferator-activated receptors (PPARs), a nuclear receptor that regulates important cellular functions, including inflammatory responses. The purpose of this study was to evaluate the permeation of PGZ with a selection of penetration enhancers and to analyze its effectiveness for treating rosacea. The high-performance liquid chromatography (HPLC) method was validated for the quantitative determination of PGZ. Ex vivo permeation experiments were realized in Franz diffusion cells using human skin, in which PGZ with different penetration enhancers were assayed. The results showed that the limonene was the most effective penetration enhancer that promotes the permeation of PGZ through the skin. The cytotoxicity studies and the Draize test detected cell viability and the absence of skin irritation, respectively. The determination of the skin color using a skin colorimetric probe and the results of histopathological studies confirmed the ability of PGZ-limonene to reduce erythema and vasodilation. This study suggests new pharmacological indications of PGZ and its possible application in the treatment of skin diseases, namely rosacea.

  16. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies.

    PubMed

    Barradas, Thaís Nogueira; Senna, Juliana Perdiz; Cardoso, Stephani Araujo; Nicoli, Sara; Padula, Cristina; Santi, Patrizia; Rossi, Francesca; de Holanda E Silva, K Gyselle; Mansur, Claudia R Elias

    2017-07-01

    Nanoemulsions (NE) have attracted much attention due to their as dermal delivery systems for lipophilic drugs such as psoralens. However, NE feature low viscosity which might be unsuitable for topical application. In this work, we produced hydrogel-thickened nanoemulsions (HTN) using chitosan as thickening polymer to overcome the low viscosity attributed to NE. The aim of this study is to develop and characterize oil-in-water (o/w) HTN based on sweet fennel and clove essential oil to transdermal delivery of 8-methoxsalen (8-MOP). NE components (oil, surfactant) were selected on the basis of solubility and droplet size and processed in a high-pressure homogenizer (HPH). Drug loaded NE and HTN were characterized for particle size, stability under storage and centrifugation, rheological behavior, transdermal permeation and skin accumulation. Transdermal permeation of 8-MOP from HTN was determined by using Franz diffusion cell. Transdermal permeation from HTN using clove essential oil showed strong dependency chitosan molecular weight. On the other hand, HTN using sweet fennel oil showed an unexpected pH-dependent behavior not fully understood at the moment. These results need further investigation, nevertheless HTN revealed to be interesting and complex dermal delivery systems for poorly soluble drugs. Copyright © 2016. Published by Elsevier B.V.

  17. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide.

    PubMed

    Liu, S J; Tubino, M

    1998-11-01

    A flow-injection configuration based on a dual-phase gas-permeation system from a liquid donor to a gas acceptor stream with a thermistor flow-through detector is proposed for the direct analysis of the gas in the acceptor. This system was applied for the determination of carbon dioxide (in the form of carbonate) using the following chemical reaction: CO(2)(g)+2NH(3)(g)+H(2)O(g)=(NH(4))(2)CO(3)(s), with a linear response from 1x10(-3) to 50x10(-3) mol l(-1) of CO(3)(2-). Carbon dioxide was produced in the liquid donor and permeated into the gaseous acceptor stream of air/water vapor. The detection limit is 1x10(-3) mol l(-1) of carbonate, and a sampling frequency of 60 h(-1) is achieved with a relative standard deviation of 4.1% for replicate injections. The dual-phase gas-permeation flow-injection manifold, along with the membrane and phase separations, as well as the chemical reaction, provides enhanced selectivity when compared with the system employing a liquid acceptor stream, as serious interferents in this system, for instance, acetate and formate, among others, do not interfere in the proposed system.

  18. Continuous aqueous tritium monitor

    DOEpatents

    McManus, G.J.; Weesner, F.J.

    1987-10-19

    An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture are selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration. 2 figs.

  19. Liposome-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity.

    PubMed

    Pinsuwan, Sirirat; Amnuaikit, Thanaporn; Ungphaiboon, Suwipa; Itharat, Arunporn

    2010-12-01

    Hibiscus sabdariffa Linn, or Roselle, is a medicinal plant used extensively in traditional Thai medicine since ancient times. The extracts of Roselle calyces possess antioxidant activity and have potential for development as active ingredients in cosmetic products. However the limitations of using Roselle extracts in cosmetics are its low skin permeation and dermal irritation. Liposome technology is an obvious approach that might overcome these problems. Liposome formulations of standardized Roselle extracts were developed with various lipid components. The formulation showing the highest entrapment efficiency was selected for stability, skin permeation and dermal irritability studies. The liposome formulation with the highest entrapment efficiency (83%) and smalôlest particle size (332 mm) was formulated with phosphatidylcholine from soybean (SPC): Tween 80: deoxycholic acid (DA); 84:16:2.5 weight ratio, total lipid of 200 g/mL and 10% w/v Roselle extract in final liposomal preparation. This liposome formulation was found to be stable after storage at 4 degrees C, protected from light, for 2 months. The in vitro skin permeation studies, using freshly excised pig skin and modified Franz-diffusion cells, showed that the liposome formulation was able to considerably increased the rate of permeation of active compounds in Roselle extracts compared to the Roselle extract solution. The in vivo dermal irritability testing on rabbit skin showed that the liposome formulation dramatically decreased skin irritability compared to the unformulated extract. These results showed that the liposomes containing Roselle extracts had good stability, high entrapment efficacy, increased skin permeation and low skin irritation.

  20. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    PubMed

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species.

    PubMed

    Lin, Ligang; Zhang, Yuzhong; Li, Hong

    2010-10-01

    Polyethylene glycol (PEG)-CuY zeolite hybrid membranes were prepared for sulfur removal from gasoline feed. The sorption and diffusion behavior of typical gasoline components through the hybrid membranes has been investigated by systematic studies of dynamic sorption curves. Influencing factors including feed temperature, permeate pressure, and zeolite content in the membranes on membrane performance have been evaluated. Immersion experiments results showed the preferential sorption of thiophene, which is key in fulfilling the separation of thiophene/hydrocarbon mixtures. The sorption, diffusion, and permeation coefficients of gasoline components in filled membranes are higher than those in unfilled membranes. Pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the discussions on dynamic sorption curves. PV experiments showed that lower permeate pressure meant higher separation performance. The optimum temperature occurred at 383K, and an Arrhenius relationship existed between permeation flux and operating temperature. The CuY zeolite filling led to a significant increase of flux since the porous zeolite provides for more diffusion for small molecules in mixed matrix membranes. The sulfur enrichment factor increased first and then decreased with the increasing zeolite content, which was attributed to the combined influence of complexation force between CuY and thiophenes as well as the trade-off phenomenon between flux and selectivity. At 9 wt% CuY content, a higher permeation flux (3.19 kg/(m(2) h)) and sulfur enrichment factor (2.95) were obtained with 1190 microg/g sulfur content level in gasoline feed. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Evaluation of whey, milk, and delactosed permeates as salt substitutes.

    PubMed

    Smith, S T; Metzger, L; Drake, M A

    2016-11-01

    Whey and milk permeates are by-products of high-protein dairy powder manufacture. Previous work has shown that these permeates contribute to salty taste without contributing significantly to sodium content. The objective of this study was to explore the sensory characteristics and compositional analysis of permeates from different milk and whey streams and a low-sodium product application made from them. Skim milk, Cheddar, cottage, and Mozzarella cheese whey permeates were manufactured in triplicate, and delactosed whey permeate was obtained in triplicate. Composition (protein, fat, solids, minerals) was conducted on permeates. Organic acid composition was determined using HPLC. Volatile compounds were extracted from permeates by solid phase microextraction with gas chromatography-mass spectrometry. A trained sensory panel documented sensory attributes of permeates and cream of broccoli soups with and without salt or permeates followed by consumer acceptance testing (n=105) on the soups. Cottage cheese whey permeate contained a higher lactic acid content than other permeates, which has been shown to contribute to a higher salty taste. Cottage cheese whey permeate also contained potato or brothy and caramel flavors and sour and salty tastes, whereas delactosed whey permeate had high intensities of cardboard and beefy or brothy flavors and salty taste. Milk, Cheddar, and Mozzarella cheese whey permeates were characterized by sweet taste and cooked milky flavor. Permeates with higher cardboard flavor had higher levels of aldehydes. All permeates contributed to salty taste and to salty taste perception in soups; although the control soup with added salt was perceived as saltier and was preferred by consumers over permeate soups. Soup with permeate from cottage cheese was the least liked of all soups, likely due to its sour taste. All other permeate soups scored at parity for liking. These results demonstrate the potential for milk, whey, and delactosed permeates from different whey streams to be used as salt substitutes in product applications. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity

    NASA Astrophysics Data System (ADS)

    van der Paal, Jonas; Verheyen, Claudia; Neyts, Erik C.; Bogaerts, Annemie

    2017-01-01

    In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.

  4. Selective permeation of moisture and VOCs through polymer membranes used in total heat exchangers for indoor air ventilation.

    PubMed

    Zhang, L-Z; Zhang, X-R; Miao, Q-Z; Pei, L-X

    2012-08-01

    Fresh air ventilation is central to indoor environmental control. Total heat exchangers can be key equipment for energy conservation in ventilation. Membranes have been used for total heat exchangers for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. Total heat exchangers are important equipment for fresh air ventilation with energy conservation. However, their implications for indoor air quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat exchangers. Guidelines for material selection can be obtained for future use total heat exchangers for building ventilation. © 2011 John Wiley & Sons A/S.

  5. Atomic scale simulation of H2O2 permeation through aquaporin: toward the understanding of plasma cancer treatment

    NASA Astrophysics Data System (ADS)

    Yusupov, Maksudbek; Yan, Dayun; Cordeiro, Rodrigo M.; Bogaerts, Annemie

    2018-03-01

    Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H2O2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H2O2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H2O2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H2O2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.

  6. Formulation and evaluation of once-a-day transdermal gels of diclofenac diethylamine.

    PubMed

    Baboota, S; Shakeel, F; Kohli, K

    2006-03-01

    The present study was undertaken to prepare and evaluate transdermal gels of diclofenac diethylamine (DDEA) containing penetration enhancers such as olesan oil and dimethyl sulfoxide (DMSO). Transdermal gels were prepared using different polymers such as carbopol-940, polyvinyl alcohol (PVA), hydroxy propyl methyl cellulose-K(4) M, hydroxy propyl cellulose-M, and sodium carboxy methyl cellulose. The formulated gels were subjected to physicochemical studies, in vitro release studies and in vitro skin permeations studies and were evaluated for drug content, viscosity, extrudability, spreadability, and pH. The in vitro release studies of prepared gels were performed using specially designed Fites cell and in vitro skin permeation studies were performed using keshary-chien diffusion cell through rat skin. Selected formulations were evaluated for their antiinflammatory activity using the carrageenan-induced paw edema in rats. The carbopol-940 and PVA gels containing 10% DMSO showed best in vitro skin permeation of DDEA. In vivo study for the selected formulation showed a sustained reduction in inflammation in the carrageenan induced paw edema in rats. The efficacies of carbopol-940 and PVA gels were also compared with that of the marketed Voveran gel,(R) and it was found that carbopol and PVA gels produced better results than the Voveran gel. (c) 2006 Prous Science. All rights reserved. (c) 2006 Prous Science. All rights reserved.

  7. Exocellular extract of Fusarium oxysporum, fungus free, is able to permeate and act selectively in skin.

    PubMed

    Sibin Melo, Katia C; Correia, Marcelo H; Svidzinski, Terezinha I E; Hernandes, Luzmarina

    2018-05-01

    The skin is an important gateway for Fusarium infection in humans. Our hypothesis is that metabolites produced by Fusarium oxysporum should change the barrier structure to permeate the skin. Male Wistar rats received a topical application of a solution (0.05 mg/mL) of Fusarium metabolites. The animals were euthanized 3, 6, 12, 24 h after and the skin was processed for immunostaining by laminin and E-cadherin to investigate whether the Fusarium metabolites can break the barrier of healthy skin. Other techniques were employed: H&E to study the morphology; metalloproteinase-9 (MMP-9), TUNEL, and PCNA immunostaining to evaluate the inflammation, cell death, and proliferation, respectively. There was an inflammatory response mainly centered in the dermis. Qualitatively, the skin of the experimental group showed reduced E-cadherin and laminin immunostaining at 3, 12, and 24 h. Higher intensity staining by TUNEL at 3 h, and PCNA at 6, 12, and 24 h. There was intense MMP-9 activity at 6, 12, and 24 h. None of analyses revealed any changes in the epidermis. It was concluded that the fraction was able to permeate the skin and act selectively in dermis, inducing inflammatory response, increasing MMP-9 immunostaining, inducing apoptosis, and reducing E-cadherin and laminin immunostaining. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  8. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Xu, Wu; Liu, Wei

    In this work, nonaqueous electrolyte-based Li-air batteries with an O 2-selective membrane have been developed for operation in ambient air of 20-30% relative humidity (RH). The O 2 gas is continuously supplied through a membrane barrier layer at the interface of the cathode and ambient air. The membrane allows O 2 to permeate through while blocking moisture. Such membranes can be prepared by loading O 2-selective silicone oils into porous supports such as porous metal sheets and Teflon (PTFE) films. It was found that the silicone oil of high viscosity shows better performance. The immobilized silicone oil membrane in the porous PTFE film enabled the Li-air batteries with carbon black air electrodes to operate in ambient air (at 20% RH) for 16.3 days with a specific capacity of 789 mAh g -1 carbon and a specific energy of 2182 Wh kg -1 carbon. Its performance is much better than a reference battery assembled with a commercial, porous PTFE diffusion membranes as the moisture barrier layer on the cathode, which only had a discharge time of 5.5 days corresponding to a specific capacity of 267 mAh g -1 carbon and a specific energy of 704 Wh kg -1 carbon. The Li-air battery with the present selective membrane barrier layer even showed better performance in ambient air operation (20% RH) than the reference battery tested in the dry air box (<1% RH).

  9. Permeation of gasoline, diesel, bioethanol (E85), and biodiesel (B20) fuels through six glove materials.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A

    2010-07-01

    Biofuels and conventional fuels differ in terms of their evaporation rates, permeation rates, and exhaust emissions, which can alter exposures of workers, especially those in the fuel refining and distribution industries. This study investigated the permeation of biofuels (bioethanol 85%, biodiesel 20%) and conventional petroleum fuels (gasoline and diesel) through gloves used in occupational settings (neoprene, nitrile, and Viton) and laboratories (latex, nitrile, and vinyl), as well as a standard reference material (neoprene sheet). Permeation rates and breakthrough times were measured using the American Society for Testing and Materials F739-99 protocol, and fuel and permeant compositions were measured by gas chromatography/mass spectrometry. In addition, we estimated exposures for three occupational scenarios and recommend chemical protective clothing suitable for use with motor fuels. Permeation rates and breakthrough times depended on the fuel-glove combination. Gasoline had the highest permeation rate among the four fuels. Bioethanol (85%) had breakthrough times that were two to three times longer than gasoline through neoprene, nitrile Sol-Vex, and the standard reference materials. Breakthrough times for biodiesel (20%) were slightly shorter than for diesel for the latex, vinyl, nitrile examination, and the standard neoprene materials. The composition of permeants differed from neat fuels, e.g., permeants were significantly enriched in the lighter aromatics including benzene. Viton was the best choice among the tested materials for the four fuels tested. Among the scenarios, fuel truck drivers had the highest uptake via inhalation based on the personal measurements available in the literature, and gasoline station attendants had highest uptake via dermal exposure if gloves were not worn. Appropriate selection and use of gloves can protect workers from dermal exposures; however, current recommendations from the National Institute for Occupational Safety and Health should be revised to account for contemporary fuel formulations that routinely contain ethanol.

  10. Managing information technology human resources in health care.

    PubMed

    Mahesh, Sathiadev; Crow, Stephen M

    2012-01-01

    The health care sector has seen a major increase in the use of information technology (IT). The increasing permeation of IT into the enterprise has resulted in many non-IT employees acquiring IT-related skills and becoming an essential part of the IT-enabled enterprise. Health care IT employees work in a continually changing environment dealing with new specializations that are often unfamiliar to other personnel. The widespread use of outsourcing and offshoring in IT has introduced a third layer of complexity in the traditional hierarchy and its approach to managing human resources. This article studies 3 major issues in managing these human resources in an IT-enabled health care enterprise and recommends solutions to the problem.

  11. Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies

    PubMed Central

    Wang, Zheng; Mu, Hong-Jie; Zhang, Xue-Mei; Ma, Peng-Kai; Lian, Sheng-Nan; Zhang, Feng-Pu; Chu, Sheng-Ying; Zhang, Wen-Wen; Wang, Ai-Ping; Wang, Wen-Yan; Sun, Kao-Xiang

    2015-01-01

    Background Rotigotine is a potent and selective D1, D2, and D3 dopaminergic receptor agonist. Due to an extensive first-pass effect, it has a very low oral bioavailability (approximately 0.5% in rats). Purpose The present investigation aimed to develop a microemulsion-based hydrogel for transdermal rotigotine delivery with lower application site reactions. Methods Pseudoternary phase diagrams were constructed to determine the region of oil in water (o/w)-type microemulsion. Central composite design was used to support the pseudoternary phase diagrams and to select homogeneous and stable microemulsions with an optimal amount of rotigotine permeation within 24 hours. In vitro skin permeation experiments were performed, using Franz diffusion cells, to compare rotigotine-loaded microemulsions with rotigotine solutions in oil. The optimized formulation was used to prepare a microemulsion-based hydrogel, which was subjected to bioavailability and skin irritancy studies. Results The selected formulations of rotigotine-loaded microemulsions had enhanced flux and permeation coefficients compared with rotigotine in oil. The optimum microemulsion contained 68% water, 6.8% Labrafil®, 13.44% Cremophor® RH40, 6.72% Labrasol®, and 5.04% Transcutol® HP; the drug-loading rate was 2%. To form a microemulsion gel, 1% Carbomer 1342 was added to the microemulsion. The bioavailability of the rotigotine-loaded microemulsion gel was 105.76%±20.52% with respect to the marketed rotigotine patch (Neupro®). The microemulsion gel irritated the skin less than Neupro. Conclusion A rotigotine microemulsion-based hydrogel was successfully developed, and an optimal formulation for drug delivery was identified. This product could improve patient compliance and have broad marketability. PMID:25609965

  12. Gas permeation in a molecular crystal and space expansion.

    PubMed

    Takasaki, Yuichi; Takamizawa, Satoshi

    2014-05-14

    A novel single-crystal membrane [Cu(II)2(4-F-bza)4(2-mpyz)]n (4-F-bza = 4-fluorobenzoate; 2-mpyz = 2-methylpyrazine) was synthesized and its identical permeability in any crystal direction in the correction for tortuosity proved that gas diffuses inside the channels without detour. H2 permeated by 1.18 × 10(-12) mol m m(-2) s(-1) Pa(-1) with a high selectivity (Fα: 23.5 for H2/CO and 48.0 for H2/CH4) through its 2D-channels having a minimum diameter of 2.6 Å, which is narrower than the Lennard-Jones diameter of H2 (2.827 Å), CO (3.690 Å), and CH4 (3.758 Å). The high rate of permeation was well explained by a modified Knudsen diffusion model based on the space expansion effect, which agrees with the observed permselectivity enhanced for smaller gases in considering the expansion of a channel resulting from the collision of gas molecules or atoms onto the channel wall. An analysis of single-crystal X-ray data showed the expansion order to be H2 > Ar > CH4, which was expected from the permeation analysis. The permselectivity of a porous solid depends on the elasticity of the pores as well as on the diameter of the vacant channel and the size of the target gas.

  13. Formulation Optimization and Ex Vivo and In Vivo Evaluation of Celecoxib Microemulsion-Based Gel for Transdermal Delivery.

    PubMed

    Cao, Mengyuan; Ren, Lili; Chen, Guoguang

    2017-08-01

    Celecoxib (CXB) is a poorly aqueous solubility sulfonamide non-steroidal anti-inflammatory drug (NSAID). Hence, the formulation of CXB was selected for solubilization and bioavailability. To find out suitable formulation for microemulsion, the solubility of CXB in triacetin (oil phase), Tween 80 (surfactant), and Transcutol-P (co-surfactant) was screened respectively and optimized by using orthogonal experimental design. The Km value and concentration of oil, S mix , and water were confirmed by pseudo-ternary phase diagram studies and central composite design. One percent carbopol 934 was added to form CXB microemulsion-based gel. The final formulation was evaluated for its appearance, pH, viscosity, stability, drug content determination, globule size, and zeta potential. Its ex vivo drug permeation and the in vivo pharmacokinetic was investigated. Further research was performed to ensure the safety and validity by skin irritation study and in vivo anti-inflammatory activity study. Ex vivo permeation study in mice was designed to compare permeation and transdermal ability between microemulsion formulation and conventional gel. The results revealed that optimized microemulsion-based gel gained higher permeation based on smaller globule size and high drug loading of microemulsion. Transdermal ability was also greatly improved. Bioavailability was compared to market Celebrex® by the in vivo pharmacokinetic study in rabbits. The results indicated that CXB microemulsion-based gel had better bioavailability than Celebrex®.

  14. Synthesis and characterization of a potential prebiotic trisaccharide from cheese whey permeate and sucrose by Leuconostoc mesenteroides dextransucrase.

    PubMed

    Díez-Municio, Marina; Montilla, Antonia; Jimeno, M Luisa; Corzo, Nieves; Olano, Agustín; Moreno, F Javier

    2012-02-29

    The production of new bioactive oligosaccharides is currently garnering much attention for their potential use as functional ingredients. This work addresses the enzymatic synthesis and NMR structural characterization of 2-α-D-glucopyranosyl-lactose derived from sucrose:lactose and sucrose:cheese whey permeate mixtures by using a Leuconostoc mesenteroides B-512F dextransucrase. The effect of synthesis conditions, including concentration of substrates, molar ratio of donor/acceptor, enzyme concentration, reaction time, and temperature, on the formation of transfer products is evaluated. Results indicated that cheese whey permeate is a suitable material for the synthesis of 2-α-D-glucopyranosyl-lactose, giving rise to yields around 50% (in weight respect to the initial amount of lactose) under the optimum reaction conditions. According to its structure, this trisaccharide is an excellent candidate for a new prebiotic ingredient, due to the reported high resistance of α-(1→2) linkages to the digestive enzymes in humans and animals, as well as to its potential selective stimulation of beneficial bacteria in the large intestine mainly attributed to the two linked glucose units located at the reducing end that reflects the disaccharide kojibiose (2-α-D-glucopyranosyl-D-glucose). These findings could contribute to broadening the use of important agricultural raw materials, such as sucrose or cheese whey permeates, as renewable substrates for enzymatic synthesis of oligosaccharides of nutritional interest.

  15. PREPARATION, IN VITRO AND IN VIVO CHARACTERIZATION OF HYDROPHOBIC PATCHES OF A HIGHLY WATER SOLUBLE DRUG FOR PROLONGED PLASMA HALF LIFE: EFFECT OF PERMEATION ENHANCERS.

    PubMed

    Yaqoob, Ayesha; Ahmad, Mahmood; Mahmood, Asif; Sarfraz, Rai Muhammad

    2016-11-01

    Aim of present study was to develop metoprolol matrix patches using different enhancers. Combination of two hydrophobic polymers, ethyl cellulose and eudragit RL 100 (8 : 2) were used for preparation of unilaminated matrix patch. 10% w/w of isopropyl myristate (IPM), dimethyl sulfoxide (DMSO), span (20 (S20), Tween 20 (T20) and eucalyptus oil as enhancers and 40% of dibutyl phthalate as plasticizer were used. Prepared patches were evaluated for physical appearance, weight uniformity and thickness. FTIR studies were performed to assess compatibility among ingredients and developed formulation. Dissolution and permeation studies were performed to compare effects of enhancers. Surface morphology after release was examined by scanning electron microscopy. Selected formulation was subjected to in vivo studies by randomized crossover design in rabbits (n = 6) for pharmacokinetic comparison with oral solution administration. Physical evaluation revealed that translucent, flexible, non brittle patches of uniform weight and thickness were prepared. Release from patches followed Higuchi model. Mechanism of release was Fickian. Formulation containing IPM showed that release was by anomalous transport. Highest permeation flux was observed for formulation containing IPM with 2-fold enhancement in permeation. Permeation flux for patches was in order of formulation with no enhancer > IPM > T20 > S20 > DMSO = eucalyptus oil. Plasma concentration from in vivo studies exhibited sustained plasma levels of metoprolol after transdermal patch application in comparison to oral solution administration. Pharmacokinetic analysis of in vivo data elucidated that half life was increased 8 times when compared to oral administration, due to controlled release of drug for longer period of time. These findings suggested that hydrophobic transdermal patches of highly water soluble drug metoprolol were successfully prepared with 10% of IPM for sustained systemic delivery for prolonged half life.

  16. Studies on optimizing in vitro transdermal permeation of ondansetron hydrochloride using nerodilol, carvone, and limonene as penetration enhancers.

    PubMed

    Krishnaiah, Yellela S R; Raju, Vengaladasu; Shiva Kumar, Mantri; Rama, Bukka; Raghumurthy, Vanambattina; Ramana Murthy, Kolapalli V

    2008-01-01

    The present investigation was carried out to formulate a terpene-based hydroxypropyl cellulose (HPC) gel drug reservoir system for its optimal transdermal permeation of ondansetron hydrochloride. The HPC gel formulations containing ondansetron hydrochloride (3% w/w) and selected concentrations of either nerodilol (0% w/w, 1% w/w, 2% w/w, 3% w/w, and 4% w/w), carvone (0% w/w, 2% w/w, 4% w/w, 8% w/w, and 10% w/w), or limonene (0% w/w, 2% w/w, 3% w/w, and 4% w/w) were prepared and subjected to in vitro permeation of the drug across rat epidermis. All the 3 terpene enhancers increased the transdermal permeation of ondansetron hydrochloride. The optimal transdermal permeation was observed with 3% w/w of nerodilol (175.3 +/- 3.1 microg/cm(2.)h), 8% w/w of carvone (87.4 +/- 1.6 microg/cm(2.)h), or 3% w/w of limonene (181.9 +/- 0.9 microg/cm(2.)h). The enhancement ratio (ER) in drug permeability with 3% w/w nerodilol, 8% w/w carvone, and 3% w/w limonene were 21.6, 10.8, and 22.5, respectively, when compared with that obtained without a terpene enhancer (control). However, there was 1.04-, 2.09-, and 2.17-fold increase in the optimal drug flux obtained with carvone, nerodilol, and limonene, respectively, when compared with the desired drug flux (84 microg/cm(2.)h). It was concluded that the HPC gel drug reservoir systems containing either 3% w/w nerodilol or 3% w/w limonene act as optimal formulations for use in the design of membrane-controlled transdermal therapeutic system (TTS) of ondansetron hydrochloride.

  17. Sucrose purification and repeated ethanol production from sugars remaining in sweet sorghum juice subjected to a membrane separation process.

    PubMed

    Sasaki, Kengo; Tsuge, Yota; Kawaguchi, Hideo; Yasukawa, Masahiro; Sasaki, Daisuke; Sazuka, Takashi; Kamio, Eiji; Ogino, Chiaki; Matsuyama, Hideto; Kondo, Akihiko

    2017-08-01

    The juice from sweet sorghum cultivar SIL-05 (harvested at physiological maturity) was extracted, and the component sucrose and reducing sugars (such as glucose and fructose) were subjected to a membrane separation process to purify the sucrose for subsequent sugar refining and to obtain a feedstock for repeated bioethanol production. Nanofiltration (NF) of an ultrafiltration (UF) permeate using an NTR-7450 membrane (Nitto Denko Corporation, Osaka, Japan) concentrated the juice and produced a sucrose-rich fraction (143.2 g L -1 sucrose, 8.5 g L -1 glucose, and 4.5 g L -1 fructose). In addition, the above NF permeate was concentrated using an ESNA3 NF membrane to provide concentrated permeated sugars (227.9 g L -1 ) and capture various amino acids in the juice, enabling subsequent ethanol fermentation without the addition of an exogenous nitrogen source. Sequential batch fermentation using the ESNA3 membrane concentrate provided an ethanol titer and theoretical ethanol yield of 102.5-109.5 g L -1 and 84.4-89.6%, respectively, throughout the five-cycle batch fermentation by Saccharomyces cerevisiae BY4741. Our results demonstrate that a membrane process using UF and two types of NF membranes has the potential to allow sucrose purification and repeated bioethanol production.

  18. Preparation of Water-Selective Polybutadiene Membranes and Their Use in Drying Alcohols by Pervaporation and Vapor Permeation Technologies

    EPA Science Inventory

    Separating azeotrope-forming solvent-water mixtures by conventional distillation poses technical, economic, and environmental challenges. Membrane technology using water-permselective membranes provides an efficient alternative for water removal from solvents. We present here a n...

  19. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination.

    PubMed

    Zhu, Yuzhang; Xie, Wei; Gao, Shoujian; Zhang, Feng; Zhang, Wenbin; Liu, Zhaoyang; Jin, Jian

    2016-09-01

    Fabricating nanofiltration (NF) membranes with high permeating flux and simultaneous high rejection rate for desalination is rather significant and highly desired. A new avenue is reported in this work to design NF membrane by using polydopamine wrapped single-walled carbon nanotube (PD/SWCNTs) ultrathin film as support layer instead of the use of traditional polymer-based underlying layers. Thanks to the high porosity, smooth surface, and more importantly optimal hydrophilic surface of PD/SWCNTs film, a defect-free polyamide selective layer for NF membrane with thickness of as thin as 12 nm is achieved. The obtained NF membrane exhibits an extremely high performance with a permeating flux of 32 L m -2 h -1 bar -1 and a rejection rate of 95.9% to divalent ions. This value is two to five times higher than the traditional NF membranes with similar rejection rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Glued Langmuir-Blodgett bilayers from calix[ n]arenes: Influence of calix[ n]arene size on ionic cross-linking, film thickness, and permeation selectivity

    DOE PAGES

    Wang, Minghui; Janout, Vaclav; Regen, Steven L.

    2010-07-12

    A homologous series of calix[4]arene-, calix[5]arene- and calix[6]arene-based surfactants, containing pendant trimethylammonium and n-hexadecyl groups, have been compared with respect to their ability (i) to undergo ionic crosslinking at the air/water interface, (ii) to incorporate poly(4-styrenesulfonate) (PSS) in Langmuir-Blodgett (LB) bilayers, and (iii) to act as barriers towards He, N 2 and CO 2 when assembled into crosslinked LB bilayers. As these calix[n]arenes increase in size, their ability to undergo ionic crosslinking has been found to increase, the thickness of corresponding glued LB bilayers has been found to decrease, and their barrier properties and permeation selectivities have been found tomore » increase. In conclusion, the likely origin for these effects and the probable mechanism by which He, N 2 and CO 2 cross these ultrathin films are discussed.« less

  1. Novel Tertiary Amino Containing Blinding Composite Membranes via Raft Polymerization and Their Preliminary CO2 Permeation Performance

    PubMed Central

    Zhu, Lifang; Zhou, Mali; Yang, Shanshan; Shen, Jiangnan

    2015-01-01

    Facile synthesis of poly (N,N-dimethylaminoethyl methacrylate) (PDMAEMA) star polymers on the basis of the prepolymer chains, PDMAEMA as the macro chain transfer agent and divinyl benzene (DVB) as the cross-linking reagent by reversible addition-fragmentation chain transfer (RAFT) polymerization was described. The RAFT polymerizations of DMAEMA at 70 °C using four RAFT agents with different R and Z group were investigated. The RAFT agents used in these polymerizations were dibenzyl trithiocarbonate (DBTTC), s-1-dodecyl-s'-(α,α'-dimethyl-α-acetic acid) trithiocarbonate (MTTCD), s,s'-bis (2-hydroxyethyl-2'-dimethylacrylate) trithiocarbonate (BDATC) and s-(2-cyanoprop-2-yl)-s-dodecyltrithiocarbonate (CPTCD). The results indicated that the structure of the end-group of RAFT agents had significant effects on the ability to control polymerization. Compared with the above-mentioned RAFT agents, CPTCD provides better control over the molecular weight and molecular weight distribution. The polydispersity index (PDI) was determined to be within the scope of 1.26 to 1.36. The yields, molecular weight, and distribution of the star polymers can be tuned by changing the molar ratio of DVB/PDMAEMA-CPTCD. The chemical composition and structure of the linear and star polymers were characterized by GPC, FTIR, 1H NMR, XRD analysis. For the pure Chitosan membrane, a great improvement was observed for both CO2 permeation rate and ideal selectivity of the blending composite membrane upon increasing the content of SPDMAEMA-8. At a feed gas pressure of 37.5 cmHg and 30 °C, the blinding composite membrane (Cs: SPDMAEMA-8 = 4:4) has a CO2 permeation rate of 8.54 × 10−4 cm3 (STP) cm−2∙s−1∙cm∙Hg−1 and a N2 permeation rate of 6.76 × 10−5 cm3 (STP) cm−2∙s−1∙cm∙Hg−1, and an ideal CO2/N2 selectivity of 35.2. PMID:25915025

  2. Novel Tertiary Amino Containing Blinding Composite Membranes via Raft Polymerization and Their Preliminary CO2 Permeation Performance.

    PubMed

    Zhu, Lifang; Zhou, Mali; Yang, Shanshan; Shen, Jiangnan

    2015-04-23

    Facile synthesis of poly (N,N-dimethylaminoethyl methacrylate) (PDMAEMA) star polymers on the basis of the prepolymer chains, PDMAEMA as the macro chain transfer agent and divinyl benzene (DVB) as the cross-linking reagent by reversible addition-fragmentation chain transfer (RAFT) polymerization was described. The RAFT polymerizations of DMAEMA at 70 °C using four RAFT agents with different R and Z group were investigated. The RAFT agents used in these polymerizations were dibenzyl trithiocarbonate (DBTTC), s-1-dodecyl-s'-(α,α'-dimethyl-α-acetic acid) trithiocarbonate (MTTCD), s,s'-bis (2-hydroxyethyl-2'-dimethylacrylate) trithiocarbonate (BDATC) and s-(2-cyanoprop-2-yl)-s-dodecyltrithiocarbonate (CPTCD). The results indicated that the structure of the end-group of RAFT agents had significant effects on the ability to control polymerization. Compared with the above-mentioned RAFT agents, CPTCD provides better control over the molecular weight and molecular weight distribution. The polydispersity index (PDI) was determined to be within the scope of 1.26 to 1.36. The yields, molecular weight, and distribution of the star polymers can be tuned by changing the molar ratio of DVB/PDMAEMA-CPTCD. The chemical composition and structure of the linear and star polymers were characterized by GPC, FTIR, 1H NMR, XRD analysis. For the pure Chitosan membrane, a great improvement was observed for both CO₂ permeation rate and ideal selectivity of the blending composite membrane upon increasing the content of SPDMAEMA-8. At a feed gas pressure of 37.5 cmHg and 30 °C, the blinding composite membrane (Cs: SPDMAEMA-8 = 4:4) has a CO₂ permeation rate of 8.54 × 10⁻⁴ cm³ (STP) cm⁻²∙s⁻¹∙cm∙Hg⁻¹ and a N₂ permeation rate of 6.76 × 10⁻⁵ cm³ (STP) cm⁻²∙s⁻¹∙cm∙Hg⁻¹, and an ideal CO₂/N₂ selectivity of 35.2.

  3. Elucidating the mechanism of protein water channels by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Grubmuller, Helmut

    2004-03-01

    Aquaporins are highly selective water channels. Molecular dynamics simulations of multiple water permeation events correctly predict the measured rate and explain at the atomic level why these membrane channels are so efficient, while blocking other small molecules, ions, and even protons. High efficiency is achieved through a carefully tailored balance of hydrogen bonds that the protein substitutes for the bulk interactions; selectivity is achieved mainly by electrostatic barriers.

  4. Selection of imprinted nanoparticles by affinity chromatography.

    PubMed

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  5. Mechanics and stability of vesicles and droplets in confined spaces

    PubMed Central

    Benet, Eduard; Vernerey, Franck J.

    2017-01-01

    The permeation and trapping of soft colloidal particles in the confined space of porous media are of critical importance in cell migration studies, design of drug delivery vehicles, and colloid separation devices. Our current understanding of these processes is however limited by the lack of quantitative models that can relate how the elasticity, size, and adhesion properties of the vesicle-pore complex affect colloid transport. We address this shortcoming by introducing a semianalytical model that predicts the equilibrium shapes of a soft vesicle driven by pressure in a narrow pore. Using this approach, the problem is recast in terms of pressure and energy diagrams that characterize the vesicle stability and permeation pressures in different conditions. We particularly show that the critical permeation pressure for a vesicle arises from a compromise between the critical entry pressure and exit pressure, both of which are sensitive to geometrical features, mechanics, and adhesion. We further find that these results can be leveraged to rationally design microfluidic devices and diodes that can help characterize, select, and separate colloids based on physical properties. PMID:28085314

  6. In silico assessment of the conduction mechanism of the Ryanodine Receptor 1 reveals previously unknown exit pathways.

