FY2013 Energy Storage R&D Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-02-01
The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.
NASA Astrophysics Data System (ADS)
Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas
2016-04-01
Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis.
Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas
2016-01-01
Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis. PMID:27048866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal Hemchandra
2016-01-01
Just a year ago we laid out the UTM challenges and NASA's proposed solutions. During the past year NASA's goal continues to be to conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line-of-sight UAS operations in the low-altitude airspace. Significant progress has been made, and NASA is continuing to move forward.
Progress-like logistical supply vehicle and the Mars Manned Mission architecture
NASA Astrophysics Data System (ADS)
Keith, E. L.
1993-06-01
The paper examines the economics of the Russian Progress spacecraft (which has been used to supply Russian space stations with propellant and fresh supplies since 1978), as applied to the American Manned Mars Mission architecture. The results of the examination show that an economic American Progress-like vehicle could be designed significantly different from the Russian spacecraft. The use of a Progress-like vehicle could permit Manned Mars missions without the need for larger heavy-lift vehicles that do not now exist in the American inventory. A MIR-like Manned Mars mission architecture would also enable elimination of most of the extravehicular activity required to assemble a Mars-bound craft.
Structure–property relationships in atomic-scale junctions: Histograms and beyond
Mark S. Hybertsen; Venkataraman, Latha
2016-03-03
Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less
Structure–property relationships in atomic-scale junctions: Histograms and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark S. Hybertsen; Venkataraman, Latha
Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less
FY2011 Annual Progress Report for Propulsion Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.
Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.
EV Everywhere Grand Challenge Road to Success
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-01-31
Initial progress report for EV Everywhere. The report highlights the significant cost reduction in batteries in 2014, which will enable increased PEV affordability for consumers. Also, the efforts on increasing the convenience of PEVs through the Workplace Charging Challenge, which called on U.S. employers to help develop the nation's charging infrastructure.
RosBREED2: Progress and future plans to enable DNA-informed breeding in the Rosaceae
USDA-ARS?s Scientific Manuscript database
Rosaceous crops provide vital contributions to human health and are economically significant in communities across the U.S. Industry stakeholders have given high priority to development of new cultivars that exhibit disease resistance and superior horticultural quality to mitigate production, handli...
Three-Component Reaction Discovery Enabled by Mass Spectrometry of Self-Assembled Monolayers
Montavon, Timothy J.; Li, Jing; Cabrera-Pardo, Jaime R.; Mrksich, Milan; Kozmin, Sergey A.
2011-01-01
Multi-component reactions have been extensively employed in many areas of organic chemistry. Despite significant progress, the discovery of such enabling transformations remains challenging. Here, we present the development of a parallel, label-free reaction-discovery platform, which can be used for identification of new multi-component transformations. Our approach is based on the parallel mass spectrometric screening of interfacial chemical reactions on arrays of self-assembled monolayers. This strategy enabled the identification of a simple organic phosphine that can catalyze a previously unknown condensation of siloxy alkynes, aldehydes and amines to produce 3-hydroxy amides with high efficiency and diastereoselectivity. The reaction was further optimized using solution phase methods. PMID:22169871
Area III Valley Intercultural Report; 1970-71 Final Evaluation Report.
ERIC Educational Resources Information Center
Ayala, Armando; Vatsula, John
Evaluation of a bilingual-bicultural education program indicates that significant progress was made in enabling all students to function equally well in both Spanish and English, in providing basic coping skills, and in developing the basis for a pluralistic society. The program included 210 kindergarten and first-grade children consisting of…
Biomimetic robots using EAP as artificial muscles - progress and challenges
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2004-01-01
Biology offers a great model for emulation in areas ranging from tools, computational algorithms, materials science, mechanisms and information technology. In recent years, the field of biomimetics, namely mimicking biology, has blossomed with significant advances enabling the reverse engineering of many animals' functions and implementation of some of these capabilities.
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Byers, David C.; Wasel, Robert A.
1987-01-01
The NASA OAST Propulsion, Power and Energy Division supports electric propulsion for a broad class of missions. Concepts with potential to significantly benefit or enable space exploration and exploitation are identified and advanced toward applications in the near to far term. Recent program progress in mission/system analyses and in electrothermal, ion, and electromagnetic technologies are summarized.
Wang, Jiangxin; Shi, Xu; Johnson, Roger H.; Kelbauskas, Laimonas; Zhang, Weiwen; Meldrum, Deirdre R.
2013-01-01
Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE. PMID:24116039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Wentao; Huang, Jinhua; Kowalski, Jeffrey A.
A highly soluble, readily accessible, redox-active organic material, 2,1,3-benzothiadiazole, is demonstrated as a novel anolyte material to enable exceptional cyclability in a full-cell organic redox flow battery. This material discovery represents a significant progress toward promising next-generation energy storage.
Blind adaptive equalization of polarization-switched QPSK modulation.
Millar, David S; Savory, Seb J
2011-04-25
Coherent detection in combination with digital signal processing has recently enabled significant progress in the capacity of optical communications systems. This improvement has enabled detection of optimum constellations for optical signals in four dimensions. In this paper, we propose and investigate an algorithm for the blind adaptive equalization of one such modulation format: polarization-switched quaternary phase shift keying (PS-QPSK). The proposed algorithm, which includes both blind initialization and adaptation of the equalizer, is found to be insensitive to the input polarization state and demonstrates highly robust convergence in the presence of PDL, DGD and polarization rotation.
Global health and justice: re-examining our values.
Benatar, Solomon R
2013-07-01
Widening disparities in health within and between nations reflect a trajectory of 'progress' that has 'run its course' and needs to be significantly modified if progress is to be sustainable. Values and a value system that have enabled progress are now being distorted to the point where they undermine the future of global health by generating multiple crises that perpetuate injustice. Reliance on philanthropy for rectification, while necessary in the short and medium terms, is insufficient to address the challenge of economic and other systems spinning out of control. Innovative approaches are required and it is suggested that these could best emerge from in-depth multidisciplinary research supported by endeavours to promote a 'global mind-set.' © 2013 John Wiley & Sons Ltd.
A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia
NASA Technical Reports Server (NTRS)
Mckee, E. D. (Principal Investigator); Breed, C. S.
1973-01-01
The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled the project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery of selected sites, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya and other areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.
A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia
NASA Technical Reports Server (NTRS)
Mckee, E. D. (Principal Investigator); Breed, C. S.
1974-01-01
The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled this project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya, and other study areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab 4 mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.
Fox, Robert J; Thompson, Alan; Baker, David; Baneke, Peer; Brown, Doug; Browne, Paul; Chandraratna, Dhia; Ciccarelli, Olga; Coetzee, Timothy; Comi, Giancarlo; Feinstein, Anthony; Kapoor, Raj; Lee, Karen; Salvetti, Marco; Sharrock, Kersten; Toosy, Ahmed; Zaratin, Paola; Zuidwijk, Kim
2012-11-01
Despite significant progress in the development of therapies for relapsing MS, progressive MS remains comparatively disappointing. Our objective, in this paper, is to review the current challenges in developing therapies for progressive MS and identify key priority areas for research. A collaborative was convened by volunteer and staff leaders from several MS societies with the mission to expedite the development of effective disease-modifying and symptom management therapies for progressive forms of multiple sclerosis. Through a series of scientific and strategic planning meetings, the collaborative identified and developed new perspectives on five key priority areas for research: experimental models, identification and validation of targets and repurposing opportunities, proof-of-concept clinical trial strategies, clinical outcome measures, and symptom management and rehabilitation. Our conclusions, tackling the impediments in developing therapies for progressive MS will require an integrated, multi-disciplinary approach to enable effective translation of research into therapies for progressive MS. Engagement of the MS research community through an international effort is needed to address and fund these research priorities with the ultimate goal of expediting the development of disease-modifying and symptom-relief treatments for progressive MS.
Thompson, Alan; Baker, David; Baneke, Peer; Brown, Doug; Browne, Paul; Chandraratna, Dhia; Ciccarelli, Olga; Coetzee, Timothy; Comi, Giancarlo; Feinstein, Anthony; Kapoor, Raj; Lee, Karen; Salvetti, Marco; Sharrock, Kersten; Toosy, Ahmed; Zaratin, Paola; Zuidwijk, Kim
2012-01-01
Despite significant progress in the development of therapies for relapsing MS, progressive MS remains comparatively disappointing. Our objective, in this paper, is to review the current challenges in developing therapies for progressive MS and identify key priority areas for research. A collaborative was convened by volunteer and staff leaders from several MS societies with the mission to expedite the development of effective disease-modifying and symptom management therapies for progressive forms of multiple sclerosis. Through a series of scientific and strategic planning meetings, the collaborative identified and developed new perspectives on five key priority areas for research: experimental models, identification and validation of targets and repurposing opportunities, proof-of-concept clinical trial strategies, clinical outcome measures, and symptom management and rehabilitation. Our conclusions, tackling the impediments in developing therapies for progressive MS will require an integrated, multi-disciplinary approach to enable effective translation of research into therapies for progressive MS. Engagement of the MS research community through an international effort is needed to address and fund these research priorities with the ultimate goal of expediting the development of disease-modifying and symptom-relief treatments for progressive MS. PMID:22917690
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2011-01-01
Vehicles and stand-alone power systems that enable the next generation of human missions to the moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the-art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance future human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This paper on interim progress of the development efforts will present performance of materials and cell components and will elaborate on the challenges of the development activities and proposed strategies to overcome technical issues.
A versatile technique for fabrication of SiC SPM probes
NASA Astrophysics Data System (ADS)
Therrien, Joel; Schmidt, Daniel; Barrot, Sheetal; Patel, Bhavin
2008-03-01
To date SPM probes have largely been fabricated via methods borrowed from the semiconductor industry for fabricating Micro Electro Mechanical Systems. Although these techniques have enabled SPM to see widespread use, the processes put significant limitations on what structures can be made. We report our progress on fabricating SPM cantilevers composed of Silicon Carbide using polymer molding techniques. A pre-ceramic polymer is molded into the desired probe shape and then converted to SiC via pyrolisys. We will also report on progress in using photo-sterolithography for fabrication of even more complex geometries. In addition to opening up a much larger set of probe structures, the use of SiC leads to improved wear resistance of the resulting probes. Among the potential applications, this method enables the fabrication of low spring constant, high resonant frequency cantilevers via cross sectional geometries not accessible to standard fabrication techniques. Such probes are required for high speed tapping and non-contact imaging.
NASA Technical Reports Server (NTRS)
Reid, Concha, M.; Reid, Concha M.
2011-01-01
Vehicles and stand-alone power systems that enable the next generation of human missions to the Moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the- art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance the power systems for the Altair Lunar Lander, Extravehicular Activities spacesuit, and rovers and portable utility pallets for Lunar Surface Systems. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This report on interim progress of the development efforts will elaborate on the challenges of the development activities, proposed strategies to overcome technical issues, and present performance of materials and cell components.
Solving Large Problems Quickly: Progress in 2001-2003
NASA Technical Reports Server (NTRS)
Mowry, Todd C.; Colohan, Christopher B.; Brown, Angela Demke; Steffan, J. Gregory; Zhai, Antonia
2004-01-01
This document describes the progress we have made and the lessons we have learned in 2001 through 2003 under the NASA grant entitled "Solving Important Problems Faster". The long-term goal of this research is to accelerate large, irregular scientific applications which have enormous data sets and which are difficult to parallelize. To accomplish this goal, we are exploring two complementary techniques: (i) using compiler-inserted prefetching to automatically hide the I/O latency of accessing these large data sets from disk; and (ii) using thread-level data speculation to enable the optimistic parallelization of applications despite uncertainty as to whether data dependences exist between the resulting threads which would normally make them unsafe to execute in parallel. Overall, we made significant progress in 2001 through 2003, and the project has gone well.
CMC Technology Advancements for Gas Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2013-01-01
CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.
Genetics Home Reference: spinal muscular atrophy with progressive myoclonic epilepsy
... myoclonic epilepsy Spinal muscular atrophy with progressive myoclonic epilepsy Printable PDF Open All Close All Enable Javascript ... boxes. Description Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is a neurological condition that causes ...
Biomarkers to guide clinical therapeutics in rheumatology?
Robinson, William H; Mao, Rong
2016-03-01
The use of biomarkers in rheumatology can help identify disease risk, improve diagnosis and prognosis, target therapy, assess response to treatment, and further our understanding of the underlying pathogenesis of disease. Here, we discuss the recent advances in biomarkers for rheumatic disorders, existing impediments to progress in this field, and the potential of biomarkers to enable precision medicine and thereby transform rheumatology. Although significant challenges remain, progress continues to be made in biomarker discovery and development for rheumatic diseases. The use of next-generation technologies, including large-scale sequencing, proteomic technologies, metabolomic technologies, mass cytometry, and other single-cell analysis and multianalyte analysis technologies, has yielded a slew of new candidate biomarkers. Nevertheless, these biomarkers still require rigorous validation and have yet to make their way into clinical practice and therapeutic development. This review focuses on advances in the biomarker field in the last 12 months as well as the challenges that remain. Better biomarkers, ideally mechanistic ones, are needed to guide clinical decision making in rheumatology. Although the use of next-generation techniques for biomarker discovery is making headway, it is imperative that the roadblocks in our search for new biomarkers are overcome to enable identification of biomarkers with greater diagnostic and predictive utility. Identification of biomarkers with robust diagnostic and predictive utility would enable precision medicine in rheumatology.
Zhu, Shuze; Li, Teng
2014-03-25
The malleable nature of atomically thin graphene makes it a potential candidate material for nanoscale origami, a promising bottom-up nanomanufacturing approach to fabricating nanobuilding blocks of desirable shapes. The success of graphene origami hinges upon precise and facile control of graphene morphology, which still remains as a significant challenge. Inspired by recent progresses on functionalization and patterning of graphene, we demonstrate hydrogenation-assisted graphene origami (HAGO), a feasible and robust approach to enabling the formation of unconventional carbon nanostructures, through systematic molecular dynamics simulations. A unique and desirable feature of HAGO-enabled nanostructures is the programmable tunability of their morphology via an external electric field. In particular, we demonstrate reversible opening and closing of a HAGO-enabled graphene nanocage, a mechanism that is crucial to achieve molecular mass uptake, storage, and release. HAGO holds promise to enable an array of carbon nanostructures of desirable functionalities by design. As an example, we demonstrate HAGO-enabled high-density hydrogen storage with a weighted percentage exceeding the ultimate goal of US Department of Energy.
Prospective Molecular Characterization of Burn Wound Colonization: Novel Tools and Analysis
2012-10-01
sequence analysis to identify the genetic characteristics that enable Staphylococcus aureus to progress from simple skin and soft tissue infections ...to sepsis and endocarditis . We are confident that this work will lead to significant advancements in wound care and healing and human microbiome...of diabetic foot ulcers become infected at some point, with 25% of the infected foot ulcers resulting in lower limb amputation, making wound
Live Births from Domestic Dog (Canis familiaris) Embryos Produced by In Vitro Fertilization
Nagashima, Jennifer B.; Sylvester, Skylar R.; Nelson, Jacquelyn L.; Cheong, Soon Hon; Mukai, Chinatsu; Lambo, Colleen; Flanders, James A.; Meyers-Wallen, Vicki N.; Songsasen, Nucharin; Travis, Alexander J.
2015-01-01
Development of assisted reproductive technologies (ART) in the dog has resisted progress for decades, due to their unique reproductive physiology. This lack of progress is remarkable given the critical role ART could play in conserving endangered canid species or eradicating heritable disease through gene-editing technologies—an approach that would also advance the dog as a biomedical model. Over 350 heritable disorders/traits in dogs are homologous with human conditions, almost twice the number of any other species. Here we report the first live births from in vitro fertilized embryos in the dog. Adding to the practical significance, these embryos had also been cryopreserved. Changes in handling of both gametes enabled this progress. The medium previously used to capacitate sperm excluded magnesium because it delayed spontaneous acrosome exocytosis. We found that magnesium significantly enhanced sperm hyperactivation and ability to undergo physiologically-induced acrosome exocytosis, two functions essential to fertilize an egg. Unlike other mammals, dogs ovulate a primary oocyte, which reaches metaphase II on Days 4–5 after the luteinizing hormone (LH) surge. We found that only on Day 6 are oocytes consistently able to be fertilized. In vitro fertilization of Day 6 oocytes with sperm capacitated in medium supplemented with magnesium resulted in high rates of embryo development (78.8%, n = 146). Intra-oviductal transfer of nineteen cryopreserved, in vitro fertilization (IVF)-derived embryos resulted in seven live, healthy puppies. Development of IVF enables modern genetic approaches to be applied more efficiently in dogs, and for gamete rescue to conserve endangered canid species. PMID:26650234
Enabling technologies built on a sonochemical platform: challenges and opportunities.
Cintas, Pedro; Tagliapietra, Silvia; Caporaso, Marina; Tabasso, Silvia; Cravotto, Giancarlo
2015-07-01
Scientific and technological progress now occurs at the interface between two or more scientific and technical disciplines while chemistry is intertwined with almost all scientific domains. Complementary and synergistic effects have been found in the overlay between sonochemistry and other enabling technologies such as mechanochemistry, microwave chemistry and flow-chemistry. Although their nature and effects are intrinsically different, these techniques share the ability to significantly activate most chemical processes and peculiar phenomena. These studies offer a comprehensive overview of sonochemistry, provide a better understanding of correlated phenomena (mechanochemical effects, hot spots, etc.), and pave the way for emerging applications which unite hybrid reactors. Copyright © 2014 Elsevier B.V. All rights reserved.
Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics.
Stolper, Charles D; Perer, Adam; Gotz, David
2014-12-01
As datasets grow and analytic algorithms become more complex, the typical workflow of analysts launching an analytic, waiting for it to complete, inspecting the results, and then re-Iaunching the computation with adjusted parameters is not realistic for many real-world tasks. This paper presents an alternative workflow, progressive visual analytics, which enables an analyst to inspect partial results of an algorithm as they become available and interact with the algorithm to prioritize subspaces of interest. Progressive visual analytics depends on adapting analytical algorithms to produce meaningful partial results and enable analyst intervention without sacrificing computational speed. The paradigm also depends on adapting information visualization techniques to incorporate the constantly refining results without overwhelming analysts and provide interactions to support an analyst directing the analytic. The contributions of this paper include: a description of the progressive visual analytics paradigm; design goals for both the algorithms and visualizations in progressive visual analytics systems; an example progressive visual analytics system (Progressive Insights) for analyzing common patterns in a collection of event sequences; and an evaluation of Progressive Insights and the progressive visual analytics paradigm by clinical researchers analyzing electronic medical records.
NASA Astrophysics Data System (ADS)
Strohmaier, S. G.; Erbert, G.; Meissner-Schenk, A. H.; Lommel, M.; Schmidt, B.; Kaul, T.; Karow, M.; Crump, P.
2017-02-01
Progress will be presented on ongoing research into the development of ultra-high power and efficiency bars achieving significantly higher output power, conversion efficiency and brightness than currently commercially available. We combine advanced InAlGaAs/GaAs-based epitaxial structures and novel lateral designs, new materials and superior cooling architectures to enable improved performance. Specifically, we present progress in kilowatt-class 10-mm diode laser bars, where recent studies have demonstrated 880 W continuous wave output power from a 10 mm x 4 mm laser diode bar at 850 A of electrical current and 15°C water temperature. This laser achieves < 60% electro-optical efficiency at 880 W CW output power.
WFIRST-AFTA Presentation to the NRC Mid-Decadal Panel
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Grady, Kevin; Ruffa, John; Melton, Mark; Content, Dave; Zhao, Feng
2015-01-01
Over the past two years, increased funding has enabled significant progress in technology matura1on as well as addi1onal fidelity in the design reference mission. WFIRST with the 2.4--m telescope and coronagraph provides an exci1ng science program, superior to that recommended by NWNH and also advances exoplanet imaging technology (the highest ranked medium--class NWNH recommenda1on). Great opportunity for astronomy and astrophysics discoveries. Broad community support for WFIRST. Key development areas are anchored in a decade of investments in JPL's HCIT and GSFC's DCL. Great progress made in pre--formula1on, ready for KDP--A and launch in mid--2020s.
FY2016 Advanced Batteries R&D Annual Progress Report - Part 4 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers Advanced Battery Materials Research (BMR)more » part 1.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 3 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Appliedmore » Batteries Research for Transportation Projects part 2.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 2 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Appliedmore » Batteries Research for Transportation Projects part 1.« less
Vincristine-induced peripheral neuropathy in pediatric cancer patients
Mora, Erika; Smith, Ellen M Lavoie; Donohoe, Clare; Hertz, Daniel L
2016-01-01
Vincristine is a chemotherapeutic agent that is a component of many combination regimens for a variety of malignancies, including several common pediatric tumors. Vincristine treatment is limited by a progressive sensorimotor peripheral neuropathy. Vincristine-induced peripheral neuropathy (VIPN) is particularly challenging to detect and monitor in pediatric patients, in whom the side effect can diminish long term quality of life. This review summarizes the current state of knowledge regarding VIPN, focusing on its description, assessment, prediction, prevention, and treatment. Significant progress has been made in our knowledge about VIPN incidence and progression, and tools have been developed that enable clinicians to reliably measure VIPN in pediatric patients. Despite these successes, little progress has been made in identifying clinically useful predictors of VIPN or in developing effective approaches for VIPN prevention or treatment in either pediatric or adult patients. Further research is needed to predict, prevent, and treat VIPN to maximize therapeutic benefit and avoid unnecessary toxicity from vincristine treatment. PMID:27904761
Mechanical control of mitotic progression in single animal cells
Cattin, Cedric J.; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J.; Stewart, Martin P.
2015-01-01
Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback–controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50–100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement. PMID:26305930
Agent-based modeling of the interaction between CD8+ T cells and Beta cells in type 1 diabetes.
Ozturk, Mustafa Cagdas; Xu, Qian; Cinar, Ali
2018-01-01
We propose an agent-based model for the simulation of the autoimmune response in T1D. The model incorporates cell behavior from various rules derived from the current literature and is implemented on a high-performance computing system, which enables the simulation of a significant portion of the islets in the mouse pancreas. Simulation results indicate that the model is able to capture the trends that emerge during the progression of the autoimmunity. The multi-scale nature of the model enables definition of rules or equations that govern cellular or sub-cellular level phenomena and observation of the outcomes at the tissue scale. It is expected that such a model would facilitate in vivo clinical studies through rapid testing of hypotheses and planning of future experiments by providing insight into disease progression at different scales, some of which may not be obtained easily in clinical studies. Furthermore, the modular structure of the model simplifies tasks such as the addition of new cell types, and the definition or modification of different behaviors of the environment and the cells with ease.
Fukuda, Kenjiro; Someya, Takao
2017-07-01
Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
FY2015 Energy Storage R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.
Schell, Greggory J; Lavieri, Mariel S; Stein, Joshua D; Musch, David C
2013-12-21
Open-angle glaucoma (OAG) is a prevalent, degenerate ocular disease which can lead to blindness without proper clinical management. The tests used to assess disease progression are susceptible to process and measurement noise. The aim of this study was to develop a methodology which accounts for the inherent noise in the data and improve significant disease progression identification. Longitudinal observations from the Collaborative Initial Glaucoma Treatment Study (CIGTS) were used to parameterize and validate a Kalman filter model and logistic regression function. The Kalman filter estimates the true value of biomarkers associated with OAG and forecasts future values of these variables. We develop two logistic regression models via generalized estimating equations (GEE) for calculating the probability of experiencing significant OAG progression: one model based on the raw measurements from CIGTS and another model based on the Kalman filter estimates of the CIGTS data. Receiver operating characteristic (ROC) curves and associated area under the ROC curve (AUC) estimates are calculated using cross-fold validation. The logistic regression model developed using Kalman filter estimates as data input achieves higher sensitivity and specificity than the model developed using raw measurements. The mean AUC for the Kalman filter-based model is 0.961 while the mean AUC for the raw measurements model is 0.889. Hence, using the probability function generated via Kalman filter estimates and GEE for logistic regression, we are able to more accurately classify patients and instances as experiencing significant OAG progression. A Kalman filter approach for estimating the true value of OAG biomarkers resulted in data input which improved the accuracy of a logistic regression classification model compared to a model using raw measurements as input. This methodology accounts for process and measurement noise to enable improved discrimination between progression and nonprogression in chronic diseases.
Molecular neuroanatomy: a generation of progress.
Pollock, Jonathan D; Wu, Da-Yu; Satterlee, John S
2014-02-01
The neuroscience research landscape has changed dramatically over the past decade. Specifically, an impressive array of new tools and technologies have been generated, including but not limited to: brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity, and new methods for imaging and mapping circuits. However, despite these technological advances, several significant challenges must be overcome to enable a better understanding of brain function and to develop cell type-targeted therapeutics to treat brain disorders. This review provides an overview of some of the tools and technologies currently being used to advance the field of molecular neuroanatomy, and also discusses emerging technologies that may enable neuroscientists to address these crucial scientific challenges over the coming decade. Published by Elsevier Ltd.
Large Composite Structures Processing Technologies for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.
2001-01-01
Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.
NASA's Radioisotope Power Systems - Plans
NASA Technical Reports Server (NTRS)
Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.
2015-01-01
NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.
FY2014 Energy Storage R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at themore » following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.« less
Recent progress of flexible AMOLED displays
NASA Astrophysics Data System (ADS)
Pang, Huiqing; Rajan, Kamala; Silvernail, Jeff; Mandlik, Prashant; Ma, Ruiqing; Hack, Mike; Brown, Julie J.; Yoo, Juhn S.; Jung, Sang-Hoon; Kim, Yong-Cheol; Byun, Seung-Chan; Kim, Jong-Moo; Yoon, Soo-Young; Kim, Chang-Dong; Hwang, Yong-Kee; Chung, In-Jae; Fletcher, Mark; Green, Derek; Pangle, Mike; McIntyre, Jim; Smith, Randal D.
2011-03-01
Significant progress has been made in recent years in flexible AMOLED displays and numerous prototypes have been demonstrated. Replacing rigid glass with flexible substrates and thin-film encapsulation makes displays thinner, lighter, and non-breakable - all attractive features for portable applications. Flexible AMOLEDs equipped with phosphorescent OLEDs are considered one of the best candidates for low-power, rugged, full-color video applications. Recently, we have demonstrated a portable communication display device, built upon a full-color 4.3-inch HVGA foil display with a resolution of 134 dpi using an all-phosphorescent OLED frontplane. The prototype is shaped into a thin and rugged housing that will fit over a user's wrist, providing situational awareness and enabling the wearer to see real-time video and graphics information.
FY2016 Advanced Batteries R&D Annual Progress Report - Part 5 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section cover Advanced Battery Materials Research (BMR)more » part 2, Battery500 Innovation Centers project summaries, and appendices.« less
Draeger, Tracie; Moore, Graham
2017-09-01
Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.
Useful Sensor Web Capabilities to Enable Progressive Mission Autonomy
NASA Technical Reports Server (NTRS)
Mandl, Dan
2007-01-01
This viewgraph presentation reviews using the Sensor Web capabilities as an enabling technology to allow for progressive autonomy of NASA space missions. The presentation reviews technical challenges for future missions, and some of the capabilities that exist to meet those challenges. To establish the ability of the technology to meet the challenges, experiments were conducted on three missions: Earth Observing 1 (EO-1), Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) and Space Technology 5 (ST-5). These experiments are reviewed.
Use of a Progress Monitoring System to Enable Teachers to Differentiate Mathematics Instruction
ERIC Educational Resources Information Center
Ysseldyke, Jim; Tardrew, Steve
2007-01-01
We explored how a progress monitoring and instructional management system can be used to help educators differentiate instruction and meet the wide-ranging learning needs of their increasingly diverse classrooms. We compared classrooms in 24 states that used a curriculum-based progress monitoring and instructional management system, Accelerated…
Wavelet-enabled progressive data Access and Storage Protocol (WASP)
NASA Astrophysics Data System (ADS)
Clyne, J.; Frank, L.; Lesperance, T.; Norton, A.
2015-12-01
Current practices for storing numerical simulation outputs hail from an era when the disparity between compute and I/O performance was not as great as it is today. The memory contents for every sample, computed at every grid point location, are simply saved at some prescribed temporal frequency. Though straightforward, this approach fails to take advantage of the coherency in neighboring grid points that invariably exists in numerical solutions to mathematical models. Exploiting such coherence is essential to digital multimedia; DVD-Video, digital cameras, streaming movies and audio are all possible today because of transform-based compression schemes that make substantial reductions in data possible by taking advantage of the strong correlation between adjacent samples in both space and time. Such methods can also be exploited to enable progressive data refinement in a manner akin to that used in ubiquitous digital mapping applications: views from far away are shown in coarsened detail to provide context, and can be progressively refined as the user zooms in on a localized region of interest. The NSF funded WASP project aims to provide a common, NetCDF-compatible software framework for supporting wavelet-based, multi-scale, progressive data, enabling interactive exploration of large data sets for the geoscience communities. This presentation will provide an overview of this work in progress to develop community cyber-infrastructure for the efficient analysis of very large data sets.
Usefulness of optic nerve ultrasound to predict clinical progression in multiple sclerosis.
Pérez Sánchez, S; Eichau Madueño, S; Rus Hidalgo, M; Domínguez Mayoral, A M; Vilches-Arenas, A; Navarro Mascarell, G; Izquierdo, G
2018-03-21
Progressive neuronal and axonal loss are considered the main causes of disability in patients with multiple sclerosis (MS). The disease frequently involves the visual system; the accessibility of the system for several functional and structural tests has made it a model for the in vivo study of MS pathogenesis. Orbital ultrasound is a non-invasive technique that enables various structures of the orbit, including the optic nerve, to be evaluated in real time. We conducted an observational, ambispective study of MS patients. Disease progression data were collected. Orbital ultrasound was performed on all patients, with power set according to the 'as low as reasonably achievable' (ALARA) principle. Optical coherence tomography (OCT) data were also collected for those patients who underwent the procedure. Statistical analysis was conducted using SPSS version 22.0. Disease progression was significantly correlated with ultrasound findings (P=.041 for the right eye and P=.037 for the left eye) and with Expanded Disability Status Scale (EDSS) score at the end of the follow-up period (P=.07 for the right eye and P=.043 for the left eye). No statistically significant differences were found with relation to relapses or other clinical variables. Ultrasound measurement of optic nerve diameter constitutes a useful, predictive factor for the evaluation of patients with MS. Smaller diameters are associated with poor clinical progression and greater disability (measured by EDSS). Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad; Pearce, Robert
2016-01-01
Description of a tool for portfolio analysis of NASA's Aeronautics research progress toward planned community strategic Outcomes is presented. The strategic planning process for determining the community Outcomes is also briefly described. Stakeholder buy-in, partnership performance, progress of supporting Technical Challenges, and enablement forecast are used as the criteria for evaluating progress toward Outcomes. A few illustrative examples are also presented.
Astrophysics at RIA (ARIA) Working Group
NASA Astrophysics Data System (ADS)
Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe
2006-07-01
The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.
Carbon-Nanotube-Based Thermoelectric Materials and Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn, Jeffrey L.; Ferguson, Andrew J.; Cho, Chungyeon
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specificmore » energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.« less
Carbon-Nanotube-Based Thermoelectric Materials and Devices
Blackburn, Jeffrey L.; Ferguson, Andrew J.; Cho, Chungyeon; ...
2018-01-22
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specificmore » energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.« less
Carbon-Nanotube-Based Thermoelectric Materials and Devices.
Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C
2018-03-01
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent advances in AM OLED technologies for application to aerospace and military systems
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles
2012-06-01
While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.
Moreno, Pedro A; Hernando, M Elena; Gómez, Enrique J
2015-01-01
The progressive ageing of population has turned the mild cognitive impairment (MCI) into a prevalent disease suffered by elderly. Consequently, the spatial disorientation has become a significant problem for older people and their caregivers. The ambient-assisted living applications are offering location-based services for empowering elderly to go outside and encouraging a greater independence. Therefore, this paper describes the design and technical evaluation of a location-awareness service enabler aimed at supporting and managing probable wandering situations of a person with MCI. Through the presence capabilities of the IP multimedia subsystem (IMS) architecture, the service will alert patient's contacts if a hazardous situation is detected depending on his location. Furthermore, information about the older person's security areas has been included in the user profile managed by IMS. In doing so, the service enabler introduced contribute to "context-awareness" paradigm allowing the adaptation and personalization of services depending on user's context and specific conditions or preferences.
Recent Progress in Thallium Bromide Gamma-Ray Spectrometer Development
NASA Astrophysics Data System (ADS)
Kim, Hadong; Kargar, Alireza; Cirignano, Leonard; Churilov, Alexei; Ciampi, Guido; Higgins, William; Olschner, Fred; Shah, Kanai
2012-02-01
In recent years, progress in processing and crystal growth methods have led to a significant increase in the mobility-lifetime product of electrons in thallium bromide (TlBr). This has enabled single carrier collection devices with thickness greater than 1-cm to be fabricated. In this paper we report on our latest results from pixellated devices with depth correction as well as our initial results with Frisch collar devices. After applying depth corrections, energy resolution of approximately 2% (FWHM at 662 keV) was obtained from a 13-mm thick TlBr array operated at -18°C and under continuous bias and irradiation for more than one month. Energy resolution of 2.4% was obtained at room temperature with an 8.4-mm thick TlBr Frisch collar device.
Cleaner cooking solutions to achieve health, climate, and economic cobenefits.
Anenberg, Susan C; Balakrishnan, Kalpana; Jetter, James; Masera, Omar; Mehta, Sumi; Moss, Jacob; Ramanathan, Veerabhadran
2013-05-07
Nearly half the world's population must rely on solid fuels such as biomass (wood, charcoal, agricultural residues, and animal dung) and coal for household energy, burning them in inefficient open fires and stoves with inadequate ventilation. Household solid fuel combustion is associated with four million premature deaths annually; contributes to forest degradation, loss of habitat and biodiversity, and climate change; and hinders social and economic progress as women and children spend hours every day collecting fuel. Several recent studies, as well as key emerging national and international efforts, are making progress toward enabling wide-scale household adoption of cleaner and more efficient stoves and fuels. While significant challenges remain, these efforts offer considerable promise to save lives, improve forest sustainability, slow climate change, and empower women around the world.
On-chip cooling by superlattice-based thin-film thermoelectrics.
Chowdhury, Ihtesham; Prasher, Ravi; Lofgreen, Kelly; Chrysler, Gregory; Narasimhan, Sridhar; Mahajan, Ravi; Koester, David; Alley, Randall; Venkatasubramanian, Rama
2009-04-01
There is a significant need for site-specific and on-demand cooling in electronic, optoelectronic and bioanalytical devices, where cooling is currently achieved by the use of bulky and/or over-designed system-level solutions. Thermoelectric devices can address these limitations while also enabling energy-efficient solutions, and significant progress has been made in the development of nanostructured thermoelectric materials with enhanced figures-of-merit. However, fully functional practical thermoelectric coolers have not been made from these nanomaterials due to the enormous difficulties in integrating nanoscale materials into microscale devices and packaged macroscale systems. Here, we show the integration of thermoelectric coolers fabricated from nanostructured Bi2Te3-based thin-film superlattices into state-of-the-art electronic packages. We report cooling of as much as 15 degrees C at the targeted region on a silicon chip with a high ( approximately 1,300 W cm-2) heat flux. This is the first demonstration of viable chip-scale refrigeration technology and has the potential to enable a wide range of currently thermally limited applications.
A PICKSC Science Gateway for enabling the common plasma physicist to run kinetic software
NASA Astrophysics Data System (ADS)
Hu, Q.; Winjum, B. J.; Zonca, A.; Youn, C.; Tsung, F. S.; Mori, W. B.
2017-10-01
Computer simulations offer tremendous opportunities for studying plasmas, ranging from simulations for students that illuminate fundamental educational concepts to research-level simulations that advance scientific knowledge. Nevertheless, there is a significant hurdle to using simulation tools. Users must navigate codes and software libraries, determine how to wrangle output into meaningful plots, and oftentimes confront a significant cyberinfrastructure with powerful computational resources. Science gateways offer a Web-based environment to run simulations without needing to learn or manage the underlying software and computing cyberinfrastructure. We discuss our progress on creating a Science Gateway for the Particle-in-Cell and Kinetic Simulation Software Center that enables users to easily run and analyze kinetic simulations with our software. We envision that this technology could benefit a wide range of plasma physicists, both in the use of our simulation tools as well as in its adaptation for running other plasma simulation software. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.
Nanoparticle Approaches against Bacterial Infections
Gao, Weiwei; Thamphiwatana, Soracha; Angsantikul, Pavimol; Zhang, Liangfang
2014-01-01
Despite the wide success of antibiotics, the treatment of bacterial infection still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infection. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections. PMID:25044325
Wang, Alan X.; Kong, Xianming
2015-01-01
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428
[History and the development of the studies on HIV and AIDS].
Rogala, Maciej
2011-01-01
The article describes the progress of medical knowledge which has been observed since the finding and discovery of the first case of the immune deficiency syndrome in the world in 1981. During this period the methods of diagnosis and treatment of HIV/AIDS has changed significantly. The progress in this area of examinations which is presently achieved allows unambiguous diagnosis of the virus and the disease. The recognition of the pathogenesis of the HIV and AIDS enabled the beginning of the studies on the medicines having antiretroviral properties. The utilization of the potential of the currently used medicines inhibits the progress of the disease and, in consequence, the elongation of the patients' life span. However, despite excessive clinical experiments in numerous research centres world-wide, until now there has not been found an effective medicine which could totally eradicate this virus from the body nor the vaccine which could prevent the further spread of this virus in the world.
Wang, Alan X; Kong, Xianming
2015-06-01
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.
Use magnetic resonance imaging to assess articular cartilage
Wang, Yuanyuan; Wluka, Anita E.; Jones, Graeme; Ding, Changhai
2012-01-01
Magnetic resonance imaging (MRI) enables a noninvasive, three-dimensional assessment of the entire joint, simultaneously allowing the direct visualization of articular cartilage. Thus, MRI has become the imaging modality of choice in both clinical and research settings of musculoskeletal diseases, particular for osteoarthritis (OA). Although radiography, the current gold standard for the assessment of OA, has had recent significant technical advances, radiographic methods have significant limitations when used to measure disease progression. MRI allows accurate and reliable assessment of articular cartilage which is sensitive to change, providing the opportunity to better examine and understand preclinical and very subtle early abnormalities in articular cartilage, prior to the onset of radiographic disease. MRI enables quantitative (cartilage volume and thickness) and semiquantitative assessment of articular cartilage morphology, and quantitative assessment of cartilage matrix composition. Cartilage volume and defects have demonstrated adequate validity, accuracy, reliability and sensitivity to change. They are correlated to radiographic changes and clinical outcomes such as pain and joint replacement. Measures of cartilage matrix composition show promise as they seem to relate to cartilage morphology and symptoms. MRI-derived cartilage measurements provide a useful tool for exploring the effect of modifiable factors on articular cartilage prior to clinical disease and identifying the potential preventive strategies. MRI represents a useful approach to monitoring the natural history of OA and evaluating the effect of therapeutic agents. MRI assessment of articular cartilage has tremendous potential for large-scale epidemiological studies of OA progression, and for clinical trials of treatment response to disease-modifying OA drugs. PMID:22870497
Schostak, M; Miller, K; Schrader, M
2008-01-01
Radical prostatectomy for treatment of prostate cancer is a technically sophisticated operation. Simpler therapies have therefore been developed in the course of decades. The decisive advantage of a radical operation is the chance of a cure with minimal collateral damage. It is the only approach that enables precise tumor staging. The 10-year progression-free survival probability is approximately 85% for a localized tumor with negative resection margins. This high cure rate is unsurpassed by competitive treatment modalities. Nowadays, experienced surgeons achieve excellent functional results (for example, recovery of continence and erectile function) with minimum morbidity. Even in the locally advanced stage, results are very good compared to those obtained with other treatment modalities. Pathological staging enables stratified adjuvant therapy based on concrete information. The overall prognosis can thus be significantly improved.
FY2013 Progress Report for Fuel & Lubricant Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2014-02-01
Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.
FY2014 Fuel & Lubricant Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stork, Kevin
2016-02-01
Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.
