Science.gov

Sample records for enabling international safeguards

  1. Enabling International Safeguards Research and Development in the United States

    SciTech Connect

    John E. Dwight; Mark J. Schanfein; Trond A. Bjornard

    2009-07-01

    Idaho National Laboratory (INL) is the lead laboratory in nuclear energy research and development within the U.S. Department of Energy national laboratory complex. INL is tasked with the advancement of nuclear energy research and development, and leadership in the renaissance of nuclear power globally. INL scientists have been central to the assessment of needs and the integration of technical programs aimed at the world-wide growth of nuclear power. One of the grand challenges of the nuclear energy resurgence is nuclear nonproliferation. Nonproliferation technology development is key to meeting this challenge. The needed advances in nonproliferation technologies are being made more difficult by the growing gap between increasing demands for nuclear materials to support technology development, and reduced availability of these materials. The gap is caused by the reduction, consolidation and more stringent lockdown of nuclear materials, made necessary by heightened and evolving security concerns, in the face of increased demand for materials to support technology development. Ironically, the increased demand for materials for technology development is made necessary by these same security concerns. The situation will continue to worsen if safeguards and security budgets remain limited for the International Atomic Energy Agency (IAEA) and many member states, while growth in global nuclear energy becomes a reality. Effective U.S. leadership in the closing of this gap is vital to homeland security and global stability. INL has taken positive steps, described in this paper, to close this gap by reestablishing a viable base for the development, testing and demonstration of safeguards and security technologies. Key attributes of this technology development base are (1) the availability of a wide variety of special nuclear materials in forms that allow for enhanced accessibility; (2) ease of access by U.S. government, national laboratory, industry and academic institution

  2. Simulation Enabled Safeguards Assessment Methodology

    SciTech Connect

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.

  3. International safeguards data authentication

    SciTech Connect

    Melton, R.B.; Smith, C.E.; DeLand, S.M.; Manatt, D.R.

    1996-07-01

    The International Safeguards community is becoming increasingly reliant on information stored in electronic form. In international monitoring and related activities it must be possible to verify and maintain the integrity of this electronic information. This paper discusses the use of data authentication technology to assist in accomplishing this task. The paper provides background information, identifies the relevance to international safeguards, discusses issues related to export controls, algorithm patents, key management and the use of commercial vs. custom software.

  4. International Nuclear Safeguards at Sandia

    SciTech Connect

    Sternat, Matthew R.

    2015-02-01

    As global nuclear energy expands, assuring peaceful uses of nuclear technology becomes increasingly important. In addition to complying with international nuclear safeguards, a responsible nuclear energy program promotes a corresponding safeguards culture. Establishment of transparent peaceful uses of nuclear technologies starts with cooperative international engagements and safeguards systems. Developing states investing in nuclear energy must assure the international community of their longterm commitment to safeguards, safety, and security (3S) of nuclear materials and technologies. Cultivating a safeguards culture starts in the initial phases of infrastructure planning and must be integrated into the process of developing a responsible nuclear energy program. Sandia National Laboratories supports the implementation of safeguards culture through a variety of activities, including infrastructure development.

  5. Information analysis and international safeguards

    SciTech Connect

    Pilat, Joseph F.; Budlong-Sylvester, K. W.; Tape, J. W.

    2004-01-01

    After the first Gulf War, it was recognized that one of the key weaknesses of the international safeguards system was that there was no systematic attempt by the International Atomic Energy Agency (IAEA) to analyze all available information about States nuclear programs to determine whether these programs were consistent with nonproliferation obligations. The IAEA, as part of its effort to redesign the international safeguards system, is looking closely at the issue of information review and evaluation. The application of information analysis (IA) techniques to the international nuclear safeguards system has the potential to revolutionize the form and practice of safeguards. Assessing the possibilities of IA for the IAEA, and in particular those embodied in concepts of information-driven safeguards, requires an understanding of IA, the limits on its effectiveness and the requirements placed on such analyses in a variety of safeguards contexts. The Australian Safeguards and Nonproliferation Office (ASNO) and the United States Department of Energy (DOE) agreed in July 2002 to undertake a joint study of 'information-driven safeguards' under a long-standing cooperative arrangement. It was decided that a broad range of ideas should be considered, and that the study would not be intended to be and would not be an elaboration of either US or Australian governmental positions. This paper reports some findings of Phase 1 of this collaborative effort and offers some initial thinking on the part of the authors on the outstanding issues to be addressed in Phase 2. An effort to explore through case studies alternative strategies for utilizing IA by the IAEA that provide the same or increased confidence in safeguards conclusions while allowing safeguards resource allocation to be determined not only by the types and quantities of nuclear material and facilities in a State but also by other objective factors.

  6. Future issues in international safeguards

    SciTech Connect

    Hakkila, E.A.; Markin, J.T.; Mullen, M.F.

    1991-01-01

    The introduction of large bulk-handling facilities into the internationally safeguarded, commercial nuclear fuel cycle, increased concerns for radiation exposure, and the constant level of resources available to the International Atomic Energy Agency (IAEA) are driving new and innovative approaches to international safeguards. Inspector resources have traditionally been allocated on a facility-type basis. Approaches such as randomization of inspections either within a facility or across facilities in a State or the application of a fuel-cycle approach within a State are being considered as means of conserving resources. Large bulk-handling facilities require frequent material balance closures to meet IAEA timeliness goals. Approaches such as near-real-time accounting, running book inventories, and adjusted running book inventories are considered as means to meet these goals. The automated facilities require that safeguards measures also be automated, leading to more reliance on operator-supplied equipment that must be authenticated by the inspectorate. New Non-Proliferation Treaty signatory States with advanced nuclear programs will further drain IAEA resources. Finally, the role of special inspections in IAEA safeguards may be expanded. This paper discusses these issues in terms of increasing safeguards effectiveness and the possible impact on operators. 14 refs.

  7. Technical Training Workshop on International Safeguards: An Introduction to Safeguards for Emerging Nuclear States

    SciTech Connect

    Frazar, Sarah L.; Gastelum, Zoe N.; Olson, Jarrod; Mathews, Caroline E.; Solodov, Alexander; Zhernosek, Alena; Raffo-Caiado, Ana; Baldwin, George; Horak, Karl; McClelland-Kerr, John; VanSickle, Matthew; Mininni, Margot; Kovacic, Donald

    2009-10-06

    The U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) hosted a workshop from May 4-22, 2009, on the fundamental elements of international safeguards. Entitled "A Technical Training Workshop on International Safeguards," the workshop introduced post-graduate students from Malaysia, Vietnam, Indonesia, Thailand, Morocco, Egypt, Algeria and Tunisia to the fundamental issues and best practices associated with international safeguards and encouraged them to explore potential career paths in safeguards. Workshops like these strengthen the international safeguards regime by promoting the development of a "safeguards culture" among young nuclear professionals within nascent nuclear countries. While this concept of safeguards culture is sometimes hard to define and even harder to measure, this paper will demonstrate that the promotion of safeguards cultures through workshops like these justifies the investment of U.S. taxpayer dollars.

  8. International safeguards for spent fuel storage

    SciTech Connect

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems.

  9. International safeguards without material balance areas

    SciTech Connect

    Sanborn, J.B.; Lu Mingshih; Indusi, J.P.

    1992-09-01

    Recently altered perceptions of the role of the non-proliferation regime, as well as continued IAEA funding constraints, suggest a need to re-examine the fundamentals of IAEA verification strategy. This paper suggests that abandoning certain material balance area (MBA) related concepts that nominally form the basic framework of ``full-scope`` safeguards would result in a more flexible inspection regime. The MBA concept applied in the domestic context enables a national authority to localize losses in space and in time and to minimize the need to measure in-process inventory. However, these advantages do not accrue to an international verification regime because it cannot truly verify the ``flows`` between MBAs without extensive containment/surveillance measures. In the verification model studied, the entire nuclear inventory of a state is periodically declared and verified simultaneously in one or two large segments (containing possibly many MBAS). Simultaneous inventory of all MBAs within a segment would occur through advance ``mailbox`` declarations and random selection of MBAs for on-site verification or through enhanced containment/surveillance techniques. Flows are generally speaking not verified. This scheme would free the inspectorate from the obligation to attempt to verify on-site each stratum of the material balance of every facility declaring significant quantities of nuclear material.

  10. International safeguards without material balance areas

    SciTech Connect

    Sanborn, J.B.; Lu Mingshih; Indusi, J.P.

    1992-01-01

    Recently altered perceptions of the role of the non-proliferation regime, as well as continued IAEA funding constraints, suggest a need to re-examine the fundamentals of IAEA verification strategy. This paper suggests that abandoning certain material balance area (MBA) related concepts that nominally form the basic framework of full-scope'' safeguards would result in a more flexible inspection regime. The MBA concept applied in the domestic context enables a national authority to localize losses in space and in time and to minimize the need to measure in-process inventory. However, these advantages do not accrue to an international verification regime because it cannot truly verify the flows'' between MBAs without extensive containment/surveillance measures. In the verification model studied, the entire nuclear inventory of a state is periodically declared and verified simultaneously in one or two large segments (containing possibly many MBAS). Simultaneous inventory of all MBAs within a segment would occur through advance mailbox'' declarations and random selection of MBAs for on-site verification or through enhanced containment/surveillance techniques. Flows are generally speaking not verified. This scheme would free the inspectorate from the obligation to attempt to verify on-site each stratum of the material balance of every facility declaring significant quantities of nuclear material.

  11. International safeguards: Accounting for nuclear materials

    SciTech Connect

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  12. Science and Technology Challenges for International Safeguards

    SciTech Connect

    Mark Schanfein

    2009-07-01

    The science and technology challenges for international safeguards range from cutting edge physics needs to practical technology solutions for high volume data handling and analysis issues. This paper will take a narrow look at some of the predominant challenges, which include those at high throughput commercial facilities and those in the detection of undeclared facilities. It is hoped that by highlighting these areas it can encourage a concerted effort by scientific institutions and industry to provide robust cost-effective solutions.

  13. Secret Objective Standoff: International Safeguards Educational Exercise

    SciTech Connect

    Okowita, Samantha L

    2014-01-01

    The International Safeguards Regime, being so multi-faceted, can be overwhelming to those first introduced to its many components. The organizers and lecturers of workshops and courses on nonproliferation often provide a series of independent lectures and must somehow demonstrate the cohesive and effective nature of the system. An exercise titled The Secret Objective Standoff was developed to complement lectures with hands-on learning to assist participants in bringing all the many components (IAEA agreements, export controls, treaty obligations, international diplomacy, etc.) of the International Safeguards Regime together. This exercise divides participants into teams that are assigned the role of either a country or the IAEA and asks that they fully immerse themselves in their roles. The teams are then randomly assigned three unique and secret objectives that are intended to represent realistic and current geopolitical scenarios. Through construction, trading, or hoarding of four resources (experts, technology, money, and uranium), the teams have a finite number of turns to accomplish their objectives. Each turn has three phases random dispersal of resources, a timed discussion where teams can coordinate and strategize with others, and an action phase. During the action phase, teams inform the moderator individually and secretly what they will be doing that turn. The exercise has been tested twice with Oak Ridge National Laboratory personnel, and has been conducted with outside participants twice, in each case the experience was well received by both participants and instructors. This exercise provides instructors the ability to modify the exercise before or during game play to best fit their educational goals. By offering a range of experiences, from an in-depth look at specific components to a generalized overview, this exercise is an effective tool in helping participants achieve a full understanding the International Safeguards Regime.

  14. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    SciTech Connect

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and professional societies who either

  15. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    SciTech Connect

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  16. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    SciTech Connect

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  17. 7 CFR 4290.506 - Safeguarding the RBIC's assets/Internal controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Safeguarding the RBIC's assets/Internal controls... Safeguarding the RBIC's assets/Internal controls. You must adopt a plan to safeguard your assets and monitor... your control procedures....

  18. Interim Procedures Safeguarding Mobile Devices during International Travel

    EPA Pesticide Factsheets

    This procedure is for safeguarding EPA information and systems for all employees, contractors, and other users while on international travel or to specifically designated locations within the United States and foreign embassies.

  19. U. S. spent-fuel disposal strategies and International safeguards

    SciTech Connect

    Pillay, K.K.; Picard, R.R.; Hafer, J.F. )

    1993-08-01

    Domestic safeguards for fissile nuclear materials are universal, and a variety of international safeguards regimes are applicable, in most member states of the International Atomic Energy Agency (IAEA), to declared nuclear facilities dedicated to peaceful missions. The U.S. strategy to dispose of all spent nuclear fuels (SNFs) and high-level wastes (HLWs) in engineered geologic repositories has a sometimes-overlooked consequence, namely, the need to maintain domestic and international safeguards in perpetuity. The Office of Civilian Radioactive Waste Management of the U.S. Department of Energy (DOE), which has the responsibility to accept and store the spent fuels in the long term either in surface facilities or in engineered geologic repositories, has yet to include safeguards issues in their mission plan.'' There are several stages in the nuclear fuel cycle where materials usable in weapons are available for diversion. This discussion, however, is limited to the potential diversion of spent fuels for clandestine plutonium recovery. The concepts proposed here highlight safeguards elements necessary for a pragmatic safeguards system for SNF from nuclear power generation. The efforts required to initiate and maintain a verifiable international safeguards regime are examined in the context of a typical storage facility in the United States.

  20. Process monitoring in international safeguards for reprocessing plants: A demonstration

    SciTech Connect

    Ehinger, M.H.

    1989-01-01

    In the period 1985--1987, the Oak Ridge National Laboratory investigated the possible role of process monitoring for international safeguards applications in fuel reprocessing plants. This activity was conducted under Task C.59, ''Review of Process Monitoring Safeguards Technology for Reprocessing Facilities'' of the US program of Technical Assistance to the International Atomic Energy Agency (IAEA) Safeguards program. The final phase was a demonstration of process monitoring applied in a prototypical reprocessing plant test facility at ORNL. This report documents the demonstration and test results. 35 figs.

  1. STATE-WIDE PERFORMANCE CRITERIA FOR INTERNATIONAL SAFEGUARDS

    SciTech Connect

    K. W. BUDLONG-SYLVESTER; W. D. STANBRO

    2001-06-01

    Traditionally, the International Atomic Energy Agency (IAEA) has relied upon prescriptive criteria to guide safeguards implementation. The prospect of replacing prescriptive safeguards criteria with more flexible performance criteria would constitute a structural change in safeguards and raises several important questions. Performance criteria imply that while safeguards goals will be fixed, the means of attaining those goals will not be explicitly prescribed. What would the performance objectives be under such a system? How would they be formulated? How would performance be linked to higher level safeguards objectives? How would safeguards performance be measured Statewide? The implementation of safeguards under performance criteria would also signal a dramatic change in the manner the Agency does business. A higher degree of flexibility could, in principle, produce greater effectiveness and efficiency, but would come with a need for increased Agency responsibility in practice. To the extent that reliance on prescriptive criteria decreases, the burden of justifying actions and ensuring their transparency will rise. Would there need to be limits to safeguards implementation? What would be the basis for setting such limits? This paper addresses these and other issues and questions relating to both the formulation and the implementation of performance-based criteria.

  2. International Safeguards and the Pacific Northwest National Laboratory

    SciTech Connect

    Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.; Kurzrok, Andrew J.; Orton, Christopher R.; Schanfein, Mark J.; Sayre, Amanda M.; Jones, Rebecca L.

    2016-07-21

    Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations do not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.

  3. International training course on nuclear materials accountability for safeguards purposes

    SciTech Connect

    Not Available

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.

  4. Third International Meeting on Next Generation Safeguards:Safeguards-by-Design at Enrichment Facilities

    SciTech Connect

    Long, Jon D.; McGinnis, Brent R; Morgan, James B; Whitaker, Michael; Lockwood, Mr. Dunbar; Shipwash, Jacqueline L

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  5. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    SciTech Connect

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  6. 13 CFR 107.506 - Safeguarding Licensee's assets/Internal controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .../Internal controls. 107.506 Section 107.506 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION... Safeguarding Licensee's assets/Internal controls. You must adopt a plan to safeguard your assets and monitor... your control procedures....

  7. International Safeguards Technology and Policy Education and Training Pilot Programs

    SciTech Connect

    Dreicer, M; Anzelon, G A; Essner, J T; Dougan, A D; Doyle, J; Boyer, B; Hypes, P; Sokava, E; Wehling, F; Martin, J; Charlton, W

    2009-06-16

    A major focus of the National Nuclear Security Administration-led Next Generation Safeguards Initiative (NGSI) is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. NNSA launched two pilot programs in 2008 to develop university level courses and internships in association with James, Martin Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) and Texas A&M University (TAMU). These pilot efforts involved 44 students in total and were closely linked to hands-on internships at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). The Safeguards and Nuclear Material Management pilot program was a collaboration between TAMU, LANL, and LLNL. The LANL-based coursework was shared with the students undertaking internships at LLNL via video teleconferencing. A weeklong hands-on exercise was also conducted at LANL. A second pilot effort, the International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at MIIS in cooperation with LLNL. Speakers from MIIS, LLNL, and other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. The two pilots programs concluded with an NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The value of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of the two programs in the coming years.

  8. Process monitoring in support of International Atomic Energy Agency safeguards

    SciTech Connect

    Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.; Kerr, H.T.

    1987-08-01

    A review of previous efforts in process monitoring for safeguards was conducted. Previous efforts touched on various concepts and a few specific applications, but none was comprehensive in addressing all aspects of a process monitoring application for safeguards. This report develops prototypical process monitoring concepts that can be incorporated into the International Atomic Energy Agency's (IAEA's) general safeguards approach for fuel reprocessing plants. This effort considers existing approaches, recognizing limitations and needed improvements. Prototypical process monitoring applications are developed and proposed for implementation and demonstration in the Integrated Equipment Test facility, which is located at the Oak Ridge National Laboratory. The specific information needed to accomplish the process monitoring objectives are defined, and the mechanics for obtaining that information are described. Effort is given to the identification and assessment of potential impacts and benefits associated with process monitoring concepts, with particular attention to IAEA, state, and plant operator interests. The historical development of process monitoring is described and the implications of using process monitoring in international safeguards are discussed. Specific process process monitoring applications for demonstration in the IET facility are developed in Sects. 6 through 14. 1 fig.

  9. Internal audits can safeguard hospital revenue.

    PubMed

    Allen, Barbara

    2013-09-01

    Hospitals should routinely perform internal audits of all functions affecting billing accuracy to mitigate the effects of payer audits and to protect revenue by improving billing processes. A primary focus for internal audits should be on coding accuracy, because coding errors leading to denials often reflect gaps in coders' knowledge or training. Effective communication between coding and denials management professionals is a critical success factor. Audits should support appeals processes, and audit findings should be used in educational initiatives aimed at improving coding accuracy.

  10. Swedish experiences in implementing national and international safeguards

    SciTech Connect

    Nilsson, A. ); Elborn, M. ); Grahn, P. )

    1991-01-01

    This paper reports that international safeguards have been applied in Sweden since the early 70s. Experiences have been achieved from exclusive bilateral and trilateral control followed by NPT safeguards in 1975. The Swedish State System for accountancy and Control (SSAC) includes all regulations that follows from prevailing obligations regarding the peaceful uses of nuclear material. The system has been developed in cooperation between the national authority, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish nuclear industry. The paper presents experiences from the practical implementation of the SSAC and the IAEA safeguards system, gained by the SKI and the nuclear industry, respectively. Joint approaches and solutions to some significant safeguards issues are presented. The cooperation between the nuclear industry and the authority in R and D activities, in particular with respect to the Swedish Support Program is highlighted, e.g. the use of nuclear facilities in development or training tasks. some of the difficulties encountered with the system are also touched upon.

  11. Global partnering related to nuclear materials safeguards and security - A pragmatic approach to international safeguards work

    SciTech Connect

    Stanford, Dennis

    2007-07-01

    This paper documents issues Nuclear Fuel Services, Inc. has addressed in the performance of international work to safeguards and security work. It begins with a description of the package we put together for a sample proposal for the Global Threat Reduction Initiative, for which we were ranked number one for technical approach and cost, and concludes with a discussion of approaches that we have taken to performing this work, including issues related to performing the work as part of a team. The primary focus is on communication, workforce, equipment, and coordination issues. Finally, the paper documents the rules that we use to assure the work is performed safely and successfully. (author)

  12. Lessons Learned in International Safeguards - Implementation of Safeguards at the Rokkasho Reprocessing Plant

    SciTech Connect

    Ehinger, Michael H; Johnson, Shirley

    2010-02-01

    The focus of this report is lessons learned at the Rokkasho Reprocessing Plant (RRP). However, the subject of lessons learned for application of international safeguards at reprocessing plants includes a cumulative history of inspections starting at the West Valley (New York, U.S.A.) reprocessing plant in 1969 and proceeding through all of the efforts over the years. The RRP is the latest and most challenging application the International Atomic Energy Agency has faced. In many ways the challenges have remained the same, timely inspection and evaluation with limited inspector resources, with the continuing realization that planning and preparations can never start early enough in the life cycle of a facility. Lessons learned over the years have involved the challenges of using ongoing advances in technology and dealing with facilities with increased throughput and continuous operation. This report will begin with a review of historical developments and lessons learned. This will provide a basis for a discussion of the experiences and lessons learned from the implementation of international safeguards at RRP.

  13. FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Progerams Summary Report

    SciTech Connect

    Dreicer, M; Anzelon, G; Essner, J; Dougan, A; Doyle, J; Boyer, B; Hypes, P; Sokova, E; Wehling, F

    2008-10-17

    Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure to nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A&M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were

  14. Safeguards Culture

    SciTech Connect

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  15. Determining information management needs for enhanced international safeguards

    SciTech Connect

    Badalamente, R.V.; DeLand, S.M.; Whiteson, R.; Anzelon, G.

    1994-08-01

    The Safeguards Information Management System initiative is a program of the Department of Energy`s (DOE) Office of Arms Control and Nonproliferation aimed at supporting the International Atomic Energy Agency`s (IAEA) efforts to strengthen safeguards through the enhancement of information management capabilities. The DOE hopes to provide the IAEA with the ability to correlate and analyze data from existing and new sources of information, including publicly available information, information on imports and exports, design information, environmental monitoring data, and non-safeguards information. The first step in this effort is to identify and define IAEA requirements. In support of this, we have created a users` requirements document based on interviews with IAEA staff that describes the information management needs of the end user projected by the IAEA, including needs for storage, retrieval, analysis, communication, and visualization of data. Also included are characteristics of the end user and attributes of the current environment. This paper describes our efforts to obtain the required information. We discuss how to accurately represent user needs and involve users for an international organization with a multi-cultural user population. We describe our approach, our experience in setting up and conducting the interviews and brainstorming sessions, and a brief discussion of what we learned.

  16. Bulk Analysis of International Atomic Energy Agency Environmental Samples in Support of International Safeguards

    SciTech Connect

    Wogman, Ned A.; Olsen, Khris B.; Farmer, Orville T.

    2008-03-28

    Inspectors for the International Atomic Energy Agency’s (IAEA) Safeguards Program collect environmental samples under traditional safeguards, strengthened safeguards, or additional protocols during facility inspections at declared nuclear facilities throughout the world. Currently, there are 400 facilities under IAEA safeguards in 70 countries. All environmental samples are returned to IAEA’s Clean Laboratory located in Seiberdorf, Austria, where they are screened for gamma-ray emitting isotopes and prepared for distribution to laboratories for additional sampling. After the sample(s) are analyzed, the results are reported to the United States Network of Analytical Laboratories for input into its database. The IAEA reviews the data and incorporates the results into the safeguards evaluation of the state (country).

  17. International Internships in Nuclear Safeguards and Security: Challenges and Successes

    SciTech Connect

    Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Kryuchkov, Eduard F.; Geraskin, Nikolai I.; Silaev, Maxim E.; Sokova, Elena K.; Ford, David G.

    2010-04-20

    All students in the Russian safeguards and security degree programs at the National Research Nuclear University MEPhI and Tomsk Polytechnic University, sponsored by the Material Protection, Control and Accounting (MPC&A) Education Project, take part in a domestic internship at a Russian enterprise or facility. In addition, a select few students are placed in an international internship. These internships provide students with a better view of how MPC&A and nonproliferation in general are addressed outside of Russia. The possibility of an international internship is a significant incentive for students to enroll in the safeguards and security degree programs. The U.S. members of the MPC&A Education Project team interview students who have been nominated by their professors. These students must have initiative and reasonable English skills. The project team and professors then select students to be tentatively placed in various international internships during the summer or fall of their final year of study. Final arrangements are then made with the host organizations. This paper describes the benefits of the joint United States/Russia cooperation for next-generation workforce development, some of the international internships that have been carried out, the benefits of these international internships, and lessons learned in implementing them.

  18. Materials management in an internationally safeguarded fuels reprocessing plant

    SciTech Connect

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  19. U.S. Department of Energy`s International Safeguards Program

    SciTech Connect

    Sheely, K.B.

    1993-12-31

    Since 1978 the United States Department of Energy`s (DOE) International Safeguards Program has conducted policy analysis, strategies and technology development, international cooperation and training to support the formulation and implementation of international safeguards. The end of the Gulf War (1991), the end of the Cold War (1992), and the trend towards regionalization of safeguards has led to increased US and international attention to the threat of nuclear weapons proliferation and the need for significantly greater support to nonproliferation policy making and implementation activities. As a result, DOE`s International Safeguards Program has undergone substantial growth and has continued to focus its resources on the priority issues which are part of today`s and tomorrow`s world. In order to effectively and efficiently conduct and manage these activities the International Safeguards Program has developed and continues to refine and implement a strategic plan. This plan provides guidance for the activities conducted by support organizations and makes the program objectives and activities more transparent to other interested parties. The Strategic Plan centralizes into one document the mission, priorities, resources, activities, and operating procedures of DOE`s International Safeguards Program. The International Safeguards Program provides technical leadership in the formulation and implementation of the US nonproliferation policy concerning the IAEA, international safeguards, physical protection, and nuclear safeguards inspection activities.