    PubMed

    Heinz, Leonard P; Kopec, Wojciech; de Groot, Bert L; Fink, Rainer H A

    2018-05-02

    The ryanodine receptor 1 is a large calcium ion channel found in mammalian skeletal muscle. The ion channel gained a lot of attention recently, after multiple independent authors published near-atomic cryo electron microscopy data. Taking advantage of the unprecedented quality of structural data, we performed molecular dynamics simulations on the entire ion channel as well as on a reduced model. We calculated potentials of mean force for Ba 2+ , Ca 2+ , Mg 2+ , K + , Na + and Cl - ions using umbrella sampling to identify the key residues involved in ion permeation. We found two main binding sites for the cations, whereas the channel is strongly repulsive for chloride ions. Furthermore, the data is consistent with the model that the receptor achieves its ion selectivity by over-affinity for divalent cations in a calcium-block-like fashion. We reproduced the experimental conductance for potassium ions in permeation simulations with applied voltage. The analysis of the permeation paths shows that ions exit the pore via multiple pathways, which we suggest to be related to the experimental observation of different subconducting states.

  7. In Vitro Investigation of Influences of Chitosan Nanoparticles on Fluorescein Permeation into Alveolar Macrophages.

    PubMed

    Chachuli, Siti Haziyah Mohd; Nawaz, Asif; Shah, Kifayatullah; Naharudin, Idanawati; Wong, Tin Wui

    2016-06-01

    Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages. Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary. Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.

  8. Transdermal delivery of lercanidipine hydrochloride: effect of chemical enhancers and ultrasound.

    PubMed

    Shetty, Pallavi K; Suthar, Neelam A; Menon, Jyothsna; Deshpande, Praful B; Avadhani, Kiran; Kulkarni, Raghavendra V; Mutalik, Srinivas

    2013-08-01

    The effects of permeation enhancers and sonophoresis on the transdermal permeation of lercanidipine hydrochloride (LRDP) across mouse skin were investigated. Parameters including drug solubility, partition coefficient, drug degradation and drug permeation in skin were determined. Tween-20, dimethyl formamide, propylene glycol, poly ethylene glycol (5% v/v) and different concentration of ethanol were used for permeation enhancement. Low frequency ultrasound was also applied in the presence and absence of permeation enhancers to assess its effect on augmenting the permeation of drug. All the permeation enhancers, except propylene glycol, increased the transdermal permeation of LRDP. Sonophoresis significantly increased the cumulative amount of LRDP permeating through the skin in comparison to passive diffusion. A synergistic effect was noted when sonophoresis was applied in presence of permeation enhancers. The results suggest that the formulation of LRDP with an appropriate penetration enhancer may be useful in the development of a therapeutic system to deliver LRDP across the skin for a prolonged period (i.e., 24 h). The application of ultrasound in association with permeation enhancers could further serve as non-oral and non-invasive drug delivery modality for the immediate therapeutic effect.

  9. Transport across the outer membrane porin of mycolic acid containing actinomycetales: Nocardia farcinica.

    PubMed

    Singh, Pratik Raj; Bajaj, Harsha; Benz, Roland; Winterhalter, Mathias; Mahendran, Kozhinjampara R

    2015-02-01

    The role of the outer-membrane channel from a mycolic acid containing Gram-positive bacteria Nocardia farcinica, which forms a hydrophilic pathway across the cell wall, was characterized. Single channel electrophysiology measurements and liposome swelling assays revealed the permeation of hydrophilic solutes including sugars, amino acids and antibiotics. The cation selective N. farcinica channel exhibited strong interaction with the positively charged antibiotics; amikacin and kanamycin, and surprisingly also with the negatively charged ertapenem. Voltage dependent kinetics of amikacin and kanamycin interactions were studied to distinguish binding from translocation. Moreover, the importance of charged residues inside the channel was investigated using mutational studies that revealed rate limiting interactions during the permeation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Grinding Parts For Automatic Welding

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  11. Life sciences interests in Mars missions

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Griffiths, Lynn D.

    1989-01-01

    NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.

  12. A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes.

    PubMed

    Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee

    2016-01-13

    For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.

  13. Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS.

    PubMed

    Borrás-Linares, Isabel; Herranz-López, María; Barrajón-Catalán, Enrique; Arráez-Román, David; González-Álvarez, Isabel; Bermejo, Marival; Fernández Gutiérrez, Alberto; Micol, Vicente; Segura-Carretero, Antonio

    2015-08-07

    Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in a phenolic-enriched Hibiscus sabdariffa extract (PEHS), free and encapsulated, using the Caco-2 cell line. Additionally, selected polyphenols (quercetin, quercetin-3-glucoside, quercetin-3-glucuronide, and N-feruloyltyramine) were also studied in the same absorption model. The powerful analytical platform used ultra-high-performance liquid chromatography coupled with ultra-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-ESI-UHR-Qq-TOF-MS), and enabled the characterization of seven new compounds in PEHS. In the permeation study, only a few compounds were able to cross the cell monolayer and the permeability was lower when the extract was in an encapsulated form. Pure compounds showed a moderate absorption in all cases. Nevertheless, these preliminary results may need further research to understand the complete absorption mechanism of Hibiscus polyphenols.

  14. Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS

    PubMed Central

    Borrás-Linares, Isabel; Herranz-López, María; Barrajón-Catalán, Enrique; Arráez-Román, David; González-Álvarez, Isabel; Bermejo, Marival; Gutiérrez, Alberto Fernández; Micol, Vicente; Segura-Carretero, Antonio

    2015-01-01

    Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in a phenolic-enriched Hibiscus sabdariffa extract (PEHS), free and encapsulated, using the Caco-2 cell line. Additionally, selected polyphenols (quercetin, quercetin-3-glucoside, quercetin-3-glucuronide, and N-feruloyltyramine) were also studied in the same absorption model. The powerful analytical platform used ultra-high-performance liquid chromatography coupled with ultra-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-ESI-UHR-Qq-TOF-MS), and enabled the characterization of seven new compounds in PEHS. In the permeation study, only a few compounds were able to cross the cell monolayer and the permeability was lower when the extract was in an encapsulated form. Pure compounds showed a moderate absorption in all cases. Nevertheless, these preliminary results may need further research to understand the complete absorption mechanism of Hibiscus polyphenols. PMID:26262611

  15. Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches.

    PubMed

    Satheeshababu, B K; Shivakumar, K L

    2013-03-01

    The aim of this study was to synthesis the conjugated chitosan by covalent attachment of thiol moieties to the cationic polymer, mediated by a carbodiimide to improve permeation properties of chitosan. Thioglycolic acid was covalently attached to chitosan by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid groups of thioglycolic acid. Hence, these polymers are called as thiomers or thiolated polymers. Conjugation of chitosan was confirmed by Fourier transform-infrared and differential scanning calorimetric analysis. Matrix type transdermal patches of carvedilol were prepared using the different proportions of chitosan and chitosan-thioglycolic acid conjugates (2:0, 1.7:0.3, 1.4:0.6, 1:1, 0.6:1.4 and 0.3:1.7) by solvent casting technique. Prepared matrix type patches were evaluated for their physicochemical characterization followed by in vitro evaluation. Selected formulations were subjected for their ex vivo studies on Wistar albino rat skin and human cadaver skin using the modified Franz diffusion cell. As the proportion of conjugated chitosan increased, the transdermal patches showed increased drug permeation. The mechanism of drug release was found to be nonFickian profiles. The present study concludes that the transdermal patches of carvedilol using conjugated chitosan with different proportions of chitosan were successfully developed to provide improved drug permeation. The transdermal patches can be a good approach to improve drug bioavailability by bypassing the extensive hepatic first-pass metabolism of the drug.

  16. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release.

    PubMed

    Muzzalupo, Rita; Pérez, Lourdes; Pinazo, Aurora; Tavano, Lorena

    2017-08-30

    The natural capability shown by cationic vesicles in interacting with negatively charged surfaces or biomolecules has recently attracted increased interest. Important pharmacological advantages include the selective targeting of the tumour vasculature, the promotion of permeation across cell membranes, as well as the influence of cationic vesicles on drug delivery. Accordingly, cationic amphiphiles derived from amino acids may represent an alternative to traditional synthetic cationic surfactants due to their lower cytotoxicity. The importance of a synthesized lysine-based gemini surfactant (labelledC 6 (LL) 2 ) was evaluated in drug delivery by designing cationic niosomes as usable pharmaceutical tools of chemotherapeutics and antibiotics, respectively like methotrexate and tetracycline. The influence of formulation factors on the vesicles' physical-chemical properties, drug entrapment efficiency, in vitro release and ex-vivo skin permeation were investigated. A niosomal gel containing the gemini surfactant was also tested as a viable multi-component topical formulation. Results indicate that in the presence of cholesterol, C 6 (LL) 2 was able to form stable and nanosized niosomes, loading hydrophilic or hydrophobic molecules. Furthermore, in vitro release studies and ex-vivo permeation profiles showed that C 6 (LL) 2 -based vesicles behave as sustained and controlled delivery systems in the case of parenteral administration, and as drug percutaneous permeation enhancers after topical application. Finally, cationic C 6 (LL) 2 acts as a carrier constituent, conferring peculiar and interesting functionality to the final formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cromolyn as surface active drug (surfadrug): Effect of the self-association on diffusion and percutaneous permeation.

    PubMed

    Tavano, Lorena; Nicoletta, Fiore Pasquale; Picci, Nevio; Muzzalupo, Rita

    2016-03-01

    Cromolyn sodium, or disodium cromoglycate (CS), is a surface active drug: a pharmacologically active compound with an amphiphilic nature. At certain conditions it is able to self-associate in several kind of supramolecular aggregates. Since CS could play the role of both carrier and drug, bypassing the use of additional excipients and increasing the system biocompatibility, the effects of cromolyn self-aggregates on diffusion and percutaneous permeation across rabbit ear skin were investigated. Niosomes (vesicular systems, 0.5wt% of CS), monomeric and isotropic solutions (0.5 and 5wt% of CS), nematic (15wt% of CS) and hexagonal phases (30wt% of CS) were selected as supramolecular systems and tested as transdermal delivery systems. Results demonstrated that CS was able to form vesicular structures of about 500nm of diameter and this formulation gave the higher percutaneous permeation profile (systemic action), while isotropic solution and liquid crystals mesophases acted as slower release reservoir of drug on the skin surface (local action), as confirmed by diffusion coefficients. Diffusion rates through a synthetic membrane were dependent both on CS concentration present into the formulations and on its structural organization: maximum diffusion was noticed with isotropic solution, a lower amount of diffused cromolyn sodium was achieved by hexagonal phase. Consequently, CS appears as a versatile surfadrug as, depending on the disease degree, it is possible to modulate its permeation profile by choosing the most appropriate formulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Calibrated permeation standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dameron, Arrelaine A.; Reese, Matthew O.; Kempe, Michael D.

    2017-11-21

    A permeation standard is provided. The permeation standard may include a substrate that is impermeable to an analyte, an orifice disposed in the substrate, and a permeable material filling the orifice. The orifice and the permeable material are configured to provide a predetermined transmission rate of the analyte through the permeation standard. Also provided herein are methods for forming the permeation standard.

  19. Effect of several electrolyzed waters on the skin permeation of lidocaine, benzoic Acid, and isosorbide mononitrate.

    PubMed

    Kitamura, Toshihiko; Todo, Hiroaki; Sugibayashi, Kenji

    2009-02-01

    The effects of several electrolyzed waters were evaluated on the permeation of model base, acid and non-ionized compounds, lidocaine (LC), benzoic acid (BA), and isosorbide mononitrate (ISMN), respectively, through excised hairless rat skin. Strong alkaline-electrolyzed reducing water (ERW) enhanced and suppressed the skin permeation of LC and BA, respectively, and it also increased the skin permeation of ISMN, a non-ionized compound. On the contrary, strong acidic electrolyzed oxidizing water (EOW) enhanced BA permeation, whereas suppressing LC permeation. Only a marginal effect was observed on the skin permeation of ISMN by EOW. These marked enhancing effects of ERW on the skin permeation of LC and ISMN were explained by pH partition hypothesis as well as a decrease in skin impedance. The present results strongly support that electrolyzed waters, ERW and EOW, can be used as a new vehicle in topical pharmaceuticals or cosmetics to modify the skin permeation of drugs without severe skin damage.

  20. Development of novel formulations to enhance in vivo transdermal permeation of tocopherol.

    PubMed

    Nada, Aly H; Zaghloul, Abdelazim A; Hedaya, Mohsen M; Khattab, Ibrahim S

    2014-09-01

    Tocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large molecular mass. The aim of the present study was to develop alpha-tocopherol (T) topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015%). Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO), tocopheryl polyethylene glycols (TPGs), propylene glycol, ethanol and 9.5% T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 μg g⁻¹, respectively. Increasing T concentration from 4.8 to 9.5% did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.

  1. A novel in situ permeation system and its utility in cancer tissue ablation

    PubMed Central

    WATANABE, MASAMI

    2015-01-01

    Focal ablation therapy is an emerging treatment modality for localized cancer lesions. It is an attractive strategy for inhibiting tumor progression and preventing morbidity associated with open surgery. As for intratissue drug delivery systems for use in local therapy, the convection-enhanced delivery (CED) of liquid drugs has been utilized, particularly for the treatment of malignant brain tumors. Although the conventional CED system is useful for providing drug/vehicle-based local therapy, there are several reported disadvantages in terms of the ability to control the extent of drug diffusion. We herein developed and validated a novel in situ permeation (ISP)-MW-1 system for achieving intratissue drug diffusion. The ISP system includes a perfusion catheter connected to an injector and aspirator, which enables intratissue perfusion of the solute diluted in the vehicle in the tip-inserted cavity. We subsequently evaluated the utility of the ISP-MW-1 system for in situ permeation in a subcutaneous tumor model in hamsters. Dehydrated ethanol, saline and 50% acetic acid were evaluated as the vehicle, and methylene blue was used as a dissolved substance for evaluating the diffusion of the agent. As a result, almost all of the tumor tissue within the capsule (tumor size: ~3 cm) was permeated with the dehydrated ethanol and 50% acetic acid and partially with the saline. We further demonstrated that ISP treatment with 50% acetic acid completely ablated the subcutaneous tumors in all of the treated hamsters (n=3). Therefore, the ISP-MW-1 system is a promising approach for controlling the intratissue diffusion of therapeutic agents and for providing local ablation therapy for cancer lesions. We believe that this system may be applicable to a broad range of medicinal and industrial fields, such as regenerative medicine, drug delivery systems, biochemistry and material technologies as well as cancer therapy. PMID:26134633

  2. Preferential uptake of ribose by primitive cells might explain why RNA was favored over its analogs

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew; Wei, Chenyu

    Permeation of molecules through membranes is a fundamental process in biological systems, which not only involves mass and signal transfers between the interior of a contemporary cell and its environment, but was also of crucial importance in the origin of life. In the absence of complex protein transporters, nutrients and building blocks of biopolymers must have been able to permeate membranes at sufficient rates to support primordial metabolism and cel-lular reproduction. From this perspective one class of solutes that is of special interest are monosaccharides, which serve not only as nutritional molecules but also as building blocks for information molecules. In particular, ribose is a part of the RNA backbone, but RNA analogs containing a number of other sugars have also been shown to form stable duplexes. Why, among these possibilities, ribose (and, subsequently, deoxyribose) was selected for the backbone of information polymers is still poorly understood. It was recently found that ribose permeates membranes an order of magnitude faster than its diastereomers, arabinose and xylose [1]. On this basis it was hypothesized that differences in membrane permeability to aldopentoses provide a mechanism for preferential delivery of ribose to primitive cells for subsequent, selective incorporation into nucleotides and their polymers. However, the origins of these unusually large differences had not been well understood. We addressed this issue in molecular dynamics simulations combined with free energy calculations. It was found that the free energy barrier for transferring ribose from water to the bilayer is lower by 1.5-2 kcal/mol than the barrier for transferring the other two aldopentoses. The calculated [2] and measured [1] permeability coefficients are in an excellent agreement. The sugar structures that permeate the membrane are -pyranoses, with a possible contribution of the -anomer for arabinose. The furanoid form of ribose is not substantially involved in perme-ation, even though it is non-negligibly populated in aqueous solution. The differences in free energy barrier between ribose and arabinose or xylose are due to stronger, highly cooperative, intramolecular interactions between consecutive exocyclic hydroxyl groups, which are stable in non-polar media, but rare in water. Most recently, we extended calculations of permeations to ribonucleosides and their anomers. We determined that, in contrast to sugars, permeation of membranes to these species is nearly identical. This is because sugars of nucleotides exist in the furanose rather than pyranose form. In this form intermolecular interactions between hydroxyl groups are not nearly as efficient for sterical reasons. Our results contribute to the discussion about autotrophic vs. heterotrophic origins of life. Chemical reactions inside protobiological vesicle required supply of organic material from the environment. What was the inventory of organics that must have been delivered to primitive cells is still being debated. According to the autotrophic hypothesis, ancestors of cells pro-duced complex organic molecules from simple substrates. In contrast, the heterotrophic model implies that protocells were able to utilize complex organics delivered from external sources. A possibility of sufficiently efficient uptake of molecules needed to build biopolymers provides an important argument supporting the heterotrophic hypothesis [3]. Viewed in the context of the "RNA world" hypothesis [4], which states that RNA molecules were the first biological poly-mers and acted as both catalysts of biochemical reactions and information storage systems, our results demonstrate that, in the absence of sophisticated mechanisms available to contemporary organisms for achieving selectivity during synthesis and transmembrane transport, preferential uptake of ribose by primitive cells might have provided a kinetic mechanism that favored its selective incorporation into nucleic acids and, ultimately, the emergence of RNA. The same mechanism, however, could not have operated if the species transported across protocellular walls were nucleosides (or, presumably, nucleotides) rather than sugars. References: [1] M. G. Sacerdote and J. W. Szostak, 2005, Proc. Natl. Acad. Sci USA, 102, 6004; [2] C. Wei, and A. Pohorille, 2009, J. Am. Chem. Soc. 131, 10237: [3] S. S. Mansy, J. P. Schrum, M. Krishnamurthy, S. Tobé, D. A. Treco and J. W. Szostak, 2008, Nature. 454, 122; [4] W. Gilbert, 1986, Nature 319, 618.

  3. Modeling and experiments on tritium permeation in fusion reactor blankets

    NASA Astrophysics Data System (ADS)

    Holland, D. F.; Longhurst, G. R.

    The determination of tritium loss from helium-cooled fusion breeding blankets are discussed. The issues are: (1) applicability of present models to permeation at low tritium pressures; (2) effectiveness of oxide layers in reducing permeation; (3) effectiveness of hydrogen addition as a means to lower tritium permeation; and (4) effectiveness of conversion to tritiated water and subsequent trapping to reduce permeation. Theoretical models applicable to these issues are discussed, and results of experiments in two areas are presented; permeation of mixtures of hydrogen isotopes and conversion to tritiated water.

  4. A mutation in the extracellular domain of the α7 nAChR reduces calcium permeability.

    PubMed

    Colón-Sáez, José O; Yakel, Jerrel L

    2014-08-01

    The α7 neuronal nicotinic acetylcholine receptor (nAChR) displays the highest calcium permeability among the different subtypes of nAChRs expressed in the mammalian brain and can impact cellular events including neurotransmitter release, second messenger cascades, cell survival, and apoptosis. The selectivity for cations in nAChRs is thought to be achieved in part by anionic residues which are located on either side of the channel mouth and increase relative cationic concentration. Mutagenesis studies have improved our understanding of the role of the second transmembrane domain and the intracellular loop of the channel in ion selectivity. However, little is known about the influence that the extracellular domain (ECD) plays in ion permeation. In the α7 nAChR, it has been found that the ECD contains a ring of ten aspartates (two per subunit) that is believed to face the lumen of the pore and could attract cations for permeation. Using mutagenesis and a combination of electrophysiology and imaging techniques, we tested the possible involvement of these aspartate residues in the calcium permeability of the rat α7 nAChR. We found that one of these residues (the aspartate at position 44) appears to be essential since mutating it to alanine resulted in a decrease in amplitude for both whole cell and single-channel responses and in the complete disappearance of detectable calcium changes in most cells, which indicates that the ECD of the α7 nAChR plays a key role in calcium permeation.

  5. A mutation in the extracellular domain of the α7 nAChR reduces calcium permeability

    PubMed Central

    Colón-Sáez, José O.

    2013-01-01

    The α7 neuronal nicotinic acetylcholine receptor (nAChR) displays the highest calcium permeability among the different subtypes of nAChRs expressed in the mammalian brain and can impact cellular events including neurotransmitter release, second messenger cascades, cell survival, and apoptosis. The selectivity for cations in nAChRs is thought to be achieved in part by anionic residues which are located on either side of the channel mouth and increase relative cationic concentration. Mutagenesis studies have improved our understanding of the role of the second transmembrane domain and the intracellular loop of the channel in ion selectivity. However, little is known about the influence that the extracellular domain (ECD) plays in ion permeation. In the α7 nAChR, it has been found that the ECD contains a ring of ten aspartates (two per subunit) that is believed to face the lumen of the pore and could attract cations for permeation. Using mutagenesis and a combination of electrophysiology and imaging techniques, we tested the possible involvement of these aspartate residues in the calcium permeability of the rat α7 nAChR. We found that one of these residues (the aspartate at position 44) appears to be essential since mutating it to alanine resulted in a decrease in amplitude for both whole cell and single-channel responses and in the complete disappearance of detectable calcium changes in most cells, which indicates that the ECD of the α7 nAChR plays a key role in calcium permeation. PMID:24177919

  6. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  7. Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies.

    PubMed

    Belsey, Natalie A; Garrett, Natalie L; Contreras-Rojas, L Rodrigo; Pickup-Gerlaugh, Adam J; Price, Gareth J; Moger, Julian; Guy, Richard H

    2014-01-28

    Stimulated Raman scattering microscopy was used to assess the permeation of topically applied drugs and formulation excipients into porcine skin. This chemically selective technique generates high-resolution 3D images, from which semi-quantitative information may be elucidated. Ibuprofen, applied as a close-to-saturated solution in propylene glycol, was directly observed to crystallise in/on the skin, as the co-solvent permeated more rapidly, resulting in precipitation of the drug. Coherent Raman scattering microscopy is also an excellent tool, in conjunction with more conventional confocal fluorescence microscopy, with which to image micro/nanoparticle-based formulations. Specifically, the uptake of particles into thermal ablation transport pathways in the skin has been examined. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.

    PubMed

    Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus

    2013-05-01

    The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.

  9. Delivery of risperidone from gels across porcine skin in vitro and in vivo in rabbits.

    PubMed

    Ning, Yuming; Chen, Xiaojin; Yu, Zhenwei; Liang, Wenquan; Li, Fanzhu

    2018-05-01

    The purpose of this study was to develop and evaluate a transdermal delivery system for RIS using hydrogels. First, the effects of different concentrations of hydroxypropyl methylcellulose and Carbomer 934 (CBR) on RIS permeation were investigated in porcine skin. The optimized formulation was chosen as the base gel to screen for penetration enhancers. The pharmacokinetics of the optimized RIS formulation was then studied in vitro in rabbits. A formulation with 0.5% CBR showed the highest RIS permeation and was selected as the base gel. RIS permeation was further increased by incorporation of Azone, lauryl alcohol, or menthol, and the enhancing effects of the three were dose-dependent. When each enhancer combined with propylene glycol (PG) a synergistic effect was found. A combination of 6% menthol and 6% PG exhibited highest RIS in vitro penetration rate and showed a high efficiency in vivo, with a relative bioavailability of 131.53% compared with intragastric administration. These findings showed that 1% RIS in 0.5% CBR, containing a combination of 6% menthol and 6% PG, can deliver doses of RIS that are therapeutically relevant for treating patients with schizophrenia.

  10. Rapid pain relief using transdermal film forming polymeric solution of ketorolac.

    PubMed

    Ammar, H O; Ghorab, M; Mahmoud, A A; Makram, T S; Ghoneim, A M

    2013-01-01

    Ketorolac is one of the most potent nonsteroidal anti-inflammatory drugs and is an attractive alternative to opioids for pain management. Development and evaluation of transdermal ketorolac film forming polymeric solution. Eudragits(®) RLPO, RSPO and E100 as well as polyvinyl pyrrolidone K30 dissolved in ethanol were used as film forming solutions. In vitro experiments were conducted to optimize formulation parameters. Different permeation enhancers were monitored for potentiality of enhancing drug permeation across excised pigskin. The use of 10% oleic acid, Lauroglycol(®) 90 or Azone(®) with 5% Eudragit(®) RSPO, showed the highest enhancement effect on ketorolac skin permeation and showed faster analgesic effect compared to the ketorolac tablet. The formula comprising 5% Eudragit(®) RSPO and 10% Lauroglycol(®) 90 showed the greatest pharmacodynamic effect and thus was subjected to pharmacokinetic studies. The pharmacodynamic and pharmacokinetic results didn't run paralleled to each other, as the ketorolac tablets showed higher plasma concentrations compared to the selected ketorolac transdermal formulation. This might be due to the induction of analgesia by the available ethanol in the transdermal preparation. Optimized transdermal ketorolac formulation showed marked ability to ensure fast and augmented analgesic effect that is an essential request in pain management.

  11. Study on CO2/ N2 separation: the effect of rubbery polymer coating on PVDF membrane

    NASA Astrophysics Data System (ADS)

    Zuwairi, M. Z.; Rahman, S. A.

    2017-06-01

    The emission of harmful gases such as carbon dioxide (CO2) via gas processing plant and daily human activities gave negative impacts to the environment and global inhabitant. Flat sheet asymmetric membranes were produced from homogenous solution of Poly(vinylideneflouride) (PVDF) via phase inversion method using N-methyl-2-pyrrolidone (NMP) as the solvent. While the poly ether b-amide (PEBAX) was dissolve by using of (70 ethanol and 30 water) as a solvent and and lithium chloride as a additives. The morphology and cross section of the produced membranes were observed by Scanning Electron Microscope (SEM). Then, the membranes were tested for chemical analysis to define the presence of PEBAX in the membrane by using Fourier Transform Infrared (FTIR) spectroscopy. The permeation performances of the membranes were evaluated in terms of permeability and selectivity of the membranes by using gas permeation test. Increasing the PEBAX content significantly increased the selectivity of the PVDF membrane to separate the CO2/N2 gases but decreased the amount of the gases that passed through the membrane.

  12. Hydroxypropyl-β-cyclodextrin-containing hydrogel enhances skin formononetin permeation/retention.

    PubMed

    Dias, Paula Hollweg; Scopel, Marina; Martiny, Simony; Bianchi, Sara Elis; Bassani, Valquiria Linck; Zuanazzi, José Angelo Silveira

    2018-04-10

    This study was aimed to investigate the in vitro permeation potential of hydrogel formulations containing the isoflavones formononetin and biochanin A and cyclodextrins in different combinations. The permeation assay was performed using porcine skin discs on Franz diffusion cells model. The isoflavone contents of the formulations were quantified in the different layers of the skin using a validated HPLC-PDA method. The isoflavones individually incorporated into the formulations showed high permeation potential, especially formononetin, after the incorporation of hydroxypropyl-β-cyclodextrin that enhanced its permeation in the epidermis and dermis. Biochanin A showed 2.7 times of permeation capacity in the epidermis and dermis mainly after incorporation of cyclodextrins in the formulations. Formononetin showed reduction in its permeation when incorporated in the formulations together to biochanin A, showing the absence of synergism. Our results indicated a noticeable skin permeation promoting effect of HPβCD in formononetin formulation. Furthermore, formononetin and biochanin A can permeate the skin being mostly retained in the epidermis and dermis, revealing its potential use in cosmetic preparations intended to prevent skin aging. © 2018 Royal Pharmaceutical Society.

  13. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    NASA Astrophysics Data System (ADS)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and oxygen permeability of the SrCoO3-delta membrane. Among all the disk-shaped SSCx (x = 0-0.7) membranes with a thickness of 0.91 mm, both SSC0.05 and SSC0.1 exhibit the highest oxygen permeation rate of about 3.2 mL.cm-2.min-1 (STP) at 900 °C, SSC0.1 also shows excellent cathode performance for a solid oxide fuel cell. Therefore SSC0.1 is of special interest, and thus investigated regarding the performance as a membrane reactor for methane combustion. The performance was evaluated based on the results of methane conversion rates and CO 2 selectivity. Inspired by the above findings, a series of mixed-conducting perovskite oxides SrCo0.95M0.05O3-delta (SCM, M = Bi5+, Zr4+, Ce4+, Sc3+ , La3+, Y3+, Al3+, Zn 2+) were prepared to study the effects of different dopants M on the performance of SrCo0.95M0.05O3-delta. It was found that the M cations significantly affect the crystal phase structure, grain growth, membrane porosity, electrical conductivity, and the oxygen permeability of the SCM membranes. Specifically, it is postulated in this study that the formation of the cubic perovskite structure is dependent on the electron configuration in the outer orbits of M cations, which may provide theoretical guidance for future development of high oxygen permeation ceramic membranes based on the perovskite materials. To study the significant effects of grain sizes on the oxygen permeation behaviors of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and SrSc0.1Co0.9O 3-delta (SSC0.1) membranes, the LSCF and SSC0.1 membranes were sintered at various temperatures to form different microstructures. Properties of these membranes with varied grain sizes were compared. Results showed that the oxygen permeation rate of the LSCF membrane increases with increasing the grain size, however, it is interesting that the oxygen permeation rate of the SSC0.1 membrane decreases with increasing the grain size. This implies that oxygen transport occurs more, however, less rapidly along grain boundaries than through the bulks in the LSCF and SSC0.1 membranes, respectively. A LSCF hollow fiber membrane and a SSC0.1 planar membrane were applied as membrane reactors for methane combustion. To improve their performances, LSCF powder and SSC0.1 powder were dip-coated and spray-coated on the permeation sides of LSCF hollow fiber membranes and SSC0.1 planar membranes, respectively. The exhaust gas components were analyzed by Gas Chromatography (GC). The performance was evaluated based on the results of methane conversion rates and CO 2 selectivity. The highest CO2 selectivity of the LSCF hollow fiber membrane and the SSC0.1 planar membrane is about 88 and 85 %, respectively. This indicates that the application of an oxygen permeation membrane as methane combustion reactor is feasible.

  14. Gel in core carbosomes as novel ophthalmic vehicles with enhanced corneal permeation and residence.

    PubMed

    Moustafa, Mona A; El-Refaie, Wessam M; Elnaggar, Yosra S R; Abdallah, Ossama Y

    2018-05-17

    Carbopol is a good bio-adhesive polymer that increases the residence time in the eye. However, the effect of blinking and lacrimation still reduce the amount of polymer and the incorporated drug available for bioadhesion. Gel-core liposomes are advanced systems offering benefits making it a good tool for improved ocular drug delivery and residence time. Incorporation of carbopol in gel-core liposomes and their potential in ocular delivery have not so far been investigated. Fluconazole (FLZ) was selected as a challenging important ocular antifungal suffering from poor corneal permeation and short residence time. In this study, gel-core carbosomes have been elaborated as novel carbopol-based ophthalmic vehicles to solve ocular delivery obstacles of FLZ and to sustain its effect. Full in vitro appraisal was performed considering gel-core structure, entrapment efficiency, particle size and stability of the vesicles as quality attributes. Structure elucidation of the nanocarrier was performed using optical, polarizing and transmission electron microscopy before and after Triton-X100 addition. Ex-vivo ocular permeation and in vivo performance were investigated on male albino rabbits. Optimized formulation (CBS5) showed gel-core structure, nanosize (339.00 ± 5.50 nm) and not defined before (62.00% ± 1.73) entrapment efficiency. Cumulative amount of CBS5 permeated ex-vivo after 6 h, was 2.43 and 3.43 folds higher than that of conventional liposomes and FLZ suspension, respectively. In-vivo corneal permeation of CBS5 showed significantly higher AUC0-24 h (487.12 ± 74.80) compared to that of FLZ suspension (204.34 ± 7.46) with longer residence time in the eye lasts for more than 18 h. In conclusion, novel gel-core carbosomes could successfully be used as a promising delivery system for chronic ocular diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Permeation study through bacterial cellulose membrane.

    PubMed

    Wu, Chengdong; Murtaza, Ghulam; Yameen, Muhammad Arfat; Aamir, Muhammad Naeem; Akhtar, Muhammad; Zhao, Yuhao

    2014-01-01

    Abstract: The objective of this study was to fabricate topical formulations of diclofenac diethylamine (DD) using isopropyl myristate (IPM) and isopropyl palmitate (IPP) as permeation enhancers. Franz cell and bacterial cellulose were used as analytical instrument and diffusion membrane, respectively. Permeation enhancers exhibited significant effect on the permeation characteristics of DD. It was concluded from the results that improved permeation of DD was observed when IPP was used as enhancer.

  16. Water permeation through anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  17. In situ measurement of tritium permeation through stainless steel

    NASA Astrophysics Data System (ADS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  18. Crystal Structure of an Ammonia-Permeable Aquaporin

    PubMed Central

    Kirscht, Andreas; Kaptan, Shreyas S.; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L.; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-01-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. PMID:27028365

  19. An embryo of protocells: The capsule of graphene with selective ion channels

    PubMed Central

    Li, Zhan; Wang, Chunmei; Tian, Longlong; Bai, Jing; Yao, Huijun; Zhao, Yang; Zhang, Xin; Cao, Shiwei; Qi, Wei; Wang, Suomin; Shi, Keliang; Xu, Youwen; Mingliang, Zhang; Liu, Bo; Qiu, Hongdeng; Liu, Jie; Wu, Wangsuo; Wang, Xiaoli; Wenzhen, An

    2015-01-01

    The synthesis of artificial cell is a route for searching the origin of protocell. Here, we create a novel cell model of graphene capsules with selective ion channels, indicating that graphene might be an embryo of protocell membrane. Firstly, we found that the highly oxidized graphene and phospholipid-graphene oxide composite would curl into capsules under a strongly acidic saturated solution of heavy metallic salt solution at low temperature. Secondly, L-amino acids exhibited higher reactivity than D-amino acids on graphene oxides to form peptides, and the formed peptides in the influence of graphene would be transformed into a secondary structure, promoting the formation of left-handed proteins. Lastly, monolayer nanoporous graphene, prepared by unfocused 84Kr25+, has a high selectivity for permeation of the monovalent metal ions ( Rb+ > K+ > Cs+ > Na+ > Li+, based on permeation concentration), but does not allow Cl- go through. It is similar to K+ channels, which would cause an influx of K+ into capsule of graphene with the increase of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Therefore, we built a model cell of graphene, which would provide a route for reproducing the origin of life. PMID:25989440

  20. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes

    PubMed Central

    Yang, Xing; Fraser, Thomas; Myat, Darli; Smart, Simon; Zhang, Jianhua; Diniz da Costa, João C.; Liubinas, Audra; Duke, Mikel

    2014-01-01

    An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation. PMID:24957120

  1. An embryo of protocells: The capsule of graphene with selective ion channels

    DOE PAGES

    Li, Zhan; Wang, Chunmei; Tian, Longlong; ...

    2015-05-19

    In this study, the synthesis of artificial cell is a route for searching the origin of protocell. Here, we create a novel cell model of graphene capsules with selective ion channels, indicating that graphene might be an embryo of protocell membrane. Firstly, we found that the highly oxidized graphene and phospholipid-graphene oxide composite would curl into capsules under a strongly acidic saturated solution of heavy metallic salt solution at low temperature. Secondly, L-amino acids exhibited higher reactivity than D-amino acids on graphene oxides to form peptides, and the formed peptides in the influence of graphene would be transformed into amore » secondary structure, promoting the formation of left-handed proteins. Lastly, monolayer nanoporous graphene, prepared by unfocused 84Kr 25+, has a high selectivity for permeation of the monovalent metal ions ( Rb + > K + > Cs + > Na + > Li +, based on permeation concentration), but does not allow Cl- go through. It is similar to K+ channels, which would cause an influx of K + into capsule of graphene with the increase of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Therefore, we built a model cell of graphene, which would provide a route for reproducing the origin of life.« less

  2. External-Field-Induced Gradient Wetting for Controllable Liquid Transport: From Movement on the Surface to Penetration into the Surface.

    PubMed

    Li, Yan; He, Linlin; Zhang, Xiaofang; Zhang, Na; Tian, Dongliang

    2017-12-01

    External-field-responsive liquid transport has received extensive research interest owing to its important applications in microfluidic devices, biological medical, liquid printing, separation, and so forth. To realize different levels of liquid transport on surfaces, the balance of the dynamic competing processes of gradient wetting and dewetting should be controlled to achieve good directionality, confined range, and selectivity of liquid wetting. Here, the recent progress in external-field-induced gradient wetting is summarized for controllable liquid transport from movement on the surface to penetration into the surface, particularly for liquid motion on, patterned wetting into, and permeation through films on superwetting surfaces with external field cooperation (e.g., light, electric fields, magnetic fields, temperature, pH, gas, solvent, and their combinations). The selected topics of external-field-induced liquid transport on the different levels of surfaces include directional liquid motion on the surface based on the wettability gradient under an external field, partial entry of a liquid into the surface to achieve patterned surface wettability for printing, and liquid-selective permeation of the film for separation. The future prospects of external-field-responsive liquid transport are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The role of sodium in the salty taste of permeate.