MicroRNA applications for prostate, ovarian and breast cancer in the era of precision medicine
Smith, Bethany; Agarwal, Priyanka
2017-01-01
The high degree of conservation in microRNA from Caenorhabditis elegans to humans has enabled relatively rapid implementation of findings in model systems to the clinic. The convergence of the capacity for genomic screening being implemented in the prevailing precision medicine initiative and the capabilities of microRNA to address these changes holds significant promise. However, prostate, ovarian and breast cancers are heterogeneous and face issues of evolving therapeutic resistance. The transforming growth factor-beta (TGFβ) signaling axis plays an important role in the progression of these cancers by regulating microRNAs. Reciprocally, microRNAs regulate TGFβ actions during cancer progression. One must consider the expression of miRNA in the tumor microenvironment a source of biomarkers of disease progression and a viable target for therapeutic targeting. The differential expression pattern of microRNAs in health and disease, therapeutic response and resistance has resulted in its application as robust biomarkers. With two microRNA mimetics in ongoing restorative clinical trials, the paradigm for future clinical studies rests on the current observational trials to validate microRNA markers of disease progression. Some of today’s biomarkers can be translated to the next generation of microRNA-based therapies. PMID:28289080
FY2016 Advanced Batteries R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview;more » the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.« less
Progress of Rugby Hohlraum Experiments on Omega
NASA Astrophysics Data System (ADS)
Philippe, Franck; Tassin, Veronique; Casner, Alexis; Gauthier, Pascal; Seytor, Patricia; Monteil, Marie-Christine; Park, Hye-Sook; Robey, Harry; Ross, Steven; Amendt, Peter; Girard, Frederic; Villette, Bruno; Reverdin, Charles; Loiseau, Pascal; Caillaud, Tony; Landoas, Olivier; Li, Chi Kang; Petrasso, Richard; Seguin, Fredrick; Rosenberg, Markus
2011-10-01
The rugby hohlraum concept is predicted to enable better coupling and higher gains in the indirect drive approach to ignition. A collaborative experimental program is currently pursued on OMEGA to test this concept in preparation for future megajoule-scale ignition designs. A direct comparison of gas-filled rugby hohlraums with classical cylinders was recently performed, showing a significant (up to ~40%) observed x-ray drive enhancement and neutron yields that are consistently higher in the rugby case. This work extends and confirms our previous findings in empty rugby hohlraums.
Monitoring Students' Academic & Disciplinary Progression.
ERIC Educational Resources Information Center
McDonald, Fred; Kellogg, Larry J.
This document outlines the objectives and procedures of a program at a New Mexico school district whose purpose is to enable school personnel to systematically monitor students' academic and disciplinary progression. The objectives of the program are to diagnose academic or disciplinary problems and prescribe remedies, to establish an oncampus…
Retinal Optical Coherence Tomography Imaging
NASA Astrophysics Data System (ADS)
Drexler, Wolfgang; Fujimoto, James G.
The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in combination with three-dimensional UHR OCT, recently enabled in vivo cellular resolution retinal imaging.
The contribution of tumour-derived exosomes to the hallmarks of cancer.
Meehan, Katie; Vella, Laura J
2016-01-01
Exosomes are small, biologically active extracellular vesicles and over the last decade, both stromal and tumour-derived exosomes (TDE) have been implicated in cancer onset, progression and metastases. Cancer is a complex disease that is underpinned by several "cancer hallmarks", originally described by Hanahan and Weinberg in 2000 and then revised in 2011. The hallmarks of cancer comprise six biological capabilities, along with two emerging hallmarks and two enabling characteristics that facilitate tumour growth and metastatic dissemination. Ample evidence supports a clear role for TDE in four of the original biological hallmarks (sustaining proliferative signalling, resisting cell death, inducing angiogenesis and activating invasion and metastases). A less-defined role exists for TDE in evading growth suppressors, and currently, there is no evidence to suggest a role for TDE in enabling replicative immortality. TDE are intimately involved in the newly defined hallmarks of cancer and enabling characteristics, most evidently in immune inhibition and tumour-promoting inflammation, which ultimately enable escape from immune destruction and tumour progression. Herein, we discuss the role of TDE in the context of the hallmarks and enabling characteristics of cancer as defined by Hanahan and Weinberg.
Jakubiak, Brittany K.; Feeney, Brooke C.
2016-01-01
In two daily-diary studies, we tested the consequences and precursors of daily goal progress throughout the adult lifespan. Attachment theory posits that exploration—including the pursuit of autonomous goals—promotes well-being across the lifespan and is facilitated by support from close others. For both young-adult newlyweds (Study 1) and married couples in late adulthood (Study 2), daily independent goal progress predicted same-day and next-day improvements in psychological, physical, and relational well-being. Specifically, when participants made more progress on their goals than usual on one day, they reported increases in positive affect, sleep quality, and relationship quality, and decreased physical symptoms, the following day (as well as concurrently). Additionally, spousal support (i.e., availability, encouragement, and noninterference) enabled same-day and next-day goal progress. Mediational analyses showed indirect links between spousal support and well-being through goal progress. Some effects were moderated by attachment orientation in the newlywed sample; individuals with greater insecure attachment benefited most from goal progress, and spousal support enabled goal progress most strongly for individuals with less anxious attachment. Overall, these results support and extend attachment theoretical propositions regarding the importance of the exploration system across the adult lifespan. They contribute to existing literature by demonstrating wide-ranging consequences of successful exploration for well-being and by providing evidence for the importance of both exploration and support for exploration into late adulthood. PMID:27560610
Language Assessment in a Snap: Monitoring Progress up to 36 Months
ERIC Educational Resources Information Center
Gilkerson, Jill; Richards, Jeffrey A.; Greenwood, Charles R.; Montgomery, Judy K.
2017-01-01
This article describes the development and validation of the Developmental Snapshot, a 52-item parent questionnaire on child language and vocal communication development that can be administered monthly and scored automatically. The Snapshot was created to provide an easily administered monthly progress monitoring tool that enables parents to…
Molecular Neuroanatomy: A Generation of Progress
Pollock, Jonathan D.; Wu, Da-Yu; Satterlee, John
2014-01-01
The neuroscience research landscape has changed dramatically over the past decade. An impressive array of neuroscience tools and technologies have been generated, including brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity and function, cost effective genome sequencing, new technologies enabling genome manipulation, new imaging methods and new tools for mapping neuronal circuits. However, despite these technological advances, several significant scientific challenges must be overcome in the coming decade to enable a better understanding of brain function and to develop next generation cell type-targeted therapeutics to treat brain disorders. For example, we do not have an inventory of the different types of cells that exist in the brain, nor do we know how to molecularly phenotype them. We also lack robust technologies to map connections between cells. This review will provide an overview of some of the tools and technologies neuroscientists are currently using to move the field of molecular neuroanatomy forward and also discuss emerging technologies that may enable neuroscientists to address these critical scientific challenges over the coming decade. PMID:24388609
Hardware-Enabled Security Through On-Chip Reconfigurable Fabric
2016-02-05
SECURITY CLASSIFICATION OF: The goal of this project was to enable hardware-based security techniques on future microprocessors in a way that they... microprocessors in a way that they can be added and updated after fabrication, similar to software, while maintaining the efficiency and the security of...Progress The goal of this project was to enable hardware-based security techniques on future microprocessors in a way that they can be added and
Microsurgery robots: addressing the needs of high-precision surgical interventions.
Mattos, Leonardo S; Caldwell, Darwin G; Peretti, Giorgio; Mora, Francesco; Guastini, Luca; Cingolani, Roberto
2016-01-01
Robotics has a significant potential to enhance the overall capacity and efficiency of healthcare systems. Robots can help surgeons perform better quality operations, leading to reductions in the hospitalisation time of patients and in the impact of surgery on their postoperative quality of life. In particular, robotics can have a significant impact on microsurgery, which presents stringent requirements for superhuman precision and control of the surgical tools. Microsurgery is, in fact, expected to gain importance in a growing range of surgical specialties as novel technologies progressively enable the detection, diagnosis and treatment of diseases at earlier stages. Within such scenarios, robotic microsurgery emerges as one of the key components of future surgical interventions, and will be a vital technology for addressing major surgical challenges. Nonetheless, several issues have yet to be overcome in terms of mechatronics, perception and surgeon-robot interfaces before microsurgical robots can achieve their full potential in operating rooms. Research in this direction is progressing quickly and microsurgery robot prototypes are gradually demonstrating significant clinical benefits in challenging applications such as reconstructive plastic surgery, ophthalmology, otology and laryngology. These are reassuring results offering confidence in a brighter future for high-precision surgical interventions.
Patel, Shyamal; McGinnis, Ryan S; Silva, Ikaro; DiCristofaro, Steve; Mahadevan, Nikhil; Jortberg, Elise; Franco, Jaime; Martin, Albert; Lust, Joseph; Raj, Milan; McGrane, Bryan; DePetrillo, Paolo; Aranyosi, A J; Ceruolo, Melissa; Pindado, Jesus; Ghaffari, Roozbeh
2016-08-01
Wearable sensors have the potential to enable clinical-grade ambulatory health monitoring outside the clinic. Technological advances have enabled development of devices that can measure vital signs with great precision and significant progress has been made towards extracting clinically meaningful information from these devices in research studies. However, translating measurement accuracies achieved in the controlled settings such as the lab and clinic to unconstrained environments such as the home remains a challenge. In this paper, we present a novel wearable computing platform for unobtrusive collection of labeled datasets and a new paradigm for continuous development, deployment and evaluation of machine learning models to ensure robust model performance as we transition from the lab to home. Using this system, we train activity classification models across two studies and track changes in model performance as we go from constrained to unconstrained settings.
Sanders, John M; Beshore, Douglas C; Culberson, J Christopher; Fells, James I; Imbriglio, Jason E; Gunaydin, Hakan; Haidle, Andrew M; Labroli, Marc; Mattioni, Brian E; Sciammetta, Nunzio; Shipe, William D; Sheridan, Robert P; Suen, Linda M; Verras, Andreas; Walji, Abbas; Joshi, Elizabeth M; Bueters, Tjerk
2017-08-24
High-throughput screening (HTS) has enabled millions of compounds to be assessed for biological activity, but challenges remain in the prioritization of hit series. While biological, absorption, distribution, metabolism, excretion, and toxicity (ADMET), purity, and structural data are routinely used to select chemical matter for further follow-up, the scarcity of historical ADMET data for screening hits limits our understanding of early hit compounds. Herein, we describe a process that utilizes a battery of in-house quantitative structure-activity relationship (QSAR) models to generate in silico ADMET profiles for hit series to enable more complete characterizations of HTS chemical matter. These profiles allow teams to quickly assess hit series for desirable ADMET properties or suspected liabilities that may require significant optimization. Accordingly, these in silico data can direct ADMET experimentation and profoundly impact the progression of hit series. Several prospective examples are presented to substantiate the value of this approach.
Five Reasons to Consider Phytophthora infestans a Reemerging Pathogen.
Fry, W E; Birch, P R J; Judelson, H S; Grünwald, N J; Danies, G; Everts, K L; Gevens, A J; Gugino, B K; Johnson, D A; Johnson, S B; McGrath, M T; Myers, K L; Ristaino, J B; Roberts, P D; Secor, G; Smart, C D
2015-07-01
Phytophthora infestans has been a named pathogen for well over 150 years and yet it continues to "emerge", with thousands of articles published each year on it and the late blight disease that it causes. This review explores five attributes of this oomycete pathogen that maintain this constant attention. First, the historical tragedy associated with this disease (Irish potato famine) causes many people to be fascinated with the pathogen. Current technology now enables investigators to answer some questions of historical significance. Second, the devastation caused by the pathogen continues to appear in surprising new locations or with surprising new intensity. Third, populations of P. infestans worldwide are in flux, with changes that have major implications to disease management. Fourth, the genomics revolution has enabled investigators to make tremendous progress in terms of understanding the molecular biology (especially the pathogenicity) of P. infestans. Fifth, there remain many compelling unanswered questions.
Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy.
Seo, M A; Yoo, J; Dayeh, S A; Picraux, S T; Taylor, A J; Prasankumar, R P
2012-12-12
Recent success in the fabrication of axial and radial core-shell heterostructures, composed of one or more layers with different properties, on semiconductor nanowires (NWs) has enabled greater control of NW-based device operation for various applications. (1-3) However, further progress toward significant performance enhancements in a given application is hindered by the limited knowledge of carrier dynamics in these structures. In particular, the strong influence of interfaces between different layers in NWs on transport makes it especially important to understand carrier dynamics in these quasi-one-dimensional systems. Here, we use ultrafast optical microscopy (4) to directly examine carrier relaxation and diffusion in single silicon core-only and Si/SiO(2) core-shell NWs with high temporal and spatial resolution in a noncontact manner. This enables us to reveal strong coherent phonon oscillations and experimentally map electron and hole diffusion currents in individual semiconductor NWs for the first time.
Zeng, Xueqiang; Luo, Gang
2017-12-01
Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad; Pearce, Robert
2016-01-01
Description of a tool for portfolio analysis of NASA's Aeronautics research progress toward planned community strategic Outcomes is presented. For efficiency and speed, the tool takes advantage of a function developed in Excels Visual Basic for Applications. The strategic planning process for determining the community Outcomes is also briefly discussed. Stakeholder buy-in, partnership performance, progress of supporting Technical Challenges, and enablement forecast are used as the criteria for evaluating progress toward Outcomes. A few illustrative examples of using the tool are also presented.
Exploring Students' Progression in an Inquiry Science Curriculum Enabled by Mobile Learning
ERIC Educational Resources Information Center
Looi, Chee-Kit; Sun, Daner; Xie, Wenting
2015-01-01
The research literature reports on designs of ubiquitous and seamless learning environments enabled by the integration of mobile technology into learning. However, the lack of good pedagogical designs that provide for sustainability and the inadequate investigation of learning outcomes remain major gaps in the current studies on mobile learning.…
Advanced teaching labs in physics - celebrating progress; challenges ahead
NASA Astrophysics Data System (ADS)
Peterson, Richard
A few examples of optical physics experiments may help us first reflect on significant progress on how advanced lab initiatives may now be more effectively developed, discussed, and disseminated - as opposed to only 10 or 15 years back. Many cooperative developments of the last decade are having profound impacts on advanced lab workers and students. Central to these changes are the programs of the Advanced Laboratory Physics Association (ALPhA) (Immersions, BFY conferences), AAPT (advlab-l server, ComPADRE, apparatus competitions, summer workshops/sessions), APS (Reichert Award, FEd activities and sessions), and the Jonathan F. Reichert Foundation (ALPhA support and institution matched equipment grants for Immersion participants). Broad NSF support has helped undergird several of these initiatives. Two of the most significant challenges before this new advanced lab community are (a) to somehow enhance funding opportunities for teaching equipment and apparatus in an era of minimal NSF equipment support, and (b) to help develop a more complementary relationship between research-based advanced lab pedagogies and the development of fresh physics experiments that help enable the mentoring and experimental challenge of our students.
Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian
2014-01-01
Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensions is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices. PMID:24955950
Going Boldly Beyond: Progress on NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Singer, Jody; Crumbly, Chris
2013-01-01
NASA's Space Launch System is implementing an evolvable configuration approach to system development in a resource-constrained era. Legacy systems enable non-traditional development funding and contribute to sustainability and affordability. Limited simultaneous developments reduce cost and schedule risk. Phased approach to advanced booster development enables innovation and competition, incrementally demonstrating affordability and performance enhancements. Advanced boosters will provide performance for the most capable heavy lift launcher in history, enabling unprecedented space exploration benefiting all of humanity.
Establishing a Strong Foundation for School Improvement. Policy Brief
ERIC Educational Resources Information Center
Jerald, Craig
2005-01-01
In 2002, the No Child Left Behind (NCLB) Act instituted fundamental changes in federal education policy, and states were required to hold schools accountable not simply for making some progress but rather for making sufficient progress in enabling student proficiency on state assessments by 2014. The achievement gaps long plaguing American…
Supply Chain Sustainability Analysis of Whole Algae Hydrothermal Liquefaction and Upgrading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegallapati, Ambica Koushik; Dunn, Jennifer B.; Frank, Edward D.
2015-04-01
The Department of Energy's Bioenergy Technology Office (BETO) collaborates with a wide range of institutions towards the development and deployment of biofuels and bioproducts. To facilitate this effort, BETO and its partner national laboratories develop detailed techno-economic assessments (TEA) of biofuel production technologies as part of the development of design cases and state of technology (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand,more » an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available. (SOT) analyses. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables preliminary identification of data gaps and research and development needs and provides goals and targets against which technology progress is assessed. On the other hand, an SOT analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases and includes technical, economic, and environmental criteria as available.« less
Flight Dynamics and GN&C for Spacecraft Servicing Missions
NASA Technical Reports Server (NTRS)
Naasz, Bo; Zimpfer, Doug; Barrington, Ray; Mulder, Tom
2010-01-01
Future human exploration missions and commercial opportunities will be enabled through In-space assembly and satellite servicing. Several recent efforts have developed technologies and capabilities to support these exciting future missions, including advances in flight dynamics and Guidance, Navigation and Control. The Space Shuttle has demonstrated significant capabilities for crewed servicing of the Hubble Space Telescope (HST) and assembly of the International Space Station (ISS). Following the Columbia disaster NASA made significant progress in developing a robotic mission to service the HST. The DARPA Orbital Express mission demonstrated automated rendezvous and capture, In-space propellant transfer, and commodity replacement. This paper will provide a summary of the recent technology developments and lessons learned, and provide a focus for potential future missions.
Anwar, Mekhail; Molinaro, Annette M; Morin, Olivier; Chang, Susan M; Haas-Kogan, Daphne A; Nelson, Sarah J; Lupo, Janine M
2017-09-01
Despite the longstanding role of radiation in cancer treatment and the presence of advanced, high-resolution imaging techniques, delineation of voxels at-risk for progression remains purely a geometric expansion of anatomic images, missing subclinical disease at risk for recurrence while treating potentially uninvolved tissue and increasing toxicity. This remains despite the modern ability to precisely shape radiation fields. A striking example of this is the treatment of glioblastoma, a highly infiltrative tumor that may benefit from accurate identification of subclinical disease. In this study, we hypothesize that parameters from physiologic and metabolic magnetic resonance imaging (MRI) at diagnosis could predict the likelihood of voxel progression at radiographic recurrence in glioblastoma by identifying voxel characteristics that indicate subclinical disease. Integrating dosimetry can reveal its effect on voxel outcome, enabling risk-adapted voxel dosing. As a system example, 24 patients with glioblastoma treated with radiotherapy, temozolomide and an anti-angiogenic agent were analyzed. Pretreatment median apparent diffusion coefficient (ADC), fractional anisotropy (FA), relative cerebral blood volume (rCBV), vessel leakage (percentage recovery), choline-to-NAA index (CNI) and dose of voxels in the T2 nonenhancing lesion (NEL), T1 post-contrast enhancing lesion (CEL) or normal-appearing volume (NAV) of brain, were calculated for voxels that progressed [NAV→NEL, CEL (N = 8,765)] and compared against those that remained stable [NAV→NAV (N = 98,665)]. Voxels that progressed (NAV→NEL) had significantly different (P < 0.01) ADC (860), FA (0.36) and CNI (0.67) versus stable voxels (804, 0.43 and 0.05, respectively), indicating increased cell turnover, edema and decreased directionality, consistent with subclinical disease. NAV→CEL voxels were more abnormal (1,014, 0.28, 2.67, respectively) and leakier (percentage recovery = 70). A predictive model identified areas of recurrence, demonstrating that elevated CNI potentiates abnormal diffusion, even far (>2 cm) from the tumor and dose escalation >45 Gy has diminishing benefits. Integrating advanced MRI with dosimetry can identify at voxels at risk for progression and may allow voxel-level risk-adapted dose escalation to subclinical disease while sparing normal tissue. When combined with modern planning software, this technique may enable risk-adapted radiotherapy in any disease site with multimodal imaging.
Researchers' Bibliography for Raven's Progressive Matrices and Mill Hill Vocabulary Scales.
ERIC Educational Resources Information Center
Court, J. H., Comp.
This annotated bibliography enables researchers who are using Raven's Progressive Matrices or the Mill Hill Vocabulary Scales to become familiar with other work that used these tests. The bibliography derives from Raven's own collection of sources, updated to the end of 1971. The major division of material is by tests rather than subject areas;…
A Task-Content Analysis of an Introductory Entomology Curriculum.
ERIC Educational Resources Information Center
Brandenburg, R.
Described is an analysis of the content, tasks, and strategies needed by students to enable them to identify insects to order by sight and to family by use of a standard dichotomous taxonomic key. Tasks and strategies are broken down and arranged progressively in the approximate order in which students should progress. Included are listings of…
Health-Enabling and Ambient Assistive Technologies: Past, Present, Future.
Haux, R; Koch, S; Lovell, N H; Marschollek, M; Nakashima, N; Wolf, K-H
2016-06-30
During the last decades, health-enabling and ambient assistive technologies became of considerable relevance for new informatics-based forms of diagnosis, prevention, and therapy. To describe the state of the art of health-enabling and ambient assistive technologies in 1992 and today, and its evolution over the last 25 years as well as to project where the field is expected to be in the next 25 years. In the context of this review, we define health-enabling and ambient assistive technologies as ambiently used sensor-based information and communication technologies, aiming at contributing to a person's health and health care as well as to her or his quality of life. Systematic review of all original articles with research focus in all volumes of the IMIA Yearbook of Medical Informatics. Surveying authors independently on key projects and visions as well as on their lessons learned in the context of health-enabling and ambient assistive technologies and summarizing their answers. Surveying authors independently on their expectations for the future and summarizing their answers. IMIA Yearbook papers containing statements on health-enabling and ambient assistive technologies appear first in 2002. These papers form a minor part of published research articles in medical informatics. However, during recent years the number of articles published has increased significantly. Key projects were identified. There was a clear progress on the use of technologies. However proof of diagnostic relevance and therapeutic efficacy remains still limited. Reforming health care processes and focussing more on patient needs are required. Health-enabling and ambient assistive technologies remain an important field for future health care and for interdisciplinary research. More and more publications assume that a person's home and their interaction therein, are becoming important components in health care provision, assessment, and management.
Health-Enabling and Ambient Assistive Technologies: Past, Present, Future
2016-01-01
Summary Background During the last decades, health-enabling and ambient assistive technologies became of considerable relevance for new informatics-based forms of diagnosis, prevention, and therapy. Objectives To describe the state of the art of health-enabling and ambient assistive technologies in 1992 and today, and its evolution over the last 25 years as well as to project where the field is expected to be in the next 25 years. In the context of this review, we define health-enabling and ambient assistive technologies as ambiently used sensor-based information and communication technologies, aiming at contributing to a person’s health and health care as well as to her or his quality of life. Methods Systematic review of all original articles with research focus in all volumes of the IMIA Yearbook of Medical Informatics. Surveying authors independently on key projects and visions as well as on their lessons learned in the context of health-enabling and ambient assistive technologies and summarizing their answers. Surveying authors independently on their expectations for the future and summarizing their answers. Results IMIA Yearbook papers containing statements on health-enabling and ambient assistive technologies appear first in 2002. These papers form a minor part of published research articles in medical informatics. However, during recent years the number of articles published has increased significantly. Key projects were identified. There was a clear progress on the use of technologies. However proof of diagnostic relevance and therapeutic efficacy remains still limited. Reforming health care processes and focussing more on patient needs are required. Conclusions Health-enabling and ambient assistive technologies remain an important field for future health care and for interdisciplinary research. More and more publications assume that a person‘s home and their interaction therein, are becoming important components in health care provision, assessment, and management. PMID:27362588
NASA Technical Reports Server (NTRS)
Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl
2017-01-01
The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.
Understanding the intersections between metabolism and cancer biology
Heiden, Matthew G. Vander; DeBerardinis, Ralph J.
2017-01-01
Transformed cells adapt metabolism to support tumor initiation and progression. Specific metabolic activities can participate directly in the process of transformation or support the biological processes that enable tumor growth. Exploiting cancer metabolism for clinical benefit requires defining the pathways that are limiting for cancer progression and understanding the context specificity of metabolic preferences and liabilities in malignant cells. Progress towards answering these questions is providing new insight into cancer biology and can guide the more effective targeting of metabolism to help patients. PMID:28187287
USDA-ARS?s Scientific Manuscript database
We have shown previously that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative enabling exploitation...
NASA Astrophysics Data System (ADS)
Zerhouni, Erwan; Prisacari, Bogdan; Zhong, Qing; Wild, Peter; Gabrani, Maria
2016-03-01
Images of tissue specimens enable evidence-based study of disease susceptibility and stratification. Moreover, staining technologies empower the evidencing of molecular expression patterns by multicolor visualization, thus enabling personalized disease treatment and prevention. However, translating molecular expression imaging into direct health benefits has been slow. Two major factors contribute to that. On the one hand, disease susceptibility and progression is a complex, multifactorial molecular process. Diseases, such as cancer, exhibit cellular heterogeneity, impeding the differentiation between diverse grades or types of cell formations. On the other hand, the relative quantification of the stained tissue selected features is ambiguous, tedious and time consuming, prone to clerical error, leading to intra- and inter-observer variability and low throughput. Image analysis of digital histopathology images is a fast-developing and exciting area of disease research that aims to address the above limitations. We have developed a computational framework that extracts unique signatures using color, morphological and topological information and allows the combination thereof. The integration of the above information enables diagnosis of disease with AUC as high as 0.97. Multiple staining show significant improvement with respect to most proteins, and an AUC as high as 0.99.
A program for undergraduate research into the mechanisms of sensory coding and memory decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calin-Jageman, R J
This is the final technical report for this DOE project, entitltled "A program for undergraduate research into the mechanisms of sensory coding and memory decay". The report summarizes progress on the three research aims: 1) to identify phyisological and genetic correlates of long-term habituation, 2) to understand mechanisms of olfactory coding, and 3) to foster a world-class undergraduate neuroscience program. Progress on the first aim has enabled comparison of learning-regulated transcripts across closely related learning paradigms and species, and results suggest that only a small core of transcripts serve truly general roles in long-term memory. Progress on the second aimmore » has enabled testing of several mutant phenotypes for olfactory behaviors, and results show that responses are not fully consistent with the combinitoral coding hypothesis. Finally, 14 undergraduate students participated in this research, the neuroscience program attracted extramural funding, and we completed a successful summer program to enhance transitions for community-college students into 4-year colleges to persue STEM fields.« less
John G. Michopoulos; John Hermanson; Athanasios Iliopoulos
2014-01-01
The research areas of mutiaxial robotic testing and design optimization have been recently utilized for the purpose of data-driven constitutive characterization of anisotropic material systems. This effort has been enabled by both the progress in the areas of computers and information in engineering as well as the progress in computational automation. Although our...
ERIC Educational Resources Information Center
Scullard, Sue
1986-01-01
The task of the teacher of foreign languages is to enable the students to progress gradually from teacher/coursebook controlled utterances to complete linguistic autonomy. Role play and a progression of information-gap activities are discussed in terms of developing students' personal autonomy at each level of linguistic competence. (Author/LMO)
e-Learning for Expanding Distance Education in Tertiary Level in Bangladesh: Problems and Progress
ERIC Educational Resources Information Center
Al-Masum, Md. Abdullah; Chowdhury, Saiful Islam
2013-01-01
E-learning has broadly become an important enabler to promote distance education (DE) and lifelong learning in most of the developed countries, but in Bangladesh it is still a new successful progressive system for the learning communities. Distance education is thought to be introduced as an effective way of educating people of all sections in…
Civics Framework for the 2006 National Assessment of Educational Progress. NAEP Civics Project
ERIC Educational Resources Information Center
National Assessment Governing Board, 2007
2007-01-01
To gauge the civic knowledge and skills of the nation's 4th-, 8th-, and 12th-grade students, an assessment has been scheduled for 2006 by the National Assessment of Educational Progress (NAEP). This assessment will enable NAEP to report on trends in civics achievement from 1998 to 2006. The National Assessment Governing Board (NAGB), NAEP's…
NASA Technical Reports Server (NTRS)
Hamlin, Teri L.
2011-01-01
It is important to the Space Shuttle Program (SSP), as well as future manned spaceflight programs, to understand the early mission risk and progression of risk as the program gains insights into the integrated vehicle through flight. The risk progression is important to the SSP as part of the documentation of lessons learned. The risk progression is important to future programs to understand reliability growth and the first flight risk. This analysis uses the knowledge gained from 30 years of operational flights and the current Shuttle PRA to calculate the risk of Loss of Crew and Vehicle (LOCV) at significant milestones beginning with the first flight. Key flights were evaluated based upon historical events and significant re-designs. The results indicated that the Shuttle risk tends to follow a step function as opposed to following a traditional reliability growth pattern where risk exponentially improves with each flight. In addition, it shows that risk can increase due to trading safety margin for increased performance or due to external events. Due to the risk drivers not being addressed, the risk did not improve appreciably during the first 25 flights. It was only after significant events occurred such as Challenger and Columbia, where the risk drivers were apparent, that risk was significantly improved. In addition, this paper will show that the SSP has reduced the risk of LOCV by almost an order of magnitude. It is easy to look back afte r 30 years and point to risks that are now obvious, however; the key is to use this knowledge to benefit other programs which are in their infancy stages. One lesson learned from the SSP is understanding risk drivers are essential in order to considerably reduce risk. This will enable the new program to focus time and resources on identifying and reducing the significant risks. A comprehensive PRA, similar to that of the Shuttle PRA, is an effective tool quantifying risk drivers if support from all of the stakeholders is given.
Challenges in Modeling the Sun-Earth System
NASA Technical Reports Server (NTRS)
Spann, James
2004-01-01
The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects of these phenomena across boundaries between regions and on data analysis that guides and constrains model results. Specific topics to be addressed are: Corotating interaction regions, Coronal mass ejections, Energetic particles, System preconditioning, Extreme events and super storms, End-to-End modeling efforts.
Micromotor-enabled active drug delivery for in vivo treatment of stomach infection.
de Ávila, Berta Esteban-Fernández; Angsantikul, Pavimol; Li, Jinxing; Angel Lopez-Ramirez, Miguel; Ramírez-Herrera, Doris E; Thamphiwatana, Soracha; Chen, Chuanrui; Delezuk, Jorge; Samakapiruk, Richard; Ramez, Valentin; Obonyo, Marygorret; Zhang, Liangfang; Wang, Joseph
2017-08-16
Advances in bioinspired design principles and nanomaterials have led to tremendous progress in autonomously moving synthetic nano/micromotors with diverse functionalities in different environments. However, a significant gap remains in moving nano/micromotors from test tubes to living organisms for treating diseases with high efficacy. Here we present the first, to our knowledge, in vivo therapeutic micromotors application for active drug delivery to treat gastric bacterial infection in a mouse model using clarithromycin as a model antibiotic and Helicobacter pylori infection as a model disease. The propulsion of drug-loaded magnesium micromotors in gastric media enables effective antibiotic delivery, leading to significant bacteria burden reduction in the mouse stomach compared with passive drug carriers, with no apparent toxicity. Moreover, while the drug-loaded micromotors reach similar therapeutic efficacy as the positive control of free drug plus proton pump inhibitor, the micromotors can function without proton pump inhibitors because of their built-in proton depletion function associated with their locomotion.Nano- and micromotors have been demonstrated in vitro for a range of applications. Here the authors demonstrate the in-vivo therapeutic use of micromotors to treat H. pylori infection.
Proteomic Analysis of Metabolic Responses to Biofuels and Chemicals in Photosynthetic Cyanobacteria.
Sun, T; Chen, L; Zhang, W
2017-01-01
Recent progresses in various "omics" technologies have enabled quantitative measurements of biological molecules in a high-throughput manner. Among them, high-throughput proteomics is a rapidly advancing field that offers a new means to quantify metabolic changes at protein level, which has significantly facilitated our understanding of cellular process, such as protein synthesis, posttranslational modifications, and degradation in responding to environmental perturbations. Cyanobacteria are autotrophic prokaryotes that can perform oxygenic photosynthesis and have recently attracted significant attentions as one promising alternative to traditionally biomass-based "microbial cell factories" to produce green fuels and chemicals. However, early studies have shown that the low tolerance to toxic biofuels and chemicals represented one major hurdle for further improving productivity of the cyanobacterial production systems. To address the issue, metabolic responses and their regulation of cyanobacterial cells to toxic end-products need to be defined. In this chapter, we discuss recent progresses in interpreting cyanobacterial responses to biofuels and chemicals using high-throughput proteomics approach, aiming to provide insights and guidelines on how to enhance tolerance and productivity of biofuels or chemicals in the renewable cyanobacteria systems in the future. © 2017 Elsevier Inc. All rights reserved.
Ovarian and oocyte cryopreservation.
Lornage, Jacqueline; Salle, Bruno
2007-08-01
The present article is an update on progress in the two available techniques of oocyte and ovarian cryopreservation: slow cooling/rapid thawing and vitrification. A new line of research has opened in recent years: freezing the whole ovary with its vascular pedicle, so as to enable vascular grafts limiting ischemia-related follicle reserve loss. The technique of mature oocyte vitrification has advanced significantly, with improved oocyte physiology, increased safety, and higher clinical pregnancy rates. The number of studies on whole ovary freezing has grown, and there has been a large-mammal (sheep) live birth by orthotopic graft with vascular anastomosis of a cryopreserved ovary. Ovarian and oocyte cryopreservation is essential to conserving the fertility of young women. Results of mature oocyte freezing techniques have improved significantly over the past few years, but remain poorer than those with embryo freezing. Mature oocyte vitrification is progressing well, but requires safety validation in view of the high cryoprotectant concentrations used. Ovarian cortex fragment freezing is widely used in patients, with two live births after orthotopic graft, worldwide. The problem of rapid graft exhaustion has led to a focus on whole ovary cryopreservation which has resulted in one live birth in a ewe.
The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism
Spanogiannopoulos, Peter; Bess, Elizabeth N.; Carmody, Rachel N.; Turnbaugh, Peter J.
2016-01-01
Although the significance of human genetic polymorphisms in therapeutic outcomes is well established, the importance of our “second genome” (the microbiome) has been largely overlooked. In this Review, we highlight recent studies that shed light on the mechanisms linking the human gut microbiome to the efficacy and toxicity of xenobiotics, including drugs, dietary compounds and environmental toxins. Continued progress in this area could enable more precise tools for predicting patient responses and the development of a next generation of therapeutics based on or targeted at the gut microbiome. Indeed, the admirable goal of precision medicine may require us to first understand the microbial pharmacists within. PMID:26972811
Some recent applications of Navier-Stokes codes to rotorcraft
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1992-01-01
Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations.
Gur, Ilan
2018-01-16
An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.
NASA Technical Reports Server (NTRS)
Manohar, Mareboyana; Tilton, James C.
1994-01-01
A progressive vector quantization (VQ) compression approach is discussed which decomposes image data into a number of levels using full search VQ. The final level is losslessly compressed, enabling lossless reconstruction. The computational difficulties are addressed by implementation on a massively parallel SIMD machine. We demonstrate progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution Radiometer instrument and other Earth observation image data, and investigate the trade-offs in selecting the number of decomposition levels and codebook training method.
Plasmofluidics: Merging Light and Fluids at the Micro-/Nano-Scale
Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph
2016-01-01
Plasmofluidics is the synergistic integration of plasmonics and micro/nano fluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids, and precise manipulation via micro/nano fluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, we examine and categorize the most recent advances in plasmofluidics into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro-/nano-scale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. We conclude with our perspectives on the upcoming challenges, opportunities, and the possible future directions of the emerging field of plasmofluidics. PMID:26140612
Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.
Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph; Liu, Yan Jun; Huang, Tony Jun; Zheng, Yuebing
2015-09-16
Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prognostics for Ground Support Systems: Case Study on Pneumatic Valves
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Goebel, Kai
2011-01-01
Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.
Matsui, Taisuke; Petrikyte, Ieva; Malinauskas, Tadas; Domanski, Konrad; Daskeviciene, Maryte; Steponaitis, Matas; Gratia, Paul; Tress, Wolfgang; Correa-Baena, Juan-Pablo; Abate, Antonio; Hagfeldt, Anders; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Getautis, Vytautas; Saliba, Michael
2016-09-22
Triarylamine-based polymers with different functional groups were synthetized as hole-transport materials (HTMs) for perovskite solar cells (PSCs). The novel materials enabled efficient PSCs without the use of chemical doping (or additives) to enhance charge transport. Devices employing poly(triarylamine) with methylphenylethenyl functional groups (V873) showed a power conversion efficiency of 12.3 %, whereas widely used additive-free poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) demonstrated 10.8 %. Notably, devices with V873 enabled stable PSCs under 1 sun illumination at maximum power point tracking for approximately 40 h at room temperature, and in the dark under elevated temperature (85 °C) for more than 140 h. This is in stark contrast to additive-containing devices, which degrade significantly within the same time frame. The results present remarkable progress towards stable PSC under real working conditions and industrial stress tests. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New transgenic models of Parkinson's disease using genome editing technology.
Cota-Coronado, J A; Sandoval-Ávila, S; Gaytan-Dávila, Y P; Diaz, N F; Vega-Ruiz, B; Padilla-Camberos, E; Díaz-Martínez, N E
2017-11-28
Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterised by selective loss of dopaminergic neurons in the substantia nigra pars compacta, which results in dopamine depletion, leading to a number of motor and non-motor symptoms. In recent years, the development of new animal models using nuclease-based genome-editing technology (ZFN, TALEN, and CRISPR/Cas9 nucleases) has enabled the introduction of custom-made modifications into the genome to replicate key features of PD, leading to significant advances in our understanding of the pathophysiology of the disease. We review the most recent studies on this new generation of in vitro and in vivo PD models, which replicate the most relevant symptoms of the disease and enable better understanding of the aetiology and mechanisms of PD. This may be helpful in the future development of effective treatments to halt or slow disease progression. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
High Resolution Analysis of Copy Number Mutation in Breast Cancer
2005-05-01
tissues and Epstein - Barr sentations and arrays of Hind III probes additional CNPs, as would an increase in the virus -immortalized lymphoblastoid cell...software and laboratory procedures for the design of inter-phase FISH primers. We have also made progress in developing database and data processing...Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultane- ous measurement of copy
2013-04-01
by employing a microfluidic -based compartmentalized 3D co-culture platform enabling both contact-free and contact-associated co-cultures. 15...SUBJECT TERMS Heterocellular contact between cancer cells and stromal fibroblasts, Microfluidics , 3D 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...and human mammary fibroblasts (HMFs) in breast cancer progression by employing a microfluidic - based compartmentalized 3D co-culture platform
Progress in thin-film silicon solar cells based on photonic-crystal structures
NASA Astrophysics Data System (ADS)
Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu
2018-06-01
We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.
Brennan, Lorraine; Hu, Frank B
2018-04-24
The application of metabolomics in nutrition epidemiology holds great promise and there is a high expectation that it will play a leading role in deciphering the interactions between diet and health. However, while significant progress has been made in identification of putative biomarkers more work is needed to address the use of the biomarkers in dietary assessment. The aim of this review to critically evaluate progress in these areas and to identify challenges that need to be addressed going forward. The notable applications of dietary biomarkers in nutritional epidemiology include (1) Determination of food intake based on biomarkers levels and calibration equations from feeding studies (2) Classification of individuals into dietary patterns based on the urinary metabolic profile and (3) Application of metabolome-wide-association studies. Further work is needed to address some specific challenges to enable biomarkers to reach their full potential. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Kindler syndrome: extension of FERMT1 mutational spectrum and natural history.
Has, Cristina; Castiglia, Daniele; del Rio, Marcela; Diez, Marta Garcia; Piccinni, Eugenia; Kiritsi, Dimitra; Kohlhase, Jürgen; Itin, Peter; Martin, Ludovic; Fischer, Judith; Zambruno, Giovanna; Bruckner-Tuderman, Leena
2011-11-01
Mutations in the FERMT1 gene (also known as KIND1), encoding the focal adhesion protein kindlin-1, underlie the Kindler syndrome (KS), an autosomal recessive skin disorder with an intriguing progressive phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. Herein we review the clinical and genetic data of 62 patients, and delineate the natural history of the disorder, for example, age at onset of symptoms, or risk of malignancy. Although most mutations are predicted to lead to premature termination of translation, and to loss of kindlin-1 function, significant clinical variability is observed among patients. There is an association of FERMT1 missense and in-frame deletion mutations with milder disease phenotypes, and later onset of complications. Nevertheless, the clinical variability is not fully explained by genotype-phenotype correlations. Environmental factors and yet unidentified modifiers may play a role. Better understanding of the molecular pathogenesis of KS should enable the development of prevention strategies for disease complications. © 2011 Wiley Periodicals, Inc.
Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; ...
2014-12-06
Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensionsmore » is highly novel. In this study, we will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.« less
Prospects and progress of high Tc superconductivity for space applications
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Sokoloski, Marty M.
1991-01-01
Current research in the area of high temperature superconductivity is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAlO3 produced far superior RF characteristics when compared to metallic films on the same substrate. The achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high-Q filters. Melt texturing and melt-quenched techniques are being used to produce bulk material with optimized magnetic properties. These yttrium-enriched materials possess enhanced flux pinning characteristics and could lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies were conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magnetoplasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar, and Mars mission applications.
Beattie, Allison; Yates, Robert; Noble, Douglas J
2016-01-01
Universal health coverage generates significant health and economic benefits and enables governments to reduce inequity. Where universal health coverage has been implemented well, it can contribute to nation-building. This analysis reviews evidence from Asia and Pacific drawing out determinants of successful systems and barriers to progress with a focus on women and children. Access to healthcare is important for women and children and contributes to early childhood development. Universal health coverage is a political process from the start, and public financing is critical and directly related to more equitable health systems. Closing primary healthcare gaps should be the foundation of universal health coverage reforms. Recommendations for policy for national governments to improve universal health coverage are identified, including countries spending < 3% of gross domestic product in public expenditure on health committing to increasing funding by at least 0.3%/year to reach a minimum expenditure threshold of 3%. PMID:28588989
Patient–physician collaboration in rheumatology: a necessity
Nikiphorou, Elena; Alunno, Alessia; Carmona, Loreto; Kouloumas, Marios; Bijlsma, Johannes; Cutolo, Maurizio
2017-01-01
Over the past few decades, there has been significant and impressive progress in the understanding and management of rheumatic diseases. One of the key reasons for succeeding in making this progress has been the increasingly stronger partnership between physicians and patients, setting a milestone in patient care. In this viewpoint, we discuss the recent evolution of the physician–patient relationship over time in Europe, reflecting on the ‘journey’ from behind the clinic walls through to clinical and research collaborations at national and international level and the birth of healthcare professional and ‘rheumatic’ patient organisations. The role of expert patients and patient advocates in clinical and scientific committees now represents a core part of the decision-making process. In more recent years and following the recognition that the young patients, physicians and academics have a voice and needs of their own, including the need to be educated and instructed, has encouraged the establishment of youth organisations, enabling change and innovation to take place at a uniquely different level. PMID:29152329
Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian
2014-12-10
Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensions is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koda, Masahiko; Tokunaga, Shiho; Okamoto, Toshiaki; Hodozuka, Masanori; Miyoshi, Kennichi; Kishina, Manabu; Fujise, Yuki; Kato, Jun; Matono, Tomomitsu; Sugihara, Takaaki; Oyama, Kenji; Hosho, Keiko; Okano, Jun-ichi; Murawaki, Yoshikazu; Kakite, Suguru; Yamashita, Eijiro
2015-12-01
The aim of this study was to investigate the feasibility of ablative margin (AM) grading by magnetic resonance imaging (MRI) with Gd-EOB-DTPA administered prior to radiofrequency ablation (RFA), and to identify factors for achieving a sufficient AM and predictors for local tumor progression. A total of 124 hepatocellular carcinomas (HCCs) were treated by RFA after Gd-EOB-DTPA administration. MRI and enhanced CT were performed within seven hours and one month after RFA. The AM assessment was categorized using three grades: AM (+), low-intensity area with continuous high-intensity rim; AM zero, low-intensity area with discontinuous high-intensity rim; and AM (-), low-intensity area extends beyond the high-intensity rim. Patients were followed and local tumor progression was observed. AM (+), AM zero, AM (-), and indeterminate were found in 34, 33, 26, and 31 nodules, respectively. The overall agreement rate between MRI and enhanced CT for the diagnosis of AM was 56.8%. The κ coefficient was 0.326 (p<0.001), indicating moderate agreement. Multivariate logistic regression analysis showed that a significant factor for the achievement of AM (+) on MRI was no contiguous vessels. The cumulative local tumor progression rates (0% at 1, 2, and 3 years) in 33 AM (+) nodules were significantly lower than those (3.6%, 11.5%, and 18.3% at 1, 2, and 3 years respectively) in 32 AM zero nodules. A multivariate Cox proportional hazards model identified tumor size as an independent predictor for local tumor progression. Gd-EOB-DTPA-MRI enabled an early assessment of RFA effectiveness in the majority ofHCC nodules. Local tumor progression was not detected in AM (+) nodules during the follow-up. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Thermal structures: Four decades of progress
NASA Technical Reports Server (NTRS)
Thornton, Earl A.
1990-01-01
Since the first supersonic flight in October 1947, the United States has designed, developed and flown flight vehicles within increasingly severe aerothermal environments. Over this period, major advances in engineering capabilities have occurred that will enable the design of thermal structures for high speed flight vehicles in the twenty-first century. Progress in thermal-structures is surveyed for the last four decades to provide a historical perspective for future efforts.
Chen, Kung-Yen; Lin, Jui-An; Yao, Han-Yun; Hsu, An-Chih; Tai, Yu-Ting; Chen, Jui-Tai; Hsieh, Mao-Chih; Shen, Tang-Long; Hsu, Ren-Yi; Wu, Hong-Tan; Wang, Guey Horng; Ho, Bing-Ying; Chen, Yu-Pei
2018-04-01
Arctigenin (ATG), a lignin extracted from Arctium lappa (L.), exerts antioxidant and anti-inflammatory effects. We hypothesized that ATG exerts a protective effect on hepatocytes by preventing nonalcoholic fatty liver disease (NAFLD) progression associated with lipid oxidation-associated lipotoxicity and inflammation. We established an in vitro NAFLD cell model by using normal WRL68 hepatocytes to investigate oleic acid (OA) accumulation and the potential bioactive role of ATG. The results revealed that ATG inhibited OA-induced lipid accumulation, lipid peroxidation, and inflammation in WRL68 hepatocytes, as determined using Oil Red O staining, thiobarbituric acid reactive substance assay, and inflammation antibody array assays. Quantitative RT-PCR analysis demonstrated that ATG significantly mitigated the expression of acetylcoenzyme A carboxylase 1 and sterol regulatory element-binding protein-1 and significantly increased the expression of carnitine palmitoyltransferase 1 and peroxisome proliferator-activated receptor alpha. The 40 targets of the Human Inflammation Antibody Array indicated that ATG significantly inhibited the elevation of the U937 lymphocyte chemoattractant, ICAM-1, IL-1β, IL-6, IL-6sR, IL-7, and IL-8. ATG could activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK) pathways and could increase the phosphorylation levels of Akt and AMPK to mediate cell survival, lipid metabolism, oxidation stress, and inflammation. Thus, we demonstrated that ATG could inhibit NAFLD progression associated with lipid oxidation-associated lipotoxicity and inflammation, and we provided insights into the underlying mechanisms and revealed potential targets to enable a thorough understanding of NAFLD progression. Copyright © 2018 Elsevier Inc. All rights reserved.
Volmer, J; Lüders, C J
1981-01-01
Morphometric investigations were carried out on the portal tracts of the liver in different forms of chronic hepatitis. The investigation groups each contained 25 liver biopsies, which were subdivided into cases with normal liver, a subsiding acute virus hepatitis, three different forms of chronic persistent hepatitis (CPH) and chronic aggressive hepatitis type IIa (CAH IIa). Determinations of the volume and surface of the portal tracts and their components enabled three forms of COH (type Ia, Ib, Ic) to be characterised. Preliminary clinical and semiquantitative histological investigations were correlated with a significant difference in the histological characteristics and prognosis. HBsAg-positive and HBsAg-negative cases showed no significant morphologically detectable differences in all grups investigated. Morphometry is suitable for investigation of pathological changes in liver tissue, especially the portal tracts.
Nanomaterial-enabled Rapid Detection of Water Contaminants.
Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong
2015-10-28
Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S
2010-01-01
The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena deficiency during development causes defects in invasive processes involved in mammary gland development. These findings suggest that functional intervention targeting Mena in breast cancer patients may provide a valuable treatment option to delay tumor progression and decrease invasion and metastatic spread leading to an improved prognostic outcome.
NASA Astrophysics Data System (ADS)
Hu, Fangjing; Lucyszyn, Stepan
2016-09-01
The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, R.; Melin, A.; Burress, T.
The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate andmore » more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.« less
Absil, Philippe P; Verheyen, Peter; De Heyn, Peter; Pantouvaki, Marianna; Lepage, Guy; De Coster, Jeroen; Van Campenhout, Joris
2015-04-06
Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.
Long-range, low-cost electric vehicles enabled by robust energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ping; Ross, Russel; Newman, Aron
2015-09-18
ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less
Genetics Home Reference: Parkinson disease
... Email Facebook Twitter Home Health Conditions Parkinson disease Parkinson disease Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Parkinson disease is a progressive disorder of the nervous system. ...
Genetics Home Reference: pulmonary arterial hypertension
... Home Health Conditions Pulmonary arterial hypertension Pulmonary arterial hypertension Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Pulmonary arterial hypertension is a progressive disorder characterized by abnormally high ...
Trapp, Judith; McAfee, Alison; Foster, Leonard J
2017-02-01
Globally, there are over 20 000 bee species (Hymenoptera: Apoidea: Anthophila) with a host of biologically fascinating characteristics. Although they have long been studied as models for social evolution, recent challenges to bee health (mainly diseases and pesticides) have gathered the attention of both public and research communities. Genome sequences of twelve bee species are now complete or under progress, facilitating the application of additional 'omic technologies. Here, we review recent developments in honey bee and native bee research in the genomic era. We discuss the progress in genome sequencing and functional annotation, followed by the enabled comparative genomics, proteomics and transcriptomics applications regarding social evolution and health. Finally, we end with comments on future challenges in the postgenomic era. © 2016 John Wiley & Sons Ltd.
The future of poultry science research: things I think I think.
Taylor, R L
2009-06-01
Much poultry research progress has occurred over the first century of the Poultry Science Association. During that time, specific problems have been solved and much basic biological knowledge has been gained. Scientific discovery has exceeded its integration into foundation concepts. Researchers need to be involved in the public's development of critical thinking skills to enable discernment of fact versus fiction. Academic, government, and private institutions need to hire the best people. Issues of insufficient research funding will be remedied by a combination of strategies rather than by a single cure. Scientific advocacy for poultry-related issues is critical to success. Two other keys to the future are funding for higher-risk projects, whose outcome is truly unknown, and specific allocations for new investigators. Diligent, ongoing efforts by poultry scientists will enable progress beyond the challenges.
2012-04-01
and Section 1230 of the National Defense Authorization Act for Fiscal...has personally taken ownership of anti-corruption reforms within the Ministry of Defense and is fighting to make the MoD an example for the rest of...progress, the ANA is expected to lack combat enablers and logistics support for the foreseeable future . AFGHAN AIR FORCE The Afghan Air Force’s
ERIC Educational Resources Information Center
DeCiccio, Albert C.
2010-01-01
(Purpose) This is a report about the Urban and Rural Healthcare Academy Pilot Program (HAP) that launched at Southern Vermont College (SVC) and Wheelock College (WC) in summer 2010. HAP enabled 18 vulnerable high school students to learn about how to progress to college, how to transition when they arrive on a college campus, and how to prepare…
Kranz, Christine
2014-01-21
In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.
NASA Technical Reports Server (NTRS)
Gasch, Matthew J.
2011-01-01
Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.
1976-01-01
The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.
Center for Multiscale Plasma Dynamics: Report on Activities (UCLA/MIT), 2009-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy Carter
2011-04-18
The final 'phaseout' year of the CMPD ended July 2010; a no cost extension was requested until May 2011 in order to enable the MIT subcontract funds to be fully utilized. Research progress over this time included verification and validation activities for the BOUT and BOUT++ code, studies of spontaneous reconnection in the VTF facility at MIT, and studies of the interaction between Alfven waves and drift waves in LAPD. The CMPD also hosted the 6th plasma physics winter school in 2010 (jointly with the NSF frontier center the Center for Magnetic Self-Organization, significant funding came from NSF for thismore » most recent iteration of the Winter School).« less
Recent Advances in Liquid Metal Manipulation toward Soft Robotics and Biotechnologies.
Yu, Yue; Miyako, Eijiro
2018-04-06
Interest has grown significantly in the field of soft robotics, which seeks to develop machinery capable of duplicating the elastic and rheological properties of typically polymeric or elastomeric biological tissues and organs. As a result of a number of unique properties, gallium-based liquid metals (LMs) are emerging as materials used in the forefront of soft robotics research. Finding methods to enable the sophisticated manipulation of LMs will be essential for further progress in the field. This review provides a critical discussion of the manipulation of LMs and on important biotechnological applications of LMs including microfluidics, healthcare devices, biomaterials, and nanomedicines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immersion lithography defectivity analysis at DUV inspection wavelength
NASA Astrophysics Data System (ADS)
Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.
2007-03-01
Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.
Peavey, Mary C; Reynolds, Corey L; Szwarc, Maria M; Gibbons, William E; Valdes, Cecilia T; DeMayo, Francesco J; Lydon, John P
2017-10-24
High-frequency ultrasonography (HFUS) is a common method to non-invasively monitor the real-time development of the human fetus in utero. The mouse is routinely used as an in vivo model to study embryo implantation and pregnancy progression. Unfortunately, such murine studies require pregnancy interruption to enable follow-up phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction of HFUS imaging data for early detection and characterization of murine embryo implantation sites and their individual developmental progression in utero. Combining HFUS imaging with 3-D reconstruction and modeling, we were able to accurately quantify embryo implantation site number as well as monitor developmental progression in pregnant C57BL6J/129S mice from 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. with the use of a transducer. Measurements included: number, location, and volume of implantation sites as well as inter-implantation site spacing; embryo viability was assessed by cardiac activity monitoring. In the immediate post-implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in both mesh and solid overlay format enabled visual representation of the developing pregnancies within each uterine horn. As genetically engineered mice continue to be used to characterize female reproductive phenotypes derived from uterine dysfunction, this method offers a new approach to detect, quantify, and characterize early implantation events in vivo. This novel use of 3-D HFUS imaging demonstrates the ability to successfully detect, visualize, and characterize embryo-implantation sites during early murine pregnancy in a non-invasive manner. The technology offers a significant improvement over current methods, which rely on the interruption of pregnancies for gross tissue and histopathologic characterization. Here we use a video and text format to describe how to successfully perform ultrasounds of early murine pregnancy to generate reliable and reproducible data with reconstruction of the uterine form in mesh and solid 3-D images.
Takahashi, Keigo; Sato, Hideki; Hattori, Hidenori; Takao, Masaki; Takahashi, Shinichi; Suzuki, Norihiro
2017-09-30
A 28-year-old Japanese male without a significant past medical history presented with new-onset generalized clonic seizure and headache. A brain MRI revealed multiple enhanced lesions on both cerebral hemispheres. Laboratory exams showed no evidence of systemic inflammation or auto-immune antibodies such as ANCAs. Despite four courses of high-dose methylprednisolone pulse therapy and five treatments with plasmapheresis, his symptoms worsened and the MRI lesions progressed rapidly. During these treatments, we performed a targeted brain biopsy, that revealed histological findings consistent with a predominant angiitis of parenchymal and subdural small vessels. He was provided with diagnosis of central nervous system vasculitis (CNSV). Subsequent cyclophosphamide pulse therapy enabled a progressive successful improvement of his symptoms. While diagnostic methods for CNSV remain controversial, histological findings are thought to be more useful in obtaining a more definitive diagnosis than findings in image studies, such as MRI and angiography. We suggest that a brain biopsy should be considered during the early period of cases with suspected CNSV and rapid clinical deterioration. We also detected human herpesvirus 7 (HHV-7) using PCR technology in brain biopsy specimens, however the relationship between CNSV and HHV-7 infection is unknow.
Fundamental and progress of Bi2Te3-based thermoelectric materials
NASA Astrophysics Data System (ADS)
Hong, Min; Chen, Zhi-Gang; Zou, Jin
2018-04-01
Thermoelectric materials, enabling the directing conversion between heat and electricity, are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels. Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature. Due to the intensive theoretical investigations and experimental demonstrations, significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials. In this review, we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties. On this basis, we studied the effect of material parameters on thermoelectric properties. Then, we analyzed the features of Bi2Te3-based thermoelectric materials, including the lattice defects, anisotropic behavior and the strong bipolar conduction at relatively high temperature. Then we accordingly summarized the strategies for enhancing the thermoelectric performance, including point defect engineering, texture alignment, and band gap enlargement. Moreover, we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method, ball milling, and melt spinning. Lastly, we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3, which will enlighten the enhancement of thermoelectric performance in broader materials.
Aguilar, Carlos A.; Shcherbina, Anna; Ricke, Darrell O.; Pop, Ramona; Carrigan, Christopher T.; Gifford, Casey A.; Urso, Maria L.; Kottke, Melissa A.; Meissner, Alexander
2015-01-01
Traumatic lower-limb musculoskeletal injuries are pervasive amongst athletes and the military and typically an individual returns to activity prior to fully healing, increasing a predisposition for additional injuries and chronic pain. Monitoring healing progression after a musculoskeletal injury typically involves different types of imaging but these approaches suffer from several disadvantages. Isolating and profiling transcripts from the injured site would abrogate these shortcomings and provide enumerative insights into the regenerative potential of an individual’s muscle after injury. In this study, a traumatic injury was administered to a mouse model and healing progression was examined from 3 hours to 1 month using high-throughput RNA-Sequencing (RNA-Seq). Comprehensive dissection of the genome-wide datasets revealed the injured site to be a dynamic, heterogeneous environment composed of multiple cell types and thousands of genes undergoing significant expression changes in highly regulated networks. Four independent approaches were used to determine the set of genes, isoforms, and genetic pathways most characteristic of different time points post-injury and two novel approaches were developed to classify injured tissues at different time points. These results highlight the possibility to quantitatively track healing progression in situ via transcript profiling using high- throughput sequencing. PMID:26381351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Song; Shi, Tujin; Fillmore, Thomas L.
Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low ng/mL to sub-ng/mL level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundant but biologically important proteins (e.g., ≤100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging. To address this need, we have developed an antibody-independent Deep-Dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide enrichment combined withmore » precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ~5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue has been demonstrated to enable precise quantification of endogenous proteins at ~10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibody is not available.« less
Rift Valley Fever: Recent Insights into Pathogenesis and Prevention▿
Boshra, Hani; Lorenzo, Gema; Busquets, Núria; Brun, Alejandro
2011-01-01
Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health. While outbreaks have traditionally occurred in sub-Saharan Africa, recent outbreaks in the Middle East have raised awareness of the potential of this virus to spread to Europe, Asia, and the Americas. Although the virus was initially characterized almost 80 years ago, the only vaccine approved for widespread veterinary use is an attenuated strain that has been associated with significant pathogenic side effects. However, increased understanding of the molecular biology of the virus over the last few years has led to recent advances in vaccine design and has enabled the development of more-potent prophylactic measures to combat infection. In this review, we discuss several aspects of RVFV, with particular emphasis on the molecular components of the virus and their respective roles in pathogenesis and an overview of current vaccine candidates. Progress in understanding the epidemiology of Rift Valley fever has also enabled prediction of potential outbreaks well in advance, thus providing another tool to combat the physical and economic impact of this disease. PMID:21450816
Non-alcoholic fatty liver and the gut microbiota.
Bashiardes, Stavros; Shapiro, Hagit; Rozin, Shachar; Shibolet, Oren; Elinav, Eran
2016-09-01
Non-alcoholic fatty liver (NAFLD) is a common, multi-factorial, and poorly understood liver disease whose incidence is globally rising. NAFLD is generally asymptomatic and associated with other manifestations of the metabolic syndrome. Yet, up to 25% of NAFLD patients develop a progressive inflammatory liver disease termed non-alcoholic steatohepatitis (NASH) that may progress towards cirrhosis, hepatocellular carcinoma, and the need for liver transplantation. In recent years, several lines of evidence suggest that the gut microbiome represents a significant environmental factor contributing to NAFLD development and its progression into NASH. Suggested microbiome-associated mechanisms contributing to NAFLD and NASH include dysbiosis-induced deregulation of the gut endothelial barrier function, which facilitates systemic bacterial translocation, and intestinal and hepatic inflammation. Furthermore, increased microbiome-modulated metabolites such as lipopolysaccharides, short chain fatty acids (SCFAs), bile acids, and ethanol, may affect liver pathology through multiple direct and indirect mechanisms. Herein, we discuss the associations, mechanisms, and clinical implications of the microbiome's contribution to NAFLD and NASH. Understanding these contributions to the development of fatty liver pathogenesis and its clinical course may serve as a basis for development of therapeutic microbiome-targeting approaches for treatment and prevention of NAFLD and NASH. Intestinal host-microbiome interactions play diverse roles in the pathogenesis and progression of NAFLD and NASH. Elucidation of the mechanisms driving these microbial effects on the pathogenesis of NAFLD and NASH may enable to identify new diagnostic and therapeutic targets of these common metabolic liver diseases. This article is part of a special issue on microbiota.
Genetics Home Reference: spinocerebellar ataxia type 6
... Twitter Home Health Conditions SCA6 Spinocerebellar ataxia type 6 Printable PDF Open All Close All Enable Javascript ... the expand/collapse boxes. Description Spinocerebellar ataxia type 6 ( SCA6 ) is a condition characterized by progressive problems ...
Genetics Home Reference: familial encephalopathy with neuroserpin inclusion bodies
... Home Health Conditions FENIB Familial encephalopathy with neuroserpin inclusion bodies Printable PDF Open All Close All Enable ... expand/collapse boxes. Description Familial encephalopathy with neuroserpin inclusion bodies ( FENIB ) is a disorder that causes progressive ...
Maternal health literacy progression among rural perinatal women.
Mobley, Sandra C; Thomas, Suzanne Dixson; Sutherland, Donald E; Hudgins, Jodi; Ange, Brittany L; Johnson, Maribeth H
2014-10-01
This research examined changes in maternal health literacy progression among 106 low income, high risk, rural perinatal African American and White women who received home visits by Registered Nurse Case Managers through the Enterprise Community Healthy Start Program. Maternal health literacy progression would enable women to better address intermediate factors in their lives that impacted birth outcomes, and ultimately infant mortality (Lu and Halfon in Mater Child Health J 7(1):13-30, 2003; Sharma et al. in J Natl Med Assoc 86(11):857-860, 1994). The Life Skills Progression Instrument (LSP) (Wollesen and Peifer, in Life skills progression. An outcome and intervention planning instrument for use with families at risk. Paul H. Brookes Publishing Co., Baltimore, 2006) measured changes in behaviors that represented intermediate factors in birth outcomes. Maternal Health Care Literacy (LSP/M-HCL) was a woman's use of information, critical thinking and health care services; Maternal Self Care Literacy (LSP/M-SCL) was a woman's management of personal and child health at home (Smith and Moore in Health literacy and depression in the context of home visitation. Mater Child Health J, 2011). Adequacy was set at a score of (≥4). Among 106 women in the study initial scores were inadequate (<4) on LSP/M-HCL (83 %), and on LSP/M-SCL (30 %). Significant positive changes were noted in maternal health literacy progression from the initial prenatal assessment to the first (p < .01) postpartum assessment and to the final (p < .01) postpartum assessment using McNemar's test of gain scores. Numeric comparison of first and last gain scores indicated women's scores progressed (LSP/M-HCL; p < .0001) and (LSP/M-SCL; p < .0001). Elevated depression scores were most frequent among women with <4 LSP/M-HCL and/or <4 LSP/M-SCL. Visit notes indicated lack or loss of relationship with the father of the baby and intimate partner discord contributed to higher depression scores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Hai; Dong, Junhang; Lin, Jerry
2012-03-01
This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.
Collaborative Web-Enabled GeoAnalytics Applied to OECD Regional Data
NASA Astrophysics Data System (ADS)
Jern, Mikael
Recent advances in web-enabled graphics technologies have the potential to make a dramatic impact on developing collaborative geovisual analytics (GeoAnalytics). In this paper, tools are introduced that help establish progress initiatives at international and sub-national levels aimed at measuring and collaborating, through statistical indicators, economic, social and environmental developments and to engage both statisticians and the public in such activities. Given this global dimension of such a task, the “dream” of building a repository of progress indicators, where experts and public users can use GeoAnalytics collaborative tools to compare situations for two or more countries, regions or local communities, could be accomplished. While the benefits of GeoAnalytics tools are many, it remains a challenge to adapt these dynamic visual tools to the Internet. For example, dynamic web-enabled animation that enables statisticians to explore temporal, spatial and multivariate demographics data from multiple perspectives, discover interesting relationships, share their incremental discoveries with colleagues and finally communicate selected relevant knowledge to the public. These discoveries often emerge through the diverse backgrounds and experiences of expert domains and are precious in a creative analytics reasoning process. In this context, we introduce a demonstrator “OECD eXplorer”, a customized tool for interactively analyzing, and collaborating gained insights and discoveries based on a novel story mechanism that capture, re-use and share task-related explorative events.
Tonry, Claire; Armstrong, John; Pennington, Stephen
2017-01-01
Approximately one in six men are diagnosed with Prostate Cancer every year in the Western world. Although it can be well managed and non-life threatening in the early stages, over time many patients cease to respond to treatment and develop castrate resistant prostate cancer (CRPC). CRPC represents a clinically challenging and lethal form of prostate cancer. Progression of CRPC is, in part, driven by the ability of cancer cells to alter their metabolic profile during the course of tumourgenesis and metastasis so that they can survive in oxygen and nutrient-poor environments and even withstand treatment. This work was carried out as a continuation of a study aimed towards gaining greater mechanistic understanding of how conditions within the tumour microenvironment impact on both androgen sensitive (LNCaP) and androgen independent (LNCaP-abl and LNCaP-abl-Hof) prostate cancer cell lines. Here we have applied technically robust and reproducible label-free liquid chromatography mass spectrometry analysis for comprehensive proteomic profiling of prostate cancer cell lines under hypoxic conditions. This led to the identification of over 4,000 proteins – one of the largest protein datasets for prostate cancer cell lines established to date. The biological and clinical significance of proteins showing a significant change in expression as result of hypoxic conditions was established. Novel, intuitive workflows were subsequently implemented to enable robust, reproducible and high throughput verification of selected proteins of interest. Overall, these data suggest that this strategy supports identification of protein biomarkers of prostate cancer progression and potential therapeutic targets for CRPC. PMID:28410543
Tsang, Jung Yin; Blakeman, Tom; Hegarty, Janet; Humphreys, John; Harvey, Gill
2016-04-04
Chronic kidney disease (CKD) is common and a significant marker of morbidity and mortality. Its management in primary care is essential for maintenance of cardiovascular health, avoidance of acute kidney injury (AKI) and delay in progression to end-stage renal disease. Although many guidelines and interventions have been established, there is global evidence of an implementation gap, including variable identification rates and low patient communication and awareness. The objective of this study is to understand the factors enabling and constraining the implementation of CKD interventions in primary care. A rapid realist review was conducted that involved a primary literature search of three databases to identify existing CKD interventions in primary care between the years 2000 and 2014. A secondary search was performed as an iterative process and included bibliographic and grey literature searches of reference lists, authors and research groups. A systematic approach to data extraction using Normalisation Process Theory (NPT) illuminated key mechanisms and contextual factors that affected implementation. Our primary search returned 710 articles that were narrowed down to 18 relevant CKD interventions in primary care. Our findings suggested that effective management of resources (encompassing many types) was a significant contextual factor enabling or constraining the functioning of mechanisms. Three key intervention features were identified from the many that contributed to successful implementation. Firstly, it was important to frame CKD interventions appropriately, such as within the context of cardiovascular health and diabetes. This enabled buy-in and facilitated an understanding of the significance of CKD and the need for intervention. Secondly, interventions that were compatible with existing practices or patients' everyday lives were readily accepted. In contrast, new systems that could not be integrated were abandoned as they were viewed as inconvenient, generating more work. Thirdly, ownership of the feedback process allowed users to make individualised improvements to the intervention to suit their needs. Our rapid realist review identified mechanisms that need to be considered in order to optimise the implementation of interventions to improve the management of CKD in primary care. Further research into the factors that enable prolonged sustainability and cost-effectiveness is required for efficient resource utilisation.
NASA Astrophysics Data System (ADS)
Irvine, Darrell
2018-06-01
Darrell Irvine provides an overview of the recent advances in materials science that have enabled the use of innovative natural and synthetic compounds in vaccine development capable of regulating the potency and safety of new vaccines progressing towards the clinic.
Mathews, Juanita; Levin, Michael
2018-04-20
Breakthroughs in biomedicine and synthetic bioengineering require predictive, rational control over anatomical structure and function. Recent successes in manipulating cellular and molecular hardware have not been matched by progress in understanding the patterning software implemented during embryogenesis and regeneration. A fundamental capability gap is driving desired changes in growth and form to address birth defects and traumatic injury. Here we review new tools, results, and conceptual advances in an exciting emerging field: endogenous non-neural bioelectric signaling, which enables cellular collectives to make global decisions and implement large-scale pattern homeostasis. Spatially distributed electric circuits regulate gene expression, organ morphogenesis, and body-wide axial patterning. Developmental bioelectricity facilitates the interface to organ-level modular control points that direct patterning in vivo. Cracking the bioelectric code will enable transformative progress in bioengineering and regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laser Ranging to the Moon: How Evolving Technology Enables New Science
NASA Astrophysics Data System (ADS)
Faller, James
2010-03-01
Technological advances have long been the enabler of scientific progress. The invention of the laser is a prime example of this symbiotic relationship between technical progress and scientific advances. The laser, which today is omnipresent in each of our lives, made its first appearance during the time that I was a graduate student in Professor Dicke's group at Princeton. A major change occurring during that time period was that technology was transforming the study of gravitational physics from just a theoretical subject into also an experimental subject where one could hope to measure things using by-then-available laboratory technologies and techniques. During this same time, the idea for the lunar laser ranging experiment was born. The history and accomplishments of this experiment--a still ongoing experiment which is one of the real scientific triumphs of NASA's Apollo program--will be given.
ESARR: enhanced situational awareness via road sign recognition
NASA Astrophysics Data System (ADS)
Perlin, V. E.; Johnson, D. B.; Rohde, M. M.; Lupa, R. M.; Fiorani, G.; Mohammad, S.
2010-04-01
The enhanced situational awareness via road sign recognition (ESARR) system provides vehicle position estimates in the absence of GPS signal via automated processing of roadway fiducials (primarily directional road signs). Sign images are detected and extracted from vehicle-mounted camera system, and preprocessed and read via a custom optical character recognition (OCR) system specifically designed to cope with low quality input imagery. Vehicle motion and 3D scene geometry estimation enables efficient and robust sign detection with low false alarm rates. Multi-level text processing coupled with GIS database validation enables effective interpretation even of extremely low resolution low contrast sign images. In this paper, ESARR development progress will be reported on, including the design and architecture, image processing framework, localization methodologies, and results to date. Highlights of the real-time vehicle-based directional road-sign detection and interpretation system will be described along with the challenges and progress in overcoming them.
Systems Proteomics for Translational Network Medicine
Arrell, D. Kent; Terzic, Andre
2012-01-01
Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016
Advances in Light Microscopy for Neuroscience
Wilt, Brian A.; Burns, Laurie D.; Ho, Eric Tatt Wei; Ghosh, Kunal K.; Mukamel, Eran A.
2010-01-01
Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists. PMID:19555292
Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber
NASA Astrophysics Data System (ADS)
Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.
2017-03-01
Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.
Lunar He-3, fusion propulsion, and space development
NASA Technical Reports Server (NTRS)
Santarius, John F.
1992-01-01
The recent identification of a substantial lunar resource of the fusion energy fuel He-3 may provide the first terrestrial market for a lunar commodity and, therefore, a major impetus to lunar development. The impact of this resource-when burned in D-He-3 fusion reactors for space power and propulsion-may be even more significant as an enabling technology for safe, efficient exploration and development of space. One possible reactor configuration among several options, the tandem mirror, illustrates the potential advantages of fusion propulsion. The most important advantage is the ability to provide either fast, piloted vessels or high-payload-fraction cargo vessels due to a range of specific impulses from 50 sec to 1,000,000 sec at thrust-to-weight ratios from 0.1 to 5x10(exp -5). Fusion power research has made steady, impressive progress. It is plausible, and even probable, that fusion rockets similar to the designs presented here will be available in the early part of the twenty-first century, enabling a major expansion of human presence into the solar system.
NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Williams, Hunter; Burnside, Chris
2015-01-01
The trade study has led to the selection of propulsion concept with the lowest cost and net lowest risk -Government-owned, flight qualified components -Meet mission requirements although the configuration is not optimized. Risk reduction activities have provided an opportunity -Implement design improvements while development with the early-test approach. -Gain knowledge on the operation and identify operation limit -Data to anchor analytical models for future flight designs; The propulsion system cold flow tests series have provided valuable data for future design. -The pressure surge from the system priming and waterhammer within component operation limits. -Enable to optimize the ullage volume to reduce the propellant tank mass; RS-34 hot fire tests have successfully demonstrated of using the engines for the RP mission -No degradation of performance due to extended storage life of the hardware. -Enable to operate the engine for RP flight mission scenarios, outside of the qualification regime. -Provide extended data for the thermal and GNC designs. Significant progress has been made on NASA propulsion concept design and risk reductions for Resource Prospector lander.
A wearable device for monitoring and prevention of repetitive ankle sprain.
Attia, Mohammed; Taher, Mona F
2015-01-01
This study presents the design and implementation of a wearable wireless device, connected to a smart phone, which monitors and prevents repetitive ankle sprain due to chronic ankle instability (CAI). The device prevents this common foot injury by electrical stimulation of the peroneal muscles using surface electrodes which causes dorsiflexion of the foot. This is done after measuring ankle kinematics using inertial motion sensors and predicting ankle sprain. The prototype implemented here has a fast response time of 7 msec which enables prevention of ankle sprain before ligament damage occurs. Wireless communication between the components of the device, in addition to their small size, low cost and low power consumption, makes it unobtrusive, easy to wear and not hinder normal activities. The device connects via Bluetooth to an android smart phone application for continuous data logging and reporting to keep track of the incidences of possible ankle sprain and correction. This is a significant feature of this device since it enables monitoring of patients with CAI and quantifying progression of the condition or improvement in the case of treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Michel; Archer, Bill; Hendrickson, Bruce
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less
Milestones: Critical Elements in Clinical Informatics Fellowship Programs
Lehmann, Christoph U.; Munger, Benson
2016-01-01
Summary Background Milestones refer to points along a continuum of a competency from novice to expert. Resident and fellow assessment and program evaluation processes adopted by the ACGME include the mandate that programs report the educational progress of residents and fellows twice annually utilizing Milestones developed by a specialty specific ACGME working group of experts. Milestones in clinical training programs are largely unmapped to specific assessment tools. Residents and fellows are mainly assessed using locally derived assessment instruments. These assessments are then reviewed by the Clinical Competency Committee which assigns and reports trainee ratings using the specialty specific reporting Milestones. Methods and Results The challenge and opportunity facing the nascent specialty of Clinical Informatics is how to optimally utilize this framework across a growing number of accredited fellowships. The authors review how a mapped milestone framework, in which each required sub-competency is mapped to a single milestone assessment grid, can enable the use of milestones for multiple uses including individualized learning plans, fellow assessments, and program evaluation. Furthermore, such a mapped strategy will foster the ability to compare fellow progress within and between Clinical Informatics Fellowships in a structured and reliable fashion. Clinical Informatics currently has far less variability across programs and thus could easily utilize a more tightly defined set of milestones with a clear mapping to sub-competencies. This approach would enable greater standardization of assessment instruments and processes across programs while allowing for variability in how those sub-competencies are taught. Conclusions A mapped strategy for Milestones offers significant advantages for Clinical Informatics programs. PMID:27081414
Ares V: Progress Toward Unprecedented Heavy Lift
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2010-01-01
Every major examination of America s spaceflight capability since the Apollo program has highlighted and reinforced the need for a heavy lift vehicle for human exploration, science, national security, and commercial development. The Ares V is NASA s most recent effort to address this gap and provide the needed heavy lift capability for NASA and the nation. An Ares V-class heavy lift capability is important to supporting beyond earth orbit (BEO) human exploration. Initially, that consists of exploration of the Moon vastly expanded from the narrow equatorial Apollo missions to a global capability that includes the interesting polar regions. It also enables a permanent human outpost. Under the current program of record, both the Ares V and the lunar exploration it enables serve as a significant part of the technology and experience base for exploration beyond the Moon, including Mars, asteroids, and other destinations. The Ares V is part of NASA s Constellation Program architecture. The Ares V remains in an early stage of concept development, while NASA focused on development of the Ares I crew launch vehicle to replace the Space Shuttle fleet. However, Ares V development has benefitted from its commonality with Ares I, the Shuttle, and contemporary programs on which its design is based. The Constellation program is currently slated for cancellation under the proposed 2011 federal budget, pending review by the legislative branch. However, White House guidance on its 2011 budget retains funding for heavy lift research. This paper will discuss progress to date on the Ares V and its potential utility to payload users.
Southern African Large Telescope (SALT) project: progress and status after 2 years
NASA Astrophysics Data System (ADS)
Meiring, Jacobus G.; Buckley, David A. H.; Lomberg, Michael C.; Stobie, Robert S.
2003-02-01
The Southern African Large Telescope (SALT) is a 10-m class optical/IR segmented mirror telescope based on the groundbreaking, low cost, Hobby-Eberly Telescope (HET) design. Approval to construct and operate SALT, which will be the largest single optical telescope in the Southern Hemisphere, was given by the South African Government in November 1999, after sufficient guarantees of matching funding from international partners were secured. Facility construction started in January 2001, and SALT is due to start operations by December 2004. SALT will enable a quantum leap in astronomical research capability in Southern Africa, and indeed the continent, where currently the largest telescope is a modest 1.9-m, dating to the 1940s. A substantial amount of design work for SALT has been completed, sourced from multiple suppliers, with ~60% South African content. South African industry is well equipped to handle the construction of most of the telescope, the exceptions being the glass ceramic mirror blanks (from LZOS in Russia), the polishing and ion figuring of these (Eastman Kodak in the USA), and fabrication of the four-element spherical aberration corrector (SAGEM in France). This paper will present (1) the scientific requirements, (2) the specified performance of SALT, (3) the basic design, with emphasis on the innovative modifications to the HET design that enable significantly improved performance, (4) the progress and status of the project, currently in its construction phase, (5) the first generation instrument suite, (6) the management and organisation of the project and (7) the international partnership in SALT.
NASA Astrophysics Data System (ADS)
Chalk, Steven G.; Miller, James F.
Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center to verify storage capacity of promising materials. These developments point to a viable path to achieving the DOE/FreedomCAR cost and performance goals. The transition to hydrogen-powered fuel cell vehicles will occur over the next 10-15 years. In the interim, fossil fuel consumption will be reduced by increased penetration of battery/gasoline hybrid cars.
Kulkarni, Harshad R; Singh, Aviral; Schuchardt, Christiane; Niepsch, Karin; Sayeg, Manal; Leshch, Yevgeniy; Wester, Hans-Juergen; Baum, Richard P
2016-10-01
A potential milestone in personalized nuclear medicine is theranostics of metastatic castration-resistant prostate cancer (mCRPC) based on molecular imaging using PET/CT with 68 Ga-labeled prostate-specific membrane antigen (PSMA) ligands and molecular radiotherapy using PSMA-targeted radioligand therapy (PRLT) with 177 Lu-PSMA ligands. 68 Ga-PSMA PET/CT enables accurate detection of mCRPC lesions with high diagnostic sensitivity and specificity and provides quantitative and reproducible data that can be used to select patients for PRLT and therapeutic monitoring. Our comprehensive experience over the last 3 years using different radioligands indicates that PRLT is highly effective for the treatment of mCRPC, even in advanced cases, and potentially lends a significant benefit to overall and progression-free survival. Additionally, significant improvement in clinical symptoms and excellent palliation of pain can be achieved. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Using literature to help physician-learners understand and manage "difficult" patients.