  20. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    SciTech Connect

    Rabin, Michael W

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  1. National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Rabin, Michael W.

    2009-12-01

    As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  2. Zone approaches to international safeguards of a nuclear fuel cycle

    SciTech Connect

    Fishbone, L.G.; Higinbotham, W.A.

    1986-01-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the results of safeguards verifications for the individual facilities within it. We have examined safeguards approaches for a state nuclear fuel cycle that take into account the existence of all of the nuclear facilities in the state. We have focussed on the fresh-fuel zone of an advanced nuclear fuel cycle, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. The intention is to develop an approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the zone approach and for some reasonable intermediate safeguards approaches. Technical effectiveness, in these cases, means an estimate of the assurance that all nuclear material has been accounted for.

  3. Feasibility Study of Implementing a Mobile Collaborative Information Platform for International Safeguards Inspections

    SciTech Connect

    Gastelum, Zoe N.; Gitau, Ernest T. N.; Doehle, Joel R.; Toomey, Christopher M.

    2014-09-01

    In response to the growing pervasiveness of mobile technologies such as tablets and smartphones, the International Atomic Energy Agency and the U.S. Department of Energy National Laboratories have been exploring the potential use of these platforms for international safeguards activities. Specifically of interest are information systems (software, and accompanying servers and architecture) deployed on mobile devices to increase the situational awareness and productivity of an IAEA safeguards inspector in the field, while simultaneously reducing paperwork and pack weight of safeguards equipment. Exploratory development in this area has been met with skepticism regarding the ability to overcome technology deployment challenges for IAEA safeguards equipment. This report documents research conducted to identify potential challenges for the deployment of a mobile collaborative information system to the IAEA, and proposes strategies to mitigate those challenges.

  4. Lessons from post-war Iraq for the international full-scope safeguards regime

    SciTech Connect

    Scheinman, L.

    1993-04-01

    The discovery after the Gulf War of the extensive Iraqi nuclear weapon program severely shook public confidence in the nuclear non-proliferation regime in general, and the safeguards program of the IAEA under the nuclear Non-Proliferation Treaty, in particular. Iraq provided the justification for evaluating the safeguards regime under new political circumstances, so that appropriate corrective measures could be taken when necessary. It is now up to the individual states within the international system to take advantage of this opportunity.

  5. Developing the Next Generation of International Safeguards and Nonproliferation Experts: Highlights of Select Activities at the National Laboratories

    SciTech Connect

    Reed, J; Mathews, C; Kirk, B; Lynch, P; Doyle, J; Meek, E; Pepper, S; Metcalf, R

    2010-03-31

    With many safeguards experts in the United States at or near retirement age, and with the growing and evolving mission of international safeguards, attracting and educating a new generation of safeguards experts is an important element of maintaining a credible and capable international safeguards system. The United States National Laboratories, with their rich experience in addressing the technical and policy challenges of international safeguards, are an important resource for attracting, educating, and training future safeguards experts. This presentation highlights some of the safeguards education and professional development activities underway at the National Laboratories. These include university outreach, summer courses, internships, mid-career transition, knowledge retention, and other projects. The presentation concludes with thoughts on the challenge of interdisciplinary education and the recruitment of individuals with the right balance of skills and backgrounds are recruited to meet tomorrow's needs.

  6. 13 CFR 108.506 - Safeguarding the NMVC Company's assets/Internal controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... assets/Internal controls. 108.506 Section 108.506 Business Credit and Assistance SMALL BUSINESS... Requirements § 108.506 Safeguarding the NMVC Company's assets/Internal controls. You must adopt a plan to... document describing your control procedures....

  7. Lessons Learned from the Development of an Example Precision Information Environment for International Safeguards

    SciTech Connect

    Gastelum, Zoe N.; Henry, Michael J.; Burtner, IV, E. R.; Doehle, J. R.; Hampton, S. D.; La Mothe, R. R.; Nordquist, P. L.; Zarzhitsky, D. V.

    2014-12-01

    The International Atomic Energy Agency (IAEA) is interested in increasing capabilities of IAEA safeguards inspectors to access information that would improve their situational awareness on the job. A mobile information platform could potentially provide access to information, analytics, and technical and logistical support to inspectors in the field, as well as providing regular updates to analysts at IAEA Headquarters in Vienna or at satellite offices. To demonstrate the potential capability of such a system, Pacific Northwest National Laboratory (PNNL) implemented a number of example capabilities within a PNNL-developed precision information environment (PIE), and using a tablet as a mobile information platform. PNNL’s safeguards proof-of-concept PIE intends to; demonstrate novel applications of mobile information platforms to international safeguards use cases; demonstrate proof-of-principle capability implementation; and provide “vision” for capabilities that could be implemented. This report documents the lessons learned from this two-year development activity for the Precision Information Environment for International Safeguards (PIE-IS), describing the developed capabilities, technical challenges, and considerations for future development, so that developers working to develop a similar system for the IAEA or other safeguards agencies might benefit from our work.

  8. Enabling international adoption of LOINC through translation.

    PubMed

    Vreeman, Daniel J; Chiaravalloti, Maria Teresa; Hook, John; McDonald, Clement J

    2012-08-01

    Interoperable health information exchange depends on adoption of terminology standards, but international use of such standards can be challenging because of language differences between local concept names and the standard terminology. To address this important barrier, we describe the evolution of an efficient process for constructing translations of LOINC terms names, the foreign language functions in RELMA, and the current state of translations in LOINC. We also present the development of the Italian translation to illustrate how translation is enabling adoption in international contexts. We built a tool that finds the unique list of LOINC Parts that make up a given set of LOINC terms. This list enables translation of smaller pieces like the core component "hepatitis c virus" separately from all the suffixes that could appear with it, such "Ab.IgG", "DNA", and "RNA". We built another tool that generates a translation of a full LOINC name from all of these atomic pieces. As of version 2.36 (June 2011), LOINC terms have been translated into nine languages from 15 linguistic variants other than its native English. The five largest linguistic variants have all used the Part-based translation mechanism. However, even with efficient tools and processes, translation of standard terminology is a complex undertaking. Two of the prominent linguistic challenges that translators have faced include: the approach to handling acronyms and abbreviations, and the differences in linguistic syntax (e.g. word order) between languages. LOINC's open and customizable approach has enabled many different groups to create translations that met their needs and matched their resources. Distributing the standard and its many language translations at no cost worldwide accelerates LOINC adoption globally, and is an important enabler of interoperable health information exchange.

  9. Enabling international adoption of LOINC through translation

    PubMed Central

    Vreeman, Daniel J.; Chiaravalloti, Maria Teresa; Hook, John; McDonald, Clement J.

    2012-01-01

    Interoperable health information exchange depends on adoption of terminology standards, but international use of such standards can be challenging because of language differences between local concept names and the standard terminology. To address this important barrier, we describe the evolution of an efficient process for constructing translations of LOINC terms names, the foreign language functions in RELMA, and the current state of translations in LOINC. We also present the development of the Italian translation to illustrate how translation is enabling adoption in international contexts. We built a tool that finds the unique list of LOINC Parts that make up a given set of LOINC terms. This list enables translation of smaller pieces like the core component “hepatitis c virus” separately from all the suffixes that could appear with it, such “Ab.IgG”, “DNA”, and “RNA”. We built another tool that generates a translation of a full LOINC name from all of these atomic pieces. As of version 2.36 (June 2011), LOINC terms have been translated into 9 languages from 15 linguistic variants other than its native English. The five largest linguistic variants have all used the Part-based translation mechanism. However, even with efficient tools and processes, translation of standard terminology is a complex undertaking. Two of the prominent linguistic challenges that translators have faced include: the approach to handling acronyms and abbreviations, and the differences in linguistic syntax (e.g. word order) between languages. LOINC’s open and customizable approach has enabled many different groups to create translations that met their needs and matched their resources. Distributing the standard and its many language translations at no cost worldwide accelerates LOINC adoption globally, and is an important enabler of interoperable health information exchange PMID:22285984

  10. Role of IAEA (International Atomic Energy Agency) safeguards in confidence building

    SciTech Connect

    Augustson, R.H.

    1989-01-01

    In this paper, I will examine some attributes of confidence building and connect them with how the International Atomic Energy Agency (IAEA) interacts with its member states in carrying out its safeguards function. These interactions and the structure set up to define them help maintain and strengthen confidence between the IAEA and the member states and among these states. 3 refs.

  11. Oak Ridge National Laboratory Office of International Nuclear Safeguards: Human Capital Development Activity in FY16

    SciTech Connect

    Gilligan, Kimberly V.; Gaudet, Rachel N.

    2016-09-30

    In 2007, the U.S. Department of Energy National Nuclear Security Administration (DOE NNSA) Office of Nonproliferation and Arms Control (NPAC) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. One of the report’s key recommendations was for DOE NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency (IAEA) General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: policy development and outreach, concepts and approaches, technology and analytical methodologies, human capital development (HCD), and infrastructure development. This report addresses the HCD component of NGSI. The goal of the HCD component as defined in the NNSA Program Plan is “to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.” The major objectives listed in the HCD goal include education and training, outreach to universities and professional societies, postdoctoral appointments, and summer internships at national laboratories.

  12. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    SciTech Connect

    Gunning, John E; Laughter, Mark D; March-Leuba, Jose A

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  13. Nuclear Safeguards and the International Atomic Energy Agency

    DTIC Science & Technology

    1995-01-01

    Meyer Chairman since June 1, 1993 Senior Staff Consultant Center for International Studies Executive Director Martin Marietta Energy MIT Washington...mantlement of Nuclear Weapons. Disarmament Studies Center for International Security 2 Panel member until June 1, 1993; panel and Arms Control chair after...Russian and Eurasian Peace Studies Program SE 2T International, Ltd. Studies Cornell University Monterey Institute of International Studies Leonard S

  14. Review of selected dynamic material control functions for international safeguards

    SciTech Connect

    Lowry, L.L.

    1980-09-01

    With the development of Dynamic Special Nuclear Material Accounting and Control systems used in nuclear manufacturing and reprocessing plants, there arises the question as to how these systems affect the IAEA inspection capabilities. The systems in being and under development provide information and control for a variety of purposes important to the plant operator, the safeguards purpose being one of them. This report attempts to judge the usefulness of these dynamic systems to the IAEA and have defined 12 functions that provide essential information to it. If the information acquired by these dynamic systems is to be useful to the IAEA, the inspectors must be able to independently verify it. Some suggestions are made as to how this might be done. But, even if it should not be possible to verify all the data, the availability to the IAEA of detailed, simultaneous, and plant-wide information would tend to inhibit a plant operator from attempting to generate a floating or fictitious inventory. Suggestions are made that might be helpful in the design of future software systems, an area which has proved to be fatally deficient in some systems and difficult in all.

  15. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    SciTech Connect

    Pepper, Susan E.; Pickett, Chris A.; Queirolo, Al; Bachner, Katherine M.; Worrall, Louise G.

    2015-04-07

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers’ goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term “software sustainability” was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  16. Possible Contributions of International Organizations to Safeguarding Human Rights.

    ERIC Educational Resources Information Center

    Bennett, A. LeRoy

    This paper discusses ways in which international organizations have in the past and can continue in the future to foster social, economic, and cultural rights on a global scale. Involvement of international organizations such as the United Nations in the realm of human rights expanded after the second world war. Examples of contributions to the…

  17. International safeguards for a modern MOX (mixed-oxide) fuel fabrication facility

    SciTech Connect

    Pillay, K.K.S.; Stirpe, D.; Picard, R.R.

    1987-03-01

    Bulk-handling facilities that process plutonium for commercial fuel cycles offer considerable challenges to nuclear materials safeguards. Modern fuel fabrication facilities that handle mixed oxides of plutonium and uranium (MOX) often have large inventories of special nuclear materials in their process lines and in storage areas for feed and product materials. In addition, the remote automated processing prevalent at new MOX facilities, which is necessary to minimize radiation exposures to personnel, tends to limit access for measurements and inspections. The facility design considered in this study incorporates all these features as well as state-of-the-art measurement technologies for materials accounting. Key elements of International Atomic Energy Agency (IAEA) safeguards for such a fuel-cycle facility have been identified in this report, and several issues of primary importance to materials accountancy and IAEA verifications have been examined. We have calculated detection sensitivities for abrupt and protracted diversions of plutonium assuming a single materials balance area for all processing areas. To help achieve optimal use of limited IAEA inspection resources, we have calculated sampling plans for attributes/variables verification. In addition, we have demonstrated the usefulness of calculating sigma/sub (MUF-D)/ and detection probabilities corresponding to specified material-loss scenarios and resource allocations. The data developed and the analyses performed during this study can assist both the facility operator and the IAEA in formulating necessary safeguards approaches and verification procedures to implement international safeguards for special nuclear materials.

  18. Safeguards Culture: Lessons Learned

    SciTech Connect

    Frazar, Sarah L.; Mladineo, Stephen V.

    2010-06-01

    Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been underappreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured. This paper argues that safeguards culture as an indicator of a country’s nonproliferation posture can be a useful tool.

  19. Model of a Generic Natural Uranium Conversion Plant ? Suggested Measures to Strengthen International Safeguards

    SciTech Connect

    Raffo-Caiado, Ana Claudia; Begovich, John M; Ferrada, Juan J

    2009-11-01

    This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.

  20. INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) SAFEGUARDS DURING STABILIZATION AT HANFORD PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    MCRAE, L.P.

    2004-06-30

    The Vault at the Plutonium Finishing Plan (PFP) became subject to the International Atomic Energy Agency (IAEA) safeguards beginning in 1994 as part of the US excess fissile material program. The inventory needed to be stabilized and repackaged for long-term storage to comply with Defense Nuclear Facility Safety Board Recommendation 94-1. In 1998, the United States began negotiations with IAEA to develop methods to maintain safeguards during stabilization and repackaging of this material. The Design Information Questionnaire was revised and submitted to the IAEA in 2002 describing modification to the facility to accommodate the stabilization process line. The operation plan for 2003 was submitted describing the proposed schedules for removing materials for stabilization. Stabilization and repackaging activities for the safeguarded plutonium began in January 2003 and were completed in December 2003. The stabilization was completed in five phases. IAEA containment and surveillance measures were maintained until the material was removed by phase for stabilization and repackaging. Following placement of the repackaged material into the storage vault, the IAEA conducted inventory change verification measurements, and re-established containment and surveillance. Plant activities and the impacts on operations are described.

  1. Precision Information Environment (PIE) for International Safeguards: Pre-Demonstration Development Use Cases

    SciTech Connect

    Gastelum, Zoe N.; Henry, Michael J.

    2013-11-13

    In FY2013, the PIE International Safeguards team demonstrated our development progress to U.S. Department of Energy (DOE) staff from the Office of Nonproliferation and International Security (NA-24, our client) and the Office of Defense Nuclear Nonproliferation Research and Development (NA-22). Following the demonstration, the team was asked by our client to complete additional development prior to a planned demonstration at the International Atomic Energy Agency (IAEA), scheduled tentatively for January or spring of 2014. The team discussed four potential areas for development (in priority order), and will develop them as time and funding permit prior to an IAEA demonstration. The four capability areas are: 1. Addition of equipment manuals to PIE-accessible files 2. Optical character recognition (OCR) of photographed text 3. Barcode reader with information look-up from a database 4. Add Facilities to Data Model 5. Geospatial capabilities with information integration Each area will be described below in a use case.

  2. Application of laser induced breakdown spectroscopy (LIBS) instrumentation for international safeguards

    SciTech Connect

    Barefield Ii, James E; Clegg, Samuel M; Lopez, Leon N; Le, Loan A; Veirs, D Kirk; Browne, Mike

    2010-01-01

    Advanced methodologies and improvements to current measurements techniques are needed to strengthen the effectiveness and efficiency of international safeguards. This need was recognized and discussed at a Technical Meeting on 'The Application of Laser Spectrometry Techniques in IAEA Safeguards' held at IAEA headquarters (September 2006). One of the principal recommendations from that meeting was the need to pursue the development of novel complementary access instrumentation based on Laser Induced Breakdown Spectroscopy (UBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials'. Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the 'Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications' also held at IAEA headquarters (July 2008). This meeting was attended by 12 LlBS experts from the Czech Republic, the European Commission, France, the Republic of South Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. Following a presentation of the needs of the IAEA inspectors, the LIBS experts agreed that needs as presented could be partially or fully fulfilled using LIBS instrumentation. Inspectors needs were grouped into the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activities in Hot Cells; (3) Verify status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. The primary tool employed by the IAEA to detect undeclared processes and activities at special nuclear material facilities and sites is environmental sampling. One of the objectives of the Next Generation Safeguards Initiative (NGSI) Program Plan calls for the development of advanced tools and methodologies to

  3. International safeguards relevant to geologic disposal of high-level wastes and spent fuels

    SciTech Connect

    Pillay, K.K.S.; Picard, R.R.

    1989-01-01

    Spent fuels from once-through fuel cycles placed in underground repositories have the potential to become attractive targets for diversion and/or theft because of their valuable material content and decreasing radioactivity. The first geologic repository in the US, as currently designed, will contain approximately 500 Mt of plutonium, 60,000 Mt of uranium and a host of other fissile and strategically important elements. This paper identifies some of the international safeguards issues relevant to the various proposed scenarios for disposing of the spent fuel. In the context of the US program for geologic disposal of spent fuels, this paper highlights several issues that should be addressed in the near term by US industries, the Department of Energy, and the Nuclear Regulatory Commission before the geologic repositories for spent fuels become a reality. Based on US spent fuel discharges, an example is presented to illustrate the enormity of the problem of verifying spent fuel inventories. The geologic disposal scenario for high-level wastes originating from defense facilities produced a practicably irrecoverable'' waste form. Therefore, safeguards issues for geologic disposal of high-level waste now in the US are less pressing. 56 refs. , 2 figs.

  4. Treaty on Open Skies sensor technologies with potential international safeguards applications

    SciTech Connect

    Sandoval, M.B.

    1996-12-01

    The Treaty on Open Skies is a precedent-setting agreement that allows signatory states to fly aircraft over each other`s territory with sensor systems. The purpose of the Treaty is to improve confidence and security with respect to military activities of the signatories. This paper reviews the sensor technology that is currently allowed by the Treaty on Open Skies and potential future sensor technology. The Treaty on Open Skies does have provisions to allow for the improvement of the technology of the current sensor systems and for the proposal of new sensors after a period of time. This can occur only after the Treaty has been ratified and has entered into force. If this regime was to be used for other than Treaty on Open Skies applications some modifications to the allowed sensor technology should be examined. This paper presents some ideas on potential improvements to existing allowed sensor technology as well as some suggested new advanced sensor systems that would be useful for future potential monitoring of safeguard`s related activities. This paper addresses advanced imaging sensors and non-imaging sensors for potential use in aerial remote sensing roles that involve international data sharing.

  5. Strenghening Safeguards Authorities and Institutions

    SciTech Connect

    Goodman,M.; Lockwood, d.; Rosenthal, M.D.; Tape, J.W.

    2008-06-06

    The International Atomic Energy Agency (IAEA) safeguards system has changed in major ways from the establishment of the IAEA in 1957 until the present. Changes include strengthening the legal framework of safeguards; improvements in concepts and approaches for safeguards implementation; and significant improvements in the technical tools available to inspectors. In this paper, we explore three broad areas related to strengthening safeguards authorities and institutions: integrated safeguards and State-Level Approaches; special inspections; and NPT withdrawal and the continuation of safeguards.

  6. Assessment of the requirements for placing and maintaining Savannah River Site spent fuel storage basins under International Atomic Energy Agency safeguards

    SciTech Connect

    Amacker, O.P. Jr.; Curtis, M.M.; Delegard, C.H.; Hsue, S.T.; Whitesel, R.N.

    1997-03-01

    The United States is considering the offer of irradiated research reactor spent fuel (RRSF) for international safeguards applied by the International Atomic Energy Agency (IAEA). The offer would be to add one or more spent fuel storage basins to the list of facilities eligible for IAEA safeguards. The fuel to be safeguarded would be stored in basins on the Savannah River Site (SRS). This RRSF potentially can include returns of Material Test Reactor (MTR) VAX fuel from Argentina, Brazil, and Chile (ABC); returns from other foreign research reactors; and fuel from domestic research reactors. Basins on the SRS being considered for this fuel storage are the Receiving Basin for Offsite Fuel (RBOF) and the L-Area Disassembly Basin (L-Basin). A working group of SRS, U.S. Department of Energy International Safeguards Division (NN-44), and National Laboratory personnel with experience in IAEA safeguards was convened to consider the requirements for applying the safeguards to this material. The working group projected the safeguards requirements and described alternatives.

  7. The safeguards options study

    SciTech Connect

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  8. A Voice Enabled Procedure Browser for the International Space Station

    NASA Technical Reports Server (NTRS)

    Rayner, Manny; Chatzichrisafis, Nikos; Hockey, Beth Ann; Farrell, Kim; Renders, Jean-Michel

    2005-01-01

    Clarissa, an experimental voice enabled procedure browser that has recently been deployed on the International Space Station (ISS), is to the best of our knowledge the first spoken dialog system in space. This paper gives background on the system and the ISS procedures, then discusses the research developed to address three key problems: grammar-based speech recognition using the Regulus toolkit; SVM based methods for open microphone speech recognition; and robust side-effect free dialogue management for handling undos, corrections and confirmations.

  9. NASA's Space Launch System: An Enabling Capability for International Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  10. The International Safeguards Technology Base: How is the Patient Doing? An Exploration of Effective Metrics

    SciTech Connect

    Schanfein, Mark J; Gouveia, Fernando S

    2010-07-01

    The term “Technology Base” is commonly used but what does it mean? Is there a common understanding of the components that comprise a technology base? Does a formal process exist to assess the health of a given technology base? These are important questions the relevance of which is even more pressing given the USDOE/NNSA initiatives to strengthen the safeguards technology base through investments in research & development and human capital development. Accordingly, the authors will establish a high-level framework to define and understand what comprises a technology base. Potential goal-driven metrics to assess the health of a technology base will also be explored, such as linear demographics and resource availability, in the hope that they can be used to better understand and improve the health of the U.S. safeguards technology base. Finally, through the identification of such metrics, the authors will offer suggestions and highlight choices for addressing potential shortfalls.

  11. Recover: A Potentially Useful Technology for Nuclear Safeguards, but Greater International Commitment is Needed.

    DTIC Science & Technology

    1983-01-25

    dated November 29, 1982 from the Department of State 50 ABEREVIATIONS ACDA Arms Control and Disarmament Agency CANDU Canadian Deuterium Reactor C/S...oxide fuel fabrication. Although IAEA’s safeguards system depends primarily on mate- rial accountancy and on-site inspections , IAIA now complements these...percent--18 CANDUs and as many as four fast critical assemblies--were of types at which Brookhaven found RECOVER to be 8 cost--effective. 1/ According

  12. International organizations to enable world-wide mobile satellite services

    NASA Technical Reports Server (NTRS)

    Anglin, Richard L., Jr.

    1993-01-01

    Numbers of systems exist or have been proposed to provide world-wide mobile satellite services (MSS). Developers of these systems have formulated institutional structures they consider most appropriate for profitable delivery of these services. MSS systems provide niche services and complement traditional telecommunications networks; they are not integrated into world-wide networks. To be successful, MSS system operators must be able to provide an integrated suite of services to support the increasing globalization, interconnectivity, and mobility of business. The critical issue to enabling 'universal roaming' is securing authority to provide MSS in all of the nations of the world. Such authority must be secured in the context of evolving trends in international telecommunications, and must specifically address issues of standardization, regulation and organization. Today, only one existing organization has such world-wide authority. The question is how proponents of new MSS systems and services can gain similar authority. Securing the appropriate authorizations requires that these new organizations reflect the objectives of the nations in which services are to be delivered.

  13. Cooperation between JRC and SNL in the field of surveillance and monitoring for international safeguards

    SciTech Connect

    Johnson, C.S.; Sorel, F.

    1993-08-01

    Under a Cooperative Agreement between the Commission of European Communities (CEC) and the U. S. Department of Energy (DOE), the Joint Research Centre, (JRC) ISPRA, and Sandia National Laboratories (SNL) have been cooperating in the development of Containment and Surveillance equipment for a number of years. With recent technology advancements, this cooperation is expanding into the areas of Data Authentication, Safeguards Data Networks, Integrated Systems, and Image Processing. This paper will describe recently expanded efforts in connecting the Integrated Monitoring System designed by SNL to the Computer Aided Video Surveillance System designed by JRC. An SNL Modular Video Authentication System was furnished to test in the video circuitry of the Computer Aided Video Surveillance System. The two systems will remain at JRC for demonstrations, training, and future development activities.

  14. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    SciTech Connect

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  15. Enabling conformity to international standards within SeaDataNet

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.; Boldrini, Enrico; de Korte, Arjen; Santoro, Mattia; Manzella, Giuseppe; Nativi, Stefano

    2010-05-01

    SeaDataNet objective is to construct a standardized system for managing the large and diverse data sets collected by the oceanographic fleets and the new automatic observation systems. The aim is to network and enhance the currently existing infrastructures, which are the national oceanographic data centres and satellite data centres of 36 countries, active in data collection. The networking of these professional data centres, in a unique virtual data management system will provide integrated data sets of standardized quality on-line. The Common Data Index (CDI) is the middleware service adopted by SeaDataNet for discovery and access of the available data. In order to develop an interoperable and effective system, the use of international de facto and de jure standards is required. In particular the new goal object of this presentation is to introduce and discuss the solutions for making SeaDataNet compliant with the European Union (EU) INSPIRE directive and in particular with its Implementing Rules (IR). The European INSPIRE directive aims to rule the creation of an European Spatial Data Infrastructure (ESDI). This will enable the sharing of environmental spatial information among public sector organisations and better facilitate public access to spatial information across Europe. To ensure that the spatial data infrastructures of the European Member States are compatible and usable in a community and transboundary context, the directive requires that common IRs are adopted in a number of specific areas (Metadata, Data Specifications, Network Services, Data and Service Sharing and Monitoring and Reporting). Often the use of already approved digital geographic information standards is mandated, drawing from international organizations like the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO), the latter by means of its Technical Committee 211 (ISO/TC 211). In the context of geographic data discovery a set of mandatory

  16. Measuring Safeguards Culture

    SciTech Connect

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  17. Safeguards Culture: Lessons Learned

    SciTech Connect

    Mladineo, Stephen V.