    PubMed

    Frankowski, K M; Miracle, R E; Drake, M A

    2014-09-01

    Many food companies are trying to limit the amount of sodium in their products. Permeate, the liquid remaining after whey or milk is ultrafiltered, has been suggested as a salt substitute. The objective of this study was to determine the sensory and compositional properties of permeates and to determine if elements other than sodium contribute to the salty taste of permeate. Eighteen whey (n=14) and reduced-lactose (n=4) permeates were obtained in duplicate from commercial facilities. Proximate analyses, specific mineral content, and nonprotein nitrogen were determined. Organic acids and nucleotides were extracted followed by HPLC. Aromatic volatiles were evaluated by gas chromatography-mass spectrometry. Descriptive analysis of permeates and model solutions was conducted using a trained sensory panel. Whey permeates were characterized by cooked/milky and brothy flavors, sweet taste, and low salty taste. Permeates with lactose removed were distinctly salty. The organic acids with the highest concentration in permeates were lactic and citric acids. Volatiles included aldehydes, sulfur-containing compounds, and diacetyl. Sensory tests with sodium chloride solutions confirmed that the salty taste of reduced-lactose permeates was not solely due to the sodium present. Permeate models were created with NaCl, KCl, lactic acid, citric acid, hippuric acid, uric acid, orotic acid, and urea; in addition to NaCl, KCl, lactic acid, and orotic acid were contributors to the salty taste. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Modeling the human Nav1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade

    PubMed Central

    Ahmed, Marawan; Jalily Hasani, Horia; Ganesan, Aravindhan; Houghton, Michael; Barakat, Khaled

    2017-01-01

    Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel’s selectivity filters to reach the channel’s central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed “state-of-the-art” steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure–property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel. PMID:28831242

  5. On-demand oil-water separation via low-voltage wettability switching of core-shell structures on copper substrates

    NASA Astrophysics Data System (ADS)

    Kung, Chun Haow; Zahiri, Beniamin; Sow, Pradeep Kumar; Mérida, Walter

    2018-06-01

    A copper mesh with dendritic copper-oxide core-shell structure is prepared using an additive-free electrochemical deposition strategy for on-demand oil-water separation. Electrochemical manipulation of the oxidation state of the copper oxide shell phase results in opposite affinities towards water and oil. The copper mesh can be tuned to manifest both superhydrophobic and superoleophilic properties to enable oil-removal. Conversely, switching to superhydrophilic and underwater superoleophobic allows water-removal. These changes correspond to the application of small reduction voltages (<1.5 V) and subsequent air drying. In the oil-removal mode, heavy oil selectively passes through the mesh while water is retained; in water-removal mode, the mesh allows water to permeate but blocks light oil. The smart membrane achieved separation efficiencies higher than 98% for a series of oil-water mixtures. The separation efficiency remains high with less than 5% variation after 30 cycles of oil-water separation in both modes. The switchable wetting mechanism is demonstrated with the aid of microstructural and electrochemical analysis and based on the well-known Cassie-Baxter and Wenzel theories. The selective removal of water or oil from the oil-water mixtures is driven solely by gravity and yields high efficiency and recyclability. The potential applications for the relevant technologies include oil spills cleanup, fuel purification, and wastewater treatment.

  6. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors

    PubMed Central

    Pain, Margaret; Fuller, Alexandra W.; Basore, Katherine; Pillai, Ajay D.; Solomon, Tsione; Bokhari, Abdullah A. B.; Desai, Sanjay A.

    2016-01-01

    Malaria parasites increase their host erythrocyte’s permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC) mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel’s structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing. PMID:26866812

  7. Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids.

    PubMed

    Wang, Yichun; Bahng, Joong Hwan; Che, Quantong; Han, Jishu; Kotov, Nicholas A

    2015-08-25

    Understanding transport of carbon nanotubes (CNTs) and other nanocarriers within tissues is essential for biomedical imaging and drug delivery using these carriers. Compared to traditional cell cultures in animal studies, three-dimensional tissue replicas approach the complexity of the actual organs and enable high temporal and spatial resolution of the carrier permeation. We investigated diffusional transport of CNTs in highly uniform spheroids of hepatocellular carcinoma and found that apparent diffusion coefficients of CNTs in these tissue replicas are anomalously high and comparable to diffusion rates of similarly charged molecules with molecular weights 10000× lower. Moreover, diffusivity of CNTs in tissues is enhanced after functionalization with transforming growth factor β1. This unexpected trend contradicts predictions of the Stokes-Einstein equation and previously obtained empirical dependences of diffusivity on molecular mass for permeants in gas, liquid, solid or gel. It is attributed to the planar diffusion (gliding) of CNTs along cellular membranes reducing effective dimensionality of diffusional space. These findings indicate that nanotubes and potentially similar nanostructures are capable of fast and deep permeation into the tissue, which is often difficult to realize with anticancer agents.

  8. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.

    PubMed Central

    Zhang, Z R; McDonough, S I; McCarty, N A

    2000-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel with distinctive kinetics. At the whole-cell level, CFTR currents in response to voltage steps are time independent for wild type and for the many mutants reported so far. Single channels open for periods lasting up to tens of seconds; the openings are interrupted by brief closures at hyperpolarized, but not depolarized, potentials. Here we report a serine-to-phenylalanine mutation (S1118F) in the 11th transmembrane domain that confers voltage-dependent, single-exponential current relaxations and moderate inward rectification of the macroscopic currents upon expression in Xenopus oocytes. At steady state, the S1118F-CFTR single-channel conductance rectifies, corresponding to the whole-cell rectification. In addition, the open-channel burst duration is decreased 10-fold compared with wild-type channels. S1118F-CFTR currents are blocked in a voltage-dependent manner by diphenylamine-2-carboxylate (DPC); the affinity of S1118F-CFTR for DPC is similar to that of the wild-type channel, but blockade exhibits moderately reduced voltage dependence. Selectivity of the channel to a range of anions is also affected by this mutation. Furthermore, the permeation properties change during the relaxations, which suggests that there is an interaction between gating and permeation in this mutant. The existence of a mutation that confers voltage dependence upon CFTR currents and that changes kinetics and permeation properties of the channel suggests a functional role for the 11th transmembrane domain in the pore in the wild-type channel. PMID:10866956

  9. REFINEMENT OF A MODEL TO PREDICT THE PERMEATION OF PROTECTIVE CLOTHING MATERIALS

    EPA Science Inventory

    A prototype of a predictive model for estimating chemical permeation through protective clothing materials was refined and tested. he model applies Fickian diffusion theory and predicts permeation rates and cumulative permeation as a function of time for five materials: butyl rub...

  10. Small molecule mimics of DFTamP1, a database designed anti-Staphylococcal peptide

    PubMed Central

    Dong, Yuxiang; Lushnikova, Tamara; Golla, Radha M.; Wang, Xiaofang; Wang, Guangshun

    2017-01-01

    Antimicrobial peptides (AMPs) are important templates for developing new antimicrobial agents. Previously, we developed a database filtering technology that enabled us to design a potent anti-Staphylococcal peptide DFTamP1. Using this same design approach, we now report the discovery of a new class of bis-indole diimidazolines as AMP small molecule mimics. The best compound killed multiple S. aureus clinical strains in both planktonic and biofilm forms. The compound appeared to target bacterial membranes with antimicrobial activity and membrane permeation ability similar to daptomycin. PMID:28011203

  11. ENHANCED PERVAPORATION SEPARATION EFFICIENCY VIA STAGED FRACTIONAL CONDENSATION (DEPHLEGMATION) OF PERMEATE VAPOR

    EPA Science Inventory

    In traditional pervaporation systems, the permeate vapor is completely condensed to obtain a liquid permeate stream. For example, in the recovery of ethanol from a 5-wt% aqueous stream (such as a biomass fermentation broth), the permeate from a silicone rubber pervaporation membr...

  12. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand

    PubMed Central

    Banaee, Sean; S Que Hee, Shane

    2017-01-01

    Objectives: The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). Methods: This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). Results: The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm2/min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Conclusions: Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving. PMID:28111415

  13. Direct estimation of the permeation of topical excipients through artificial membranes and human skin with non-invasive Terahertz time-domain techniques.

    PubMed

    Lopez-Dominguez, Victor; Boix-Montañes, Antoni; Redo-Sanchez, Albert; Tejada-Palacios, Javier

    2016-07-01

    Drug permeation through skin, or a synthetic membrane, from locally acting pharmaceutical products can be influenced by the permeation behaviour of pharmaceutical excipients. Terahertz time-domain technology is investigated as a non-invasive method for a direct and accurate measurement of excipients permeation through synthetic membranes or human skin. A series of in-vitro release and skin permeation experiments of liquid excipients (e.g. propylene glycol and polyethylene glycol 400) has been conducted with vertical diffusion cells. The permeation profiles of excipients through different synthetic membranes or skin were obtained using Terahertz pulses providing a direct measurement. Corresponding permeation flux and permeability coefficient values were calculated based on temporal changes of the terahertz pulses. The influence of different experimental conditions, such as the polarity of the membrane and the viscosity of the permeant, was assessed in release experiments. Specific transmembrane flux values of those excipients were directly calculated with statistical differences between cases. Finally, an attempt to estimate the skin permeation of propylene glycol with this technique was also achieved. All these permeation results were likely comparable to those obtained by other authors with usual analytical techniques. Terahertz time-domain technology is shown to be a suitable technique for an accurate and non-destructive measurement of the permeation of liquid substances through different synthetic membranes or even human skin. © 2016 Royal Pharmaceutical Society.

  14. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos G.

    1997-05-20

    A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

  15. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, I.; Toy, L.G.; Casillas, C.G.

    1997-05-20

    A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

  16. In vitro permeation characterization of repellent picaridin and sunscreen oxybenzone.

    PubMed

    Gu, Xiaochen; Chen, Ting

    2009-01-01

    Picaridin and oxybenzone are two active ingredients found in repellent and sunscreen preparations, respectively. We performed a series of in vitro diffusion studies to evaluate the transmembrane permeation of picaridin and oxybenzone across human epidermis and poly(dimethylsiloxane) (PDMS) membrane. Permeation of picaridin (PCR) and oxybenzone (OBZ) across human epidermis was suppressed when both active ingredients were used concurrently; increasing concentration of the test compounds further reduced the permeation percentage of picaridin and oxybenzone. While permeation characteristics were correlative between human epidermis and PDMS membrane, permeability of PDMS membrane was significantly larger than that of human epidermis. The findings were different from concurrent use of repellent DEET and sunscreen oxybenzone in which a synergistic permeation enhancement was observed. Further comparative studies are therefore needed to understand permeation mechanisms and interactions between picaridin and oxybenzone.

  17. Layer by Layer, Nano-particle "Only" Surface Modification of Filtration Membranes

    NASA Astrophysics Data System (ADS)

    Escobar-Ferrand, Luis

    Layer by Layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for the modification of polymeric micro and ultrafiltration (MF/UF) membranes to produce thin film composites (TFC) with potential nanofiltration (NF) and reverse osmosis (RO) capabilities.. A variety of porous substrate membranes with different membrane surface characteristics are employed, but exhibiting in common that wicking of water does not readily occur into the pore structure, including polycarbonate track etched (PCTE), polyethersulfone (PES) and sulfonated PES (SPEES) MF/UF membranes. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those reported by Lee et al. Appropriate selection of the pH's for anionic and cationic particle deposition enables the construction of nanoparticle only layers 100--1200 nm in thickness atop the original membrane substrates. The surface layer thickness varies monotonically with the number of bilayers (anionic/cationic deposition cycles) as expected. The deposition process is optimized to eliminate drying induced cracking and to improve mechanical durability via thickness control and post-deposition hydro-thermal treatment. The hydrodynamic permeability of these TFC membranes is measured to evaluate their performance under typical NF operating conditions using dead-end permeation experiments and their performance compared quantitatively with realistic hydrodynamic models, with favorable results. For track etched polycarbonate MF substrates, surface modification causes a permeability reduction of approximately two orders of magnitude with respect to the bare substrates, to values comparable to those for typical commercial NF membranes. Good quantitative agreement with hydrodynamic models with no adjustable parameters was also established for this case, providing indirect confirmation that the LbL deposited surface layers are largely defect (crack) free. Imaging of our TFC membranes after permeation tests confirmed that no significant mechanical damage resulted, indicating integrity and robustness of the LbL deposited surface layers in typical applications. The selectivity of these novel TFC membranes was also tested using standard "rejection" tests normally used to characterize NF and RO membranes for their capabilities in typical applications, such as water softening or desalination. We report the dextran standards molecular weight "cut-off" (MWCO) using mixed dextrans from 1.5 to 500 KDa in dead-end stir cells, and the percentage of rejection of standard bivalent and monovalent salt solutions using steady cross flow permeation experiments. The results confirm rejection of at least 60% of even the smallest dextrans, an estimated dextran MWCO of 20 KDa, and rejection of 10% and 20% for monovalent (NaCl) and bivalent (MgSO4) salts, respectively, for all the TFC membranes studied, while the unmodified membranes showed no rejection capability at all. The work supports that nanoparticle based LbL surface modification of MF/UF membranes can produce filtration quality media for important water purification applications, such as nanofiltration (NF) softening processes, natural organic matter (NOM) elimination and possibly reverse osmosis (RO) desalination.

  18. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    PubMed

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  19. Cutaneous estradiol permeation, penetration and metabolism in pig and man.

    PubMed

    Mahmoud, A; Haberland, A; Dürrfeld, M; Heydeck, D; Wagner, S; Schafer-Korting, M

    2005-01-01

    Drug development in dermatotherapy and also development of transdermal therapeutic systems (TTS) demand high-predictive in vitro models to estimate drug levels in skin and systemic uptake. Here we compare three ready-to-use models, reconstructed human epidermis, split porcine skin and the perfused porcine forelimb. 17beta-Estradiol (E(2)), which is highly metabolized by skin cells, serves as model drug since E(2) application is of high relevance in hormone replacement therapy while topical E(2) may promote wound healing. E(2) TTS, gel and an ethanolic solution were investigated for cutaneous penetration, permeation and metabolism. E(2) TTS enabled an E(2) uptake of 42.9% of the applied dose accompanied by a high percentage of E(2) metabolism (30% of the penetrated dose) in the perfused porcine forelimb. In Franz cell experiments with reconstructed human epidermis and split porcine skin, the gel allowed an E(2) uptake of 41.7 and 22.9% of the applied dose accompanied by a high E(2) metabolism (42.6 and 28.6% of the penetrated dose). Due to toxic effects of the vehicle, this was not true with an ethanolic solution, then E(2) permeation and metabolism were clearly diminished. Most importantly, the in vitro models proved to be predictive with respect to the E(2)/estrone ratio in female plasma under transdermal hormone replacement therapy. In vitro tests should reduce the need for both animal and human studies for cutaneous uptake and metabolism in the future. Copyright 2005 S. Karger AG, Basel.

  20. The use of permeation tube device and the development of empirical formula for accurate permeation rate

    USDA-ARS?s Scientific Manuscript database

    A series of laboratory experiments were conducted to assess the accuracy of permeation tube (PT) devices using a calibration gas generator system to measure permeation rate (PR) of volatile organic compounds (VOCs). Calibration gas standards of benzene, toluene, and m-xylene (BTX) were produced from...

  1. Development of novel composite membranes using quaternized chitosan and Na+-MMT clay for the pervaporation dehydration of isopropanol.

    PubMed

    Choudhari, Santosh K; Kariduraganavar, Mahadevappa Y

    2009-10-01

    Novel polymer-clay-based composite membranes were prepared by incorporating sodium montmorillonite (Na(+)-MMT) clay into quaternized chitosan. The resulting membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WXAD), and thermogravimetric analysis (TGA). The effect of membrane swelling was studied by varying the water concentration in the feed. The membranes were employed for the pervaporation dehydration of isopropanol in terms of feed composition and Na(+)-MMT clay loading. The experimental results demonstrated that membrane containing 10 mass% of Na(+)-MMT clay showed the highest separation selectivity of 14,992 with a flux of 14.23x10(-2) kg/m(2) h at 30 degrees C for 10 mass% of water in the feed. The total flux and flux of water are found to be overlapping each other particularly for clay-incorporated membranes, signifying that the composite membranes developed in the present study involving quaternized chitosan and Na(+)-MMT clay are highly selective toward water. From the temperature-dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The resulting activation energy values obtained for water permeation (E(pw)) are much lower than those of isopropanol permeation (E(pIPA)), suggesting that the developed composite membranes have higher separation efficiency for the water-isopropanol system. The estimated E(p) and E(D) values ranged between 8.97 and 11.89, and 7.56 and 9.88 kJ/mol, respectively. The positive heat of sorption (DeltaH(s)) values were obtained for all the membranes, suggesting that Henry's mode of sorption is predominant in the process.

  2. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel.

    PubMed

    Cheng, Mary Hongying; Coalson, Rob D; Tang, Pei

    2010-11-24

    Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.

  3. Effect of permeation enhancers in the mucoadhesive buccal patches of salbutamol sulphate for unidirectional buccal drug delivery

    PubMed Central

    Prasanth, V.V.; Puratchikody, A.; Mathew, S.T.; Ashok, K.B.

    2014-01-01

    The purpose of this work was to study the effect of various permeation enhancers on the permeation of salbutamol sulphate (SS) buccal patches through buccal mucosa in order to improve the bioavailability by avoiding the first pass metabolism in the liver and possibly in the gut wall and also achieve a better therapeutic effect. The influence of various permeation enhancers, such as dimethyl sulfoxide (DMSO), linoleic acid (LA), isopropyl myristate (IPM) and oleic acid (OA) on the buccal absorption of SS from buccal patches containing different polymeric combinations such as hydroxypropyl methyl cellulose (HPMC), carbopol, polyvinyl alcohol (PVA), polyvinyl pyrollidone (PVP), sodium carboxymethyl cellulose (NaCMC), acid and water soluble chitosan (CHAS and CHWS) and Eudragit-L100 (EU-L100) was investigated. OA was the most efficient permeation enhancer increasing the flux greater than 8-fold compared with patches without permeation enhancer in HPMC based buccal patches when PEG-400 was used as the plasticizer. LA also exhibited a better permeation enhancing effect of over 4-fold in PVA and HPMC based buccal patches. In PVA based patches, both OA and LA were almost equally effective in improving the SS permeation irrespective of the plasticizer used. DMSO was more effective as a permeation enhancer in HPMC based patches when PG was the plasticizer. IPM showed maximum permeation enhancement of greater than 2-fold when PG was the plasticizer in HPMC based buccal patches. PMID:25657797

  4. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties.

    PubMed

    Yu, Meng; Ma, Huixian; Lei, Mingzhu; Li, Nan; Tan, Fengping

    2014-09-01

    Topical skin treatment was limited due to the lack of suitable delivery system with significant cutaneous localization and systemic safety. The aim of this study was to develop and optimize a nanoemulsion (NE) to enhance targeting localization of metronidazole (MTZ) in skin layers. In vitro studies were used to optimize NE formulations, and a series of experiments were carried in vitro and in vivo to validate the therapeutic efficacy of MTZ-loaded optimal NE. NE type selection and D-optimal design study were applied to optimize NE formulation with maximum skin retention and minimum skin penetration. Three formulation variables: Oil X1 (Labrafil), Smix X2 (a mixture of Cremophor EL/Tetraethylene glycol, 2:1 w/w) and water X3 were included in D-design. The system was assessed for skin retention Y1, cumulative MTZ amount after 24 h Y2 and droplet size Y3. Following optimization, the values of formulation components (X1, X2 and X3) were 4.13%, 16.42% and 79.45%, respectively. The optimized NE was assessed for viscosity, droplet size, morphological study and in vitro permeation in pig skin. Distributions of MTZ were validated by confocal laser scanning microscopy (CLSM). Active agent of NE transferred into deeper skin and localized in epidermal/dermal layers after 24 h, which showed significant advantages of the optimal NE over Gel. The skin targeting localization and minimal systemic escape of optimal NE was further proved by in vivo study on rat skin. Current in vitro-in vivo correlation (IVIVC) enabled the prediction of pharmacokinetic profile of MTZ from in vitro permeation results. Further, the in vivo anti-rosacea efficacy of optimal formulation was investigated by pharmacodynamics study on mice ear. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    NASA Technical Reports Server (NTRS)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  6. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  7. Assessing and simulation of membrane technology for modifying starchy wastewater treatment

    NASA Astrophysics Data System (ADS)

    Hedayati Moghaddam, Amin; Hazrati, Hossein; Sargolzaei, Javad; Shayegan, Jalal

    2017-10-01

    In this study, a hydrophilic polyethersulfone membrane was used to modify the expensive and low efficient conventional treatment method of wheat starch production that would result in a cleaner starch production process. To achieve a cleaner production, the efficiency of starch production was enhanced and the organic loading rate of wastewater that was discharged into treatment system was decreased, simultaneously. To investigate the membrane performance, the dependency of rejection factor and permeate flux on operative parameters such as temperature, flow rate, concentration, and pH of feed were studied. Response surface methodology (RSM) has been applied to arrange the experimental layout which reduced the number of experiments and also the interactions between the parameters were considered. The maximum achieved rejection factor and permeate flux were 97.5% and 2.42 L min-1 m-2, respectively. Furthermore, a fuzzy inference system was selected to model the non-linear relations between input and output variable which cannot easily explained by physical models. The best agreement between the experimental and predicted data for permeate flux was denoted by correlation coefficient index ( R 2) of 0.9752 and mean square error (MSE) of 0.0072 where defuzzification operator was center of rotation (centroid). Similarly, the maximum R 2 for rejection factor was 0.9711 where the defuzzification operator was mean of maxima (mom).

  8. Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels

    PubMed Central

    2017-01-01

    TMEM16A and TMEM16B encode for Ca2+-activated Cl− channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B. PMID:28046119

  9. [In-vitro evaluation of cinnarizine as a competing agent to beta-cyclodextrin inclusion complexes: effect of cinnarizine on the membrane permeation rate of progesterone from its beta-cyclodextrin inclusion complex].

    PubMed

    Muraoka, Atsushi; Tokumura, Tadakazu; Machida, Yoshiharu

    2008-01-01

    The use of competing agents is considered a powerful tool for the development of a drug-delivery system with drug/cyclodextrin inclusion complexes. However, there are very few studies examining this issue. To explain this phenomenon, it was thought that a competing agent with a sufficiently high stability constant had not yet been reported. In this study, cinnarizine (CN), which has a high stability constant with beta-cyclodextrin (beta-CD) and unique solubility characteristics, was selected, and its ability as a competing agent was examined in a membrane permeability study. The permeability study showed that the permeation rates of the drugs flurbiprofen, progesterone, and spironolactone decreased with their stability constants with the addition of beta-CD. In one of the drugs, progesterone (Pro), the decrease was restored by the addition of CN. The amount of CN added was a 1:1 molar ratio to the amount of Pro. However, no similar action was induced with the addition of DL-phenylalanine (Phe) in the permeation study at the 1:5 (Pro:Phe) molar ratio. These finding indicate that CN acts as a competing agent, and its action is much stronger than that of Phe.

  10. Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine

    PubMed Central

    Kim, Sang-Soo; Harford, Joe B.; Pirollo, Kathleen F.; Chang, Esther H.

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood–brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. PMID:26116770

  11. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non-transport permissive and intact BBB, we also assessed the role of magnetic resonance imaging (MRI) guided focused ultrasound (MRgFUS) disruption of the BBB in enhancing permeation of AuNPs across the intact BBB and tumor BBB in vivo. MRgFUS is a novel technique that can transiently increase BBB permeability thereby allowing delivery of therapeutics into the CNS. We demonstrated enhanced delivery of AuNPs with therapeutic potential into the CNS via MRgFUS. Our study was the first to establish a definitive role for MRgFUS in delivering AuNPs into the CNS. In summary, this thesis describes results from a series of research projects that have contributed to our understanding of the influence of design features on AuNP permeation through the BBB and also the potential role of MRgFUS in AuNP permeation across the BBB.

  12. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    PubMed

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  13. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.

    PubMed

    Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie

    2016-05-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Enhancement of water permeation across nanochannels by partial charges mimicked from biological channels

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Jing; Fang, Hai-Ping

    2008-07-01

    In biological water channel aquaporins (AQPs), it is believed that the bipolar orientation of the single-file water molecules inside the channel blocks proton permeation but not water transport. In this paper, the water permeation and particularly the water-selective behaviour across a single-walled carbon nanotube (SWNT) with two partial charges adjacent to the wall of the SWNT are studied by molecular dynamics simulations, in which the distance between the two partial charges is varied from 0.14 nm to 0.5 nm and the charges each have a quantity of 0.5 e. The two partial charges are used to mimic the charge distribution of the conserved non-pseudoautosomal (NPA) (asparagine/proline/alanine) regions in AQPs. Compared with across the nanochannel in a system with one +1 e charge, the water permeation across the nanochannel is greatly enhanced in a system with two +0.5 e charges when charges are close to the nanotube, i.e. the two partial charges permit more rapid water diffusion and maintain better bipolar order along the water file when the distance between the two charges and the wall of SWNT is smaller than about 0.05 nm. The bipolar orientation of the single-file water molecules is crucial for the exclusion of proton transfer. These findings may serve as guidelines for the future nanodevices by using charges to transport water and have biological implications because membrane water channels share a similar single-file water chain and positive charged region at centre and provide an insight into why two residues are necessitated in the central region of water channel protein.

  16. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  17. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  18. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  19. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  20. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  1. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin.

    PubMed

    Wang, Tao; Miller, Donald; Burczynski, Frank; Gu, Xiaochen

    2014-02-01

    Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%-628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%-338% than that through LDPE.

  2. Behavior of tritium permeation induced by water corrosion of alpha iron around room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otsuka, T.; Hashizume, K.

    2015-03-15

    Tritium (T) permeation leakage to surroundings is a great safety concern in fission and fusion reactor systems. T permeation potentially occurs from T contaminated water through cooling tubes or storage tank made of metals which dissolve some T evolved by water corrosion. In order to understand behaviors of hydrogen uptake and permeation in pure α-iron (αFe) during water corrosion around room temperature, hydrogen permeation experiments for an αFe membrane have been conducted by means of tritium tracer techniques. The present study suggests that hydrogen produced by water corrosion of αFe is trapped in product oxide layers to delay hydrogen uptakemore » in αFe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in αFe normally diffuses and permeates through the bulk in the early stage of permeation. In a later stage, hydrogen permeation could be apparently stopped by the disappearance of concentration difference of tritium. Hydrogen partial pressure at the water/αFe interface could be ranged from 0.7 to 9.5 kPa around room temperature.« less

  3. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    NASA Astrophysics Data System (ADS)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  4. Interaction between the Pore and a Fast Gate of the Cardiac Sodium Channel

    PubMed Central

    Townsend, Claire; Horn, Richard

    1999-01-01

    Permeant ions affect a fast gating process observed in human cardiac sodium channels (Townsend, C., H.A. Hartmann, and R. Horn. 1997. J. Gen. Physiol. 110:11–21). Removal of extracellular permeant ions causes a reduction of open probability at positive membrane potentials. These results suggest an intimate relationship between the ion-conducting pore and the gates of the channel. We tested this hypothesis by three sets of manipulations designed to affect the binding of cations within the pore: application of intracellular pore blockers, mutagenesis of residues known to contribute to permeation, and chemical modification of a native cysteine residue (C373) near the extracellular mouth of the pore. The coupling between extracellular permeant ions and this fast gating process is abolished both by pore blockers and by a mutation that severely affects selectivity. A more superficial pore mutation or chemical modification of C373 reduces single channel conductance while preserving both selectivity of the pore and the modulatory effects of extracellular cations. Our results demonstrate a modulatory gating role for a region deep within the pore and suggest that the structure of the permeation pathway is largely preserved when a channel is closed. PMID:9925827

  5. A novel approach to the investigation of passive molecular permeation through lipid bilayers from atomistic simulations.

    PubMed

    Ghaemi, Zhaleh; Minozzi, Manuela; Carloni, Paolo; Laio, Alessandro

    2012-07-26

    Predicting the permeability coefficient (P) of drugs permeating through the cell membrane is of paramount importance in drug discovery. We here propose an approach for calculating P based on bias-exchange metadynamics. The approach allows constructing from atomistic simulations a model of permeation taking explicitly into account not only the "trivial" reaction coordinate, the position of the drug along the direction normal to the lipid membrane plane, but also other degrees of freedom, for example, the torsional angles of the permeating molecule, or variables describing its solvation/desolvation. This allows deriving an accurate picture of the permeation process, and constructing a detailed molecular model of the transition state, making a rational control of permeation properties possible. We benchmarked this approach on the permeation of ethanol molecules through a POPC membrane, showing that the value of P calculated with our model agrees with the one calculated by a long unbiased molecular dynamics of the same system.

  6. Performance evaluation of reverse osmosis technology for selected antibiotics removal from synthetic pharmaceutical wastewater

    PubMed Central

    2012-01-01

    This study addresses the possibility for low pressure reverse osmosis membrane (RE 2521, CSM) process to serve as an alternative to remove selected antibiotics (ampicillin and amoxicillin) from synthetic wastewater by changing operating conditions such as pH = 3, 6.5 and 10; Pressure = 9, 11 and13 (bar); antibiotic concentration = 10, 255 and 500(mg/L), and temperature = 20, 30 and 40°C. The experiment was designed based on Box-benken, which is a Response Surface methodology design (RSM), using Design Expert software. The concentration of antibiotics was measured by applying a UV-spectrophotometer (Cecil), at the wavelength of 254 nm. Results showed a range of rejection percentage from 73.52% to 99.36% and 75.1% to 98.8%, for amoxicillin and ampicillin, respectively. Considering the solute rejections and the membrane porosity show that the prevailing rejection mechanism of the examined antibiotics by the membrane was the size exclusion effect. The permeate flux for both of the antibiotics was 12–18.73 L/m2.h. Although the permeate flux and antibiotic rejection are influenced by operating pressure, pH, and temperature individually, the interaction between operating parameters did not have noticeable effects. According to the results obtained in this study, the application of RO membrane is recommended for the selected antibiotics to be removed to a considerable degree (up to 95%). PMID:23369431

  7. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    PubMed

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk.

    PubMed

    Tomasula, P M; Mukhopadhyay, S; Datta, N; Porto-Fett, A; Call, J E; Luchansky, J B; Renye, J; Tunick, M

    2011-09-01

    High-temperature, short-time pasteurization of milk is ineffective against spore-forming bacteria such as Bacillus anthracis (BA), but is lethal to its vegetative cells. Crossflow microfiltration (MF) using ceramic membranes with a pore size of 1.4 μm has been shown to reject most microorganisms from skim milk; and, in combination with pasteurization, has been shown to extend its shelf life. The objectives of this study were to evaluate MF for its efficiency in removing spores of the attenuated Sterne strain of BA from milk; to evaluate the combined efficiency of MF using a 0.8-μm ceramic membrane, followed by pasteurization (72°C, 18.6s); and to monitor any residual BA in the permeates when stored at temperatures of 4, 10, and 25°C for up to 28 d. In each trial, 95 L of raw skim milk was inoculated with about 6.5 log(10) BA spores/mL of milk. It was then microfiltered in total recycle mode at 50°C using ceramic membranes with pore sizes of either 0.8 μm or 1.4 μm, at crossflow velocity of 6.2 m/s and transmembrane pressure of 127.6 kPa, conditions selected to exploit the selectivity of the membrane. Microfiltration using the 0.8-μm membrane removed 5.91±0.05 log(10) BA spores/mL of milk and the 1.4-μm membrane removed 4.50±0.35 log(10) BA spores/mL of milk. The 0.8-μm membrane showed efficient removal of the native microflora and both membranes showed near complete transmission of the casein proteins. Spore germination was evident in the permeates obtained at 10, 30, and 120 min of MF time (0.8-μm membrane) but when stored at 4 or 10°C, spore levels were decreased to below detection levels (≤0.3 log(10) spores/mL) by d 7 or 3 of storage, respectively. Permeates stored at 25°C showed coagulation and were not evaluated further. Pasteurization of the permeate samples immediately after MF resulted in additional spore germination that was related to the length of MF time. Pasteurized permeates obtained at 10 min of MF and stored at 4 or 10°C showed no growth of BA by d 7 and 3, respectively. Pasteurization of permeates obtained at 30 and 120 min of MF resulted in spore germination of up to 2.42 log(10) BA spores/mL. Spore levels decreased over the length of the storage period at 4 or 10°C for the samples obtained at 30 min of MF but not for the samples obtained at 120 min of MF. This study confirms that MF using a 0.8-μm membrane before high-temperature, short-time pasteurization may improve the safety and quality of the fluid milk supply; however, the duration of MF should be limited to prevent spore germination following pasteurization. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Molecular target of synthetic antimicrobial oligomer in bacterial membranes

    NASA Astrophysics Data System (ADS)

    Yang, Lihua; Gordon, Vernita; Som, Abhigyan; Cronan, John; Tew, Gregory; Wong, Gerard

    2008-03-01

    Antimicrobial peptides comprises a key component of innate immunity for a wide range of multicellular organisms. It has been shown that natural antimicrobial peptides and their synthetic analogs have demonstrated broad-spectrum antimicrobial activity via permeating bacterial membranes selectively. Synthetic antimicrobials with tunable structure and toxicological profiles are ideal for investigations of selectivity mechanisms. We investigate interactions and self-assembly using a prototypical family of antimicrobials based on phenylene ethynylene. Results from synchrotron small angle x-ray scattering (SAXS) results and in vitro microbicidal assays on genetically modified `knock-out' bacteria will be presented.

  10. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  11. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  12. Ion Conduction through the hERG Potassium Channel

    PubMed Central

    Cavalli, Andrea; Recanatini, Maurizio

    2012-01-01

    The inward rectifier voltage-gated potassium channel hERG is of primary importance for the regulation of the membrane potential of cardiomyocytes. Unlike most voltage-gated K+-channels, hERG shows a low elementary conductance at physiological voltage and potassium concentration. To investigate the molecular features underlying this unusual behavior, we simulated the ion conduction through the selectivity filter at a fully atomistic level by means of molecular dynamics-based methods, using a homology-derived model. According to our calculations, permeation of potassium ions can occur along two pathways, one involving site vacancies inside the filter (showing an energy barrier of about 6 kcal mol−1), and the other characterized by the presence of a knock-on intermediate (about 8 kcal mol−1). These barriers are indeed in accordance with a low conductance behavior, and can be explained in terms of a series of distinctive structural features displayed by the hERG ion permeation pathway. PMID:23133669

  13. 40 CFR 1060.521 - How do I test fuel caps for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test fuel caps for permeation... EQUIPMENT Test Procedures § 1060.521 How do I test fuel caps for permeation emissions? If you measure a fuel tank's permeation emissions with a nonpermeable covering in place of the fuel cap under § 1060.520(b)(5...

  14. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    PubMed

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional cheesemaking processes, but its cost-effectiveness at a large scale remains to be demonstrated. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. In vitro percutaneous permeation of the repellent DEET and the sunscreen oxybenzone across human skin.

    PubMed

    Wang, Tao; Gu, Xiaochen

    2007-01-01

    DEET and oxybenzone are two essential active ingredients in repellent and sunscreen products. The percutaneous permeation of the two compounds across human skin from five commercially available repellent and sunscreen products was investigated in vitro. Diffusion studies were carried out at 37 degrees C, using Franz-style diffusion cells and human epidermis (380 microm in thickness). The test products were evaluated either individually or in various combinations for up to 6 hours. Concentrations of both compounds permeated through the skin were measured using an HPLC assay. Permeability and permeation percentage of DEET and oxybenzone from different application approaches were calculated and statistically compared. The accumulated transdermal permeation was 0.5-25.7% for DEET and 0.3-1.6% for oxybenzone, respectively. Repellent lotion produced an 18-fold increase in transdermal permeation in comparison to that of repellent spray, while using repellent spray prior to sunscreen lotion resulted in the highest penetration of DEET among the study groups. Premixing sunscreen lotion with repellent spray at different ratios also produced significantly higher permeation of oxybenzone across the skin than the control, but other application approaches did not differentiate from the single sunscreen lotion. It was concluded from this study that human skin was less permeable to DEET and oxybenzone than artificial membranes, but was comparable to pig skin in permeability. DEET permeated transdermally more across human skin than oxybenzone, and both compounds acted as permeation enhancers when used simultaneously. Premixing repellent and sunscreen enhanced the overall penetration of both DEET and oxybenzone. Using different application sequences and amounts resulted in variable percutaneous permeation of DEET and oxybenzone through the skin.

  16. Human skin in vitro permeation of bentazon and isoproturon formulations with or without protective clothing suit.

    PubMed

    Berthet, Aurélie; Hopf, Nancy B; Miles, Alexandra; Spring, Philipp; Charrière, Nicole; Garrigou, Alain; Baldi, Isabelle; Vernez, David

    2014-01-01

    Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.

  17. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    PubMed

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  18. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors.

    PubMed

    Moon, Geon Dae; Joo, Ji Bong; Yin, Yadong

    2013-12-07

    A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production.

  19. Tests of potential functional barriers for laminated multilayer food packages. Part II: Medium molecular weight permeants.

    PubMed

    Simal-Gándara, J; Sarria-Vidal, M; Rijk, R

    2000-09-01

    Experiments were performed to characterize the kinetics of the permeation of different medium molecular weight model permeants: bisphenol A, warfarin and anthracene, from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick orientated polypropylene--OPP) into the food simulants olive oil and 3% (w/v) acetic acid. The characterization of permeation kinetics generally observed the permeation models previously reported to explain the experimental permeation results obtained for a low molecular weight group of model permeants. In general, the model permeants exhibited behaviour consistent with their relative molecular weights with respect to (a) the time taken to attain steady-state permeation into the food simulant in which they were more soluble, (b) their subsequent steady-state permeation rates, and (c) their partition between liquid paraffin and the OPP membrane.