Shapiro, J; Lie, D
2000-07-01
Despite significant clinical and research efforts aimed at recognizing and managing "difficult" patients, such patients remain a frustrating experience for many clinicians. This is especially true for primary care residents, who are required to see a significant volume of patients with diverse and complex problems, but who may not have adequate training and life experience to enable them to deal with problematic doctor-patient situations. Literature--short stories, poems, and patient narratives--is a little-explored educational tool to help residents in understanding and working with difficult patients. In this report, the authors examine the mechanics of using literature to teach about difficult patients, including structuring the learning environment, establishing learning objectives, identifying teaching resources and appropriate pedagogic methods, and incorporating creative writing assignments. They also present an illustrative progression of a typical literature-based teaching session about a difficult patient.
Early detection: the impact of genomics.
van Lanschot, M C J; Bosch, L J W; de Wit, M; Carvalho, B; Meijer, G A
2017-08-01
The field of genomics has shifted our view on disease development by providing insights in the molecular and functional processes encoded in the genome. In the case of cancer, many alterations in the DNA accumulate that enable tumor growth or even metastatic dissemination. Identification of molecular signatures that define different stages of progression towards cancer can enable early tumor detection. In this review, the impact of genomics will be addressed using early detection of colorectal cancer (CRC) as an example. Increased understanding of the adenoma-to-carcinoma progression has led to the discovery of several diagnostic biomarkers. This combined with technical advancements, has facilitated the development of molecular tests for non-invasive early CRC detection in stool and blood samples. Even though several tests have already made it to clinical practice, sensitivity and specificity for the detection of precancerous lesions still need improvement. Besides the diagnostic qualities, also the accuracy of the intermediate endpoint is an important issue on how the effectiveness of a novel test is perceived. Here, progression biomarkers may provide a more precise measure than the currently used morphologically based features. Similar developments in biomarker use for early detection have taken place in other cancer types.
How cancer cells dictate their microenvironment: present roles of extracellular vesicles.
Naito, Yutaka; Yoshioka, Yusuke; Yamamoto, Yusuke; Ochiya, Takahiro
2017-02-01
Intercellular communication plays an important role in cancer initiation and progression through secretory molecules, including growth factors and cytokines. Recent advances have revealed that small membrane vesicles, termed extracellular vesicles (EVs), served as a regulatory agent in the intercellular communication of cancer. EVs enable the transfer of functional molecules, including proteins, mRNA and microRNAs (miRNAs), into recipient cells. Cancer cells utilize EVs to dictate the unique phenotype of surrounding cells, thereby promoting cancer progression. Against such "education" by cancer cells, non-tumoral cells suppress cancer initiation and progression via EVs. Therefore, researchers consider EVs to be important cues to clarify the molecular mechanisms of cancer biology. Understanding the functions of EVs in cancer progression is an important aspect of cancer biology that has not been previously elucidated. In this review, we summarize experimental data that indicate the pivotal roles of EVs in cancer progression.
Sieberts, Solveig K; Zhu, Fan; García-García, Javier; Stahl, Eli; Pratap, Abhishek; Pandey, Gaurav; Pappas, Dimitrios; Aguilar, Daniel; Anton, Bernat; Bonet, Jaume; Eksi, Ridvan; Fornés, Oriol; Guney, Emre; Li, Hongdong; Marín, Manuel Alejandro; Panwar, Bharat; Planas-Iglesias, Joan; Poglayen, Daniel; Cui, Jing; Falcao, Andre O; Suver, Christine; Hoff, Bruce; Balagurusamy, Venkat S K; Dillenberger, Donna; Neto, Elias Chaibub; Norman, Thea; Aittokallio, Tero; Ammad-Ud-Din, Muhammad; Azencott, Chloe-Agathe; Bellón, Víctor; Boeva, Valentina; Bunte, Kerstin; Chheda, Himanshu; Cheng, Lu; Corander, Jukka; Dumontier, Michel; Goldenberg, Anna; Gopalacharyulu, Peddinti; Hajiloo, Mohsen; Hidru, Daniel; Jaiswal, Alok; Kaski, Samuel; Khalfaoui, Beyrem; Khan, Suleiman Ali; Kramer, Eric R; Marttinen, Pekka; Mezlini, Aziz M; Molparia, Bhuvan; Pirinen, Matti; Saarela, Janna; Samwald, Matthias; Stoven, Véronique; Tang, Hao; Tang, Jing; Torkamani, Ali; Vert, Jean-Phillipe; Wang, Bo; Wang, Tao; Wennerberg, Krister; Wineinger, Nathan E; Xiao, Guanghua; Xie, Yang; Yeung, Rae; Zhan, Xiaowei; Zhao, Cheng; Greenberg, Jeff; Kremer, Joel; Michaud, Kaleb; Barton, Anne; Coenen, Marieke; Mariette, Xavier; Miceli, Corinne; Shadick, Nancy; Weinblatt, Michael; de Vries, Niek; Tak, Paul P; Gerlag, Danielle; Huizinga, Tom W J; Kurreeman, Fina; Allaart, Cornelia F; Louis Bridges, S; Criswell, Lindsey; Moreland, Larry; Klareskog, Lars; Saevarsdottir, Saedis; Padyukov, Leonid; Gregersen, Peter K; Friend, Stephen; Plenge, Robert; Stolovitzky, Gustavo; Oliva, Baldo; Guan, Yuanfang; Mangravite, Lara M; Bridges, S Louis; Criswell, Lindsey; Moreland, Larry; Klareskog, Lars; Saevarsdottir, Saedis; Padyukov, Leonid; Gregersen, Peter K; Friend, Stephen; Plenge, Robert; Stolovitzky, Gustavo; Oliva, Baldo; Guan, Yuanfang; Mangravite, Lara M
2016-08-23
Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2)=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.
The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer
Krogan, Nevan J.; Lippman, Scott; Agard, David A.; Ashworth, Alan; Ideker, Trey
2017-01-01
Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, called The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these Cancer Cell Maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. PMID:26000852
The cancer cell map initiative: defining the hallmark networks of cancer.
Krogan, Nevan J; Lippman, Scott; Agard, David A; Ashworth, Alan; Ideker, Trey
2015-05-21
Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these cancer cell maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramos, Andira; Moore, Kaitlin; Raithel, Georg
2015-05-01
Recent significant disagreement with the previously established size of the proton demonstrates a need to reconsider the current value of the Rydberg constant, the effects of the nuclear charge distribution and QED in hydrogen-like atoms. An experiment is in progress to obtain a measurement of the Rydberg constant by studying circular Rydberg atoms, which exhibit very small QED shifts and electron wavefunctions which do not overlap with the nucleus. Cold Rydberg atoms are trapped using a ponderomotive potential. To drive the transitions, a novel type of spectroscopy is used which utilizes an optical-lattice field that is intensity-modulated at the frequencies of atomic transitions. The method is free of typical spectroscopic selection rules and has been shown to drive transitions up to fifth order. Combined with optical Rydberg-atom trapping, the method enables the measurement of narrow, sub-THz transitions between long-lived circular Rydberg levels. Energy shifts affecting this precision measurement will also be discussed. This work is suported by NSF, NIST and NASA grants.
Morphoproteomic-Guided Host-Directed Therapy for Tuberculosis.
Brown, Robert E; Hunter, Robert L; Hwang, Shen-An
2017-01-01
In an effort to develop more effective therapy for tuberculosis (TB), research efforts are looking toward host-directed therapy, reprograming the body's natural defenses to better control the infection. While significant progress is being made, the efforts are limited by lack of understanding of the pathology and pathogenesis of adult type TB disease. We have recently published evidence that the developing lesions in human lungs are focal endogenous lipid pneumonia that constitutes a region of local susceptibility in a person with strong systemic immunity. Since most such lesions regress spontaneously, the ability to study them directly with immunohistochemistry provides means to investigate why some progress to clinical disease while others asymptomatically regress. Furthermore, this should enable us to develop more effective host-directed therapies. Morphoproteomics has proven to be an effective means of characterizing protein expression that can be used to identify metabolic pathways, which can lead to more effective therapies. The purpose of this perspective will argue that using morphoproteomics on human TB lung tissue is a particularly promising method to direct selection of host-directed therapeutics.
Nanofluidics in two-dimensional layered materials: inspirations from nature.
Gao, Jun; Feng, Yaping; Guo, Wei; Jiang, Lei
2017-08-29
With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these single-pore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of "2D nanofluidics", with emphasis on the thought of bio-inspiration.
Celik, Ozkan; O’Malley, Marcia K.; Boake, Corwin; Levin, Harvey S.; Yozbatiran, Nuray; Reistetter, Timothy A.
2016-01-01
In this paper, we analyze the correlations between four clinical measures (Fugl–Meyer upper extremity scale, Motor Activity Log, Action Research Arm Test, and Jebsen-Taylor Hand Function Test) and four robotic measures (smoothness of movement, trajectory error, average number of target hits per minute, and mean tangential speed), used to assess motor recovery. Data were gathered as part of a hybrid robotic and traditional upper extremity rehabilitation program for nine stroke patients. Smoothness of movement and trajectory error, temporally and spatially normalized measures of movement quality defined for point-to-point movements, were found to have significant moderate to strong correlations with all four of the clinical measures. The strong correlations suggest that smoothness of movement and trajectory error may be used to compare outcomes of different rehabilitation protocols and devices effectively, provide improved resolution for tracking patient progress compared to only pre-and post-treatment measurements, enable accurate adaptation of therapy based on patient progress, and deliver immediate and useful feedback to the patient and therapist. PMID:20388607
Multidimensional Simulations of Filament Channel Structure and Evolution
NASA Astrophysics Data System (ADS)
Karpen, J. T.
2007-10-01
Over the past decade, the NRL Solar Theory group has made steady progress toward formulating a comprehensive model of filament-channel structure and evolution, combining the results of our sheared 3D arcade model for the magnetic field with our thermal nonequilibrium model for the cool, dense material suspended in the corona. We have also discovered that, when a sheared arcade is embedded within the global dipolar field, the resulting stressed filament channel can erupt through the mechanism of magnetic breakout. Our progress has been largely enabled by the development and implementation of state-of-the-art 1D hydrodynamic and 3D magnetohydrodynamic (MHD) codes to simulate the field-aligned plasma thermodynamics and large-scale magnetic-field evolution, respectively. Significant questions remain, however, which could be answered with the advanced observations anticipated from Solar-B. In this review, we summarize what we have learned from our simulations about the magnetic and plasma structure, evolution, and eruption of filament channels, and suggest key observational objectives for Solar-B that will test our filament-channel and CME-initiation models and augment our understanding of the underlying physical processes.
Developing affordable housing guidelines near rail transit in Los Angeles : final report.
DOT National Transportation Integrated Search
2016-12-01
Providing affordable housing and reducing greenhouse gases are common goals in cities worldwide. Transit-oriented development (TOD) can enable incremental progress on both fronts, by building affordable housing near transit and by providing alternati...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-20
... information about the request is entered into the appropriate tracking databases. Use of the information in the Agency's tracking databases enables the Agency to monitor progress on the activities attendant to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
A series of software programs that enables students to progress from completely unsecured control of devices to control that protects network commands with authentication, integrity and confidentiality. The working example provided is for turning LED lights on and off on a Raspberry Pi computer.
Progress in manufacturing large primary aircraft structures using the stitching/RTM process
NASA Technical Reports Server (NTRS)
Markus, Alan; Thrash, Patrick; Rohwer, Kim
1993-01-01
The Douglas Aircraft/NASA Act contract has been focused over the past three years at developing a materials, manufacturing, and cost base for stitched/Resin Transfer Molded (RTM) composites. The goal of the program is to develop RTM and stitching technology to provide enabling technology for application of these materials in primary aircraft structure with a high degree of confidence. Presented in this paper will be the progress to date in the area of manufacturing and associated cost values of stitched/RTM composites.
Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives.
Hampel, Harald; Frank, Richard; Broich, Karl; Teipel, Stefan J; Katz, Russell G; Hardy, John; Herholz, Karl; Bokde, Arun L W; Jessen, Frank; Hoessler, Yvonne C; Sanhai, Wendy R; Zetterberg, Henrik; Woodcock, Janet; Blennow, Kaj
2010-07-01
Advances in therapeutic strategies for Alzheimer's disease that lead to even small delays in onset and progression of the condition would significantly reduce the global burden of the disease. To effectively test compounds for Alzheimer's disease and bring therapy to individuals as early as possible there is an urgent need for collaboration between academic institutions, industry and regulatory organizations for the establishment of standards and networks for the identification and qualification of biological marker candidates. Biomarkers are needed to monitor drug safety, to identify individuals who are most likely to respond to specific treatments, to stratify presymptomatic patients and to quantify the benefits of treatments. Biomarkers that achieve these characteristics should enable objective business decisions in portfolio management and facilitate regulatory approval of new therapies.
Engineering AAV receptor footprints for gene therapy.
Madigan, Victoria J; Asokan, Aravind
2016-06-01
Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. Copyright © 2016 Elsevier B.V. All rights reserved.
Shaping carbon nanostructures by controlling the synthesis process
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.; Voelkl, Edgar
2001-08-01
The ability to control the nanoscale shape of nanostructures in a large-scale synthesis process is an essential and elusive goal of nanotechnology research. Here, we report significant progress toward that goal. We have developed a technique that enables controlled synthesis of nanoscale carbon structures with conical and cylinder-on-cone shapes and provides the capability to dynamically change the nanostructure shape during the synthesis process. In addition, we present a phenomenological model that explains the formation of these nanostructures and provides insight into methods for precisely engineering their shape. Since the growth process we report is highly deterministic in allowing large-scale synthesis of precisely engineered nanoscale components at defined locations, our approach provides an important tool for a practical nanotechnology.
Customized Molecular Phenotyping by Quantitative Gene Expression and Pattern Recognition Analysis
Akilesh, Shreeram; Shaffer, Daniel J.; Roopenian, Derry
2003-01-01
Description of the molecular phenotypes of pathobiological processes in vivo is a pressing need in genomic biology. We have implemented a high-throughput real-time PCR strategy to establish quantitative expression profiles of a customized set of target genes. It enables rapid, reproducible data acquisition from limited quantities of RNA, permitting serial sampling of mouse blood during disease progression. We developed an easy to use statistical algorithm—Global Pattern Recognition—to readily identify genes whose expression has changed significantly from healthy baseline profiles. This approach provides unique molecular signatures for rheumatoid arthritis, systemic lupus erythematosus, and graft versus host disease, and can also be applied to defining the molecular phenotype of a variety of other normal and pathological processes. PMID:12840047
Center for Multiscale Plasma Dynamics: Report on Activities (UCLA/MIT), 2009-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Troy Alan
2014-10-03
The final “phaseout” year of the CMPD ended July 2010; a no cost extension was requested until May 2011 in order to enable the MIT subcontract funds to be fully utilized. Research progress over this time included verification and validation activities for the BOUT and BOUT++ code, studies of spontaneous reconnection in the VTF facility at MIT, and studies of the interaction between Alfv´en waves and drift waves in LAPD. The CMPD also hosted the 6th plasma physics winter school in 2010 (jointly with the NSF frontier center the Center for Magnetic Self-Organization, significant funding came from NSF for thismore » most recent iteration of theWinter School).« less
Knowledge enabled plan of care and documentation prototype.
DaDamio, Rebecca; Gugerty, Brian; Kennedy, Rosemary
2006-01-01
There exist significant challenges in integrating the plan of care into documentation and point of care operational processes. A plan of care is often a static artifact that meets regulatory standards with limited influence on supporting goal-directed care delivery processes. Although this prototype is applicable to many clinical disciplines, we will highlight nursing processes in demonstrating a knowledge-driven computerized solution that fully integrates the plan of care within documentation. The knowledge-driven solution reflects evidenced-based practice; is an effective tool for managing problems, orders/interventions, and the patient's progress towards expected outcomes; meets regulatory standards; and drives quality and process improvement. The knowledge infrastructure consists of fully represented terminology, structured clinical expressions utilizing the controlled terminology and clinical knowledge representing evidence-based practice.
Sugimoto, Azusa; Futamura, Akinori; Kawamura, Mitsuru
2011-10-01
Progressive visual agnosia was discovered in the 20th century following the discovery of classical non-progressive visual agnosia. In contrast to the classical type, which is caused by cerebral vascular disease or traumatic injury, progressive visual agnosia is a symptom of neurological degeneration. The condition of progressive visual loss, including visual agnosia, and posterior cerebral atrophy was named posterior cortical atrophy (PCA) by Benson et al. (1988). Progressive visual agnosia is also observed in semantic dementia (SD) and other degenerative diseases, but there is a difference in the subtype of visual agnosia associated with these diseases. Lissauer (1890) classified visual agnosia into apperceptive and associative types, and it in most cases, PCA is associated with the apperceptive type. However, SD patients exhibit symptoms of associative visual agnosia before changing to those of semantic memory disorder. Insights into progressive visual agnosia have helped us understand the visual system and discover how we "perceive" the outer world neuronally, with regard to consciousness. Although PCA is a type of atypical dementia, its diagnosis is important to enable patients to live better lives with appropriate functional support.
Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light.
Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan
2017-03-09
Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm 2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.
Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light
NASA Astrophysics Data System (ADS)
Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan
2017-03-01
Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.
Principles to Products: Toward Realizing MOS 2.0
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Delp, Christopher L.
2012-01-01
This is a report on the Operations Revitalization Initiative, part of the ongoing NASA-funded Advanced Multi-Mission Operations Systems (AMMOS) program. We are implementing products that significantly improve efficiency and effectiveness of Mission Operations Systems (MOS) for deep-space missions. We take a multi-mission approach, in keeping with our organization's charter to "provide multi-mission tools and services that enable mission customers to operate at a lower total cost to NASA." Focusing first on architectural fundamentals of the MOS, we review the effort's progress. In particular, we note the use of stakeholder interactions and consideration of past lessons learned to motivate a set of Principles that guide the evolution of the AMMOS. Thus guided, we have created essential patterns and connections (detailed in companion papers) that are explicitly modeled and support elaboration at multiple levels of detail (system, sub-system, element...) throughout a MOS. This architecture is realized in design and implementation products that provide lifecycle support to a Mission at the system and subsystem level. The products include adaptable multi-mission engineering documentation that describes essentials such as operational concepts and scenarios, requirements, interfaces and agreements, information models, and mission operations processes. Because we have adopted a model-based system engineering method, these documents and their contents are meaningfully related to one another and to the system model. This means they are both more rigorous and reusable (from mission to mission) than standard system engineering products. The use of models also enables detailed, early (e.g., formulation phase) insight into the impact of changes (e.g., to interfaces or to software) that is rigorous and complete, allowing better decisions on cost or technical trades. Finally, our work provides clear and rigorous specification of operations needs to software developers, further enabling significant gains in productivity.
NASA Astrophysics Data System (ADS)
Venus, J. H.; Gonzales, L. M.; Yes Network
2010-12-01
The external influences on the decisions that geoscientists make pertaining to their careers are often assumed but not quantified. The YES Network is conducting an international study to determine the Key Decision points in the career pathways of early career geoscientists. The study aims to identify factors contributing to individual career decisions and to monitor these over a ten year period. The Initial phase of the study is now underway enabling preliminary conclusions to be drawn and will identify a group of individuals that will be tracked over the 10 year programme. The Survey will highlight reoccurring areas where Early Career Geoscientists are experiencing progression difficulties and, importantly, provide respondents with an opportunity to suggest solutions whilst also allowing general resource needs to be identified from the results as a whole. Early results show an overwhelming majority expressing job satisfaction most or all of the time (only 2 candidates reporting none). Respondents rate job satisfaction and respect highly, returning more responses than good salaries. A general frustration with administration, paper work and bureaucracy is particularly evident in those employed by government organisations. Early Career geoscientists express a frustration concerning a lack of involvement in decision making processes; interestingly several later career respondents also acknowledge a need to properly train, nurture and encourage new recruits to retain good graduates who may otherwise become disillusioned and leave the profession. The role of family in career choices has been highlighted both in survey and general feedback responses particularly by female geoscientists and those working in jobs with high levels of fieldwork; we aim to determine, to some extent, to what point these decisions are controlled by family as opposed to normal career progression. Flexible working conditions and agreed time away from field duty have been independently suggested by a these respondents as a solution that could prevent them from leaving their current sector completely. Comparisons will also be drawn from the 2010 University intake, these participants will provide a continuing insight as the survey follows them through their degrees and career. These results enable determination of key areas where additional resources would significantly improve Geoscientists career progression based on up-to-date data sourced from geoscientists currently progressing through education and early career.
Recent progress in sensor-enhanced health information systems - slowly but sustainably.
Marschollek, Michael
2009-12-01
The use of health-enabling technologies is regarded as one important means to face some of the challenges which accompany the demographic change with an expected rise in multi-morbidity and an increased need of care. A precondition for the sensible use of these technologies is their integration in existing information system structures, and - preferably - the enhancement of these into sensor-enhanced health information systems (seHIS). The aim of this review is to report on recent progress in seHIS, and thus to identify relevant areas of research that have to be addressed to provide patient-centered services in a semantically interoperable environment. A literature search in PubMed/Medline was combined with a manual search of papers (n = 1004) in three prominent health/medical informatics journals and one biomedical engineering journal starting from the year 2007. Despite a multitude of papers that present advanced systems using health-enabling technologies, only few papers could be identified that explicitly describe the design of seHIS or the integration of health-enabling technologies into health information systems. Recurring statements emphasise the importance of the following areas of research: patient-centered care using all available sources of information, data security, the stringent use of data representation and device connectivity standards, and adequate methods for data fusion and diagnostic analysis. There is a broad range of research in health-enabling technologies, often focused on specific diseases. The transition from current institution-centered health information systems to person-centered seHIS will be gradual, yet unavoidable for tapping the full potential of health-enabling technologies. seHIS is a growing field of research, and many ambitious challenges are still open. This literature review gives a brief outline of the most frequently mentioned research foci.
Enablers and barriers in delivery of a cancer exercise program: the Canadian experience
Mina, D. Santa; Petrella, A.; Currie, K.L.; Bietola, K.; Alibhai, S.M.H.; Trachtenberg, J.; Ritvo, P.; Matthew, A.G.
2015-01-01
Background Exercise is an important therapy to improve well-being after a cancer diagnosis. Accordingly, cancer-exercise programs have been developed to enhance clinical care; however, few programs exist in Canada. Expansion of cancer-exercise programming depends on an understanding of the process of program implementation, as well as enablers and barriers to program success. Gaining knowledge from current professionals in cancer-exercise programs could serve to facilitate the necessary understanding. Methods Key personnel from Canadian cancer-exercise programs (n = 14) participated in semistructured interviews about program development and delivery. Results Content analysis revealed 13 categories and 15 subcategories, which were grouped by three organizing domains: Program Implementation, Program Enablers, and Program Barriers. ■ Program Implementation (5 categories, 8 subcategories) included Program Initiation (clinical care extension, research project expansion, program champion), Funding, Participant Intake (avenues of awareness, health and safety assessment), Active Programming (monitoring patient exercise progress, health care practitioner involvement, program composition), and Discharge and Follow-up Plan.■ Program Enablers (4 categories, 4 subcategories) included Patient Participation (personalized care, supportive network, personal control, awareness of benefits), Partnerships, Advocacy and Support, and Program Characteristics.■ Program Barriers (4 categories, 3 subcategories) included Lack of Funding, Lack of Physician Support, Deterrents to Participation (fear and shame, program location, competing interests), and Disease Progression and Treatment. Conclusions Interview results provided insight into the development and delivery of cancer-exercise programs in Canada and could be used to guide future program development and expansion in Canada. PMID:26715869
An Airborne Onboard Parallel Processing Testbed
NASA Technical Reports Server (NTRS)
Mandl, Daniel J.
2014-01-01
This presentation provides information on the progress the Intelligent Payload Module (IPM) development effort. In addition, a vision is presented on integration of the IPM architecture with the GeoSocial Application Program Interface (API) architecture to enable efficient distribution of satellite data products.
Achieving interoperability in environmental modeling has evolved as software technology has progressed. The recent rise of cloud computing and proliferation of web services initiated a new stage for creating interoperable systems. Scientific programmers increasingly take advantag...
Achieving interoperability in environmental modeling has evolved as software technology has progressed. The recent rise of cloud computing and proliferation of web services initiated a new stage for creating interoperable systems. Scientific programmers increasingly take advantag...
Patel, Jyoti D; Krilov, Lada; Adams, Sylvia; Aghajanian, Carol; Basch, Ethan; Brose, Marcia S; Carroll, William L; de Lima, Marcos; Gilbert, Mark R; Kris, Mark G; Marshall, John L; Masters, Gregory A; O'Day, Steven J; Polite, Blasé; Schwartz, Gary K; Sharma, Sunil; Thompson, Ian; Vogelzang, Nicholas J; Roth, Bruce J
2014-01-10
Since its founding in 1964, the American Society of Clinical Oncology (ASCO) has been committed to improving cancer outcomes through research and the delivery of quality care. Research is the bedrock of discovering better treatments--providing hope to the millions of individuals who face a cancer diagnosis each year. The studies featured in "Clinical Cancer Advances 2013: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology" represent the invaluable contributions of thousands of patients who participate in clinical trials and the scientists who conduct basic and clinical research. The insights described in this report, such as how cancers hide from the immune system and why cancers may become resistant to targeted drugs, enable us to envision a future in which cancer will be even more controllable and preventable. The scientific process is thoughtful, deliberate, and sometimes slow, but each advance, while helping patients, now also points toward new research questions and unexplored opportunities. Both dramatic and subtle breakthroughs occur so that progress against cancer typically builds over many years. Success requires vision, persistence, and a long-term commitment to supporting cancer research and training. Our nation's longstanding investment in federally funded cancer research has contributed significantly to a growing array of effective new treatments and a much deeper understanding of the drivers of cancer. But despite this progress, our position as a world leader in advancing medical knowledge and our ability to attract the most promising and talented investigators are now threatened by an acute problem: Federal funding for cancer research has steadily eroded over the past decade, and only 15% of the ever-shrinking budget is actually spent on clinical trials. This dismal reality threatens the pace of progress against cancer and undermines our ability to address the continuing needs of our patients. Despite this extremely challenging economic environment, we continue to make progress. Maintaining and accelerating that progress require that we keep our eyes on the future and pursue a path that builds on the stunning successes of the past. We must continue to show our policymakers the successes in cancer survival and quality of life (QOL) they have enabled, emphasizing the need to sustain our national investment in the remarkably productive US cancer research enterprise. We must also look to innovative methods for transforming how we care for-and learn from-patients with cancer. Consider, for example, that fewer than 5% of adult patients with cancer currently participate in clinical trials. What if we were able to draw lessons from the other 95%? This possibility led ASCO this year to launch CancerLinQ, a groundbreaking health information technology initiative that will provide physicians with access to vast quantities of clinical data about real-world patients and help achieve higher quality, higher value cancer care. As you read the following pages, I hope our collective progress against cancer over the past year inspires you. More importantly, I hope the pride you feel motivates you to help us accelerate the pace of scientific advancement. Clifford A. Hudis, MD, FACP President American Society of Clinical Oncology.
Imaging Virus-Associated Cancer
Fu, De-Xue; Foss, Catherine A.; Nimmagadda, Sridhar; Ambinder, Richard F.; Pomper, Martin G.
2012-01-01
Cancer remains an important and growing health problem. Researchers have made great progress in defining genetic and molecular alterations that contribute to cancer formation and progression. Molecular imaging can identify appropriate patients for targeted cancer therapy and may detect early biochemical changes in tumors during therapy, some of which may have important prognostic implications. Progress in this field continues largely due to a union between molecular genetics and advanced imaging technology. This review details uses of molecular-genetic imaging in the context of tumor-associated viruses. Under certain conditions, and particularly during pharmacologic stimulation, gammaherpesviruses will express genes that enable imaging and therapy in vivo. The techniques discussed are readily translatable to the clinic. PMID:18991718
(Photosynthesis in intact plants)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allowmore » us to explore new options in the attempt to understand function at the level of molecular structure.« less
Effect of streptozotocin-induced diabetes on performance on a progressive ratio schedule.
Valencia-Torres, Lourdes; Bradshaw, C M; Bouzas, Arturo; Hong, Enrique; Orduña, Vladimir
2014-06-01
It has been suggested that streptozotocin (STZ)-induced diabetes causes a motivational deficit in rodents. However, some of the evidence adduced in support of this suggestion may be interpreted in terms of a motor impairment rather than a motivational deficit. This experiment examined the effect of STZ-induced diabetes on performance on a progressive ratio schedule. The data were analysed using a new model derived from Killeen's (Behav Brain Sci 17:105-172, 1994) Mathematical Principles of Reinforcement model which enables the effects of interventions on motivation or incentive value to be separated from effects on motor function. Animals were trained under a progressive ratio schedule using food-pellet reinforcement. Then they received a single intraperitoneal injection of 50 mg/kg of STZ or the vehicle. Training continued for 30 sessions after treatment. Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model's parameters were compared between groups. The parameter expressing incentive value was reduced in the group treated with STZ, whereas the parameters expressing motor capacity and post-reinforcement pausing were not affected by the treatment. Blood glucose concentration was significantly elevated in the STZ-treated group compared to the vehicle-treated group. The results are consistent with the suggestion that STZ-induced diabetes is associated with a reduction of the incentive value of food.
Plasma Biomarkers Discriminate Clinical Forms of Multiple Sclerosis
Tejera-Alhambra, Marta; Casrouge, Armanda; de Andrés, Clara; Seyfferth, Ansgar; Ramos-Medina, Rocío; Alonso, Bárbara; Vega, Janet; Fernández-Paredes, Lidia; Albert, Matthew L.; Sánchez-Ramón, Silvia
2015-01-01
Multiple sclerosis, the most common cause of neurological disability in young population after trauma, represents a significant public health burden. Current challenges associated with management of multiple sclerosis (MS) patients stem from the lack of biomarkers that might enable stratification of the different clinical forms of MS and thus prompt treatment for those patients with progressive MS, for whom there is currently no therapy available. In the present work we analyzed a set of thirty different plasma cytokines, chemokines and growth factors present in circulation of 129 MS patients with different clinical forms (relapsing remitting, secondary progressive and primary progressive MS) and 53 healthy controls, across two independent cohorts. The set of plasma analytes was quantified with Luminex xMAP technology and their predictive power regarding clinical outcome was evaluated both individually using ROC curves and in combination using logistic regression analysis. Our results from two independent cohorts of MS patients demonstrate that the divergent clinical and histology-based MS forms are associated with distinct profiles of circulating plasma protein biomarkers, with distinct signatures being composed of chemokines and growth/angiogenic factors. With this work, we propose that an evaluation of a set of 4 circulating biomarkers (HGF, Eotaxin/CCL11, EGF and MIP-1β/CCL4) in MS patients might serve as an effective tool in the diagnosis and more personalized therapeutic targeting of MS patients. PMID:26039252
Caromile, Leslie Ann; Dortche, Kristina; Rahman, M. Mamunur; Grant, Christina L.; Stoddard, Christopher; Ferrer, Fernando A.; Shapiro, Linda H.
2017-01-01
Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the β1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/β1 integrin axis may occur in other tumors. PMID:28292957
Progress in nanotechnology for healthcare.
Raffa, V; Vittorio, O; Riggio, C; Cuschieri, A
2010-06-01
This review based on the Wickham lecture given by AC at the 2009 SMIT meeting in Sinaia outlines the progress made in nano-technology for healthcare. It describes in brief the nature of nano-materials and their unique properties which accounts for the significant research both in scientific institutions and industry for translation into new therapies embodied in the emerging field of nano-medicine. It stresses that the potential of nano-medicine to make significant inroads for more effective therapies both for life-threatening and life-disabling disorders will only be achieved by high-quality life science research. The first generation of passive nano-diagnostics based on nanoparticle contrast agents for magnetic resonance imaging is well established in clinical practice and new such contrast agents are undergoing early clinical evaluation. Likewise active (second generation) nano-therapies, exemplified by targeted control drug release systems are undergoing early clinical evaluation. The situation concerning other nano-materials such as carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) is less advanced although considerable progress has been made on their coating for aqueous dispersion and functionalisation to enable carriage of drugs, genes and fluorescent markers. The main problem related to the clinical use of these nanotubes is that there is no consent among scientists on the fate of such nano-materials following injection or implantation in humans. Provided carbon nanotubes are manufactured to certain medical criteria (length around 1 mum, purity of 97-99% and low Fe content) they exhibit no cytotoxicity on cell cultures and demonstrate full bio-compatibility on in vivo animal studies. The results of recent experimental studies have demonstrated the potential of technologies based on CNTs for low voltage wireless electro-chemotherapy of tumours and for electro-stimulation therapies for cardiac, neurodegenerative and skeletal and visceral muscle disorders.
Al-Omiri, Mahmoud K; Sghaireen, Mohd G; Alzarea, Bader K; Lynch, Edward
2013-12-01
This study aimed to quantify tooth wear in upper anterior teeth using a new CAD-CAM Laser scanning machine, tool maker microscope and conventional tooth wear index. Fifty participants (25 males and 25 females, mean age = 25 ± 4 years) were assessed for incisal tooth wear of upper anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 1 year later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System. Scanned images were printed and examined under a toolmaker microscope to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyze the data. TWI scores for incisal edges were 0-3 and were similar at both occasions. Score 4 was not detected. Wear values measured by directly assessing the dies under the toolmaker microscope (range = 113 - 150 μm, mean = 130 ± 20 μm) were significantly more than those measured from Cercon Digital Machine images (range=52-80 μm, mean = 68 ± 23 μm) and both showed significant differences between the two occasions. Wear progression in upper anterior teeth was effectively detected by directly measuring the dies or the images of dies under toolmaker microscope. Measuring the dies of worn dentition directly under tool maker microscope enabled detection of wear progression more accurately than measuring die images obtained with Cercon Digital Machine. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Measurable changes on the plan area related to climate change and other stressors that may be affecting the.... Monitoring information should enable the responsible official to determine if a change in plan components or... relevant assumptions, tracking relevant changes, and measuring management effectiveness and progress toward...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Measurable changes on the plan area related to climate change and other stressors that may be affecting the.... Monitoring information should enable the responsible official to determine if a change in plan components or... relevant assumptions, tracking relevant changes, and measuring management effectiveness and progress toward...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Measurable changes on the plan area related to climate change and other stressors that may be affecting the.... Monitoring information should enable the responsible official to determine if a change in plan components or... relevant assumptions, tracking relevant changes, and measuring management effectiveness and progress toward...
Achieving interoperability in environmental modeling has evolved as software technology has progressed. The recent rise of cloud computing and proliferation of web services initiated a new stage for creating interoperable systems. Scientific programmers increasingly take advantag...
Enabling Technologies for the Future of Chemical Synthesis.
Fitzpatrick, Daniel E; Battilocchio, Claudio; Ley, Steven V
2016-03-23
Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic-industry relationships, and future trends in the area of chemical synthesis.
Exclusion-Based Capture and Enumeration of CD4+ T Cells from Whole Blood for Low-Resource Settings.
Howard, Alexander L; Pezzi, Hannah M; Beebe, David J; Berry, Scott M
2014-06-01
In developing countries, demand exists for a cost-effective method to evaluate human immunodeficiency virus patients' CD4(+) T-helper cell count. The TH (CD4) cell count is the current marker used to identify when an HIV patient has progressed to acquired immunodeficiency syndrome, which results when the immune system can no longer prevent certain opportunistic infections. A system to perform TH count that obviates the use of costly flow cytometry will enable physicians to more closely follow patients' disease progression and response to therapy in areas where such advanced equipment is unavailable. Our system of two serially-operated immiscible phase exclusion-based cell isolations coupled with a rapid fluorescent readout enables exclusion-based isolation and accurate counting of T-helper cells at lower cost and from a smaller volume of blood than previous methods. TH cell isolation via immiscible filtration assisted by surface tension (IFAST) compares well against the established Dynal T4 Quant Kit and is sensitive at CD4 counts representative of immunocompromised patients (less than 200 TH cells per microliter of blood). Our technique retains use of open, simple-to-operate devices that enable IFAST as a high-throughput, automatable sample preparation method, improving throughput over previous low-resource methods. © 2013 Society for Laboratory Automation and Screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spellman, Paul T.; Heiser, Laura; Gray, Joe W.
2009-06-18
Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes tomore » cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also reveal the molecular differences between cancer and normal that may be exploited to therapeutic benefit or that provide targets for molecular assays that may enable early cancer detection, and predict individual disease progression or response to treatment. This chapter reviews current and future directions in genome analysis and summarizes studies that provide insights into breast cancer pathophysiology or that suggest strategies to improve breast cancer management.« less
Exploring the use of concept chains to structure teacher trainees' understanding of science
NASA Astrophysics Data System (ADS)
Machin, Janet; Varleys, Janet; Loxley, Peter
2004-12-01
This paper reports on a paper and pencil concept-sorting strategy that enables trainee teachers to restructure their knowledge in any one domain of science. It is used as a self-study tool, mainly to enable them to break down and understand the progression of concepts beyond the level at which they have to teach. The strategy involves listing key ideas in an increasingly complex and inclusive fashion such that a 'chain' is developed where the initial statements are simple and the final ones more complex. Evaluation of the strategy with trainees over a five-year period revealed promising potential for the strategy as a self-study tool, as well as an audit tool, enabling tutors to more easily identify misconceptions. There was some evidence that trainees found the strategy useful in preparing themselves to teach in the classroom, possibly by enabling meaningful learning to take place according to the Ausubel-Novak-Gowin theory.
Coater/developer based techniques to improve high-resolution EUV patterning defectivity
NASA Astrophysics Data System (ADS)
Hontake, Koichi; Huli, Lior; Lemley, Corey; Hetzer, Dave; Liu, Eric; Ko, Akiteru; Kawakami, Shinichiro; Shimoaoki, Takeshi; Hashimoto, Yusaku; Tanaka, Koichiro; Petrillo, Karen; Meli, Luciana; De Silva, Anuja; Xu, Yongan; Felix, Nelson; Johnson, Richard; Murray, Cody; Hubbard, Alex
2017-10-01
Extreme ultraviolet lithography (EUVL) technology is one of the leading candidates under consideration for enabling the next generation of devices, for 7nm node and beyond. As the focus shifts to driving down the 'effective' k1 factor and enabling the full scaling entitlement of EUV patterning, new techniques and methods must be developed to reduce the overall defectivity, mitigate pattern collapse, and eliminate film-related defects. In addition, CD uniformity and LWR/LER must be improved in terms of patterning performance. Tokyo Electron Limited (TEL™) and IBM Corporation are continuously developing manufacturing quality processes for EUV. In this paper, we review the ongoing progress in coater/developer based processes (coating, developing, baking) that are required to enable EUV patterning.
Internal Short Circuits in Lithium-Ion Cells for PHEVs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sriramulu, Suresh; Stringfellow, Richard
2013-05-25
Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In thismore » project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.« less
Solar and Space Physics Science Enabled by Pico and Nano Satellites
NASA Astrophysics Data System (ADS)
Swenson, C.; Fish, C. S.
2012-12-01
The most significant advances in solar and space physics, or Heliophysics, over the next decade are most likely to derive from new observational techniques. The connection between advances in scientific understanding and technology has historically been demonstrated across many disciplines and time. Progress on some of the most compelling scientific problems will most likely occur through multipoint observations within the space environment to understand the coupling between disparate regions: Heliosphere, magnetosphere, ionosphere, thermosphere and mesosphere. Multipoint measurements are also needed to develop understanding of the various scalars or vector field signatures (i.e gradients, divergence) that arise from coupling processes that occur across temporal and spatial scales or within localized regions. The resources that are available over the next decades for all areas of Heliophysics research have limits and it is therefore important that the community be innovative in developing new observational techniques to advance science. One of the most promising new observational techniques becoming available are miniaturized sensors and satellite systems called pico- or nano-satellites and CubeSats. These are enabled by the enormous investment of the commercial, medical, and defense industries in producing highly capable, portable and low-power battery-operated consumer electronics, in-situ composition probes, and novel reconnaissance sensors. The advancements represented by these technologies have direct application in developing pico- or nano-satellites and CubeSats system for Heliophysics research. In this talk we overview the current environment and technologies surrounding these novel small satellites and discuss the types and capabilities of the miniature sensors that are being developed. We discuss how pico- or nano-satellites and CubeSats can be used to address highest priority science identified in the Decadal Survey and the innovations and advancements that are required to make substantial progress.