    2009-05-27

    Abstract: At the 2005 INMM/ESARDA Workshop in Santa Fe, New Mexico, I presented a paper entitled “Changing the Safeguards Culture: Broader Perspectives and Challenges.” That paper described a set of theoretical models that can be used as a basis for evaluating changes to safeguards culture. This paper builds on that theoretical discussion to address practical methods for influencing culture. It takes lessons from methods used to influence change in safety culture and security culture, and examines the applicability of these lessons to changing safeguards culture. Paper: At the 2005 INMM/ESARDA Workshop on “Changing the Safeguards Culture: Broader Perspectives and Challenges,” in Santa Fe, New Mexico, I presented a paper entitled “Changing the Safeguards Culture: Broader Perspectives and Challenges.” That paper, coauthored by Karyn R. Durbin and Andrew Van Duzer, described a set of theoretical models that can be used as a basis for evaluating changes to safeguards culture. This paper updates that theoretical discussion, and seeks to address practical methods for influencing culture. It takes lessons from methods used to influence change in safety culture and security culture, and examines the applicability of these lessons to changing safeguards culture. Implicit in this discussion is an understanding that improving a culture is not an end in itself, but is one method of improving the underlying discipline, that is safety, security, or safeguards. Culture can be defined as a way of life, or general customs and beliefs of a particular group of people at a particular time. There are internationally accepted definitions of safety culture and nuclear security culture. As yet, there is no official agreed upon definition of safeguards culture. At the end of the paper I will propose my definition. At the Santa Fe Workshop the summary by the Co-Chairs of Working Group 1, “The Further Evolution of Safeguards,” noted: “It is clear that ‘safeguards culture

  18. Integrating Nuclear Information to Enhance Safeguards

    SciTech Connect

    Suski, N; Dubrin, J; Scarbrough, J

    2001-10-01

    Implementation of the Strengthened Safeguards System provides many new opportunities and challenges for collecting; analyzing and archiving nuclear materials safeguards information. For the first time in the history of safeguards, the International Atomic Energy Agency will be required not only to verify the accuracy of declarations, but also the completeness. To successfully implement the new safeguards regime, new and innovative ways of collecting, analyzing and archiving large amounts of safeguards information will be required. A conceptual system design that utilizes a geographical information system for the integration and analysis of this safeguards information will be described and demonstrated.

  19. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS,INFCIRC/540 (Corrected) VOLUME I/III SETTING THE STAGE: 1991-1996.

    SciTech Connect

    Rosenthal, M.D.; Saum-Manning, L.; Houck, F.; Anzelon, G.

    2010-01-01

    Events in Iraq at the beginning of the 1990s demonstrated that the safeguards system of the International Atomic Energy Agency (IAEA) needed to be improved. It had failed, after all, to detect Iraq's clandestine nuclear weapon program even though some of Iraq's's activities had been pursued at inspected facilities in buildings adjacent to ones being inspected by the IAEA. Although there were aspects of the implementation of safeguards where the IAEA needed to improve, the primary limitations were considered to be part of the safeguards system itself. That system was based on the Nuclear Nonproliferation Treaty of 1970, to which Iraq was a party, and implemented on the basis of a model NPT safeguards agreement, published by the IAEA 1972 as INFCIRC/153 (corrected). The agreement calls for states to accept and for the IAEA to apply safeguards to all nuclear material in the state. Iraq was a party to such an agreement, but it violated the agreement by concealing nuclear material and other nuclear activities from the IAEA. Although the IAEA was inspecting in Iraq, it was hindered by aspects of the agreement that essentially limited its access to points in declared facilities and provided the IAEA with little information about nuclear activities anywhere else in Iraq. As a result, a major review of the NPT safeguards system was initiated by its Director General and Member States with the objective of finding the best means to enable the IAEA to detect both diversions from declared stocks and any undeclared nuclear material or activities in the state. Significant improvements that could be made within existing legal authority were taken quickly, most importantly a change in 1992 in how and when and what design information would be reported to the IAEA. During 1991-1996, the IAEA pursued intensive study, legal and technical analysis, and field trials and held numerous consultations with Member States. The Board of Governors discussed the issue of strengthening safeguards

  20. A Working Framework for Enabling International Science Data System Interoperability

    NASA Astrophysics Data System (ADS)

    Hughes, J. Steven; Hardman, Sean; Crichton, Daniel J.; Martinez, Santa; Law, Emily; Gordon, Mitchell K.

    2016-07-01

    For diverse scientific disciplines to interoperate they must be able to exchange information based on a shared understanding. To capture this shared understanding, we have developed a knowledge representation framework that leverages ISO level reference models for metadata registries and digital archives. This framework provides multi-level governance, evolves independent of the implementation technologies, and promotes agile development, namely adaptive planning, evolutionary development, early delivery, continuous improvement, and rapid and flexible response to change. The knowledge representation is captured in an ontology through a process of knowledge acquisition. Discipline experts in the role of stewards at the common, discipline, and project levels work to design and populate the ontology model. The result is a formal and consistent knowledge base that provides requirements for data representation, integrity, provenance, context, identification, and relationship. The contents of the knowledge base are translated and written to files in suitable formats to configure system software and services, provide user documentation, validate input, and support data analytics. This presentation will provide an overview of the framework, present a use case that has been adopted by an entire science discipline at the international level, and share some important lessons learned.

  1. Nuclear materials safeguards for the future

    SciTech Connect

    Tape, J.W.

    1995-12-31

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

  2. Safeguards by Design Challenge

    SciTech Connect

    Alwin, Jennifer Louise

    2016-09-13

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  3. SAFEGUARDS ENVELOPE

    SciTech Connect

    Duc Cao; Richard Metcalf

    2010-07-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z-testing. A brief analysis of the impact of the safeguards optimization on the rest of plant efficiency, criticality concerns, and overall requirements is presented.

  4. Report on the US Program of Technical Assistance to Safeguards of the International Atomic Energy Agency (POTAS)

    SciTech Connect

    Not Available

    1981-05-01

    This document summarizes the work done under the US Program of Technical Assistance to IAEA Safeguards (POTAS), providing the US Government, IAEA, and others with a short review of the progress made in the program since its inception. Becaue of the size and complexity of the program, only major accomplishments are presented. These are grouped under the following categories: (1) equipment and standard which cover assay of irradiated and unirradiated nuclear materials, automatic data processing, and physical standards; (2) experts who are involved in technology transfer, training, system design, and safeguard information processing and analysis; (3) system studies which cover diversion hazard analysis, safeguards approaches and application, and inspection effort planning and forecasting; (4) techniques, procedures, and equipment evaluation; (5) training of IAEA inspectors and safeguards specialists from member states. The major achievement has been the provisions of safeguards equipment designed to be reliable, and tamper resistant, some of which have already been in use in the field by inspector or by IAEA staff members in Vienna. These are listed in a table. (AT)

  5. Deterring Nuclear Proliferation: The Importance of IAEA Safeguards: A TEXTBOOK

    SciTech Connect

    Rosenthal, M.D.; Fishbone, L.G.; Gallini, L.; Krass, A.; Kratzer, M.; Sanborn, J.; Ward, B.; Wulf, N. A.

    2012-03-13

    Nuclear terrorism and nuclear proliferation are among the most pressing challenges to international peace and security that we face today. Iran and Syria remain in non-compliance with the safeguards requirements of the NPT, and the nuclear ambitions of North Korea remain unchecked. Despite these challenges, the NPT remains a cornerstone of the nuclear non-proliferation regime, and the safeguards implemented by the International Atomic Energy Agency (IAEA) under the NPT play a critical role in deterring nuclear proliferation.How do they work? Where did they come from? And what is their future? This book answers these questions. Anyone studying the field of nuclear non-proliferation will benefit from reading this book, and for anyone entering the field, the book will enable them to get a running start. Part I describes the foundations of the international safeguards system: its origins in the 1930s - when new discoveries in physics made it clear immediately that nuclear energy held both peril and promise - through the entry into force in 1970 of the NPT, which codified the role of IAEA safeguards as a means to verify states NPT commitments not to acquire nuclear weapons. Part II describes the NPT safeguards system, which is based on a model safeguards agreement developed specifically for the NPT, The Structure and Content of Agreements between the Agency and States required in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, which has been published by the IAEA as INFCIRC/153. Part III describes events, especially in South Africa, the DPRK, and Iraq in the early 1990s, that triggered a transformation in the way in which safeguards were conceptualized and implemented.

  6. Integrating Safeguards and Security with Safety into Design

    SciTech Connect

    Robert S. Bean; John W. Hockert; David J. Hebditch

    2009-05-01

    There is a need to minimize security risks, proliferation hazards, and safety risks in the design of new nuclear facilities in a global environment of nuclear power expansion, while improving the synergy of major design features and raising operational efficiency. In 2008, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) covering many safeguards areas. One of these, launched by NNSA with support of the DOE Office of Nuclear Energy, was a multi-laboratory project, led by the Idaho National Laboratory (INL), to develop safeguards by design. The proposed Safeguards-by-Design (SBD) process has been developed as a structured approach to ensure the timely, efficient, and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical security, and safety objectives into the overall design process for the nuclear facility lifecycle. A graded, iterative process was developed to integrate these areas throughout the project phases. It identified activities, deliverables, interfaces, and hold points covering both domestic regulatory requirements and international safeguards using the DOE regulatory environment as exemplar to provide a framework and guidance for project management and integration of safety with security during design. Further work, reported in this paper, created a generalized SBD process which could also be employed within the licensed nuclear industry and internationally for design of new facilities. Several tools for integrating safeguards, safety, and security into design are discussed here. SBD appears complementary to the EFCOG TROSSI process for security and safety integration created in 2006, which focuses on standardized upgrades to enable existing DOE facilities to meet a more severe design basis threat. A collaborative approach is suggested.

  7. International Atomic Energy Agency's advisory group meeting on safeguards related to the final disposal of waste and spent fuel, Vienna, Austria, September 12-16, 1988: Foreign trip report

    SciTech Connect

    Moran, B.W.

    1988-10-01

    B.W. Moran traveled to Vienna, Austria, during the period of September 12--16, 1988, to serve as the technical advisor to the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) representatives to the International Atomic Energy Agency's Advisory Group Meeting on ''Safeguards Related to the Final Disposal of Nuclear Material in Waste and Spent Fuel.'' The goal of the US representatives to this meeting was to ensure that the advisory group's recommendations established (1) an effective IAEA safeguards approach for all radioactive waste and spent fuel management facilities and (2) a safeguards approach that is appropriate for the US Federal Waste Management System. The principal concerns of the United States on entering the advisory group meeting were: criteria for the termination of safeguards on waste should not be established, but should be referred for further study, safeguards on spent fuel should not be terminated, and safeguards studies are required before IAEA safeguards approaches for spent fuel are established. The US representatives generally recommended that consultant meetings be convened to address the technical issues after the requisite safeguards related research and development tasks have been performed. These objectives of the US representatives were achieved, and the recommendations of the advisory group generally coincided with and extended the recommendations presented in the US position paper.

  8. SAFEGUARDS CULTURE: WHAT IS IT AND DOES IT MATTER?

    SciTech Connect

    Mladineo, Stephen V.; Frazar, Sarah L.

    2012-11-01

    The concepts of safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. With the support of the National Nuclear Security Administration (NNSA) the authors have attempted a rigorous analysis of the concept of safeguards culture, with the goal of determining its value to the international safeguards community, and to provide recommendations as to whether the concept deserves further development. As part of this analysis, the authors explore the distinctions between safeguards culture, safeguards compliance, and safeguards performance. The authors also discuss synergies and differences between safeguards culture and safety/security culture.

  9. Overview of the Facility Safeguardability Analysis (FSA) Process

    SciTech Connect

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  10. Safeguards instrumentation: a computer-based catalog

    SciTech Connect

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  11. DOE/ABACC safeguards cooperation

    SciTech Connect

    Whitaker, J.M.; Alvim, C.F.; Toth, P.; Rubio, J.

    1995-12-31

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) through the Office of Nonproliferation and National Security to countries and international organizations to enhance their capabilities to control and verify nuclear material inventories. Specific activities initiated under the safeguards agreement include: (1) active US participation in ABACC`s safeguards training courses, (2) joint development of specialized measurement training workshops, (3) characterization of laboratory standards, and (4) development and application of an extensive analytical laboratory comparison program. The results realized from these initial activities have been mutually beneficial in regard to strengthening the application of international safeguards in Argentina and Brazil.

  12. Documentation and Analysis of IAEA (International Atomic Energy Agency) Safeguards Implementation at the Exxon Nuclear Fuel Fabrication Plant.

    DTIC Science & Technology

    1984-10-01

    Those efforts also resulted in the development of innovative approaches for improving effectiveness and minimizing the cost burden. The experience showed...approaches for improving effectiveness and minimizing the cost burden. The experience showed that IAEA safeguards could be technically effective...services such as the cost of shipping the IAEA equipment to other locations in the U.S. and for providing the IAEA with working standards for use at the U.S

  13. Safeguards Considerations for Thorium Fuel Cycles

    DOE PAGES

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; ...

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  14. Safeguards Considerations for Thorium Fuel Cycles

    SciTech Connect

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; Croft, Steven

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocols and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.

  15. Safeguards issues in spent fuel consolidation facilities

    SciTech Connect

    Belew, W.L.; Moran, B.W.

    1991-01-01

    In the nuclear power industry, the fuel assembly is the basic unit for nuclear material accountancy. The safeguards procedures for the spent fuel assemblies, therefore, are based on an item accountancy approach. When fuel consolidation occurs in at-reactor'' or away-from-reactor'' facilities, the fuel assemblies are disassembled and cease to be the basic unit containing nuclear material. Safeguards can no longer be based on item accountancy of fuel assemblies. The spent fuel pins containing plutonium are accessible, and the possibilities for diversion of spent fuel for clandestine reprocessing to recover the plutonium are increased. Thus, identifying the potential safeguards concerns created by operation of these facilities is necessary. Potential safeguards techniques to address these concerns also must be identified so facility designs may include the equipment and systems required to provide an acceptable level of assurance that the international safeguards objectives can be met when these facilities come on-line. The objectives of this report are (1) to identify the safeguards issues associated with operation of spent fuel consolidation facilities, (2) to provide a preliminary assessment of the assessment of the safeguards vulnerabilities introduced, and (3) to identify potential safeguards approaches that could meet international safeguards requirements. The safeguards aspects of spent fuel consolidation are addressed in several recent reports and papers. 11 refs., 3 figs., 3 tabs.

  16. Implications of Export/Import Reporting Requirements in the United States - International Atomic Energy Agency Safeguards Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Benjamin, Eugene L.; McNair, Gary W.

    2001-02-20

    The United States has signed but not ratified the US/IAEA Safeguards Additional Protocol. If ratified, the Additional Protocol will require the US to report to the IAEA certain nuclear-related exports and imports to the IAEA. This document identifies and assesses the issues associated with the US making those reports. For example, some regulatory changes appear to be necessary. The document also attempts to predict the impact on the DOE Complex by assessing the historical flow of exports and imports that would be reportable if the Additional Protocol were in force.

  17. IAEA safeguards and classified materials

    SciTech Connect

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-11-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA`s safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials.

  18. International Professional Learning Communities: The Role of Enabling School Structures, Trust, and Collective Efficacy

    ERIC Educational Resources Information Center

    Gray, Julie A.; Summers, Robert

    2015-01-01

    We explored the role of enabling school structures, trust in the principal, collegial trust, and collective efficacy in 15 pre-Kindergarten to 12th grade international, private schools in South and Central America. While the majority of these schools shared an "American" curriculum that was taught predominantly in English, we found that…

  19. A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts

    SciTech Connect

    Uribe, Eva C; Sandoval, M Analisa; Sandoval, Marisa N; Boyer, Brian D; Leitch, Rosalyn M

    2009-01-01

    With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

  20. The state-level approach: moving beyond integrated safeguards

    SciTech Connect

    Tape, James W

    2008-01-01

    The concept of a State-Level Approach (SLA) for international safeguards planning, implementation, and evaluation was contained in the Conceptual Framework for Integrated Safeguards (IS) agreed in 2002. This paper describes briefly the key elements of the SLA, including State-level factors and high-level safeguards objectives, and considers different cases in which application of the SLA methodology could address safeguards for 'suspect' States, 'good' States, and Nuclear Weapons States hosting fuel cycle centers. The continued use and further development of the SLA to customize safeguards for each State, including for States already under IS, is seen as central to effective and efficient safeguards for an expanding nuclear world.

  1. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  2. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Boyer, B. D.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2010-11-24

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  3. IAEA Safeguards: Past, Present, and Future

    SciTech Connect

    Santi, Peter A.; Hypes, Philip A.

    2012-06-14

    This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

  4. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    SciTech Connect

    Trond Bjornard PhD; Joseph Alexander; Robert Bean; Brian Castle; Scott DeMuth, Ph.D.; Phillip Durst; Michael Ehinger; Prof. Michael Golay, Ph.D.; Kevin Hase, Ph.D.; David J. Hebditch, DPhil; John Hockert, Ph.D.; Bruce Meppen; James Morgan; Jerry Phillips, Ph.D., PE

    2009-02-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD’s principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a “SBD design loop” that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A “Generic SBD Process” was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and

  5. Fiscal Year 2014 Annual Report on BNLs Next Generation Safeguards Initiative Human Capital Development Activities

    SciTech Connect

    Pepper, Susan E.

    2014-10-10

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.

  6. 26 CFR 301.6803-1 - Accounting and safeguarding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 18 2013-04-01 2013-04-01 false Accounting and safeguarding. 301.6803-1 Section 301.6803-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURE... Accounting and safeguarding. In cases coming within the provisions of section 6802 (2) and (3) and...

  7. 26 CFR 301.6803-1 - Accounting and safeguarding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 18 2011-04-01 2011-04-01 false Accounting and safeguarding. 301.6803-1 Section 301.6803-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURE... Accounting and safeguarding. In cases coming within the provisions of section 6802 (2) and (3) and...

  8. 26 CFR 301.6803-1 - Accounting and safeguarding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 18 2014-04-01 2014-04-01 false Accounting and safeguarding. 301.6803-1 Section 301.6803-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURE... Accounting and safeguarding. In cases coming within the provisions of section 6802 (2) and (3) and...

  9. 26 CFR 301.6803-1 - Accounting and safeguarding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Accounting and safeguarding. 301.6803-1 Section 301.6803-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURE... Accounting and safeguarding. In cases coming within the provisions of section 6802 (2) and (3) and...

  10. IMPLEMENTING THE SAFEGUARDS-BY-DESIGN PROCESS

    SciTech Connect

    Whitaker, J Michael; McGinnis, Brent; Laughter, Mark D; Morgan, Jim; Bjornard, Trond; Bean, Robert; Durst, Phillip; Hockert, John; DeMuth, Scott; Lockwood, Dunbar

    2010-01-01

    The Safeguards-by-Design (SBD) approach incorporates safeguards into the design and construction of nuclear facilities at the very beginning of the design process. It is a systematic and structured approach for fully integrating international and national safeguards for material control and accountability (MC&A), physical protection, and other proliferation barriers into the design and construction process for nuclear facilities. Implementing SBD is primarily a project management or project coordination challenge. This paper focuses specifically on the design process; the planning, definition, organization, coordination, scheduling and interaction of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project in order to provide the project context within which the safeguards design activities take place, describes the involvement of the safeguards experts in the design process, the nature of their analyses, interactions and decisions, and describes the documents created and how they are used. This report highlights the project context of safeguards activities, and identifies the safeguards community (nuclear facility operator, designer/builder, state regulator, SSAC and IAEA) must accomplish in order to implement SBD within the project.

  11. Implementing Safeguards-by-Design

    SciTech Connect

    Trond Bjornard; Robert Bean; Phillip Casey Durst; John Hockert; James Morgan

    2010-02-01

    Executive Summary Excerpt Safeguards-by-Design (SBD) is an approach to the design and construction of nuclear facilities whereby safeguards are designed-in from the very beginning. It is a systematic and structured approach for fully integrating international and national safeguards (MC&A), physical security, and other proliferation barriers into the design and construction process for nuclear facilities. SBD is primarily a project management or project coordination challenge, and this report focuses on that aspect of SBD. The present report continues the work begun in 2008 and focuses specifically on the design process, or project management and coordination - the planning, definition, organization, coordination, scheduling and interaction of activities of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project, in order to provide the project context within which the safeguards design activities take place, describes the involvement of safeguards experts in the design process, the nature of their analyses, interactions and decisions, as well as describing the documents created and how they are used. Designing and constructing a nuclear facility is an extremely complex undertaking. The stakeholders in an actual project are many – owner, operator, State regulators, nuclear facility primary contractor, subcontractors (e.g. instrument suppliers), architect engineers, project management team, safeguards, safety and security experts, in addition to the IAEA and its team. The purpose of the present report is to provide a common basis for discussions amongst stakeholders to collaboratively develop a SBD approach that will be both practically useful and mutually beneficial. The principal conclusions from the present study are: • In the short term, the successful implementation of SBD is principally a project management problem.

  12. Safeguards for spent fuels: Verification problems

    SciTech Connect

    Pillay, K.K.S.; Picard, R.R.

    1991-01-01

    The accumulation of large quantities of spent nuclear fuels world-wide is a serious problem for international safeguards. A number of International Atomic Energy Agency (IAEA) member states, including the US, consider spent fuel to be a material form for which safeguards cannot be terminated, even after permanent disposal in a geologic repository. Because safeguards requirements for spent fuels are different from those of conventional bulk-handling and item-accounting facilities, there is room for innovation to design a unique safeguards regime for spent fuels that satisfies the goals of the nuclear nonproliferation treaty at a reasonable cost to both the facility and the IAEA. Various strategies being pursued for long-term management of spent fuels are examined with a realistic example to illustrate the problems of verifying safeguards under the present regime. Verification of a safeguards regime for spent fuels requires a mix of standard safeguards approaches, such as quantitative verification and use of seals, with other measures that are unique to spent fuels. 17 refs.

  13. A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    SciTech Connect

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

  14. Advanced safeguards for the nuclear renaissance

    SciTech Connect

    Miller, Michael C; Menlove, Howard O

    2008-01-01

    The global expansion of nuclear energy provides not only the benefit of carbon-neutral electricity, but also the potential for proliferation concern as well. Nuclear safeguards implemented at the state level (domestic) and at the international level by the International Atomic Energy Agency (IAEA) are essential for ensuring that nuclear materials are not misused and are thereby a critical component of the increased usage of nuclear energy. In the same way that the 1950's Atoms for Peace initiative provided the foundation for a robust research and development program in nuclear safeguards, the expansion of nuclear energy that is underway today provides the impetus to enter a new era of technical development in the safeguards community. In this paper, we will review the history of nuclear safeguards research and development as well future directions.

  15. Safeguards Envelope Progress FY08

    SciTech Connect

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  16. Global biosurveillance: enabling science and technology. Workshop background and motivation: international scientific engagement for global security

    SciTech Connect

    Cui, Helen H

    2011-01-18

    Through discussion the conference aims to: (1) Identify core components of a comprehensive global biosurveillance capability; (2) Determine the scientific and technical bases to support such a program; (3) Explore the improvement in biosurveillance to enhance regional and global disease outbreak prediction; (4) Recommend an engagement approach to establishing an effective international community and regional or global network; (5) Propose implementation strategies and the measures of effectiveness; and (6) Identify the challenges that must be overcome in the next 3-5 years in order to establish an initial global biosurveillance capability that will have significant positive impact on BioNP as well as public health and/or agriculture. There is also a look back at the First Biothreat Nonproliferation Conference from December 2007. Whereas the first conference was an opportunity for problem solving to enhance and identify new paradigms for biothreat nonproliferation, this conference is moving towards integrated comprehensive global biosurveillance. Main reasons for global biosurveillance are: (1) Rapid assessment of unusual disease outbreak; (2) Early warning of emerging, re-emerging and engineered biothreat enabling reduced morbidity and mortality; (3) Enhanced crop and livestock management; (4) Increase understanding of host-pathogen interactions and epidemiology; (5) Enhanced international transparency for infectious disease research supporting BWC goals; and (6) Greater sharing of technology and knowledge to improve global health.

  17. Advanced Safeguards Approaches for New Reprocessing Facilities

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Richard; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-06-24

    U.S. efforts to promote the international expansion of nuclear energy through the Global Nuclear Energy Partnership (GNEP) will result in a dramatic expansion of nuclear fuel cycle facilities in the United States. New demonstration facilities, such as the Advanced Fuel Cycle Facility (AFCF), the Advanced Burner Reactor (ABR), and the Consolidated Fuel Treatment Center (CFTC) will use advanced nuclear and chemical process technologies that must incorporate increased proliferation resistance to enhance nuclear safeguards. The ASA-100 Project, “Advanced Safeguards Approaches for New Nuclear Fuel Cycle Facilities,” commissioned by the NA-243 Office of NNSA, has been tasked with reviewing and developing advanced safeguards approaches for these demonstration facilities. Because one goal of GNEP is developing and sharing proliferation-resistant nuclear technology and services with partner nations, the safeguards approaches considered are consistent with international safeguards as currently implemented by the International Atomic Energy Agency (IAEA). This first report reviews possible safeguards approaches for the new fuel reprocessing processes to be deployed at the AFCF and CFTC facilities. Similar analyses addressing the ABR and transuranic (TRU) fuel fabrication lines at AFCF and CFTC will be presented in subsequent reports.