  20. Computational study of peptide permeation through membrane: searching for hidden slow variables

    NASA Astrophysics Data System (ADS)

    Cardenas, Alfredo E.; Elber, Ron

    2013-12-01

    Atomically detailed molecular dynamics trajectories in conjunction with Milestoning are used to analyse the different contributions of coarse variables to the permeation process of a small peptide (N-acetyl-l-tryptophanamide, NATA) through a 1,2-dioleoyl-sn-glycero-3-phosphocholine membrane. The peptide reverses its overall orientation as it permeates through the biological bilayer. The large change in orientation is investigated explicitly but is shown to impact the free energy landscape and permeation time only moderately. Nevertheless, a significant difference in permeation properties of the two halves of the membrane suggests the presence of other hidden slow variables. We speculate, based on calculation of the potential of mean force, that a conformational transition of NATA makes significant contribution to these differences. Other candidates for hidden slow variables may include water permeation and collective motions of phospholipids.

  1. Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.

    PubMed

    Montenegro, L; Carbone, C; Giannone, I; Puglisi, G

    2007-05-01

    The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.

  2. Apparatus and methods for detecting chemical permeation

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  3. Percutaneous permeation comparison of repellents picaridin and DEET in concurrent use with sunscreen oxybenzone from commercially available preparations.

    PubMed

    Chen, T; Burczynski, F J; Miller, D W; Gu, X

    2010-11-01

    Concurrent application of insect repellent picaridin or DEET with sunscreens has become prevalent due to concerns on West Nile virus and skin cancer. The objectives of this study were to characterize the percutaneous permeation of picaridin and sunscreen oxybenzone from commercially available preparations and to compare the differences in permeability between picaridin and DEET in association with oxybenzone. In vitro diffusion studies were carried out to measure transdermal permeation of picaridin and oxybenzone from four different products, using various application concentrations and sequences. Results were then compared to those of repellent DEET and sunscreen oxybenzone under identical conditions. Transdermal permeation of picaridin across human epidermis was significantly lower than that of DEET, both alone and in combination with oxybenzone. Concurrent use resulted in either no changes or suppression of transdermal permeation of picaridin and oxybenzone. This finding was different from concurrent use of DEET and oxybenzone in which a synergistic permeation enhancement was observed. In addition, permeation of picaridin, DEET and oxybenzone across human epidermis was dependent on application concentration, use sequence, and preparation type. It was concluded from this comparative study that picaridin would be a better candidate for concurrent use with sunscreen preparations in terms of minimizing percutaneous permeation of the chemicals.

  4. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin

    PubMed Central

    Wang, Tao; Miller, Donald; Burczynski, Frank; Gu, Xiaochen

    2014-01-01

    Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%–628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%–338% than that through LDPE. PMID:26579363

  5. SAMPA: A free software tool for skin and membrane permeation data analysis.

    PubMed

    Bezrouk, Aleš; Fiala, Zdeněk; Kotingová, Lenka; Krulichová, Iva Selke; Kopečná, Monika; Vávrová, Kateřina

    2017-10-01

    Skin and membrane permeation experiments comprise an important step in the development of a transdermal or topical formulation or toxicological risk assessment. The standard method for analyzing these data relies on the linear part of a permeation profile. However, it is difficult to objectively determine when the profile becomes linear, or the experiment duration may be insufficient to reach a maximum or steady state. Here, we present a software tool for Skin And Membrane Permeation data Analysis, SAMPA, that is easy to use and overcomes several of these difficulties. The SAMPA method and software have been validated on in vitro and in vivo permeation data on human, pig and rat skin and model stratum corneum lipid membranes using compounds that range from highly lipophilic polycyclic aromatic hydrocarbons to highly hydrophilic antiviral drug, with and without two permeation enhancers. The SAMPA performance was compared with the standard method using a linear part of the permeation profile and a complex mathematical model. SAMPA is a user-friendly, open-source software tool for analyzing the data obtained from skin and membrane permeation experiments. It runs on a Microsoft Windows platform and is freely available as a Supporting file to this article. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. In vitro permeation of repellent DEET and sunscreen oxybenzone across three artificial membranes.

    PubMed

    Wang, Tao; Kasichayanula, Sreeneeranj; Gu, Xiaochen

    2006-03-09

    DEET and oxybenzone are two essential active ingredients in repellent and sunscreen products. We performed a series of in vitro diffusion studies to evaluate the transmembrane permeation of DEET and oxybenzone across three artificial membranes, low-density polyethylene (LDPE), low fouling composite (LFC) and mixed cellulose esters (MCE), from concurrent use of commercial repellent and sunscreen preparations. Permeation of DEET and oxybenzone across the test membranes was synergistically increased when both the repellent and the sunscreen formulations were applied simultaneously. Different application sequences and formulation types also resulted in variable permeation profiles of DEET and oxybenzone. Compared to biological piglet epidermis under the identical experimental conditions, transmembrane permeation of DEET was suppressed in LDPE and LFC membranes, but enhanced in MCE membrane; transmembrane permeation of oxybenzone was reduced in LFC membrane, but increased in LDPE and MCE membranes. Permeability coefficients of DEET and oxybenzone in all three artificial membranes were significantly different from those in piglet skin. It was concluded that the permeation profiles of the compounds were dependent upon physicochemical characteristics of the membranes and the formulations.

  7. Optimisation of cosolvent concentration for topical drug delivery III--influence of lipophilic vehicles on ibuprofen permeation.

    PubMed

    Watkinson, R M; Guy, R H; Oliveira, G; Hadgraft, J; Lane, M E

    2011-01-01

    Previously, we have reported the effects of water, ethanol, propylene glycol and various binary and ternary mixtures of these solvents on the permeation of ibuprofen in model membranes and in skin. The present study investigates the influence of lipophilic vehicles on the transport of ibuprofen in silicone membrane and in human skin. The permeation of ibuprofen was measured from mineral oil (MO), Miglyol® 812 (MG) and binary mixtures of MO and MG. The solubility of ibuprofen was 5-fold higher in MG than in MO, however, the permeation of ibuprofen from the pure vehicles and combinations of both was comparable in silicone membrane. Additionally, there were no significant differences in skin permeation for MO and MG vehicles. When the permeation of various hydrophilic and lipophilic vehicles is considered, a trend between flux values for the model membrane and skin is evident (r(2) = 0.71). The findings suggest that silicone membrane may provide information on qualitative trends in skin permeation for vehicles of diverse solubility and partition characteristics. Copyright © 2010 S. Karger AG, Basel.

  8. Retinyl palmitate flexible polymeric nanocapsules: characterization and permeation studies.

    PubMed

    Teixeira, Zaine; Zanchetta, Beatriz; Melo, Bruna A G; Oliveira, Luciana L; Santana, Maria H A; Paredes-Gamero, Edgar J; Justo, Giselle Z; Nader, Helena B; Guterres, Sílvia S; Durán, Nelson

    2010-11-01

    Polymeric nanocapsules with elastic characteristics were prepared by the pre-formed polymer interfacial deposition method. The system consists of an oily core of retinyl palmitate with Span 60 and a polymeric wall of poly(D,L-lactide) (PLA). A narrow size distribution (215 nm, P.D.I. 0.10) was showed by dynamic light scattering (DLS) analyses. Particle deformability was observed by transmission electron microscopy (TEM) images and permeation of the particles through two superposed membranes of smaller pore diameters. Permeation studies were achieved using plastic surgery abdominal human skin by Franz diffusion cell. Retinyl palmitate permeates into deep skin layers. Besides, a PLA fluorescent derivative conjugated with Nile blue dye by an amide covalent bound was additionally obtained. Permeation profile of the nanocapsules with the fluorescent polymer was evaluated by confocal laser scanning microscopy (CLSM). The CLSM showed that nanocapsules were distributed uniformly, suggesting that the permeation mechanism through skin is intercellular. Thus, the use of these nanocapsules may be a feasible strategy to enhance the permeation of actives into the skin when delivery to deep layers is aimed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. A comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.; Anderl, R. A.; Struttmann, D. A.

    1986-11-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3+ ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation "spike" followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  10. Evidences of trapping in tungsten and implications for plasma-facing components

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.; Anderl, R. A.; Holland, D. F.

    Trapping effects that include significant delays in permeation saturation, abrupt changes in permeation rate associated with temperature changes, and larger than expected inventories of hydrogen isotopes in the material, were seen in implantation-driven permeation experiments using 25- and 50-micron thick tungsten foils at temperatures of 638 to 825 K. Computer models that simulate permeation transients reproduce the steady-state permeation and reemission behavior of these experiments with expected values of material parameters. However, the transient time characteristics were not successfully simulated without the assumption of traps of substantial trap energy and concentration. An analytical model based on the assumptions of thermodynamic equilibrium between trapped hydrogen atoms and a comparatively low mobile atom concentration successfully accounts for the observed behavior. Using steady-state and transient permeation data from experiments at different temperatures, the effective trap binding energy may be inferred. We analyze a tungsten coated divertor plate design representative of those proposed for ITER and ARIES and consider the implications for tritium permeation and retention if the same trapping we observed was present in that tungsten. Inventory increases of several orders of magnitude may result.

  11. Self-microemulsifying smaller molecular volume oil (Capmul MCM) using non-ionic surfactants: a delivery system for poorly water-soluble drug.

    PubMed

    Bandivadeka, Mithun Mohanraor; Pancholi, Shyam Sundar; Kaul-Ghanekar, Ruchika; Choudhari, Amit; Koppikar, Soumya

    2012-07-01

    The main purpose of this work is to formulate self-microemulsifying drug delivery system (SMEDDS) using smaller molecular oil with Atorvastatin calcium as a model drug. Solubility of the selected drug was accessed in oils and surfactants. Percent transmittance (%T) test study was performed to identify the efficient self-microemulsifying formulations. Those formulations which showed higher value for %T were evaluated for droplet size, polydispersity index, ζ potential, refractive index and cloud point measurement. Effect of drug loading on droplet size, increasing dilution in different media, thermodynamic stability and in vitro dissolution was performed to observe the performance of the selected formulation. Further cytotoxicity and permeation enhancement studies were carried out on Caco2 cell lines. Of all the oils accessed for drug solubility, Capmul MCM showed higher solubility capacity for Atorvastatin calcium. Capmul MCM was better microemulsified using combination of Tween 20 and Labrasol surfactant. Droplet size was as low as 86.93 nm with polydispersity index and ζ potential at 0.195 ± 0.011 and -7.27 ± 3.11 mV respectively. The selected undiluted formulation showed refractive index values ranging from 1.40 to 1.47 indicating the isotropicity of the formulation. The selected formulation was robust to dilution in different media and thermodynamically stable. Dissolution profile was enhanced for the selected drug as compared to marketed formulation with t85% and DE values at 10 min and 80.15 respectively. Also cytotoxicity measurement showed minimum effect with good permeation enhancing capacity. Thus our study demonstrates the use of smaller molecular oil (Capmul MCM) for developing self-microemulsifying drug delivery system for better in vitro and in vivo performance.

  12. Membrane device and process for mass exchange, separation, and filtration

    DOEpatents

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  13. Articles of protective clothing adapted for deflecting chemical permeation and methods therefor

    DOEpatents

    Vo-Dinh, Tuan

    1996-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  14. Design and tritium permeation analysis of China HCCB TBM port cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiangfeng, S.; Guoqiang, H.; Zhiyong, H.

    2015-03-15

    China is planning to develop a helium-cooled ceramic breeder (HCCB) test blanket module (TBM) on ITER to test key blanket technologies. In this paper, the design and tritium permeation analysis of China HCCB TBM port cell are introduced. A theoretical model has been developed to estimate tritium permeation rates and leak rates from the components and pipes which China has scheduled to house in the port cell. It is shown that on normal working conditions, the permeation and leak rate of the systems in the port cell will be no higher than 1.58 Ci/d without the use of tritium permeationmore » barriers, and 0.10 Ci/d with the use of tritium permeation barriers. It also appears that tritium permeation barriers are necessary for high temperature components such as the reduction bed and the heater.« less

  15. Optimization, validation and application of headspace solid-phase microextraction gas chromatography for the determination of 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla (H.B.K.) Mez essential oil in skin permeation samples.

    PubMed

    Kreutz, Tainá; Lucca, Letícia G; Loureiro-Paes, Orlando A R; Teixeira, Helder F; Veiga, Valdir F; Limberger, Renata P; Ortega, George G; Koester, Letícia S

    2018-06-02

    Aniba canelilla (H.B.K.) Mez is an aromatic plant from the Amazon region whose essential oil has 1-nitro-2-phenylethane (NP) and methyleugenol (ME) as major compounds. Despite of the scientifically proven antifungal and anti-inflammatory activities for these compounds, there is no report up to date about the topical permeation or quantification of NP and ME on skin samples. The aim of this study was the validation of an optimized bioanalytical method by solid-phase microextraction in headspace mode in gas chromatograph with flame ionization detector (HS-SPME-GC-FID) for the determination of NP and ME from the oil in different samples from permeation study, such as porcine ear skin (PES) layers (stratum corneum, epidermis and dermis) and receptor fluid (RF). For this propose polydimethylsiloxane fibers (100 μm) were used and HS-SPME extraction condition consisted of 53 °C, 21 min, and 5% w.v -1 NaCl addition. The wide range of the calibration curve (2.08-207.87 μg mL -1 for NP and 0.40-40.41 μg mL -1 for ME), the presence of matrix interferences and the intrinsic characteristics of HS-SPME required a data linearization using Log 10 . Thereby, data and the gained results presented homoscedasticity, normalization of residues and adequate linearity (r 2  > 0.99) and accuracy for both compounds. In order to verify the applicability of the validated method, the HS-SPME-GC-FID procedure was performed to determine the amount of NP and ME permeated and retained in samples after Franz diffusion cell study from different dosages (20, 100 and 200 μL) of A. canelilla oil. Compounds permeation showed a progressive increase and penetration dependence based on the dosage applied. Furthermore, retention was in order receptor fluid > dermis > epidermis > stratum corneum for both compounds, suggesting NP and ME could penetrate deep tissue, probably due to the partition coefficient, mass, size, and solubility of these compounds. In conclusion, the proposed method by HS-SPME-GC-FID to quantify 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla essential oil was able to determine selectively, precisely and accurately these main compounds in skin permeation samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Articles of protective clothing adapted for deflecting chemical permeation and methods there for

    DOEpatents

    Vo-Dinh, T.

    1996-02-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. 12 figs.

  17. In vitro permeation characterization of the analgesic ibuprofen and the sunscreen oxybenzone.

    PubMed

    Gu, Xiaochen; Dannefaer, Jennifer L; Collins, Benjamin R

    2008-08-01

    Ibuprofen, one of the mostly prescribed nonsteroidal anti-inflammatory drugs (NSAIDs), has been proposed as a topical medication for secondary prevention against skin damage induced by sunburn. The objective of this study was to characterize transmembrane permeation of ibuprofen and sunscreen oxybenzone across poly(dimethyl siloxane) (PDMS) membrane. In vitro diffusion studies were carried out at 37 degrees and 45 degrees C, using a series of ibuprofen and oxybenzone samples, either individually or in combination. Concentrations of ibuprofen and oxybenzone in the receptor compartment for up to 6 h were measured using a high-performance liquid chromatography (HPLC) assay. Ibuprofen and oxybenzone permeated across the PDMS membrane in all diffusion studies. When applied individually, permeation percentages of ibuprofen and oxybenzone ranged from 1.0 to 4.1% and from 13.2 to 25.8%, respectively. When applied in combination, permeation percentages of ibuprofen and oxybenzone were 0.3-1.4% and 7.8-24.3%, respectively. Transmembrane permeation was significantly suppressed when both compounds were present concurrently. High temperature promoted the diffusion process of oxybenzone; a linear correlation was also observed between oxybenzone concentration and its permeation. The proposed permeation enhancement between ibuprofen and oxybenzone was not observed from this study. The potential transdermal interaction and systemic absorption from concurrent application of topical analgesics and sunscreens thus requires further systematic evaluation.

  18. Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanoate (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation.

    PubMed

    Chen, Yang; Quan, Peng; Liu, Xiaochang; Guo, Wenjia; Song, Wenting; Cun, Dongmei; Wang, Zhongyan; Fang, Liang

    2015-09-01

    The study aimed to prepare a transdermal patch for flurbiprofen using isopulegol decanoate (ISO-C10) as a permeation enhancer, and to evaluate the in-vitro and in-vivo percutaneous permeation of the drug, as well as the pharmacodynamic efficacy of the formulation. The permeation experiments were conducted on rabbit skin, and the pharmacokinetic profiles and synovial fluid drug concentration were measured after in-vivo transdermal administration. A deconvolution approach was employed to analyse the correlation between the in-vitro and in-vivo drug permeation. The anti-inflammatory and analgesic effects were, respectively, assessed using the adjuvant arthritis model and the acetic acid induced pain model. ISO-C10 could increase the in-vitro permeation of flurbiprofen from 46.22 ± 5.65 μg/cm(2) to 101.07 ± 10.85 μg/cm(2) . The in-vivo absorption of the drug was also improved by the enhancer, and a good linear correlation was observed between the in-vitro and in-vivo drug permeation. Meanwhile, the ISO-C10 contained patches increased the drug disposition in synovial fluid and enhanced the pharmacodynamic efficacy of the formulation. ISO-C10 would be a promising permeation enhancer for improving the in-vitro and in-vivo delivery of flurbiprofen from its transdermal patches. © 2015 Royal Pharmaceutical Society.

  19. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    DOE PAGES

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D 2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less

  20. Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points

    PubMed Central

    2012-01-01

    Background Two commercially available microneedle rollers with a needle length of 200 μm and 300 μm were selected to examine the influence of microneedle pretreatment on the percutaneous permeation of four non-steroidal anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen, paracetamol) with different physicochemical drug characteristics in Franz-type diffusion cells. Samples of the receptor fluids were taken at predefined times over 6 hours and were analysed by UV–VIS high-performance liquid-chromatography. Histological examinations after methylene blue application were additionally performed to gather information about barrier disruption. Results Despite no visible pores in the stratum corneum, the microneedle pretreatment resulted in a twofold (200 μm) and threefold higher (300 μm) flux through the pretreated skin samples compared to untreated skin samples for ibuprofen and ketoprofen (LogKow > 3, melting point < 100°C). The flux of the hydrophilic compounds diclofenac and paracetamol (logKow < 1, melting point > 100°C) increased their amount by four (200 μm) to eight (300 μm), respectively. Conclusion Commercially available microneedle rollers with 200–300 μm long needles enhance the drug delivery of topically applied non-steroidal anti-inflammatory drugs and represent a valuable tool for percutaneous permeation enhancement particularly for substances with poor permeability due to a hydrophilic nature and high melting points. PMID:22947102

  1. Transdermal delivery of alprazolam from a monolithic patch: formulation based on in vitro characterization.

    PubMed

    Soler, L I; Boix, A; Lauroba, J; Colom, H; Domenech, J

    2012-10-01

    Alprazolam, a benzodiazepine widely used for the treatment of psychiatric disorders, has been aimed to be formulated in a transdermal delivery system (TDS) prototype. A series of TDS prototypes dosed in all cases at 0.35 mg·cm(-2) of alprazolam were prepared as a monolithic drug in adhesive matrix using acrylic pressure-sensitive adhesives (PSA) of acrylate vinyl acetate (Duro-tack(®)). The effects of several permeation enhancers as azone, transcutol, propylene glycol, dodecyl alcohol, decyl alcohol, diethanolamine, N-methyl pyrrolidone and lauric acid were studied. Prototypes have been characterized based on adhesion parameters (peel adhesion and shear adhesion), in vitro human skin permeation and in vitro drug release according to European Pharmacopoeia for the selected prototype. Best results show that a combination of permeation enhancers from different chemical groups is able to provide almost a 33 fold increase in the transdermal alprazolam flux of an aqueous saturated dispersion (from 0.054 ± 0.019 to 1.76 ± 0.21 μg h.cm(-2)). Based on these in vitro flux data, a predictive simulation of the achievable plasmatic levels was performed assuming a constant systemic infusion of drug. In summary, it is possible to obtain a prototype of a TDS of alprazolam with adequate adhesive properties (peel adhesion and shear adhesion) and able to predict sustained therapeutic plasmatic levels.

  2. Effect of stabilization temperature during pyrolysis process of P84 co-polyimide-based tubular carbon membrane for H2/N2 and He/N2 separations

    NASA Astrophysics Data System (ADS)

    Sazali, N.; Salleh, W. N. W.; Ismail, A. F.; Ismail, N. H.; Aziz, F.; Yusof, N.; Hasbullah, H.

    2018-04-01

    In this study, the effect of stabilization temperature on the performance of tubular carbon membrane was being investigated. P84 co-polyimide-based tubular carbon membrane will be fabricated through the dip-coating technique. The tubular carbon membrane performance can be controlled by manipulating the pyrolysis conditions which was conducted at different stabilization temperatures of 250, 300, 350, 400, and 450°C under N2 environment (200 ml/min). The prepared membranes were characterized by using scanning electron microscopy (SEM), x-ray diffraction (XRD), and pure gas permeation system. The pure gas of H2, He, and N2 were used to determine the permeation properties of the carbon membrane. The P84 co-polyimide-based tubular carbon membrane stabilized at 300°C demonstrated an excellent permeation property with H2, He, and N2 gas permeance of 1134.51±2.87, 1287.22±2.86 and 2.98±1.28GPU, respectively. The highest H2/N2 and He/N2 selectivity of 380.71±2.34 and 431.95±2.61 was obtained when the stabilization temperature of 450°C was applied. It is concluded that the stabilization temperatures have protrusive effect on the carbon membrane properties specifically their pore structure, and eventually their gas separation properties.

  3. Development of liposomal and microemulsion formulations for transdermal delivery of clonazepam: effect of randomly methylated β-cyclodextrin.

    PubMed

    Mura, Paola; Bragagni, Marco; Mennini, Natascia; Cirri, Marzia; Maestrelli, Francesca

    2014-11-20

    Transdermal administration of clonazepam, a poorly water-soluble benzodiazepine, is an interesting strategy for overcoming the drawbacks of its oral administration. With this aim, two nano-carrier formulations, based on ultra-deformable liposomes and microemulsions, have been developed to favour clonazepam transdermal delivery. Considering the solubilizing power of methyl-βcyclodextrin (Me-βCD) toward clonazepam and its potential positive influence on transdermal drug delivery, the effect of its addition to these formulations was investigated. Artificial lipophilic membranes simulating the skin allowed a rapid evaluation of the drug permeation properties from the systems, compared with those from an aqueous drug suspension, with or without Me-βCD. The best formulations were further characterized by permeation through excised rabbit ear skin. All the formulations increased drug permeability, ranging from 2-fold (liposomes without Me-βCD), up to over 4-fold (microemulsions containing Me-βCD). The different formulations allowed for pointing out different possible permeation enhancing mechanisms of Me-βCD: increase in drug solubility and thermodynamic activity in the vehicle, when added to the drug aqueous suspension; interactions with the vesicle bilayer, in case of liposomal formulations; interactions with the skin membrane lipids, as evidenced in experiments with excised rabbit ear for microemulsions containing Me-βCD, that were then selected for further in vivo studies. Copyright © 2014. Published by Elsevier B.V.

  4. In vitro profiling of the vaginal permeation potential of anti-HIV microbicides and the influence of formulation excipients.

    PubMed

    Grammen, Carolien; Augustijns, Patrick; Brouwers, Joachim

    2012-11-01

    In the search for an effective anti-HIV microbicidal gel, limited drug penetration into the vaginal submucosa is a possible reason for failed protection against HIV transmission. To address this issue in early development, we here describe a simple in vitro strategy to predict the tissue permeation potential of vaginally applied drugs, based on solubility, permeability and flux assessment. We demonstrated this approach for four model microbicides (tenofovir, darunavir, saquinavir mesylate and dapivirine) and additionally examined the influence of formulation excipients on the permeation potential. When formulated in an aqueous-based HEC gel, high flux values across an HEC-1A cell layer were reached by tenofovir, as a result of its high aqueous solubility. In contrast, saquinavir and dapivirine fluxes remained low due to poor permeability and solubility, respectively. These low fluxes suggest limited in vivo tissue penetration, possibly leading to lack of efficacy. Dapivirine fluxes, however, could be enhanced up to 30-fold, by including formulation excipients such as polyethylene glycol 1000 (20%) or cyclodextrins (5%) in the HEC gels. Alternative formulations, i.e. emulsions or silicone elastomer gels, were less effective in flux enhancement compared to cyclodextrin-HEC gels. In conclusion, implementing the proposed solubility and permeability profiling in early microbicide development may contribute to the successful selection of promising microbicide candidates and appropriate formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Sodium Binding Sites and Permeation Mechanism in the NaChBac Channel: A Molecular Dynamics Study.

    PubMed

    Guardiani, Carlo; Rodger, P Mark; Fedorenko, Olena A; Roberts, Stephen K; Khovanov, Igor A

    2017-03-14

    NaChBac was the first discovered bacterial sodium voltage-dependent channel, yet computational studies are still limited due to the lack of a crystal structure. In this work, a pore-only construct built using the NavMs template was investigated using unbiased molecular dynamics and metadynamics. The potential of mean force (PMF) from the unbiased run features four minima, three of which correspond to sites IN, CEN, and HFS discovered in NavAb. During the run, the selectivity filter (SF) is spontaneously occupied by two ions, and frequent access of a third one is often observed. In the innermost sites IN and CEN, Na + is fully hydrated by six water molecules and occupies an on-axis position. In site HFS sodium interacts with a glutamate and a serine from the same subunit and is forced to adopt an off-axis placement. Metadynamics simulations biasing one and two ions show an energy barrier in the SF that prevents single-ion permeation. An analysis of the permeation mechanism was performed both computing minimum energy paths in the axial-axial PMF and through a combination of Markov state modeling and transition path theory. Both approaches reveal a knock-on mechanism involving at least two but possibly three ions. The currents predicted from the unbiased simulation using linear response theory are in excellent agreement with single-channel patch-clamp recordings.

  6. Carbon Dioxide Separation Using Thermally Optimized Membranes

    NASA Astrophysics Data System (ADS)

    Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.

    2002-05-01

    The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique approach to the optimization of long-term membrane performance under challenging operating conditions.

  7. A critique of assumptions about selecting chemical-resistant gloves: a case for workplace evaluation of glove efficacy.

    PubMed

    Klingner, Thomas D; Boeniger, Mark F

    2002-05-01

    Wearing chemical-resistant gloves and clothing is the primary method used to prevent skin exposure to toxic chemicals in the workplace. The process for selecting gloves is usually based on manufacturers' laboratory-generated chemical permeation data. However, such data may not reflect conditions in the workplace where many variables are encountered (e.g., elevated temperature, flexing, pressure, and product variation between suppliers). Thus, the reliance on this selection process is questionable. Variables that may influence the performance of chemical-resistant gloves are identified and discussed. Passive dermal monitoring is recommended to evaluate glove performance under actual-use conditions and can bridge the gap between laboratory data and real-world performance.

  8. Apparatus and methods for detecting chemical permeation

    DOEpatents

    Vo-Dinh, T.

    1994-12-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. The invention also relates to the fabrication of protective clothing materials. 13 figures.

  9. Mucoadhesive Fenretinide Patches for Site-specific Chemoprevention of Oral Cancer: Enhancement of Oral Mucosal Permeation of Fenretinide by Co-incorporation of Propylene Glycol and Menthol

    PubMed Central

    Wu, Xiao; Desai, Kashappa-Goud H.; Mallery, Susan R.; Holpuch, Andrew S.; Phelps, Maynard P.; Schwendeman, Steven P.

    2012-01-01

    The objective of this study was to enhance oral mucosal permeation of fenretinide by co-incorporation of propylene glycol (PG) and menthol in fenretinide/Eudragit® RL PO mucoadhesive patches. Fenretinide is an extremely hydrophobic chemopreventive compound with poor tissue permeability. Co-incorporation of 5-10 wt% PG (mean Js = 16-23 μg cm−2 h−1; 158-171 μg fenretinide/g tissue) or 1-10 wt% PG + 5 wt% menthol (mean Js = 18-40 μg cm−2 h−1; 172-241 μg fenretinide/g tissue) in fenretinide/Eudragit® RL PO patches led to significant ex vivo fenretinide permeation enhancement (p < 0.001). Addition of PG above 2.5 wt% in the patch resulted in significant cellular swelling in the buccal mucosal tissues. These alterations were ameliorated by combining both enhancers and reducing PG level. After buccal administration of patches in rabbits, in vivo permeation of fenretinide across the oral mucosa was greater (~43 μg fenretinide/g tissue) from patches that contained optimized permeation enhancer content (2.5 wt% PG + 5 wt% menthol) relative to permeation obtained from enhancer-free patch (~ 17 μg fenretinide/g tissue) (p < 0.001). In vitro and in vivo release of fenretinide from patch was not significantly increased by co-incorporation of permeation enhancers, indicating that mass transfer across the tissue, and not the patch, largely determined the permeation rate control in vivo. As a result of its improved permeation and its lack of deleterious local effects, the mucoadhesive fenretinide patch co-incorporated with 2.5 wt% PG + 5 wt% menthol represents an important step in the further preclinical evaluation of oral site-specific chemoprevention strategies with fenretinide. PMID:22280430

  10. Ex vivo localization and permeation of cisplatin from novel topical formulations through excised pig, goat, and mice skin and in vitro characterization for effective management of skin-cited malignancies.

    PubMed

    Gupta, Vandana; Trivedi, Piyush

    2015-01-01

    It would be advantageous to administer cisplatin topically for treatment of cutaneous malignancies. Present work focuses on ex vivo and in vitro characterization of proultraflexible topical formulations. Permeation of cisplatin through the excised pig, goat, and mice skin was quantitatively determined. Data indicate that protransfersome carbopol gel (pcg) formulation clearly delayed drug permeation through skin. Permeation of cisplatin from protransfersome system (ps) formulation was enhanced by approximately 1.5 fold compared with pcg for pig and goat skin. Localization of drug from pcg was higher and showed less permeation. Cisplatin-loaded pcg formulation is better to treat cutaneous malignancies.

  11. Effects of vehicles and enhancers on transdermal delivery of clebopride.

    PubMed

    Rhee, Yun-Seok; Huh, Jai-Yong; Park, Chun-Woong; Nam, Tae-Young; Yoon, Koog-Ryul; Chi, Sang-Cheol; Park, Eun-Seok

    2007-09-01

    The effects of vehicles and penetration enhancers on the skin permeation of clebopride were evaluated using Franz type diffusion cells fitted with excised rat dorsal skins. The binary vehicle system, diethylene glycol monoethyl ether/isopropyl myristate (40/60, w/w), significantly enhanced the skin permeation rate of clebopride. The skin permeation enhancers, oleic acid and ethanol when used in the binary vehicle system, resulted in relatively high clebopride skin permeation rates. A gel formulation consisting of 1.5% (w/w) clebopride, 5% (w/w) oleic acid, and 7% (w/w) gelling agent with the binary vehicle system resulted in a permeation rate of 28.90 microg/cm2/h. Overall, these results highlight the potential of clebopride formulation for the transdermal route.

  12. Recent results on implantation and permeation into fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.; Struttman, D. A.

    This paper reports on implantation-driven permeation experiments that have been made for primary candidate alloy (PCA) and the ferritic steel HT-9 using deuterium ion beams from an accelerator. The results include measurements of the implantation flux and fluence dependence of the deuterium reemission and permeation for specimens heated to approximately 430(0)C. Simultaneous measurements of the ions sputtered from the specimen front surface with a secondary ion mass spectrometer provided some characterization of the surface condition throughout an experiment. For both materials, the permeation rate was lowered by the implantation process. However, the steady state permeation rate for HT-9 was found to be at least a factor of 5 greater than that for PCA.

  13. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition.

    PubMed

    Smith, Dennis; Artursson, Per; Avdeef, Alex; Di, Li; Ecker, Gerhard F; Faller, Bernard; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; van de Waterbeemd, Han; Sugano, Kiyohiko; Testa, Bernard

    2014-06-02

    Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.

  14. 21 CFR 177.1990 - Vinylidene chloride/methyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... in Saran MA/VDC Resins and Pellets by Headspace Gas Chromatography,” dated March 3, 1986, which are... gel permeation chromatography using tetrahydrofuran as the solvent. The gel permeation chromatograph... Distribution of Polystyrene by Liquid Exclusion Chromatography (Gel Permeation Chromatography-GPC),” which is...

  15. 21 CFR 177.1990 - Vinylidene chloride/methyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... in Saran MA/VDC Resins and Pellets by Headspace Gas Chromatography,” dated March 3, 1986, which are... gel permeation chromatography using tetrahydrofuran as the solvent. The gel permeation chromatograph... Distribution of Polystyrene by Liquid Exclusion Chromatography (Gel Permeation Chromatography-GPC),” which is...

  16. 21 CFR 177.1990 - Vinylidene chloride/methyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in Saran MA/VDC Resins and Pellets by Headspace Gas Chromatography,” dated March 3, 1986, which are... gel permeation chromatography using tetrahydrofuran as the solvent. The gel permeation chromatograph... Distribution of Polystyrene by Liquid Exclusion Chromatography (Gel Permeation Chromatography-GPC),” which is...

  17. 21 CFR 177.1990 - Vinylidene chloride/methyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in Saran MA/VDC Resins and Pellets by Headspace Gas Chromatography,” dated March 3, 1986, which are... gel permeation chromatography using tetrahydrofuran as the solvent. The gel permeation chromatograph... Distribution of Polystyrene by Liquid Exclusion Chromatography (Gel Permeation Chromatography-GPC),” which is...

  18. In-pile tritium-permeation measurements on T91 tubes with double walls or a Fe-Al/Al 2O 3 coating

    NASA Astrophysics Data System (ADS)

    Conrad, R.; Bakker, K.; Chabrol, C.; Fütterer, M. A.; van der Laan, J. G.; Rigal, E.; Stijkel, M. P.

    2000-12-01

    Two new irradiation projects are being performed at the HFR Petten, named EXOTIC-8.9 and EXOTIC-8.10. Issues such as tritium release from candidate ceramic breeder pebbles for the HCPB blanket and tritium permeation through cooling tubes of the WCLL blanket are investigated simultaneously. In EXOTIC-8.9, the tritium release behaviour of a Li 2TiO 3 pebble bed is measured along with the tritium-permeation rate through a double-wall tube (DWT) of T91 with a Cu interlayer. In EXOTIC-8.10, the tritium release behaviour of a Li 4SiO 4 pebble bed is measured along with the tritium permeation rate through a T91 tube with a Fe-Al/Al 2O 3 coating as tritium permeation barrier (TPB). Tritium permeation phenomena are studied by variations of temperatures and purge gas conditions. This paper reports on the results of the first 100 irradiation days.

  19. Hydrogen permeation properties of plasma-sprayed tungsten*1

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  20. A method to visualize transdermal nickel permeation in mouse skin using a nickel allergy patch

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Hongo, Toshio; Omagari, Daisuke; Komiyama, Kazuo; Oikawa, Masakazu; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test. PMID:26484550

  1. De Novo Design of Skin-Penetrating Peptides for Enhanced Transdermal Delivery of Peptide Drugs.

    PubMed

    Menegatti, Stefano; Zakrewsky, Michael; Kumar, Sunny; De Oliveira, Joshua Sanchez; Muraski, John A; Mitragotri, Samir

    2016-03-09

    Skin-penetrating peptides (SPPs) are attracting increasing attention as a non-invasive strategy for transdermal delivery of therapeutics. The identification of SPP sequences, however, currently performed by experimental screening of peptide libraries, is very laborious. Recent studies have shown that, to be effective enhancers, SPPs must possess affinity for both skin keratin and the drug of interest. We therefore developed a computational process for generating and screening virtual libraries of disulfide-cyclic peptides against keratin and cyclosporine A (CsA) to identify SPPs capable of enhancing transdermal CsA delivery. The selected sequences were experimentally tested and found to bind both CsA and keratin, as determined by mass spectrometry and affinity chromatography, and enhance transdermal permeation of CsA. Four heptameric sequences that emerged as leading candidates (ACSATLQHSCG, ACSLTVNWNCG, ACTSTGRNACG, and ACSASTNHNCG) were tested and yielded CsA permeation on par with previously identified SPP SPACE (TM) . An octameric peptide (ACNAHQARSTCG) yielded significantly higher delivery of CsA compared to heptameric SPPs. The safety profile of the selected sequences was also validated by incubation with skin keratinocytes. This method thus represents an effective procedure for the de novo design of skin-penetrating peptides for the delivery of desired therapeutic or cosmetic agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Defining the factors that affect solute permeation of gap junction channels.