NASA Astrophysics Data System (ADS)
Vaughn, M.; Kwong, J.; Pomerantz, W.
Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.
NASA Astrophysics Data System (ADS)
Saleh, Mounir R.
Scientists' progress in understanding enzyme specificity uncovered a complex natural phenomenon. However, not all of the currently available biology textbooks seem to be up to date on this progress. Students' understanding of how enzymes work is a core requirement in biochemistry and biology tertiary education. Nevertheless, current pre-college science education does not provide students with enough biochemical background to enable them to understand complex material such as this. To bridge this gap, a multimedia pre-training presentation was prepared to fuel the learner's prior knowledge with discrete facts necessary to understand the presented concept. This treatment is also known to manage intrinsic cognitive load during the learning process. An interactive instructional enzyme model was also built to motivate students to learn about substrate specificity of enzymes. Upon testing the effect of this combined treatment on 111 college students, desirable learning outcomes were found in terms of cognitive load, motivation, and achievement. The multimedia pre-training group reported significantly less intrinsic cognitive load, higher motivation, and demonstrated higher transfer performance than the control and post-training groups. In this study, a statistical mediation model is also proposed to explain how cognitive load and motivation work in concert to foster learning from multimedia pre-training. This type of research goes beyond simple forms of "what works" to a deeper understanding of "how it works", thus enabling informed decisions for multimedia instructional design. Multimedia learning plays multiple roles in science education. Therefore, science learners would be some of the first to benefit from improving multimedia instructional design. Accordingly, complex scientific phenomena can be introduced to college students in a motivating, informative, and cognitively efficient learning environment.
Auletta, Sveva; Bonfiglio, Rita; Wunder, Andreas; Varani, Michela; Galli, Filippo; Borri, Filippo; Scimeca, Manuel; Niessen, Heiko G; Schönberger, Tanja; Bonanno, Elena
2018-03-01
Inflammatory bowel diseases are lifelong disorders affecting the gastrointestinal tract characterized by intermittent disease flares and periods of remission with a progressive and destructive nature. Unfortunately, the exact etiology is still not completely known, therefore a causal therapy to cure the disease is not yet available. Current treatment options mainly encompass the use of non-specific anti-inflammatory agents and immunosuppressive drugs that cause significant side effects that often have a negative impact on patients' quality of life. As the majority of patients need a long-term follow-up it would be ideal to rely on a non-invasive technique with good compliance. Currently, the gold standard diagnostic tools for managing IBD are represented by invasive procedures such as colonoscopy and histopathology. Nevertheless, recent advances in imaging technology continue to improve the ability of imaging techniques to non-invasively monitor disease activity and treatment response in preclinical models of IBD. Novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. Furthermore, molecular imaging advances allow us to increase our knowledge on the critical biological pathways involved in disease progression by characterizing in vivo processes at a cellular and molecular level and enabling significant improvements in the understanding of the etiology of IBD. This review presents a critical and updated overview on the imaging advances in animal models of IBD. Our aim is to highlight the potential beneficial impact and the range of applications that imaging techniques could offer for the improvement of the clinical monitoring and management of IBD patients: diagnosis, staging, determination of therapeutic targets, monitoring therapy and evaluation of the prognosis, personalized therapeutic approaches.
Recent progress on DNA based walkers.
Pan, Jing; Li, Feiran; Cha, Tae-Gon; Chen, Haorong; Choi, Jong Hyun
2015-08-01
DNA based synthetic molecular walkers are reminiscent of biological protein motors. They are powered by hybridization with fuel strands, environment induced conformational transitions, and covalent chemistry of oligonucleotides. Recent developments in experimental techniques enable direct observation of individual walkers with high temporal and spatial resolution. The functionalities of state-of-the-art DNA walker systems can thus be analyzed for various applications. Herein we review recent progress on DNA walker principles and characterization methods, and evaluate various aspects of their functions for future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyapal, Sunita
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
2010 Annual Progress Report: DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Stem cells in prostate cancer initiation and progression
Lawson, Devon A.; Witte, Owen N.
2007-01-01
Peter Nowell and David Hungerford’s discovery of the Philadelphia chromosome facilitated many critical studies that have led to a paradigm shift in our understanding of cancer as a disease of stem cells. This Review focuses on the application of these concepts to investigation of the role of stem cells in prostate cancer initiation and progression. Major strides in the development of in vitro and in vivo assays have enabled identification and characterization of prostate stem cells as well as functional evaluation of the tumorigenic effects of prostate cancer–related genetic alterations. PMID:17671638
2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Progress in wet-coated organic light-emitting devices for lighting
NASA Astrophysics Data System (ADS)
Liu, Jie; Ye, Qing; Lewis, Larry N.; Duggal, Anil R.
2007-09-01
Here we present recent progress in developing efficient wet-coated organic light-emitting devices (OLEDs) for lighting applications. In particular, we describe a novel approach for building efficient wet-coated dye-doped blue phosphorescent devices. Further, a novel approach for achieving arbitrary emission patterning for OLEDs is discussed. This approach utilizes a photo-induced chemical doping strategy for selectively activating charge injection materials, thus enabling devices with arbitrary emission patterning. This approach may provide a simple, low cost path towards specialty lighting and signage applications for OLED technology.
NASA Technical Reports Server (NTRS)
Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.
2010-01-01
Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.
2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.
Lattice field theory applications in high energy physics
NASA Astrophysics Data System (ADS)
Gottlieb, Steven
2016-10-01
Lattice gauge theory was formulated by Kenneth Wilson in 1974. In the ensuing decades, improvements in actions, algorithms, and computers have enabled tremendous progress in QCD, to the point where lattice calculations can yield sub-percent level precision for some quantities. Beyond QCD, lattice methods are being used to explore possible beyond the standard model (BSM) theories of dynamical symmetry breaking and supersymmetry. We survey progress in extracting information about the parameters of the standard model by confronting lattice calculations with experimental results and searching for evidence of BSM effects.
Performance Evaluation of Peer-to-Peer Progressive Download in Broadband Access Networks
NASA Astrophysics Data System (ADS)
Shibuya, Megumi; Ogishi, Tomohiko; Yamamoto, Shu
P2P (Peer-to-Peer) file sharing architectures have scalable and cost-effective features. Hence, the application of P2P architectures to media streaming is attractive and expected to be an alternative to the current video streaming using IP multicast or content delivery systems because the current systems require expensive network infrastructures and large scale centralized cache storage systems. In this paper, we investigate the P2P progressive download enabling Internet video streaming services. We demonstrated the capability of the P2P progressive download in both laboratory test network as well as in the Internet. Through the experiments, we clarified the contribution of the FTTH links to the P2P progressive download in the heterogeneous access networks consisting of FTTH and ADSL links. We analyzed the cause of some download performance degradation occurred in the experiment and discussed about the effective methods to provide the video streaming service using P2P progressive download in the current heterogeneous networks.
Measurement in Physical Education. 5th Edition.
ERIC Educational Resources Information Center
Mathews, Donald K.
Concepts of measurement in physical education are presented in this college-level text to enable the preservice physical education major to develop skills in determining pupil status, designing effective physical activity programs, and measuring student progress. Emphasis is placed upon discussion of essential statistical methods, test…
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2006-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis - Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
Current approaches to the management of idiopathic pulmonary fibrosis.
Raghu, Ganesh; Richeldi, Luca
2017-08-01
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal lung disease associated with dyspnoea, cough and impaired quality of life. Currently, the aims of patient care are to improve outcomes for patients by slowing the progression of the disease, extending life, and improving quality of life. A prompt, accurate diagnosis is important to enable patients to receive treatment early in the course of the disease and to be considered for lung transplantation. Two anti-fibrotic drugs, nintedanib and pirfenidone, have been shown to reduce decline in lung function in patients with IPF. In addition to pharmacological therapy, optimal management of IPF includes treatment of comorbidities, symptom relief, pulmonary rehabilitation, and palliative care. Patient education is important to enable patients to make decisions about their care and to help them manage their disease and the side-effects of anti-fibrotic drugs. Research continues into new treatments and combinations of treatments that may improve outcomes for patients with this devastating disease. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2007-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis-Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
What are the factors that affect band 5 nurses' career development and progression?
Balls, Paula
Continuing professional development (CPD) and career progression opportunities have been linked with job satisfaction and intent to remain in nursing. To provide an insight into band 5 registered nurses' perceptions of development opportunities and their ability to change posts. A hermeneutic phenomenological approach was used, collecting data through semi structured interviews with six RNs. Seven themes emerged, including the thirst for knowledge and the importance of structured learning and career advice. Barriers to career development were perceived as the working environment and the trust not enabling and facilitating development through funding and release time. Ward and team culture can inhibit career development and progression by failing to nurture staff and promote self confidence. In addition, organisational changes can facilitate career mobility.
Computational approach for deriving cancer progression roadmaps from static sample data
Yao, Jin; Yang, Le; Chen, Runpu; Nowak, Norma J.
2017-01-01
Abstract As with any biological process, cancer development is inherently dynamic. While major efforts continue to catalog the genomic events associated with human cancer, it remains difficult to interpret and extrapolate the accumulating data to provide insights into the dynamic aspects of the disease. Here, we present a computational strategy that enables the construction of a cancer progression model using static tumor sample data. The developed approach overcame many technical limitations of existing methods. Application of the approach to breast cancer data revealed a linear, branching model with two distinct trajectories for malignant progression. The validity of the constructed model was demonstrated in 27 independent breast cancer data sets, and through visualization of the data in the context of disease progression we were able to identify a number of potentially key molecular events in the advance of breast cancer to malignancy. PMID:28108658
Pletzer, Daniel; Mansour, Sarah C.; Wuerth, Kelli; Rahanjam, Negin
2017-01-01
ABSTRACT Only a few, relatively cumbersome animal models enable long-term Gram-negative bacterial infections that mimic human situations, where untreated infections can last for weeks. Here, we describe a simple murine cutaneous abscess model that enables chronic or progressive infections, depending on the subcutaneously injected bacterial strain. In this model, Pseudomonas aeruginosa cystic fibrosis epidemic isolate LESB58 caused localized high-density skin and soft tissue infections and necrotic skin lesions for up to 10 days but did not disseminate in either CD-1 or C57BL/6 mice. The model was adapted for use with four major Gram-negative nosocomial pathogens, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, and Escherichia coli. This model enabled noninvasive imaging and tracking of lux-tagged bacteria, the influx of activated neutrophils, and production of reactive oxygen-nitrogen species at the infection site. Screening antimicrobials against high-density infections showed that local but not intravenous administration of gentamicin, ciprofloxacin, and meropenem significantly but incompletely reduced bacterial counts and superficial tissue dermonecrosis. Bacterial RNA isolated from the abscess tissue revealed that Pseudomonas genes involved in iron uptake, toxin production, surface lipopolysaccharide regulation, adherence, and lipase production were highly upregulated whereas phenazine production and expression of global activator gacA were downregulated. The model was validated for studying virulence using mutants of more-virulent P. aeruginosa strain PA14. Thus, mutants defective in flagella or motility, type III secretion, or siderophore biosynthesis were noninvasive and suppressed dermal necrosis in mice, while a strain with a mutation in the bfiS gene encoding a sensor kinase showed enhanced invasiveness and mortality in mice compared to controls infected with wild-type P. aeruginosa PA14. PMID:28246361
A high throughput array microscope for the mechanical characterization of biomaterials
NASA Astrophysics Data System (ADS)
Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard
2015-02-01
In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.
Biophysical Discovery through the Lens of a Computational Microscope
NASA Astrophysics Data System (ADS)
Amaro, Rommie
With exascale computing power on the horizon, improvements in the underlying algorithms and available structural experimental data are enabling new paradigms for chemical discovery. My work has provided key insights for the systematic incorporation of structural information resulting from state-of-the-art biophysical simulations into protocols for inhibitor and drug discovery. We have shown that many disease targets have druggable pockets that are otherwise ``hidden'' in high resolution x-ray structures, and that this is a common theme across a wide range of targets in different disease areas. We continue to push the limits of computational biophysical modeling by expanding the time and length scales accessible to molecular simulation. My sights are set on, ultimately, the development of detailed physical models of cells, as the fundamental unit of life, and two recent achievements highlight our efforts in this arena. First is the development of a molecular and Brownian dynamics multi-scale modeling framework, which allows us to investigate drug binding kinetics in addition to thermodynamics. In parallel, we have made significant progress developing new tools to extend molecular structure to cellular environments. Collectively, these achievements are enabling the investigation of the chemical and biophysical nature of cells at unprecedented scales.
Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.
Campbell, Graeme Michael; Glüer, Claus-C
2017-07-01
Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.
Maintaining Moore's law: enabling cost-friendly dimensional scaling
NASA Astrophysics Data System (ADS)
Mallik, Arindam; Ryckaert, Julien; Mercha, Abdelkarim; Verkest, Diederik; Ronse, Kurt; Thean, Aaron
2015-03-01
Moore's Law (Moore's Observation) has been driving the progress in semiconductor technology for the past 50 years. The semiconductor industry is at a juncture where significant increase in manufacturing cost is foreseen to sustain the past trend of dimensional scaling. At N10 and N7 technology nodes, the industry is struggling to find a cost-friendly solution. At a device level, technologists have come up with novel devices (finFET, Gate-All-Around), material innovations (SiGe, Ge) to boost performance and reduce power consumption. On the other hand, from the patterning side, the relative slow ramp-up of alternative lithography technologies like EUVL and DSA pushes the industry to adopt a severely multi-patterning-based solution. Both of these technological transformations have a big impact on die yield and eventually die cost. This paper is aimed to analyze the impact on manufacturing cost to keep the Moore's law alive. We have proposed and analyzed various patterning schemes that can enable cost-friendly scaling. We evaluated the impact of EUVL introduction on tackling the high cost of manufacturing. The primary objective of this paper is to maintain Moore's scaling from a patterning perspective and analyzing EUV lithography introduction at a die level.
Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.
Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel
2017-10-01
Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Y-12 Integrated Materials Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alspaugh, D. H.; Hickerson, T. W.
2002-06-03
The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclearmore » material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.« less
Advanced Design Heat PumpRadiator for EVA Suits
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis
2009-01-01
Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.
NASA Technical Reports Server (NTRS)
Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.
NASA Technical Reports Server (NTRS)
Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.
Collaborative Research: Equipment for and Running of the PSI MUSE Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, Michael
The R&D funding from this award has been a significant tool to move the Muon Scattering Experiment (MUSE) at the Paul Scherrer Institute in Switzerland forward to the stage of realization. Specifically, this award has enabled Dr. Michael Kohl and his working group at Hampton University to achieve substantial progress toward the goal of providing beam particle tracking with Gas Electron Multiplier (GEM) detectors for MUSE experiment. Establishing a particle detection system that is capable of operating in a high-intensity environment, with a data acquisition system capable of running at several kHz, combined with robust tracking software providing high efficiencymore » for track reconstruction in the presence of noise and backgrounds will have immediate application in many other experiments.« less
Hormonal control of cold stress responses in plants.
Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte
2016-02-01
Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.
Microbial ecology of the skin in the era of metagenomics and molecular microbiology.
Hannigan, Geoffrey D; Grice, Elizabeth A
2013-12-01
The skin is the primary physical barrier between the body and the external environment and is also a substrate for the colonization of numerous microbes. Previously, dermatological microbiology research was dominated by culture-based techniques, but significant advances in genomic technologies have enabled the development of less-biased, culture-independent approaches to characterize skin microbial communities. These molecular microbiology approaches illustrate the great diversity of microbiota colonizing the skin and highlight unique features such as site specificity, temporal dynamics, and interpersonal variation. Disruptions in skin commensal microbiota are associated with the progression of many dermatological diseases. A greater understanding of how skin microbes interact with each other and with their host, and how we can therapeutically manipulate those interactions, will provide powerful tools for treating and preventing dermatological disease.
NASA Technical Reports Server (NTRS)
Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris
2010-01-01
A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.
Zhao, Hui; Du, Allen; Ling, Min; ...
2016-05-10
The state-of-the-art graphite anode containing a small portion of silicon represents a promising way of applying high-capacity alloy anode in the next generation high energy density lithium-ion batteries. The conductive polymeric binders developed for Si anodes proved to be an effective binder for this graphite/nanoSi composite electrode. Without any acetylene black conductive additives in the electrode, a high areal capacity of above 2.5 mAh/cm 2 is achieved during long-term cycling over 100 cycles. Finally, this conductive polymer-enabled graphite/nanoSi composite electrode exhibits high specific capacity and high 1 st cycle efficiency, which is a significant progress toward commercial application of Simore » anodes.« less
Development of a Telescope for Medium-Energy Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.
2010-01-01
Since the launch of AGILE and FERMI, the scientific progress in high-energy (E(sub gamma) greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cubic centimeters 3-DTI detector prototype of a medium-energy gamma-ray telescope.
Development of a Telescope for Medium-Energy Gamma-ray Astronomy
NASA Technical Reports Server (NTRS)
Sunter, Stan
2012-01-01
Since the launch of AGILE and FERMI, the scientific progress in high-energy (Eg greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cm3 3-DTI detector prototype of a medium-energy gamma-ray telescope.
Identifying Significant Changes in Cerebrovascular Reactivity to Carbon Dioxide.
Sobczyk, O; Crawley, A P; Poublanc, J; Sam, K; Mandell, D M; Mikulis, D J; Duffin, J; Fisher, J A
2016-05-01
Changes in cerebrovascular reactivity can be used to assess disease progression and response to therapy but require discrimination of pathology from normal test-to-test variability. Such variability is due to variations in methodology, technology, and physiology with time. With uniform test conditions, our aim was to determine the test-to-test variability of cerebrovascular reactivity in healthy subjects and in patients with known cerebrovascular disease. Cerebrovascular reactivity was the ratio of the blood oxygen level-dependent MR imaging response divided by the change in carbon dioxide stimulus. Two standardized cerebrovascular reactivity tests were conducted at 3T in 15 healthy men (36.7 ± 16.1 years of age) within a 4-month period and were coregistered into standard space to yield voxelwise mean cerebrovascular reactivity interval difference measures, composing a reference interval difference atlas. Cerebrovascular reactivity interval difference maps were prepared for 11 male patients. For each patient, the test-retest difference of each voxel was scored statistically as z-values of the corresponding voxel mean difference in the reference atlas and then color-coded and superimposed on the anatomic images to create cerebrovascular reactivity interval difference z-maps. There were no significant test-to-test differences in cerebrovascular reactivity in either gray or white matter (mean gray matter, P = .431; mean white matter, P = .857; paired t test) in the healthy cohort. The patient cerebrovascular reactivity interval difference z-maps indicated regions where cerebrovascular reactivity increased or decreased and the probability that the changes were significant. Accounting for normal test-to-test differences in cerebrovascular reactivity enables the assessment of significant changes in disease status (stability, progression, or regression) in patients with time. © 2016 by American Journal of Neuroradiology.
78 FR 38021 - Proposed Amendment of Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
...). ACTION: Submission for Office of Management and Budget (OMB) review; comment request. SUMMARY: The... information that will enable DOE to measure the impact and progress of DOE's National Clean Fleets Partnership (Partnership). The Partnership is an initiative through which DOE provides large private-sector fleets with...
The Biology of Ageing in Leaves.
ERIC Educational Resources Information Center
Gill, John; And Others
1988-01-01
Describes laboratory procedures for observing the progressive change deciduous leaves undergo prior to abscission. Outlines the starch test, sugar test, extraction and chromatography of pigments, and experimental results. States that obtained results enable the events of leaf senescence to be correlated with the carbohydrate economy of a tree in…
The "Movement" of Mixed Methods Research and the Role of Educators
ERIC Educational Resources Information Center
Creswell, John W.; Garrett, Amanda L.
2008-01-01
The landscape of research is continually evolving, enabling researchers to study increasingly complex phenomena. Educational researchers have propelled much of this forward progress and have developed novel methodologies to provide increasingly sound and complete evidence. Mixed methods research has emerged alongside quantitative and qualitative…
Joint Services Electronics Program Progress Report.
1982-09-30
method has been successfully applied to scattering by submerged targets and to partially buried targets I0 . Other applications of our computational...The AES analyzer will enable us to detect possible contaminants on the sub- strate surface prior to MBR groqh as we have already done and to deter
The Effects of Sheltered Instruction on Struggling Readers
ERIC Educational Resources Information Center
Norwood, Stephanie Deneen
2012-01-01
The consequences of less than proficient reading skills are well documented. In educational settings, as children progress through the grades, the expectation that they acquire content knowledge through reading continually increases. However, many children lack the proficient reading skills that would enable them to acquire content knowledge…
Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia.
Horga, Alejandro; Pitceathly, Robert D S; Blake, Julian C; Woodward, Catherine E; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E; Plant, Gordon T; Houlden, Henry; Sweeney, Mary G; Hanna, Michael G; Reilly, Mary M
2014-12-01
Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P<0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P=0.002; odds ratio 8.43, 95% confidence interval 2.24-31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia
Pitceathly, Robert D. S.; Blake, Julian C.; Woodward, Catherine E.; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E.; Plant, Gordon T.; Houlden, Henry; Sweeney, Mary G.; Hanna, Michael G.; Reilly, Mary M.
2014-01-01
Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P < 0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P = 0.002; odds ratio 8.43, 95% confidence interval 2.24–31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy. PMID:25281868
Efficient transmission of compressed data for remote volume visualization.
Krishnan, Karthik; Marcellin, Michael W; Bilgin, Ali; Nadar, Mariappan S
2006-09-01
One of the goals of telemedicine is to enable remote visualization and browsing of medical volumes. There is a need to employ scalable compression schemes and efficient client-server models to obtain interactivity and an enhanced viewing experience. First, we present a scheme that uses JPEG2000 and JPIP (JPEG2000 Interactive Protocol) to transmit data in a multi-resolution and progressive fashion. The server exploits the spatial locality offered by the wavelet transform and packet indexing information to transmit, in so far as possible, compressed volume data relevant to the clients query. Once the client identifies its volume of interest (VOI), the volume is refined progressively within the VOI from an initial lossy to a final lossless representation. Contextual background information can also be made available having quality fading away from the VOI. Second, we present a prioritization that enables the client to progressively visualize scene content from a compressed file. In our specific example, the client is able to make requests to progressively receive data corresponding to any tissue type. The server is now capable of reordering the same compressed data file on the fly to serve data packets prioritized as per the client's request. Lastly, we describe the effect of compression parameters on compression ratio, decoding times and interactivity. We also present suggestions for optimizing JPEG2000 for remote volume visualization and volume browsing applications. The resulting system is ideally suited for client-server applications with the server maintaining the compressed volume data, to be browsed by a client with a low bandwidth constraint.
Protein Oxidation in Aging: Does It Play a Role in Aging Progression?
Reeg, Sandra
2015-01-01
Abstract Significance: A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. Recent Advances: The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. Critical Issues: It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. Future Directions: An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs. Antioxid. Redox Signal. 23, 239–255. PMID:25178482
Bodgener, Susan; Denney, Meiling; Howard, John
2017-01-01
Case based discussions (CbDs) are a mandatory workplace assessment used throughout general practitioner (GP) specialty training; they contribute to the annual review of competence progression (ARCP) for each trainee. This study examined the judgements arising from CbDs made by different groups of assessors and whether or not these assessments supported ARCP decisions. The trainees selected were at the end of their first year of GP training and had been identified during their ARCPs to need extra training time. CbDs were specifically chosen as they are completed by both hospital and GP supervisors, enabling comparison between these two groups. The results raise concern with regard to the consistency of judgements made by different groups of assessors, with significant variance between assessors of different status and seniority. Further work needs to be done on whether the CbD in its current format is fit for purpose as one of the mandatory WPBAs for GP trainees, particularly during their hospital placements. There is a need to increase the inter-rater reliability of CbDs to ensure a consistent contribution to subsequent decisions about a trainee's overall progress.
Measuring the progress of capacity building in the Alberta Policy Coalition for Cancer Prevention.
Raine, Kim D; Sosa Hernandez, Cristabel; Nykiforuk, Candace I J; Reed, Shandy; Montemurro, Genevieve; Lytvyak, Ellina; MacLellan-Wright, Mary-Frances
2014-07-01
The Alberta Policy Coalition for Cancer Prevention (APCCP) represents practitioners, policy makers, researchers, and community organizations working together to coordinate efforts and advocate for policy change to reduce chronic diseases. The aim of this research was to capture changes in the APCCP's capacity to advance its goals over the course of its operation. We adapted the Public Health Agency of Canada's validated Community Capacity-Building Tool to capture policy work. All members of the APCCP were invited to complete the tool in 2010 and 2011. Responses were analyzed using descriptive statistics and t tests. Qualitative comments were analyzed using thematic content analysis. A group process for reaching consensus provided context to the survey responses and contributed to a participatory analysis. Significant improvement was observed in eight out of nine capacity domains. Lessons learned highlight the importance of balancing volume and diversity of intersectoral representation to ensure effective participation, as well as aligning professional and economic resources. Defining involvement and roles within a coalition can be a challenging activity contingent on the interests of each sector represented. The participatory analysis enabled the group to reflect on progress made and future directions for policy advocacy. © 2013 Society for Public Health Education.
The snakes and ladders of National Health Service management in England.
Powell, Martin
2014-01-01
This article explores managerial careers in the National Health Service (NHS) through the lens of talent management, particularly focusing on how managers view barriers (snakes) and facilitators (ladders) to career progression. There is a significant literature on enablers and barriers to career progression, but much of this focuses on specific groups such as black and minority ethnic and female workers, and there is relatively little material on the general workforce of the NHS. The research design is a mixed method quantitative (questionnaire) and qualitative (interview and focus group) approach consisting of a quasi-probability element that focuses on a maximum variety sample and a purposive element that seeks policy views at central and strategic health authority level, and examines talent management in high-performing NHS organisations. Ladders are identified as follows: volunteering, secondment, networking, mentoring, academic qualifications, development, good role models/managers and appraisal/personal development plan. Snakes are identified as managing expectations; identity and cognitive diversity; location; sector; NHS toxic and favouritism culture; poor talent spotting; credentialism; exclusive approach to talent; and sustainability. It concludes that while previous conceptual and empirical work is fairly clear on any ladders, it is less clear on snakes. Copyright © 2013 John Wiley & Sons, Ltd.
Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design
Li, Jianguo; Koh, Jun-Jie; Liu, Shouping; Lakshminarayanan, Rajamani; Verma, Chandra S.; Beuerman, Roger W.
2017-01-01
Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed. PMID:28261050
Sheridan, Ann J
2006-12-01
Using psychiatric nursing education and practice as a case study, this paper examines how the achievement of independence by a nation impacts significantly on the organisations, structures and service provision within that country. Furthermore, it sheds light on how an emerging nation is required to engage in a series of 'trade-offs' between priorities in an attempt to ensure progress towards the greater visioning goals such as the (re)establishing of a national cultural identity, freedom to practice religious beliefs and enhanced economic and practical benefits for all citizens. In the case of Irish psychiatric nursing, the achievement of independence resulted in a diminishing of earlier initiatives related to training and ultimately in a prolonged period of retrenchment, due primarily to competitive pressures and to imposed cultural influences and belief systems. The lesson from this Irish case study indicates that the initial phase of national autonomy can, of necessity, lead to a number of sacrifices as part of the realisation of self-governance and determination; and that this is a necessary prerequisite to gaining the strength to enable a much more confident progression into the future.
Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.
2012-01-01
Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.
Global mapping of infectious disease
Hay, Simon I.; Battle, Katherine E.; Pigott, David M.; Smith, David L.; Moyes, Catherine L.; Bhatt, Samir; Brownstein, John S.; Collier, Nigel; Myers, Monica F.; George, Dylan B.; Gething, Peter W.
2013-01-01
The primary aim of this review was to evaluate the state of knowledge of the geographical distribution of all infectious diseases of clinical significance to humans. A systematic review was conducted to enumerate cartographic progress, with respect to the data available for mapping and the methods currently applied. The results helped define the minimum information requirements for mapping infectious disease occurrence, and a quantitative framework for assessing the mapping opportunities for all infectious diseases. This revealed that of 355 infectious diseases identified, 174 (49%) have a strong rationale for mapping and of these only 7 (4%) had been comprehensively mapped. A variety of ambitions, such as the quantification of the global burden of infectious disease, international biosurveillance, assessing the likelihood of infectious disease outbreaks and exploring the propensity for infectious disease evolution and emergence, are limited by these omissions. An overview of the factors hindering progress in disease cartography is provided. It is argued that rapid improvement in the landscape of infectious diseases mapping can be made by embracing non-conventional data sources, automation of geo-positioning and mapping procedures enabled by machine learning and information technology, respectively, in addition to harnessing labour of the volunteer ‘cognitive surplus’ through crowdsourcing. PMID:23382431
Sieberts, Solveig K.; Zhu, Fan; García-García, Javier; Stahl, Eli; Pratap, Abhishek; Pandey, Gaurav; Pappas, Dimitrios; Aguilar, Daniel; Anton, Bernat; Bonet, Jaume; Eksi, Ridvan; Fornés, Oriol; Guney, Emre; Li, Hongdong; Marín, Manuel Alejandro; Panwar, Bharat; Planas-Iglesias, Joan; Poglayen, Daniel; Cui, Jing; Falcao, Andre O.; Suver, Christine; Hoff, Bruce; Balagurusamy, Venkat S. K.; Dillenberger, Donna; Neto, Elias Chaibub; Norman, Thea; Aittokallio, Tero; Ammad-ud-din, Muhammad; Azencott, Chloe-Agathe; Bellón, Víctor; Boeva, Valentina; Bunte, Kerstin; Chheda, Himanshu; Cheng, Lu; Corander, Jukka; Dumontier, Michel; Goldenberg, Anna; Gopalacharyulu, Peddinti; Hajiloo, Mohsen; Hidru, Daniel; Jaiswal, Alok; Kaski, Samuel; Khalfaoui, Beyrem; Khan, Suleiman Ali; Kramer, Eric R.; Marttinen, Pekka; Mezlini, Aziz M.; Molparia, Bhuvan; Pirinen, Matti; Saarela, Janna; Samwald, Matthias; Stoven, Véronique; Tang, Hao; Tang, Jing; Torkamani, Ali; Vert, Jean-Phillipe; Wang, Bo; Wang, Tao; Wennerberg, Krister; Wineinger, Nathan E.; Xiao, Guanghua; Xie, Yang; Yeung, Rae; Zhan, Xiaowei; Zhao, Cheng; Calaza, Manuel; Elmarakeby, Haitham; Heath, Lenwood S.; Long, Quan; Moore, Jonathan D.; Opiyo, Stephen Obol; Savage, Richard S.; Zhu, Jun; Greenberg, Jeff; Kremer, Joel; Michaud, Kaleb; Barton, Anne; Coenen, Marieke; Mariette, Xavier; Miceli, Corinne; Shadick, Nancy; Weinblatt, Michael; de Vries, Niek; Tak, Paul P.; Gerlag, Danielle; Huizinga, Tom W. J.; Kurreeman, Fina; Allaart, Cornelia F.; Louis Bridges Jr., S.; Criswell, Lindsey; Moreland, Larry; Klareskog, Lars; Saevarsdottir, Saedis; Padyukov, Leonid; Gregersen, Peter K.; Friend, Stephen; Plenge, Robert; Stolovitzky, Gustavo; Oliva, Baldo; Guan, Yuanfang; Mangravite, Lara M.
2016-01-01
Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h2=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data. PMID:27549343
The Physical Price of a Ticket into Space
NASA Astrophysics Data System (ADS)
Hawkey, A.
As a direct consequence of exposure to microgravity astronauts experience a number of physiological changes, which can have serious medical implications when they return to Earth. Most immediate and significant are the head-ward shift of body fluids and the removal of gravitational loading from bone and muscles, which lead to progressive changes in the cardiovascular and musculoskeletal systems. Cardiovascular adaptations result in an increased incidence of orthostatic intolerance (fainting) post-flight, decreased cardiac output and reduced exercise capacity. Changes in the musculoskeletal system contribute significantly to the impaired functions experienced in the post-flight period. The underlying factor producing these changes is the absence of gravity. Countermeasures, therefore, are designed primarily to simulate Earth-like movements, stresses and system interactions. Exercise is one approach that has received wide operational use and acceptance in both the US and Russian space programmes, and has enabled humans to stay relatively healthy in space for well over a year. Although it remains the most effective countermeasure currently available, significant physiological degrada- tion still occurs. The development of other countermeasures will therefore be necessary for longer duration missions, such as the human exploration of Mars.
Advanced computations in plasma physics
NASA Astrophysics Data System (ADS)
Tang, W. M.
2002-05-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
Advanced Computation in Plasma Physics
NASA Astrophysics Data System (ADS)
Tang, William
2001-10-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
Sittig, Dean F; Shiffman, Richard N; Leonard, Kevin; Friedman, Charles; Rudolph, Barbara; Hripcsak, George; Adams, Laura L; Kleinman, Lawrence C; Kaushal, Rainu
2005-06-13
American public policy makers recently established the goal of providing the majority of Americans with electronic health records by 2014. This will require a National Health Information Infrastructure (NHII) that is far more complete than the one that is currently in its formative stage of development. We describe a conceptual framework to help measure progress toward that goal. The NHII comprises a set of clusters, such as Regional Health Information Organizations (RHIOs), which, in turn, are composed of smaller clusters and nodes such as private physician practices, individual hospitals, and large academic medical centers. We assess progress in terms of the availability and use of information and communications technology and the resulting effectiveness of these implementations. These three attributes can be studied in a phased approach because the system must be available before it can be used, and it must be used to have an effect. As the NHII expands, it can become a tool for evaluating itself. The NHII has the potential to transform health care in America--improving health care quality, reducing health care costs, preventing medical errors, improving administrative efficiencies, reducing paperwork, and increasing access to affordable health care. While the President has set an ambitious goal of assuring that most Americans have electronic health records within the next 10 years, a significant question remains "How will we know if we are making progress toward that goal?" Using the definitions for "nodes" and "clusters" developed in this article along with the resulting measurement framework, we believe that we can begin a discussion that will enable us to define and then begin making the kinds of measurements necessary to answer this important question.
Sittig, Dean F; Shiffman, Richard N; Leonard, Kevin; Friedman, Charles; Rudolph, Barbara; Hripcsak, George; Adams, Laura L; Kleinman, Lawrence C; Kaushal, Rainu
2005-01-01
Background American public policy makers recently established the goal of providing the majority of Americans with electronic health records by 2014. This will require a National Health Information Infrastructure (NHII) that is far more complete than the one that is currently in its formative stage of development. We describe a conceptual framework to help measure progress toward that goal. Discussion The NHII comprises a set of clusters, such as Regional Health Information Organizations (RHIOs), which, in turn, are composed of smaller clusters and nodes such as private physician practices, individual hospitals, and large academic medical centers. We assess progress in terms of the availability and use of information and communications technology and the resulting effectiveness of these implementations. These three attributes can be studied in a phased approach because the system must be available before it can be used, and it must be used to have an effect. As the NHII expands, it can become a tool for evaluating itself. Summary The NHII has the potential to transform health care in America – improving health care quality, reducing health care costs, preventing medical errors, improving administrative efficiencies, reducing paperwork, and increasing access to affordable health care. While the President has set an ambitious goal of assuring that most Americans have electronic health records within the next 10 years, a significant question remains "How will we know if we are making progress toward that goal?" Using the definitions for "nodes" and "clusters" developed in this article along with the resulting measurement framework, we believe that we can begin a discussion that will enable us to define and then begin making the kinds of measurements necessary to answer this important question. PMID:15953388
Using Genome Sequence to Enable the Design of Medicines and Chemical Probes.
Angelbello, Alicia J; Chen, Jonathan L; Childs-Disney, Jessica L; Zhang, Peiyuan; Wang, Zi-Fu; Disney, Matthew D
2018-02-28
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
Leggett, Graham J
2011-03-22
Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.
High Volume Fraction Carbon Nanotube Composites for Aerospace Applications
NASA Technical Reports Server (NTRS)
Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Jensen, Benjamin D.; Wise, Kristopher E.
2015-01-01
Reported nanoscale mechanical properties of carbon nanotubes (CNTs) suggest that their use may enable the fabrication of significantly lighter structures for use in space applications. To be useful in the fabrication of large structures, however, their attractive nanoscale properties must be retained as they are scaled up to bulk materials and converted into practically useful forms. Advances in CNT production have significantly increased the quantities available for use in manufacturing processes, but challenges remain with the retention of nanoscale properties in larger assemblies of CNTs. This work summarizes recent progress in producing carbon nanotube composites with tensile properties approaching those of carbon fiber reinforced polymer composites. These advances were achieved in nanocomposites with CNT content of 70% by weight. The processing methods explored to yield these CNT composite properties will be discussed, as will the characterization and test methods that were developed to provide insight into the factors that contribute to the enhanced tensile properties. Technology maturation was guided by parallel advancements in computational modeling tools that aided in the interpretation of experimental data.
Simulation of drift wave instability in field-reversed configurations using global magnetic geometry
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team
2016-10-01
Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.; Sepehrnoori, K.
1995-08-01
This research consists of the parallel development of a new chemical flooding simulator and the application of our existing UTCHEM simulation code to model surfactant flooding. The new code is based upon a completely new numerical method that combines for the first time higher-order finite-difference methods, flux limiters, and implicit algorithms. Results indicate that this approach has significant advantages in some problems and will likely enable us to simulate much larger and more realistic chemical floods once it is fully developed. Additional improvements have also been made to the UTCHEM code, and it has been applied to the study ofmore » stochastic reservoirs with and without horizontal wells to evaluate methods to reduce the cost and risk of surfactant flooding. During the second year of this contract, we have already made significant progress on both of these tasks and are ahead of schedule on both of them.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... is entered into the appropriate tracking databases. Use of the information in the Agency's tracking databases enables the Agency to monitor progress on the activities attendant to scheduling and holding a... collection of information on respondents, including through the use of automated collection techniques, when...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... request is entered into the appropriate tracking databases. Use of the information in the Agency's tracking databases enables the appropriate Agency official to monitor progress on the evaluation of the... collection of information on respondents, including through the use of automated collection techniques, when...
HOMER CITY MULTISTREAM COAL CLEANING DEMONSTRATION: A PROGRESS REPORT
The report gives an overview of ongoing testing and evaluation of the Homer City Coal Cleaning Plant, built to enable the Homer City Power Complex to meet sulfur dioxide (SO2) emission levels mandated by the State of Pennsylvania and the U.S. Government. The plant was constructed...
A Preliminary Study of Grade Forecasting by Students
ERIC Educational Resources Information Center
Armstrong, Michael J.
2013-01-01
This experiment enabled undergraduate business students to better assess their progress in a course by quantitatively forecasting their own end-of-course grades. This innovation provided them with predictive feedback in addition to the outcome feedback they were already receiving. A total of 144 students forecast their grades using an…
The Computer's Debt to Science.
ERIC Educational Resources Information Center
Branscomb, Lewis M.
1984-01-01
Discusses discoveries and applications of science that have enabled the computer industry to introduce new technology each year and produce 25 percent more for the customer at constant cost. Potential limits to progress, disc storage technology, programming and end-user interface, and designing for ease of use are considered. Glossary is included.…
ERIC Educational Resources Information Center
Goolsby, Thomas M., Jr.; Frary, Robert B.
Two hundred first grade children participated in an experimental program involving innovative curricula and instructional techniques. A pretest-posttest method of instruction, employing sequenced and structured learning activities, enabled each child to progress at an individual rate and was supplemented by a readiness program. Evaluation of the…
Green School--A Service Learning Instrument to Enhance School Society Relation
ERIC Educational Resources Information Center
Madhusoodanan, Harikrishnan; Vitus, Geetha Janet
2014-01-01
A Green school is energy efficient, higher performing school that can be environmentally beneficial. Importance of Green school lies in the environmental friendliness value it upholds. Service learning has emanated out of philosophies of progressiveness and pragmatism. Service learning enables students to grow and learn through active…
Managing intellectual property to develop medicines for the world's poorest.