  18. Safeguards and Security progress report, January--December 1989

    SciTech Connect

    Smith, D.B.; Jaramillo, G.R.

    1990-11-01

    From January to December 1989, the Los Alamos Safeguards and Security Research and Development (R D) program carried out the activities described in the first four parts of this report: Science and Technology Base Development, Basic Systems Design, Onsite Test and Evaluation and Facility Support, and International Safeguards. For the most part, these activities were sponsored by the Department of Energy's Office of Safeguards and Security. Part 1 covers development of the basic technology essential to continuing improvements in the practice of safeguards and security. It includes our computer security R D and the activities of the DOE Center for Computer Security, which provides the basis for encouraging and disseminating this important technology. Part 2 treats activities aimed at developing methods for designing and evaluating safeguards systems, with special emphasis on the integration of the several subsystems into a real safeguards system. Part 3 describes efforts of direct assistance to the DOE and its contractors and includes consultation on materials control and accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and demonstration of advanced safeguards systems. Part 3 also reports a series of training courses in various aspects of safeguards that makes the technology more accessible to those who must apply it. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Part 5 reports several safeguards-related activities that have sponsors other than the DOE/OSS. 87 refs., 52 figs.

  19. Building safeguards infrastructure

    SciTech Connect

    Stevens, Rebecca S; Mcclelland - Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  20. Safeguards effectiveness evaluations in safeguards planning

    SciTech Connect

    Al-Ayat, R.A.

    1987-12-03

    This paper describes analytic tools we developed to quantify the effectiveness of safeguards against theft of special nuclear material by insiders. These tools help identify vulnerabilities in existing safeguards, suggest potential improvements, and help assess the benefits of these upgrades prior to implementation. Alone, these tools are not sufficient for safeguards planning, since the cost of implementing all suggested upgrades almost always exceeds the available resources. This paper describes another tool we developed to allow comparsion of benefits of various upgrades to identify those upgrade packages that achieve the greatest improvement in protection for a given cost and to provide a priority ranking among cost-effective packages, thereby helping decision-makers select the upgrades to implement and highlight the mount of residual risk. 5 refs., 3 figs.

  1. An American Academy for Training Safeguards Inspectors - An Idea Revisited

    SciTech Connect

    Philip Casey Durst; Robert Bean

    2010-07-01

    In 2009, we presented the idea of an American academy for training safeguards inspectors for the International Atomic Energy Agency (IAEA), due to the declining percentage of Americans in that international organization. In this paper we assert that there is still a compelling need for this academy. While the American Safeguards Academy would be useful in preparing and pre-training American inspectors for the IAEA, it would also be useful for preparing Americans for domestic safeguards duties in the U.S. Department of Energy (DOE), U.S. DOE National Laboratories, and the U.S. Nuclear Regulatory Commission (NRC). It is envisioned that such an academy would train graduate and post-graduate university students, DOE National Laboratory interns, and nuclear safeguards professionals in the modern equipment, safeguards measures, and approaches currently used by the IAEA. It is also envisioned that the Academy would involve the domestic nuclear industry, which could provide use of commercial nuclear facilities for tours and demonstrations of the safeguards tools and methods in actual nuclear facilities. This would be in support of the U.S. DOE National Nuclear Security Administration’s Next Generation Safeguards Initiative (NGSI). This training would also help American nuclear safeguards and non-proliferation professionals better understand the potential limitations of the current tools used by the IAEA and give them a foundation from which to consider even more effective and efficient safeguards measures and approaches.

  2. Overview of the Facility Safeguardability Analysis (FSA) Process

    SciTech Connect

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald; Zentner, Michael D.

    2011-10-10

    The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a structured framework for the application of the SBD tools developed in other efforts. The more a design evolves, the greater the probability that new safeguards issues could be introduced. Likewise, for first-of-a-kind facilities or research facilities that involve previously unused processes or technologies, it is reasonable to expect that a number of possible safeguards issues might exist. Accordingly, FSA is intended to help the designer and its safeguards experts identify early in the design process: • Areas where elements of previous accepted safeguards approach(es) may be applied

  3. Remote monitoring: A global partnership for safeguards

    SciTech Connect

    Bardsley, J.

    1996-08-01

    With increased awareness of the significant changes of the past several years and their effect on the expectations to international safeguards, it is necessary to reflect on the direction for development of nuclear safeguards in a new era and the resulting implications. The time proven monitoring techniques, based on quantitative factors and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent, and open implementation regime. With the establishment of such a regime, it is highly likely that remote monitoring will play a significant role. Several states have seen value in cooperating with each other to address the many problems associated with the remote interrogation of integrated monitoring systems. As a consequence the International Remote Monitoring Project was organized to examine the future of remote monitoring in International Safeguards. This paper provides an update on the technical issues, the future plans, and the safeguards implications of cooperative programs relating to remote monitoring. Without providing answers to the policy questions involved, it suggests that it is timely to begin addressing these issues.

  4. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    SciTech Connect

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  5. FUTURE SAFEGUARDS EFFECTIVENESS: CONCEPTS AND ISSUES

    SciTech Connect

    K. W. BUDLONG-SYLVESTER; J. F. PILAT

    2000-09-01

    With new safeguards measures (under old and new authority) now available to the International Atomic Energy Agency (IAEA), there will be fundamental changes in the manner IAEA safeguards are implemented, raising questions about their effectiveness in meeting expanded Agency safeguards objectives. In order to characterize the capability of various safeguards approaches in meeting their objectives, it will be necessary to fully understand what is involved in the new safeguards equation. Both old and new measures will be required to construct a comprehensive picture of a State's nuclear activities and capabilities, and they both have strengths and weaknesses. There are (for political and cost reasons) likely to be tradeoffs between the two types of measures. Significant differences among measures with respect to the probability of their detecting an anomaly, along with other characteristics, need be considered in this context. Given the important role of both types of measures in future approaches, their inherent differences with regard to their capabilities and limitations, and their potential impact on the credibility of safeguards, it will be essential to consider these measures systematically, independently, and in combination in any effectiveness evaluation. This paper will consider concepts and issues in addressing this need.

  6. The Role of School Psychologists in Child Protection and Safeguarding

    ERIC Educational Resources Information Center

    Woods, Kevin; Bond, Caroline; Tyldesley, Kath; Farrell, Peter; Humphrey, Neil

    2011-01-01

    Child protection and safeguarding are important aspects of work for all professionals working with children. The current article outlines the international context of school psychologists' work in relation to child protection and safeguarding and describes the United Kingdom context in more detail. Given the relatively recent broadening of the UK…

  7. Changing Landscapes in Safeguarding Babies and Young Children in England

    ERIC Educational Resources Information Center

    Lumsden, Eunice

    2014-01-01

    The importance of safeguarding children from violence is internationally recognised. However, detecting, intervening and protecting children from abuse both within the family and in institutions is complex. This paper specifically focuses on safeguarding in England and how workforce reform in the early years offers the opportunity to forge new…

  8. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    SciTech Connect

    Burbank, Roberta L.; Frazar, Sarah L.; Gitau, Ernest TN; Shergur, Jason M.; Scholz, Melissa A.; Undem, Halvor A.

    2014-03-28

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSI’s ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSI’s long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  9. Strengthening regional safeguards

    SciTech Connect

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-08-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980`s and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States.

  10. Combining Measurements with Three-Dimensional Laser Scanning System and Coded Aperture Gamma-Ray Imaging Systems for International Safeguards Applications

    SciTech Connect

    Boehnen, Chris Bensing; Bogard, James S; Hayward, Jason P; Raffo-Caiado, Ana Claudia; Smith, Stephen E; Ziock, Klaus-Peter

    2010-01-01

    Being able to verify the operator's declaration in regards to technical design of nuclear facilities is an important aspect of every safeguards approach. In addition to visual observation, it is relevant to know if nuclear material is present or has been present in piping and ducts not declared. The possibility of combining different measurement techniques into one tool should optimize the inspection effort and increase safeguards effectiveness. Oak Ridge National Laboratory (ORNL) is engaged in a technical collaboration project involving two U.S. Department of Energy foreign partners to investigate combining measurements from a three-dimensional (3D) laser scanning system and gamma-ray imaging systems. ORNL conducted simultaneous measurements with a coded-aperture gamma-ray imager and the 3D laser scanner in an operational facility with complex configuration and different enrichment levels and quantities of uranium. This paper describes these measurements and their results.

  11. Combining Measurements with Three-Dimensional Laser Scanning System and Coded Aperture Gamma-Ray Imaging System for International Safeguards Applications

    SciTech Connect

    Boehnen, Chris Bensing; Bogard, James S; Hayward, Jason P; Raffo-Caiado, Ana Claudia; Smith, Steven E; Ziock, Klaus-Peter

    2010-01-01

    Being able to verify the operator's declaration in regard to the technical design of nuclear facilities is an important aspect of every safeguards approach. In addition to visual observation, it is necessary to know if nuclear material is present or has been present in undeclared piping and ducts. The possibility of combining the results from different measurement techniques into one easily interpreted product should optimize the inspection effort and increase safeguards effectiveness. A collaborative effort to investigate the possibility of combining measurements from a three-dimensional (3D) laser scanning system and gamma-ray imaging systems is under way. The feasibility of the concept has been previously proven with different laboratory prototypes of gamma-ray imaging systems. Recently, simultaneous measurements were conducted with a new highly portable, mechanically cooled, High Purity Germanium (HPGe), coded-aperture gamma-ray imager and a 3D laser scanner in an operational facility with complex configuration and different enrichment levels and quantities of uranium. With specially designed software, data from both instruments were combined and a 3D model of the facility was generated that also identified locations of radioactive sources. This paper provides an overview of the technology, describes the measurements, discusses the various safeguards scenarios addressed, and presents results of experiments.

  12. Training in Environmental Analyses for Safeguards

    SciTech Connect

    Williams, R W; Gaffney, A M; Hutcheon, N A; Kersting, A B

    2009-05-28

    Responding to recommendations of the DOE/NNSA's Next Generation Safeguards Initiative, a new course, Training in Environmental Sample Analysis for IAEA Safeguards, is being offered as a summer internship opportunity at Lawrence Livermore National Laboratory. The first students completed the 8 week program during the summer of 2008. Interns are given training in the analysis of bulk environmental samples for safeguards through hands-on experience working in a clean laboratory, purifying U and Pu from bulk environmental samples, and measuring U and Pu isotope ratios by multi-collector ICP mass spectrometry. A series of lectures by invited safeguards and non-proliferation experts gives the students a broad picture of the safeguards work of the IAEA. At the end of the course, the students prepare a poster of their work to showcase at LLNL's summer student poster symposium. Both undergraduate and graduate students are recruited and hired as paid interns under the aegis of the Glenn T. Seaborg Institute in the Physical and Life Sciences Directorate at LLNL. This training course seeks to introduce students to analytical and interpretive skill-sets that are not generally taught at universities, and to encourage them to pursue careers with the IAEA.

  13. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    SciTech Connect

    Kirk, Bernadette Lugue; Eipeldauer, Mary D; Whitaker, J Michael

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together with several DOE laboratories such as Pacific

  14. Enabling Quantitative Analysis in Ambient Ionization Mass Spectrometry: Internal Standard Coated Capillary Samplers

    PubMed Central

    Liu, Jiangjiang; Cooks, R. Graham; Ouyang, Zheng

    2013-01-01

    We describe a sampling method using glass capillaries for quantitative analysis of trace analytes in small volumes of complex mixtures (~1 μL) using ambient ionization mass spectrometry. The internal surface of a sampling glass capillary was coated with internal standard then used to draw liquid sample and so transfer both the analyte and internal standard in a single fixed volume onto a substrate for analysis. The internal standard was automatically mixed into the sample during this process and the volumes of the internal standard solution and sample are both fixed by the capillary volume. Precision in quantitation is insensitive to variations in length of the capillary, making the preparation of the sampling capillary simple and providing a robust sampling protocol. Significant improvements in quantitation accuracy were obtained for analysis of 1 μL samples using various ambient ionization methods. PMID:23731380

  15. Safeguards and security research and development progress report, October 1993--September 1994

    SciTech Connect

    Smith, D.B.; Jaramillo, G.R.

    1995-08-01

    This report describes the activities carried out by the Los Alamos Safeguards and Security Research and Development (R&D) program from October 1993 through September 1994. The activities presented in the first part of the report were directed primarily to domestic US safeguards applications and were, for the most part, sponsored by the Department of Energy`s Office of Safeguards and Security (DOE/OSS, NN-50). The activities described in Part 2, International Safeguards, were supported by the International Safeguards Division of the Office of Arms Control and Nonproliferation (DOE/OACN, NN-40). Part 3 describes several safeguards or safeguards-related activities that have other sponsors. The final part of the report lists titles and abstracts of Los Alamos safeguards R&D reports, technical journal articles, and conference papers that were published or presented in 1994.

  16. 1996 initiatives under the CNEN/DOE safeguards cooperation agreement

    SciTech Connect

    Vinhas, L.; Iskin, M.C.L.; Almeida, S.G. de; Dupree, S.; Reilly, D.; Smith, C.; Whitaker, J.M.

    1996-12-31

    In September 1995, the US Department of Energy (DOE) and the Brazilian Comissao Nacional de Energia Nuclear (CNEN) signed an agreement on methods and technologies for safeguards applications. This agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for international safeguards applications. CNEN is responsible for managing nuclear facilities and institutions in Brazil and is responsible for coordinating international safeguards as applied by the International Atomic Energy Agency (IAEA) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). Following the ratification of the Quadripartite Agreement among Argentina, Brazil, ABACC, and IAEA in March 1994, all nuclear materials in all nuclear activities in Brazil became subject to comprehensive safeguards. Collaboration between CNEN and DOE in 1996 is focusing on: (1) the use of a GRAND FORK detector at the Angra Nuclear Power Station, (2) a remote monitoring field trial, (3) workshops on environmental monitoring and analysis as a safeguards application, (4) developing and studying methods and techniques for applying safeguards at enrichment plants, and (5) support of CNEN`s safeguards analytical laboratory. This paper will describe each of the aforementioned safeguards cooperation activities.

  17. Safeguards and security status report, August 1981-January 1982

    SciTech Connect

    Shipley, J.P.

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer.

  18. Safeguardability of the vitrification option for disposal of plutonium

    SciTech Connect

    Pillay, K.K.S.

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron and those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.

  19. Applications of Virtual Reality to Nuclear Safeguards

    SciTech Connect

    Stansfield, S.

    1998-11-03

    This paper explores two potential applications of Virtual Reality (VR) to international nuclear safeguards: training and information organization and navigation. The applications are represented by two existing prototype systems, one for training nuclear weapons dismantlement and one utilizing a VR model to facilitate intuitive access to related sets of information.

  20. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    SciTech Connect

    Henry, C.N.

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  1. Safeguards and security progress report, January-December 1985

    SciTech Connect

    Not Available

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  2. Reactor monitoring and safeguards using antineutrino detectors

    SciTech Connect

    Bowden, N S

    2008-09-07

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  3. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott F

    2015-01-06

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the

  4. Safeguards management inspection procedures

    SciTech Connect

    Barth, M.J.; Dunn, D.R.

    1984-08-01

    The objective of this inspection module is to independently assess the contributions of licensee management to overall safeguards systems performance. The inspector accomplishes this objective by comparing the licensee's safeguards management to both the 10 CFR, parts 70 and 73, requirements and to generally accepted management practices. The vehicle by which this comparison is to be made consists of assessment questions and key issues which point the inspector to areas of primary concern to the NRC and which raise additional issues for the purpose of exposing management ineffectiveness. Further insight into management effectiveness is obtained through those assessment questions specifically directed toward the licensee's safeguards system performance. If the quality of the safeguards is poor, then the inspector should strongly suspect that management's role is ineffective and should attempt to determine management's influence (or lack thereof) on the underlying safeguards deficiencies. (The converse is not necessarily true, however.) The assessment questions in essence provide an opportunity for the inspector to identify, to single out, and to probe further, questionable management practices. Specific issues, circumstances, and concerns which point to questionable or inappropriate practices should be explicitly identified and referenced against the CFR and the assessment questions. The inspection report should also explain why the inspector feels certain management practices are poor, counter to the CFR, and/or point to ineffecive management. Concurrent with documenting the inspection results, the inspector should provide recommendations for alleviating observed management practices that are detrimental to effective safeguards. The recommendations could include: specific changes in the practices of the licensee, followup procedures on the part of NRC, and proposed license changes.

  5. Synchronized excitability in a network enables generation of internal neuronal sequences

    PubMed Central

    Wang, Yingxue; Roth, Zachary; Pastalkova, Eva

    2016-01-01

    Hippocampal place field sequences are supported by sensory cues and network internal mechanisms. In contrast, sharp-wave (SPW) sequences, theta sequences, and episode field sequences are internally generated. The relationship of these sequences to memory is unclear. SPW sequences have been shown to support learning and have been assumed to also support episodic memory. Conversely, we demonstrate these SPW sequences were present in trained rats even after episodic memory was impaired and after other internal sequences – episode field and theta sequences – were eliminated. SPW sequences did not support memory despite continuing to ‘replay’ all task-related sequences – place- field and episode field sequences. Sequence replay occurred selectively during synchronous increases of population excitability -- SPWs. Similarly, theta sequences depended on the presence of repeated synchronized waves of excitability – theta oscillations. Thus, we suggest that either intermittent or rhythmic synchronized changes of excitability trigger sequential firing of neurons, which in turn supports learning and/or memory. DOI: http://dx.doi.org/10.7554/eLife.20697.001 PMID:27677848

  6. Ames Culture Chamber System: Enabling Model Organism Research Aboard the international Space Station

    NASA Technical Reports Server (NTRS)

    Steele, Marianne

    2014-01-01

    Understanding the genetic, physiological, and behavioral effects of spaceflight on living organisms and elucidating the molecular mechanisms that underlie these effects are high priorities for NASA. Certain organisms, known as model organisms, are widely studied to help researchers better understand how all biological systems function. Small model organisms such as nem-atodes, slime mold, bacteria, green algae, yeast, and moss can be used to study the effects of micro- and reduced gravity at both the cellular and systems level over multiple generations. Many model organisms have sequenced genomes and published data sets on their transcriptomes and proteomes that enable scientific investigations of the molecular mechanisms underlying the adaptations of these organisms to space flight.

  7. The future of IAEA safeguards: challenges and responses

    SciTech Connect

    Pilat, Joseph F; Budlong - Sylvester, Kory W

    2011-01-01

    For nearly two decades, the International Atomic Energy Agency (lAEA) has been transforming its safeguards system to address the challenges posed by undeclared nuclear programs, the associated revelation of an extensive non-State nuclear procurement network and other issues, including past limits to its verification mandate and the burden of noncompliance issues. Implementing the new measures, including those in the Additional Protocol, and integrating new and old safeguards measures, remains a work in progress. Implementation is complicated by factors including the limited teclmological tools that are available to address such issues as safeguarding bulk handling facilities, detection of undeclared facilities/activities, especially related to enrichment, etc. As this process continues, new challenges are arising, including the demands of expanding nuclear power production worldwide, so-called safeguards by design for a new generation of facilities, the possible IAEA role in a fissile material cutoff treaty and other elements of the arms control and disarmament agenda, the possible role in 'rollback' cases, etc. There is no doubt safeguards will need to evolve in the future, as they have over the last decades. In order for the evolutionary path to proceed, there will inter alia be a need to identify technological gaps, especially with respect to undeclared facilities, and ensure they are filled by adapting old safeguards technologies, by developing and introducing new and novel safeguards teclmologies and/or by developing new procedures and protocols. Safeguards will also need to respond to anticipated emerging threats and to future, unanticipated threats. This will require strategic planning and cooperation among Member States and with the Agency. This paper will address challenges to IAEA safeguards and the technological possibilities and R&D strategies needed to meet those challenges in the context of the forty-year evolution of safeguards, including the ongoing

  8. Safeguards and security progress report, January-December 1984

    SciTech Connect

    Smith, D.B.

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments.

  9. Communication: Automatic code generation enables nuclear gradient computations for fully internally contracted multireference theory

    SciTech Connect

    MacLeod, Matthew K.; Shiozaki, Toru

    2015-02-07

    Analytical nuclear gradients for fully internally contracted complete active space second-order perturbation theory (CASPT2) are reported. This implementation has been realized by an automated code generator that can handle spin-free formulas for the CASPT2 energy and its derivatives with respect to variations of molecular orbitals and reference coefficients. The underlying complete active space self-consistent field and the so-called Z-vector equations are solved using density fitting. The implementation has been applied to the vertical and adiabatic ionization potentials of the porphin molecule to illustrate its capability.

  10. International mobility placements enable students and staff in Higher Education to enhance transversal and employability-related skills.

    PubMed

    Standley, Henrietta J

    2015-10-01

    Internationalization has commanded an ever-more prominent position in higher education over recent years, and is now firmly entrenched. While academia has long been outward looking-international research collaborations, conferences and student exchanges are well-established practices-it is relatively recently that internationalization has become a goal in its own right, rather than a consequence of normal academic activity. There are multiple interdependent drivers behind this: a focus on graduate employability and development of broad competencies and transferable skills in addition to subject-specific training, 'international awareness' being confirmed as a graduate attribute that is highly valued by employers, the availability of detailed information enabling prospective students to choose between Higher Education Institutions on the basis of their international opportunities and graduate employment rates, increasing competition between Institutions to attract the best students and to ascend national and international league tables, and (both driving and reflecting these trends) national policy frameworks. This minireview focuses on two aspects of internationalization of direct relevance to microbiology students and academic staff in a typical Higher Education Institution: student research placements overseas, and the impact of international mobility on teaching practice and the student experience. Practical strategies for developing intercultural awareness and enhancing employability are highlighted.

  11. Sustaining International CBRN Centers of Excellence with a Focus on Nuclear Security and Safeguards: Initial Scoping Session London, 23-24 September 2013 SUMMARY REPORT

    SciTech Connect

    Anderson, Roger G.; Frazar, Sarah L.

    2013-12-12

    This report provides a summary-level description of the key information, observations, ideas, and recommendations expressed during the subject meeting. The report is organized to correspond to the meeting agenda provided in Appendix 1 and includes references to several of the participants listed in Appendix 2 .The meeting venue was Lloyd’s Register in the City of London. Lloyd’s Register graciously accommodated the request of The Pacific Northwest Laboratory (PNNL) with whom it works on various safeguards activities commissioned by NNSA. PNNL and NNSA also shared the goal of the meeting/study with the United Kingdom (UK) Foreign and Commonwealth Office (FCO) and the Department of Energy and Climate Change with whom they coordinated the participant list.

  12. Safeguards-By-Design: Guidance and Tools for Stakeholders

    SciTech Connect

    Mark Schanfein; Shirley Johnson

    2012-02-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  13. The evolution of information-driven safeguards

    SciTech Connect

    Budlong-sylvester, Kory W; Pilat, Joseph F

    2010-10-14

    From the adoption of the Model Additional Protocol and integrated safeguards in the 1990s, to current International Atomic Energy Agency (IAEA) efforts to deal with cases of noncompliance, the question of how the Agency can best utilize all the information available to it remains of great interest and increasing importance. How might the concept of 'information-driven' safeguards (IDS) evolve in the future? The ability of the Agency to identify and resolve anomalies has always been important and has emerged as a core Agency function in recent years as the IAEA has had to deal with noncompliance in Iran and the Democratic People's Republic of Korea (DPRK). Future IAEA safeguards implementation should be designed with the goal of facilitating and enhancing this vital capability. In addition, the Agency should utilize all the information it possesses, including its in-house assessments and expertise, to direct its safeguards activities. At the State level, knowledge of proliferation possibilities is currently being used to guide the analytical activities of the Agency and to develop inspection plans. How far can this approach be extended? Does it apply across State boundaries? Should it dictate a larger fraction of safeguards activities? Future developments in IDS should utilize the knowledge resident within the Agency to ensure that safeguards resources flow to where they are most needed in order to address anomalies first and foremost, but also to provide greater confidence in conclusions regarding the absence of undeclared nuclear activities. The elements of such a system and related implementation issues are assessed in this paper.

  14. Using Distributed Operations to Enable Science Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna

    2011-01-01

    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload

  15. Safeguards and security progress report, January-December 1983

    SciTech Connect

    Smith, D.B.

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  16. On the absence of a 'Socio-emotional Enablement' discourse component in international socio-economic development thought.

    PubMed

    Affolter, Friedrich W

    2004-12-01

    Socio-emotional well-being, established through nurturing relationships and community experiences, enables children and adults to evolve into caring, nonviolent, emotionally healthy citizens. This paper analyses purposefully selected development texts, authored by three prominent contributors of socio-economic development discourse: the United Nations, the World Bank and the International Monetary Fund. On the basis of a socio-emotional capacity development framework that draws from research produced in the areas of developmental psychology, biopsychology, brain research and peace psychology, the study evaluates texts' tendencies to make socio-emotionally conducive -- or neglectful -- programme recommendations. The study finds that United Nations conference reports indirectly acknowledge the relevance for socio-emotional enablement and protection, in the context of discussions related to human and children's rights, education or women's empowerment. However, they only marginally discuss the need to foster socio-emotional well-being as a human capacity development rationale per se. The International Monetary Fund, while acknowledging responsibility for the social conduciveness of macro-economic development interventions, does not address socio-emotional capacity development issues. The World Bank's strategic plan and other strategy papers touch on issues of socio-emotional capacity development only tangentially. The study concludes that the discourse communities authoring the selected development texts largely ignore the question of socio-emotional capacity development. Their discourses 'background' discussions about the kind and nature of social structures necessary for nurturing socio-emotional enablement. Developmental psychologists are challenged to 'infect' socio-economic development discourse by calling for the effective integration of the theme of socio-emotional well-being into socio-economic development publications.