    PubMed

    Valiunas, Virginijus; Cohen, Ira S; Brink, Peter R

    2018-01-01

    This review focuses on the biophysical properties and structure of the pore and vestibule of homotypic gap junction channels as they relate to channel permeability and selectivity. Gap junction channels are unique in their sole role to connect the cytoplasm of two adjacent cells. In general, these channels are considered to be poorly selective, possess open probabilities approximating unity, and exhibit mean open times ranging from milliseconds to seconds. These properties suggest that such channels can function as delivery pathways from cell to cell for solutes that are significantly larger than monovalent ions. We have taken quantitative data from published works concerning unitary conductance, ion flux, and permeability for homotypic connexin 43 (Cx43), Cx40, Cx26, Cx50, and Cx37, and performed a comparative analysis of conductance and/or ion/solute flux versus diffusion coefficient. The analysis of monovalent cation flux portrays the pore as equivalent to an aqueous space where hydrogen bonding and weak interactions with binding sites dominate. For larger solutes, size, shape and charge are also significant components in determining the permeation rate. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of amine structure on CO2 capture by polymeric membranes.

    PubMed

    Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki

    2017-01-01

    Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO 2 separation properties over H 2 . However, the CO 2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO 2 determining agent in the current CO 2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO 2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO 2 permeability coefficient of MEA containing membrane was 604 barrer with CO 2 selectivity of 58.5 over H 2 , which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO 2 -selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO 2 separation performance.

  4. Side-chain conformation at the selectivity filter shapes the permeation free-energy landscape of an ion channel.

    PubMed

    Harpole, Tyler J; Grosman, Claudio

    2014-08-05

    On the basis of single-channel currents recorded from the muscle nicotinic acetylcholine receptor (AChR), we have recently hypothesized that the conformation adopted by the glutamate side chains at the first turn of the pore-lining α-helices is a key determinant of the rate of ion permeation. In this paper, we set out to test these ideas within a framework of atomic detail and stereochemical rigor by conducting all-atom molecular dynamics and Brownian dynamics simulations on an extensively validated model of the open-channel muscle AChR. Our simulations provided ample support to the notion that the different rotamers of these glutamates partition into two classes that differ markedly in their ability to catalyze ion conduction, and that the conformations of the four wild-type glutamates are such that two of them "fall" in each rotamer class. Moreover, the simulations allowed us to identify the mm (χ(1) ≅ -60°; χ(2) ≅ -60°) and tp (χ(1) ≅ 180°; χ(2) ≅ +60°) rotamers as the likely conduction-catalyzing conformations of the AChR's selectivity-filter glutamates. More generally, our work shows an example of how experimental benchmarks can guide molecular simulations into providing a type of structural and mechanistic insight that seems otherwise unattainable.

  5. Effect of amine structure on CO2 capture by polymeric membranes

    PubMed Central

    Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki

    2017-01-01

    Abstract Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO2 separation properties over H2. However, the CO2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO2 determining agent in the current CO2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO2 permeability coefficient of MEA containing membrane was 604 barrer with CO2 selectivity of 58.5 over H2, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO2-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO2 separation performance. PMID:29383045

  6. Effect of pressure sensitive adhesive and vehicles on permeation of terbinafine across porcine hoof membrane.

    PubMed

    Ahn, Tai Sang; Lee, Jung-Phil; Kim, Juhyun; Oh, Seaung Youl; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2013-11-01

    The purpose of this study was to investigate characteristics of transungual drug delivery and the feasibility of developing a drug-in-adhesive formulation of terbinafine. The permeation of terbinafine from a PSA matrix across porcine hoof membrane was determined using a plate containing poloxamer gel. The permeation rate of terbinafine across hairless mouse skin was evaluated using a flow-through diffusion cell system. The permeation of terbinafine across the hoof membranes was the highest from the silicone adhesive matrix, followed by PIB, and most of the acrylic adhesives, SIS, and SBS. The rank order of permeation rate across mice skin was different from the rank order across porcine hooves. The amount of terbinafine permeated across the porcine hoof membranes poorly correlated with the amount of terbinafine remaining inside the hooves after 20 days, however, the ratio between rate of terbinafine partitioning into the hoof membrane and its rate of diffusion across the membrane was relatively constant within the same type of PSA. For influence of various vehicles in enhancing permeation of terbinafine across the hoof membrane, all vehicles except Labrasol(®) showed tendency to improve permeation rate. However, the enhancement ratio of a given vehicle differed from one adhesive to another with a moderate correlation between them. The infrared spectrum of the hoof treated with NMP, PPG 400 or PEG 200 indicated that the conformation of keratin changed from a non-helical to a helical structure.

  7. Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes

    NASA Astrophysics Data System (ADS)

    Falkenstein-Smith, Ryan L.

    This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this research show that under a wide range of membrane temperatures and in a variety of atmospheres, a pure SSC OTM can achieve superior surface exchange and oxygen chemical diffusion coefficients compared to other commonly studied materials. SSC's high oxygen permeability (>1 ml.min -1.cm-2) demonstrates the material's candidacy for the application of oxy-fuel combustion. However, in the presence of rich CO 2 atmospheres, SSC shows mechanical and chemical instabilities due to the carbonate formation on the perovskite structure. The addition of SDC in the membrane composition produces a dual-phase OTM which is observed to improve the oxygen permeation flux when subjected to pure CO2 sweeping gases. When subjected to pure methane sweeping gases, dual-phase OTM compositions exhibits lower oxygen permeability compared to the single-phase SSC OTM. Despite the decline in the oxygen permeation flux, some dual-phase compositions still exhibit a high oxygen permeability, indicating their potential for the application of oxy-fuel combustion. Furthermore, a newly developed method for evaluating OTMs for the application of oxy-fuel combustion is presented in a portion of this work. This new method calculates key components such as the average oxygen permeation flux, approximate effective surface area, and the impact of additional recirculated exhaust into the incoming sweeping gas to provide a detailed understanding of OTM's application for oxy-fuel combustion. The development of this approach will aid in the evaluation of newly developed materials and create a new standard for implementing OTMs for the application of oxy-fuel combustion.

  8. Antifouling grafting of ceramic membranes validated in a variety of challenging wastewaters.

    PubMed

    Mustafa, Ghulam; Wyns, Kenny; Buekenhoudt, Anita; Meynen, Vera

    2016-11-01

    Compared to traditional separation and purification techniques, membrane filtration is particularly beneficial for the treatment of wastewater streams such as pulp and paper mill effluents (PPME), olive oil wastewater (OOWW) and oil/gas produced water (PW). However, severe membrane fouling can be a major issue. In this work, the use of ceramic membranes and the potential for the broad applicability of a recently developed antifouling grafting was evaluated to tackle this issue. To this end, the fouling behavior of native and grafted membranes was tested in the selected difficult wastewater streams, both in dead-end and in cross-flow mode. In addition, the quality of the produced permeate water was determined to assess the overall performance of the investigated membranes for reuse or recycling of the treated wastewater. The obtained results show that grafting significantly enhances the antifouling tendency of the ceramic membranes. Particularly, the membrane grafted with methyl groups using the Grignard technique (MGR), showed in all cases no or negligible fouling as compared to the native membrane. As a consequence, the process flux or filtration capacity of the MGR membrane in cross-flow is always higher and more stable than the native membrane, even though the grafting lowers the pure water flux. Hence, the inert character of the MGR membrane is repeatedly proven and shown to be broadly applicable and generic for anti-fouling, without loss in permeate quality. Moreover, in case of OOWW, the quality of the MGR permeate is even better than that of the native membrane due to its lower fouling. All results can be explained taking into account the physico-chemical properties of foulants and membranes, as shown in previous work. In conclusion, the use of MGR membranes could provide an optimum economical solution for the treatment of the selected challenging wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dye foils with increased durability for passive Q-switching in a 1064 nm laser

    NASA Astrophysics Data System (ADS)

    Mierczyk, Z.; Kwasny, M.; Czeszko, J.

    The results of spectral gel permeation chromatography and differential thermal analysis investigations of structures of dye foils consisting of bis-(4-dimethyl-amino-dithio-benzil)-nickel dye suspended in polymethylmethacrylate matrix, to be used for passive Q-switching in a 1064 nm laser, are reported. Results of experimental measurements and of numerical calculations of thermal and generating properties, and of the endurance of passive foil type Q-switches in the resonator of YAG:Nd(3+) laser are also presented. Optimization of polymerization conditions has enabled the production of dye foils with high thermal and photochemical resistance, which give stable operation of a giant pulsed laser.

  10. Measurement and Ranking of Permeation Specimen Thickness Profiles: High-Density Polyethylene Swatches

    DTIC Science & Technology

    2016-05-01

    6 3.2 Thickness Comparison between Lube-Cooled and No-Lube Techniques: Non- Welded ...14 3.3 Measured Thickness of Permeation Specimens: Non- Welded ........................16 3.4 Plots of Specimen Measurement Position...versus Thickness ...........................21 3.5 Measured Thickness of Permeation Specimens: Welded ................................23 4

  11. 40 CFR 1060.103 - What permeation emission control requirements apply for fuel tanks?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What permeation emission control... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT Emission Standards and Related Requirements § 1060.103 What permeation...

  12. The role of the conformational profile of polysaccharides on skin penetration: the case of hyaluronan and its sulfates.

    PubMed

    Cilurzo, Francesco; Vistoli, Giulio; Gennari, Chiara G M; Selmin, Francesca; Gardoni, Fabrizio; Franzè, Silvia; Campisi, Monica; Minghetti, Paola

    2014-04-01

    The literature data suggest the capacity of biomacromolecules to permeate the human skin, even though such a transdermal permeation appears to be governed by physicochemical parameters which are significantly different compared to those ruling the skin permeation of small molecules. On these grounds, the present study was undertaken to investigate the in vitro diffusion properties through the human epidermis of hyaluronic acid and their sulfates. Low- and medium-molecular-weight hyaluronic acids and the corresponding derivatives at two degrees of sulfation were then tested. In vitro studies evidenced that the sulfated polymers permeate better than the corresponding hyaluronic acid, despite their vastly greater polarity, while the observed permeation markedly decreases when increasing the polymer's molecular weight regardless of the sulfation degree. Using a fluorescent-labeled polysaccharide, it was also evidenced that hyaluronans have a great affinity for corneocytes and likely cross the stratum corneum mainly through a transcellular route. The molecular-dynamics study revealed how the observed permeations for the investigated polysaccharides can be rationalized by monitoring their conformational profiles, since the permeation was found to be directly related to their capacity to assume extended and flexible conformations. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    NASA Astrophysics Data System (ADS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  14. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds.

    PubMed

    Pan, Yuanjie; Tikekar, Rohan V; Nitin, N

    2013-06-25

    Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (p<0.05) for emulsions stabilized using Tween 20 and oxidized lecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (p<0.05) in lecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    PubMed

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.

    PubMed

    Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien

    2014-03-01

    Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Rat epidermal keratinocyte organotypic culture (ROC) compared to human cadaver skin: the effect of skin permeation enhancers.

    PubMed

    Pappinen, Sari; Tikkinen, Sanna; Pasonen-Seppänen, Sanna; Murtomäki, Lasse; Suhonen, Marjukka; Urtti, Arto

    2007-03-01

    The objective of this study was to evaluate the response of the rat epidermal keratinocyte organotypic culture (ROC) to permeation enhancers, and to compare these responses to those in human cadaver skin. Different concentrations of two mixtures for enhancing permeation were investigated, sodium dodecyl sulfate:phenyl piperazine and methyl pyrrolidone:dodecyl pyridinium chloride, using skin impedance spectroscopy and two experimental compounds, the lipophilic corticosterone and the hydrophilic sucrose. The chemical irritation effects of the formulations were evaluated based on leakage of lactate dehydrogenase enzyme (LDH) and cellular morphological perturbation. This study provides evidence for direct correlations of permeation/permeation, impedance/impedance and permation/impedance between the culture model and human skin. The only exception was the enhancer induced permeation of sucrose which was 1-40-fold higher in ROC compared to human skin, reflecting the more disordered lipid organization in stratum corneum and consequently the greater number of polar pathways. LDH leakage and cellular morphology indicated that it was possible to differentiate between safe permeation enhancers from irritating agents. This is not only the first study to have compared the enhancer effects on a cultured skin model with human skin, but also it has demonstrated enhancer induced irritation using an artificial skin model.

  18. Effect of pH on skin permeation enhancement of acidic drugs by l-menthol-ethanol system.

    PubMed

    Katayama, K; Matsui, R; Hatanaka, T; Koizumi, T

    2001-09-11

    The effect of pH on the skin permeation enhancement of three acidic drugs by the l-menthol-ethanol system was investigated. The total flux of acidic drugs from the system remarkably varied over the pH range 3.0-8.0, and the permeation enhancement factor depended on the system pH and drug. A skin permeation model, which consists of two permeant (unionized and ionized) species, two system (oily and aqueous) phases, and two permeation (lipid and pore) pathways, was developed. The assumptions were made that only the unionized species can distribute to the oily phase and transport via the lipid pathway. The model explained the relationship between the concentration of drug in the aqueous phase and system pH. The skin permeability data were also described by the model and permeability coefficients corresponding to the physicochemical properties of permeant were calculated for the lipid and pore pathways. The model simulation showed that the permeation of acidic drugs occurred from the aqueous phase and the oily phase acted as a reservoir. Whether the total flux increased with increase of pH was dependent on the lipophilicity of drug. These results suggest that the pH of l-menthol-ethanol system should be given attention to elicit the maximum permeation enhancement.

  19. The in vitro use of the hair follicle closure technique to study the follicular and percutaneous permeation of topically applied drugs.

    PubMed

    Stahl, Jessica; Niedorf, Frank; Wohlert, Mareike; Kietzmann, Manfred

    2012-03-01

    Recent studies on follicular permeation emphasise the importance of hair follicles as diffusion pathways, but only a limited amount of data are available about the follicular permeation of topically applied drugs. This study examines the use of a hair follicle closure technique in vitro, to determine the participation of hair follicles in transdermal drug penetration. Various substances, with different lipophilicities, were tested: caffeine, diclofenac, flufenamic acid, ibuprofen, paracetamol, salicylic acid and testosterone. Diffusion experiments were conducted with porcine skin, the most common replacement material for human skin, in Franz-type diffusion cells over 28 hours. Different experimental settings allowed the differentiation between interfollicular and follicular permeation after topical application of the test compounds. A comparison of the apparent permeability coefficients of the drugs demonstrates that the percutaneous permeations of caffeine and flufenamic acid were significantly higher along the hair follicles. In the cases of paracetamol and testosterone, the follicular pathway appears to be of importance, while no difference was found between interfollicular and follicular permeation for diclofenac, ibuprofen and salicylic acid. Thus, the hair follicle closure technique represents an adequate in vitro method for gaining information about follicular or percutaneous permeation, and can replace in vivo testing in animals or humans. 2012 FRAME.

  20. Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma comosa.

    PubMed

    Tuntiyasawasdikul, Sarunya; Limpongsa, Ekapol; Jaipakdee, Napaphak; Sripanidkulchai, Bungorn

    2017-04-01

    Curcuma comosa (C. comosa) is widely used in traditional medicine as a dietary supplement for health promotion in postmenopausal women in Thailand. It contains several diarylheptanoids, which are considered to be a novel class of phytoestrogens. However, the diarylheptanoids isolated from the plant rhizome are shown to have low oral bioavailability and faster elimination characteristics. The aim of this study was to investigate the permeation behavior of the active compounds of diarylheptanoids. The effects of binary vehicle systems and permeation enhancers on diarylheptanoids permeation and accumulation within the skin were studied using side-by-side diffusion cells through the porcine ear skin. Among the tested binary vehicle systems, the ethanol/water vehicle appeared to be the most effective system for diarylheptanoids permeation with the highest flux and shortest lag time. The presence of transcutol in the vehicle system significantly increased diarylheptanoid's permeation and accumulation within the skin in a concentration-dependent manner. Although the presence of terpenes in formulation decreased the flux of diarylheptanoids, it raised the amount of diarylheptanoids retained within the skin substantially. Based on the feasibility of diarylheptanoid permeation, C. comosa extract should be further developed into an effective transdermal product for health benefits and hormone replacement therapy.

  1. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    PubMed Central

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  2. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    PubMed

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Novel isotretinoin microemulsion-based gel for targeted topical therapy of acne: formulation consideration, skin retention and skin irritation studies

    NASA Astrophysics Data System (ADS)

    Patel, Mrunali R.; Patel, Rashmin B.; Parikh, Jolly R.; Patel, Bharat G.

    2016-04-01

    Isotretinoin was formulated in novel microemulsion-based gel formulation with the aim of improving its solubility, skin tolerability, therapeutic efficacy, skin-targeting efficiency and patient compliance. Microemulsion was formulated by the spontaneous microemulsification method using 8 % isopropyl myristate, 24 % Labrasol, 8 % plurol oleique and 60 % water as an external phase. All plain and isotretinoin-loaded microemulsions were clear and showed physicochemical parameters for the desired topical delivery and stability. The permeation profiles of isotretinoin through rat skin from selected microemulsion formulation followed zero-order kinetics. Microemulsion-based gel was prepared by incorporating Carbopol®971 in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of isotretinoin, indicating its potential in improving topical delivery of isotretinoin. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of isotretinoin in the treatment of acne.

  4. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    PubMed Central

    Buscio, Valentina; García-Jiménez, María; Vilaseca, Mercè; López-Grimau, Victor; Crespi, Martí; Gutiérrez-Bouzán, Carmen

    2016-01-01

    The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates). Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range. PMID:28773614

  5. Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Yeong, Y. F.; Lau, K. K.; Azmi, M. S.; Chew, T. L.

    2018-03-01

    In this work, ZIF-8 membrane synthesized through solvent evaporation secondary seeded growth was tested for single gas permeation and binary gases separation of H2 and CO2. Subsequently, a modified mathematical modeling combining the effects of membrane and support layers was applied to represent the gas transport properties of ZIF-8 membrane. Results showed that, the membrane has exhibited H2/CO2 ideal selectivity of 5.83 and separation factor of 3.28 at 100 kPa and 303 K. Besides, the experimental results were fitted well with the simulated results by demonstrating means absolute error (MAE) values ranged from 1.13 % to 3.88 % for single gas permeation and 10.81 % to 21.22 % for binary gases separation. Based on the simulated data, most of the H2 and CO2 gas molecules have transported through the molecular pores of membrane layer, which was up to 70 %. Thus, the gas transport of the gases is mainly dominated by adsorption and diffusion across the membrane.

  6. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery.

    PubMed

    Thakur, Raghu Raj Singh; Tekko, Ismaiel A; Al-Shammari, Farhan; Ali, Ahlam A; McCarthy, Helen; Donnelly, Ryan F

    2016-12-01

    In this study, dissolving microneedles (MNs) were used to enhance ocular drug delivery of macromolecules. MNs were fabricated using polyvinylpyrrolidone (PVP) polymer of various molecular weights (MWs) containing three model molecules of increasing MW, namely fluorescein sodium and fluorescein isothiocyanate-dextrans (with MW of 70 k and 150 k Da). Arrays (3 × 3) of PVP MNs with conical shape measuring about 800 μm in height with a 300 μm base diameter, containing the model drugs, were fabricated and characterized for their fracture forces, insertion forces (in the sclera and cornea), depth of penetration (using OCT and confocal imaging), dissolution time and in vitro permeation. The average drug content of the MNs (only in MN shafts) ranged from 0.96 to 9.91 μg, and the average moisture content was below 11 %. High MW PVP produced MNs that can withstand higher forces with minimal reduction in needle height. PVP MNs showed rapid dissolution that ranged from 10 to 180 s, which was dependent upon PVP's MW. In vitro studies showed significant enhancement of macromolecule permeation when MNs were used, across both the corneal and scleral tissues, in comparison to topically applied aqueous solutions. Confocal images showed that the macromolecules formed depots within the tissues, which led to sustained permeation. However, use of MNs did not significantly benefit the permeation of small molecules; nevertheless, MN application has the potential for drug retention within the selected ocular tissues unlike topical application for small molecules. The material used in the fabrication of the MNs was found to be biocompatible with retinal cells (i.e. ARPE-19). Overall, this study reported the design and fabrication of minimally invasive rapidly dissolving polymeric MN arrays which were able to deliver high MW molecules to the eye via the intrastromal or intrascleral route. Thus, dissolving MNs have potential applications in enhancing ocular delivery of both small and macromolecules.

  7. Whole glove permeation of cyclohexanol through disposable nitrile gloves on a dextrous robot hand and comparison with the modified closed-loop ASTM F739 method 1. No fist clenching.

    PubMed

    Mathews, Airek R; Que Hee, Shane S

    2017-04-01

    The aim was to develop a whole glove permeation method for cyclohexanol to generate permeation parameter data for a non-moving dextrous robot hand (normalized breakthrough time t b , standardized breakthrough time t s , steady state permeation rate P s , and diffusion coefficient D). Four types of disposable powderless, unsupported, and unlined nitrile gloves from the same producer were investigated: Safeskin Blue and Kimtech Science Blue, Purple, and Sterling. The whole glove method developed involved a peristaltic pump for water circulation through chemically resistant Viton tubing to continually wash the inner surface of the test glove via holes in the tubing, a dextrous robot hand operated by a microprocessor, a chemically protective nitrile glove to protect the robot hand, an incubator to maintain 35°C temperature, and a hot plate to maintain 35°C at the sampling point of the circulating water. Aliquots of 1.0 mL were sampled at regular time intervals for the first 60 min followed by removal of 0.5 mL aliquots every hour to 8 hr. Quantification was by the internal standard method after gas chromatography-selective ion electron impact mass spectrometry using a non-polar capillary column. The individual glove values of t b and t s differed for the ASTM closed loop method except for Safeskin Blue, but did not for the whole glove method. Most of the kinetic parameters agreed within an order of magnitude for the two techniques. The order of most protective to least protective glove was Blue and Safeskin, then Purple followed by Sterling for the whole gloves. The analogous order for the modified F739 ASTM closed loop method was: Safeskin, Blue, Purple, and Sterling, almost the same as for the whole glove. The Sterling glove was "not recommended" from the modified ASTM data, and was "poor" from the whole glove data.

  8. Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration.

    PubMed

    Zorbaz, Tamara; Braïki, Anissa; Maraković, Nikola; Renou, Julien; de la Mora, Eugenio; Maček Hrvat, Nikolina; Katalinić, Maja; Silman, Israel; Sussman, Joel L; Mercey, Guillaume; Gomez, Catherine; Mougeot, Romain; Pérez, Belén; Baati, Rachid; Nachon, Florian; Weik, Martin; Jean, Ludovic; Kovarik, Zrinka; Renard, Pierre-Yves

    2018-04-19

    A new series of 3-hydroxy-2-pyridine aldoxime compounds have been designed, synthesised and tested in vitro, in silico, and ex vivo as reactivators of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibited by organophosphates (OPs), for example, VX, sarin, cyclosarin, tabun, and paraoxon. The reactivation rates of three oximes (16-18) were determined to be greater than that of 2-PAM and comparable to that of HI-6, two pyridinium aldoximes currently used by the armies of several countries. The interactions important for a productive orientation of the oxime group within the OP-inhibited enzyme have been clarified by molecular-modelling studies, and by the resolution of the crystal structure of the complex of oxime 17 with Torpedo californica AChE. Blood-brain barrier penetration was predicted for oximes 15-18 based on their physicochemical properties and an in vitro brain membrane permeation assay. Among the evaluated compounds, two morpholine-3-hydroxypyridine aldoxime conjugates proved to be promising reactivators of OP-inhibited cholinesterases. Moreover, efficient ex vivo reactivation of phosphylated native cholinesterases by selected oximes enabled significant hydrolysis of VX, sarin, paraoxon, and cyclosarin in whole human blood, which indicates that the oximes have scavenging potential. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A preliminary study for the development and optimization by experimental design of an in vitro method for prediction of drug buccal absorption.

    PubMed

    Mura, Paola; Orlandini, Serena; Cirri, Marzia; Maestrelli, Francesca; Mennini, Natascia; Casella, Giada; Furlanetto, Sandra

    2018-06-15

    The work was aimed at developing an in vitro method able to provide rapid and reliable evaluation of drug absorption through buccal mucosa. Absorption simulator apparatus endowed with an artificial membrane was purposely developed by experimental design. The apparent permeation coefficient (P app ) through excised porcine buccal mucosa of naproxen, selected as model drug, was the target value to obtain with the artificial membrane. The multivariate approach enabled systematic evaluation of the effect on the response (P app ) of simultaneous variations of the variables (kind of lipid components for support impregnation and relative amounts). A screening phase followed by a response-surface study allowed optimization of the lipid-mixture composition to obtain the desired P app value, and definition of a design space where all mixture components combinations fulfilled the desired target at a fixed probability level. The method offers a useful tool for a quick screening in the early stages of drug discovery and/or in preformulation studies, improving efficiency and chance of success in the development of buccal delivery systems. Further studies with other model drugs are planned to confirm the buccal absorption predictive capacity of the developed membrane. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.

    PubMed

    Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A

    2014-05-01

    Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry Y. S.

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less

  12. Formation and characterization of asymmetric polyimide hollow fiber membranes for gas separations

    NASA Astrophysics Data System (ADS)

    Clausi, Dominic Thomas

    Ultra-thin and virtually defect-free polyimide hollow fiber membranes were formed using a "dry/wet" type spinning solution. Fibers were spun from the commercially available polyimide, Matrimidsp{°ler}, using a dry-jet, wet quench spinning apparatus. Spin dopes were comprised of volatile and non-volatile solvents, polymer, and non-solvent. The influence of dope composition, spinning parameters, and dehydration procedures on the membrane morphology and performance was investigated. Without post-treatment, the fibers exhibited skin thicknesses less than 1000 A and Osb2/Nsb2 selectivities within 90% of those determined for dense, solution-cast films. The 250 mum O.D./125 mum I.D. fibers were spun at take-up rates comparable to those used in commercial processes and had macrovoid-free morphologies. A new characterization technique has also been developed where a permeating gas is held at constant transmembrane pressure while the average pressure in the porous support of an asymmetric membrane is varied. This alters the mean free path of gas molecules permeating through the substructure while maintaining a constant driving force for permeation. This technique characterizes the magnitude of the substructure resistance and its pressure dependence, thereby providing a means to compare the morphologies of different membrane samples. Well defined composite-laminate membranes were constructed to validate this technique, which was subsequently used to characterize the substructures of the hollow fiber membranes formed in this work. Two additional rapid characterization techniques have been developed for use before fiber dehydration (i.e., wet fibers). These techniques probe the membrane skin layer with aqueous solutions of disperse dyes and poly(ethylene glycol), respectively. Fiber skin integrity can be characterized using these techniques prior to lengthy downstream processing (i.e., solvent exchange, drying, and post-treatment), providing quick elucidation of membrane skin morphology. Finally, a qualitative model describing the skin layer morphology of phase inversion membranes has been developed. This model arose from observed differences in the permeation characteristics of highly sorbing gases between bore and shell side feeds. It is proposed that the skin layer contains an asymmetric distribution of unrelaxed volume introduced during the formation process. This model has been successfully tested with COsb2/CHsb4 permeation measurements conducted at varying temperatures and feed configurations.

  13. Laser-assisted delivery of topical methotrexate - in vitro investigations.

    PubMed

    Taudorf, Elisabeth Hjardem

    2016-06-01

    Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by high performance liquid chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and desorption electro spray mass spectrometry imaging (DESI-MSI) (study III). Laser-tissue interactions generated by AFXL: AFXL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions. Impact of MAZ depth on AFXL-assisted topical MTX delivery: Pretreatment by AFXL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intradermal biodistribution profile towards maximum accumulation in deeper skin layers. Biodistribution of MTX occurred throughout the skin without being compromised by coagulation zones of varying thickness. The ratio of skin deposition versus transdermal permeation was constant, regardless of MAZ depth. Impact of transport kinetics on AFXL-assisted topical MTX delivery: MTX accumulated rapidly in AFXL-processed skin. MTX was detectable in mid-dermis after 15 min. and saturated the skin after 7 h at a ten-fold increased MTX-concentration compared to intact skin. Transdermal permeation stayed below 1.5% of applied MTX before skin saturation, and increased afterwards up to 8.0% at 24h. MTX distributed radially into the coagulation zone within 15 min of application and could be detected in surrounding skin at 1.5 h. Upon skin saturation, MTX had distributed in an entire mid-dermal skin section. In conclusion, adjusting laser parameters and application time may enable targeted treatments of dermatological disorders and potentially pose a future alternative to systemic MTX in selected dermatological disorders.

  14. Nonelectrolyte diffusion across lipid bilayer systems

    PubMed Central

    1976-01-01

    The permeability coefficients of a homologous series of amides from formamide through valeramide have been measured in spherical bilayers prepared by the method described by Jung. They do not depend directly on the water:ether partition coefficient which increases regularly with chain length. Instead there is a minimum at acetamide. This has been ascribed to the effect of steric hindrance on diffusion within the bilayer which increases with solute molar volume. This factor is of the same magnitude, though opposite in sign to the effect of lipid solubility, thus accounting for the minimum. The resistance to passage across the interface has been compared to the resistance to diffusion within the membrane. As the solute chain length increases the interface becomes more important, until for valeramide it comprises about 90% of the total resistance. Interface resistance is also important in urea permeation, causing urea to permeate much more slowly than an amide of comparable size, after allowance is made for the difference in the water:ether partition coefficient. Amide permeation coefficients have been compared with relative liposome permeation data measured by the rate of liposome swelling. The ratios of the two measures of permeation vary between 3 and 16 for the homologous amides. The apparent enthalpy of liposome permeation has been measured and found to be in the neighborhood of 12 kcal mol-1 essentially independent of chain length. Comparison of the bilayer permeability coefficients with those of red cells shows that red cell permeation by the lipophilic solutes resembles that of the bilayers, whereas permeation by the hydrophilic solutes differs significantly. PMID:1245835

  15. Thiolated polycarbophil/glutathione: defining its potential as a permeation enhancer for oral drug administration in comparison to sodium caprate.

    PubMed

    Perera, Glen; Barthelmes, Jan; Vetter, Anja; Krieg, Christof; Uhlschmied, Cindy; Bonn, Günther K; Bernkop-Schnürch, Andreas

    2011-08-01

    Thiolated polyacrylates were shown to be permeation enhancers with notable potential. The aim of this study was to evaluate the permeation enhancing properties of a thiolated polycarbophil/glutathione (PCP-Cys/GSH) system for oral drug application in comparison to a well-established permeation enhancer, namely sodium caprate. In vitro permeation studies were conducted in Ussing-type chambers with sodium fluoresceine (NaFlu) and fluoresceine isothiocyanate labeled dextran (molecular mass 4 kDa; FD4) as model compounds. Bioavailability studies were carried out in Sprague Dawley rats with various formulations. Moreover, cytotoxic effects of both permeation enhancers were compared. Permeation enhancement ratios of 1% sodium caprate were found to be 3.0 (FD4) and 2.3 (NaFlu), whereas 1% PCP-Cys/0.5% GSH displayed enhancement ratios of 2.4 and 2.2. Both excipients performed at a similar level in vivo. Sodium caprate solutions increased oral bioavailability 2.2-fold (FD4) and 2.3-fold (NaFlu), while PCP-Cys hydrogels led to a 3.2-fold and 2.2-fold enhancement. Cell viability experiments revealed a significantly higher tolerance of Caco-2 cells towards 0.5% PCP-Cys (81% survival) compared to 0.5% sodium caprate (5%). As PCP-Cys is not absorbed from mucosal membranes due to its comparatively high molecular mass, systemic side-effects can be excluded. In conclusion, both systems displayed a similar potency for permeation enhancement of hydrophilic compounds. However, PCP-Cys seems to be less harmful to cultured cells.

  16. Determination of solvents permeating through chemical protective clothing with a microsensor array.

    PubMed

    Park, J; Zellers, E T

    2000-08-01

    The performance of a novel prototype instrument in determining solvents and solvent mixtures permeating through samples of chemical protective clothing (CPC) materials was evaluated. The instrument contains a mini-preconcentrator and an array of three polymer-coated surface-acoustic-wave (SAW) microsensors whose collective response patterns are used to discriminate among multiple permeants. Permeation tests were performed with a 2.54 cm diameter test cell in an open-loop configuration on samples of common glove materials challenged with four individual solvents, three binary mixtures, and two ternary mixtures. Breakthrough times, defined as the times required for the permeation rate to reach a value of 1 microg cm(-2) min(-1), determined by the instrument were within 3 min of those determined in parallel by manual sampling and gas chromatographic analysis. Permeating solvents were recognized (identified) from their response patterns in 59 out of 64 measurements (92%) and their vapor concentrations were quantified to an accuracy of +/- 31% (typically +/- 10%). These results demonstrate the potential for such instrumentation to provide semi-automated field or bench-top screening of CPC permeation resistance.

  17. Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells

    NASA Astrophysics Data System (ADS)

    Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.

    2016-03-01

    Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.

  18. Fish skin as a model membrane: structure and characteristics.

    PubMed

    Konrádsdóttir, Fífa; Loftsson, Thorsteinn; Sigfússon, Sigurdur Dadi

    2009-01-01

    Synthetic and cell-based membranes are frequently used during drug formulation development for the assessment of drug availability. However, most of the currently used membranes do not mimic mucosal membranes well, especially the aqueous mucous layer of the membranes. In this study we evaluated catfish (Anarichas lupus L) skin as a model membrane. Permeation of hydrocortisone, lidocaine hydrochloride, benzocaine, diethylstilbestrol, naproxen, picric acid and sodium nitrate through skin from a freshly caught catfish was determined in Franz diffusion cells. Both lipophilic and hydrophilic molecules permeate through catfish skin via hydrated channels or aqueous pores. No correlation was observed between the octanol/water partition coefficient of the permeating molecules and their permeability coefficient through the skin. Permeation through catfish skin was found to be diffusion controlled. The results suggest that permeation through the fish skin proceeds via a diffusion-controlled process, a process that is similar to drug permeation through the aqueous mucous layer of a mucosal membrane. In addition, the fish skin, with its collagen matrix structure, appears to possess similar properties to the eye sclera.

  19. Low-frequency sonophoresis enhances rivastigmine permeation in vitro and in vivo.

    PubMed

    Yu, Zhen-wei; Liang, Yi; Liang, Wen-quan

    2015-06-01

    We investigated the enhancement effect of low-frequency sonophoresis on transdermal permeation of rivastigmine in vitro and in vivo. The in vitro permeation study showed that sonophoresis increased steady-state transdermal flux 0.31 ± 0.03 μg x cm(-2) x h(-1) and the extent of rivastigmine permeation 6.00 ± 0.56 μg x cm(-2) though excised skin (both P < 0.01). In the in vivo experiment, the C(max) 0.83 ± 0.16 μg x mL(-1) and AUC(0 --> 24 h) 12.35 ± 1.99 μg x h x mL(-1) of the sonophoresis group was also significantly higher than that of the control group (both P < 0.01). These data suggest that low-frequency sonophoresis could be an effective method to enhance rivastigmine permeation.

  20. Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids.

    PubMed

    Kopečná, Monika; Macháček, Miloslav; Prchalová, Eva; Štěpánek, Petr; Drašar, Pavel; Kotora, Martin; Vávrová, Kateřina

    2017-03-01

    Skin permeation/penetration enhancers are substances that enable drug delivery through or into the skin. To search for new enhancers with high but reversible activity and acceptable toxicity, we synthesized a series of D-glucose derivatives, both hydrophilic and amphiphilic. Initial evaluation of the ability of these sugar derivatives to increase permeation and penetration of theophylline through/into human skin compared with a control (no enhancer) or sorbitan monolaurate (Span 20; positive control) revealed dodecyl 6-amino-6-deoxy-α-D-glucopyranoside 5 as a promising enhancer. Furthermore, this amino sugar 5 increased epidermal concentration of a highly hydrophilic antiviral cidofovir by a factor of 7. The effect of compound 5 on skin electrical impedance suggested its direct interaction with the skin barrier. Infrared spectroscopy of isolated stratum corneum revealed no effect of enhancer 5 on the stratum corneum proteins but an overall decrease in the lipid chain order. The enhancer showed acceptable toxicity on HaCaT keratinocyte and 3T3 fibroblast cell lines. Finally, transepidermal water loss returned to baseline values after enhancer 5 had been removed from the skin. Compound 5, a dodecyl amino glucoside, is a promising enhancer that acts through a reversible interaction with the stratum corneum lipids.

  1. In Vitro-In Vivo Predictive Dissolution-Permeation-Absorption Dynamics of Highly Permeable Drug Extended-Release Tablets via Drug Dissolution/Absorption Simulating System and pH Alteration.

    PubMed

    Li, Zi-Qiang; Tian, Shuang; Gu, Hui; Wu, Zeng-Guang; Nyagblordzro, Makafui; Feng, Guo; He, Xin

    2018-05-01

    Each of dissolution and permeation may be a rate-limiting factor in the absorption of oral drug delivery. But the current dissolution test rarely took into consideration of the permeation property. Drug dissolution/absorption simulating system (DDASS) valuably gave an insight into the combination of drug dissolution and permeation processes happening in human gastrointestinal tract. The simulated gastric/intestinal fluid of DDASS was improved in this study to realize the influence of dynamic pH change on the complete oral dosage form. To assess the effectiveness of DDASS, six high-permeability drugs were chosen as model drugs, including theophylline (pK a1  = 3.50, pK a2  = 8.60), diclofenac (pK a  = 4.15), isosorbide 5-mononitrate (pK a  = 7.00), sinomenine (pK a  = 7.98), alfuzosin (pK a  = 8.13), and metoprolol (pK a  = 9.70). A general elution and permeation relationship of their commercially available extended-release tablets was assessed as well as the relationship between the cumulative permeation and the apparent permeability. The correlations between DDASS elution and USP apparatus 2 (USP2) dissolution and also between DDASS permeation and beagle dog absorption were developed to estimate the predictability of DDASS. As a result, the common elution-dissolution relationship was established regardless of some variance in the characteristic behavior between DDASS and USP2 for drugs dependent on the pH for dissolution. Level A in vitro-in vivo correlation between DDASS permeation and dog absorption was developed for drugs with different pKa. The improved DDASS will be a promising tool to provide a screening method on the predictive dissolution-permeation-absorption dynamics of solid drug dosage forms in the early-phase formulation development.