Fonteilles-Drabek, Sylvie; Reddy, David; Wells, Timothy N C
2017-04-01
It has been argued that patents impede the development and access of medicines for tropical diseases such as malaria. However, we believe that intellectual property can be a key tool to enable timely progression of drug development projects involving multiple partners and to ensure equitable access to successful products.
Using Qualitative Methods for Revising Items in the Hispanic Stress Inventory
ERIC Educational Resources Information Center
Cervantes, Richard C.; Goldbach, Jeremy T.; Padilla, Amado M.
2012-01-01
Despite progress in the development of measures to assess psychosocial stress experiences in the general population, a lack of culturally informed assessment instruments exist to enable clinicians and researchers to detect and accurately diagnosis mental health concerns among Hispanics. The Hispanic Stress Inventory (HSI) was developed…
Alternative Fuels Data Center: Latest Additions
. May 2018 Foothill Transit Agency Battery Electric Bus Progress Report, Data Period Focus: Jan. 2017 Utility Vehicles Autonomy-Enabled Fuel Savings for Military Vehicles: Report on 2016 Aberdeen Test Center Report 2016 Survey of Non-Starch Alcohol and Renewable Hydrocarbon Biofuels Producers Ethanol Strong
Applying a Metrics Report Card
ERIC Educational Resources Information Center
Klubeck, Martin; Langthorne, Michael
2008-01-01
In this article, the authors suggest that providing a report card enables an IT department to check its progress and overall performance; communicate the department's effectiveness to university leadership, IT membership, and customers; and make any necessary adjustments. A report card will not show how efficiently the IT department functions, but…
Diversity to Inclusion: Expanding Workplace Capability Thinking around Aboriginal Career Progression
ERIC Educational Resources Information Center
Morris, Kaye
2015-01-01
Optimally all individuals should contribute fully to the collective spirit and human capital within the workplace, supporting and enabling the development of a mature workforce. Human resource policies endeavour to address diversity and inclusion in the workplace through a variety of methodologies including training and professional development…
Electric Motor Thermal Management R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin
2016-06-07
Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.
Language Technologies to Support Formative Feedback
ERIC Educational Resources Information Center
Berlanga, Adriana J.; Kalz, Marco; Stoyanov, Slavi; van Rosmalen, Peter; Smithies, Alisdair; Braidman, Isobel
2011-01-01
Formative feedback enables comparison to be made between a learner's current understanding and a desired learning goal. Obtaining this information is a time consuming task that most tutors cannot afford. We therefore wished to develop a support software tool, which provides tutors and learners with information that identifies a learner's progress,…
Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan
2010-01-01
In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.
The Milking Stool Funding Plan
ERIC Educational Resources Information Center
Frye, Gary Lee
2007-01-01
Since funding is not always available for the basic instructional programs, let alone the special programs needed to ensure that every student will make adequate yearly progress (AYP), many campuses and school districts are turning to grants. In the short term, grants are wonderful things that enable educators to build programs to meet the…
Recent Progress in the Remote Detection of Vapours and Gaseous Pollutants.
ERIC Educational Resources Information Center
Moffat, A. J.; And Others
Work has been continuing on the correlation spectrometry techniques described at previous remote sensing symposiums. Advances in the techniques are described which enable accurate quantitative measurements of diffused atmospheric gases to be made using controlled light sources, accurate quantitative measurements of gas clouds relative to…
Electric Motor Thermal Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin S
Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.
Tiered Evaluation in Large Ensemble Settings.
ERIC Educational Resources Information Center
Scott, David
1998-01-01
Discusses the use of a tiered evaluation system (TES) that allows students to work at different levels, enables teachers to assess progress objectively, and presents students with appropriate challenges in the music ensembles. Focuses on how TES works and its advantages, considers the challenges and flexibility of TES, and provides samples. (CMK)
Turkish Students' Science Performance and Related Factors in PISA 2006 and 2009
ERIC Educational Resources Information Center
Topçu, Mustafa Sami; Arikan, Serkan; Erbilgin, Evrim
2015-01-01
The OECD's Programme for International Student Assessment (PISA) enables participating countries to monitor 15-year old students' progress in reading, mathematics, and science literacy. The present study investigates persistent factors that contribute to science performance of Turkish students in PISA 2006 and PISA 2009. Additionally, the study…
32 CFR 199.7 - Claims submission, review, and payment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Claims submission, review, and payment. 199.7 Section 199.7 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE... patient's treatment and progress. Accurate and timely completion of orders, notes, etc., enable different...
Leveraging ARRA Funding for Developing Comprehensive State Longitudinal Data Systems
ERIC Educational Resources Information Center
Pfeiffer, Jay; Klein, Steven; Levesque, Karen
2009-01-01
The American Recovery and Reinvestment Act (ARRA) provides several funding opportunities that can assist states in designing, developing, and implementing statewide education longitudinal data systems. These new and enhanced information systems will enable states to track student progress within and across the secondary and postsecondary education…
Enabling Technologies for the Future of Chemical Synthesis
2016-01-01
Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic–industry relationships, and future trends in the area of chemical synthesis. PMID:27163040
Mood Swings: An Affective Interactive Art System
NASA Astrophysics Data System (ADS)
Bialoskorski, Leticia S. S.; Westerink, Joyce H. D. M.; van den Broek, Egon L.
The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on the integration of a framework for affective movements and a color model. This enables Mood Swings to recognize affective movement characteristics as expressed by a person and display a color that matches the expressed emotion. With that, a unique interactive system is introduced, which can be considered as art, a game, or a combination of both.
NASA Technical Reports Server (NTRS)
Honeycutt, John
2017-01-01
Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle Payload fairings of up to 10-meter diameter are being studied Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t Evolved version of SLS will offer Mars-enabling capability of greater than 130 metric tons to LEO SLS offers reduced transit times to the outer solar system by half or greater Higher characteristic energy (C3) also enables larger payloads to destination
Enabling Large-Scale Biomedical Analysis in the Cloud
Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen
2013-01-01
Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665
The national response for preventing healthcare-associated infections: infrastructure development.
Mendel, Peter; Siegel, Sari; Leuschner, Kristin J; Gall, Elizabeth M; Weinberg, Daniel A; Kahn, Katherine L
2014-02-01
In 2009, the US Department of Health and Human Services (HHS) launched the Action Plan to Prevent Healthcare-associated Infections (HAIs). The Action Plan adopted national targets for reduction of specific infections, making HHS accountable for change across the healthcare system over which federal agencies have limited control. This article examines the unique infrastructure developed through the Action Plan to support adoption of HAI prevention practices. Interviews of federal (n=32) and other stakeholders (n=38), reviews of agency documents and journal articles (n=260), and observations of interagency meetings (n=17) and multistakeholder conferences (n=17) over a 3-year evaluation period. We extract key progress and challenges in the development of national HAI prevention infrastructure--1 of the 4 system functions in our evaluation framework encompassing regulation, payment systems, safety culture, and dissemination and technical assistance. We then identify system properties--for example, coordination and alignment, accountability and incentives, etc.--that enabled or hindered progress within each key development. The Action Plan has developed a model of interagency coordination (including a dedicated "home" and culture of cooperation) at the federal level and infrastructure for stimulating change through the wider healthcare system (including transparency and financial incentives, support of state and regional HAI prevention capacity, changes in safety culture, and mechanisms for stakeholder engagement). Significant challenges to infrastructure development included many related to the same areas of progress. The Action Plan has built a foundation of infrastructure to expand prevention of HAIs and presents useful lessons for other large-scale improvement initiatives.
NASA Astrophysics Data System (ADS)
Wehrs, K.; Crosby, B. T.
2017-12-01
River response to changes in climate and relative base level often leave behind a legacy of transient landforms that enable the interpretation of past events. The dominant paradigm is that base level fall initiates a wave of mainstem incision that progressively transmits change upstream. Mainstem-adjacent hillslopes coupled to the channel subsequently respond as their toe slopes are steepened. To test this paradigm, we first use a longitudinal set of mainstem terrace ages to evaluate whether incision incrementally progresses upstream or is contemporaneous. Second, we explore longitudinal variations in mainstem-adjacent mass movements to evaluate whether they reflect a time and space progression in response. The South Fork Eel River in northern California contains over 600 mainstem-adjacent mass movements and 60 m tall, longitudinally extensive strath terraces that record a landscape response to river incision. We use Optically Stimulated Luminescence, with feldspars and coarse-grained sampling technique, to determine the depositional age of alluvial fill atop the strath terrace. If terrace abandonment progressively young upstream, this suggests that base level fall was not spatially contemporaneous, but rather time progressive. As a consequence, the age, form, and extent of mass wasting events should also vary longitudinally. Because terraces isolate hillslopes from the base level fall signal, we use these surfaces to quantify hillslope form and function independent of that forcing. Preliminary results using mainstem-parallel, 1 m LiDAR, show significant variation in size of mass movements throughout the basin, with planar, linearly moving translational landslides dominating throughout the catchment. In the lower basin, well downstream of the current knickzone, we see an increase in mass movement concentration, reactivation, and overall extent of mass movements. Multiple factors confound our interpretation of hillslope morphology and response, due to changes in lithology, climate, and river sinuosity throughout the catchment.
Electronic Health Record Application Support Service Enablers.
Neofytou, M S; Neokleous, K; Aristodemou, A; Constantinou, I; Antoniou, Z; Schiza, E C; Pattichis, C S; Schizas, C N
2015-08-01
There is a huge need for open source software solutions in the healthcare domain, given the flexibility, interoperability and resource savings characteristics they offer. In this context, this paper presents the development of three open source libraries - Specific Enablers (SEs) for eHealth applications that were developed under the European project titled "Future Internet Social and Technological Alignment Research" (FI-STAR) funded under the "Future Internet Public Private Partnership" (FI-PPP) program. The three SEs developed under the Electronic Health Record Application Support Service Enablers (EHR-EN) correspond to: a) an Electronic Health Record enabler (EHR SE), b) a patient summary enabler based on the EU project "European patient Summary Open Source services" (epSOS SE) supporting patient mobility and the offering of interoperable services, and c) a Picture Archiving and Communications System (PACS) enabler (PACS SE) based on the dcm4che open source system for the support of medical imaging functionality. The EHR SE follows the HL7 Clinical Document Architecture (CDA) V2.0 and supports the Integrating the Healthcare Enterprise (IHE) profiles (recently awarded in Connectathon 2015). These three FI-STAR platform enablers are designed to facilitate the deployment of innovative applications and value added services in the health care sector. They can be downloaded from the FI-STAR cataloque website. Work in progress focuses in the validation and evaluation scenarios for the proving and demonstration of the usability, applicability and adaptability of the proposed enablers.
Imaging Exoplanets with the Exo-S Starshade Mission: Key Enabling Technologies
NASA Astrophysics Data System (ADS)
Kasdin, N. Jeremy; Lisman, Doug; Shaklan, Stuart; Thomson, Mark; Webb, David; Cady, Eric; Exo-S Science; Technology Definition Team, Exoplanet Program Probe Study Design Team
2015-01-01
There is increasing interest in the use of a starshade, a spacecraft employing a large screen flying in formation with a space telescope, for providing the starlight suppression needed to detect and characterize exoplanets. In particular, Exo-S is a NASA study directed at designing a probe-scale exoplanet mission employing a starshade. In this poster we present the enabling technologies needed to make a starshade mission a reality: flight-like petals, a deployable truss to support the petals, optical edges, optical diffraction studies, and formation sensing and control. We show the status of each technology gap and summarize our progress over the past 5 years with plans for the next 3 years in demonstrating feasibility in all these areas. In particular, since no optical end-to-end test is possible, it is necessary to both show that a starshade can be built and deployed to the required accuracy and, via laboratory experiments at smaller scale, that the optical modeling upon which the accuracy requirements are based is validated. We show our progress verifying key enabling technologies, including demonstrating that a starshade petal made from flight-like materials can be manufactured to the needed accuracy and that a central truss with attached petals can be deployed with the needed precision. We also summarize our sub-scale lab experiments that demonstrate we can achieve the contrast predicted by our optical models.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1985-01-01
Collisions between neutral hydrogen atoms in the interstellar medium and those in the so-called Titan hydrogen torus may provide an additional lifetime sink for atoms in the Saturn environment. Progress toward re-sorting the Voyager UVS scans of neutral hydrogen in the Saturn system to enable both a factor of two increase in the amount of data to be analyzed as well as to help identify near-Titan hydrogen is discussed. Progress toward development of the cometary carbon and oxygen models is also discussed and a preliminary model run for the H2O source of cometary oxygen is presented.
Spine lesion analysis in 3D CT data - Reporting on research progress
NASA Astrophysics Data System (ADS)
Jan, Jiri; Chmelik, Jiri; Jakubicek, Roman; Ourednicek, Petr; Amadori, Elena; Gavelli, Giampaolo
2018-04-01
The contribution describes progress in the long-term project concerning automatic diagnosis of spine bone lesions. There are two difficult problems: segmenting reliably possibly severely deformed vertebrae in the spine and then detect, segment and classify the lesions that are often hardly visible thus making even the medical expert decisions highly uncertain, with a large inter-expert variety. New approaches are described enabling to solve both problems with a success rate acceptable for clinical testing, at the same time speeding up the process substantially compared to the previous stage. The results are compared with previously published achievements.
2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Health information technology: strategic initiatives, real progress.
Kolodner, Robert M; Cohn, Simon P; Friedman, Charles P
2008-01-01
We fully agree with Carol Diamond and Clay Shirky that deployment of health information technology (IT) is necessary but not sufficient for transforming U.S. health care. However, the recent work to advance health IT is far from an exercise in "magical thinking." It has been strategic thinking. To illustrate this, we highlight recent initiatives and progress under four focus areas: adoption, governance, privacy and security, and interoperability. In addition, solutions exist for health IT to advance rapidly without adversely affecting future policy choices. A broad national consensus is emerging in support of advancing health IT to enable the transformation of health and care.
FY 2014 Annual Progress Report - Advanced Combustion Engine Research and Development (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Josselyn, Sheena A; Köhler, Stefan; Frankland, Paul W
2015-09-01
Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent 'capture' studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram.
Lophotrochozoan mitochondrial genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valles, Yvonne; Boore, Jeffrey L.
2005-10-01
Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animalsmore » across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.« less
Separation anxiety: Stress, tension and cytokinesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Krithika; Iglesias, Pablo A., E-mail: pi@jhu.edu; Robinson, Douglas N., E-mail: dnr@jhmi.edu
Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis. -- Highlights: Black-Right-Pointing-Pointer Cytokinesis progresses through three distinct mechanical phases. Black-Right-Pointing-Pointer Cortical tension initially resists deformation of mother cell. Black-Right-Pointing-Pointer Latemore » in cytokinesis, cortical tension provides stress, enabling furrow ingression. Black-Right-Pointing-Pointer A mechanosensory feedback control system regulates cytokinesis.« less
Expansion Mini-Microscopy: An Enabling Alternative in Point-of-Care Diagnostics
Zhang, Yu Shrike; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Schiff, Steven J.; Boyden, Edward S.; Khademhosseini, Ali
2017-01-01
Diagnostics play a significant role in health care. In the developing world and low-resource regions the utility for point-of-care (POC) diagnostics becomes even greater. This need has long been recognized, and diagnostic technology has seen tremendous progress with the development of portable instrumentation such as miniature imagers featuring low complexity and cost. However, such inexpensive devices have not been able to achieve a resolution sufficient for POC detection of pathogens at very small scales, such as single-cell parasites, bacteria, fungi, and viruses. To this end, expansion microscopy (ExM) is a recently developed technique that, by physically expanding preserved biological specimens through a chemical process, enables super-resolution imaging on conventional microscopes and improves imaging resolution of a given microscope without the need to modify the existing microscope hardware. Here we review recent advances in ExM and portable imagers, respectively, and discuss the rational combination of the two technologies, that we term expansion mini-microscopy (ExMM). In ExMM, the physical expansion of a biological sample followed by imaging on a mini-microscope achieves a resolution as high as that attainable by conventional high-end microscopes imaging non-expanded samples, at significant reduction in cost. We believe that this newly developed ExMM technique is likely to find widespread applications in POC diagnostics in resource-limited and remote regions by expanded-scale imaging of biological specimens that are otherwise not resolvable using low-cost imagers. PMID:29062977
Devillier, Raynier; Coso, Diane; Castagna, Luca; Brenot Rossi, Isabelle; Anastasia, Antonella; Chiti, Arturo; Ivanov, Vadim; Schiano, Jean Marc; Santoro, Armando; Chabannon, Christian; Balzarotti, Monica; Blaise, Didier; Bouabdallah, Reda
2012-01-01
Background High-dose chemotherapy followed by autologous stem cell transplantation is the standard treatment for relapsed and/or refractory Hodgkin’s lymphoma although half of patients relapse after transplantation. Predictive factors, such as relapse within 12 months, Ann-Arbor stage at relapse, and relapse in previously irradiated fields are classically used to identify patients with poor outcome. Recently, 18-fluorodeoxyglucose positron emission tomography has emerged as a new method for providing information to predict outcome. The aim of this study was to confirm the predictive value of positron emission tomography status after salvage therapy and to compare single versus tandem autologous stem cell transplantation in patients with relapsed and/or refractory Hodgkin’s lymphoma. Design and Methods We report a series of 111 consecutive patients with treatment-sensitive relapsed and/or treatment-refractory Hodgkin’s lymphoma who achieved complete (positron emission tomography-negative group) or partial remission (positron emission tomography-positive group) at positron emission tomography evaluation after salvage chemotherapy and who underwent single or tandem autologous stem cell transplantation. Results Five-year overall and progression-free survival rates were 81% and 64%, respectively. There were significant differences in 5-year progression-free survival (79% versus 23%; P<0.001) and 5-year overall survival (90% versus 55%, P=0.001) between the positron emission tomography-negative and -positive groups, respectively. A complete response, as determined by positron emission tomography evaluation, after salvage therapy predicted significantly better 5-year overall survival rates in both intermediate (91% versus 50%; P=0.029) and unfavorable (89% versus 58%; P=0.026) risk subgroup analyses. In the positron emission tomography-positive subgroup, tandem transplantation improved 5-year progression-free survival from 0% (in the single transplantation group) to 43% (P=0.034). Multivariate analysis showed that positron emission tomography status (hazard ratio: 5.26 [2.57–10.73]) and tandem transplantation (hazard ratio: 0.39 [0.19–0.78]) but not risk factors at relapse (hazard ratio: 1.77 [0.80–3.92]) significantly influenced progression-free survival, while only tomography status significantly influenced overall survival (hazard ratio: 4.03 [1.38–11.75]). Conclusions In patients with relapsed/refractory Hodgkin’s lymphoma responding to prior salvage therapy, positron emission tomography response at time of autologous stem cell transplantation favorably influences outcome and enables identification of patients requiring single or tandem transplantation. PMID:22271893
NASA Astrophysics Data System (ADS)
Varghese, Julian
This research work has contributed in various ways to help develop a better understanding of textile composites and materials with complex microstructures in general. An instrumental part of this work was the development of an object-oriented framework that made it convenient to perform multiscale/multiphysics analyses of advanced materials with complex microstructures such as textile composites. In addition to the studies conducted in this work, this framework lays the groundwork for continued research of these materials. This framework enabled a detailed multiscale stress analysis of a woven DCB specimen that revealed the effect of the complex microstructure on the stress and strain energy release rate distribution along the crack front. In addition to implementing an oxidation model, the framework was also used to implement strategies that expedited the simulation of oxidation in textile composites so that it would take only a few hours. The simulation showed that the tow architecture played a significant role in the oxidation behavior in textile composites. Finally, a coupled diffusion/oxidation and damage progression analysis was implemented that was used to study the mechanical behavior of textile composites under mechanical loading as well as oxidation. A parametric study was performed to determine the effect of material properties and the number of plies in the laminate on its mechanical behavior. The analyses indicated a significant effect of the tow architecture and other parameters on the damage progression in the laminates.
Ball, Susan; Vickery, Jane; Hobart, Jeremy; Wright, Dave; Green, Colin; Shearer, James; Nunn, Andrew; Cano, Mayam Gomez; MacManus, David; Miller, David; Mallik, Shahrukh; Zajicek, John
2015-02-01
The Cannabinoid Use in Progressive Inflammatory brain Disease (CUPID) trial aimed to determine whether or not oral Δ(9)-tetrahydrocannabinol (Δ(9)-THC) slowed the course of progressive multiple sclerosis (MS); evaluate safety of cannabinoid administration; and, improve methods for testing treatments in progressive MS. There were three objectives in the CUPID study: (1) to evaluate whether or not Δ(9)-THC could slow the course of progressive MS; (2) to assess the long-term safety of Δ(9)-THC; and (3) to explore newer ways of conducting clinical trials in progressive MS. The CUPID trial was a randomised, double-blind, placebo-controlled, parallel-group, multicentre trial. Patients were randomised in a 2 : 1 ratio to Δ(9)-THC or placebo. Randomisation was balanced according to Expanded Disability Status Scale (EDSS) score, study site and disease type. Analyses were by intention to treat, following a pre-specified statistical analysis plan. A cranial magnetic resonance imaging (MRI) substudy, Rasch measurement theory (RMT) analyses and an economic evaluation were undertaken. Twenty-seven UK sites. Adults aged 18-65 years with primary or secondary progressive MS, 1-year evidence of disease progression and baseline EDSS 4.0-6.5. Oral Δ(9)-THC (maximum 28 mg/day) or matching placebo. Three and 6 months, and then 6-monthly up to 36 or 42 months. Primary outcomes were time to EDSS progression, and change in Multiple Sclerosis Impact Scale-29 version 2 (MSIS-29v2) 20-point physical subscale (MSIS-29phys) score. Various secondary patient- and clinician-reported outcomes and MRI outcomes were assessed. RMT analyses examined performance of MS-specific rating scales as measurement instruments and tested for a symptomatic or disease-modifying treatment effect. Economic evaluation estimated mean incremental costs and quality-adjusted life-years (QALYs). Effectiveness - recruitment targets were achieved. Of the 498 randomised patients (332 to active and 166 to placebo), 493 (329 active and 164 placebo) were analysed. no significant treatment effect; hazard ratio EDSS score progression (active : placebo) 0.92 [95% confidence interval (CI) 0.68 to 1.23]; and estimated between-group difference in MSIS-29phys score (active-placebo) -0.9 points (95% CI -2.0 to 0.2 points). Secondary clinical and MRI outcomes: no significant treatment effects. Safety - at least one serious adverse event: 35% and 28% of active and placebo patients, respectively. RMT analyses - scale evaluation: MSIS-29 version 2, MS Walking Scale-12 version 2 and MS Spasticity Scale-88 were robust measurement instruments. There was no clear symptomatic or disease-modifying treatment effect. Economic evaluation - estimated mean incremental cost to NHS over usual care, over 3 years £27,443.20 per patient. No between-group difference in QALYs. The CUPID trial failed to demonstrate a significant treatment effect in primary or secondary outcomes. There were no major safety concerns, but unwanted side effects seemed to affect compliance. Participants were more disabled than in previous studies and deteriorated less than expected, possibly reducing our ability to detect treatment effects. RMT analyses supported performance of MS-specific rating scales as measures, enabled group- and individual person-level examination of treatment effects, but did not influence study inferences. The intervention had significant additional costs with no improvement in health outcomes; therefore, it was dominated by usual care and not cost-effective. Future work should focus on determining further factors to predict clinical deterioration, to inform the development of new studies, and modifying treatments in order to minimise side effects and improve study compliance. The absence of disease-modifying treatments in progressive MS warrants further studies of the cannabinoid pathway in potential neuroprotection. Current Controlled Trials ISRCTN62942668. The National Institute for Health Research Health Technology Assessment programme, the Medical Research Council Efficacy and Mechanism Evaluation programme, Multiple Sclerosis Society and Multiple Sclerosis Trust. The report will be published in full in Health Technology Assessment; Vol. 19, No. 12. See the NIHR Journals Library website for further project information.
Silva, A P dos S; Cerqueira, G S; Nunes, L C C; de Freitas, R M
2012-03-01
The antioxidant activities of aqueous extract (AE) of Orbignya phalerata were assessed in vitro as well as its effect on locomotor activity and motor coordination in mice. AE does not possesses a strong antioxidant potential according to the scavenging assays; it also did not present scavenger activity in vitro. Following oral administration, AE (1, 2 and 3 g/kg) did not significantly change the motor activity of animals when compared with the control group, up to 24 h after administration and did not alter the remaining time of the animals on the Rota-rod apparatus. Further studies currently in progress will enable us to understand the mechanisms of action of the aqueous extract of Orbignya phalerata widely used in Brazilian flok medicine.
Predicting remaining life by fusing the physics of failure modeling with diagnostics
NASA Astrophysics Data System (ADS)
Kacprzynski, G. J.; Sarlashkar, A.; Roemer, M. J.; Hess, A.; Hardman, B.
2004-03-01
Technology that enables failure prediction of critical machine components (prognostics) has the potential to significantly reduce maintenance costs and increase availability and safety. This article summarizes a research effort funded through the U.S. Defense Advanced Research Projects Agency and Naval Air System Command aimed at enhancing prognostic accuracy through more advanced physics-of-failure modeling and intelligent utilization of relevant diagnostic information. H-60 helicopter gear is used as a case study to introduce both stochastic sub-zone crack initiation and three-dimensional fracture mechanics lifing models along with adaptive model updating techniques for tuning key failure mode variables at a local material/damage site based on fused vibration features. The overall prognostic scheme is aimed at minimizing inherent modeling and operational uncertainties via sensed system measurements that evolve as damage progresses.
High density terahertz frequency comb produced by coherent synchrotron radiation
Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.
2015-01-01
Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043
DSSTOX (DISTRIBUTED STRUCTURE-SEARCHABLE ...
Distributed Structure-Searchable Toxicity Database Network Major trends affecting public toxicity information resources have the potential to significantly alter the future of predictive toxicology. Chemical toxicity screening is undergoing shifts towards greater use of more fundamental information on gene/protein expression patterns and bioactivity and bioassay profiles, the latter generated with highthroughput screening technologies. Curated, systematically organized, and webaccessible toxicity and biological activity data in association with chemical structures, enabling the integration of diverse data information domains, will fuel the next frontier of advancement for QSAR (quantitative structure-activity relationship) and data mining technologies. The DSSTox project is supporting progress towards these goals on many fronts, promoting the use of formalized and structure-annotated toxicity data models, helping to interface these efforts with QSAR modelers, linking data from diverse sources, and creating a large, quality reviewed, central chemical structure information resource linked to various toxicity data sources
Traumatic Tricuspid Regurgitation.
Cheng, Yan; Yao, Lei; Wu, Shengjun
2017-05-31
Traumatic tricuspid regurgitation is a rare and progressive disease. Early diagnosis and surgical valve repair are very important. A 57-year-old male was referred to our hospital with a history of blunt chest trauma. Three-dimensional echocardiography showed severe tricuspid regurgitation and demonstrated two main anterior leaflet chordaes of the tricuspid valve rupture and the whole anterior leaflet prolapsed. The diagnosis was severe tricuspid regurgitation due to leaflet chordae rupture secondary to blunt chest trauma. Surgical repair of the tricuspid valve was performed in this patient. At 3-month follow-up, the right ventricle was decreased in size with significantly improved right ventricular function. The signs and symptoms of right heart failure were relieved. In this case, 3-dimensional transthoracic echocardiography enabled fast and non-invasive evaluation of the spatial destruction of the tricuspid valve and subvalvular apparatus to assist in the planning of valve repair.
Noisy neighbourhoods: quorum sensing in fungal–polymicrobial infections
Dixon, Emily F.
2015-01-01
Summary Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum‐sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum‐sensing pathways in fungi has led to the characterization of a number of interkingdom quorum‐sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response. PMID:26243526
Model Programs: Childhood Education. Project PLAN.
ERIC Educational Resources Information Center
American Institutes for Research in the Behavioral Sciences, Palo Alto, CA.
This booklet is one of 34 in a series of programs on childhood education prepared for the White House Conference on Children. In Parkersburg, West Virginia, Project PLAN (Program for Learning in Accordance with Needs) offers an individualized instructional system designed to enable each student to progress at his own rate, using the learning…
Learning through Geography. Pathways in Geography Series, Title No. 7.
ERIC Educational Resources Information Center
Slater, Frances
This teacher's guide is to enable the teacher to promote thinking through the use of geography. The book lays out the rationale in learning theory for an issues-based, question-driven inquiry method and proceeds through a simple model of progression from identifying key questions to developing generalizations. Students study issues of geographic…
Teacher Leadership Capacity-Building: Developing Democratically Accountable Leaders in Schools
ERIC Educational Resources Information Center
Mullen, Carol A.; Jones, Rahim J.
2008-01-01
Using a qualitative case study approach, the authors explore social justice implications of inservice principals' practices that affect attitudes and empower teachers. If a primary educational goal of progressive schooling is to create and sustain more democratic schools by enabling the growth of teachers as leaders who are responsible for their…
Mobile Technology in Hospital Schools: What Are Hospital Teachers' Professional Learning Needs?
ERIC Educational Resources Information Center
McCarthy, Aidan; Maor, Dorit; McConney, Andrew
2017-01-01
The aim of this study was to identify hospital teachers' professional learning needs to enable effective use of mobile technology in hospital schools. Hospitalized students cannot attend their regular schools and as a result their educational progress and development can suffer. In an attempt to address this, hospital schools provide learning…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori
2016-12-30
The present report summarizes and discusses the current results and on-going activity towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program.
Teaching/Learning Guide: Level I.
ERIC Educational Resources Information Center
Carbon - Lehigh Intermediate Unit, Schnecksville, PA.
The manual presents sequences of skills designed for use as guides to teaching/learning objectives and as a basis for evaluating and recording special education students' progress. It is explained that the goal of the first level of objectives (sequenced in this document) is to enable the student to function at a motor/psychomotor state of…
The role of academia and industry in nurturing women in physics in Kenya
NASA Astrophysics Data System (ADS)
Nyamwandha, Cecilia A.; Kasina, Angeline; Muthui, Zipporah W.; Awuor, Emily; Baki, Paul
2015-12-01
The authors look at some of the primary initiatives taken by the government, academia, and industry to nurture the goals and dreams of Kenyan women physicists. They discuss key transformative lines of progress as evidenced by statistics, and the enabling environments and platforms upon which these were made possible.
Building the tree of life from scratch: an end-to-end work flow for phylogenomic studies
USDA-ARS?s Scientific Manuscript database
Whole genome sequences are rich sources of information about organisms that are superbly useful for addressing a wide variety of evolutionary questions. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understan...
Engaging College Students on a Community Engagement with High School Students with Disabilities
ERIC Educational Resources Information Center
Lawler, James; Joseph, Anthony; Narula, Stuti
2014-01-01
Community engagement is a common course in college curricula of computer science and information systems. In this study, the authors analyze the benefits of digital storytelling, in a course engaging college students with high school students with disabilities. The authors discover that a project of storytelling progressively enables high…
Technology-Mediation and Tutoring: How Do They Shape Progressive Inquiry Discourse?
ERIC Educational Resources Information Center
Muukkonen, Hanni; Lakkala, Minna; Hakkarainen, Kai
2005-01-01
In higher education, there is a challenge to gain the full benefit of the potentials of learning technology for collaborative knowledge advancement and for scaffolding practices of academic literacy and scientific argumentation. The technology, ideally, would be used to provide support that enables students to deal with more demanding tasks than…
NASA Astrophysics Data System (ADS)
Venkatapathy, E.; Ellerby, D.; Gage, P.
2017-11-01
HEEET, in development since 2014 with the goal of enabling missions to Venus, Saturn and other high-speed sample return missions, is incentivized by SMD-PSD and will be delivered at TRL 6 by FY'18. This presentation will cover the current status.
D. W. Griffith's Controversial Film, "The Birth of a Nation."
ERIC Educational Resources Information Center
Pitcher, Conrad
1999-01-01
Presents a lesson plan that enables students to investigate race relations during the Progressive Era by analyzing D. W. Griffith's "The Birth of a Nation" and the controversy surrounding the release of the film. Explores the pros and cons of using motion pictures as teaching tool. Includes two student handouts. (CMK)
Computer-Aided Engineering Tools | Water Power | NREL
energy converters that will provide a full range of simulation capabilities for single devices and arrays simulation of water power technologies on high-performance computers enables the study of complex systems and experimentation. Such simulation is critical to accelerate progress in energy programs within the U.S. Department
Creating Digital Narratives: Guideline for Early Childhood Educators
ERIC Educational Resources Information Center
Fenty, Nicole S.; Anderson, Elizabeth
2016-01-01
As the internet and internet-enabled devices have become more accessible, people around the world now have life-changing information at their fingertips, available at a speed and ease unfathomable just a generation ago. While the information age certainly has its pitfalls, the possibilities for economic and social progress are seemingly limitless.…
Density gradients at hydrogel interfaces for enhanced cell penetration.
Simona, B R; Hirt, L; Demkó, L; Zambelli, T; Vörös, J; Ehrbar, M; Milleret, V
2015-04-01
We report that stiffness gradients facilitate infiltration of cells through otherwise cell-impermeable hydrogel interfaces. By enabling the separation of hydrogel manufacturing and cell seeding, and by improving cell colonization of additively manufactured hydrogel elements, interfacial density gradients present a promising strategy to progress in the creation of 3D tissue models.
Influence of Learning Management Systems Self-Efficacy on E-Learning Performance
ERIC Educational Resources Information Center
Martin, Florence; Tutty, Jeremy I.; Su, Yuyan
2010-01-01
Recent advancements in technology have changed the way educators teach and students learn (Wells, Fieger & Lange, 2005). In the last decade, educational trends have progressed towards online and blended instruction. One key in this revolution is the development of the Learning Management System (LMS); software that enables the management and…
Exploring Differences in Students' Engagement in Literature Discussions.
ERIC Educational Resources Information Center
Godinho, Sally; Shrimpton, Bradley
This paper discusses research in progress which is examining differences in the ways that boys and girls engage in small-group literature discussions, and the enabling strategies teachers use to support student talk. The paper uses case studies which draw on videotaped data from small-group literature discussions, interviews with teachers, and…
Action Research: An Approach for the Teachers in Higher Education
ERIC Educational Resources Information Center
Yasmeen, Ghazala
2008-01-01
Introduction: Action Research is a formative study of progress commonly practiced by teachers in schools. Basically an action research is a spiral process that includes problem investigation, taking action & fact-finding about the result of action. It enables a teacher to adopt/craft most appropriate strategy within its own teaching environment.…
Action Research: An Approach for the Teachers in Higher Education
ERIC Educational Resources Information Center
Yasmeen, G.
2008-01-01
Introduction: Action Research is a formative study of progress commonly practiced by teachers in schools. Basically an action research is a spiral process that includes problem investigation, taking action & fact-finding about the result of action. It enables a teacher to adopt/craft most appropriate strategy within its own teaching…
Understanding Online Interaction in Language MOOCs through Learning Analytics
ERIC Educational Resources Information Center
Martín-Monje, Elena; Castrillo, María Dolores; Mañana-Rodríguez, Jorge
2018-01-01
Data mining is increasing its popularity in the research of Technology-Enhanced Language Learning and Applied Linguistics in general. It enables a better understanding of progress, performance and possible pitfalls, which would be useful for language learners, teachers and researchers. Until recently it was an unexplored field, but it is expected…
Lathe Operator. Coordinator's Guide. Individualized Study Guide. General Metal Trades.
ERIC Educational Resources Information Center
East Texas State Univ., Commerce. Occupational Curriculum Lab.
This guide provides information to enable coordinators to direct learning activities for students using an individualized study guide on operating a lathe. The study material is designed for students enrolled in cooperative part-time training and employed, or desiring to be employed, as lathe operators. Contents include a sample progress chart,…
ERIC Educational Resources Information Center
ElSaheli-Elhage, Rasha; Sawilowsky, Shlomo
2016-01-01
Education is intended to provide diverse students with the skills and competencies needed to enhance their lives. This includes assessment practices that enable teachers to identify students' current level of skills, their strength and weaknesses, target instruction at student's personal level, monitor student learning and progress and plan and…
ERIC Educational Resources Information Center
Nicola-Richmond, Kelli; Pépin, Geneviève; Larkin, Helen; Taylor, Charlotte
2018-01-01
In relation to teaching and learning approaches that improve student learning outcomes, threshold concepts have generated substantial interest in higher education. They have been described as "portals" that lead to a transformed way of understanding or thinking, enabling learners to progress, and have been enthusiastically adopted to…
Technologies for Controlled, Local Delivery of siRNA
Sarett, Samantha M.; Nelson, Christopher E.; Duvall, Craig L.
2015-01-01
The discovery of RNAi in the late 1990s unlocked a new realm of therapeutic possibilities by enabling potent and specific silencing of theoretically any desired genetic target. Better elucidation of the mechanism of action, the impact of chemical modifications that stabilize and reduce nonspecific effects of siRNA molecules, and the key design considerations for effective delivery systems has spurred progress toward developing clinically-successful siRNA therapies. A logical aim for initial siRNA translation is local therapies, as delivering siRNA directly to its site of action helps to ensure that a sufficient dose reaches the target tissue, lessens the potential for off-target side effects, and circumvents the substantial systemic delivery barriers. While topical siRNA delivery has progressed into numerous clinical trials, an enormous opportunity also exists to develop sustained-release, local delivery systems that enable both spatial and temporal control of gene silencing. This review focuses on material platforms that establish both localized and controlled gene silencing, with emphasis on the systems that show most promise for clinical translation. PMID:26476177
Kang, Tae-Woo; Cynn, Heon-Seock
2017-01-01
The International Classification of Functioning, Disability, and Health (ICF) provides models for functions and disabilities. The ICF is presented as a frame that enables organizing physical therapists' clinical practice for application. The purpose of the present study was to describe processes through which stroke patients are assessed and treated based on the ICF model. The patient was a 65-year-old female diagnosed with right cerebral artery infarction with left hemiparesis. Progressive interventions were applied, such as those aiming at sitting and standing for the first two weeks, gait intervention for the third and fourth weeks, and those aiming at sitting from a standing position for the fifth and sixth weeks. The ICF model provides rehabilitation experts with a frame that enables them to accurately identify and understand their patients' problems. The ICF model helps the experts understand not only their patients' body structure, function, activity, and participation, but also their problems related to personal and environmental factors. The experts could efficiently make decisions and provide optimum treatment at clinics using the ICF model.
Comi, Troy J; Do, Thanh D; Rubakhin, Stanislav S; Sweedler, Jonathan V
2017-03-22
The chemical differences between individual cells within large cellular populations provide unique information on organisms' homeostasis and the development of diseased states. Even genetically identical cell lineages diverge due to local microenvironments and stochastic processes. The minute sample volumes and low abundance of some constituents in cells hinder our understanding of cellular heterogeneity. Although amplification methods facilitate single-cell genomics and transcriptomics, the characterization of metabolites and proteins remains challenging both because of the lack of effective amplification approaches and the wide diversity in cellular constituents. Mass spectrometry has become an enabling technology for the investigation of individual cellular metabolite profiles with its exquisite sensitivity, large dynamic range, and ability to characterize hundreds to thousands of compounds. While advances in instrumentation have improved figures of merit, acquiring measurements at high throughput and sampling from large populations of cells are still not routine. In this Perspective, we highlight the current trends and progress in mass-spectrometry-based analysis of single cells, with a focus on the technologies that will enable the next generation of single-cell measurements.
Increasing the vocational focus of the community mental health team.
Seebohm, Patience; Secker, Jenny
2003-08-01
Despite increasing interest in the UK in enabling community mental health teams to support clients' vocational aspirations, surveys suggest that progress to date has been slow. This study aimed to identify factors that facilitate or create barriers to teams engaging in vocational work by exploring experiences and perceptions at three sites where progress had been made. Semi-structured interviews were carried out with on-site and off-site vocational specialists, care coordinators and other professionals identified locally as supportive of vocational work. Participants' accounts were compared with a framework derived from previous research into effective vocational services. The framework encompassed partnership working, attention to clients' needs, choices and mental health, and enabling clients to access and retain employment. Interprofessional partnership working emerged as particularly strong at one site and in turn was key to facilitating attention to the other elements of the framework. Conversely, at the other two sites less well-developed partnership working could create barriers to addressing these elements. Across all three sites access to expert welfare benefits advice was problematic, with evidence of widespread ignorance about the crucial issues involved.