  17. Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities

    SciTech Connect

    T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

    2009-09-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOE’s Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

  18. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    SciTech Connect

    Laughter, Mark D; Whitaker, J Michael; Howell, John

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF{sub 6} feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated

  19. THE NEXT GENERATION SAFEGUARDS PROFESSIONAL NETWORK: PROGRESS AND NEXT STEPS

    SciTech Connect

    Zhernosek, Alena V; Lynch, Patrick D; Scholz, Melissa A

    2011-01-01

    President Obama has repeatedly stated that the United States must ensure that the international safeguards regime, as embodied by the International Atomic Energy Agency (IAEA), has 'the authority, information, people, and technology it needs to do its job.' The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) works to implement the President's vision through the Next Generation Safeguards Initiative (NGSI), a program to revitalize the U.S. DOE national laboratories safeguards technology and human capital base so that the United States can more effectively support the IAEA and ensure that it meets current and emerging challenges to the international safeguards system. In 2009, in response to the human capital development goals of NGSI, young safeguards professionals within the Global Nuclear Security Technology Division at Oak Ridge National Laboratory launched the Next Generation Safeguards Professional Network (NGSPN). The purpose of this initiative is to establish working relationships and to foster collaboration and communication among the next generation of safeguards leaders. The NGSPN is an organization for, and of, young professionals pursuing careers in nuclear safeguards and nonproliferation - as well as mid-career professionals new to the field - whether working within the U.S. DOE national laboratory complex, U.S. government agencies, academia, or industry or at the IAEA. The NGSPN is actively supported by the NNSA, boasts more than 70 members, maintains a website and newsletter, and has held two national meetings as well as an NGSPN session and panel at the July 2010 Institute of Nuclear Material Management Annual Meeting. This paper discusses the network; its significance, goals and objectives; developments and progress to date; and future plans.

  20. Oak Ridge National Laboratory Next-Generation Safeguards Initiative: Human Capital Development

    SciTech Connect

    Gilligan, Kimberly

    2014-01-01

    In 2007, the US Department of Energy National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined: trends and events that have an effect on the mission of international safeguards; the implications of expanding and evolving mission requirements of the legal authorities and institutions that serve as the foundation of the international safeguards system; and, the technological, financial, and human resources required for effective safeguards implementation. The review’s findings and recommendations were summarized in the report International Safeguards: Challenges and Opportunities for the 21st Century (October 2007). The executive summary is available at the following link: http://nnsa.energy.gov/sites/default/files/nnsa/inlinefiles/NGSI_Report.pdf.

  1. International collaboration between Volcanic Ash Advisory Centers: Geospatially enabled tools to ensure forecast harmonization across global air routes

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Moore, D.; Kibler, J.; Bensimon, D.

    2013-12-01

    Volcanic plumes and drifting ash clouds pose a risk to flight operations somewhere across the globe every day. Airborne ash plumes pose a significant hazard to aircraft and timely and accurate forecasts greatly help mitigate the risk of an encounter. The world's nine (9) Volcanic Ash Advisory Centers (VAACs) provide products and services to address the volcanic ash hazard to aviation. These nine centers are operated by the meteorological authority within the state in which they are located. Each VAAC has its unique set of tools and procedures on how the data will be captured, displayed, analyzed and turned into a suite of products. The end products (e.g. Volcanic Ash Advisories (VAA) and Volcanic Ash Graphic (VAG)) are standardized through the International Civil Aviation Organization's International Airways Volcano Watch Operations Group (ICAO IAVWOPSG). Improvements in methods of collaboration between the VAACs are needed to allow for a seamless global harmonization of volcanic ash products. A geospatially enabled tool would allow for a common operating platform, data sharing, and situational awareness. The North American VAACs have been testing a capability to provide this environment to make forecast collaboration simple across the globe. This presentation highlights work that has been done to demonstrate this capability.

  2. Full spectrum optical safeguard

    DOEpatents

    Ackerman, Mark R.

    2008-12-02

    An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.

  3. Nuclear safeguards and security: we can do better.

    SciTech Connect

    Johnston, R. G.; Warner, Jon S.; Garcia, A. R. E.; Martinez, R. K.; Lopez, L. N.; Pacheco, A. N.; Trujillo, S. J.; Herrera, A. M.; Bitzer, E. G. , III

    2005-01-01

    There are a number of practical ways to significantly improve nuclear safeguards and security. These include recognizing and minimizing the insider threat; using adversarial vulnerability assessments to find vulnerabilities and countermeasures; fully appreciating the disparate nature of domestic and international nuclear safeguards; improving tamper detection and tamper-indicating seals; not confusing the inventory and security functions; and recognizing the limitations of GPS tracking, contact memory buttons, and RFID tags. The efficacy of nuclear safeguards depends critically on employing sophisticated security strategies and effective monitoring hardware. The Vulnerability Assessment Team (VAT) at Los Alamos National Laboratory has extensively researched issues associated with nuclear safeguards, especially in the areas of tamper/intrusion detection, transport security, and vulnerability assessments. This paper discusses some of our findings, recommendations, and warnings.

  4. Safeguards and security research and development: Program status report, February-July 1981

    SciTech Connect

    Henry, C.N.; Walton, R.B.

    1982-04-01

    This report, one of a series of biannual progress reports, describes the status of research and development in the Safeguards and Security Program at Los Alamos from February-July 1981. Most work covered here is sponsored by the Office of Safeguards and Security of the Department of Energy; however, project activities that are technically closely related to nuclear safeguards and security also are included where appropriate for conveying information useful to the nuclear community. The report comprises four major subject areas: Security Development and Support; Nuclear Materials Measurement and Engineering; Nuclear Facility Safeguards Support; and International Safeguards, Technology Transfer, and Training. Some technical topics included in the subject areas are computer and informational security, chemical and nondestructive analysis of nuclear materials, process modeling and analysis, nuclear materials accounting systems, evaluation of prototype measurement instrumentation and procedures in nuclear facilities, design and consultation for facilities, technical exchange, training courses, and international safeguards.

  5. Safeguards aspects of spent-fuel management

    SciTech Connect

    Richter, B.; Stein, G.; Remagen, H.H.; Weh, R.

    1989-11-01

    In the Federal Republic of Germany, the concept of spent-fuel management is based on a closed fuel cycle that has the following principal features: (1) intermediate dry storage of spent fuel; (2) reprocessing; (3) thermal recycling of unconsumed nuclear material; and (4) conditioning and final disposal of radioactive waste. Complementary to this concept, methods and techniques for the direct final disposal of spent fuel are under development, including investigations of licensing issues. Furthermore, a licensing procedure is under way for the construction of a pilot conditioning plant close to the Gorleben dry storage facility. Apart from operational safety and environmental protection, the issue of international safeguards is of paramount interest. This paper discusses safeguards aspects of spent-fuel management related to direct final disposal.

  6. Research and Development for Safeguards.

    ERIC Educational Resources Information Center

    Inman, Guy M.

    This report summarizes the results of unclassified research and development contracts in the field of peaceful use safeguards regarding the use of nuclear material. These summaries indicate there is really no sharp line of demarcation between research for safeguards and research for many other purposes. It includes areas of research effort and…

  7. The Importance of Safeguards Culture

    SciTech Connect

    Mladineo, Stephen V.; Frazar, Sarah L.

    2013-11-01

    This is a paper we plan to submit to the Nonproliferation Review for publication. The paper provides an analysis of the concept of safeguards culture and gauges its value to the safeguards community. Accompanying the paper are three additional documents that contain the figures and tables cited in the paper. NPR guidelines state these figures and tables are to be submitted in separate documents.

  8. Nuclear Materials Safeguards - Manpower Needs.

    ERIC Educational Resources Information Center

    Kanter, Manuel A.

    Nuclear safeguard systems, their operation and implications for future manpower needs, and the need for these topics to be integrated into the engineering education curriculum, are focused on in this paper. The elements of a safeguard system and factors influencing the selection of a particular system are presented. Projections concerning the use…

  9. Safeguards First Principle Initiative (SFPI) Cost Model

    SciTech Connect

    Mary Alice Price

    2010-07-11

    The Nevada Test Site (NTS) began operating Material Control and Accountability (MC&A) under the Safeguards First Principle Initiative (SFPI), a risk-based and cost-effective program, in December 2006. The NTS SFPI Comprehensive Assessment of Safeguards Systems (COMPASS) Model is made up of specific elements (MC&A plan, graded safeguards, accounting systems, measurements, containment, surveillance, physical inventories, shipper/receiver differences, assessments/performance tests) and various sub-elements, which are each assigned effectiveness and contribution factors that when weighted and rated reflect the health of the MC&A program. The MC&A Cost Model, using an Excel workbook, calculates budget and/or actual costs using these same elements/sub-elements resulting in total costs and effectiveness costs per element/sub-element. These calculations allow management to identify how costs are distributed for each element/sub-element. The Cost Model, as part of the SFPI program review process, enables management to determine if spending is appropriate for each element/sub-element.

  10. Los Alamos safeguards program overview and NDA in safeguards

    SciTech Connect

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented.

  11. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS, INFCIRC/540 (Corrected) VOLUME II/III IAEA COMMITTEE 24, Major Issues Underlying the Model Additional Protocol (1996-1997).

    SciTech Connect

    Rosenthal, M.D.; Saum-Manning, L.; Houck, F.

    2010-01-01

    Volume I of this Review traces the origins of the Model Additional Protocol. It covers the period from 1991, when events in Iraq triggered an intensive review of the safeguards system, until 1996, when the IAEA Board of Governors established Committee 24 to negotiate a new protocol to safeguards agreement. The period from 1991-1996 set the stage for this negotiation and shaped its outcome in important ways. During this 5-year period, many proposals for strengthening safeguards were suggested and reviewed. Some proposals were dropped, for example, the suggestion by the IAEA Secretariat to verify certain imports, and others were refined. A rough consensus was established about the directions in which the international community wanted to go, and this was reflected in the draft of an additional protocol that was submitted to the IAEA Board of Governors on May 6, 1996 in document GOV/2863, Strengthening the Effectiveness and Improving the Efficiency of the Safeguards System - Proposals For Implementation Under Complementary Legal Authority, A Report by the Director General. This document ended with a recommendation that, 'the Board, through an appropriate mechanism, finalize the required legal instrument taking as a basis the draft protocol proposed by the Secretariat and the explanation of the measures contained in this document.'

  12. Safeguard Requirements for Fusion Power Plants

    SciTech Connect

    Robert J. Goldston and Alexander Glaser

    2012-08-10

    Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

  13. The Use of Performance Metrics for the Assessment of Safeguards Effectiveness at the State Level

    SciTech Connect

    Bachner K. M.; George Anzelon, Lawrence Livermore National Laboratory, Livermore, CA Yana Feldman, Lawrence Livermore National Laboratory, Livermore, CA Mark Goodman,Department of State, Washington, DC Dunbar Lockwood, National Nuclear Security Administration, Washington, DC Jonathan B. Sanborn, JBS Consulting, LLC, Arlington, VA.

    2016-07-24

    In the ongoing evolution of International Atomic Energy Agency (IAEA) safeguards at the state level, many safeguards implementation principles have been emphasized: effectiveness, efficiency, non-discrimination, transparency, focus on sensitive materials, centrality of material accountancy for detecting diversion, independence, objectivity, and grounding in technical considerations, among others. These principles are subject to differing interpretations and prioritizations and sometimes conflict. This paper is an attempt to develop metrics and address some of the potential tradeoffs inherent in choices about how various safeguards policy principles are implemented. The paper carefully defines effective safeguards, including in the context of safeguards approaches that take account of the range of state-specific factors described by the IAEA Secretariat and taken note of by the Board in September 2014, and (2) makes use of performance metrics to help document, and to make transparent, how safeguards implementation would meet such effectiveness requirements.

  14. Integrated safeguards and facility design and operations

    SciTech Connect

    Tape, J.W.; Coulter, C.A.; Markin, J.T.; Thomas, K.E.

    1987-01-01

    The integration of safeguards functions to deter or detect unauthorized actions by insiders requires careful communication and management of safeguards-relevant information on a timely basis. The separation of safeguards functions into physical protection, materials control, and materials accounting often inhibits important information flows. Redefining the major safeguards functions as authorization, enforcement, and verification and careful attention to management of information can result in effective safeguards integration. Whether designing new systems or analyzing existing ones, understanding the interface between facility operations and safeguards is critical to cost-effective integrated safeguards systems that meet modern standards of performance.

  15. Safeguards for spent fuel in an irretrievable storage facility

    SciTech Connect

    Richter, B.; Stein, G. )

    1992-01-01

    Ultimately, high-level waste from the reprocessing of German spent fuel, spent light water reactor (LWR) fuel assemblies that will not be reprocessed, and spent THTR-300 fuel will be disposed of in a geologic repository in the Gorleben salt dome, provided it will be licensed; the exploration of the salt dome is under way. Because of its fissile material content, particularly plutonium, the International Atomic Energy Agency will not release spent fuel from safeguards, although the irradiated material will be packaged in huge containers and irretrievably buried in the salt. International safeguards in an irretrievable storage facility will have to be designed accordingly. This paper discusses various safeguards aspects, investigations, and results. Technical aspects were presented in a previous paper.

  16. Reactor safeguards against insider sabotage

    SciTech Connect

    Bennett, H.A.

    1982-03-01

    A conceptual safeguards system is structured to show how both reactor operations and physical protection resources could be integrated to prevent release of radioactive material caused by insider sabotage. Operational recovery capabilities are addressed from the viewpoint of both detection of and response to disabled components. Physical protection capabilities for preventing insider sabotage through the application of work rules are analyzed. Recommendations for further development of safeguards system structures, operational recovery, and sabotage prevention are suggested.

  17. Biometric Data Safeguarding Technologies Analysis and Best Practices

    DTIC Science & Technology

    2011-12-01

    19794-4:2005 (Type A Level 1 as defined in ISO/IEC 29109-1:2009), test asssertions of internal consistency by checking the types of values that may be...Biometric Data Safeguarding Technologies Analysis and Best Practices Study Report Raj Nanavati International Biometric Group...Practices Study Report Prepared by: International Biometric Group Scientific Authority: Pierre Meunier DRDC Centre for Security Science

  18. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS.

    SciTech Connect

    PEPPER,S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-11-13

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R&D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose

  19. Multilayered genetic safeguards limit growth of microorganisms to defined environments

    PubMed Central

    Gallagher, Ryan R.; Patel, Jaymin R.; Interiano, Alexander L.; Rovner, Alexis J.; Isaacs, Farren J.

    2015-01-01

    Genetically modified organisms (GMOs) are commonly used to produce valuable compounds in closed industrial systems. However, their emerging applications in open clinical or environmental settings require enhanced safety and security measures. Intrinsic biocontainment, the creation of bacterial hosts unable to survive in natural environments, remains a major unsolved biosafety problem. We developed a new biocontainment strategy containing overlapping ‘safeguards’—engineered riboregulators that tightly control expression of essential genes, and an engineered addiction module based on nucleases that cleaves the host genome—to restrict viability of Escherichia coli cells to media containing exogenously supplied synthetic small molecules. These multilayered safeguards maintain robust growth in permissive conditions, eliminate persistence and limit escape frequencies to <1.3 × 10−12. The staged approach to safeguard implementation revealed mechanisms of escape and enabled strategies to overcome them. Our safeguarding strategy is modular and employs conserved mechanisms that could be extended to clinically or industrially relevant organisms and undomesticated species. PMID:25567985

  20. Waste management safeguards project: History of and recommendations for development activities in support of safeguards of final disposal of spent fuel

    SciTech Connect

    Moran, B.W.

    1994-02-16

    Coordinated safeguards assessment and development activities in support of the U.S. Civilian Radioactive Waste Management System (CRWMS) and international safeguards objectives were initiated in Fiscal Year 1987. Initial technical support activities were performed at the direction of the U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM); however, as the priority of support activities changed, direction for the support tasks was transferred to the U.S. Department of State (State), the DOE Office of Arms Control and Nonproliferation (DOE/IS-40), and the U.S. Nuclear Regulatory Commission (NRC). The direction for technical support activities was established at the International Atomic Energy Agency`s (IAEA`s) advisory group meeting and subsequent consultants` meetings on safeguards related to the final disposal of nuclear material contained in waste and spent fuel. Task directions for the development of international safeguards in support of the final disposal of spent fuel are currently being provided by DOE/IS-40. A summary of safeguards activities performed by the Waste Management Safeguards Project is provided. Systems for design information verification for spent fuel consolidation and conditioning operations are needed immediately. Safeguards approaches for maintaining continuity of knowledge of spent fuel processed at the conditioning facility and for verification of the final disposal package will be needed within three years. Systems for design information verification of the repository facilities will be needed by the end of the decade.

  1. A perspective on safeguarding and monitoring of excess military plutonium

    SciTech Connect

    Sutcliffe, W.G.

    1994-10-02

    The purpose of this paper is to provide a perspective and framework for the development of safeguarding and monitoring procedures for the various stages of disposition of excess military plutonium. The paper briefly outlines and comments on some of the issues involved in safeguarding and monitoring excess military plutonium as it progresses from weapons through dismantlement, to fabrication as reactor fuel, to use in a reactor, and finally to storage and disposal as spent fuel. {open_quotes}Military{close_quotes} refers to ownership, and includes both reactor-grade and weapon-grade plutonium. {open_quotes}Excess{close_quotes} refers to plutonium (in any form) that a government decides is no longer needed for military use and can be irrevocably removed from military stockpiles. Many of the issues and proposals presented in this paper are based on, or are similar to, those mentioned in the National Academy of Sciences (NAS) report on excess military plutonium. Safeguards for plutonium disposition are discussed elsewhere in terms of requirements established by the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission (NRC), and the International Atomic Energy Agency (IAEA). Here, the discussion is less specific. The term {open_quotes}safeguarding{close_quotes} is used broadly to refer to materials control and accountancy (MC&A), containment and surveillance (C&S), and physical protection of nuclear materials by the state that possesses those materials. This is also referred to as material protection, control, and accountancy (MPCA). The term {open_quotes}safeguarding{close_quotes} was chosen for brevity and to distinguish MPCA considered in this paper from international or IAEA safeguards. {open_quotes}Monitoring{close_quotes} is used to refer to activities designed to assure another party (state or international organization) that the nuclear materials of the host state (the United States or Russia) are secure and not subject to unauthorized use.

  2. The Los Alamos nuclear safeguards and nonproliferation technology development program

    SciTech Connect

    Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

    1994-04-01

    For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

  3. 41 CFR 101-28.306-5 - Safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Customer Supply Centers § 101-28.306-5 Safeguards. Agencies shall establish internal controls to ensure that the customer access codes assigned for their accounts are properly protected. It is by use of... all orders filled by the CSC with the exception of orders picked up at the CSC by the customer....

  4. Safeguarding health care workers.

    PubMed

    Benton, David; Williamson, Lindsey

    2014-12-01

    Editor's note: The International Council of Nurses (ICN) is a federation of more than 130 international nursing organizations. We invited the ICN to contribute a periodic column highlighting some of its initiatives to address global nursing issues. For more information, see the ICN Web site at www.icn.ch.

  5. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    SciTech Connect

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

    2010-06-16

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad

  6. United States Program for Technical assistance to IAEA Standards. Concept Paper: Knowledge Acquisition, Skills training for enhanced IAEA safeguards inspections

    SciTech Connect

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ``Knowledge Acquisition Skills`` in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively.

  7. DESIGN INFORMATION VERIFICATION FOR NUCLEAR SAFEGUARDS

    SciTech Connect

    Robert S. Bean; Richard R. M. Metcalf; Phillip C. Durst

    2009-07-01

    A critical aspect of international safeguards activities performed by the International Atomic Energy Agency (IAEA) is the verification that facility design and construction (including upgrades and modifications) do not create opportunities for nuclear proliferation. These Design Information Verification activities require that IAEA inspectors compare current and past information about the facility to verify the operator’s declaration of proper use. The actual practice of DIV presents challenges to the inspectors due to the large amount of data generated, concerns about sensitive or proprietary data, the overall complexity of the facility, and the effort required to extract just the safeguards relevant information. Planned and anticipated facilities will (especially in the case of reprocessing plants) be ever larger and increasingly complex, thus exacerbating the challenges. This paper reports the results of a workshop held at the Idaho National Laboratory in March 2009, which considered technologies and methods to address these challenges. The use of 3D Laser Range Finding, Outdoor Visualization System, Gamma-LIDAR, and virtual facility modeling, as well as methods to handle the facility data issues (quantity, sensitivity, and accessibility and portability for the inspector) were presented. The workshop attendees drew conclusions about the use of these techniques with respect to successfully employing them in an operating environment, using a Fuel Conditioning Facility walk-through as a baseline for discussion.

  8. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    SciTech Connect

    Badalamente, R.; Anzelon, G.; Deland, S.; Whiteson, R.

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

  9. Safeguards techniques in a pilot conditioning plant for spent fuel

    SciTech Connect

    Leitner, E.; Rudolf, K.; Weh, R. )

    1991-01-01

    The pilot conditioning plant at Gorleben, Germany, is designed as a multi-purpose plant. Its primary task is the conditioning of spent fuel assemblies into a form suitable for final disposal. As a pilot plant, it allows furthermore for the development and testing of various conditioning techniques. In terms of international safeguards, the pilot conditioning plant is basically considered an item facility. Entire fuel assemblies enter the plant in transport casks, whereas bins filled with fuel rods or canisters containing cut fuel rods leave the facility in final disposal packages (e.g. POLLUX). Each POLLUX final disposal package content is uniquely correlated to a definite number of fuel assemblies which have entered the conditioning process. For this type of facility, containment/surveillance (C/S) should take over the major role in nuclear material safeguards. This paper discusses the safeguards at the Gorleben plant.

  10. Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities

    SciTech Connect

    Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

    2007-12-15

    This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

  11. Safeguards and security research and development: Progress report, October 1994--September 1995

    SciTech Connect

    Rutherford, D.R.; Henriksen, P.W.

    1997-03-01

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IV is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years.

  12. 78 FR 2295 - Consideration of Approval of Application Containing Sensitive Unclassified Non-Safeguards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Consideration of Approval of Application Containing Sensitive Unclassified Non-Safeguards Information Regarding Proposed Energy Future Holdings Corporation Internal Restructuring AGENCY:...

  13. 77 FR 37804 - Rules for Investigations Relating to Global and Bilateral Safeguard Actions, Market Disruption...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ..., Market Disruption, Trade Diversion, and Review of Relief Actions AGENCY: United States International...) governing investigations relating to global and bilateral safeguard actions, market disruption, trade...--INVESTIGATIONS RELATING TO GLOBAL AND BILATERAL SAFEGUARG ACTIONS, MARKET DISRUPTION, TRADE DIVERSION, AND...

  14. Regional Cooperation to Strengthen Safeguards

    SciTech Connect

    Minnini, Margot; Elkhamri, Oksana O.

    2016-06-06

    President Obama’s decision over four years ago to ”pivot” toward Asia represented an important strategic shift in American foreign policy and a rebalancing of U.S. economic and security engagement in the Asia-Pacific countries. The United States has since supported a variety of regional initiatives aimed at promoting nuclear security and safeguards. When a new regional organization, the Asia-Pacific Safeguards Network (APSN) was established in 2010, DOE/NNSA became an early member and enthusiastic advocate. Launched on the initiative of Australia, Japan, Republic of Korea, and Indonesia, the APSN aims to strengthen the quality and effectiveness of safeguards implementation in the Asia-Pacific region.

  15. Containment and surveillance -- A principal IAEA safeguards measure

    SciTech Connect

    Drayer, D.D.; Dupree, S.A.; Sonnier, C.S.

    1997-12-31

    The growth of the safeguards inspectorate of the Agency, spanning more than 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. Although the Agency was established in 1957, the first practical inspections did not occur until the early 1960s. In the early inspections, thee was little C/S equipment available, and no optical surveillance was used. However, by the third decade of the IAEA, the 1980s, many technology advances were made, and the level of C/S equipment activities increased. By the late 1980s, some 200 Twin Minolta film camera systems were deployed by the Agency for safeguards use. At the present time, the Agency is evaluating and beginning to implement remote monitoring as part of the Strengthened Safeguards System. However, adoption of remote monitoring by international agencies cannot occur rapidly because of the many technical and policy issues associated with this activity. A glimpse into the future indicates that an important element of safeguards instrumentation will be the merging of C/S and NDA equipment into integrated systems. The use of modern interior area monitors in International Safeguards also offers a great potential for advancing C/S measures. The research in microsensors is in its infancy, and the opportunities for their reducing the cost, increasing the life time, and increasing the reliability of sensors for safeguards applications are manifold. A period may be approaching in which the terminology of C/S will no longer have its original meaning, as integrated systems combining NDA instruments and C/S instruments are already in use and are expected to be the norm in the near future.

  16. New challenges in adolescent safeguarding.

    PubMed

    James, David R; Sargant, Nwanneka N; Bostock, Nancy; Khadr, Sophie

    2017-02-01

    The environment in which young people are growing up has changed significantly with the growth in social communication, changes in migration patterns and the proliferation of gangs. These changes pose a real and present danger to the health and well-being of young people in the UK and around the world. However, recognition of the safeguarding needs for this group continues to lag behind those of younger children and services often remain patchy and incomplete. We present a review of current safeguarding concerns as well as practical suggestions on their recognition and response for professionals working with young people in all branches of healthcare as well as education and wider society.

  17. Reversing the Trend: Creating a Growing and Sustainable Cadre of Safeguards Experts in the United States

    SciTech Connect

    Lockwood, Dunbar; Mathews, Caroline E.; Seward, Amy M.