  2. Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water

    NASA Technical Reports Server (NTRS)

    Tsai, Chung-Yi; Alexander, Jerry

    2009-01-01

    A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.

  3. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II.

    PubMed

    Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug

    2013-10-01

    Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Investigation of Sorption and Diffusion Mechanisms, and Preliminary Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several monovalent and divalent cation exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed using tritiated water feed solution containing tritium at the high end of the range (1 mCi/mL) anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. Themore » tritium concentration was about 0.1 ppm. The permeate was recovered under vacuum. The HTO/H2O selectivity and separation factor calculated from the measured tritium concentrations ranged from 0.99 to 1.23, and 0.83-0.98, respectively. Although the membrane performance for HTO separation was lower than expected, several encouraging observations including molecular sieving and high vapor permeance are reported. Additionally, several new approaches are proposed, such as tuning the sorption and diffusion properties offered by small pore LTA zeolite materials, and cation exchanged aluminosilicates with high metal loading. It is hypothesized that substantially improved preferential transport of tritium (HTO) resulting in a more concentrated permeate can be achieved. Preliminary economic analysis for the membrane-based process to concentrate tritiated water is also discussed.« less

  5. Gelucire44/14 as a novel absorption enhancer for drugs with different hydrophilicities: in vitro and in vivo improvement on transcorneal permeation.

    PubMed

    Liu, Rui; Liu, Zhidong; Zhang, Chengui; Zhang, Boli

    2011-08-01

    The objective of this study was to investigate the application of Gelucire44/14 as a novel absorption enhancer in ophthalmic drug delivery system. Six compounds, namely ribavirin, puerarin, mangiferin, berberin hydrochloride, baicalin, and curcumin in the order of increasing lipophilicity were selected as model drugs. The effect of Gelucire44/14 on transcorneal permeation was evaluated across excised rabbit cornea. Ocular irritation and precorneal retention time were assessed. Additionally, aqueous humor pharmacokinetic test was performed by microdialysis. The results indicated that Gelucire44/14, at a concentration of 0.05% or 0.1% (w/v), was found to maximally increase the apparent permeability coefficient by 6.47-, 4.14-, 3.50-, 3.97-, 2.92-, and 1.86-fold for ribavirin, puerarin, mangiferin, berberin hydrochloride, baicalin, and curcumin, respectively (p < 0.05). Moreover, Gelucire44/14 was nonirritant at broad concentrations of 0.025%-0.4% (w/v). Pharmacokinetic tests showed that Gelucire44/14 promoted ocular bioavailability of the compounds as indicated by 5.40-, 4.03-, 3.46-, 3.57-, 2.77-, and 1.77-fold maximal increase in the area under the curve for the drugs aforementioned, respectively (p < 0.01). Therefore, Gelucire44/14 exerted a significant improvement on the permeation of both hydrophilic and lipophilic compounds, especially hydrophilic ones. Hence, Gelucire44/14 can be considered as a safe and effective absorption enhancer for ophthalmic drug delivery system. Copyright © 2011 Wiley-Liss, Inc.

  6. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    NASA Astrophysics Data System (ADS)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  7. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells.

    PubMed

    Suwannoi, Panita; Chomnawang, Mullika; Sarisuta, Narong; Reichl, Stephan; Müller-Goymann, Christel C

    2017-12-01

    The aim of the present study was to develop acyclovir (ACV) ocular drug delivery systems of bovine serum albumin (BSA) nanoparticles as well as to assess their in vitro transcorneal permeation across human corneal epithelial (HCE-T) cell multilayers. The ACV-loaded BSA nanoparticles were prepared by desolvation method along with physicochemical characterization, cytotoxicity, as well as in vitro transcorneal permeation studies across HCE-T cell multilayers. The nanoparticles appeared to be spherical in shape and nearly uniform in size of about 200 nm. The size of nanoparticles became smaller with decreasing BSA concentration, while the ratios of water to ethanol seemed not to affect the size. Increasing the amount of ethanol in desolvation process led to significant reduction of drug entrapment of nanoparticles with smaller size and more uniformity. The ACV-loaded BSA nanoparticles prepared were shown to have no cytotoxic effect on HCE-T cells used in permeation studies. The in vitro transcorneal permeation results revealed that ACV could permeate through the HCE-T cell multilayers significantly higher from BSA nanoparticles than from aqueous ACV solutions. The ACV-loaded BSA nanoparticles could be prepared by desolvation method without glutaraldehyde in the formulation. ACV could increasingly permeate through the multilayers of HCE-T cells from the ACV-loaded BSA nanoparticles. Therefore, the ACV-loaded BSA nanoparticles could be a highly potential ocular drug delivery system.

  8. Investigation of pH Influence on Skin Permeation Behavior of Weak Acids Using Nonsteroidal Anti-Inflammatory Drugs.

    PubMed

    Chantasart, Doungdaw; Chootanasoontorn, Siriwan; Suksiriworapong, Jiraphong; Li, S Kevin

    2015-10-01

    As a continuing effort to understand the skin permeation behavior of weak acids and bases, the objectives of the present study were to evaluate skin permeation of nonsteroidal anti-inflammatory drugs (NSAIDs) under the influence of pH, investigate the mechanism of pH effect, and examine a previous hypothesis that the effective skin pH for drug permeation is different from donor solution pH. In vitro permeability experiments were performed in side-by-side diffusion cells with diclofenac, ibuprofen, flurbiprofen, ketoprofen, and naproxen and human skin. The donor solution pH significantly affected skin permeation of NSAIDs, whereas no effect of the receiver pH was observed. Similar to previous observations, the apparent permeability coefficient versus donor solution pH relationships deviated from the predictions (fractions of unionized NSAIDs) according to the acid/base theory. The influences of the viable epidermis barrier, polar pathway transport, ion permeation across skin, and effective skin pH were investigated. The effective pH values for skin permeation determined using the NSAIDs (weak acids) in this study were different from those obtained previously with a weak base at the same donor solution pH conditions, suggesting that the observed permeability-pH relationships could not be explained solely by possible pH differences between skin and donor solution. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro.

    PubMed

    Krishnan, Gayathri; Edwards, Jeffrey; Chen, Yan; Benson, Heather A E

    2010-06-01

    The aim of the present study was to evaluate the skin permeation of naltrexone (NTX) under the influence of a pulsed electromagnetic field (PEMF). The permeation of NTX across human epidermis and a silicone membrane in vitro was monitored during and after application of the PEMF and compared to passive application. Enhancement ratios of NTX human epidermis permeation by PEMF over passive diffusion, calculated based on the AUC of cumulative NTX permeation to the receptor compartment verses time for 0-4 h, 4-8 h, and over the entire experiment (0-8 h) were 6.52, 5.25, and 5.66, respectively. Observation of the curve indicated an initial enhancement of NTX permeation compared to passive delivery whilst the PEMF was active (0-4 h). This was followed by a secondary phase after termination of PEMF energy (4-8 h) in which there was a steady increase in NTX permeation. No significant enhancement of NTX penetration across silicone membrane occurred with PEMF application in comparison to passively applied NTX. In a preliminary experiment PEMF enhanced the penetration of 10 nm gold nanoparticles through the stratum corneum as visualized by multiphoton microscopy. This suggests that the channels through which the nanoparticles move must be larger than the 10 nm diameter of these rigid particles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  10. A permeation theory for single-file ion channels: one- and two-step models.

    PubMed

    Nelson, Peter Hugo

    2011-04-28

    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no quantitative comparison has yet been made. The A/D model makes a network of predictions for how the elementary steps and the channel occupancy vary with both concentration and voltage. In addition, the proposed theoretical framework suggests a new way of plotting the energetics of the simulated system using a one-dimensional permeation coordinate that uses electric potential energy as a metric for the net fractional progress through the permeation mechanism. This approach has the potential to provide a quantitative connection between atomistic simulations and permeation experiments for the first time.

  11. Influence of sub-surface damage evolution on low-energy-plasma-driven deuterium permeation through tungsten

    NASA Astrophysics Data System (ADS)

    Kapser, Stefan; Balden, Martin; Fiorini da Silva, Tiago; Elgeti, Stefan; Manhard, Armin; Schmid, Klaus; Schwarz-Selinger, Thomas; von Toussaint, Udo

    2018-05-01

    Low-energy-plasma-driven deuterium permeation through tungsten at 300 K and 450 K has been investigated. Microstructural analysis by scanning electron microscopy, assisted by focused ion beam, revealed sub-surface damage evolution only at 300 K. This damage evolution was correlated with a significant evolution of the deuterium amount retained below the plasma-exposed surface. Although both of these phenomena were observed for 300 K exposure temperature only, the deuterium permeation flux at both exposure temperatures was indistinguishable within the experimental uncertainty. The permeation flux was used to estimate the maximum ratio of solute-deuterium to tungsten atoms during deuterium-plasma exposure at both temperatures and thus in the presence and absence of damage evolution. Diffusion-trapping simulations revealed the proximity of damage evolution to the implantation surface as the reason for an only insignificant decrease of the permeation flux.

  12. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  13. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  14. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  15. 40 CFR 1060.521 - How do I test fuel caps for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test fuel caps for permeation... EQUIPMENT Test Procedures § 1060.521 How do I test fuel caps for permeation emissions? If you measure a fuel.... However, you may not combine these emission measurements if you test the fuel cap at a nominal temperature...

  16. 40 CFR 1060.521 - How do I test fuel caps for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test fuel caps for permeation... EQUIPMENT Test Procedures § 1060.521 How do I test fuel caps for permeation emissions? If you measure a fuel.... However, you may not combine these emission measurements if you test the fuel cap at a nominal temperature...

  17. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  18. 40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...

  19. 40 CFR 1060.521 - How do I test fuel caps for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test fuel caps for permeation... EQUIPMENT Test Procedures § 1060.521 How do I test fuel caps for permeation emissions? If you measure a fuel.... However, you may not combine these emission measurements if you test the fuel cap at a nominal temperature...

  20. 40 CFR 1060.521 - How do I test fuel caps for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test fuel caps for permeation... EQUIPMENT Test Procedures § 1060.521 How do I test fuel caps for permeation emissions? If you measure a fuel.... However, you may not combine these emission measurements if you test the fuel cap at a nominal temperature...

  1. Headspace Gas Chromatography Method for Studies of Reaction and Permeation of Volatile Agents with Solid Materials

    DTIC Science & Technology

    2015-01-01

    HEADSPACE GAS CHROMATOGRAPHY METHOD FOR STUDIES OF REACTION AND PERMEATION OF...TITLE AND SUBTITLE Headspace Gas Chromatography Method for Studies of Reaction and Permeation of Volatile Agents with Solid Materials 5a...method is described for measuring the reactivity and permeability of fabrics, films, and other solid materials. Headspace gas chromatography (GC)

  2. Ion-driven deuterium permeation through tungsten at high temperatures

    NASA Astrophysics Data System (ADS)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  3. Vehicle influence on permeation through intact and compromised skin.

    PubMed

    Gujjar, Meera; Banga, Ajay K

    2014-09-10

    The purpose of this study was to compare the transdermal permeation of a model compound, diclofenac diethylamine, from a hydrophilic and lipophilic vehicle across in vitro models simulating compromised skin. Mineral oil served as a lipophilic vehicle while 10mM phosphate buffered saline served as a hydrophilic vehicle. Compromised skin was simulated by tape stripping, delipidization, or microneedle application and compared with intact skin as a control. Transepidermal water loss was measured to assess barrier function. Skin compromised with tape stripping and delipidization significantly (p<0.05) increased permeation of diclofenac diethylamine compared to intact and microneedle treated skin with phosphate buffered saline vehicle. A similar trend in permeation was observed with mineral oil as the vehicle. For both vehicles, permeation across skin increased in the same order and correlated with degree of barrier impairment as indicated by transepidermal water loss values: intact

  4. In Silico Estimation of Skin Concentration Following the Dermal Exposure to Chemicals.

    PubMed

    Hatanaka, Tomomi; Yoshida, Shun; Kadhum, Wesam R; Todo, Hiroaki; Sugibayashi, Kenji

    2015-12-01

    To develop an in silico method based on Fick's law of diffusion to estimate the skin concentration following dermal exposure to chemicals with a wide range of lipophilicity. Permeation experiments of various chemicals were performed through rat and porcine skin. Permeation parameters, namely, permeability coefficient and partition coefficient, were obtained by the fitting of data to two-layered and one-layered diffusion models for whole and stripped skin. The mean skin concentration of chemicals during steady-state permeation was calculated using the permeation parameters and compared with the observed values. All permeation profiles could be described by the diffusion models. The estimated skin concentrations of chemicals using permeation parameters were close to the observed levels and most data fell within the 95% confidence interval for complete prediction. The permeability coefficient and partition coefficient for stripped skin were almost constant, being independent of the permeant's lipophilicity. Skin concentration following dermal exposure to various chemicals can be accurately estimated based on Fick's law of diffusion. This method should become a useful tool to assess the efficacy of topically applied drugs and cosmetic ingredients, as well as the risk of chemicals likely to cause skin disorders and diseases.

  5. Recent developments in skin mimic systems to predict transdermal permeation.

    PubMed

    Waters, Laura J

    2015-01-01

    In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.

  6. Tailored nanostructured platforms for boosting transcorneal permeation: Box–Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization

    PubMed Central

    Elsayed, Ibrahim; Sayed, Sinar

    2017-01-01

    Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box–Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness. PMID:29133980

  7. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-L-Methionine.

    PubMed

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-07-01

    S-methyl- L -methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of -3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM.

  8. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-l-Methionine

    PubMed Central

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-01-01

    S-methyl-l-methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of −3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM. PMID:28274096

  9. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers.

    PubMed

    Shah, D K; Khandavilli, S; Panchagnula, R

    2008-09-01

    Vehicles and permeation enhancers (PEs) used in transdermal drug delivery (TDD) of a drug can affect skin hydration, integrity and permeation of the solute administered. This investigation was designed to study the effect of the most commonly used vehicles and PEs on rat skin hydration, barrier function and permeation of an amphiphilic drug, imipramine hydrochloride (IMH). An array of well-established techniques were used to confirm the findings of the study. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were used to determine changes in skin hydration. Alteration of the stratum corneum (SC) structure was investigated using FTIR studies. To monitor the barrier function alteration, transepidermal water loss (TEWL) measurement and permeation studies were performed. Our findings indicate that with hydration, there was an increase in the bound water content of the skin, and pseudoequilibrium of hydration (a drastic decrease in hydration rate) was achieved at around 12 h. Hydration increased the ratio between amide-I and amide-II peaks in FTIR and reduced the C-H stretching peak area. Both propylene glycol (PG) and ethanol (EtOH) dehydrated skin, with the latter showing a predominant effect. Furthermore, it was confirmed that PG and EtOH decreased the bound water content due to alteration in the protein domains and extraction of SC lipids, respectively. The effect of hydration on the SC was found to be similar to that reported for temperature. Permeation studies revealed that the dehydration caused by vehicles decreased IMH flux, whereas the flux was enhanced by PEs. The role of partition was predominant for the permeation of IMH through dehydrated skin. A synergistic effect was observed for PG and menthol in the enhancement of IMH. Further findings provided strong evidence that PG affects protein domains and EtOH extracts lipids from the bilayer. Both PG and EtOH, with or without PEs, increased TEWL. Initial TEWL was well correlated with the flux of IMH through the same skin. It was found that both PG and EtOH affect the permeation of solute and TEWL by dehydration. The experiments also proved that the initial TEWL value has a strong potential as a predictive tool for the permeation of the solute. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  10. Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue

    PubMed Central

    Smith, Carolyn L.; Abdallah, Salsabil; Le, Phuong; Harracksingh, Alicia N.; Artinian, Liana; Tamvacakis, Arianna N.; Rehder, Vincent; Reese, Thomas S.

    2017-01-01

    Four-domain voltage-gated Ca2+ (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca2+ over Na+ compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na+ current by low external Ca2+ concentrations (i.e., the Ca2+ block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca2+ block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca2+ block and higher Ca2+ selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure–function properties, ion selectivity, and cellular physiology. PMID:28330839

  11. Development of paclitaxel-TyroSpheres for topical skin treatment

    PubMed Central

    Kilfoyle, Brian E.; Sheihet, Larisa; Zhang, Zheng; Laohoo, Marissa; Kohn, Joachim; Michniak-Kohn, Bozena B.

    2012-01-01

    A potential topical psoriasis therapy has been developed consisting of tyrosine-derived nanospheres (TyroSpheres) with encapsulated anti-proliferative paclitaxel. TyroSpheres provide enhancement of paclitaxel solubility (almost 4,000 times greater than PBS) by effective encapsulation and enable sustained, dose-controlled release over 72 hours under conditions mimicking skin permeation. TyroSpheres offer potential in the treatment of psoriasis, a disease resulting from over-proliferation of keratinocytes in the basal layer of the epidermis, by (a) enabling delivery of paclitaxel into the epidermis at concentrations >100 ng/cm2 of skin surface area and (b) enhancing the cytotoxicity of loaded paclitaxel to human keratinocytes (IC50 of paclitaxel-TyroSpheres was approximately 45% lower than that of free paclitaxel). TyroSpheres were incorporated into a gel-like viscous formulation to improve their flow characteristics with no impact on homogeneity, release or skin distribution of the payload. The findings reported here confirm that the TyroSpheres provide a platform for paclitaxel topical administration allowing skin drug localization and minimal systemic escape. PMID:22732474

  12. Unraveling the Water Impermeability Discrepancy in CVD-Grown Graphene.

    PubMed

    Kwak, Jinsung; Kim, Se-Yang; Jo, Yongsu; Kim, Na Yeon; Kim, Sung Youb; Lee, Zonghoon; Kwon, Soon-Yong

    2018-06-11

    Graphene has recently attracted particular interest as a flexible barrier film preventing permeation of gases and moistures. However, it has been proved to be exceptionally challenging to develop large-scale graphene films with little oxygen and moisture permeation suitable for industrial uses, mainly due to the presence of nanometer-sized defects of obscure origins. Here, the origins of water permeable routes on graphene-coated Cu foils are investigated by observing the micrometer-sized rusts in the underlying Cu substrates, and a site-selective passivation method of the nanometer-sized routes is devised. It is revealed that nanometer-sized holes or cracks are primarily concentrated on graphene wrinkles rather than on other structural imperfections, resulting in severe degradation of its water impermeability. They are found to be predominantly induced by the delamination of graphene bound to Cu as a release of thermal stress during the cooling stage after graphene growth, especially at the intersection of the Cu step edges and wrinkles owing to their higher adhesion energy. Furthermore, the investigated routes are site-selectively passivated by an electron-beam-induced amorphous carbon layer, thus a substantial improvement in water impermeability is achieved. This approach is likely to be extended for offering novel barrier properties in flexible films based on graphene and on other atomic crystals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-risk long QT syndrome mutations in the Kv7.1 (KCNQ1) pore disrupt the molecular basis for rapid K(+) permeation.

    PubMed

    Burgess, Don E; Bartos, Daniel C; Reloj, Allison R; Campbell, Kenneth S; Johnson, Jonathan N; Tester, David J; Ackerman, Michael J; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J; Ohno, Seiko; Horie, Minoru; Delisle, Brian P

    2012-11-13

    Type 1 long QT syndrome (LQT1) is caused by loss-of-function mutations in the KCNQ1 gene, which encodes the K(+) channel (Kv7.1) that underlies the slowly activating delayed rectifier K(+) current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss of function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confers a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated nonfunctional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamics simulations of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K(+)-K(+) repulsive forces required for rapid K(+) permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K(+) channel selectivity filter.

  14. Highly selective water channel activity measured by voltage clamp: analysis of planar lipid bilayers reconstituted with purified AqpZ.

    PubMed

    Pohl, P; Saparov, S M; Borgnia, M J; Agre, P

    2001-08-14

    Aquaporins are membrane channels selectively permeated by water or water plus glycerol. Conflicting reports have described ion conductance associated with some water channels, raising the question of whether ion conductance is a general property of the aquaporin family. To clarify this question, a defined system was developed to simultaneously measure water permeability and ion conductance. The Escherichia coli water channel aquaporin-Z (AqpZ) was studied, because it is a highly stable tetramer. Planar lipid bilayers were formed from unilamellar vesicles containing purified AqpZ. The hydraulic conductivity of bilayers made from the total extract of E. coli lipids increased 3-fold if reconstituted with AqpZ, but electric conductance was unchanged. No channel activity was detected under voltage-clamp conditions, indicating that less than one in 10(9) transport events is electrogenic. Microelectrode measurements were simultaneously undertaken adjacent to the membrane. Changes in sodium concentration profiles accompanying transmembrane water flow permitted calculation of the activation energies: 14 kcal/mol for protein-free lipid bilayers and 4 kcal/mol for lipid bilayers containing AqpZ. Neither the water permeability nor the electric conductivity exhibited voltage dependence. This sensitive system demonstrated that AqpZ is permeated by water but not charged ions and should permit direct analyses of putative electrogenic properties of other aquaporins.

  15. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach.

    PubMed

    Bouguecha, Salah T; Boubakri, Ali; Aly, Samir E; Al-Beirutty, Mohammad H; Hamdi, Mohamed M

    2016-01-01

    Membrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux. The dependency of permeate flux on various operating parameters such as feed temperature (46.6-63.4°C), permeate temperature (6.6-23.4°C), feed flow rate (199-451L/h) and permeate flow rate (199-451L/h) was studied by response surface methodology based on central composite design approach. The analysis of variance (ANOVA) confirmed that all independent variables had significant influence on the model (where P-value <0.05). The high coefficient of determination (R(2) = 0.9644 and R(adj)(2) = 0.9261) obtained by ANOVA demonstrated good correlation between experimental and predicted values of the response. The optimized conditions, determined using desirability function, were T(f) = 63.4°C, Tp = 6.6°C, Q(f) = 451L/h and Q(p) = 451L/h. Under these conditions, the maximum permeate flux of 6.122 kg/m(2).h was achieved, which was close to the predicted value of 6.398 kg/m(2).h.

  16. Importance of the Direct Contact of Amorphous Solid Particles with the Surface of Monolayers for the Transepithelial Permeation of Curcumin.

    PubMed

    Kimura, Shunsuke; Kasatani, Sachiha; Tanaka, Megumi; Araki, Kaeko; Enomura, Masakazu; Moriyama, Kei; Inoue, Daisuke; Furubayashi, Tomoyuki; Tanaka, Akiko; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-01

    The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin.

  17. Functional characterisation and permeation studies of lyophilised thiolated chitosan xerogels for buccal delivery of insulin.

    PubMed

    Boateng, Joshua S; Mitchell, John C; Pawar, Harshavardhan; Ayensu, Isaac

    2014-01-01

    Stable and mucoadhesive, lyophilised, thiolated chitosan xerogels, loaded with insulin for buccal mucosa deliv- ery, in place of the currently used parenteral route have been developed. The xerogels were backed with impervious ethyl- cellulose laminate to ensure unidirectional release and also loaded with enzyme inhibitor to enhance insulin permeability across the buccal mucosa. Characterisation of xerogels using(1) HNMR confirmed the degree of deacetylation of the syn- thesised thiolated chitosan. The amount of thiol groups immobilised on the modified chitosan was quantified by Ellman's reaction and molecular weight monitored by gel permeation chromatography. The stability of the secondary structure of insulin was examined by attenuated total reflectance Fourier transform infra-red spectroscopy and circular dichroism. In vitro and ex vivo permeation studies were undertaken by using EpiOral ™ and sheep buccal membrane respectively. Insu- lin released from thiolated chitosan xerogels, loaded with aprotinin (enzyme inhibitor and permeation enhancer) showed a 1.7-fold increase in permeation through EpiOral ™ buccal tissue construct compared to the pure drug. However, permea- tion was decreased for xerogels containing the enzyme inhibitor glutathione. Further, aprotinin containing xerogels en- hanced insulin permeation through sheep buccal membrane and demonstrated good linear correlation with the permeation data from the EpiOral ™ study. The results show the potential application of lyoph ilised thiolated chitosan xerogels con- taining aprotinin with improved mucoadhesion, penetration enhancing and enzyme inhibition characteristics for buccal mucosa delivery of macromolecules such as insulin.

  18. Changes in the physical properties of the dynamic layer and its correlation with permeate quality in a self-forming dynamic membrane bioreactor.

    PubMed

    Guan, Dao; Dai, Ji; Watanabe, Yoshimasa; Chen, Guanghao

    2018-09-01

    The self-forming dynamic membrane bioreactor (SFDMBR) is a biological wastewater treatment technology based on the conventional membrane bioreactor (MBR) with membrane material modification to a large pore size (30-100 μm). This modification requires a dynamic layer formed by activated sludge to provide effective filtration function for high-quality permeate production. The properties of the dynamic layer are therefore important for permeate quality in SFDMBRs. The interaction between the structure of the dynamic layer and the performance of SFDMBRs is little known but understandably complex. To elucidate the interaction, a lab-scale SFDMBR system coupled with a nylon woven mesh as the supporting material was operated. After development of a mature dynamic layer, excellent solid-liquid separation was achieved, as evidenced by a low permeate turbidity of less than 2 NTU. The permeate turbidity stayed below this level for nearly 80 days. In the fouling phase, the dynamic layer was compressed with an increase in the trans-membrane pressure and the quality of the permeate kept deteriorating until the turbidity exceeded 10 NTU. The investigation revealed that the majority of permeate particles were dissociated from the dynamic layer on the back surface of the supporting material, which is caused by the compression, breakdown, and dissociation of the dynamic layer. This phenomenon was observed directly in experiment instead of model prediction or conjecture for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. SC lipid model membranes designed for studying impact of ceramide species on drug diffusion and permeation--part II: diffusion and permeation of model drugs.

    PubMed

    Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H

    2012-10-01

    The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Contribution of the Hair Follicular Pathway to Total Skin Permeation of Topically Applied and Exposed Chemicals

    PubMed Central

    Mohd, Fadli; Todo, Hiroaki; Yoshimoto, Masato; Yusuf, Eddy; Sugibayashi, Kenji

    2016-01-01

    Generally, the blood and skin concentration profiles and steady-state skin concentration of topically applied or exposed chemicals can be calculated from the in vitro skin permeation profile. However, these calculation methods are particularly applicable to chemicals for which the main pathway is via the stratum corneum. If the contribution of hair follicles to the total skin permeation of chemicals can be obtained in detail, their blood and skin concentrations can be more precisely predicted. In the present study, the contribution of the hair follicle pathway to the skin permeation of topically applied or exposed chemicals was calculated from the difference between their permeability coefficients through skin with and without hair follicle plugging, using an in vitro skin permeation experiment. The obtained results reveal that the contribution of the hair follicle pathway can be predicted by using the chemicals’ lipophilicity. For hydrophilic chemicals (logarithm of n-octanol/water partition coefficient (log Ko/w) < 0), a greater reduction of permeation due to hair follicle plugging was observed than for lipophilic chemicals (log Ko/w ≥ 0). In addition, the ratio of this reduction was decreased with an increase in log Ko/w. This consideration of the hair follicle pathway would be helpful to investigate the efficacy and safety of chemicals after topical application or exposure to them because skin permeation and disposition should vary among skins in different body sites due to differences in the density of hair follicles. PMID:27854289

  1. Contribution of the Hair Follicular Pathway to Total Skin Permeation of Topically Applied and Exposed Chemicals.

    PubMed

    Mohd, Fadli; Todo, Hiroaki; Yoshimoto, Masato; Yusuf, Eddy; Sugibayashi, Kenji

    2016-11-15

    Generally, the blood and skin concentration profiles and steady-state skin concentration of topically applied or exposed chemicals can be calculated from the in vitro skin permeation profile. However, these calculation methods are particularly applicable to chemicals for which the main pathway is via the stratum corneum. If the contribution of hair follicles to the total skin permeation of chemicals can be obtained in detail, their blood and skin concentrations can be more precisely predicted. In the present study, the contribution of the hair follicle pathway to the skin permeation of topically applied or exposed chemicals was calculated from the difference between their permeability coefficients through skin with and without hair follicle plugging, using an in vitro skin permeation experiment. The obtained results reveal that the contribution of the hair follicle pathway can be predicted by using the chemicals' lipophilicity. For hydrophilic chemicals (logarithm of n -octanol/water partition coefficient (log K o/w ) < 0), a greater reduction of permeation due to hair follicle plugging was observed than for lipophilic chemicals (log K o/w ≥ 0). In addition, the ratio of this reduction was decreased with an increase in log K o/w . This consideration of the hair follicle pathway would be helpful to investigate the efficacy and safety of chemicals after topical application or exposure to them because skin permeation and disposition should vary among skins in different body sites due to differences in the density of hair follicles.

  2. Application of ceramic membranes for microalgal biomass accumulation and recovery of the permeate to be reused in algae cultivation.

    PubMed

    Nędzarek, Arkadiusz; Drost, Arkadiusz; Harasimiuk, Filip; Tórz, Agnieszka; Bonisławska, Małgorzata

    2015-12-01

    The present study was carried out to investigate the possibility of using ceramic membranes for microalgal biomass densification and to evaluate the qualitative composition of the permeate as a source of nitrogen and phosphorus for microalgae cultivated in a closed system. The studies were conducted on the microalga Monoraphidium contortum. The microfiltration process was carried out on a quarter-technical scale using ceramic membranes with 1.4 μm, 300 and 150 kDa cut-offs. Permeate flux and respective hydraulic resistances were calculated. Dissolved inorganic nitrogen and phosphorus fractions were measured in the feed and the permeate. It was noted that the permeate flux in the MF process was decreasing while the values of reversible and irreversible resistances were increasing as the cut-off of the studied membranes was diminishing. An analysis of the hydraulic series resistance showed that using a 300 kDa membrane would be the most beneficial, as it was characterized by a comparatively high permeate flux (Jv=1.68 10(-2)m(3)/m(2)s), a comparatively low susceptibility to irreversible fouling (1.72·10(9) 1/m) and a high biomass retention coefficient (91%). The obtained permeate was characterized by high concentrations of dissolved nitrogen and phosphorus forms, which indicated that it could be reused in the process of microalgal biomass production. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Photoswitchable gas permeation membranes based on azobenzene-doped liquid crystals II. Permeation-switching characterization under variable volume and variable pressure conditions

    NASA Astrophysics Data System (ADS)

    Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.

    2010-08-01

    Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.

  4. Determining ultra-low moisture permeation measurement for sealants on OLED encapsulation

    NASA Astrophysics Data System (ADS)

    Choi, Byung Il; Woo, Sang Bong; Kim, Jong Chul; Kim, Seung Hun; Seo, Sang Joon

    2012-12-01

    As the next-generation flexible display elements are very vulnerable to moisture, securing proper encapsulation is a decisive factor in enabling a long working life. Therefore, together with the recent development of plastic barrier films with very low permeabilities, interest in the permeabilities of sealants used for perimetric sealing has been increasing. In this study, equipment with a resolution of approximately ˜10-7 g·day-1 to measure moisture permeability in perimetric sealing was established, and the permeabilities of different sealants were measured. This equipment could have applications not only in the display industry but also in other sectors requiring encapsulation technology, such as the semiconductor and solar cell industries.

  5. Dye Foils With Increased Durability For Passive Q-Switching In A 1064 Nm Laser.

    NASA Astrophysics Data System (ADS)

    Mierczyk, Z.; Kwasny, M.; Czeszko, J.

    1987-10-01

    The results of spectral (IR, UV-VIS, H NMR) , gel permeation chromatography and differential thermal analysis investigations of structures of dye foils consisting of bis-(4-dimethyl-amino-dithio-benzil)-nickel dye suspended in polymethylmethacrylate matrix, to be used for passive Q-switching in a 1064 nm laser, are reported. Results of experimental measurements and of numerical calculations of thermal and generating properties, and of the endurance of passive foil type Q-switches in the resona-tor of YAG:Nd3+ laser are also presented. Optimization of polymerization conditions has enabled the production of dye foils with high thermal and photochemical resistance, which give stable operation of a giant pulsed laser.

  6. Flooded Cell Permeation Testing of Elastomers

    DTIC Science & Technology

    1994-03-01

    cured hydrin (EC) elastomer 3. oxide cured neoprene (CR) 4. sulphur cured styrene-butadiene rubber (SBR) 5. sulphur cured nitrile rubber ( NBR ) 6. cured...Road Adelphi, MD 20783-1197 11. SUPPLEMENTARY NOTES Presented at the meeting of the American Chemical Society, Rubber Division, Orlando, Florida, 26 Oct...6 2. Permeation rate-time curve for DMSO through natural rubber ............................... 6 3. Permeation rate-time curve for DMSO through

  7. Apparatus to measure permeation of a gas through a membrane

    DOEpatents

    Nunes, Geoffrey

    2013-03-05

    The present invention relates to an apparatus to measure permeation of a gas through a membrane. The membrane is mounted on a flange with two sealing areas. The region between the sealing areas defines an annular space. The annular space is swept with a gas in order to carry away any of the permeating gas which may leak through the sealing areas.

  8. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    PubMed

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Effect of phosphatidylserine on the basal and GABA-activated Cl- permeation across single nerve membranes from rabbit Deiters' neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapallino, M.V.; Cupello, A.; Mainardi, P.

    1990-06-01

    The permeation of labeled Cl- ions across single plasma membranes from Deiters' neurons has been studied in the presence of various concentrations of phosphatidylserine (PS) on their extracellular side. PS reduces significantly basal Cl- permeation only at 10(-5) M on the membrane exterior. No effect was found at other concentrations. GABA activable 36Cl- permeation is heavily reduced and almost abolished at 10(-11) - 10(-5) M phosphatidylserine. This exogenous phosphatidylserine effect is difficult to interpret in relation to the function of the endogenous phospholipid. However, it may be involved in the epileptogenic effect in vivo of exogenous phosphatidylserine administration to rats.

  10. Deuterium permeation through EPDM rubber compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapp, P.E.

    1988-01-01

    The permeation of deuterium through a specially formulated compound of ethylene propylene diene rubber was measured in the temperature range of 26/degree/C to 120/degree/C. The results were similar to permeation through two commercial compounds of this elastomer. Permeation was reduced after gamma irradiation (in the presence of hydrogen gas to simulate a tritium exposure). However the reduction was smaller than that experienced by the two commercial compounds. Radiation damage is apparently less severe in the special compound. It is possible that mechanical properties such as compression set may be influenced less by ionizing radiation in this compound as compared withmore » the commercial compounds. 4 figs., 1 tab.« less

  11. Effect of vehicles on topical application of aloe vera and arnica montana components.

    PubMed

    Bergamante, Valentina; Ceschel, Gian Carlo; Marazzita, Sergio; Ronchi, Celestino; Fini, Adamo

    2007-10-01

    In this study two types of gels and microemulsions are investigated for their ability to dissolve, release, and induce the permeation of helenalin, a flavonoid responsible for the anti-inflammatory activity of arnica montana extract, and aloin, an anthrone-C-glucosyls with antibacterial activity present in aloe vera extract. The release of these agents from each vehicle was followed by HPLC, and transcutaneous permeation was examined using a modified Franz cell and a porcine skin membrane. The study showed that a microemulsion can be a good vehicle to increase the permeation of helenalin, while the gel formulation, containing Sepigel 305, proved able to reduce the release and permeation of aloin, with a consequent activity limited to the surface of application, without any permeation. This is in accordance with the necessity to avoid this process, since human skin fibroblasts can metabolize absorbed aloin into a structurally related compound that increases the sensitivity of skin to ultraviolet light.

  12. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications

    NASA Astrophysics Data System (ADS)

    Forcey, K. S.; Ross, D. K.; Simpson, J. C. B.; Evans, D. S.

    1988-12-01

    Equations are given which describe the permeation rate, diffusivity and solubility of hydrogen over the range 250-600°C at pressures up to 10 5Pa for the 316L stainless and modified 1.4914 martensitic candidate steels proposed for the construction of the Next European Torus (NET). For heat-treated 316L steel, the permeation rates measured agreed well with previous work and did not vary significantly from specimen to specimen or from batch to batch. Measurements of the permeation rate of hydrogen and deuterium through the modified 1.4914 steel, believed to be the first made, show that the martensitic steel is significantly more permeable than the austenitic steel, by an order of magnitude at 250°C and a factor of five at 600°C. This difference could make it necessary to use permeation barriers on critical components made from the martensitic steel in order to reduce the tritium permeation rate to acceptable levels.

  13. Permeation of deuterium implanted into V-15Cr-5Ti

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Longhurst, G. R.; Struttmann, D. A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3+ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4 × 10 -8 exp( -0.11 eV/ kT) (m 2/s), over the temperature range 723 K to 823 K.