2017-01-01
Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria. PMID:29190277
Nanorobot Hardware Architecture for Medical Defense.
Cavalcanti, Adriano; Shirinzadeh, Bijan; Zhang, Mingjun; Kretly, Luiz C
2008-05-06
This work presents a new approach with details on the integrated platform and hardware architecture for nanorobots application in epidemic control, which should enable real time in vivo prognosis of biohazard infection. The recent developments in the field of nanoelectronics, with transducers progressively shrinking down to smaller sizes through nanotechnology and carbon nanotubes, are expected to result in innovative biomedical instrumentation possibilities, with new therapies and efficient diagnosis methodologies. The use of integrated systems, smart biosensors, and programmable nanodevices are advancing nanoelectronics, enabling the progressive research and development of molecular machines. It should provide high precision pervasive biomedical monitoring with real time data transmission. The use of nanobioelectronics as embedded systems is the natural pathway towards manufacturing methodology to achieve nanorobot applications out of laboratories sooner as possible. To demonstrate the practical application of medical nanorobotics, a 3D simulation based on clinical data addresses how to integrate communication with nanorobots using RFID, mobile phones, and satellites, applied to long distance ubiquitous surveillance and health monitoring for troops in conflict zones. Therefore, the current model can also be used to prevent and save a population against the case of some targeted epidemic disease.
Recent advances and product enhancements in reflective cholesteric displays
NASA Astrophysics Data System (ADS)
Khan, Asad; Schneider, Tod; Miller, Nick; Marhefka, Duane; Ernst, Todd; Nicholson, Forrest; Doane, Joseph W.
2005-04-01
Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays on a low-cost, high resolution passive matrix. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. We discuss recent advances in cholesteric display technology at Kent Displays such as progress towards single layer black and white displays, standard products, lower cost display modules, and various interface options for cholesteric display applications. It will be shown that inclusion of radio frequency (rf) control options and serial peripheral interface (spi) can greatly enhance the cholesteric display module market penetration by enabling quick integration into end devices. Finally, some discussion will be on the progress of the development of flexible reflective cholesteric displays. These flexible displays can dramatically change industrial design methods by enabling curved surfaces with displays integrated in them. Additional discussion in the paper will include applications of various display modes including signs, hand held instrumentation, and the electronic book and reader.
Big heart data: advancing health informatics through data sharing in cardiovascular imaging.
Suinesiaputra, Avan; Medrano-Gracia, Pau; Cowan, Brett R; Young, Alistair A
2015-07-01
The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases.
Progress in ultrafast laser processing and future prospects
NASA Astrophysics Data System (ADS)
Sugioka, Koji
2017-03-01
The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.
NASA Astrophysics Data System (ADS)
Forn-Díaz, P.; García-Ripoll, J. J.; Peropadre, B.; Orgiazzi, J.-L.; Yurtalan, M. A.; Belyansky, R.; Wilson, C. M.; Lupascu, A.
2017-01-01
The study of light-matter interaction has led to important advances in quantum optics and enabled numerous technologies. Over recent decades, progress has been made in increasing the strength of this interaction at the single-photon level. More recently, a major achievement has been the demonstration of the so-called strong coupling regime, a key advancement enabling progress in quantum information science. Here, we demonstrate light-matter interaction over an order of magnitude stronger than previously reported, reaching the nonperturbative regime of ultrastrong coupling (USC). We achieve this using a superconducting artificial atom tunably coupled to the electromagnetic continuum of a one-dimensional waveguide. For the largest coupling, the spontaneous emission rate of the atom exceeds its transition frequency. In this USC regime, the description of atom and light as distinct entities breaks down, and a new description in terms of hybrid states is required. Beyond light-matter interaction itself, the tunability of our system makes it a promising tool to study a number of important physical systems, such as the well-known spin-boson and Kondo models.
The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response
Helle, François; Duverlie, Gilles; Dubuisson, Jean
2011-01-01
Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review. PMID:22069522
Effects of lines of progress and semilogarithmic charts on ratings of charted data
Bailey, Donald B.
1984-01-01
The extent to which interrater agreement and ratings of significance on both changes in level and trend are affected by lines of progress and semilogarithmic charts was investigated. Thirteen graduate students rated four sets of charts, each set containing 19 phase changes. Set I data were plotted on equal interval charts. In Set II a line of progress was drawn through each phase on each chart. In Set III data points were replotted on semilogarithmic charts. In Set IV a line of progress was drawn through each phase of each Set III chart. A significant main effect on interrater agreement was found for lines of progress as well as a significant 2-way interaction between lines of progress and change type. Three main effects (chart type, lines of progress, and type of change) and a significant 3-way interaction were found for ratings of significance. Implications of these data for visual analysis of charted data are discussed. PMID:16795676
MICA: Multiple interval-based curve alignment
NASA Astrophysics Data System (ADS)
Mann, Martin; Kahle, Hans-Peter; Beck, Matthias; Bender, Bela Johannes; Spiecker, Heinrich; Backofen, Rolf
2018-01-01
MICA enables the automatic synchronization of discrete data curves. To this end, characteristic points of the curves' shapes are identified. These landmarks are used within a heuristic curve registration approach to align profile pairs by mapping similar characteristics onto each other. In combination with a progressive alignment scheme, this enables the computation of multiple curve alignments. Multiple curve alignments are needed to derive meaningful representative consensus data of measured time or data series. MICA was already successfully applied to generate representative profiles of tree growth data based on intra-annual wood density profiles or cell formation data. The MICA package provides a command-line and graphical user interface. The R interface enables the direct embedding of multiple curve alignment computation into larger analyses pipelines. Source code, binaries and documentation are freely available at https://github.com/BackofenLab/MICA
Mallavarapu, Aneil; Thomson, Matthew; Ullian, Benjamin; Gunawardena, Jeremy
2008-01-01
Mathematical models are increasingly used to understand how phenotypes emerge from systems of molecular interactions. However, their current construction as monolithic sets of equations presents a fundamental barrier to progress. Overcoming this requires modularity, enabling sub-systems to be specified independently and combined incrementally, and abstraction, enabling generic properties of biological processes to be specified independently of specific instances. These, in turn, require models to be represented as programs rather than as datatypes. Programmable modularity and abstraction enables libraries of modules to be created, which can be instantiated and reused repeatedly in different contexts with different components. We have developed a computational infrastructure that accomplishes this. We show here why such capabilities are needed, what is required to implement them and what can be accomplished with them that could not be done previously. PMID:18647734
Mallavarapu, Aneil; Thomson, Matthew; Ullian, Benjamin; Gunawardena, Jeremy
2009-03-06
Mathematical models are increasingly used to understand how phenotypes emerge from systems of molecular interactions. However, their current construction as monolithic sets of equations presents a fundamental barrier to progress. Overcoming this requires modularity, enabling sub-systems to be specified independently and combined incrementally, and abstraction, enabling generic properties of biological processes to be specified independently of specific instances. These, in turn, require models to be represented as programs rather than as datatypes. Programmable modularity and abstraction enables libraries of modules to be created, which can be instantiated and reused repeatedly in different contexts with different components. We have developed a computational infrastructure that accomplishes this. We show here why such capabilities are needed, what is required to implement them and what can be accomplished with them that could not be done previously.
Clinical progression of ocular injury following arsenical vesicant lewisite exposure.
Tewari-Singh, Neera; Croutch, Claire R; Tuttle, Richard; Goswami, Dinesh G; Kant, Rama; Peters, Eric; Culley, Tara; Ammar, David A; Enzenauer, Robert W; Petrash, J Mark; Casillas, Robert P; Agarwal, Rajesh
2016-12-01
Ocular injury by lewisite (LEW), a potential chemical warfare and terrorist agent, results in edema of eyelids, inflammation, massive corneal necrosis and blindness. To enable screening of effective therapeutics to treat ocular injury from LEW, useful clinically-relevant endpoints are essential. Hence, we designed an efficient exposure system capable of exposing up to six New-Zealand white rabbits at one time, and assessed LEW vapor-induced progression of clinical ocular lesions mainly in the cornea. The right eye of each rabbit was exposed to LEW (0.2 mg/L) vapor for 2.5, 5.0, 7.5 and 10.0 min and clinical progression of injury was observed for 28 days post-exposure (dose-response study), or exposed to same LEW dose for 2.5 and 7.5 min and clinical progression of injury was observed for up to 56 days post-exposure (time-response study); left eye served as an unexposed control. Increasing LEW exposure caused corneal opacity within 6 h post-exposure, which increased up to 3 days, slightly reduced thereafter till 3 weeks, and again increased thereafter. LEW-induced corneal ulceration peaked at 1 day post-exposure and its increase thereafter was observed in phases. LEW exposure induced neovascularization starting at 7 days which peaked at 22-35 days post-exposure, and remained persistent thereafter. In addition, LEW exposure caused corneal thickness, iris redness, and redness and swelling of the conjunctiva. Together, these findings provide clinical sequelae of ocular injury following LEW exposure and for the first time establish clinically-relevant quantitative endpoints, to enable the further identification of histopathological and molecular events involved in LEW-induced ocular injury.
Taming theory with thought experiments: Understanding and scientific progress.
Stuart, Michael T
2016-08-01
I claim that one way thought experiments contribute to scientific progress is by increasing scientific understanding. Understanding does not have a currently accepted characterization in the philosophical literature, but I argue that we already have ways to test for it. For instance, current pedagogical practice often requires that students demonstrate being in either or both of the following two states: 1) Having grasped the meaning of some relevant theory, concept, law or model, 2) Being able to apply that theory, concept, law or model fruitfully to new instances. Three thought experiments are presented which have been important historically in helping us pass these tests, and two others that cause us to fail. Then I use this operationalization of understanding to clarify the relationships between scientific thought experiments, the understanding they produce, and the progress they enable. I conclude that while no specific instance of understanding (thus conceived) is necessary for scientific progress, understanding in general is. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chan, Danwin; Green, Simon; Fiatarone Singh, Maria; Barnard, Robert; Cheema, Birinder S
2016-10-01
Introduction This study assessed the feasibility and efficacy of a novel resistance training device used within an intradialytic progressive resistance training (PRT) intervention. Methods Non-randomized, within-subjects crossover design with outcomes assessed at baseline (week 0), postcontrol (week 13) and post-PRT intervention (week 26). Twenty-two hemodialysis patients (59% men, 71 ± 11 years) performed PRT three sessions per week for 12 weeks. The resistance training device was developed to enable the performance of 2 upper body and 3 lower body exercises, unilaterally and bilaterally, both before and during dialysis, with loads of 2.5 to 59 kg. Feasibility outcomes included adverse events, adherence and training load progression. Changes in upper and lower body muscular strength, six-minute walk, aspects of health-related quality of life (HRQoL) and depression were evaluated. Findings The PRT intervention was delivered without serious adverse events, resulted in 71.2% ± 23.3% adherence and significant adaptation of all training loads from pre to mid to post training (83.8%-185.6%, all P < 0.05). Lower body strength (P < 0.001) and HRQoL subscales (Role-Physical, Social Functioning, Role-Emotional) significantly increased (all P < 0.01) and a trend toward reduced depression was noted (P = 0.06). No significant changes were noted in other outcomes. Discussion PRT using the novel resistance training device was feasible and improved measures of physical and psychological health. This device can be utilized in most dialysis centers. Future studies are required to evaluate dose-response effects of PRT prescriptions in subpopulations, and the translation of PRT to standard dialysis practice. © 2016 International Society for Hemodialysis.
Framework Nucleic Acids-Enabled Biosensor Development.
Yang, Fan; Li, Qian; Wang, Lihua; Zhang, Guo-Jun; Fan, Chunhai
2018-05-03
Nucleic acids have been actively exploited to develop various exquisite nanostructures due to their unparalleled programmability. Especially, framework nucleic acids (FNAs) with tailorable functionality and precise addressability hold great promise for biomedical applications. In this review, we summarize recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces and inside cells. We describe the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability, and approaches to realize multiplexing for highly parallel in-vitro detection. We also envision the marriage of the currently available FNA toolsets with other emerging technologies to develop a new generation of biosensors for precision diagnosis and bioimaging.
Enabling aspects of fiber optic acoustic sensing in harsh environments
NASA Astrophysics Data System (ADS)
Saxena, Indu F.
2013-05-01
The advantages of optical fiber sensing in harsh electromagnetic as well as physical stress environments make them uniquely suited for structural health monitoring and non-destructive testing. In addition to aerospace applications they are making a strong footprint in geophysical monitoring and exploration applications for higher temperature and pressure environments, due to the high temperature resilience of fused silica glass sensors. Deeper oil searches and geothermal exploration and harvesting are possible with these novel capabilities. Progress in components and technologies that are enabling these systems to be fieldworthy are reviewed and emerging techniques summarized that could leapfrog the system performance and reliability.
Affordable Development of a Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. The foundation provided by development and utilization of a NCPS could enable development of extremely high performance systems. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Development of mobile laboratory for viral haemorrhagic fever detection in Africa.
Weidmann, Manfred; Faye, Ousmane; Faye, Oumar; Abd El Wahed, Ahmed; Patel, Pranav; Batejat, Christophe; Manugerra, Jean Claude; Adjami, Aimee; Niedrig, Matthias; Hufert, Frank T; Sall, Amadou A
2018-06-15
In order to enable local response to viral haemorrhagic fever outbreaks a mobile laboratory transportable on commercial flights was developed. The development progressed from use of mobile real time RT-PCR to mobile Recombinase Polymerase Amplification (RT-RPA). The various stages of the mobile laboratory development are described. A brief overview of its deployments, which culminated in the first on site detection of Ebola virus disease (EVD) in March 2014 and a successful use in a campaign to roll back EVD cases in Conakry in the West-Africa Ebola virus outbreak are described. The developed mobile laboratory successfully enabled local teams to perform rapid viral haemorrhagic fever disgnostics.
The U.S. RERTR program status and progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1998-01-21
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program since its inception in 1978 is described. A brief summary of the results which the RERTR Program had achieved by the end of 1996 in collaboration with its many international partners is followed by a detailed review of the major events, findings, and activities of 1997. Significant progress has been made during the past year. In the area of U.S. acceptance of spent fuel from foreign research reactors, several shipments have taken place and additional are being planned. Intense fuel development activities are in progress, including procurement ofmore » equipment, screening of candidate materials, and production of microplates. Irradiation of the first series of microplates began in August 1997 in the Advanced Test Reactor, in Idaho. Progress has been made in the Russian RERTR program, which aims to develop and demonstrate within five years the technical means needed to convert Russian-supplied research reactors to LEU fuels. The study of an alternative LEU core for the FRM-II design has been extended to address, with favorable results, controversial performance issues which were raised at last year's meeting. Progress was also made on several aspects of producing molybdenum-99 from fission targets utilizing LEU instead of HEU. Various types of targets and processes are being pursued, with FDA approval of an LEU process projected to occur within two years. The feasibility of LEU Fuel conversion for three important DOE research reactors (BMRR, HFBR, and HFIR) has been evaluated by the RERTR program. In spite of the many momentous events which have occurred during the intervening years, and the excellent progress achieved, the most important challenges that the RERTR program faces today are not very different in type from those that were faced during the first RERTR meeting. Now, as then, the most important task is to develop new LEU fuels satisfying requirements which cannot be satisfied by any existing fuel. These new advanced fuels will enable conversion of the reactors which cannot be converted today, ensure better efficiency and performance for all research reactors, and allow the design of more powerful new advanced LEU reactors. As in the past, the success of the RERTR program will depend on free exchange of ideas and information, and on the international friendship and cooperation that have been a trademark of the RERTR program since its inception.« less
Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation)
NASA Astrophysics Data System (ADS)
Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.
2016-09-01
Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.
Case definition terminology for paratuberculosis (Johne's disease).
Whittington, R J; Begg, D J; de Silva, K; Purdie, A C; Dhand, N K; Plain, K M
2017-11-09
Paratuberculosis (Johne's disease) is an economically significant condition caused by Mycobacterium avium subsp. paratuberculosis. However, difficulties in diagnosis and classification of individual animals with the condition have hampered research and impeded efforts to halt its progressive spread in the global livestock industry. Descriptive terms applied to individual animals and herds such as exposed, infected, diseased, clinical, sub-clinical, infectious and resistant need to be defined so that they can be incorporated consistently into well-understood and reproducible case definitions. These allow for consistent classification of individuals in a population for the purposes of analysis based on accurate counts. The outputs might include the incidence of cases, frequency distributions of the number of cases by age class or more sophisticated analyses involving statistical comparisons of immune responses in vaccine development studies, or gene frequencies or expression data from cases and controls in genomic investigations. It is necessary to have agreed definitions in order to be able to make valid comparisons and meta-analyses of experiments conducted over time by a given researcher, in different laboratories, by different researchers, and in different countries. In this paper, terms are applied systematically in an hierarchical flow chart to enable classification of individual animals. We propose descriptive terms for different stages in the pathogenesis of paratuberculosis to enable their use in different types of studies and to enable an independent assessment of the extent to which accepted definitions for stages of disease have been applied consistently in any given study. This will assist in the general interpretation of data between studies, and will facilitate future meta-analyses.
Enabled or Disabled: Is the Environment Right for Using Biodiversity to Improve Nutrition?
Hunter, Danny; Özkan, Isa; Moura de Oliveira Beltrame, Daniela; Samarasinghe, Wellakke Lokuge Gamini; Wasike, Victor Wafula; Charrondière, U. Ruth; Borelli, Teresa; Sokolow, Jessica
2016-01-01
How can we ensure that 9 billion people will have access to a nutritious and healthy diet that is produced in a sustainable manner by 2050? Despite major advances, our global food system still fails to feed a significant part of humanity adequately. Diversifying food systems and diets to include nutrient-rich species can help reduce malnutrition, while contributing other multiple benefits including healthy ecosystems. While research continues to demonstrate the value of incorporating biodiversity into food systems and diets, perverse subsidies, and barriers often prevent this. Countries like Brazil have shown that, by strategic actions and interventions, it is indeed possible to create better contexts to mainstream biodiversity for improved nutrition into government programs and public policies. Despite some progress, there are few global and national policy mechanisms or processes that effectively join biodiversity with agriculture and nutrition efforts. This perspective paper discusses the benefits of biodiversity for nutrition and explores what an enabling environment for biodiversity to improve nutrition might look like, including examples of steps and actions from a multi-country project that other countries might replicate. Finally, we suggest what it might take to create enabling environments to mainstream biodiversity into global initiatives and national programs and policies on food and nutrition security. With demand for new thinking about how we improve agriculture for nutrition and growing international recognition of the role biodiversity, the 2030 Agenda for Sustainable Development presents an opportunity to move beyond business-as-usual to more holistic approaches to food and nutrition security. PMID:27376067
Enabled or Disabled: Is the Environment Right for Using Biodiversity to Improve Nutrition?
Hunter, Danny; Özkan, Isa; Moura de Oliveira Beltrame, Daniela; Samarasinghe, Wellakke Lokuge Gamini; Wasike, Victor Wafula; Charrondière, U Ruth; Borelli, Teresa; Sokolow, Jessica
2016-01-01
How can we ensure that 9 billion people will have access to a nutritious and healthy diet that is produced in a sustainable manner by 2050? Despite major advances, our global food system still fails to feed a significant part of humanity adequately. Diversifying food systems and diets to include nutrient-rich species can help reduce malnutrition, while contributing other multiple benefits including healthy ecosystems. While research continues to demonstrate the value of incorporating biodiversity into food systems and diets, perverse subsidies, and barriers often prevent this. Countries like Brazil have shown that, by strategic actions and interventions, it is indeed possible to create better contexts to mainstream biodiversity for improved nutrition into government programs and public policies. Despite some progress, there are few global and national policy mechanisms or processes that effectively join biodiversity with agriculture and nutrition efforts. This perspective paper discusses the benefits of biodiversity for nutrition and explores what an enabling environment for biodiversity to improve nutrition might look like, including examples of steps and actions from a multi-country project that other countries might replicate. Finally, we suggest what it might take to create enabling environments to mainstream biodiversity into global initiatives and national programs and policies on food and nutrition security. With demand for new thinking about how we improve agriculture for nutrition and growing international recognition of the role biodiversity, the 2030 Agenda for Sustainable Development presents an opportunity to move beyond business-as-usual to more holistic approaches to food and nutrition security.
Hussain, Aftab M; Hussain, Muhammad M
2016-06-01
Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resonant Tunneling Analog-To-Digital Converter
NASA Technical Reports Server (NTRS)
Broekaert, T. P. E.; Seabaugh, A. C.; Hellums, J.; Taddiken, A.; Tang, H.; Teng, J.; vanderWagt, J. P. A.
1995-01-01
As sampling rates continue to increase, current analog-to-digital converter (ADC) device technologies will soon reach a practical resolution limit. This limit will most profoundly effect satellite and military systems used, for example, for electronic countermeasures, electronic and signal intelligence, and phased array radar. New device and circuit concepts will be essential for continued progress. We describe a novel, folded architecture ADC which could enable a technological discontinuity in ADC performance. The converter technology is based on the integration of multiple resonant tunneling diodes (RTD) and hetero-junction transistors on an indium phosphide substrate. The RTD consists of a layered semiconductor hetero-structure AlAs/InGaAs/AlAs(2/4/2 nm) clad on either side by heavily doped InGaAs contact layers. Compact quantizers based around the RTD offer a reduction in the number of components and a reduction in the input capacitance Because the component count and capacitance scale with the number of bits N, rather than by 2 (exp n) as in the flash ADC, speed can be significantly increased, A 4-bit 2-GSps quantizer circuit is under development to evaluate the performance potential. Circuit designs for ADC conversion with a resolution of 6-bits at 25GSps may be enabled by the resonant tunneling approach.
Rimmele, Thomas R; Marino, Jose
Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.
Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy
2014-01-01
The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.
Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy
2014-01-01
The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774
Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine
Coyle, Krysta Mila; Boudreau, Jeanette E.
2017-01-01
Cancer treatment is undergoing a significant revolution from “one-size-fits-all” cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes. PMID:28685150
An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.
Kazemi, Mohammad
2017-11-10
The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.
THE TUMOR MACROENVIRONMENT: CANCER-PROMOTING NETWORKS BEYOND TUMOR BEDS
Rutkowski, Melanie R.; Svoronos, Nikolaos; Puchalt, Alfredo Perales; Conejo-Garcia, Jose R.
2015-01-01
During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, and myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression. PMID:26216635
A Century of Enzyme Kinetic Analysis, 1913 to 2013
Johnson, Kenneth A.
2013-01-01
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. PMID:23850893
Enabling health systems transformation: what progress has been made in re-orienting health services?
Wise, Marilyn; Nutbeam, Don
2007-01-01
The Ottawa Charter has been remarkably influential in guiding the development of the goals and concepts of health promotion, and in shaping global public health practice in the past 20 years. However, of the five action areas identified in the Ottawa Charter, it appears that there has been little systematic attention to the challenge of re-orienting health services, and less than optimal progress in practice. The purposes of re-orienting health services as proposed in the Ottawa Charter were to achieve a better balance in investment between prevention and treatment, and to include a focus on population health outcomes alongside the focus on individual health outcomes. However, there is little evidence that a re-orientation of health services in these terms has occurred systematically anywhere in the world. This is in spite of the fact that direct evidence of the need to re-orient health services and of the potential benefits of doing so has grown substantially since 1986. Patient education, preventive care (screening, immunisation), and organisational and environmental changes by health organisations have all been found to have positive health and environmental outcomes. However, evidence of effectiveness has not been sufficient, on its own, to sway community preferences and political decisions. The lack of progress points to the need for significant re-thinking of the approaches we have adopted to date. The paper proposes a number of ways forward. These include working effectively in partnership with the communities we want to serve to mobilise support for change, and to reinforce this by working more effectively at influencing broader public opinion through the media. The active engagement of clinical health professionals is also identified as crucial to achieving sustainable change. Finally we recognize that by working in partnership with like-minded advocacy organizations, the IUHPE could put its significant knowledge and experience to work in leading action to transform health care systems to make a major contribution to the improvement of public health.
Al-Omiri, Mahmoud K; Harb, Rousan; Abu Hammad, Osama A; Lamey, Philip-John; Lynch, Edward; Clifford, Thomas J
2010-07-01
This study aimed to evaluate the reliability of a new CAD-CAM Laser scanning machine in detection of incisal tooth wear through a 6-month period and to compare the accuracy of using this new machine against measuring tooth wear using tool maker microscope and conventional tooth wear index. Twenty participants (11 males and 9 females, mean age=22.7 years, SD=2.0) were assessed for incisal tooth wear of lower anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 6 months later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System (Cercon Smart Ceramics, DeguDent, Germany). Scanned images were printed and examined under a toolmaker microscope (Stedall-Dowding Machine Tool Company, Optique et Mecanique de Precision, Marcel Aubert SA, Switzerland) to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyse the data. TWI scores for incisal edges were 0, 1, and 2 and were similar at both occasions. Scores 3 and 4 were not detected. Wear values measured by directly assessing the dies under the tool maker microscope (range=517-656microm, mean=582microm, and SD=50) were significantly more than those measured from the Cercon digital machine images (range=132-193microm, mean =165microm, and SD=27) and both showed significant differences between the two occasions. Measuring images obtained with Cercon digital machine under tool maker microscope allowed detection of wear progression over the 6-month period. However, measuring the dies of worn dentition directly under the tool maker microscope enabled detection of wear progression more accurately. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright 2010 Elsevier Ltd. All rights reserved.
CASTOR: Widely Distributed Scalable Infospaces
2008-11-01
1 i Progress against Planned Objectives Enable nimble apps that react fast as...generation of scalable, reliable, ultra- fast event notification in Linux data centers. • Maelstrom, a spin-off from Ricochet, offers a powerful new option...out potential enhancements to WS-EVENTING and WS-NOTIFICATION based on our work. Potential impact for the warflighter. QSM achieves extremely fast
Closing the School Discipline Gap in California: Signs of Progress
ERIC Educational Resources Information Center
Losen, Daniel J.; Keith, Michael A., II; Hodson, Cheri L.; Martinez, Tia E.; Belway, Shakti
2015-01-01
This report describes the most current state and district suspension rates, and covers both trends and racial disparities in the use of suspension in California. A spreadsheet accompanying this report enables any reader to find their own district's most recent disaggregated data, as well as three-year trends for out-of-school suspensions, all of…
Teaching Modern Latin America in the Social Science Curriculum: An Interdisciplinary Approach
ERIC Educational Resources Information Center
Novoa, Adriana
2007-01-01
It can be a challenge to introduce students to a world region with the cultural diversity and rich history of Latin America. In this article, the author suggests four thematic units that enable teachers to identify both general trends and important differences in the region: (1) race/ethnicity; (2) progress and civilization; (3) conflict and…
Computerized Placement Management Software (CPMS): User Manual, Version 3.0.
ERIC Educational Resources Information Center
College Entrance Examination Board, Princeton, NJ.
This guide is designed to enable the beginner, as well as the advanced user, to understand and use the Computerized Placement Management Software (CPMS). The CPMS is a system for evaluating information about students and recommending their placement into courses best suited for them. It also tracks their progress and maintains their records. The…
ERIC Educational Resources Information Center
Froehlich, Dominik E.; Beausaert, Simon A. J.; Segers, Mien S. R.
2015-01-01
Employees in countries with advanced industrial economies need to continuously develop their competences to sustain their employability--that is, to have a set of competences that enables them to maintain or find an adequate job. But how should efforts to enhance employability progress in the context of the demographic shift? Previous research…
ERIC Educational Resources Information Center
Hobden, Sally; Hobden, Paul
2015-01-01
School-level educational interventions targeting learners from low socioeconomic backgrounds often have the long-term goal of enabling access to, and successful completion of tertiary studies. This study tracked the progress of alumni of an educational intervention two or three years post school, in order to investigate their pathways to their…
ERIC Educational Resources Information Center
Hauan, Nils Petter; DeWitt, Jennifer; Kolstø, Stein Dankert
2017-01-01
Materials designed for self-guided experiences such as worksheets and digital applications are widely used as tools to enable interactive science exhibitions to support students' progress towards conceptual understanding. However, there is a need to find expedient ways to evaluate the quality of educational experiences resulting from the use of…
Reconceptualising Musical Learning: New Media, Identity and Community in Music Education
ERIC Educational Resources Information Center
Partti, Heidi; Karlsen, Sidsel
2010-01-01
Societal and technological progresses have created a multitude of new ways for people to engage with music, and as a result music can nowadays be learned from an ever-expanding variety of sources. In this article, we engage in a theoretical exploration of the underpinning societal forces that have enabled this expansion, as well as its…
The CCRI Electric Boat Program: A Partnership for Progress in Economic Development.
ERIC Educational Resources Information Center
Liston, Edward J.
The Community College of Rhode Island (CCRI) has made a strong commitment to building partnerships with business and industry. CCRI's first customized training program was developed in 1982 with the National Tooling and Machine Association (NTMA), and was designed to enable apprentice machinists to receive the classroom training required to earn a…
A New System for K-12 Education in Qatar. Research Brief
ERIC Educational Resources Information Center
Brewer, Dominic J.; Augustine, Catherine H.; Zellman, Gail L.; Ryan, Gery; Goldman, Charles A.; Stasz, Cathleen; Constant, Louay
2007-01-01
The leadership of the Arabian Gulf nation of Qatar, like that of many other countries, views education as the key to future economic, political, and social progress. Many have concluded that a country's ability to compete in the global economy and enable its citizens to take full advantage of technological advances relies on upgrading the quality…
Nanodevices for Single Molecule Studies
NASA Astrophysics Data System (ADS)
Craighead, H. G.; Stavis, S. M.; Samiee, K. T.
During the last two decades, biotechnology research has resulted in progress in fields as diverse as the life sciences, agriculture and healthcare. While existing technology enables the analysis of a variety of biological systems, new tools are needed for increasing the efficiency of current methods, and for developing new ones altogether. Interest has grown in single molecule analysis for these reasons.
HIGHER HORIZONS. PROGRESS REPORT.
ERIC Educational Resources Information Center
LANDERS, JACOB
HUMAN TALENT IS MUCH TOO PRECIOUS TO BE STIFLED AND WASTED. THEREFORE, IT SHOULD BE SOUGHT OUT, UNCOVERED, AND DEVELOPED IN THE SCHOOLS. HIGHER HORIZONS IS A QUEST FOR THE KIND OF EDUCATION WHICH, ADJUSTED TO THE NEEDS OF DISADVANTAGED CHILDREN, WILL ENABLE THEM TO COMPETE WITH OTHER CHILDREN ON AN EQUAL BASIS AND TO RECEIVE A FAIR SHARE OF THE…
Evaluating and comparing Singaporean and Taiwanese eighth graders' conceptions of science assessment
NASA Astrophysics Data System (ADS)
Lin, Tzung-Jin; Tan, Aik-Ling; Lee, Min-Hsien; Tsai, Chin-Chung
2017-10-01
Background: Researchers have indicated that assessment practices and methods should support learners' construction of meaningful understanding of knowledge. Understanding students' conceptions of assessment will enable us to construct more realistic, valid and fair assessments. Learners' conceptualization of assessment would be imperative to serve as an essential reference to evaluate their learning progress.
How Good Is Our College? First Edition
ERIC Educational Resources Information Center
Education Scotland, 2016
2016-01-01
The new quality framework, "How good is our college?" is a tool to support and enable colleges to evaluate the quality of provision and services alongside reporting on progress in relation to outcome agreements. It is designed to be used by all college staff. Colleges will evaluate the quality of their provision and services using the 12…
Mobile Devices and Mobile Learning: Shifting the Mindset of Teachers and Learners
ERIC Educational Resources Information Center
Smith, Philippa K.; Grant, Lynn; Conway, Clare; Narayan, Vickel
2016-01-01
Incorporating new media technologies that enable mobile learning to be part of educational practice poses challenges to those used to teaching in a traditional classroom environment. In this article three lecturers and a learning advisor from a New Zealand university reflect on their experiences in the progressive redesign of a Bachelor of Arts…
Eppur Si Muove! The 2013 Nobel Prize in Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeremy C.; Roux, Benoit
2013-12-03
The 2013 Nobel Prize in Chemistry has been awarded to Martin Karplus, Michael Levitt, and Arieh Warshel for their work on developing computational methods to study complex chemical systems. Hence, their work has led to mechanistic critical insights into chemical systems both large and small and has enabled progress in a number of different fields, including structural biology.
USDA-ARS?s Scientific Manuscript database
A genetic linkage map is critical for identifying the QTL (quantitative trait loci) underling targeted traits. Over the last few years, progress has been made in marker development from multiple sources enabling the expansion of quality resources needed for genotyping applications in cultivated x cu...
Synthetic biology advances for pharmaceutical production
Breitling, Rainer; Takano, Eriko
2015-01-01
Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872
Cell-Type-Specific Optogenetics in Monkeys.
Namboodiri, Vijay Mohan K; Stuber, Garret D
2016-09-08
The recent advent of technologies enabling cell-type-specific recording and manipulation of neuronal activity spurred tremendous progress in neuroscience. However, they have been largely limited to mice, which lack the richness in behavior of primates. Stauffer et al. now present a generalizable method for achieving cell-type specificity in monkeys. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Rochmes, Jane
2015-01-01
While progress to close racial achievement gaps has stagnated and income achievement gaps have grown, recent case studies enthusiastically describe "transformational" schools, which claim to establish conditions that enable students--primarily poor students of color--to achieve at levels far higher than their social background predicts.…
The Internationalisation of Higher Education in South Africa: Progress and Challenges
ERIC Educational Resources Information Center
Kishun, Roshen
2007-01-01
South Africa needs to reexamine responses to some basic questions if it is to develop a robust push that would enable the higher education sector to maximise the benefits of internationalisation in the context of the "knowledge society" and to serve local needs while being an integral part of the global community. In responding to these…
ERIC Educational Resources Information Center
Dorn, Linda; Allen, Anne
1995-01-01
Evaluates an approach that supplemented existing Reading Recovery programs with small-group, early literacy instruction in 28 Arkansas public schools. The program enabled many children to receive timely support. When space became available in Reading Recovery, these children made accelerated progress and were discontinued earlier than children who…
Emerging advances in nanomedicine with engineered gold nanostructures.
Webb, Joseph A; Bardhan, Rizia
2014-03-07
Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.
Si photonics technology for future optical interconnection
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Krishnamoorthy, Ashok V.
2011-12-01
Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Ted W.; Richardson, Paul F.; Bailey, Simon
2014-06-12
Although crizotinib demonstrates robust efficacy in anaplastic lymphoma kinase (ALK)-positive non-small-cell lung carcinoma patients, progression during treatment eventually develops. Resistant patient samples revealed a variety of point mutations in the kinase domain of ALK, including the L1196M gatekeeper mutation. In addition, some patients progress due to cancer metastasis in the brain. Using structure-based drug design, lipophilic efficiency, and physical-property-based optimization, highly potent macrocyclic ALK inhibitors were prepared with good absorption, distribution, metabolism, and excretion (ADME), low propensity for p-glycoprotein 1-mediated efflux, and good passive permeability. These structurally unusual macrocyclic inhibitors were potent against wild-type ALK and clinically reported ALK kinasemore » domain mutations. Significant synthetic challenges were overcome, utilizing novel transformations to enable the use of these macrocycles in drug discovery paradigms. This work led to the discovery of 8k (PF-06463922), combining broad-spectrum potency, central nervous system ADME, and a high degree of kinase selectivity.« less
epiDMS: Data Management and Analytics for Decision-Making From Epidemic Spread Simulation Ensembles.
Liu, Sicong; Poccia, Silvestro; Candan, K Selçuk; Chowell, Gerardo; Sapino, Maria Luisa
2016-12-01
Carefully calibrated large-scale computational models of epidemic spread represent a powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at different spatial scales and for assessing the likely impact of different intervention strategies. However, the management and analysis of simulation ensembles stemming from large-scale computational models pose challenges, particularly when dealing with multiple interdependent parameters, spanning multiple layers and geospatial frames, affected by complex dynamic processes operating at different resolutions. We describe and illustrate with examples a novel epidemic simulation data management system, epiDMS, that was developed to address the challenges that arise from the need to generate, search, visualize, and analyze, in a scalable manner, large volumes of epidemic simulation ensembles and observations during the progression of an epidemic. epiDMS is a publicly available system that facilitates management and analysis of large epidemic simulation ensembles. epiDMS aims to fill an important hole in decision-making during healthcare emergencies by enabling critical services with significant economic and health impact. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Emerging advances in nanomedicine with engineered gold nanostructures
NASA Astrophysics Data System (ADS)
Webb, Joseph A.; Bardhan, Rizia
2014-02-01
Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.
Santhya, K.G.; Jejeebhoy, Shireen J.
2015-01-01
This paper reviews the evidence on sexual and reproductive health and rights (SRHR) of adolescent girls in low-income and middle-income countries (LMIC) in light of the policy and programme commitments made at the International Conference on Population and Development (ICPD), analyses progress since 1994, and maps challenges in and opportunities for protecting their health and human rights. Findings indicate that many countries have yet to make significant progress in delaying marriage and childbearing, reducing unintended childbearing, narrowing gender disparities that put girls at risk of poor SRH outcomes, expanding health awareness or enabling access to SRH services. While governments have reaffirmed many commitments, policy development and programme implementation fall far short of realising these commitments. Future success requires increased political will and engagement of young people in the formulation and implementation of policies and programmes, along with increased investments to deliver at scale comprehensive sexuality education, health services that are approachable and not judgemental, safe spaces programmes, especially for vulnerable girls, and programmes that engage families and communities. Stronger policy-making and programming also require expanding the evidence on adolescent health and rights in LMICs for both younger and older adolescents, boys and girls, and relating to a range of key health matters affecting adolescents. PMID:25554828
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Hackley, Donna M; Mumena, Chrispinus H; Gatarayiha, Agnes; Cancedda, Corrado; Barrow, Jane R
2018-06-01
Harvard School of Dental Medicine, University of Maryland School of Dentistry, and the University of Rwanda (UR) are collaborating to create Rwanda's first School of Dentistry as part of the Human Resources for Health (HRH) Rwanda initiative that aims to strengthen the health care system of Rwanda. The HRH oral health team developed three management tools to measure progress in systems-strengthening efforts: 1) the road map is an operations plan for the entire dental school and facilitates delivery of the curriculum and management of human and material resources; 2) each HRH U.S. faculty member develops a work plan with targeted deliverables for his or her rotation, which is facilitated with biweekly flash reports that measure progress and keep the faculty member focused on his or her specific deliverables; and 3) the redesigned HRH twinning model, changed from twinning of an HRH faculty member with a single Rwandan faculty member to twinning with multiple Rwandan faculty members based on shared academic interests and goals, has improved efficiency, heightened engagement of the UR dental faculty, and increased the impact of HRH U.S. faculty members. These new tools enable the team to measure its progress toward the collaborative's goals and understand the successes and challenges in moving toward the planned targets. The tools have been valuable instruments in fostering discussion around priorities and deployment of resources as well as in developing strong relationships, enabling two-way exchange of knowledge, and promoting sustainability.
Schutsky, Keith; Song, De-Gang; Lynn, Rachel; Smith, Jenessa B.; Poussin, Mathilde; Figini, Mariangela; Zhao, Yangbing; Powell, Daniel J.