    2008-07-17

    In October 2007, the National Nuclear Security Administration’s (NNSA) Office of Non-Proliferation and International Security (NA-24) completed a wide-ranging study on international safeguards issues that found, inter alia, that the human capital base in the United States must be revitalized and expanded to ensure a seamless succession from the current generation of safeguards experts. Many current safeguards experts will soon retire and a new generation of talent with capabilities that cover the full spectrum of safeguards-relevant disciplines is needed. The success of this effort will have direct bearing on the International Atomic Energy Agency (IAEA). An effective international safeguards system that responds to current and future nonproliferation challenges requires a cadre of skilled safeguards specialists. However, a number of factors have converged in recent years that have challenged the IAEA’s ability to effectively carry out its safeguards mission, e.g. flat funding, expanding responsibilities, and several ad hoc high profile investigations. In the near future, the Agency will require increased numbers of qualified staff to address the expansion and evolution of its mission and anticipated worldwide growth in nuclear energy production. Without a large-scale effort to address this requirement in the near future, the international community will have far less confidence that nuclear material in civil programs is not being diverted for nuclear weapons and the risks of nuclear proliferation will increase around the world. This paper will describe in detail NNSA’s efforts, in coordination with other federal agencies, to address the safeguards human resources challenge, focusing on the recommendations of the Next Generation Safeguards Initiative (NGSI).

  18. The US Support program to IAEA Safeguards - 2008

    SciTech Connect

    Pepper,S.

    2008-06-09

    The U.S. Support Program to IAEA Safeguards (USSP) was established in 1977 to provide technical assistance to the IAEA Department of Safeguards. Since that time the U.S. Department of State has provided funding of over $200 million and over 900 tasks have been completed by USSP contractors on behalf of the KEA. The USSP is directed by a U.S. interagency subcommittee known as the Subgroup on Safeguards Technical Support (SSTS) and is managed by the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory. In recent years, the SSTS and ISPO have identified priorities to guide the process of determining which IAEA requests are aligned with US. policy and will be funded. The USSP priorities are reviewed and updated prior to the USSP Annual Review Meeting which is hosted by the International Atomic Energy Agency (IAEA) each spring in Vienna, Austria. This paper will report on the 2008 USSP priorities and be an introduction for a session which will consist of four papers on USSP priorities and four other papers related to USSP activities.

  19. Improving Transparency in the Reporting of Safeguards Implementation: FY11 Update

    SciTech Connect

    Toomey, Christopher; Odlaug, Christopher S.; Wyse, Evan T.

    2011-09-30

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data and available for viewing at http://safeguardsportal.pnnl.gov.

  20. Network adaptable information systems for safeguard applications

    SciTech Connect

    Rodriguez, C.; Burczyk, L.; Chare, P.; Wagner, H.

    1996-09-01

    While containment and surveillance systems designed for nuclear safeguards have greatly improved through advances in computer, sensor, and microprocessor technologies, the authors recognize the need to continue the advancement of these systems to provide more standardized solutions for safeguards applications of the future. The benefits to be gained from the use of standardized technologies are becoming evident as safeguard activities are increasing world-wide while funding of these activities is becoming more limited. The EURATOM Safeguards Directorate and Los Alamos National Laboratory are developing and testing advanced monitoring technologies coupled with the most efficient solutions for the safeguards applications of the future.

  1. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    SciTech Connect

    Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K; Browne, Mike; Lopez, Leon; Martinez, Ron; Le, Loan; Lamontagne, Stephen A

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as

  2. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    SciTech Connect

    Richard Metcalf; Robert Bean

    2009-10-01

    Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEA’s Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facility’s general character, purpose, capacity, and location; (2) Description of the facility’s layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards

  3. Future challenges and DOE/NNSA-JAEA cooperation for the development of advanced safeguards

    SciTech Connect

    Stevens, Rebecca S; Mc Clelland - Kerr, John; Senzaki, Masao; Hori, Masato

    2009-01-01

    The United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) has been cooperating with Japan on nuclear safeguards for over thirty years. DOE/NNSA has collaborated with the Japan Atomic Energy Agency (JAEA) and its predecessors in addressing the need for innovative solutions to nuclear transparency and verification issues in one of the world's most advanced nuclear fuel cycle states. This collaboration includes over ninety activities that have involved nearly every facility in the JAEA complex and many national laboratories in the U.S. complex. The partnership has yielded new technologies and approaches that have benefited international safeguards not only in Japan, but around the world. The International Atomic Energy Agency uses a number of safeguards solutions developed under this collaboration to improve its inspection efforts in Japan and elsewhere. Japanese facilities serve as test beds for emerging safeguards technologies and are setting the trend for new nuclear energy and fuel cycle development worldwide. The collaboration continues to be an essential component of U.S. safeguards outreach and is integral to the DOE/NNSA's Next Generation Safeguards Initiative. In addition to fostering international safeguards development, the cooperation is an opportunity for U.S. scientists to work in facilities that have no analog in the United States, thus providing crucial real-life experience for and aiding development of the next generation of U.S. safeguards specialists. It is also an important element of promoting regional transparency thereby building confidence in the peaceful nature of nuclear programs in the region. The successes engendered by this partnership provide a strong basis for addressing future safeguards challenges, in Japan and elsewhere. This paper summarizes these challenges and the associated cooperative efforts that are either underway or anticipated.

  4. Visualizing Safeguards: Software for Conceptualizing and Communicating Safeguards Data

    SciTech Connect

    Gallucci, N.

    2015-07-12

    The nuclear programs of states are complex and varied, comprising a wide range of fuel cycles and facilities. Also varied are the types and terms of states’ safeguards agreements with the IAEA, each placing different limits on the inspectorate’s access to these facilities. Such nuances make it difficult to draw policy significance from the ground-level nuclear activities of states, or to attribute ground-level outcomes to the implementation of specific policies or initiatives. While acquiring a firm understanding of these relationships is critical to evaluating and formulating effective policy, doing so requires collecting and synthesizing large bodies of information. Maintaining a comprehensive working knowledge of the facilities comprising even a single state’s nuclear program poses a challenge, yet marrying this information with relevant safeguards and verification information is more challenging still. To facilitate this task, Brookhaven National Laboratory has developed a means of capturing the development, operation, and safeguards history of all the facilities comprising a state’s nuclear program in a single graphic. The resulting visualization offers a useful reference tool to policymakers and analysts alike, providing a chronology of states’ nuclear development and an easily digestible history of verification activities across their fuel cycles.

  5. Environmental monitoring for nuclear safeguards. Background paper

    SciTech Connect

    1995-09-01

    To assure that states are not violating their Non-Proliferation Treaty commitments, the International Atomic Energy Agency (IAEA) must verify that states do not possess convert nuclear facilities-a mission that prior to the 1991 Gulf War, it had neither the political backing nor the resources to conduct. The IAEA recognizes the importance of this new mission and is in the process of assuming it. One of the tools it is exploring to provide some indication of the presence of secret, or undeclared, nuclear activities and facilities is environmental monitoring. Modern sampling and analysis technologies provide powerful tools to detect the presence of characteristic substances that are likely to be emitted by such illicit activities. This background paper examines the prospects for such technologies to improve nuclear safeguards. It concludes that environmental monitoring can greatly increase the ability to detect undeclared activity at declared, or known, sites, and it can significantly increase the chances of detecting and locating undeclared sites.

  6. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    SciTech Connect

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with

  7. Implementation of remove monitoring in facilities under safeguards with unattended systems

    SciTech Connect

    Beddingfield, David H; Nordquist, Heather A; Umebayaashi, Eiji

    2009-01-01

    Remote monitoring is being applied by the International Atomic Energy Agency (IAEA) at nuclear facilities around the world. At the Monju Reactor in Japan we have designed, developed and implemented a remote monitoring approach that can serve as a model for applying remote monitoring to facilities that are already under full-scope safeguards using unattended instrumentation. Remote monitoring implementations have historically relied upon the use of specialized data collection hardware and system design features that integrate remote monitoring into the safeguards data collection system. The integration of remote monitoring and unattended data collection increases the complexity of safeguards data collection systems. This increase in complexity necessarily produces a corresponding reduction of system reliability compared to less-complex unattended monitoring systems. At the Monju facility we have implemented a remote monitoring system that is decoupled from the activity of safeguards data collection. In the completed system the function of remote data transfer is separated from the function of safeguards data collection. As such, a failure of the remote monitoring function cannot produce an associated loss of safeguards data, as is possible with integrated remote-monitoring implementations. Currently, all safeguards data from this facility is available to the IAEA on a 24/7 basis. This facility employs five radiation-based unattended systems, video surveillance and numerous optical seal systems. The implementation of remote monitoring at this facility, while increasing the complexity of the safeguards system, is designed to avoid any corresponding reduction in reliability of the safeguards data collection systems by having decoupled these functions. This design and implementation can serve as a model for implementation of remote monitoring at nuclear facilities that currently employ unattended safeguards systems.

  8. Advanced integrated safeguards at Barnwell

    SciTech Connect

    Bambas, K.J.; Barnes, L.D.

    1980-06-01

    The development and initial performance testing of an advanced integrated safeguards system at the Barnwell Nuclear Fuel Plant (BNFP) is described. The program concentrates on the integration and coordination of physical security and nuclear materials control and accounting at a single location. Hardware and software for this phase have been installed and are currently being evaluated. The AGNS/DOE program is now in its third year of development at the BNFP.

  9. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  10. IMPACT OF THE U.S. SUPPORT PROGRAM SAFEGUARDS INTERNSHIP PROGRAM.

    SciTech Connect

    PEPPER, S.; OSIECKI, C.

    2006-07-16

    The U.S. Support Program began funding an internship program in the IAEA Department of Safeguards in 2002. Since that time, 39 U.S. citizens and permanent residents have been placed in one-year, paid internships with the IAEA. The management of the internship program was originally the responsibility of the International Safeguards Project Office but was transferred to the Office of Educational Programs at Brookhaven National Laboratory in 2004. Feedback on the internship program from the U.S. government and the IAEA has been positive. The interns have completed basic yet essential work for the Department of Safeguards and freed IAEA staff members to perform more complex tasks. The cost of an intern is low relative to other forms of human resources support. After the conclusion of their assignments, many of the interns go on to work for the U.S. government, the national laboratories, or companies in international safeguards and nonproliferation. This paper will discuss the work done by the interns for the IAEA, factors influencing the success of the internship program, and the effects the program has had on the careers of interns, in preparing the next generation to work in the nuclear industry, participation in INMM activities, and recruitment for U.S. citizens for safeguards positions.

  11. Are xenotransplantation safeguards legally viable?

    PubMed

    Florencio, P S; Ramanathan, E D

    2001-01-01

    Scientists agree on the need for robust public health safeguards to accompany the imminent introduction of xenotransplantation--clinical transplantation of animal tissue into humans. To protect society in the event of emerging infectious diseases, governments must devise a legally effective means of ensuring compliance with such safeguards. Neither consent law, the law of contracts, nor existing public health legislation can adequately enforce such compliance. Consent law serves as a mechanism of communicating the momentary waiver of legal rights, not as a durable enforcement doctrine. Because it would be essential for recipients personally to comply with public safety measures, the law of contracts would also be unable to compel compliance. Existing public health legislation would also likely be ineffective because it would need to be substantially amended to incorporate the heightened powers necessary for the periodic examination of asymptomatic xenotransplant recipients. Xenotransplantation-specific legislation would be a legally effective means of enforcing public health safeguards since it could require conforming behaviors and could impose monetary fines on those recipients who, having benefited from life-saving intervention, fail to comply. This Article argues that legislation implementing a post-xenotransplantation surveillance system should withstand constitutional scrutiny because it would not be discriminatory and because, although it would violate fundamental rights of recipients, such violations would be justified under existing constitutional doctrines.

  12. Safeguards Envelope Progress FY10

    SciTech Connect

    Richard Metcalf

    2010-10-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  13. Modeling and Simulation for Safeguards

    SciTech Connect

    Swinhoe, Martyn T.

    2012-07-26

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R&D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  14. Project Report on Development of a Safeguards Approach for Pyroprocessing

    SciTech Connect

    Robert Bean

    2010-09-01

    The Idaho National Laboratory has undertaken an effort to develop a standard safeguards approach for international commercial pyroprocessing facilities. This report details progress for the fiscal year 2010 effort. A component by component diversion pathway analysis has been performed, and has led to insight on the mitigation needs and equipment development needed for a valid safeguards approach. The effort to develop an in-hot cell detection capability led to the digital cloud chamber, and more importantly, the significant potential scientific breakthrough of the inverse spectroscopy algorithm, including the ability to identify energy and spatial location of gamma ray emitting sources with a single, non-complex, stationary radiation detector system. Curium measurements were performed on historical and current samples at the FCF to attempt to determine the utility of using gross neutron counting for accountancy measurements. A solid cost estimate of equipment installation at FCF has been developed to guide proposals and cost allocations to use FCF as a test bed for safeguards measurement demonstrations. A combined MATLAB and MCNPX model has been developed to perform detector placement calculations around the electrorefiner. Early harvesting has occurred wherein the project team has been requested to provide pyroprocessing technology and safeguards short courses.

  15. Long-term proliferation and safeguards issues in future technologies

    SciTech Connect

    Keisch, B.; Auerbach, C.; Fainberg, A.; Fiarman, S.; Fishbone, L.G.; Higinbotham, W.A.; Lemley, J.R.; O'Brien, J.

    1986-02-01

    The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for which safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification.

  16. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    SciTech Connect

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  17. Organizational Culture for Safety, Security, and Safeguards in New Nuclear Power Countries

    SciTech Connect

    Kovacic, Donald N

    2015-01-01

    This chapter will contain the following sections: Existing international norms and standards for developing the infrastructure to support new nuclear power programs The role of organizational culture and how it supports the safe, secure, and peaceful application of nuclear power Identifying effective and efficient strategies for implementing safety, security and safeguards in nuclear operations Challenges identified in the implementation of safety, security and safeguards Potential areas for future collaboration between countries in order to support nonproliferation culture

  18. Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel

    SciTech Connect

    Philip Casey Durst; Mark Schanfein

    2012-08-01

    The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information

  19. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    SciTech Connect

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Aspinall, M.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Peranteau, D.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Vaccaro, S.; Takamine, J.; Weber, A. -L.; Yamaguchi, T.; Zhu, H.

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  20. 34 CFR 300.623 - Safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 300.623 Safeguards. (a) Each participating agency must protect the confidentiality of personally... participating agency must assume responsibility for ensuring the confidentiality of any personally...

  1. 34 CFR 300.623 - Safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 300.623 Safeguards. (a) Each participating agency must protect the confidentiality of personally... participating agency must assume responsibility for ensuring the confidentiality of any personally...

  2. 21 CFR 26.21 - Safeguard clause.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.21 Safeguard clause....

  3. 21 CFR 26.21 - Safeguard clause.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.21 Safeguard clause....

  4. 21 CFR 26.21 - Safeguard clause.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.21 Safeguard clause....

  5. 21 CFR 26.21 - Safeguard clause.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.21 Safeguard clause....

  6. 45 CFR 164.308 - Administrative safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reporting discrepancies. (D) Password management (Addressable). Procedures for creating, changing, and safeguarding passwords. (6)(i) Standard: Security incident procedures. Implement policies and procedures...

  7. 21 CFR 26.21 - Safeguard clause.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS... Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.21 Safeguard clause....

  8. Fuzzy resource optimization for safeguards

    SciTech Connect

    Zardecki, A.; Markin, J.T.

    1991-01-01

    Authorization, enforcement, and verification -- three key functions of safeguards systems -- form the basis of a hierarchical description of the system risk. When formulated in terms of linguistic rather than numeric attributes, the risk can be computed through an algorithm based on the notion of fuzzy sets. Similarly, this formulation allows one to analyze the optimal resource allocation by maximizing the overall detection probability, regarded as a linguistic variable. After summarizing the necessary elements of the fuzzy sets theory, we outline the basic algorithm. This is followed by a sample computation of the fuzzy optimization. 10 refs., 1 tab.

  9. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    SciTech Connect

    JOE,J.

    2007-07-08

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  10. Development of laser induced breakdown spectroscopy instrumentatin for safeguards applications

    SciTech Connect

    Barefield Il, James E; Clegg, Samuel M; Le, Loan A; Lopez, Leon N

    2010-01-01

    In September 2006, a Technical Meeting on Application of Laser Spectrometry Techniques in IAEA Safeguards was held at IAEA headquarters (HQ). One of the principal recommendations from this meeting was the need to 'pursue the development of novel complementary access instrumentation based on laser induced breakdown spectroscopy (LIBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials.' Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications. This meeting was held at IAEA HQ from July 7-11,2008 and hosted by the Novel Technologies Unit (NTU). The meeting was attended by 12 LIBS experts from the Czech Republic, the European Commission, France, the Republic of Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. After a presentation of the needs of the IAEA inspectors, the LIBS experts were in agreement that needs as presented could be partially or fully fulfilled using LIBS instrumentation. The needs of the IAEA inspectors were grouped in the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activity in a Hot Cell; (3) Verifying status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. Under the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Next Generation Safeguards Initiative (NGSI) Los Alamos National Laboratory is exploring three potential applications of LIBS for international safeguards. As part of this work, we are developing: (1) a user-friendly man-portable LIBS system to characterize samples across a wide range of elements in the periodic table from hydrogen up to heavy elements

  11. Safeguards.

    ERIC Educational Resources Information Center

    Taylor, Steve, Ed.; And Others

    1993-01-01

    This policy bulletin addresses the issue of protecting the safety of people with developmental disabilities from their increased risk of neglect, abuse, and mistreatment. An article by Steven J. Taylor considers "The Paradox of Regulations," noting both the protective effects of regulations and their effect in stifling innovation and…

  12. Safeguards Envelope Progress FY09

    SciTech Connect

    Richard Metcalf; Robert Bean

    2009-09-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters which nuclear facilities may operate within to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details advanced statistical techniques will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). As a result of the U.S. having no operating nuclear chemical reprocessing plants, there has been a strong interest in obtaining process monitoring data from the ICPP. The ICPP was shut down in 1996 and a recent effort has been made to retrieve the PM data from storage in a data mining effort. In a simulation based on this data, multi-tank and multi-attribute correlations were tested against synthetic diversion scenarios. Kernel regression smoothing was used to fit a curve to the historical data, and multivariable, residual analysis and cumulative sum techniques set parameters for operating conditions. Diversion scenarios were created and tested, showing improved results when compared with a previous study utilizing only one-variable Z- testing7.

  13. Separations and safeguards model integration.

    SciTech Connect

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  14. 5 CFR 2500.9 - Safeguarding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Safeguarding. 2500.9 Section 2500.9 Administrative Personnel OFFICE OF ADMINISTRATION, EXECUTIVE OFFICE OF THE PRESIDENT INFORMATION SECURITY REGULATION § 2500.9 Safeguarding. The Office of Administration shall protect information in its...

  15. 34 CFR 104.36 - Procedural safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Procedural safeguards. 104.36 Section 104.36 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION... Preschool, Elementary, and Secondary Education § 104.36 Procedural safeguards. A recipient that operates...

  16. 34 CFR 104.36 - Procedural safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Procedural safeguards. 104.36 Section 104.36 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION... Preschool, Elementary, and Secondary Education § 104.36 Procedural safeguards. A recipient that operates...

  17. 32 CFR 154.68 - Safeguarding procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Safeguarding procedures. 154.68 Section 154.68 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE SECURITY DEPARTMENT OF DEFENSE PERSONNEL SECURITY PROGRAM REGULATION Safeguarding Personnel Security Investigative Records §...

  18. 5 CFR 2500.9 - Safeguarding.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Safeguarding. 2500.9 Section 2500.9 Administrative Personnel OFFICE OF ADMINISTRATION, EXECUTIVE OFFICE OF THE PRESIDENT INFORMATION SECURITY REGULATION § 2500.9 Safeguarding. The Office of Administration shall protect information in its...

  19. 5 CFR 2500.9 - Safeguarding.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Safeguarding. 2500.9 Section 2500.9 Administrative Personnel OFFICE OF ADMINISTRATION, EXECUTIVE OFFICE OF THE PRESIDENT INFORMATION SECURITY REGULATION § 2500.9 Safeguarding. The Office of Administration shall protect information in its...

  20. 5 CFR 2500.9 - Safeguarding.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Safeguarding. 2500.9 Section 2500.9 Administrative Personnel OFFICE OF ADMINISTRATION, EXECUTIVE OFFICE OF THE PRESIDENT INFORMATION SECURITY REGULATION § 2500.9 Safeguarding. The Office of Administration shall protect information in its...

  1. 5 CFR 2500.9 - Safeguarding.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Safeguarding. 2500.9 Section 2500.9 Administrative Personnel OFFICE OF ADMINISTRATION, EXECUTIVE OFFICE OF THE PRESIDENT INFORMATION SECURITY REGULATION § 2500.9 Safeguarding. The Office of Administration shall protect information in its...

  2. 38 CFR 18.436 - Procedural safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or are believed to need special instruction or related services. The system shall include: (1) Notice... Adult Education § 18.436 Procedural safeguards. (a) A recipient that operates a public elementary or secondary education program shall implement a system of procedural safeguards with respect to...

  3. 28 CFR 25.8 - System safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false System safeguards. 25.8 Section 25.8 Judicial Administration DEPARTMENT OF JUSTICE DEPARTMENT OF JUSTICE INFORMATION SYSTEMS The National Instant Criminal Background Check System § 25.8 System safeguards. (a) Information maintained in the...

  4. 28 CFR 25.8 - System safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false System safeguards. 25.8 Section 25.8 Judicial Administration DEPARTMENT OF JUSTICE DEPARTMENT OF JUSTICE INFORMATION SYSTEMS The National Instant Criminal Background Check System § 25.8 System safeguards. (a) Information maintained in the...

  5. 28 CFR 25.8 - System safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false System safeguards. 25.8 Section 25.8 Judicial Administration DEPARTMENT OF JUSTICE DEPARTMENT OF JUSTICE INFORMATION SYSTEMS The National Instant Criminal Background Check System § 25.8 System safeguards. (a) Information maintained in the...

  6. 28 CFR 25.8 - System safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false System safeguards. 25.8 Section 25.8 Judicial Administration DEPARTMENT OF JUSTICE DEPARTMENT OF JUSTICE INFORMATION SYSTEMS The National Instant Criminal Background Check System § 25.8 System safeguards. (a) Information maintained in the...

  7. 28 CFR 25.8 - System safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false System safeguards. 25.8 Section 25.8 Judicial Administration DEPARTMENT OF JUSTICE DEPARTMENT OF JUSTICE INFORMATION SYSTEMS The National Instant Criminal Background Check System § 25.8 System safeguards. (a) Information maintained in the...

  8. Safeguards and retrievability from waste forms

    SciTech Connect

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for any planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.

  9. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    SciTech Connect

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  10. Protecting children: the role of the law 2. Legal powers to safeguard children.

    PubMed

    Griffith, Richard; Tengnah, Cassam

    2007-04-01

    Last month's article on child protection considered the principles and key concepts that underpinned the approach to safeguarding children under the provisions of the Children Act 1989. This month Richard Griffith and Cassam Tengnah discuss the legal powers available under the Act that enable the proper authorities to intervene to protect children from significant harm.

  11. Safeguards: The past present, and future

    SciTech Connect

    Seaton, M.B.

    1987-07-01

    The non-destructive assay techniques developed at Los Alamos have become a primary means for verification by the IAEA and most important for domestic safeguards. We must challenge our assumptions, e.g., that inventory differences are a valid measure of safeguards performance, that more money is the solution, and the threats are much exaggerated. A human reliability program will be initiated. Material control, accounting, and physical protection need further integration. A serious effort involving scholarships, internships, etc. is needed to attract and motivate young people. Increased emphasis will be placed on designing safeguards into new systems such as laser isotope separation. Finally, continuing generous support for the IAEA is most important.

  12. 34 CFR 303.415 - Safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Intervention Records § 303.415 Safeguards. (a) Each participating agency must protect the confidentiality of... stages. (b) One official at each participating agency must assume responsibility for ensuring...

  13. 34 CFR 303.415 - Safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Intervention Records § 303.415 Safeguards. (a) Each participating agency must protect the confidentiality of... stages. (b) One official at each participating agency must assume responsibility for ensuring...

  14. 22 CFR 9.13 - Safeguarding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS § 9.13 Safeguarding. Specific controls on the use, processing, storage, reproduction, and transmittal of classified information within the Department to provide protection for such information and to prevent access by...

  15. 22 CFR 9.13 - Safeguarding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS § 9.13 Safeguarding. Specific controls on the use, processing, storage, reproduction, and transmittal of classified information within the Department to provide protection for such information and to prevent access by...

  16. Safeguards Workforce Repatriation, Retention and Utilization

    SciTech Connect

    Gallucci, Nicholas; Poe, Sarah

    2015-10-01

    Brookhaven National Laboratory was tasked by NA-241 to assess the transition of former IAEA employees back to the United States, investigating the rate of retention and overall smoothness of the repatriation process among returning safeguards professionals. Upon conducting several phone interviews, study authors found that the repatriation process went smoothly for the vast majority and that workforce retention was high. However, several respondents expressed irritation over the minimal extent to which their safeguards expertise had been leveraged in their current positions. This sentiment was pervasive enough to prompt a follow-on study focusing on questions relating to the utilization rather than the retention of safeguards professionals. A second, web-based survey was conducted, soliciting responses from a larger sample pool. Results suggest that the safeguards workforce may be oversaturated, and that young professionals returning to the United States from Agency positions may soon encounter difficulties finding jobs in the field.

  17. The Concept of Goals-Driven Safeguards

    SciTech Connect

    R. Wigeland; T Bjornard; B. Castle

    2009-02-01

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization’s purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations’ approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  18. Long-Term Information Management (LTIM) of Safeguards Data at Repositories: Phase II

    SciTech Connect

    Haddal, Risa N.