  14. Catalytic reforming of methane to syngas in an oxygen-permeative membrane reactor

    NASA Astrophysics Data System (ADS)

    Urano, Takeshi; Kubo, Keiko; Saito, Tomoyuki; Hitomi, Atsushi

    2011-05-01

    For fuel cell applications, partial oxidative reforming of methane to syngas, hydrogen and carbon monoxide, was performed via a dense oxygen-permeative ceramic membrane composed by both ionic and electronic conductive materials. The modification of Ni-based catalyst by noble metals was investigated to increase oxygen permeation flux and decrease carbon deposition during reforming reaction. The role of each component in catalyst was also discussed.

  15. Evaluation of β-blocker gel and effect of dosing volume for topical delivery.

    PubMed

    Zhang, Qian; Chantasart, Doungdaw; Li, S Kevin

    2015-05-01

    Although topical administration of β-blockers is desired because of the improved therapeutic efficacy and reduced systemic adverse effects compared with systemic administration in the treatment of infantile hemangioma, the permeation of β-blockers across skin under finite dose conditions has not been systematically studied and an effective topical β-blocker formulation for skin application is not available. The present study evaluated the permeation of β-blockers propranolol, betaxolol, and timolol across human epidermal membrane (HEM) from a topical gel in Franz diffusion cells in vitro under various dosing conditions. The effects of occlusion and dosing volume on percutaneous absorption of β-blockers from the gel were studied. The permeation data were compared with those of finite dose diffusion theory. The results showed that skin permeation of β-blockers generally could be enhanced two to three times by skin occlusion. The cumulative amounts of β-blockers permeated across HEM increased with increasing dosing volume. An adequate fit was obtained between the theoretical curve and experimental permeation data, indicating that the experimental results of the gel are consistent with finite dose diffusion theory. In conclusion, the findings suggest the feasibility of using topical gels of β-blockers for infantile hemangioma treatment and topical application with skin occlusion is preferred. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. In Vitro Evaluation of Sunscreen Safety: Effects of the Vehicle and Repeated Applications on Skin Permeation from Topical Formulations

    PubMed Central

    Parenti, Carmela

    2018-01-01

    The evaluation of UV-filter in vitro percutaneous absorption allows the estimation of the systemic exposure dose (SED) and the margin of safety (MoS) of sunscreen products. As both the vehicle and pattern of application may affect sunscreen safety and efficacy, we evaluated in vitro release and skin permeation of two widely used UV-filters, octylmethoxycinnamate (OMC) and butylmethoxydibenzoylmethane (BMBM) from topical formulations with different features (oil in water (O/W) emulsions with different viscosity, water in oil (W/O) emulsion, oils with different lipophilicity). To mimic in-use conditions, we carried out experiments repeating sunscreen application on the skin surface for three consecutive days. BMBM release from all these vehicles was very low, thus leading to poor skin permeation. The vehicle composition significantly affected OMC release and skin permeation, and slight increases of OMC permeation were observed after repeated applications. From skin permeation data, SED and MoS values of BMBM and OMC were calculated for all the investigated formulations after a single application and repeated applications. While MoS values of BMBM were always well beyond the accepted safety limit, the safety of sunscreen formulations containing OMC may depend on the vehicle composition and the application pattern. PMID:29495452

  17. Ex vivo study of transdermal permeation of four diclofenac salts from different vehicles.

    PubMed

    Minghetti, Paola; Cilurzo, Francesco; Casiraghi, Antonella; Montanari, Luisa; Fini, Adamo

    2007-04-01

    The ex vivo permeation of diclofenac was studied using four different salts (sodium, potassium, diethylamine, and epolamine) dissolved in four different solvents (water, propylene glycol (PG), Transcutol, and oleic acid (OA)) as donor phases through a human skin membrane. The four salts show different solubility values and different behavior in the four solvents, which are also permeation enhancers and this fact further is connected to the permeation results. The same order of magnitude of fluxes through the membrane as those previously reported for acidic diclofenac released from buffer solutions of pH >7 were found, taking into account differences originated by different membranes and other parameters tested in the experiments. Saturation concentration for the four salts in different solvents, necessary to calculate permeation coefficients, was critically evaluated; a short discussion made it possible to explain that corrections in the solubility values must be considered, related to the complex behavior in solution of these salts. Statistical processing of the experimental data suggests that differences between the four salts in promoting absorption of the drug is unproven; while differences are evident between the solvents, water is the most effective enhancing vehicle. Aqueous formulations containing diclofenac salt with an organic base appear to be the best combination to promote permeation in topical applications. (c) 2007 Wiley-Liss, Inc.

  18. A Feasibility Study of Pressure Retarded Osmosis Power Generation System based on Measuring Permeation Volume using Reverse Osmosis Membrane

    NASA Astrophysics Data System (ADS)

    Enomoto, Hiroshi; Fujitsuka, Masashi; Hasegawa, Tomoyasu; Kuwada, Masatoshi; Tanioka, Akihiko; Minagawa, Mie

    Pressure Retarded Osmosis (PRO) power generation system is a hydroelectric power system which utilize permeation flow through a semi-permeable membrane. Permeation flow is generated by potential energy of salinity difference between sea water and fresh water. As membrane cost is expensive, permeation performance of membrane must be higher to realize PRO system. We have investigated Reverse Osmosis (RO) membrane products as semi-permeable membrane and measured permeation volume of a few products. Generation power by membrane area calculated from permeation volume is about 0.62W/m2. But by our improvements (more salt water volume, spacer of fresh water channel with a function of discharging concentrated salinity, extra low pressure type of membrane, washing support layer of membrane when generation power reduces to half), generation power may be 2.43W/m2. Then power system cost is about 4.1 million yen/kW. In addition, if support layer of membrane makes thinner and PRO system is applied to the equipment that pumping power on another purpose is avairable (wastewater treatment plant located at the seaside, thermal and nuclear power plant or sea water desalination plant), generation power may be more. By these improvements PRO system may be able to realize at the cost close to photovoltaic power system.

  19. Impact of Humidity on In Vitro Human Skin Permeation Experiments for Predicting In Vivo Permeability.

    PubMed

    Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi

    2015-12-01

    In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Use of an in vitro human skin permeation assay to assess bioequivalence of two topical cream formulations containing butenafine hydrochloride (1%, w/w).

    PubMed

    Mitra, Amitava; Kim, Nanhye; Spark, Darren; Toner, Frank; Craig, Susan; Roper, Clive; Meyer, Thomas A

    2016-12-01

    The primary objective of this work was to investigate, using an in vitro human skin permeation study, whether changes in the excipients of butenafine hydrochloride cream would have any effect on bioperformance of the formulation. Such in vitro data would be a surrogate for any requirement of a bioequivalence (BE) study to demonstrate formulation similarity. A LC-MS/MS method for quantitation of butenafine in various matrices was developed and validated. A pilot study was performed to validate the in vitro skin permeation methodology using three cream formulations containing butenafine hydrochloride at concentrations of 0.5, 1.0 and 1.5% (w/w). Finally, a definitive in vitro human skin permeation study was conducted, comparing the extent of butenafine hydrochloride permeation from the new formulation to that from the current formulation. The results of the study comparing the two formulations showed that there was no statistically significant difference in the extent of butenafine permeation into human skin. In conclusion, these in vitro data demonstrated that the formulation change is likely to have no significant impact on the bioperformance of 1% (w/w) butenafine hydrochloride cream. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    PubMed

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  2. Towards a unified model of passive drug permeation I: origins of the unstirred water layer with applications to ionic permeation.

    PubMed

    Ghosh, Avijit; Scott, Dennis O; Maurer, Tristan S

    2014-02-14

    In this work, we provide a unified theoretical framework describing how drug molecules can permeate across membranes in neutral and ionized forms for unstirred in vitro systems. The analysis provides a self-consistent basis for the origin of the unstirred water layer (UWL) within the Nernst-Planck framework in the fully unstirred limit and further provides an accounting mechanism based simply on the bulk aqueous solvent diffusion constant of the drug molecule. Our framework makes no new assumptions about the underlying physics of molecular permeation. We hold simply that Nernst-Planck is a reasonable approximation at low concentrations and all physical systems must conserve mass. The applicability of the derived framework has been examined both with respect to the effect of stirring and externally applied voltages to measured permeability. The analysis contains data for 9 compounds extracted from the literature representing a range of permeabilities and aqueous diffusion coefficients. Applicability with respect to ionized permeation is examined using literature data for the permanently charged cation, crystal violet, providing a basis for the underlying mechanism for ionized drug permeation for this molecule as being due to mobile counter-current flow. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Evaluation of skin permeation of β-blockers for topical drug delivery.

    PubMed

    Chantasart, Doungdaw; Hao, Jinsong; Li, S Kevin

    2013-03-01

    β-Blockers have recently become the main form of treatment of infantile hemangiomas. Due to the potential systemic adverse effects of β-blockers, topical skin treatment of the drugs is preferred. However, the effect and mechanism of dosage form pH upon skin permeation of these weak bases is not well understood. To develop an effective topical skin delivery system for the β-blockers, the present study evaluated skin permeation of β-blockers propranolol, betaxolol, timolol, and atenolol. Experiments were performed in side-by-side diffusion cells with human epidermal membrane (HEM) in vitro to determine the effect of donor solution pH upon the permeation of the β-blockers across HEM. The apparent permeability coefficients of HEM for the β-blockers increased with their lipophilicity, suggesting the HEM lipoidal pathway as the main permeation mechanism of the β-blockers. The pH in the donor solution was a major factor influencing HEM permeation for the β-blockers with a 2- to 4-fold increase in the permeability coefficient per pH unit increase. This permeability versus pH relationship was found to deviate from theoretical predictions, possibly due to the effective stratum corneum pH being different from the pH in the donor solution. The present results suggest the possibility of topical treatment of hemangioma using β-blockers.

  4. Impacts of chemical enhancers on skin permeation and deposition of terbinafine.

    PubMed

    Erdal, Meryem Sedef; Peköz, Ayca Yıldız; Aksu, Buket; Araman, Ahmet

    2014-08-01

    The addition of chemical enhancers into formulations is the most commonly employed approach to overcome the skin barrier. The objective of this work was to evaluate the effect of vehicle and chemical enhancers on the skin permeation and accumulation of terbinafine, an allylamine antifungal drug. Terbinafine (1% w/w) was formulated as a Carbopol 934 P gel formulation in presence and absence of three chemical enhancers, nerolidol, dl-limonene and urea. Terbinafine distribution and deposition in stratum corneum (SC) and skin following 8-h ex vivo permeation study was determined using a sequential tape stripping procedure. The conformational order of SC lipids was investigated by ATR-FTIR spectroscopy. Nerolidol containing gel formulation produced significantly higher enhancement in terbinafine permeation through skin and its skin accumulation was increased. ATR-FTIR results showed enhancer induced lipid bilayer disruption in SC. Urea resulted in enhanced permeation of terbinafine across the skin and a balanced distribution to the SC was achieved. But, dl-limonene could not minimize the accumulation of terbinafine in the upper SC. Nerolidol dramatically improved the skin permeation and deposition of terbinafine in the skin that might help to optimize targeting of the drug to the epidermal sites as required for both of superficial and deep cutaneous fungal infections.

  5. Permeation of sumatriptan succinate across human skin using multiple types of self-dissolving microneedle arrays fabricated from sodium hyaluronate.

    PubMed

    Wu, Dan; Katsumi, Hidemasa; Quan, Ying-Shu; Kamiyama, Fumio; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2016-09-01

    Available formulations of sumatriptan succinate (SS) have low bioavailability or are associated with site reactions. We developed various types of self-dissolving microneedle arrays (MNs) fabricated from sodium hyaluronate as a new delivery system for SS and evaluated their skin permeation and irritation in terms of clinical application. In vitro permeation studies with human skin, physicochemical properties (needle length, thickness and density), and penetration enhancers (glycerin, sodium dodecyl sulfate and lauric acid diethanolamide) were investigated. SS-loaded high-density MNs of 800 µm in length were the optimal formulation and met clinical therapeutic requirements. Penetration enhancers did not significantly affect permeation of SS from MNs. Optical coherence tomography images demonstrated that SS-loaded high-density MNs (800 µm) uniformly created drug permeation pathways for the delivery of SS into the skin. SS-loaded high-density MNs induced moderate primary skin irritations in rats, but the skin recovered within 72 h of removal of the MNs. These findings suggest that high-density MNs of 800 µm in length are an effective and promising formulation for transdermal delivery of SS. To our knowledge, this is the first report of SS permeation across human skin using self-dissolving MNs.

  6. Solubility and transdermal permeation properties of a dehydroepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles.

    PubMed

    Ceschel, GianCarlo; Bergamante, Valentina; Maffei, Paola; Lombardi Borgia, Simone; Calabrese, Valeria; Biserni, Stefano; Ronchi, Celestino

    2005-01-01

    The permeation ability of a compound is due principally to its concentration in the vehicle and to its aptitude to cross the stratum corneum of the skin. In this work ex-vivo permeation studies on newly developed formulations containing dehydroepiandrosterone (DHEA) were carried out to investigate vehicles that increase drug permeation through the skin. To enhance the solubility of DHEA, its complex form with alpha-cyclodextrin was used. In addition, the two forms (pure drug and complex form) were introduced in hydrophilic (water), lipophilic (paraffin oil), and microemulsion vehicles to evaluate the synergic effect of cyclodextrins and microemulsion vehicles on solubility and permeation. From the results, DHEA solubility is notably conditioned by the type of the vehicle used: the highest solubilities (both for pure and complex drug forms) were obtained with microemulsion, followed by paraffin oil and water. Moreover, in all the studied vehicles, the c-DHEA was more soluble than DHEA. Permeation profile fluxes showed very interesting differences. That reflect the varying drug forms (pure drug and complex form), vehicles used, and drug concentrations in the vehicles. The major flux was obtained in complex of DHEA with alpha-cyclodextrins in the microemulsion vehicle. Therefore, this type of vehicle and drug form would be very useful in the development of a topical formulation containing DHEA.

  7. High Permeation Rates in Liposome Systems Explain Rapid Glyphosate Biodegradation Associated with Strong Isotope Fractionation.

    PubMed

    Ehrl, Benno N; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin

    2018-06-19

    Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) liposomes, the pH-dependent apparent membrane permeation coefficients ( P app ) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from P app (pH 7.0) = 3.7 (±0.3) × 10 -7 m·s -1 to P app (pH 4.1) = 4.2 (±0.1) × 10 -6 m·s -1 . The magnitude of this surprisingly rapid membrane permeation depended on glyphosate speciation and was, at circumneutral pH, in the range of polar, noncharged molecules. These findings point to passive membrane permeation as a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model system were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, 2 orders of magnitude higher than degradation rates of glyphosate. In addition, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect, AKIE carbon , of 1.014 ± 0.003. This value lies in the range typical of non-masked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was not subject to mass transfer limitations and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.

  8. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field.

    PubMed

    Shimizu, Kenta; Nakamura, Hideya; Watano, Satoru

    2016-06-09

    Nanoparticles (NPs) have been attracting much attention for biomedical and pharmaceutical applications. In most of the applications, NPs are required to translocate across the cell membrane and to reach the cell cytosol. Experimental studies have reported that by applying an electric field NPs can directly permeate across the cell membrane without the confinement of NPs by endocytic vesicles. However, damage to the cell can often be a concern. Understanding of the mechanism underlying the direct permeation of NPs under an external electric field can greatly contribute to the realization of a technology for the direct delivery of NPs. Here we investigated the permeation of a cationic gold NP across a phospholipid bilayer under an external electric field using a coarse-grained molecular dynamics simulation. When an external electric field that is equal to the membrane breakdown intensity was applied, a typical NP delivery by electroporation was shown: the cationic gold NP directly permeated across a lipid bilayer without membrane wrapping of the NP, while a persistent transmembrane pore was formed. However, when a specific range of the electric field that is lower than the membrane breakdown intensity was applied, a unique permeation pathway was exhibited: the generated transmembrane pore immediately resealed after the direct permeation of NP. Furthermore, we found that the affinity of the NP for the membrane surface is a key for the self-resealing of the pore. Our finding suggests that by applying an electric field in a suitable range NPs can be directly delivered into the cell with less cellular damage.

  9. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.

    PubMed

    Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L

    2012-03-01

    The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.

  10. Transdermal Delivery of Cimetidine Across Microneedle-Treated Skin: Effect of Extent of Drug Ionization on the Permeation.

    PubMed

    Song, Yang; Herwadkar, Anushree; Patel, Meera G; Banga, Ajay K

    2017-05-01

    The objective of this work was to optimize a gel formulation of cimetidine to maximize its transdermal delivery across microporated skin. Specifically, the effect of extent of ionization in formulation on permeation of cimetidine across microporated skin was studied. Cimetidine was formulated into a gel using propylene glycol, water, and carbopol 980NF. Three strengths of gels (0.1% w/w, 0.5% w/w, and 0.8% w/w) were made and Tris base was used to adjust the pH of formulations to pH 5, pH 6.8, and pH 7.5. In vitro permeation testing was performed on vertical Franz cells with dermatomed porcine ear skin. Permeation studies suggested that pH 5 gels showed highest permeation through microchannels. This trend was more prominent with an increase in drug loading. The total amount of cimetidine delivered from 0.8% w/w gel at pH 5 at 24 h was 28.20 ± 4.63 μg, which was significantly higher than that from pH 6.8 (16.89 ± 3.56 μg) and pH 7.5 (12.03 ± 1.66 μg) gels. Cimetidine permeation across microporated skin was found to be pH dependent, with lower pH/highest ionization resulting in greatest permeation. The effect of ionization contributing to faster release was more pronounced when drug concentration was increased. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Analysis of Nanoporosity in Moisture Permeation Barrier Layers by Electrochemical Impedance Spectroscopy.

    PubMed

    Perrotta, Alberto; García, Santiago J; Michels, Jasper J; Andringa, Anne-Marije; Creatore, Mariadriana

    2015-07-29

    Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.

  12. Deuterium permeation behaviors in tungsten implanted with nitrogen

    NASA Astrophysics Data System (ADS)

    Liang, Chuan-hui; Wang, Dongping; Jin, Wei; Lou, Yuanfu; Wang, Wei; Ye, Xiaoqiu; Chen, Chang-an; Liu, Kezhao; Xu, Haiyan; Wang, Xiaoying; Kleyn, Aart W.

    2018-07-01

    Surface modification of tungsten due to the cooling species nitrogen seeded in the divertor region, i.e., by nitrogen ion implantation or re-deposition, is considered to affect the permeation behavior of H isotopes. This work focuses on the effect of nitrogen ion implantation into tungsten (W-N) on the deuterium gas-driven permeation behavior. For comparison, both permeation in tungsten implanted with W ion (W-W) and without implantation (pristine W) are studied. These three samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photo-electron spectroscopy (XPS). The SEM results revealed that the W-W sample has various voids on the surface, and the W-N sample has a rough surface with pretty fine microstructures. These are different from the pristine W sample with a smooth and compact surface. The XRD patterns show the disappearance of crystallinity on both W-W and W-N sample surfaces. It indicates that the ion implantation process results in an almost complete conversion from crystalline to amorphous in the sample surfaces. The sputter-depth profiling XPS spectra show that the implanted nitrogen prefers to form a 140 nm thick tungsten nitride layer. In permeation experiments, it was found that the D permeability is temperature dependent. Interestingly, the W-N sample presented a lower D permeability than the W-W sample, but higher than the pristine W sample. Such behavior implies that tungsten nitride acts as a permeation barrier, while defects created by ions implantation can promote permeability. The possible permeation mechanism correlated with sample surface composition and microstructure is consequently discussed in this work.

  13. Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel.

    PubMed

    Nayak, Atul; Das, Diganta B; Vladisavljević, Goran T

    2014-05-01

    Lidocaine hydrochloride (LidH) was formulated in sodium carboxymethyl cellulose/ gelatine (NaCMC/GEL) hydrogel and a 'poke and patch' microneedle delivery method was used to enhance permeation flux of LidH. The microparticles were formed by electrostatic interactions between NaCMC and GEL macromolecules within a water/oil emulsion in paraffin oil and the covalent crosslinking was by glutaraldehyde. The GEL to NaCMC mass ratio was varied between 1.6 and 2.7. The LidH encapsulation yield was 1.2 to 7% w/w. LidH NaCMC/GEL was assessed for encapsulation efficiency, zeta potential, mean particle size and morphology. Subsequent in vitro skin permeation studies were performed via passive diffusion and microneedle assisted permeation of LidH NaCMC/GEL to determine the maximum permeation rate through full thickness skin. LidH 2.4% w/w NaCMC/GEL 1:1.6 and 1:2.3 respectively, possessed optimum zeta potential. LidH 2.4% w/w NaCMC/GEL 1:2.3 and 1:2.7 demonstrate higher pseudoplastic behaviour. Encapsulation efficiency (14.9-17.2%) was similar for LidH 2.4% w/w NaCMC/GEL 1:1.6-1:2.3. Microneedle assisted permeation flux was optimum for LidH 2.4% w/w NaCMC/GEL 1:2.3 at 6.1 μg/ml/h. LidH 2.4% w/w LidH NaCMC/GEL 1:2.3 crossed the minimum therapeutic drug threshold with microneedle skin permeation in less than 70 min.

  14. Permeation of 70% isopropyl alcohol through surgical gloves: comparison of the standard methods ASTM F739 and EN 374.

    PubMed

    Mäkelä, Erja A; Vainiotalo, Sinikka; Peltonen, Kimmo

    2003-06-01

    Standard test methods ASTM F739 and EN 374 were compared by assessing the permeation of 70% isopropyl alcohol (2-propanol) through seven brands of surgical gloves. The two standards differ in the flow rates of the collection medium and in the chemical permeation rate at which the breakthrough time (BTT) is detected, the EN detection level being 10 times higher than the permeation rate used by ASTM. In a departure from the EN standard method, a 4 h testing time was used instead of 8 h. All of the tested gloves were from the same manufacturer and were made from either natural rubber (NR) (six brands) or chloroprene rubber (CR) (one brand). Two of the NR glove brands were double layered. For the thin NR gloves (0.22, 0.28 and 0.27 mm) the permeation rates were higher throughout the tests with a flow rate of 474 ml/min (EN) of the collection medium (nitrogen) compared with the permeation rates obtained with a flow rate of 52 ml/min (ASTM). These resulted in BTTs of 4.6, 6.5 and 7.6 min (EN) and 4.8, 6.5 and 9.1 min (ASTM), respectively. No statistical difference could be observed between the BTT values obtained with the two standard methods for any of the thin gloves. Thus, although the ASTM standard has a lower criterion for the detection of permeation, it does not necessarily produce shorter BTTs. For the better barriers the methods yielded more equivalent permeation rate curves and thus the EN BTTs were longer than the ASTM BTTs: the EN results were 21, 80, 122 and >240 min compared with the ASTM results of 12, 32, 38 and 103 min for glove thicknesses of 0.37 (NR), 0.22 + 0.22 (double layered NR), 0.31 + 0.29 (double layered NR) and 0.19 mm (CR), respectively.

  15. Impact of Different Elastomer Formulations on Moisture Permeation through Stoppers Used for Lyophilized Products Stored under Humid Conditions.

    PubMed

    Sasaki, Hitoshi; Kikuchi, Jun; Maeda, Terutoshi; Kuboniwa, Hitoshi

    2010-01-01

    The purpose of this study was to evaluate the effect of moisture permeability of different elastomer formulation stoppers, which had different moisture absorption abilities, on the increase of moisture content inside lyophilized vials during long-term storage under humid conditions. Two different elastomer formulation stoppers (high-moisture and low-moisture uptake stoppers) were compared. The increased amount of moisture content inside lyophilized vials fitted with high-moisture stoppers was higher than those fitted with low-moisture stoppers during the early stage of storage. However, this trend was reversed during the later stage of storage. Our data show that the moisture increase inside the lyophilized vials at the early stage was caused by moisture transfer from the stoppers, whereas the later moisture increase was caused by external moisture permeation through the stoppers. Results indicate that the difference in the moisture uptake profile inside the lyophilized vials at each period of storage was caused by the moisture absorption ability and moisture permeation ability of the two elastomer formulation stoppers. In terms of long-term storage stability under humid conditions, our data indicate that external moisture permeating through the stopper into the lyophilized vial during the late stage was the more important factor. In addition, the increase in moisture content at the early stage was controlled by stopper drying time. Furthermore, stopper drying time did not have an effect on moisture permeation at the late stage. Moisture permeation during the storage period appears to be dependent on the different elastomer formulations of the stoppers. The moisture permeation of different elastomer stoppers was an important factor in terms of the increased moisture content inside the lyophilized vials during the late stage of long-term storage under humid conditions. For lyophilized products stored at room temperature, the moisture permeation ability of the stopper is one of the most important factors for long-term storage stability.

  16. The rate of percutaneous permeation of xylene, measured using the "perfused pig ear" model, is dependent on the effective protein concentration in the perfusing medium.

    PubMed

    de Lange, J; van Eck, P; Bruijnzeel, P L; Elliott, G R

    1994-08-01

    In order to study the dermal permeation of compounds through the skin, an in vitro model was developed which utilized pig ears perfused with autologous pig blood (de Lange, J., van Eck, P., Elliott, G. R., de Kort, W. L. A. M., and Wolthuis, O. L. (1992). J. Pharmacol. Toxicol. Methods 27, 71-77). In the present article we investigated to what extent the rate of permeation of xylene through pig ear skin is dependent on the perfusion medium used. Pig ears were exposed to xylene (10 cm2 area) for a 4-hr period (30 degrees C, relative humidity of 40-60%) and the perfusate was analyzed for xylene using gas chromatography. The rates of permeation of xylene for whole blood, blood depleted of white blood cells, and a buffer containing 4.5% albumin were similar (+/- 300 ng/min/cm2). The rate of penetration was fivefold higher when pig plasma was used and ninefold lower when albumin was excluded from the buffer. Using the buffer, we found that the rate of permeation of xylene was proportional to flow (constant protein concentration) and protein concentration (constant flow). Our data demonstrate that the measured permeation rate for xylene is, to a large degree, dependent on the effective protein concentration (mg/min) passing through the ear. Differences in this parameter could explain the variations in rates of permeation found using the different perfusion media. To avoid problems associated with the choice of receptor fluid for permeation experiments, we suggest that full blood remains the vehicle of choice, although the practical perfusion period is limited to about 6 hr. If longer perfusion periods are required, then it should be possible to reproduce results obtained with whole blood by choosing an appropriate buffer.

  17. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

    PubMed Central

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a “charged brush” which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms. PMID:25860993

  18. SHI induced nano track polymer filters and characterization

    NASA Astrophysics Data System (ADS)

    Vijay, Y. K.

    2009-07-01

    Swift heavy ion irradiation produces damage in polymers in the form of latent tracks. Latent tracks can be enlarged by etching it in a suitable etchant and thus nuclear track etch membrane can be formed for gas permeation / purification in particular for hydrogen where the molecular size is very small. By applying suitable and controlled etching conditions well defined tracks can be formed for specific applications of the membranes. After etching gas permeation method is used for characterizing the tracks. In the present work polycarbonate (PC) of various thickness were irradiated with energetic ion beam at Inter University Accelerator Centre (IUAC), New Delhi. Nuclear tracks were modified by etching the PC in 6N NaOH at 60 (±1) °C from both sides for different times to produce track etch membranes. At critical etch time the etched pits from both the sides meet a rapid increase in gas permeation was observed. Permeability of hydrogen and carbon dioxide has been measured in samples etched for different times. The latent tracks produced by SHI irradiation in the track etch membranes show enhancement of free volume of the polymer. Nano filters are separation devices for the mixture of gases, different ions in the solution and isotopes and isobars separations. The polymer thin films with controlled porosity finding it self as best choice. However, the permeability and selectivity of these polymer based membrane filters are very important at the nano scale separation. The Swift Heavy Ion (SHI) induced nuclear track etched polymeric films with controlled etching have been attempted and characterized as nano scale filters.

  19. Benzyl Benzoate-Loaded Microemulsion for Topical Applications: Enhanced Dermatokinetic Profile and Better Delivery Promises.

    PubMed

    Sharma, Gajanand; Dhankar, Geeta; Thakur, Kanika; Raza, Kaisar; Katare, O P

    2016-10-01

    Benzyl benzoate (BB) is one of the oldest drugs used for the treatment of scabies and is recommended as the "first-line intervention" for the cost-effective treatment of the disease. Though a promising candidate, its application is reported to be associated with irritation of the skin and eye, resulting in poor patient compliance. Hence, the present study aims to develop BB-loaded topical microemulsion for the safer and effective delivery of BB. Pseudo-ternary phase diagrams with BB as the oily phase itself, along with Tween 80 as surfactant, and mixture of phospholipid and ethanol as the co-surfactant along with aqueous solution as the external phase were constructed and various compositions were formulated. The optimized formulation was characterized for particle-size, zeta-potential, drug-content, globule-morphology pH, and refractive-index, whereas evaluated for skin permeation, retention, compliance, and dermatokinetics. The nanosized formulation offered threefold higher drug permeation vis-a-vis plain drug solution across LACA mice abdominal skin. The drug retention of the selected formulation was nearly twice of that from the marketed product, assuring depot formulation and sustained release. The skin histopathology revealed the non-irritant nature of the formulation, as no changes in the normal skin histology were observed. The dermatokinetic studies confirmed better permeation and enhanced skin bioavailability of BB to epidermis as well as dermis vis-à-vis the conventional product. The results indicate that the developed lipid-based microemulsion hydrogel can alleviate the concerns associated with BB and can provide a better and safer delivery option in substantial amounts to various skin layers.

  20. An ultra-high performance liquid chromatography method to determine the skin penetration of an octyl methoxycinnamate-loaded liquid crystalline system.

    PubMed

    Prado, A H; Borges, M C; Eloy, J O; Peccinini, R G; Chorilli, M

    2017-10-01

    Cutaneous penetration is a critical factor in the use of sunscreen, as the compounds should not reach systemic circulation in order to avoid the induction of toxicity. The evaluation of the skin penetration and permeation of the UVB filter octyl methoxycinnamate (OMC) is essential for the development of a successful sunscreen formulation. Liquid-crystalline systems are innovative and potential carriers of OMC, which possess several advantages, including controlled release and protection of the filter from degradation. In this study, a new and effective method was developed using ultra-high performance liquid chromatography (UPLC) with ultraviolet detection (UV) for the quantitative analysis of penetration of OMC-loaded liquid crystalline systems into the skin. The following parameters were assessed in the method: selectivity, linearity, precision, accuracy, robustness, limit of detection (LOD), and limit of quantification (LOQ). The analytical curve was linear in the range from 0.25 to 250 μg.m-1, precise, with a standard deviation of 0.05-1.24%, with an accuracy in the range from 96.72 to 105.52%, and robust, with adequate values for the LOD and LOQ of 0.1 and 0.25 μg.mL -1, respectively. The method was successfully used to determine the in vitro skin permeation of OMC-loaded liquid crystalline systems. The results of the in vitro tests on Franz cells showed low cutaneous permeation and high retention of the OMC, particularly in the stratum corneum, owing to its high lipophilicity, which is desirable for a sunscreen formulation.

  1. Impact of High Concentration Solutions on Hydraulic Properties of Geosynthetic Clay Liner Materials

    PubMed Central

    Xue, Qiang; Zhang, Qian; Liu, Lei

    2012-01-01

    This study focuses on the impact of landfill high concentration solutions erosion on geosynthetic clay liner (GCL) materials permeability. The permeation tests on the GCL, submerged using different kinds of solutions with different concentrations, were carried out systematically by taking these chemical solutions as permeant liquids. Based on seasonal variations of ion concentrations in Chenjiachong landfill leachate (Wuhan Province), CaCl2, MgCl2, NaCl, and KCl were selected as chemical attack solutions to carry out experimental investigations under three concentrations (50 mM, 100 mM, 200 mM) and soak times (5, 10, and 20 days). The variation law of the GCL hydraulic conductivity under different operating conditions was analyzed. The relationship between GCL hydraulic conductivity, chemical solutions categories, concentrations, and soak times were further discussed. The GCL hydraulic conductivity, when soaked and permeated with high concentration chemical solutions, increases several times or exceeds two orders of magnitude, as compared with the permeation test under normal conditions that used water as the permeant liquid. This reveals that GCL is very susceptible to chemical attack. For four chemical solutions, the chemical attack effect on GCL hydraulic conductivity is CaCl2 > MgCl2 > KCl > NaCl. The impact of soak times on GCL hydraulic conductivity is the cooperative contribution of the liner chemical attack reaction and hydration swelling. A longer soak time results in a more advantageous hydration swelling effect. The chemical attack reaction restrains the hydration swelling of the GCL. Moreover, the GCL hydraulic conductivity exponentially decreases with the increased amplitude of thickness.

  2. Effect of PEG6000 on the in vitro and in vivo transdermal permeation of ondansetron hydrochloride from EVA1802 membranes.

    PubMed

    Krishnaiah, Yellela S R; Rama, Bukka; Raghumurthy, Vanambattina; Ramanamurthy, Kolapalli V; Satyanarayana, Vemulapalli

    2009-01-01

    The objective was to evaluate ethylene vinyl acetate (EVA) copolymer membranes with vinyl acetate content of 18% w/w (EVA1802) for transdermal delivery of ondansetron hydrochloride. The EVA1802 membranes containing selected concentrations (0, 5, 10 and 15% w/w) of PEG6000 were prepared, and subjected to in vitro permeation studies from a nerodilol-based drug reservoir. Flux of ondansetron from EVA1802 membranes without PEG6000 was 64.1 +/- 0.6 microg/cm(2.)h, and with 10%w/w of PEG6000 (EVA1802-PEG6000-10) it increased to 194.9 +/- 4.6 microg/cm(2.)h. However, with 15%w/w of PEG6000, EVA1802 membranes produced a burst release of drug which in turn decreased drug flux. The EVA1802-PEG6000-10 membrane was coated with an adhesive emulsion, applied to rat epidermis and subjected to in vitro permeation studies against controls. Flux of ondansetron from transdermal patch across rat epidermis was 111.7 +/- 1.3 microg/cm(2.)h, which is about 1.3 times the required flux. A TTS was fabricated using adhesive-coated EVA1802-PEG6000-10 membrane and other TTS components, and subjected to in vivo delivery in human volunteers against a control. It was concluded from the comparative pharmacokinetic study that TTS of ondansetron, prepared with EVA1802-PEG6000-10 membrane, provided average steady-state plasma concentration on par with multiple-dosed oral tablets, but with a low percent of peak-to-trough fluctuation.

  3. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics.

    PubMed

    Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.

  4. Enhanced Ungual Permeation of Terbinafine HCl Delivered Through Liposome-Loaded Nail Lacquer Formulation Optimized by QbD Approach.

    PubMed

    Shah, Viral H; Jobanputra, Amee

    2018-01-01

    The present investigation focused on developing, optimizing, and evaluating a novel liposome-loaded nail lacquer formulation for increasing the transungual permeation flux of terbinafine HCl for efficient treatment of onychomycosis. A three-factor, three-level, Box-Behnken design was employed for optimizing process and formulation parameters of liposomal formulation. Liposomes were formulated by thin film hydration technique followed by sonication. Drug to lipid ratio, sonication amplitude, and sonication time were screened as independent variables while particle size, PDI, entrapment efficiency, and zeta potential were selected as quality attributes for liposomal formulation. Multiple regression analysis was employed to construct a second-order quadratic polynomial equation and contour plots. Design space (overlay plot) was generated to optimize a liposomal system, with software-suggested levels of independent variables that could be transformed to desired responses. The optimized liposome formulation was characterized and dispersed in nail lacquer which was further evaluated for different parameters. Results depicted that the optimized terbinafine HCl-loaded liposome formulation exhibited particle size of 182 nm, PDI of 0.175, zeta potential of -26.8 mV, and entrapment efficiency of 80%. Transungual permeability flux of terbinafine HCl through liposome-dispersed nail lacquer formulation was observed to be significantly higher in comparison to nail lacquer with a permeation enhancer. The developed formulation was also observed to be as efficient as pure drug dispersion in its antifungal activity. Thus, it was concluded that the developed formulation can serve as an efficient tool for enhancing the permeability of terbinafine HCl across human nail plate thereby improving its therapeutic efficiency.

  5. Formulation of Polyherbal Patches Based on Polyvinyl Alcohol and Hydroxypropylmethyl Cellulose: Characterization and In Vitro Evaluation.

    PubMed

    Suksaeree, Jirapornchai; Nawathong, Noramon; Anakkawee, Rinrada; Pichayakorn, Wiwat

    2017-10-01

    The purpose of this research was to prepare and characterize polyherbal patches made from polyvinyl alcohol (PVA) and hydroxypropylmethyl cellulose (HPMC) with glycerine as a plasticizer. Polyherbal extracts were Luk-Pra-Kob recipes extracted with 95% ethanol. They were prepared by mixing the polymer solutions and glycerine in a beaker; subsequently, the polyherbal extracts were homogeneously mixed. Then, they were transferred into a Petri dish and dried in a hot-air oven at 70 ± 2°C for 5 h. The dry polyherbal patches were evaluated for physicochemical properties by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and a scanning electron microscope. They were studied for in vitro release and skin permeation of the marker active compound (E)-4-(3',4'-dimethoxyphenyl)but-3-en-l-ol (compound D) using a modified Franz-type diffusion cell. The polyherbal patches made from PVA as a matrix layer were homogeneous, smooth, and compact relative to HPMC-containing polyherbal patches. The selected polyherbal patches made from PVA produced a release profile with an initial burst effect in which compound D release was 74.21 ± 6.13% within 8 h, but compound D could permeate the pig skin only 37.28 ± 5.52% and was highly accumulated in newborn pig skin at 35.90 ± 6.72%. The in vitro release and skin permeation kinetics of compound D were fitted to the Higuchi model. The polyherbal patches made from PVA could be suitably used for herbal medicine application.