2015-01-01
Using lentiviral technology, we recently demonstrated that incorporation of CD27 costimulation into CARs greatly improves antitumor activity and T cell persistence. Still, virus-mediated gene transfer is expensive, laborious and enables long-term persistence, creating therapies which cannot be easily discontinued if toxic. To address these concerns, we utilized a non-integrating RNA platform to engineer human T cells to express FRα-specific, CD27 CARs and tested their capacity to eliminate human FRα+ cancer. Novel CARs comprised of human components were constructed, C4-27z and C4opt-27z, a codon-optimized variant created for efficient expression. Following RNA electroporation, C4-27z and C4opt-27z CAR expression is initially ubiquitous but progressively declines across T cell populations. In addition, C4-27z and C4opt-27z RNA CAR T cells secrete high levels of Th-1 cytokines and display strong cytolytic function against human FRα+ cancers in a time- and antigen-dependent manner. Further, C4-27z and C4opt-27z CAR T cells exhibit significant proliferation in vivo, facilitate the complete regression of fully disseminated human ovarian cancer xenografts in mice and reduce the progression of solid ovarian cancer. These results advocate for rapid progression of C4opt-27z RNA CAR to the clinic and establish a new paradigm for preclinical optimization and validation of RNA CAR candidates destined for clinical translation. PMID:26359629
Mandel, Micha; Gauthier, Susan A; Guttmann, Charles R G; Weiner, Howard L; Betensky, Rebecca A
2007-12-01
The expanded disability status scale (EDSS) is an ordinal score that measures progression in multiple sclerosis (MS). Progression is defined as reaching EDSS of a certain level (absolute progression) or increasing of one point of EDSS (relative progression). Survival methods for time to progression are not adequate for such data since they do not exploit the EDSS level at the end of follow-up. Instead, we suggest a Markov transitional model applicable for repeated categorical or ordinal data. This approach enables derivation of covariate-specific survival curves, obtained after estimation of the regression coefficients and manipulations of the resulting transition matrix. Large sample theory and resampling methods are employed to derive pointwise confidence intervals, which perform well in simulation. Methods for generating survival curves for time to EDSS of a certain level, time to increase of EDSS of at least one point, and time to two consecutive visits with EDSS greater than three are described explicitly. The regression models described are easily implemented using standard software packages. Survival curves are obtained from the regression results using packages that support simple matrix calculation. We present and demonstrate our method on data collected at the Partners MS center in Boston, MA. We apply our approach to progression defined by time to two consecutive visits with EDSS greater than three, and calculate crude (without covariates) and covariate-specific curves.
Jedynak, Bruno M.; Liu, Bo; Lang, Andrew; Gel, Yulia; Prince, Jerry L.
2014-01-01
Understanding the time-dependent changes of biomarkers related to Alzheimer’s disease (AD) is a key to assessing disease progression and to measuring the outcomes of disease-modifying therapies. In this paper, we validate an Alzheimer’s disease progression score model which uses multiple biomarkers to quantify the AD progression of subjects following three assumptions: (1) there is a unique disease progression for all subjects, (2) each subject has a different age of onset and rate of progression, and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. In order to validate this optimization scheme under realistic conditions, we use the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the two lateral hippocampal volumes divided by the intra-cranial volume, followed by (the clinical dementia rating sum of boxes score and the mini mental state examination score) in no particular order and lastly the Alzheimer’s disease assessment scale-cognitive subscale. PMID:25444605
Predicting Performance in Higher Education Using Proximal Predictors.
Niessen, A Susan M; Meijer, Rob R; Tendeiro, Jorge N
2016-01-01
We studied the validity of two methods for predicting academic performance and student-program fit that were proximal to important study criteria. Applicants to an undergraduate psychology program participated in a selection procedure containing a trial-studying test based on a work sample approach, and specific skills tests in English and math. Test scores were used to predict academic achievement and progress after the first year, achievement in specific course types, enrollment, and dropout after the first year. All tests showed positive significant correlations with the criteria. The trial-studying test was consistently the best predictor in the admission procedure. We found no significant differences between the predictive validity of the trial-studying test and prior educational performance, and substantial shared explained variance between the two predictors. Only applicants with lower trial-studying scores were significantly less likely to enroll in the program. In conclusion, the trial-studying test yielded predictive validities similar to that of prior educational performance and possibly enabled self-selection. In admissions aimed at student-program fit, or in admissions in which past educational performance is difficult to use, a trial-studying test is a good instrument to predict academic performance.
Sternberg, Cora N; Castellano, Daniel; Daugaard, Gedske; Géczi, Lajos; Hotte, Sebastien J; Mainwaring, Paul N; Saad, Fred; Souza, Ciro; Tay, Miah H; Garrido, José M Tello; Galli, Luca; Londhe, Anil; De Porre, Peter; Goon, Betty; Lee, Emma; McGowan, Tracy; Naini, Vahid; Todd, Mary B; Molina, Arturo; George, Daniel J
2014-10-01
In the final analysis of the phase 3 COU-AA-301 study, abiraterone acetate plus prednisone significantly prolonged overall survival compared with prednisone alone in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy. Here, we present the final analysis of an early-access protocol trial that was initiated after completion of COU-AA-301 to enable worldwide preapproval access to abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy. We did a multicentre, open-label, early-access protocol trial in 23 countries. We enrolled patients who had metastatic castration-resistant prostate cancer progressing after taxane chemotherapy. Participants received oral doses of abiraterone acetate (1000 mg daily) and prednisone (5 mg twice a day) in 28-day cycles until disease progression, development of sustained side-effects, or abiraterone acetate becoming available in the respective country. The primary outcome was the number of adverse events arising during study treatment and within 30 days of discontinuation. Efficacy measures (time to prostate-specific antigen [PSA] progression and time to clinical progression) were gathered to guide treatment decisions. We included in our analysis all patients who received at least one dose of abiraterone acetate. This study is registered with ClinicalTrials.gov, number NCT01217697. Between Nov 17, 2010, and Sept 30, 2013, 2314 patients were enrolled into the early-access protocol trial. Median follow-up was 5·7 months (IQR 3·5-10·6). 952 (41%) patients had a grade 3 or 4 treatment-related adverse event, and grade 3 or 4 serious adverse events were recorded in 585 (25%) people. The most common grade 3 and 4 adverse events were hepatotoxicity (188 [8%]), hypertension (99 [4%]), cardiac disorders (52 [2%]), osteoporosis (31 [1%]), hypokalaemia (28 [1%]), and fluid retention or oedema (23 [1%]). 172 (7%) patients discontinued the study because of adverse events (64 [3%] were drug-related), as assessed by the investigator, and 171 (7%) people died. The funder assessed causes of death, which were due to disease progression (85 [4%]), an unrelated adverse experience (72 [3%]), and unknown reasons (14 [1%]). Of the 86 deaths not attributable to disease progression, 18 (<1%) were caused by a drug-related adverse event, as assessed by the investigator. Median time to PSA progression was 8·5 months (95% CI 8·3-9·7) and median time to clinical progression was 12·7 months (11·8-13·8). No new safety signals or unexpected adverse events were found in this early-access protocol trial to assess abiraterone acetate for patients with metastatic castration-resistant prostate cancer who progressed after chemotherapy. Future work is needed to ascertain the most effective regimen of abiraterone acetate to optimise patients' outcomes. Janssen Research & Development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Litwin, Ronald J.; Smoot, Joseph P.; Pavich, Milan J.; Markewich, Helaine W.; Oberg, Erik; Helwig, Ben; Steury, Brent; Santucci, Vincent L.; Durika, Nancy J.; Rybicki, Nancy B.; Engelhardt, Katharina M.; Sanders, Geoffrey; Verardo, Stacey; Elmore, Andrew J.; Gilmer, Joseph
2011-01-01
Photoanalysis of time-sequence aerial photographs of Dyke Marsh enabled us to calculate shoreline erosion estimates for this marsh over 19 years (1987-2006), as well as to quantify overall marsh acreage for 6 calendar years spanning an ~70 year interval (1937-2006). Photo overlay of a historic map enabled us to extend our whole-marsh acreage calculations back to 1883. Both sets of analyses were part of a geologic framework study in support of current efforts by the National Park Service (NPS) to restore this urban wetland. Two time intervals were selected for our shoreline erosion analyses, based on image quality and availability: 1987 to 2002, and 2002 to 2006. The more recent time interval shows a marked increase in erosion in the southern part of Dyke Marsh, following a wave-induced breach of a small peninsula that had protected its southern shoreline. Field observations and analyses of annual aerial imagery between 1987 and 2006 revealed a progressive increase in wave-induced erosion that presently is deconstructing Hog Island Gut, the last significant tidal creek network within the Dyke Marsh. These photo analyses documented an overall average westward shoreline loss of 6.0 to 7.8 linear feet per year along the Potomac River during this 19-year time interval. Additionally, photographic evidence documented that lateral erosion now is capturing existing higher order tributaries in the Hog Island Gut. Wave-driven stream piracy is fragmenting the remaining marsh habitat, and therefore its connectivity, relatively rapidly, causing the effective mouth of the Hog Island Gut tidal network to retreat headward visibly over the past several decades. Based on our estimates of total marsh area in the Dyke Marsh derived from 1987 aerial imagery, as much as 12 percent of the central part of the marsh has eroded in the 19 year period we studied (or ~7.5 percent of the original ~78.8 acres of 1987 marshland). Shoreline loss estimates for marsh parcels north and south of our study area have not yet been analyzed, although annual aerial photos from 1987 to 2002 confirm visible progressive shoreline loss in those areas over this same time interval.
TOPICAL REVIEW: Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.; Chan, V. S.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Time-frequency vibration analysis for the detection of motor damages caused by bearing currents
NASA Astrophysics Data System (ADS)
Prudhom, Aurelien; Antonino-Daviu, Jose; Razik, Hubert; Climente-Alarcon, Vicente
2017-02-01
Motor failure due to bearing currents is an issue that has drawn an increasing industrial interest over recent years. Bearing currents usually appear in motors operated by variable frequency drives (VFD); these drives may lead to common voltage modes which cause currents induced in the motor shaft that are discharged through the bearings. The presence of these currents may lead to the motor bearing failure only few months after system startup. Vibration monitoring is one of the most common ways for detecting bearing damages caused by circulating currents; the evaluation of the amplitudes of well-known characteristic components in the vibration Fourier spectrum that are associated with race, ball or cage defects enables to evaluate the bearing condition and, hence, to identify an eventual damage due to bearing currents. However, the inherent constraints of the Fourier transform may complicate the detection of the progressive bearing degradation; for instance, in some cases, other frequency components may mask or be confused with bearing defect-related while, in other cases, the analysis may not be suitable due to the eventual non-stationary nature of the captured vibration signals. Moreover, the fact that this analysis implies to lose the time-dimension limits the amount of information obtained from this technique. This work proposes the use of time-frequency (T-F) transforms to analyse vibration data in motors affected by bearing currents. The experimental results obtained in real machines show that the vibration analysis via T-F tools may provide significant advantages for the detection of bearing current damages; among other, these techniques enable to visualise the progressive degradation of the bearing while providing an effective discrimination versus other components that are not related with the fault. Moreover, their application is valid regardless of the operation regime of the machine. Both factors confirm the robustness and reliability of these tools that may be an interesting alternative for detecting this type of failure in induction motors.
EXPLORER: Changing the molecular imaging paradigm with total-body PET/CT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Cherry, Simon R.; Badawi, Ramsey D.; Jones, Terry
2016-04-01
Positron emission tomography (PET) is the highest sensitivity technique for human whole-body imaging studies. However, current clinical PET scanners do not make full use of the available signal, as they only permit imaging of a 15-25 cm segment of the body at one time. Given the limited sensitive region, whole-body imaging with clinical PET scanners requires relatively long scan times and subjects the patient to higher than necessary radiation doses. The EXPLORER initiative aims to build a 2-meter axial length PET scanner to allow imaging the entire subject at once, capturing nearly the entire available PET signal. EXPLORER will acquire data with ~40-fold greater sensitivity leading to a six-fold increase in reconstructed signal-to-noise ratio for imaging the total body. Alternatively, total-body images with the EXPLORER scanner will be able to be acquired in ~30 seconds or with ~0.15 mSv injected dose, while maintaining current PET image quality. The superior sensitivity will open many new avenues for biomedical research. Specifically for cancer applications, high sensitivity PET will enable detection of smaller lesions. Additionally, greater sensitivity will allow imaging out to 10 half-lives of positron emitting radiotracers. This will enable 1) metabolic ultra-staging with FDG by extending the uptake and clearance time to 3-5 hours to significantly improve contrast and 2) improved kinetic imaging with short-lived radioisotopes such as C-11, crucial for drug development studies. Frequent imaging studies of the same subject to study disease progression or to track response to therapy will be possible with the low dose capabilities of the EXPLORER scanner. The low dose capabilities will also open up new imaging possibilities in pediatrics and adolescents to better study developmental disorders. This talk will review the basis for developing total-body PET, potential applications, and review progress to date in developing EXPLORER, the first total-body PET scanner.
Nanotechnology: Development and challenges in Indonesia
NASA Astrophysics Data System (ADS)
Joni, I. Made; Muthukannan, Vanitha; Hermawan, Wawan; Panatarani, Camellia
2018-02-01
Nanotechnology today is regarded as a revolutionary technology that can help to address the key needs related to energy, environment, health and agriculture in developing countries. This paper is a short review on the development and challenges of nanotechnology in Indonesia. Nanotechnology offers great potential benefits, there is emerging concerns arising from its novel physicochemical properties. The main applications of nanotechnology in the different sectors which is vital and its economic impact in Indonesia is also discussed. The achievment and development of nanotechnology including synthesis and dispersion of nanoparticles (NPs) and its applications in various fields is briefly addressed in Nanotehcnology and Graphene Research Center, Universitas Padjadjaran (Unpad). Despite significant progress in developmental goals, many challenges in the development of nanotechnology proccesing need to be resolved such as support infrastructure and evolution of new form of collaborative arrangements between various sectors and policies which is emerged as an important factor enabling development.
Understanding force-generating microtubule systems through in vitro reconstitution
Kok, Maurits; Dogterom, Marileen
2016-01-01
ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu
2017-01-01
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088
Evidence and diagnostic reporting in the IHE context.
Loef, Cor; Truyen, Roel
2005-05-01
Capturing clinical observations and findings during the diagnostic imaging process is increasingly becoming a critical step in diagnostic reporting. Standards developers-notably HL7 and DICOM-are making significant progress toward standards that enable exchanging clinical observations and findings among the various information systems of the healthcare enterprise. DICOM-like the HL7 Clinical Document Architecture (CDA) -uses templates and constrained, coded vocabulary (SNOMED, LOINC, etc.). Such a representation facilitates automated software recognition of findings and observations, intrapatient comparison, correlation to norms, and outcomes research. The scope of DICOM Structured Reporting (SR) includes many findings that products routinely create in digital form (measurements, computed estimates, etc.). In the Integrating the Healthcare Enterprise (IHE) framework, two Integration Profiles are defined for clinical data capture and diagnostic reporting: Evidence Document, and Simple Image and Numeric Report. This report describes these two DICOM SR-based integration profiles in the diagnostic reporting process.
Roussigne, Myriam; Blader, Patrick; Wilson, Stephen W
2012-03-01
How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.
A comparison of hybrid coronary revascularization and off-pump coronary revascularization.
Umakanthan, Ramanan; Leacche, Marzia; Gallion, Anna H; Byrne, John G
2013-04-01
Minimally invasive approaches to treat vascular disease have been accruing significant popularity over the last several decades. Due to progressive advances in technology, a variety of techniques are being now utilized in the field of cardiovascular surgery. The objectives of minimally invasive techniques are to curtail operative trauma and minimize perioperative morbidity without decreasing the quality of the treatment. The standard surgical approach for the treatment of coronary artery disease has traditionally been coronary artery bypass grafting surgery via median sternotomy. Off-pump coronary artery bypass grafting surgery offers a less invasive alternative and enables coronary revascularization to be performed without cardiopulmonary bypass. Hybrid coronary revascularization offers an even less invasive option in which minimally invasive direct coronary artery bypass can be combined with percutaneous coronary intervention. In this article, the authors review a recent publication comparing hybrid coronary revascularization and off-pump coronary artery bypass grafting surgery.
Overview of aerothermodynamic loads definition study
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
1989-01-01
Over the years, NASA has been conducting the Advanced Earth-to-Orbit (AETO) Propulsion Technology Program to provide the knowledge, understanding, and design methodology that will allow the development of advanced Earth-to-orbit propulsion systems with high performance, extended service life, automated operations, and diagnostics for in-flight health monitoring. The objective of the Aerothermodynamic Loads Definition Study is to develop methods to more accurately predict the operating environment in AETO propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. The approach taken consists of 2 parts: to modify, apply, and disseminate existing computational fluid dynamics tools in response to current needs and to develop new technology that will enable more accurate computation of the time averaged and unsteady aerothermodynamic loads in the SSME powerhead. The software tools are detailed. Significant progress was made in the area of turbomachinery, where there is an overlap between the AETO efforts and research in the aeronautical gas turbine field.
Yunusova, Anastasia M.; Fishman, Veniamin S.; Vasiliev, Gennady V.
2017-01-01
Factor-mediated reprogramming of somatic cells towards pluripotency is a low-efficiency process during which only small subsets of cells are successfully reprogrammed. Previous analyses of the determinants of the reprogramming potential are based on average measurements across a large population of cells or on monitoring a relatively small number of single cells with live imaging. Here, we applied lentiviral genetic barcoding, a powerful tool enabling the identification of familiar relationships in thousands of cells. High-throughput sequencing of barcodes from successfully reprogrammed cells revealed a significant number of barcodes from related cells. We developed a computer model, according to which a probability of synchronous reprogramming of sister cells equals 10–30%. We conclude that the reprogramming success is pre-established in some particular cells and, being a heritable trait, can be maintained through cell division. Thus, reprogramming progresses in a deterministic manner, at least at the level of cell lineages. PMID:28446707
Towards the cyber security paradigm of ehealth: Resilience and design aspects
NASA Astrophysics Data System (ADS)
Rajamäki, Jyri; Pirinen, Rauno
2017-06-01
Digital technologies have significantly changed the role of healthcare clients in seeking and receiving medical help, as well as brought up more cooperative policy issues in healthcare cross-border services. Citizens continue to take a more co-creative role in decisions about their own healthcare, and new technologies can enable and facilitate this emergent trend. In this study, healthcare services have been intended as a critical societal sector and therefore healthcare systems are focused on as critical infrastructures that ought to be protected from all types of fears, including cyber security threats and attacks. Despite continual progress in the systemic risk management of cyber domain, it is clear that anticipation and prevention of all possible types of attack and malfunction are not achievable for current or future cyber infrastructures. This study focuses on the investigation of a cyber security paradigm, adaptive systems and sense of resilience in a healthcare critical information infrastructure.
High Volume Fraction Carbon Nanotube Composites for Aerospace Applications
NASA Technical Reports Server (NTRS)
Siochi, E. J.; Kim, J.-W.; Sauti, G.; Cano, R. J.; Wincheski, R. A.; Ratcliffe, J. G.; Czabaj, M.
2016-01-01
Reported mechanical properties of carbon nanotubes (CNTs) at the nanoscale suggest their potential to enable significantly lighter structures of interest for space applications. However, their utility depends on the retention of these properties in bulk material formats that permit practical fabrication of large structures. This presentation summarizes recent progress made to produce carbon nanotube composites with specific tensile properties that begin to rival those of carbon fiber reinforced polymer composites. CNT content in these nanocomposites was greater than 70% by weight. Tested nanocomposite specimens were fabricated from kilometers or tens of square meters of CNT, depending on the starting material format. Processing methods to yield these results, and characterization and testing to evaluate the performance of these composites will be discussed. The final objective is the demonstration of a CNT composite overwrapped pressure vessel to be flight tested in the Fall of 2016.
Improvisation in evolution of genes and genomes: whose structure is it anyway?
Shakhnovich, Boris E; Shakhnovich, Eugene I
2008-06-01
Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.
Nanotechnology for treating osteoporotic vertebral fractures
Gao, Chunxia; Wei, Donglei; Yang, Huilin; Chen, Tao; Yang, Lei
2015-01-01
Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided. PMID:26316746
The value of Sentinel 1 and 2 for agricultural monitoring: lessons learned from a few case studies.
NASA Astrophysics Data System (ADS)
Azzari, G.; Lobell, D. B.
2016-12-01
The exponential growth in the number of earth-observing satellites during the last few years, along with the advent of novel and powerful computational platforms and algorithms, has enabled significant progress toward agricultural monitoring from space. Among recently-deployed sensors from both the public and private sector, ESA's Sentinel 1 (radar) and 2 (optical) offer great promise for several agricultural applications, used both individually or in combination. We will present results from case studies in Africa and the United States where Sentinel 1 and 2 are used to estimate several agricultural variables including crop yield, crop type, and management practices (e.g. no-till) in different landscapes. Emphasis will be placed on comparisons with ground data collected at the field level, and on comparing the relative value of radar and optical data for assessing different outcomes.
CT and MRI slice separation evaluation by LabView developed software.
Acri, Giuseppe; Testagrossa, Barbara; Sestito, Angela; Bonanno, Lilla; Vermiglio, Giuseppe
2018-02-01
The efficient use of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) equipment necessitates establishing adequate quality-control (QC) procedures. In particular, the accuracy of slice separation, during multislices acquisition, requires scan exploration of phantoms containing test objects. To simplify such procedures, a novel phantom and a computerised LabView-based procedure have been devised, enabling determination the midpoint of full width at half maximum (FWHM) in real time while the distance from the profile midpoint of two progressive images is evaluated and measured. The results were compared with those obtained by processing the same phantom images with commercial software. To validate the proposed methodology the Fisher test was conducted on the resulting data sets. In all cases, there was no statistically significant variation between the commercial procedure and the LabView one, which can be used on any CT and MRI diagnostic devices. Copyright © 2017. Published by Elsevier GmbH.
Design and Development of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.
2011-01-01
Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.
Single Molecule Electronics and Devices
Tsutsui, Makusu; Taniguchi, Masateru
2012-01-01
The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345
Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles
NASA Astrophysics Data System (ADS)
Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng
2017-04-01
Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...
2017-06-27
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less
Challenges towards Revitalizing Hemp: A Multifaceted Crop.
Schluttenhofer, Craig; Yuan, Ling
2017-11-01
Hemp has been an important crop throughout human history for food, fiber, and medicine. Despite significant progress made by the international research community, the basic biology of hemp plants remains insufficiently understood. Clear objectives are needed to guide future research. As a semi-domesticated plant, hemp has many desirable traits that require improvement, including eliminating seed shattering, enhancing the quantity and quality of stem fiber, and increasing the accumulation of phytocannabinoids. Methods to manipulate the sex of hemp plants will also be important for optimizing yields of seed, fiber, and cannabinoids. Currently, research into trait improvement is hindered by the lack of molecular techniques adapted to hemp. Here we review how addressing these limitations will help advance our knowledge of plant biology and enable us to fully domesticate and maximize the agronomic potential of this promising crop. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The recent development and applications of fluidic channels by 3D printing.
Zhou, Yufeng
2017-10-18
The technology of "Lab-on-a-Chip" allows the synthesis and analysis of chemicals and biological substance within a portable or handheld device. The 3D printed structures enable precise control of various geometries. The combination of these two technologies in recent years makes a significant progress. The current approaches of 3D printing, such as stereolithography, polyjet, and fused deposition modeling, are introduced. Their manufacture specifications, such as surface roughness, resolution, replication fidelity, cost, and fabrication time, are compared with each other. Finally, novel application of 3D printed channel in biology are reviewed, including pathogenic bacteria detection using magnetic nanoparticle clusters in a helical microchannel, cell stimulation by 3D chemical gradients, perfused functional vascular channels, 3D tissue construct, organ-on-a-chip, and miniaturized fluidic "reactionware" devices for chemical syntheses. Overall, the 3D printed fluidic chip is becoming a powerful tool in the both medical and chemical industries.
Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.
Hinchet, Ronan; Kim, Sang-Woo
2015-08-25
In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.
Air pollution, avoidance behaviour and children's respiratory health: evidence from England.
Janke, Katharina
2014-12-01
Despite progress in air pollution control, concerns remain over the health impact of poor air quality. Governments increasingly issue air quality information to enable vulnerable groups to avoid exposure. Avoidance behaviour potentially biases estimates of the health effects of air pollutants. But avoidance behaviour imposes a cost on individuals and therefore may not be taken in all circumstances. This paper exploits panel data at the English local authority level to estimate the relationship between children's daily hospital emergency admissions for respiratory diseases and common air pollutants, while allowing for avoidance behaviour in response to air pollution warnings. A 1% increase in nitrogen dioxide or ozone concentrations increases hospital admissions by 0.1%. For the subset of asthma admissions - where avoidance is less costly - there is evidence of avoidance behaviour. Ignoring avoidance behaviour, however, does not result in statistically significant underestimation of the health effect of air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
Dengue Virus and Its Inhibitors: A Brief Review.
Tian, Yu-Shi; Zhou, Yi; Takagi, Tatsuya; Kameoka, Masanori; Kawashita, Norihito
2018-01-01
The global occurrence of viral infectious diseases poses a significant threat to human health. Dengue virus (DENV) infection is one of the most noteworthy of these infections. According to a WHO survey, approximately 400 million people are infected annually; symptoms deteriorate in approximately one percent of cases. Numerous foundational and clinical investigations on viral epidemiology, structure and function analysis, infection source and route, therapeutic targets, vaccines, and therapeutic drugs have been conducted by both academic and industrial researchers. At present, CYD-TDV or Dengvaxia ® is the only approved vaccine, but potent inhibitors are currently under development. In this review, an overview of the viral life circle and the history of DENVs is presented, and the most recently reported antiviral candidates and newly discovered promising targets are focused and summarized. We believe that these successes and failures have enabled progress in anti-DENV drug discovery and hope that our review will stimulate further innovation in this area.
Adapting California’s ecosystems to a changing climate
Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart
2017-01-01
Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.
Tsurumaki, M; Kotake, M; Iwasaki, M; Saito, M; Tanaka, K; Aw, W; Fukuda, S; Tomita, M
2015-01-01
Inulin, a natural renewable polysaccharide resource produced by various plants in nature, has been reported to possess a significant number of diverse pharmaceutical and food applications. Recently, there has been rapid progress in high-throughput technologies and platforms to assay global mRNA, proteins, metabolites and gut microbiota. In this review, we will describe the current status of utilizing omics technologies of elucidating the impact of inulin and inulin-containing prebiotics at the transcriptome, proteome, metabolome and gut microbiome levels. Although many studies in this review have addressed the impact of inulin comprehensively, these omics technologies only enable us to understand physiological information at each different stage of mRNA, protein, metabolite and gut microbe. We believe that a synergistic approach is vital in order to fully illustrate the intricate beauty behind the relatively modest influence of food factors like inulin on host health. PMID:26619369
Wunderlich, Fabian; Memmert, Daniel
2016-12-01
The present study aims to investigate the ability of a new framework enabling to derive more detailed model-based predictions from ranking systems. These were compared to predictions from the bet market including data from the World Cups 2006, 2010, and 2014. The results revealed that the FIFA World Ranking has essentially improved its predictive qualities compared to the bet market since the mode of calculation was changed in 2006. While both predictors were useful to obtain accurate predictions in general, the world ranking was able to outperform the bet market significantly for the World Cup 2014 and when the data from the World Cups 2010 and 2014 were pooled. Our new framework can be extended in future research to more detailed prediction tasks (i.e., predicting the final scores of a match or the tournament progress of a team).
Classification of Ion Mobility Data Using the Neural Network Approach
NASA Technical Reports Server (NTRS)
Duong, T. A.; Kanik, I.
2005-01-01
Determination of atmospheric and surface elemental and molecular composition of various solar system bodies is essential to the development of a firm understanding of the origin and evolution of the solar system. Furthermore, such data is needed to address the intriguing question of whether or not life exists or once existed elsewhere in the Solar System. As such, these measurements are among the primary scientific goals of NASA s current and future planetary missions. In recent years, significant progress toward both miniaturization and field portability of in situ analytical separation and detection devices have been made with future planetary explorations in mind. However, despite all these advances, accurate in situ identification of atmospheric and surface compounds remains a big challenge. In response to that we are developing various hardware and software tools which would enable us to uniquely identify species of interest in a complex chemical environment.
Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning.
Masuyama, Naoki; Loo, Chu Kiong; Seera, Manjeevan; Kubota, Naoyuki
2018-04-01
Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.
Emerging technologies in point-of-care molecular diagnostics for resource-limited settings.
Peeling, Rosanna W; McNerney, Ruth
2014-06-01
Emerging molecular technologies to diagnose infectious diseases at the point at which care is delivered have the potential to save many lives in developing countries where access to laboratories is poor. Molecular tests are needed to improve the specificity of syndromic management, monitor progress towards disease elimination and screen for asymptomatic infections with the goal of interrupting disease transmission and preventing long-term sequelae. In simplifying laboratory-based molecular assays for use at point-of-care, there are inevitable compromises between cost, ease of use and test performance. Despite significant technological advances, many challenges remain for the development of molecular diagnostics for resource-limited settings. There needs to be more advocacy for these technologies to be applied to infectious diseases, increased efforts to lower the barriers to market entry through streamlined and harmonized regulatory approaches, faster policy development for adoption of new technologies and novel financing mechanisms to enable countries to scale up implementation.
Numerical Analysis of Incipient Separation on 53 Deg Swept Diamond Wing
NASA Technical Reports Server (NTRS)
Frink, Neal T.
2015-01-01
A systematic analysis of incipient separation and subsequent vortex formation from moderately swept blunt leading edges is presented for a 53 deg swept diamond wing. This work contributes to a collective body of knowledge generated within the NATO/STO AVT-183 Task Group titled 'Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles'. The objective is to extract insights from the experimentally measured and numerically computed flow fields that might enable turbulence experts to further improve their models for predicting swept blunt leading-edge flow separation. Details of vortex formation are inferred from numerical solutions after establishing a good correlation of the global flow field and surface pressure distributions between wind tunnel measurements and computed flow solutions. From this, significant and sometimes surprising insights into the nature of incipient separation and part-span vortex formation are derived from the wealth of information available in the computational solutions.
Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers
NASA Astrophysics Data System (ADS)
Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann
2016-06-01
Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.
Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu
2017-06-27
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2016-01-01
The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.
Enhancing the many-to-many relations across IHE document sharing communities.
Ribeiro, Luís S; Costa, Carlos; Oliveira, José Luís
2012-01-01
The Integrating Healthcare Enterprise (IHE) initiative is an ongoing project aiming to enable true inter-site interoperability in the health IT field. IHE is a work in progress and many challenges need to be overcome before the healthcare Institutions may share patient clinical records transparently and effortless. Configuring, deploying and testing an IHE document sharing community requires a significant effort to plan and maintain the supporting IT infrastructure. With the new paradigm of cloud computing is now possible to launch software devices on demand and paying accordantly to the usage. This paper presents a framework designed with purpose of expediting the creation of IHE document sharing communities. It provides semi-ready templates of sharing communities that will be customized according the community needs. The framework is a meeting point of the healthcare institutions, creating a favourable environment that might converge in new inter-institutional professional relationships and eventually the creation of new Affinity Domains.
Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches.
Novák, Ondřej; Napier, Richard; Ljung, Karin
2017-04-28
Plant hormones are a group of naturally occurring, low-abundance organic compounds that influence physiological processes in plants. Our knowledge of the distribution profiles of phytohormones in plant organs, tissues, and cells is still incomplete, but advances in mass spectrometry have enabled significant progress in tissue- and cell-type-specific analyses of phytohormones over the last decade. Mass spectrometry is able to simultaneously identify and quantify hormones and their related substances. Biosensors, on the other hand, offer continuous monitoring; can visualize local distributions and real-time quantification; and, in the case of genetically encoded biosensors, are noninvasive. Thus, biosensors offer additional, complementary technologies for determining temporal and spatial changes in phytohormone concentrations. In this review, we focus on recent advances in mass spectrometry-based quantification, describe monitoring systems based on biosensors, and discuss validations of the various methods before looking ahead at future developments for both approaches.
Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.
Vitriol, Eric A; Zheng, James Q
2012-03-22
Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones. Copyright © 2012 Elsevier Inc. All rights reserved.
Inducible and reversible phenotypes in a novel mouse model of Friedreich’s Ataxia
Gao, Kun; Swarup, Vivek; Versano, Revital; Dong, Hongmei; Jordan, Maria C
2017-01-01
Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease. PMID:29257745
High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions
NASA Technical Reports Server (NTRS)
Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.;
2011-01-01
X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.
Health-enabling technologies for pervasive health care: on services and ICT architecture paradigms.
Haux, Reinhold; Howe, Jurgen; Marschollek, Michael; Plischke, Maik; Wolf, Klaus-Hendrik
2008-06-01
Progress in information and communication technologies (ICT) is providing new opportunities for pervasive health care services in aging societies. To identify starting points of health-enabling technologies for pervasive health care. To describe typical services of and contemporary ICT architecture paradigms for pervasive health care. Summarizing outcomes of literature analyses and results from own research projects in this field. Basic functions for pervasive health care with respect to home care comprise emergency detection and alarm, disease management, as well as health status feedback and advice. These functions are complemented by optional (non-health care) functions. Four major paradigms for contemporary ICT architectures are person-centered ICT architectures, home-centered ICT architectures, telehealth service-centered ICT architectures and health care institution-centered ICT architectures. Health-enabling technologies may lead to both new ways of living and new ways of health care. Both ways are interwoven. This has to be considered for appropriate ICT architectures of sensor-enhanced health information systems. IMIA, the International Medical Informatics Association, may be an appropriate forum for interdisciplinary research exchange on health-enabling technologies for pervasive health care.
Buatois, Simon; Retout, Sylvie; Frey, Nicolas; Ueckert, Sebastian
2017-10-01
This manuscript aims to precisely describe the natural disease progression of Parkinson's disease (PD) patients and evaluate approaches to increase the drug effect detection power. An item response theory (IRT) longitudinal model was built to describe the natural disease progression of 423 de novo PD patients followed during 48 months while taking into account the heterogeneous nature of the MDS-UPDRS. Clinical trial simulations were then used to compare drug effect detection power from IRT and sum of item scores based analysis under different analysis endpoints and drug effects. The IRT longitudinal model accurately describes the evolution of patients with and without PD medications while estimating different progression rates for the subscales. When comparing analysis methods, the IRT-based one consistently provided the highest power. IRT is a powerful tool which enables to capture the heterogeneous nature of the MDS-UPDRS.
Data Fusion Tool for Spiral Bevel Gear Condition Indicator Data
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Antolick, Lance J.; Branning, Jeremy S.; Thomas, Josiah
2014-01-01
Tests were performed on two spiral bevel gear sets in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig to simulate the fielded failures of spiral bevel gears installed in a helicopter. Gear sets were tested until damage initiated and progressed on two or more gear or pinion teeth. During testing, gear health monitoring data was collected with two different health monitoring systems. Operational parameters were measured with a third data acquisition system. Tooth damage progression was documented with photographs taken at inspection intervals throughout the test. A software tool was developed for fusing the operational data and the vibration based gear condition indicator (CI) data collected from the two health monitoring systems. Results of this study illustrate the benefits of combining the data from all three systems to indicate progression of damage for spiral bevel gears. The tool also enabled evaluation of the effectiveness of each CI with respect to operational conditions and fault mode.
UAV-Based Hyperspectral Remote Sensing for Precision Agriculture: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Angel, Y.; Parkes, S. D.; Turner, D.; Houborg, R.; Lucieer, A.; McCabe, M.
2017-12-01
Modern agricultural production relies on monitoring crop status by observing and measuring variables such as soil condition, plant health, fertilizer and pesticide effect, irrigation and crop yield. Managing all of these factors is a considerable challenge for crop producers. As such, providing integrated technological solutions that enable improved diagnostics of field condition to maximize profits, while minimizing environmental impacts, would be of much interest. Such challenges can be addressed by implementing remote sensing systems such as hyperspectral imaging to produce precise biophysical indicator maps across the various cycles of crop development. Recent progress in unmanned aerial vehicles (UAVs) have advanced traditional satellite-based capabilities, providing a capacity for high-spatial, spectral and temporal response. However, while some hyperspectral sensors have been developed for use onboard UAVs, significant investment is required to develop a system and data processing workflow that retrieves accurately georeferenced mosaics. Here we explore the use of a pushbroom hyperspectral camera that is integrated on-board a multi-rotor UAV system to measure the surface reflectance in 272 distinct spectral bands across a wavelengths range spanning 400-1000 nm, and outline the requirement for sensor calibration, integration onto a stable UAV platform enabling accurate positional data, flight planning, and development of data post-processing workflows for georeferenced mosaics. The provision of high-quality and geo-corrected imagery facilitates the development of metrics of vegetation health that can be used to identify potential problems such as production inefficiencies, diseases and nutrient deficiencies and other data-streams to enable improved crop management. Immense opportunities remain to be exploited in the implementation of UAV-based hyperspectral sensing (and its combination with other imaging systems) to provide a transferable and scalable integrated framework for crop growth monitoring and yield prediction. Here we explore some of the challenges and issues in translating the available technological capacity into a useful and useable image collection and processing flow-path that enables these potential applications to be better realized.
Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Shiraga, Fumio
2015-01-01
To analyze the relationship between intraocular pressure (IOP) and the progression of visual field defects in Japanese primary open-angle glaucoma (POAG) and normal-tension glaucoma (NTG) patients. The subjects of the study were patients undergoing treatment for POAG or NTG who had performed visual field tests at least ten times with a Humphrey field analyzer (Swedish interactive thresholding algorithm standard, C30-2 program). The progression of visual field defects was defined by a significantly negative value of the mean deviation slope at the final visual field test during the follow-up period. The relationships between the progression of visual field defects and IOP, as well as other clinical factors, were retrospectively analyzed. A total of 156 eyes of 156 patients were included in the analysis. Significant progression of visual field defects was observed in 70 eyes of 70 patients (44.9%), while no significant progression was evident in 86 eyes of 86 patients (55.1%). The eyes with visual field defect progression had significantly lower baseline IOP (P<0.05), as well as significantly lower IOP reduction rate (P<0.01). The standard deviation of IOP values during follow-up was significantly greater in the eyes with visual field defect progression than in eyes without (P<0.05). Reducing IOP is thought to be useful for Japanese POAG or NTG patients to suppress the progression of visual field defects. In NTG, IOP management should take into account not only achieving the target IOP, but also minimizing the fluctuation of IOP during follow-up period.
The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation.
Šarc, Andrej; Stepišnik-Perdih, Tadej; Petkovšek, Martin; Dular, Matevž
2017-01-01
Within the last years there has been a substantial increase in reports of utilization of hydrodynamic cavitation in various applications. It has came to our attention that many times the results are poorly repeatable with the main reason being that the researchers put significant emphasis on the value of the cavitation number when describing the conditions at which their device operates. In the present paper we firstly point to the fact that the cavitation number cannot be used as a single parameter that gives the cavitation condition and that large inconsistencies in the reports exist. Then we show experiments where the influences of the geometry, the flow velocity, the medium temperature and quality on the size, dynamics and aggressiveness of cavitation were assessed. Finally we show that there are significant inconsistencies in the definition of the cavitation number itself. In conclusions we propose a number of parameters, which should accompany any report on the utilization of hydrodynamic cavitation, to make it repeatable and to enable faster progress of science and technology development. Copyright © 2016 Elsevier B.V. All rights reserved.
Frequency of viral infections and environmental factors in multiple sclerosis.
Eftekharian, Mohammad Mahdi; Ghannad, Masoud Sabouri; Taheri, Mohammad; Roshanaei, Ghodratollah; Mazdeh, Mehrdokht; Musavi, Mehrnoosh; Hormoz, Mona Bahmani
2016-06-08
Multiple sclerosis (MS) is a complicated disease which occurs due to relationship between genes and environmental factors that causes tissue damage by autoimmune mechanisms.We investigated and illustrated the hypotheses correlated to the evidence of several putative environmental risk factors for MS onset and progression in this part of Iran. Univariate logistic regression was used to detect the effects of environmental factors on the risk of MS. Data were analyzed using SPSS version 16. The childhood history of patients with rubella, measles and chickenpox increased the risk of MS significantly. Moreover, low consumption of dairy products, avoidance of seafood consumption, cigarette smoking and exposure to tobacco smoke, stress, anxiety disorders, depress and disturbing thoughts, negative and disturbing thoughts, developing a sudden shock upon hearing bad news, having obsessive-compulsive and being depressed increased the risk of MS significantly. The results of the current research partially solved the puzzling question of complex interplay between environmental factors and MS disease in this part of Iran. Incorporating these factors enables more powerful and accurate detection of novel risk factors with diagnostic and prognostic methods.
Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent
2013-09-01
Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician. Copyright © 2013 Elsevier Inc. All rights reserved.