    2016-10-01

    One of the challenges of implementing safeguards for geological repositories will be the long-term preservation of safeguards-related data for 100 years or more. While most countries considering the construction and operation of such facilities agree that safeguards information should be preserved, there are gaps with respect to standardized requirements, guidelines, timescales, and approaches. This study analyzes those gaps and explores research to clarify stakeholder needs, identify current policies, approaches, best practices and international standards, and explores existing safeguards information management infrastructure. The study also attempts to clarify what a safeguards data classification system might look like, how long data should be retained, and how information should be exchanged between stakeholders at different phases of a repository’s life cycle. The analysis produced a variety of recommendations on what information to preserve, how to preserve it, where to store it, retention options and how to exchange information in the long term. Key findings include the use of the globally recognized international records management standard, ISO15489, for guidance on the development of information management systems, and the development of a Key Information File (KIF). The KIF could be used to identify only the most relevant, high-level safeguards information and the history of decision making about the repository. The study also suggests implementing on-site and off-site records storage in digital and physical form; developing a safeguards data classification system; long-term records retention with periodic reviews every 5 to 10 years during each phase of the repository life cycle; and establishing transition procedures well in advance so that data shepherds and records officers can transfer information with incoming facility managers effectively and efficiently. These and other recommendations are further analyzed in this study.

  19. Security Management and Safeguards Office

    NASA Technical Reports Server (NTRS)

    Bewley, Nathaniel M.

    2004-01-01

    The Security Management and Safeguards Office at NASA is here to keep the people working in a safe environment. They also are here to protect the buildings and documents from sabotage, espionage, and theft. During the summer of 2004, I worked with Richard Soppet in Physical Security. While I was working here I helped out with updating the map that we currently use at NASA Glenn Research Center, attended meetings for homeland security, worked with the security guards and the locksmith. The meetings that I attended for homeland security talked about how to protect ourselves before something happened, they told us to always be on the guard and look for anything suspicious, and the different ways that terrorist groups operate. When I was with the security guards I was taught how to check someone into the base, showed how to use a radar gun, observed a security guard make a traffic stop for training and was with them while they patrolled NASA Glenn Research Center to make sure things were running smooth and no one was in danger. When I was with the lock smith I was taught how to make keys and locks for the employees here at NASA. The lock smith also showed me that he had inventory cabinets of files that show how many keys were out to people and who currently has access to the rooms that they keys were made for. I also helped out the open house at NASA Glenn Research Center. I helped out by showing the Army Reserves, and Brook Park's SWAT team where all the main events were going to take place a week before the open house was going to begin. Then during the open house I helped out by making sure people had there IDS, checked through there bags, and handed out a map to them that showed where the different activities were going to take place. So the main job here at NASA Glenn Research Center for the Security Management and Safeguards Office is to make sure that nothing is stolen, sabotaged, and espionaged. Also most importantly make sure all the employees here at NASA are

  20. Strengthening IAEA safeguards in an era of nuclear cooperation

    SciTech Connect

    Hooper, R.

    1995-11-01

    Since the end of the Cold War the world has witnessed a remarkable series of events demonstrating that universal adherence to the principles of nuclear non-proliferation and disarmament are no longer utopian dreams. The author reviews the actions of various countries to terminate or reduce nuclear weapons programs and those that are resisting the non-proliferation efforts. The author addresses efforts of the International Atomic Energy Agency (IAEA) to safeguard declared nuclear material more cost-effectively and deal with the possibility of undeclared nuclear activities.

  1. RECRUITMENT OF U.S. CITIZENS FOR VACANCIES IN IAEA SAFEGUARDS

    SciTech Connect

    PEPPER,S.E.; DECARO,D.; WILLIAMS,G.; CARELLI,J.; ASSUR,M.

    1999-07-25

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is important that persons within and outside the US nuclear and safeguards industries become aware of career opportunities available at the IAEA, and informed about important vacancies. The IAEA has established an impressive web page to advertise opportunities for employment. However, additional effort is necessary to ensure that there is sufficient awareness in the US of these opportunities, and assistance for persons interested in taking positions at the IAEA. In 1998, the Subgroup on Safeguards Technical Support (SSTS) approved a special task under the US Support Program to IAEA Safeguards (USSP) for improving US efforts to identify qualified candidates for vacancies in IAEA's Department of Safeguards. The International Safeguards Project Office (ISPO) developed a plan that includes increased advertising, development of a web page to support US recruitment efforts, feedback from the US Mission in Vienna, and interaction with other recruitment services provided by US professional organizations. The main purpose of this effort is to educate US citizens about opportunities at the IAEA so that qualified candidates can be identified for the IAEA's consideration.

  2. Safeguards Envelope: The First Steps

    SciTech Connect

    Richard Metcalf; Jean Ragusa; Robert Bean

    2008-03-01

    The possibility exists for real time accountancy and assay of nuclear materials as they move through a reprocessing facility. This project aims to establish working parameters and local figures of merit to identify possible diversion in real time with minimal operational impact. Factors such as pH, NOX gas concentration, flow speeds and radiation fields are rarely taken into account in safeguards methodologies and will be included to increase the confidence of location and assay of nuclear materials. An adaptable, real data model is being created of the contactors of the Advanced Fuel Cycle Facility and will be analyzed using the appropriate modeling codes. This model will then be subjected to three, diversion scenarios and a figure of merit methodology will be utilized to create the operational parameters under which these diversion scenarios would be detected. This analysis for figure of merit methodology will include statistical fluctuations, operator error, and a rudimentary analysis of transient conditions. The long term goal of the project includes expansion universally over the plant, methods of detection without requiring access to proprietary information, and an evaluation of the requirements for future figure of merit methodologies.

  3. Building a Successful Machine Safeguarding Program

    SciTech Connect

    McConnell, S

    2003-03-06

    Safeguarding hazards associated with machines is a goal common to all health and safety professionals. Whether the individual is new to the safety field or has held associated responsibilities for a period of time, safeguarding personnel who work with or around machine tools and equipment should be considered an important aspect of the job. Although significant progress has been made in terms of safeguarding machines since the era prior to the organized safety movement, companies continue to be cited by the Occupational Safety and Health Administration (OSHA) and workers continue to be injured, even killed by machine tools and equipment. In the early 1900s, it was common practice to operate transmission machinery (gears, belts, pulleys, shafting, etc.) completely unguarded. At that time, the countersunk set screw used on shafting had not been invented and projecting set screws were involved in many horrific accidents. Manufacturers built machines with little regard for worker safety. Workers were killed or seriously injured before definitive actions were taken to improve safety in the workplace. Many states adopted legislation aimed at requiring machine guarding and improved injury reduction. The first patent for a machine safeguard was issued in 1868 for a mechanical interlock. Other patents followed. As methods for safeguarding machinery and tools were developed, standards were written and programs were set up to monitor factories for compliance. Many of those standards continue to govern how we protect workers today. It is common to see machine tools built in the forties, fifties and sixties being used in machine shops today. In terms of safeguarding, these machines may be considered poorly designed, improperly safeguarded or simply unguarded. In addition to the potential threat of an OSHA citation, these conditions expose the operator to serious hazards that must be addressed. The safety professional can help line management determine workable solutions for

  4. 42 CFR 431.305 - Types of information to be safeguarded.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Types of information to be safeguarded. 431.305 Section 431.305 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... section 6103 of the Internal Revenue Code, as applicable. (7) Any information received in connection...

  5. 77 FR 3922 - Rules for Investigations Relating to Global and Bilateral Safeguards Actions, Market Disruption...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ..., Market Disruption, Trade Diversion, and Review of Relief Actions AGENCY: United States International... governing investigations relating to global and bilateral safeguard actions, market disruption, trade... DISRUPTION, AND REVIEW OF RELIEF ACTIONS Section 206.1 of subpart 206, which lists the statutory...

  6. Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel

    SciTech Connect

    Mark Schanfein; Casey Durst

    2012-11-01

    Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA

  7. Safeguard monitoring of direct electrolytic reduction

    NASA Astrophysics Data System (ADS)

    Jurovitzki, Abraham L.

    Nuclear power is regaining global prominence as a sustainable energy source as the world faces the consequences of depending on limited fossil based, CO2 emitting fuels. A key component to achieving this sustainability is to implement a closed nuclear fuel cycle. Without achieving this goal, a relatively small fraction of the energy value in nuclear fuel is actually utilized. This involves recycling of spent nuclear fuel (SNF)---separating fissile actinides from waste products and using them to fabricate fresh fuel. Pyroprocessing is a viable option being developed for this purpose with a host of benefits compared to other recycling options, such as PUREX. Notably, pyroprocessing is ill suited to separate pure plutonium from spent fuel and thus has non-proliferation benefits. Pyroprocessing involves high temperature electrochemical and chemical processing of SNF in a molten salt electrolyte. During this batch process, several intermediate and final streams are produced that contain radioactive material. While pyroprocessing is ineffective at separating pure plutonium, there are various process misuse scenarios that could result in diversion of impure plutonium into one or more of these streams. This is a proliferation risk that should be addressed with innovative safeguards technology. One approach to meeting this challenge is to develop real time monitoring techniques that can be implemented in the hot cells and coupled with the various unit operations involved with pyroprocessing. Current state of the art monitoring techniques involve external chemical assaying which requires sample removal from these unit operations. These methods do not meet International Atomic Energy Agency's (IAEA) timeliness requirements. In this work, a number of monitoring techniques were assessed for their viability as online monitoring tools. A hypothetical diversion scenario for the direct electrolytic reduction process was experimentally verified (using Nd2O3 as a surrogate for PuO2

  8. Possible Nuclear Safeguards Applications: Workshop on Next-Generation Laser Compton Gamma Source

    SciTech Connect

    Durham, J. Matthew

    2016-11-17

    These are a set of slides for the development of a next-generation photon source white paper. The following topics are covered in these slides: Nuclear Safeguards; The Nuclear Fuel Cycle; Precise isotopic determination via NRF; UF6 Enrichment Assay; and Non-Destructive Assay of Spent Nuclear Fuel. In summary: A way to non-destructively measure precise isotopics of ~kg and larger samples has multiple uses in nuclear safeguards; Ideally this is a compact, fieldable device that can be used by international inspectors. Must be rugged and reliable; A next-generation source can be used as a testing ground for these techniques as technology develops.

  9. The Safeguards Evaluation Method for evaluating vulnerability to insider threats

    SciTech Connect

    Al-Ayat, R.A.; Judd, B.R.; Renis, T.A.

    1986-01-01

    As protection of DOE facilities against outsiders increases to acceptable levels, attention is shifting toward achieving comparable protection against insiders. Since threats and protection measures for insiders are substantially different from those for outsiders, new perspectives and approaches are needed. One such approach is the Safeguards Evaluation Method. This method helps in assessing safeguards vulnerabilities to theft or diversion of special nuclear material (SNM) by insiders. The Safeguards Evaluation Method-Insider Threat is a simple model that can be used by safeguards and security planners to evaluate safeguards and proposed upgrades at their own facilities. A discussion of the Safeguards Evaluation Method is presented in this paper.

  10. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    SciTech Connect

    Richard Metcalf; Aaron Bevill; William Charlton; Robert Bean

    2008-07-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of “non-traditional” operating data, and exploration of new methods of identifying subtle events in transient processes.

  11. Fundamentals of materials accounting for nuclear safeguards

    SciTech Connect

    Pillay, K.K.S.

    1989-04-01

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

  12. Post-Web 2.0 Pedagogy: From Student-Generated Content to International Co-Production Enabled by Mobile Social Media

    ERIC Educational Resources Information Center

    Cochrane, Thomas; Antonczak, Laurent; Wagner, Daniel

    2013-01-01

    The advent of web 2.0 has enabled new forms of collaboration centred upon user-generated content, however, mobile social media is enabling a new wave of social collaboration. Mobile devices have disrupted and reinvented traditional media markets and distribution: iTunes, Google Play and Amazon now dominate music industry distribution channels,…

  13. The International Lunar Decade — 2017-2029: Framework for Concurrent Development of Enabling Technologies, Infrastructures, Financings, and Policies for Lunar Development

    NASA Astrophysics Data System (ADS)

    Beldavs, V. Z.; Dunlop, D.; Crisafulli, J.; Foing, B.

    2015-10-01

    The International Lunar Decade (ILD) planned for launch in 2017 provides a framework for long-term international collaboration in the development of technologies, infrastructures, and financing mechanisms for lunar development.

  14. Advanced Nuclear Measurements - Sensitivity Analysis Emerging Safeguards, Problems and Proliferation Risk

    SciTech Connect

    Dreicer, J.S.

    1999-07-15

    During the past year this component of the Advanced Nuclear Measurements LDRD-DR has focused on emerging safeguards problems and proliferation risk by investigating problems in two domains. The first is related to the analysis, quantification, and characterization of existing inventories of fissile materials, in particular, the minor actinides (MA) formed in the commercial fuel cycle. Understanding material forms and quantities helps identify and define future measurement problems, instrument requirements, and assists in prioritizing safeguards technology development. The second problem (dissertation research) has focused on the development of a theoretical foundation for sensor array anomaly detection. Remote and unattended monitoring or verification of safeguards activities is becoming a necessity due to domestic and international budgetary constraints. However, the ability to assess the trustworthiness of a sensor array has not been investigated. This research is developing an anomaly detection methodology to assess the sensor array.

  15. IAEA Safeguards and technical support programs: POTAS in the 1990s

    SciTech Connect

    Kessler, C.J. . Office of Nuclear Technology and Safeguards); Reisman, A.W. )

    1991-01-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) has since 1978 provided technology and technical assistance to the IAEA to support its nuclear safeguards activities. The present level of support, $6.9 million per year, equals 10% of the Department of Safeguards annual budget. During the next decade, the International Atomic Energy Agency (IAEA) will face new technical challenges in carrying out its verification activities. To help the IAEA acquire the technology and other technical support that it will require in the 1990s, POTAS expects to continue its assistance, both in the areas established in the past and in additional areas dictated by newly identified IAEA safeguards requirements. This paper will look at the political and policy context within which the Department of Safeguards, and hence POTAS, operates, and how that context is expected to evolve over the next decade. The roles and functions of POTAS will be identified and discussed in terms of their historical evolution. Lastly, the paper will consider how POTAS is expected to change during the 1990s, both to maintain effectiveness in existing roles and functions, and to meet the challenge of the changing policy context. 5 refs.

  16. Defining the needs for gas centrifuge enrichment plants advanced safeguards

    SciTech Connect

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Swinhoe, Martyn T; Ianakiev, Kiril; Marlow, Johnna B

    2010-04-05

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

  17. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1....

  18. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1....

  19. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1....

  20. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1....

  1. 26 CFR 301.6103(p)(4)-1 - Procedures relating to safeguards for returns or return information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or return information. 301.6103(p)(4)-1 Section 301.6103(p)(4)-1 Internal Revenue INTERNAL REVENUE... Information and Returns Returns and Records § 301.6103(p)(4)-1 Procedures relating to safeguards for returns..., see § 301.6103(p)(7)-1....

  2. 21 CFR 312.88 - Safeguards for patient safety.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Safeguards for patient safety. 312.88 Section 312... Severely-debilitating Illnesses § 312.88 Safeguards for patient safety. All of the safeguards incorporated within parts 50, 56, 312, 314, and 600 of this chapter designed to ensure the safety of clinical...

  3. 29 CFR 452.83 - Enforcement of campaign safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Enforcement of campaign safeguards. 452.83 Section 452.83... AND DISCLOSURE ACT OF 1959 Campaign Safeguards § 452.83 Enforcement of campaign safeguards. Certain of... statutory right to sue is limited to the distribution of campaign literature by the labor organization...

  4. 10 CFR 1.13 - Advisory Committee on Reactor Safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Advisory Committee on Reactor Safeguards. 1.13 Section 1... Headquarters Panels, Boards, and Committees § 1.13 Advisory Committee on Reactor Safeguards. The Advisory Committee on Reactor Safeguards (ACRS) was established by section 29 of the Atomic Energy Act of 1954,...

  5. 10 CFR 1.13 - Advisory Committee on Reactor Safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Advisory Committee on Reactor Safeguards. 1.13 Section 1... Headquarters Panels, Boards, and Committees § 1.13 Advisory Committee on Reactor Safeguards. The Advisory Committee on Reactor Safeguards (ACRS) was established by section 29 of the Atomic Energy Act of 1954,...

  6. 10 CFR Appendix G to Part 73 - Reportable Safeguards Events

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Reportable Safeguards Events G Appendix G to Part 73.... G Appendix G to Part 73—Reportable Safeguards Events Pursuant to the provisions of 10 CFR 73.71 (b... shall report or record, as appropriate, the following safeguards events. I. Events to be reported...

  7. 10 CFR Appendix G to Part 73 - Reportable Safeguards Events

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Reportable Safeguards Events G Appendix G to Part 73.... G Appendix G to Part 73—Reportable Safeguards Events Pursuant to the provisions of 10 CFR 73.71 (b... shall report or record, as appropriate, the following safeguards events. I. Events to be reported...

  8. 10 CFR Appendix G to Part 73 - Reportable Safeguards Events

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Reportable Safeguards Events G Appendix G to Part 73.... G Appendix G to Part 73—Reportable Safeguards Events Pursuant to the provisions of 10 CFR 73.71 (b... shall report or record, as appropriate, the following safeguards events. I. Events to be reported...

  9. 10 CFR Appendix G to Part 73 - Reportable Safeguards Events

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Reportable Safeguards Events G Appendix G to Part 73.... G Appendix G to Part 73—Reportable Safeguards Events Pursuant to the provisions of 10 CFR 73.71 (b... shall report or record, as appropriate, the following safeguards events. I. Events to be reported...

  10. 10 CFR Appendix G to Part 73 - Reportable Safeguards Events

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Reportable Safeguards Events G Appendix G to Part 73.... G Appendix G to Part 73—Reportable Safeguards Events Pursuant to the provisions of 10 CFR 73.71 (b... shall report or record, as appropriate, the following safeguards events. I. Events to be reported...

  11. 10 CFR 75.7 - Notification of IAEA safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Notification of IAEA safeguards. 75.7 Section 75.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions § 75.7 Notification of IAEA safeguards. (a) The licensee must inform the...

  12. 10 CFR 75.7 - Notification of IAEA safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Notification of IAEA safeguards. 75.7 Section 75.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions § 75.7 Notification of IAEA safeguards. (a) The licensee must inform the...

  13. 10 CFR 75.7 - Notification of IAEA safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Notification of IAEA safeguards. 75.7 Section 75.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions § 75.7 Notification of IAEA safeguards. (a) The licensee must inform the...

  14. 10 CFR 75.7 - Notification of IAEA safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Notification of IAEA safeguards. 75.7 Section 75.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions § 75.7 Notification of IAEA safeguards. (a) The licensee must inform the...

  15. 10 CFR 75.7 - Notification of IAEA safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Notification of IAEA safeguards. 75.7 Section 75.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions § 75.7 Notification of IAEA safeguards. (a) The licensee must inform the...

  16. 16 CFR 314.3 - Standards for safeguarding customer information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Standards for safeguarding customer... OF CONGRESS STANDARDS FOR SAFEGUARDING CUSTOMER INFORMATION § 314.3 Standards for safeguarding customer information. (a) Information security program. You shall develop, implement, and maintain...

  17. 21 CFR 312.88 - Safeguards for patient safety.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Safeguards for patient safety. 312.88 Section 312... Severely-debilitating Illnesses § 312.88 Safeguards for patient safety. All of the safeguards incorporated... includes the requirements for informed consent (part 50 of this chapter) and institutional review...

  18. 21 CFR 312.88 - Safeguards for patient safety.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Safeguards for patient safety. 312.88 Section 312... Severely-debilitating Illnesses § 312.88 Safeguards for patient safety. All of the safeguards incorporated... includes the requirements for informed consent (part 50 of this chapter) and institutional review...

  19. 45 CFR 164.312 - Technical safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Information § 164.312 Technical safeguards. A covered entity must, in accordance with § 164.306: (a)(1) Standard: Access control. Implement technical policies and procedures for electronic information systems that maintain electronic protected health information to allow access only to those persons or...

  20. 45 CFR 164.308 - Administrative safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... business processes for protection of the security of electronic protected health information while... Information § 164.308 Administrative safeguards. (a) A covered entity or business associate must, in accordance with § 164.306: (1)(i) Standard: Security management process. Implement policies and procedures...

  1. 45 CFR 164.308 - Administrative safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... business processes for protection of the security of electronic protected health information while... Information § 164.308 Administrative safeguards. (a) A covered entity or business associate must, in accordance with § 164.306: (1)(i) Standard: Security management process. Implement policies and procedures...

  2. 7 CFR 15b.25 - Procedural safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Procedural safeguards. 15b.25 Section 15b.25 Agriculture Office of the Secretary of Agriculture NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary, Secondary, Adult, and...

  3. 45 CFR 84.36 - Procedural safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Procedural safeguards. 84.36 Section 84.36 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary,...

  4. 7 CFR 15b.25 - Procedural safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Procedural safeguards. 15b.25 Section 15b.25 Agriculture Office of the Secretary of Agriculture NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary, Secondary, Adult, and...

  5. 7 CFR 15b.25 - Procedural safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Procedural safeguards. 15b.25 Section 15b.25 Agriculture Office of the Secretary of Agriculture NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary, Secondary, Adult, and...

  6. 45 CFR 84.36 - Procedural safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Procedural safeguards. 84.36 Section 84.36 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary,...

  7. 7 CFR 15b.25 - Procedural safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Procedural safeguards. 15b.25 Section 15b.25 Agriculture Office of the Secretary of Agriculture NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary, Secondary, Adult, and...

  8. 45 CFR 84.36 - Procedural safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Procedural safeguards. 84.36 Section 84.36 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary,...

  9. 45 CFR 84.36 - Procedural safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Procedural safeguards. 84.36 Section 84.36 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary,...

  10. 45 CFR 84.36 - Procedural safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Procedural safeguards. 84.36 Section 84.36 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary,...

  11. 7 CFR 15b.25 - Procedural safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Procedural safeguards. 15b.25 Section 15b.25 Agriculture Office of the Secretary of Agriculture NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary, Secondary, Adult, and...

  12. 45 CFR 605.36 - Procedural safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a... that includes notice, an opportunity for the parents or guardian of the person to examine...

  13. 45 CFR 605.36 - Procedural safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a... that includes notice, an opportunity for the parents or guardian of the person to examine...

  14. 45 CFR 605.36 - Procedural safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a... that includes notice, an opportunity for the parents or guardian of the person to examine...

  15. 45 CFR 605.36 - Procedural safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a... that includes notice, an opportunity for the parents or guardian of the person to examine...

  16. 45 CFR 605.36 - Procedural safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... Preschool, Elementary, and Secondary Education § 605.36 Procedural safeguards. A recipient that operates a... that includes notice, an opportunity for the parents or guardian of the person to examine...

  17. Evaluating safeguard effectiveness against violent insiders

    SciTech Connect

    Al-Ayat, R.A.; Fortney, D.S.

    1990-07-16

    The threat posed by a violent insiders presents a major challenge to safeguards managers. These insiders, in addition to their ability to exploit their special authorities, access, and knowledge of facility operations and safeguards, could use violence to defeat safeguards components and personnel. In protecting against theft of special nuclear material, facilities have emphasized the use of perimeter protection and physical barriers to protect against attacks by an outsider adversary group. Recently emphasis has begun to shift toward the implementation of hardware and procedural measures to protect against nonviolent insiders. Approaches are also needed to help assess the effectiveness of protection against those insiders who are willing to use violence. In this paper we describe an approach we're developing for dealing with violent insiders. We begin by categorizing insiders according to whether they are active or passive, rational or irrational, and whether they are willing to use force against safeguards components or coworkers. We define characteristics of each category, and describe the extent to which each category is adequately modelled by existing evaluation tools. We also discuss several modelling issues posed by active insiders, including: entry of contraband; reluctance to use violence; neutralization of insiders; and the ability to switch modes of attack between force, stealth, and deceit. 5 refs., 2 figs.

  18. 17 CFR 49.24 - System safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false System safeguards. 49.24 Section 49.24 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION (CONTINUED) SWAP...) Information security; (2) Business continuity—disaster recovery planning and resources; (3) Capacity...

  19. 17 CFR 49.24 - System safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false System safeguards. 49.24 Section 49.24 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SWAP DATA... shall address each of the following categories of risk analysis and oversight: (1) Information...

  20. The integration of process monitoring for safeguards.

    SciTech Connect

    Cipiti, Benjamin B.; Zinaman, Owen R.

    2010-09-01

    The Separations and Safeguards Performance Model is a reprocessing plant model that has been developed for safeguards analyses of future plant designs. The model has been modified to integrate bulk process monitoring data with traditional plutonium inventory balances to evaluate potential advanced safeguards systems. Taking advantage of the wealth of operator data such as flow rates and mass balances of bulk material, the timeliness of detection of material loss was shown to improve considerably. Four diversion cases were tested including both abrupt and protracted diversions at early and late times in the run. The first three cases indicated alarms before half of a significant quantity of material was removed. The buildup of error over time prevented detection in the case of a protracted diversion late in the run. Some issues related to the alarm conditions and bias correction will need to be addressed in future work. This work both demonstrates the use of the model for performing diversion scenario analyses and for testing advanced safeguards system designs.

  1. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  2. 32 CFR 887.2 - Safeguarding certificates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... costly to the Air Force. To keep requests for CILs at a minimum: (a) Personnel officers will tell members... 32 National Defense 6 2011-07-01 2011-07-01 false Safeguarding certificates. 887.2 Section 887.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE MILITARY PERSONNEL...

  3. 32 CFR 887.2 - Safeguarding certificates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... costly to the Air Force. To keep requests for CILs at a minimum: (a) Personnel officers will tell members... 32 National Defense 6 2013-07-01 2013-07-01 false Safeguarding certificates. 887.2 Section 887.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE MILITARY PERSONNEL...