  6. The effect of residual cationic polymers in swine wastewater on the fouling of reverse osmosis membranes.

    PubMed

    Pedersen, C O; Masse, L; Hjorth, M

    2014-01-01

    Solid-liquid separation with flocculation can be used as pre-treatment for reverse osmosis (RO) filtration as it produces a liquid fraction (LF) low in suspended solids (SS). However, residual polymers in the LF may foul the membrane. Membrane fouling during RO filtration of swine wastewater containing polymers was investigated with respect to polymer charge density (CD), effluent SS concentration and membrane surface charge. Effluents with 765 mg/L SS and without SS were spiked with low and medium CD polymers (0-40 mg/L effluent) then processed with RO membranes having low and high negative surface charges. Fouling intensity was evaluated by comparing permeate flux and water flux recovery of fouled and cleaned membranes. For effluents containing SS, the presence of polymer reduced permeate flux by 4-16% and water flux recovery of the fouled membrane by 0-18%, relative to effluents without polymer. The extent of the fouling was higher with the low than the medium CD polymer. The fouling was mostly reversible as cleaning allowed for over 95% flux recovery, but the membrane with high negative surface charge was more susceptible to irreversible fouling. Adding the low CD polymer to feed without SS had no effect on permeate flux or flux recovery. Membrane fouling thus appeared to be caused by the polymer changing SS-membrane interaction. If flocculation is applied to pre-treat manure, a medium CD polymer should be used to optimize SS removal and a membrane with low surface charge should be selected to minimize fouling.

  7. Impact of ester promoieties on transdermal delivery of ketorolac.

    PubMed

    Liu, Kuo-Sheng; Hsieh, Pei-Wen; Aljuffali, Ibrahim A; Lin, Yin-Ku; Chang, Shu-Hao; Wang, Jhi-Joung; Fang, Jia-You

    2014-03-01

    Different types of ketorolac ester prodrugs incorporating tert-butyl (KT), benzyl (KB), heptyl (KH), and diketorolac heptyl (DKH) promoieties were synthesized for the comparison of percutaneous penetration. The prodrugs were characterized according to their melting point, capacity factor, lipophilicity, solubility in 30% ethanol/buffer, enzymatic hydrolysis, in vitro skin permeation, hair follicle accumulation, and in vivo skin tolerance. Interactions between the prodrugs and esterases were predicted by molecular docking. Both equimolar suspensions and saturated solutions in 30% ethanol/pH 7.4 buffer were employed as the applied dose. All of the prodrugs exhibited a lower melting point than ketorolac. The lipophilicity increased in the following order: ketorolac < KT < KB < KH < DKH. The prodrugs were rapidly hydrolyzed to the parent drug in esterase medium, skin homogenate, and plasma, with KT and KB exhibiting higher degradation rates. KT exhibited the highest skin permeation, followed by KB. The flux of KT and KB exceeded that of ketorolac by 2.5-fold and twofold, respectively. KH and DKH did not improve ketorolac permeation but exhibited a sustained release behavior. KT and KH revealed selective absorption into follicles and a threefold greater follicular uptake compared with ketorolac. KB, KH, and DKH slightly but significantly increased transepidermal water loss (TEWL) after consecutive administration for 7 days, whereas ketorolac and KT exhibited no influence on TEWL. According to the experimental results, it can be concluded that an optimal balance between lipophilicity and aqueous solubility is important in the design of a successful prodrug. The acceptable skin tolerance for safe application is also an important consideration. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. [A laboratory and field study on the disposal of domestic waste water based on soil permeation].

    PubMed

    Yamaura, G

    1989-02-01

    The present study was conducted to get information necessary for the disposal of domestic waste water by soil permeation. The clarifying ability of soil was examined by conducting laboratory experiments using soil columns and making inquiries about practical disposal facilities based on soil permeation using trenches. In the column experiment, soil columns were prepared by packing polyvinyl chloride pipes with volcanic-ash loam, river sand, or an equivolume mixture of both, and secondary effluent of domestic waste water was poured into each soil column at a daily rate of 100 l/m2. In this experiment, loam and sand loam, both containing fine silt and clay, gave BOD removals of over 95% when the influent BOD load per 1 m3 of soil was less than 10 g/d and gave the coliform group removals of 100% when the influent coliform group load per 1 m3 soil was less than 10(9)/d. Loam and sand loam gave T-P removals of over 90%. The P adsorption capacity of soil was limited to less than 12% of the absorption coefficient of phosphoric acid. All the soils gave low T-N removals, mostly less than 50%. The trench disposal gave high removals of 90-97% for BOD, 90-97% for T-P, and 94-99% for the coliform group but low removals of 11-49% for T-N, showing a trend similar to that of the column disposal. Thus, we can roughly estimate the effectiveness of actual soil permeation disposal from the results of the column experiments. In the waste water permeation region, the extent of waste water permeation exceeded 700 cm horizontally from the trench, but the waste water load within 100 cm laterally from the trench occupied 60.3% of the total. The concentrations of T-C and T-N at almost all observation spots in the permeation region were lower than in the control region, and were not caused to accumulate in soil by waste water loading. In contrast, T-P was accumulated concentratively in the depth range from 50-100 cm right below the trench. The conditions for effective disposal of domestic waste water by soil permeation have been estimated to be: (1) the soil should contain more than 30% silt and clay, (2) the absorption coefficient of phosphoric acid should be more than 1000, (3) the permeation rate should be 1.0-1.8 mm/min, and (4) the soil volume to be permeated should be more than 6.86 m3/person.

  9. High Pressure Gas Permeation and Liquid Diffusion Studies of Coflon and Tefzel Thermoplastics. Revision

    NASA Technical Reports Server (NTRS)

    Morgan, G. J.; Campion, R. P.

    1997-01-01

    The life of fluid-carrying flexible or umbilical pipes during service at elevated temperatures and pressures depends inter alia on their resistance to attack by the fluids present and the rate at which these fluids are absorbed by the pipe lining materials. The consequences of fluid ingress into the thermoplastic lining could mean a) a reduction in its mechanical strength, to increase chances of crack formation and growth and thus a loss of integrity, b) the occurrence of permeation right through the lining material, with pressure build- up in the outer pipe wall construction (of flexible pipes) or chemical attack (from a hostile permeant) on outer layers of reinforcements. Therefore it is important within this project to have relevant permeation data for Coflon and Tefzel thermoplastics: the former is plasticised, the latter is not. A previous report (CAPP/M.2) described experimental equipment and techniques used by MERL when measuring high pressure (up to 5000 psi) gas permeation and liquid diffusion through thermoplastic samples cut from extruded bar or pipe, and provided the basic theory involved. Norsk Hydro are also performing gas permeation tests on pipe sections, at up to 100 bars (1450 psi) pressure or so, and reporting separately. Some comparisons between data from Norsk Hydro and MERL have been made herein. The tests should be considered as complementary, as the Norsk Hydro test has the obvious benefit of using complete pipe sections, whilst MERL can test at much higher pressures, up to 1000 bar if necessary. The sophisticated analytical measuring equipment of Norsk Hydro can distinguish the individual components of mixed gases and hence the various permeation-linked coefficients whereas MERL, in using pressure increase at constant volume to determine permeation rate, is limited to obtaining single gas data, or apparent (or representative) coefficients for a mixed gas as a whole. Except for the initial fluid diffusion data for Tefzel described in CAPP/M.2, the present report covers all aspects of fluid permeation and diffusion for Coflon and Tefzel, including all the pen-neation data accumulated in the project to date. Test gases have mainly been methane (CH4) and carbon dioxide (CO2). More high pressure (HP) gas permeation tests have been performed since the last issue of this report, most being concerned with changes in permeation characteristics brought about by ageing in various relevant fluids. This revision supersedes previous issues.

  10. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    DOEpatents

    Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.

    1987-04-21

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations.

  11. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    DOEpatents

    Neidlinger, Hermann H.; Schissel, Paul O.; Orth, Richard A.

    1987-01-01

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations.

  12. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1976-01-01

    A total of 18 different membranes were procured, characterized, and tested in a modified bench-scale vapor diffusion water reclamation unit. Four membranes were selected for further studies involving membrane fouling. Emphasis was placed on the problem of flux decline due to membrane fouling. This is discussed in greater details under "Summary and Discussion on Membrane Fouling Studies" presented in pages 47-51. The system was also investigated for low temperature application on wash-water where the permeated water is not recovered but vented into space vacuum.

  13. Thermal expansion of vitrified blood vessels permeated with DP6 and synthetic ice modulators.

    PubMed

    Eisenberg, David P; Taylor, Michael J; Jimenez-Rios, Jorge L; Rabin, Yoed

    2014-06-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Chemically-Mediated Roostmate Recognition and Roost Selection by Brazilian Free-Tailed Bats (Tadarida brasiliensis)

    PubMed Central

    Englert, Amy C.; Greene, Michael J.

    2009-01-01

    Background The Brazilian free-tailed bat (Tadarida brasiliensis) is an exceptionally social and gregarious species of chiropteran known to roost in assemblages that can number in the millions. Chemical recognition of roostmates within these assemblages has not been extensively studied despite the fact that an ability to chemically recognize individuals could play an important role in forming and stabilizing complex suites of social interactions. Methodology/Principal Findings Individual bats were given a choice between three roosting pouches: one permeated with the scent of a group of roostmates, one permeated with the scent of non-roostmates, and a clean control. Subjects rejected non-roostmate pouches with greater frequency than roostmate pouches or blank control pouches. Also, bats chose to roost in the roostmate scented pouches more often than the non-roostmate or control pouches. Conclusions/Significance We demonstrated that T. brasiliensis has the ability to chemically recognize roostmates from non-roostmates and a preference for roosting in areas occupied by roostmates. It is important to investigate these behaviors because of their potential importance in colony dynamics and roost choice. PMID:19901986

  15. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD).

    PubMed

    Scherf, Katharina Anne; Wieser, Herbert; Koehler, Peter

    2016-10-12

    Purified wheat starch (WSt) is commonly used in gluten-free products for celiac disease (CD) patients. It is mostly well-tolerated, but doubts about its safety for CD patients persist. One reason may be that most ELISA kits primarily recognize the alcohol-soluble gliadin fraction of gluten, but insufficiently target the alcohol-insoluble glutenin fraction. To address this problem, a new sensitive method based on the sequential extraction of gliadins, glutenins, and gluten from WSt followed by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD) was developed. It revealed that considerable amounts of glutenins were present in most WSt. The gluten contents quantitated by GP-HPLC-FLD as sum of gliadins and glutenins were higher than those by R5 ELISA (gluten as gliadin content multiplied by a factor of 2) in 19 out of 26 WSt. Despite its limited selectivity, GP-HPLC-FLD may be applied as confirmatory method to ELISA to quantitate gluten in WSt.

  16. Technical and economical evaluation of water recycling in the carwash industry with membrane processes.

    PubMed

    Boussu, K; Eelen, D; Vanassche, S; Vandecasteele, C; Van der Bruggen, B; Van Baelen, G; Colen, W; Vanassche, S

    2008-01-01

    In the carwash industry, water recycling is necessary to be in accordance with present and upcoming environmental laws. As this is not possible with traditional techniques, membrane processes (like ultrafiltration (UF) and nanofiltration (NF)) are technically and economically evaluated in this study. Concerning the technical part, there needs to be a compromise between a high permeate permeability on the one hand and a high permeate purity on the other hand. Depending on the use of the purified wastewater, ultrafiltration (to recycle wastewater in the main wash cycle) or nanofiltration (to recycle wastewater in the rinsing step) would be the optimal choice. Concerning the financial part, the implementation of membrane processes in the wastewater purification installation is economically feasible, especially when expensive tap water is used as pure water. These positive evaluations imply that membrane processes can be useful to recycle wastewater in the carwash industry, on condition that the right membrane type (with the least membrane fouling) and the right process format (e.g., hybrid process of UF and/or NF with a biological treatment) is selected. Copyright IWA Publishing 2008.

  17. Chemical characterisation of the whole plant cell wall of archaeological wood: an integrated approach.

    PubMed

    Zoia, Luca; Tamburini, Diego; Orlandi, Marco; Łucejko, Jeannette Jacqueline; Salanti, Anika; Tolppa, Eeva-Liisa; Modugno, Francesca; Colombini, Maria Perla

    2017-07-01

    Wood artefacts undergo complex alteration and degradation during ageing, and gaining information on the chemical composition of wood in archaeological artefacts is fundamental to plan conservation strategies. In this work, an integrated analytical approach based on innovative NMR spectroscopy procedures, gel permeation chromatography and analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC-MS) was applied for the first time on archaeological wood from the Oseberg collection (Norway), in order to evaluate the chemical state of preservation of the wood components, without separating them. We adopted ionic liquids (ILs) as non-derivatising solvents, thus obtaining an efficient dissolution of the wood, allowing us to overcome the difficulty of dissolving wood in its native form in conventional molecular solvents. Highly substituted lignocellulosic esters were therefore obtained under mild conditions by reacting the solubilised wood with either acetyl chloride or benzoyl chloride. A phosphytilation reaction was also performed using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan. As a result, the functionalised wood developed an enhanced solubility in molecular solvents, thus enabling information about modifications of lignin, depolymerisation of cellulose and structure of lignin-carbohydrate complexes to be obtained by means of spectroscopic (2D-HSQC-NMR and 31 P-NMR) and chromatographic (gel permeation chromatography) techniques. Py-GC-MS was used to investigate the degradation undergone by the lignocellulosic components on the basis of their pyrolysis products, without any pre-treatment of the samples. The application of all these combined techniques enabled a comprehensive characterisation of the whole cell wall of archaeological wood and the evaluation of its state of preservation. High depletion of carbohydrates and high extent of lignin oxidation were highlighted in the alum-treated objects, whereas a good preservation state was found for the untreated wood of the Oseberg ship. Graphical abstract ᅟ.

  18. Immobilized fluid membranes for gas separation

    DOEpatents

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  19. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin [Los Alamos, NM; Mattes, Benjamin R [Santa Fe, NM

    2009-07-21

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  20. Permeable polyaniline articles for gas separation

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2004-09-28

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

  1. Olefin separation membrane and process

    DOEpatents

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  2. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels

    PubMed Central

    Napolitano, Luisa Maria Rosaria; Bisha, Ina; De March, Matteo; Marchesi, Arin; Arcangeletti, Manuel; Demitri, Nicola; Mazzolini, Monica; Rodriguez, Alex; Magistrato, Alessandra; Onesti, Silvia; Laio, Alessandro; Torre, Vincent

    2015-01-01

    Cyclic nucleotide-gated (CNG) ion channels, despite a significant homology with the highly selective K+ channels, do not discriminate among monovalent alkali cations and are permeable also to several organic cations. We combined electrophysiology, molecular dynamics (MD) simulations, and X-ray crystallography to demonstrate that the pore of CNG channels is highly flexible. When a CNG mimic is crystallized in the presence of a variety of monovalent cations, including Na+, Cs+, and dimethylammonium (DMA+), the side chain of Glu66 in the selectivity filter shows multiple conformations and the diameter of the pore changes significantly. MD simulations indicate that Glu66 and the prolines in the outer vestibule undergo large fluctuations, which are modulated by the ionic species and the voltage. This flexibility underlies the coupling between gating and permeation and the poor ionic selectivity of CNG channels. PMID:26100907

  3. Mechanism of activation at the selectivity filter of the KcsA K+ channel

    PubMed Central

    Heer, Florian T; Posson, David J; Wojtas-Niziurski, Wojciech

    2017-01-01

    Potassium channels are opened by ligands and/or membrane potential. In voltage-gated K+ channels and the prokaryotic KcsA channel, conduction is believed to result from opening of an intracellular constriction that prevents ion entry into the pore. On the other hand, numerous ligand-gated K+ channels lack such gate, suggesting that they may be activated by a change within the selectivity filter, a narrow region at the extracellular side of the pore. Using molecular dynamics simulations and electrophysiology measurements, we show that ligand-induced conformational changes in the KcsA channel removes steric restraints at the selectivity filter, thus resulting in structural fluctuations, reduced K+ affinity, and increased ion permeation. Such activation of the selectivity filter may be a universal gating mechanism within K+ channels. The occlusion of the pore at the level of the intracellular gate appears to be secondary. PMID:28994652

  4. A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels.

    PubMed

    Napolitano, Luisa Maria Rosaria; Bisha, Ina; De March, Matteo; Marchesi, Arin; Arcangeletti, Manuel; Demitri, Nicola; Mazzolini, Monica; Rodriguez, Alex; Magistrato, Alessandra; Onesti, Silvia; Laio, Alessandro; Torre, Vincent

    2015-07-07

    Cyclic nucleotide-gated (CNG) ion channels, despite a significant homology with the highly selective K(+) channels, do not discriminate among monovalent alkali cations and are permeable also to several organic cations. We combined electrophysiology, molecular dynamics (MD) simulations, and X-ray crystallography to demonstrate that the pore of CNG channels is highly flexible. When a CNG mimic is crystallized in the presence of a variety of monovalent cations, including Na(+), Cs(+), and dimethylammonium (DMA(+)), the side chain of Glu66 in the selectivity filter shows multiple conformations and the diameter of the pore changes significantly. MD simulations indicate that Glu66 and the prolines in the outer vestibule undergo large fluctuations, which are modulated by the ionic species and the voltage. This flexibility underlies the coupling between gating and permeation and the poor ionic selectivity of CNG channels.

  5. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other..., App. B Appendix B to Part 173—Procedure for Testing Chemical Compatibility and Rate of Permeation in... °C. (64 °F.) b. Test Method 2: 28 days at a temperature no lower than 50 °C. (122 °F.) c. Test Method...

  6. Permeability Evaluation Through Chitosan Membranes Using Taguchi Design

    PubMed Central

    Sharma, Vipin; Marwaha, Rakesh Kumar; Dureja, Harish

    2010-01-01

    In the present study, chitosan membranes capable of imitating permeation characteristics of diclofenac diethylamine across animal skin were prepared using cast drying method. The effect of concentration of chitosan, concentration of cross-linking agent (NaTPP), crosslinking time was studied using Taguchi design. Taguchi design ranked concentration of chitosan as the most important factor influencing the permeation parameters of diclofenac diethylamine. The flux of the diclofenac diethylamine solution through optimized chitosan membrane (T9) was found to be comparable to that obtained across rat skin. The mathematical model developed using multilinear regression analysis can be used to formulate chitosan membranes that can mimic the desired permeation characteristics. The developed chitosan membranes can be utilized as a substitute to animal skin for in vitro permeation studies. PMID:21179329

  7. Permeability evaluation through chitosan membranes using taguchi design.

    PubMed

    Sharma, Vipin; Marwaha, Rakesh Kumar; Dureja, Harish

    2010-01-01

    In the present study, chitosan membranes capable of imitating permeation characteristics of diclofenac diethylamine across animal skin were prepared using cast drying method. The effect of concentration of chitosan, concentration of cross-linking agent (NaTPP), crosslinking time was studied using Taguchi design. Taguchi design ranked concentration of chitosan as the most important factor influencing the permeation parameters of diclofenac diethylamine. The flux of the diclofenac diethylamine solution through optimized chitosan membrane (T9) was found to be comparable to that obtained across rat skin. The mathematical model developed using multilinear regression analysis can be used to formulate chitosan membranes that can mimic the desired permeation characteristics. The developed chitosan membranes can be utilized as a substitute to animal skin for in vitro permeation studies.

  8. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    DOEpatents

    Simpson, Lin Jay

    2015-07-28

    Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.

  9. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma.

    PubMed

    Damar Huner, Irem; Gulec, Haci Ali

    2017-12-01

    The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ceramic pore channels with inducted carbon nanotubes for removing oil from water.

    PubMed

    Chen, Xinwei; Hong, Liang; Xu, Yanfang; Ong, Zheng Wei

    2012-04-01

    Water contaminated with tiny oil emulsions is costly and difficult to treat because of the colloidal stability and deformable nature of emulsified oil. This work utilizes carbon nanotubes (CNTs) in macro/mesopore channels of ceramic membrane to remove tiny oil droplets from water. The CNTs were implanted into the porous ceramic channels by means of chemical vapor deposition. Being hydrophobic in nature and possessing an interfacial curvature at nanoscale, CNTs enabled tiny oil emulsion in submicrometer and nano scales to be entrapped while permeating through the CNTs implanted pore channels. Optimizing the growth condition of the CNTs resulted in a uniform distribution of CNT grids, which allowed the development of lipophilic layers during filtration. These lipo-layers drastically enhanced the separation performance. The filtration capability of CNT-ceramic membrane was assessed by the purification of a dilute oil-in-water (o/w) emulsion containing ca. 210 ppm mineral oil 1600 ppm emulsifier, and a trace amount of dye, a proxy polluted water source. The best CNT-tailored ceramic membrane, prepared under the optimized CNT growth condition, claimed 100% oil rejection rate and a permeation flux of 0.6 L m(-2) min(-1), driven by a pressure drop of ca. 1 bar for 3 days on the basis of UV measurement. The CNT-sustained adsorption complements the size-exclusion mechanism in removing soluble oil.

  11. Simultaneous administration of lactulose and 51Cr-ethylenediaminetetraacetic acid. A test to distinguish colonic from small-intestinal permeability change.

    PubMed

    Jenkins, A P; Nukajam, W S; Menzies, I S; Creamer, B

    1992-09-01

    In normal adults intestinal permeation of ingested 51Cr-ethylenediaminetetraacetic acid (EDTA) is greater than that of lactulose. This difference is abolished in patients with ileostomies, suggesting that it results from colonic permeation of 51Cr-EDTA, which, unlike lactulose, resists bacterial degradation. To investigate the effect of an increase in colonic permeability on absorption of the two molecules, lactulose (5 g) and 51Cr-EDTA (50 microCi) were given orally in isosmolar solution to 11 patients with colitis, and their 24-h urinary excretion measured. By comparison the effect of an increase in small-intestinal permeability induced by ingestion of a hyperosmolar solution (4240 mosm/l) was measured in 10 healthy adults. Hyperosmolar stress increased the 24-h urinary excretion of 51Cr-EDTA above the normal mean + 2 standard deviations (3.31%) in all 10 healthy subjects, and in all of these excretion of lactulose was also increased (greater than 1.06%). In contrast, although seven colitics had a urinary excretion of 51Cr-EDTA above the normal mean + 2 SD, in only two of these patients was recovery of lactulose increased. This suggests that simultaneous administration of lactulose and 51Cr-EDTA may enable permeability changes affecting the colon alone to be distinguished from those involving the small intestine.

  12. Thiolation of arabinoxylan and its application in the fabrication of controlled release mucoadhesive oral films.

    PubMed

    Hanif, Muhammad; Zaman, Muhammad

    2017-03-20

    Mucoadhesion is an important property that helps oral drug delivery system to remain attached with buccal mucosa and hence to improve the delivery of the drug. The current study was designed to achieve the thiol modification of Arabinoxylan (ARX) and to develop a mucoadhesive oral film for the improved delivery of tizanidine hydrochloride (TZN HCl). Synthesis of thiolated arabinoxylan (TARX) was accomplished by esterification of ARX with thioglycolic acid (TGA). TARX was further used for the development of mucoadhesive oral films which were prepared by using a solvent casting technique. Formulation of the films was designed and optimized by using central composite design (CCRD), selecting TARX (X 1 ) and glycerol (X 2 ) as variables. Prepared film formulations were evaluated for mechanical strength, ex-vivo mucoadhesion, in-vitro drug release, ex-vivo drug permeation, surface morphology and drug contents. Thiolation of ARX was confirmed by fourier transform infra-red spectroscopy (FTIR) as a peak related to thiol group appeared at 2516 cm -1 . The claim of successful thiolation of ARX was strengthened by the presence of 2809.003 ± 1.03 μmoles of thiol contents per gram of the polymer, which was determined by Ellman's reagent method. From the results, it was observed that the films were of satisfactory mechanical strength and mucoadhesiveness with folding endurance greater than 300 and mucoadhesive strength 11.53 ± 0.17 N, respectively. Reasonable drug retention was observed during in-vitro dissolution (85.03% cumulative drug release) and ex-vivo permeation (78.90% cumulative amount of permeated drug) studies conducted for 8 h. Effects of varying concentrations of both polymer and plasticizer on prepared mucoadhesive oral films were evaluated by ANOVA and it was observed that glycerol can enhanced the dissolution as well as permeation of the drug while TARX has opposite impact on these parameters. In nutshell, TARX in combination with glycerolwas found to be suitable for the development of controlled release mucoadhesive oral films of TZN HCl. Schematic diagram showing conversion of ARX to TARX, TARX to oral film and evaluation of fabricated oral film.

  13. Permeation of Comite through protective gloves.

    PubMed

    Zainal, Hanaa; Que Hee, Shane S

    2006-09-01

    The goal of the study was to assess how protective disposable (Safeskin) and chemical protective (Sol-Vex) nitrile gloves were against Comite emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient, because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0+/-0.5 degrees C, and gas chromatography-mass spectrometry used for PROP analysis. Aqueous solutions of Comite at 40.4 mg/mL permeated both Safeskin and Sol-Vex nitrile by 8h. Safeskin showed a mean PROP mass permeated of 176+/-27 microg after 8h compared with a mean mass permeated for Sol-Vex of 3.17+/-4.08 microg. Thus, Sol-Vex was about 56 times more protective than Safeskin for an 8-h exposure. However, the kinetics of the permeation revealed that Safeskin can be worn for at least 200 min before disposal. When undiluted Comite challenged both types of nitrile, much faster permeation was observed. Safeskin gloves showed two steady state periods. The first had lag times (t(l)) values of about 1h, although normalized breakthrough times (t(b)) were < 10 min. The second steady state rate (P(s)) was on average four times the rate of the first period, and the second steady state period t(l) was about three times as long as that of the first steady state period, and about the same t(l) as for the aqueous solution. Sol-Vex gloves exposed continuously to undiluted Comite permeated above the normalized breakthrough threshold beyond 2.7h. A risk assessment revealed that the PROP skin permeation rate of 7.1 ng cm(-2)h(-1) was much slower than the first steady state Safeskin glove P(s) of 62,000 ng cm(-2)h(-1). Infrared analysis showed that the glove surfaces were not degraded by the Comite challenge. The chemically protective Sol-Vex gloves protected adequately against undiluted formulation for about 2.7h, whereas they provided protection for nearly 8h when the formulation was diluted with water to the highest concentration for field application. In contrast, the disposable Safeskin gloves did not protect at all for the undiluted formulation, but did for 200 min when the formulation was diluted with water to the highest concentration for spraying.

  14. Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity.

    PubMed

    Khorshidi, Behnam; Biswas, Ishita; Ghosh, Tanushree; Thundat, Thomas; Sadrzadeh, Mohtada

    2018-01-15

    The development of nano-enabled composite materials has led to a paradigm shift in the manufacture of high-performance nanocomposite membranes with enhanced permeation, thermo-mechanical, and antibacterial properties. The major challenges to the successful incorporation of nanoparticles (NPs) to polymer films are the severe aggregation of the NPs and the weak compatibility of NPs with polymers. These two phenomena lead to the formation of non-selective voids at the interface of the polymer and NPs, which adversely affect the separation performance of the membrane. To overcome these challenges, we have developed a new method for the fabrication of robust TFN reverse osmosis membranes. This approach relies on the simultaneous synthesis and surface functionalization of TiO 2 NPs in an organic solvent (heptane) via biphasic solvothermal reaction. The resulting stable suspension of the TiO 2 NPs in heptane was then utilized in the interfacial (in-situ) polymerization reaction where the NPs were entrapped within the matrix of the polyamide (PA) membrane. TiO 2 NPs of 10 nm were effectively incorporated into the thin PA layer and improved the thermal stability and anti-biofouling properties of the resulting TFN membranes. These features make our synthesized membranes potential candidates for applications where the treatment of high-temperature streams containing biomaterials is desirable.

  15. In vitro evaluation of concurrent use of commercially available insect repellent and sunscreen preparations.

    PubMed

    Gu, X; Wang, T; Collins, D M; Kasichayanula, S; Burczynski, F J

    2005-06-01

    Insect repellents and sunscreens are over-the-counter products extensively used by the general public. Concurrent application of these products has become widespread in many regions across North America, because of concerns about West Nile virus and skin cancers. We investigated whether formulation type, application amount, and sequence would affect the percutaneous absorption profiles of the active repellent and sunscreen ingredients. In vitro percutaneous permeation of the repellent N,N-diethyl-m-toluamide (DEET) and the sunscreen oxybenzone from concurrent application of five commercially available products (A, repellent spray; B, repellent lotion; C, sunscreen lotion; D and E, combined repellent/sunscreen lotions) was measured and compared using Franz-style diffusion cells with piglet skin at 37 degrees C. Penetration of DEET in A and B increased by 1640% and 282%, respectively, when C was applied concurrently. Penetration of DEET in D and E was 53% and 79% higher than that in B. Permeation of DEET from A + C (2:1) and A + C (1: 2) increased by 530% and 278%, respectively. Permeation of oxybenzone was 189% and 280% higher in A + C and B + C than in C. Permeation of oxybenzone in D and E was also 221% and 296% higher than that in C. Permeation of oxybenzone was 196% greater when A was applied on top of C than when C was applied on top of A, while oxybenzone in A + C (1:2) permeated 171% more than that in A + C (2:1). Concurrent application of commercially available repellent and sunscreen products resulted in significant synergistic percutaneous permeation of the repellent DEET and the sunscreen oxybenzone in vitro. The percutaneous penetration profiles were dependent upon the type of formulation, application sequence and application proportion.

  16. Diclofenac Salts, VIII. Effect of the Counterions on the Permeation through Porcine Membrane from Aqueous Saturated Solutions.

    PubMed

    Fini, Adamo; Bassini, Glenda; Monastero, Annamaria; Cavallari, Cristina

    2012-09-12

    The following bases: monoethylamine (EtA), diethylamine (DEtA), triethylamine (TEtA), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), pyrrolidine (Py), piperidine (Pp), morpholine (M), piperazine (Pz) and their N-2-hydroxyethyl (HE) analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4); a saturated solution (5 mL) of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase-that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs) contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane.

  17. Permeation Resistance of Chlorinated Polyethylene Against Hydrazine Fuels

    NASA Technical Reports Server (NTRS)

    Waller, J. M.; Williams, J. H.

    1999-01-01

    The permeation resistance of chlorinated polyethylene (CPE) used in chemical protective clothing against the aerospace fuels hydrazine, monomethylhydrazine (MMH), and uns-dimethylhydrazine (UDMH) was determined by measuring breakthrough times and time-averaged vapor transmission rates using an ASTM F 739 permeation cell. Two exposure scenarios were simulated: a 2 hour (h) fuel vapor exposure, and a liquid fuel "splash" followed by a 2 h vapor exposure. To simulate internal suit pressure during operation, a positive differential pressure of 0.3 in. water (75 Pa) on the collection side of the permeation apparatus was used. Breakthrough was observed after exposure to liquid MMH, and to vapor and liquid UDMH. No breakthrough was observed after exposure to vapor and liquid hydrazine, or vapor MMH. A model was then used to calculate propellant concentrations inside a totally encapsulating chemical protective suit based on the ASTM permeation data obtained in the present study. Concentrations were calculated under conditions of fixed vapor transmission rate, variable breathing air flow rate, and variable splash exposure area. Calculations showed that the maximum allowable permeation rates of hydrazine fuels through CPE were of the order of 0.05 to 0.08 ng sq cm/min for encapsulating suits with low breathing air flow rates (of the order of 5 scfm or 140 L/min). Above these permeation rates, the 10 parts per billion (ppb) threshold limit value time - weighted average could be exceeded for chemical protective suits having a CPE torso. To evaluate suit performance at ppb level concentrations, use of a sensitive analytical method such as cation exchange high performance liquid chromatography with amperometric detection was found to be essential.

  18. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study.

    PubMed

    Wang, Shoei-Shen; Chou, Nai-Kuan; Chung, Tze-Wen

    2009-12-01

    Accelerated thrombolysis by pressure-driven permeation has been demonstrated in in vitro and in vivo animal models by using plasminogen activators (PAs) encapsulated liposomes or PEG microparticles. Recent reports have also described acceleration of thrombolysis using tissue type PA (t-PA) encapsulated in PLGA nanoparticles (NPs) coated with chitosan (CS) or CS-GRGD by interactions between the NPs and blood clots. However, the permeation through and dissolving patterns in thrombolysis with the aforementioned microparticles or NPs, which may be clinically relevant to the recovery status of the posttreatments, have not been reported. Therefore, this work studied such phenomena in thrombolysis with t-PA encapsulated in NPs. The t-PA solution and the NPs exhibited distinctly different permeation patterns of dissolved clots. Plasma permeates through clots showed a stream flow or burst flow phenomena when lyzed with NPs shelled with CS or CS-GRGD, respectively, whereas a diffusion pattern was observed in those lyzed with t-PA solution. At the outlet position of clots, the clots dissolved with PLGA/CS and PLGA/CS-GRGD NPs revealed extremely rough surfaces to a depth of 100 mum, indicating that a cross-permeation direction of clot lysis occurred, while those dissolved with t-PA solution showed slightly rough surfaces to a depth of 12 mum. Permeation through and clot dissolution patterns of thrombolysis with t-PA encapsulated in NPs shelled with CS or CS-GRGD distinctly differed from those dissolved with t-PA solutions in this in vitro thrombolysis model, These findings may be relevant to posttreatment of patients with conventional PA thrombolysis. Copyright 2008 Wiley Periodicals, Inc.

  19. Nano-transfersomal formulations for transdermal delivery of asenapine maleate: in vitro and in vivo performance evaluations.

    PubMed

    Shreya, A B; Managuli, Renuka S; Menon, Jyothsna; Kondapalli, Lavanya; Hegde, Aswathi R; Avadhani, Kiran; Shetty, Pallavi K; Amirthalingam, Muthukumar; Kalthur, Guruprasad; Mutalik, Srinivas

    2016-09-01

    Asenapine maleate (ASPM) is an antipsychotic drug for the treatment of schizophrenia and bipolar disorder. Extensive metabolism makes the oral route inconvenient for ASPM. The objective of this study is to increase ASPM bioavailability via transdermal route by improving the skin permeation using combined strategy of chemical and nano-carrier (transfersomal) based approaches. Transfersomes were prepared by the thin film hydration method using soy-phosphatidylcholine (SPC) and sodium deoxycholate (SDC). Transfersomes were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, surface morphology, and in vitro skin permeation studies. Various chemical enhancers were screened for skin permeation enhancement of ASPM. Optimized transfersomes were incorporated into a gel base containing suitable chemical enhancer for efficient transdermal delivery. In vivo pharmacokinetic study was performed in rats to assess bioavailability by transdermal route against oral administration. Optimized transfersomes with drug:SPC:SDC weight ratio of 5:75:10 were spherical with an average size of 126.0 nm, PDI of 0.232, ZP of -43.7 mV, and entrapment efficiency of 54.96%. Ethanol (20% v/v) showed greater skin permeation enhancement. The cumulative amount of ASPM permeated after 24 h (Q24) by individual effect of ethanol and transfersome, and in combination was found to be 160.0, 132.9, and 309.3 μg, respectively, indicating beneficial synergistic effect of combined approach. In vivo pharmacokinetic study revealed significant (p < 0.05) increase in bioavailability upon transdermal application compared with oral route. Dual strategy of permeation enhancement was successful in increasing the transdermal permeation and bioavailability of ASPM.

  20. Effect of Tritium-Induced Damage on Plastic Targets from High-Density DT Permeation

    DOE PAGES

    Wittman, M. D.; Bonino, M. J.; Edgell, D. H.; ...

    2017-11-28

    Direct-drive inertial fusion experiments conducted at the Laboratory for Laser Energetics implode 860-μm-diam, 8-μm-thick glow-discharge polymer (GDP) capsules that have a solid, uniform, 60- to 80-μm-thick layer of an equimolar mixture of deuterium and tritium (DT) on their interior. The DT is permeated through the capsule’s wall up to pressures of 1000 atm in small pressure steps to prevent buckling; this occurs over many hours. The capsule is then cooled, the DT is solidified, and the uniform layer is formed using thermal gradients produced by heat deposited from beta decay of the tritium. Thermal contraction of the capsule from coolingmore » is expected to be ~1% of the diameter. Capsules permeated with DT do not exhibit this contraction and retain their room-temperature diameter after cooling. Sources of error in the imaging system were explored, and a systematic 3 μm over measurement of the diameter was revealed and corrected. However, both GDP capsules permeated with only deuterium and polystyrene capsules permeated with DT do exhibit thermal contraction. The highly cross-linked GDP shell is under compressive stress after fabrication and experiences bond breakage when exposed to high-density DT during permeation. It is speculated that some of this compressive stress is relieved during bond cleavage and the capsule’s wall swells, which counteracts contraction during cooling. In addition, mass spectrometry of the DT gas in the permeation system has revealed the presence of hydrocarbons and other carbon-containing species that increase with time, confirming the radio-degradation of the polymer.« less

Top