  4. 45 CFR 164.310 - Physical safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... storage (Addressable). Create a retrievable, exact copy of electronic protected health information, when... Information § 164.310 Physical safeguards. A covered entity must, in accordance with § 164.306: (a)(1... electronic information systems and the facility or facilities in which they are housed, while ensuring...

  5. Readability of Special Education Procedural Safeguards

    ERIC Educational Resources Information Center

    Mandic, Carmen Gomez; Rudd, Rima; Hehir, Thomas; Acevedo-Garcia, Dolores

    2012-01-01

    This study focused on literacy-related barriers to understanding the rights of students with disabilities and their parents within the special education system. SMOG readability scores were determined for procedural safeguards documents issued by all state departments of education. The average reading grade level was 16; 6% scored in the high…

  6. "Safeguarding" Sports Coaching: Foucault, Genealogy and Critique

    ERIC Educational Resources Information Center

    Garratt, Dean; Piper, Heather; Taylor, Bill

    2013-01-01

    This paper offers a genealogical account of safeguarding in sport. Drawing specifically on Foucault's work, it examines the "politics of touch" in relation to the social and historical formation of child protection policy in sports coaching. While the analysis has some resonance with the context of coaching as a whole, for illustrative…

  7. 7 CFR 966.56 - Safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order..., may prescribe adequate safeguards to prevent handling of tomatoes pursuant to § 966.53 or § 966.54... applications with the committee to ship tomatoes pursuant to §§ 966.53 and 966.54; or (2) Handlers shall...

  8. Mass-spectrometric measurements for nuclear safeguards

    SciTech Connect

    Carter, J.A.; Smith, D.H.; Walker, R.L.

    1982-01-01

    The need of an on-site inspection device to provide isotopic ratio measurements led to the development of a quadrupole mass spectrometer mounted in a van. This mobile laboratory has the ability, through the use of the resin bead technique, to acquire, prepare, and analyze samples of interest to nuclear safeguards. Precision of the measurements is about 1 to 2%.

  9. 7 CFR 947.55 - Safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Safeguards. 947.55 Section 947.55 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements..., with the approval of the Secretary, shall prescribe rules governing the issuance and the contents...

  10. 7 CFR 966.56 - Safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Safeguards. 966.56 Section 966.56 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... governing the issuance and the contents of Certificates of Privilege if such certificates are prescribed...

  11. 7 CFR 906.44 - Safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Safeguards. 906.44 Section 906.44 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... authorized therefor, and rules governing the issuance and the contents of certificates of privilege if...

  12. 7 CFR 946.55 - Safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguards. 946.55 Section 946.55 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... governing the issuance and the contents of the special purpose certificate. (d) The committee may...

  13. 7 CFR 945.56 - Safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Safeguards. 945.56 Section 945.56 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... approval of the Secretary, shall prescribe rules governing the issuance and the contents of Certificates...

  14. 7 CFR 947.55 - Safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguards. 947.55 Section 947.55 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements..., with the approval of the Secretary, shall prescribe rules governing the issuance and the contents...

  15. 7 CFR 946.55 - Safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Safeguards. 946.55 Section 946.55 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... governing the issuance and the contents of the special purpose certificate. (d) The committee may...

  16. 7 CFR 945.56 - Safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguards. 945.56 Section 945.56 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... approval of the Secretary, shall prescribe rules governing the issuance and the contents of Certificates...

  17. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    SciTech Connect

    Whitaker, Jr., James; Garner, James R; Whitaker, Michael; Lockwood, Dunbar; Gilligan, Kimberly V; Younkin, James R; Hooper, David A; Henkel, James J; Krichinsky, Alan M

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  18. LANL Safeguards and Security Assurance Program. Revision 6

    SciTech Connect

    1995-04-03

    The Safeguards and Security (S and S) Assurance Program provides a continuous quality improvement approach to ensure effective, compliant S and S program implementation throughout the Los Alamos National Laboratory. Any issues identified through the various internal and external assessments are documented, tracked and closed using the Safeguards and Security Issue Management Program. The Laboratory utilizes an integrated S and S systems approach to protect US Department of Energy (DOE) interests from theft or diversion of special nuclear material (SNM), sabotage, espionage, loss or theft of classified/controlled matter or government property, and other hostile acts that may cause unacceptable impacts on national security, health and safety of employees and the public, and the environment. This document explains the basis, scope, and conduct of the S and S process to include: self-assessments, issue management, risk assessment, and root cause analysis. It also provides a discussion of S and S topical areas, roles and responsibilities, process flow charts, minimum requirements, methodology, terms, and forms.

  19. Advanced Safeguards Technology Demonstration at Pacific Northwest National Laboratory

    SciTech Connect

    Orton, Christopher R.; Schwantes, Jon M.; Bryan, Samuel A.; Levitskaia, Tatiana G.; Duckworth, Douglas C.; Douglas, Matthew; Farmer, O. T.; Fraga, Carlos G.; Lehn, Scott A.; Liezers, Martin; Peper, Shane M.; Christensen, Richard

    2008-10-01

    The IAEA has established international safeguards standards for fissionable materials at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted over a specified time frame. It is, therefore, necessary to confirm proper operational performance to verify facilities operate under adequate safeguard-declared conditions. This verification can be achieved by employing monitoring equipment. Online real time monitoring of the flowsheet radiochemical streams provides a unique capability to rapidly identify deviations from normal operating conditions. Flowsheet monitoring technologies being developed at PNNL include three integrated systems: Multi-Isotope Process (MIP) Monitor, spectroscopy-based monitor (UV-vis-NIR and Raman spectrometers), and Electrochemically Modulated Separations (EMS). The MIP Monitor is designed to identify off-normal conditions in process streams using gamma spectroscopy and pattern recognition software. The spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals. EMS provides an on-line means for pre-separating and pre-concentrating elements of interest out of complex matrices prior to detection. PNNL is preparing to test these multi-parametric technologies using different samples of dissolved spent fuel and aqueous and organic phases of the PUREX and UREX flowsheets. We will report our on-going efforts with specific focus given to quantifying sensitivity of the MIP Monitor and UV-Vis and Raman spectrometers to detect minor changes in major process variables.

  20. Strengthening IAEA Safeguards for Research Reactors

    SciTech Connect

    Reid, Bruce D.; Anzelon, George A.; Budlong-Sylvester, Kory

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  1. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

    SciTech Connect

    Pepper S. E.; .; Worrall, L.; Pickett, C.; Bachner, K.; Queirolo, A.

    2014-08-08

    The U.S. National Nuclear Security Administration’s Next Generation Safeguards Initiative, the U.S. Department of State, and the International Atomic Energy Agency (IAEA) organized a a workshop on the subject of ”Software Sustainability for Safeguards Instrumentation.” The workshop was held at the Vienna International Centre in Vienna, Austria, May 6-8, 2014. The workshop participants included software and hardware experts from national laboratories, industry, government, and IAEA member states who were specially selected by the workshop organizers based on their experience with software that is developed for the control and operation of safeguards instrumentation. The workshop included presentations, to orient the participants to the IAEA Department of Safeguards software activities related to instrumentation data collection and processing, and case studies that were designed to inspire discussion of software development, use, maintenance, and upgrades in breakout sessions and to result in recommendations for effective software practices and management. This report summarizes the results of the workshop.

  2. Physician Enabling Skills Questionnaire

    PubMed Central

    Hudon, Catherine; Lambert, Mireille; Almirall, José

    2015-01-01

    Abstract Objective To evaluate the reliability and validity of the newly developed Physician Enabling Skills Questionnaire (PESQ) by assessing its internal consistency, test-retest reliability, concurrent validity with patient-centred care, and predictive validity with patient activation and patient enablement. Design Validation study. Setting Saguenay, Que. Participants One hundred patients with at least 1 chronic disease who presented in a waiting room of a regional health centre family medicine unit. Main outcome measures Family physicians’ enabling skills, measured with the PESQ at 2 points in time (ie, while in the waiting room at the family medicine unit and 2 weeks later through a mail survey); patient-centred care, assessed with the Patient Perception of Patient-Centredness instrument; patient activation, assessed with the Patient Activation Measure; and patient enablement, assessed with the Patient Enablement Instrument. Results The internal consistency of the 6 subscales of the PESQ was adequate (Cronbach α = .69 to .92). The test-retest reliability was very good (r = 0.90; 95% CI 0.84 to 0.93). Concurrent validity with the Patient Perception of Patient-Centredness instrument was good (r = −0.67; 95% CI −0.78 to −0.53; P < .001). The PESQ accounts for 11% of the total variance with the Patient Activation Measure (r2 = 0.11; P = .002) and 19% of the variance with the Patient Enablement Instrument (r2 = 0.19; P < .001). Conclusion The newly developed PESQ presents good psychometric properties, allowing for its use in practice and research. PMID:26889507

  3. Safeguards and Security by Design (SSBD) for Small Modular Reactors (SMRs) through a Common Global Approach

    SciTech Connect

    Badwan, Faris M.; Demuth, Scott Francis; Miller, Michael Conrad; Pshakin, Gennady

    2015-02-23

    Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fully integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may

  4. Safeguarding the child athlete in sport: a review, a framework and recommendations for the IOC youth athlete development model.

    PubMed

    Mountjoy, M; Rhind, D J A; Tiivas, A; Leglise, M

    2015-07-01

    Participation in sport has many physical, psychological and social benefits for the child athlete. A growing body of evidence indicates, however, that sport participation may have inherent threats for the child's well-being. The subject of safeguarding children in sport has seen an increase in scientific study in recent years. In particular, there is increasing emphasis on identifying who is involved in abuse, the context of where it occurs and the identification of the various forms of abuse that take place in the sporting domain. Safeguarding principles developed by the International Safeguarding Children in Sport Founders Group are presented along with 8 underlying pillars which underpin the successful adoption and implementation of safeguarding strategies. This safeguarding model is designed to assist sport organisations in the creation of a safe sporting environment to ensure that the child athlete can flourish and reach their athletic potential through an enjoyable experience. The aim of this narrative review is to (1) present a summary of the scientific literature on the threats to children in sport; (2) introduce a framework to categorise these threats; (3) identify research gaps in the field and (4) provide safeguarding recommendations for sport organisations.

  5. Safeguarding the child athlete in sport: a review, a framework and recommendations for the IOC youth athlete development model

    PubMed Central

    Mountjoy, M; Rhind, D J A; Tiivas, A; Leglise, M

    2015-01-01

    Participation in sport has many physical, psychological and social benefits for the child athlete. A growing body of evidence indicates, however, that sport participation may have inherent threats for the child’s well-being. The subject of safeguarding children in sport has seen an increase in scientific study in recent years. In particular, there is increasing emphasis on identifying who is involved in abuse, the context of where it occurs and the identification of the various forms of abuse that take place in the sporting domain. Safeguarding principles developed by the International Safeguarding Children in Sport Founders Group are presented along with 8 underlying pillars which underpin the successful adoption and implementation of safeguarding strategies. This safeguarding model is designed to assist sport organisations in the creation of a safe sporting environment to ensure that the child athlete can flourish and reach their athletic potential through an enjoyable experience. The aim of this narrative review is to (1) present a summary of the scientific literature on the threats to children in sport; (2) introduce a framework to categorise these threats; (3) identify research gaps in the field and (4) provide safeguarding recommendations for sport organisations. PMID:26084527

  6. Safeguards Education and Training: Short Term Supply vs. Demand

    SciTech Connect

    Mathews, Carrie E.; Crawford, Cary E.

    2004-07-16

    Much has been written and discussed in the past several years about the effect of the aging nuclear workforce on the sustainability of the U.S. safeguards and security infrastructure. This paper discusses the 10-15 year supply and demand forecast for nuclear material control and accounting specialists. The demand side of the review includes control and accounting of the materials at U.S. DOE and NRC facilities, and the federal oversight of those MC&A programs. The cadre of experts referred to as 'MC&A Specialists' available to meet the demand goes beyond domestic MC&A to include international programs, regulatory and inspection support, and so on.

  7. Advanced Safeguards Technology Demonstration at Pacific Northwest National Laboratory

    SciTech Connect

    Arrigo, Leah M.; Bryan, Samuel A.; Christensen, Richard; Douglas, Matthew; Duckworth, Douglas C.; Fraga, Carlos G.; Levitskaia, Tatiana G.; Liezers, Martin; Orton, Christopher R.; Peper, Shane M.; Schwantes, Jon M.

    2010-05-21

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted over a specified time frame. Currently, methods to verify that the facilities are operating under adequate safeguard-declared conditions require time consuming sampling and expensive, destructive analysis. The time delay between sampling and subsequent analysis provides a potential opportunity to divert the material out of the appropriate chemical stream. One way to avoid this problem is to use process monitoring equipment that is capable of on-line and in near-real time monitoring of the flowsheet radiochemical streams to rapidly identify deviations from normal operating conditions. Three integrated systems for flowsheet monitoring are currently being developed at PNNL including: 1) Multi-Isotope Process Monitor (MIP), 2) a spectroscopy-based monitor utilizing UV-Vis-NIR (Ultra Violet-Visible-Near Infrared) and Raman spectrometers, and 3) Electrochemically Modulated Separations (EMS). MIP uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. The UV-Vis-NIR and Raman spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals. EMS provides an on-line means for pre-separating and preconcentrating elements of interest out of complex matrices prior to detection via non-destructive assay by gamma spectroscopy or destructive analysis with mass spectrometry. PNNL previously reported some of its initial modeling work as proof of principle. Here we will provide a general overview of the technologies and the ongoing demonstrations that utilize actual spent fuel.

  8. TECHNOLOGY DEVELOPMENT ON THE DUPIC SAFEGUARDS SYSTEM

    SciTech Connect

    H. KIM; H. CHA; ET AL

    2001-02-01

    A safeguards system has been developed since 1993 in the course of supporting a fuel cycle process to fabricate CANDU fuel with spent PWR fuel (known as Direct Use of PWR spent fuel In CANDU, DUPIC). The major safeguards technology involved here was to design and fabricate a neutron coincidence counting system for process accountability, and also an unattended continuous monitoring system in association with independent verification by the IAEA. This combined technology was to produce information of nuclear material content and to maintain knowledge of the continuity of nuclear material flow. In addition to hardware development, diagnosis software is being developed to assist data acquisition, data review, and data evaluation based on a neural network system on the IAEA C/S system.

  9. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    SciTech Connect

    Beyer, Brian David; Beddingfield, David H; Durst, Philip; Bean, Robert

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  10. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    SciTech Connect

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insider who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.

  11. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    SciTech Connect

    Darby, John L.; Horak, Karl Emanuel; LaChance, Jeffrey L.; Tolk, Keith Michael; Whitehead, Donnie Wayne

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  12. INL Human Resource Development and the Next-Generation Safeguards Initiative

    SciTech Connect

    Gouveia, Fernando; Metcalf, Richard Royce Madison

    2010-07-01

    It is the stated goal of the Next Generation Safeguards Initiative (NGSI) to promote the development of a strengthened nuclear safeguards base, one with the potential to advance the secure and peaceful implementation of nuclear energy world-wide. To meet this goal, the initiative, among other things, has sought to develop a revitalized effort to ensure the continued availability of next generation safeguards professionals. Accordingly, this paper serves to outline the human capital building strategies taken by Idaho National Laboratory (INL) in line with the NGSI. Various components are presented in detail, including INL’s efforts directed at university outreach, in particular the laboratory’s summer internship program, along with the development of various innovative training programs and long-term oriented strategies for student professional development. Special highlights include a video training series, developed by INL in cooperation with LLNL and other laboratories, which sought to expose students and entry-level professionals to the concept and practice of international nuclear safeguards.

  13. Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards

    SciTech Connect

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Swinjoe, Martyn T; Ianakiev, Kiril D; Marlow, Johnna B

    2010-01-01

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

  14. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  15. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    SciTech Connect

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  16. Conjugation to octa-arginine via disulfide bonds confers solubility to denatured proteins in physiological solution and enables efficient cell internalization.

    PubMed

    Kuwada, Eri; Tadaki, Toshimasa; Kambara, Kaori; Egawa, Kohji; Noguchi, Katsuo

    2011-01-01

    Some protein transduction methods have already been developed for regenerative medicine application. These methods can be applied to soluble proteins but not to insoluble proteins, such as those that originate from inclusion bodies, for example, Escherichia coli. We have developed a method that allows the in vitro solubilization of denatured proteins without refolding and their efficient cellular internalization through conjugation to the peptide, octa-arginine (R8), via disulfide bonds with cysteine residues. Ovalbumin (OVA), denatured in urea solution containing dithiothreitol, was used as a model protein. The R8 peptide was conjugated with OVA in urea solution. Denatured OVA was recovered in the insoluble fraction after dialysis against phosphate-buffered saline. However, almost all the R8-conjugated OVA was recovered in the soluble fraction and used for translocation experiments in HeLa, Chinese hamster ovary-K1, Cos-7, and matured dendritic cells, where efficient internalization of the protein conjugate was observed. Furthermore, we formulated R8-conjugated β-galactosidase and R8-conjugated luciferase using a similar procedure, and investigated how the conjugated proteins are processed after cell internalization. We also observed that only a small fraction of these proteins refolded and almost all underwent intracellular degradation. These results suggest that this method is suitable for the transduction of antigen-presenting cells and will benefit research and innovation in vaccine design and discovery.

  17. Progress Addressing Safeguards Capability Development Needs through Educational Outreach and Knowledge Management

    SciTech Connect

    Leek, K. M.; Seward, Amy M.; Dickman, Deborah A.; Toomey, Charles J.; Greenfield, Bryce A.; Mathews, Caroline E.; Fishbone, L.; Graham, T.; Rosenthal, Michael; Ward, B.

    2010-11-08

    This paper describes the NGSI Human Capital Development Program's domestic and international activities, and offers specific case studies to exemplify the outcomes and progress achieved in this area over the past several years. The paper highlights the importance of a sustained effort to address the human dimension of safeguards and nonproliferation and to address critical work force issues in the U.S. and abroad.

  18. A Monte Carlo based spent fuel analysis safeguards strategy assessment

    SciTech Connect

    Fensin, Michael L; Tobin, Stephen J; Swinhoe, Martyn T; Menlove, Howard O; Sandoval, Nathan P

    2009-01-01

    Safeguarding nuclear material involves the detection of diversions of significant quantities of nuclear materials, and the deterrence of such diversions by the risk of early detection. There are a variety of motivations for quantifying plutonium in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguards nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from spent fuel; however, no single NDA technique can, in isolation, quantify elemental plutonium and other actinides of interest in spent fuel. A study has been undertaken to determine the best integrated combination of cost effective techniques for quantifying plutonium mass in spent fuel for nuclear safeguards. A standardized assessment process was developed to compare the effective merits and faults of 12 different detection techniques in order to integrate a few techniques and to down-select among the techniques in preparation for experiments. The process involves generating a basis burnup/enrichment/cooling time dependent spent fuel assembly library, creating diversion scenarios, developing detector models and quantifying the capability of each NDA technique. Because hundreds of input and output files must be managed in the couplings of data transitions for the different facets of the assessment process, a graphical user interface (GUI) was development that automates the process. This GUI allows users to visually create diversion scenarios with varied replacement materials, and generate a MCNPX fixed source detector assessment input file. The end result of the assembly library assessment is to select a set of common source terms and diversion scenarios for quantifying the capability of each of the 12 NDA techniques. We present here the generalized

  19. Modeling and Simulation for Safeguards and Nonproliferation Workshop

    SciTech Connect

    Gilligan, Kimberly V.; Kirk, Bernadette Lugue

    2015-01-01

    The Modeling and Simulation for Safeguards and Nonproliferation Workshop was held December 15–18, 2014, at Oak Ridge National Laboratory. This workshop was made possible by the Next Generation Safeguards Initiative Human Capital Development (NGSI HCD) Program. The idea of the workshop was to move beyond the tried-and-true boot camp training of nonproliferation concepts to spend several days on the unique perspective of applying modeling and simulation (M&S) solutions to safeguards challenges.

  20. 10 CFR 72.184 - Safeguards contingency plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and Responsibility Matrix, the first four categories of information relating to nuclear facilities... contained in the Responsibility Matrix of the licensee's safeguards contingency plan. The licensee...

  1. 75 FR 78777 - Advisory Committee On Reactor Safeguards; Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ...: The Advisory Committee on Reactor Safeguards was established by Section 29 of the Atomic Energy Act... accident phenomena; design of nuclear power plant structures, systems and components; materials...

  2. IAEA SAFEGUARDS DURING PLUTONIUM STABILIZATION AT HANFORDS PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    MCRAE, L.P.

    2004-02-20

    The Vault at the Plutonium Finishing Plan (PFP) became subject to the International Atomic Energy Agency (IAEA) safeguards beginning in 1994 as part of the US excess fissile material program. The inventory needed to be stabilized and repackaged for long-term storage to comply with Defense Nuclear Facilities Safety Board Recommendation 94-1. In 1998, the United States began negotiations with IAEA to develop methods to maintain safeguards as this material was stabilized and repackaged. The Design Information Questionnaire was revised and submitted to the IAEA in 2002 describing how PFP would be modified to accommodate the stabilization process line. The operation plan for 2003 was submitted describing the proposed schedules for removing materials for stabilization. Stabilization and repackaging activities for the safeguarded plutonium began in January 2003 and were completed in December 2003. The safeguards approach implemented at the Hanford Site was a combination of the original baseline approach augmented by a series of five vault additions of stabilized materials followed by five removals of unstabilized materials. IAEA containment and surveillance measures were maintained until the unstabilized material was removed. Following placement of repackaged material (most from the original safeguarded stock) into the storage vault, the IAEA conducted inventory change verification measurements and then established containment and surveillance. As part of the stabilization campaign, the IAEA developed new measurement methods and calibration standards representative of the materials and packaging. The annual physical inventory verification was conducted on the normal IAEA schedule following the fourth additional/removal phase. Plant activities and the impacts on operations are described.

  3. Secure Video Surveillance System (SVSS) for unannounced safeguards inspections.

    SciTech Connect

    Galdoz, Erwin G. , Rio de Janeiro, Brazil); Pinkalla, Mark

    2010-09-01

    The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed. ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains

  4. Nuclear Safeguards and the International Atomic Energy Agency

    DTIC Science & Technology

    1995-04-01

    reactor, and absorption by fission products such as xenon-1 35. See Marvin M. Miller, MIT, ’"he Potential for Upgrading Safe- guards Procedures at...8217 rE’nergie Atomique ; Cogema = Compagnie Ge’ne’rale des Matie’res Nucle’aires; FBR = fast breeder reactor (liquid metal reactor); HM = heavy metal; LASCAR...used to measure the concentration and isotopic composition of plutonium in product solutions or in solid form. "* K-edge absorption densitometry

  5. Strengthening the International Safeguards System, Institutional and Financial Issues,

    DTIC Science & Technology

    1978-02-26

    only rather typicl of"I nternat ional~organIzat:ions, I t I s about twice the increase In" US federal goVernrent expenditures in real terms over. the...the Agency provides assistance only to those projects it finds technically *23sound. Since there is probably some "padding" in the requests and since...promotional programs. The latter include peaceful explos.ions, agricultural applications, theoretical research projects , Information distribution, and others

  6. Applications of Photonuclear Physics for International Safeguards and Security

    SciTech Connect

    Johnson, M S; Hall, J M; McNabb, D P; McFarland, J; Norman, E; Bertozzi, W; Korbly, S; Ledoux, R; Park, W

    2010-04-16

    Studies of nuclear resonance fluorescence based applications are presented. Important for these applications are data for isotopes such as {sup 239}Pu. Nuclear resonance fluorescence measurements of {sup 239}Pu were performed at the free electron laser facility at UC Santa Barbara using photons from a bremsstrahlung beam with an endpoint energies between 4.0 MeV and 5.5 MeV. Though no discrete states with significant confidence level were measured, we have excluded the region above 27(3) eV-barns, or 4-sigma, where we would expect only a small chance of false positives. Details of the measurements and the results are presented here.

  7. Nuclear Resonance Fluorescence for Safeguards Applications

    SciTech Connect

    Ludewigt, Bernhard A; Quiter, Brian J; Ambers, Scott D

    2011-02-04

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment

  8. A Simple Candle Filter Safeguard Device

    SciTech Connect

    Hurley, J.P.; Henderson, A.K.; Swanson, M.L.

    2002-09-18

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal utilization. Two main designs employ these turbines: those based on pressurized fluidized-bed combustors (PFBCs) and those based on integrated gasification combined cycles (IGCCs). In both designs, the suspended particulates, or dust, must be cleaned from the gas before it enters the turbine to prevent fouling and erosion of the blades. To produce the cleanest gas, barrier filters are being developed and are in commercial use. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the dust on the surface. The three main configurations are candle, cross-flow, and tube. Both candle and tube filters have been tested extensively. They are primarily composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer o n the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle, and individual elements can fail, allowing the particulates to pass through the hole left by the filter element and erode the turbine. Because of the possibility of occasional filter breakage, safeguard devices (SGDs) must be employed to prevent the dust streaming through broken filters from reaching the turbine. The Energy & Environmental Research Center (EERC) safeguard device is composed of three main parts: the ceramic substrate, the adhesive coating, and the safeguard device housing. This report describes the development and laboratory testing of each of those parts as well as the bench-scale performance of both types of complete SGDs.

  9. Safeguards and security modeling for electrochemical plants

    SciTech Connect

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D.

    2013-07-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers.

  10. Fuzzy risk analysis for nuclear safeguards

    SciTech Connect

    Zardecki, A.

    1993-01-01

    Analysis of a safeguards system, based on the notion of fuzzy sets and linguistic variables, concerns such as complexity and inherent imprecision in estimating the possibility of loss or compromise. The automated risk analysis allows the risk to be determined for an entire system based on estimates for lowest level components and the component proportion. In addition, for each component (asset) the most effective combination of protection mechanisms against a given set of threats is determined. A distinction between bar and featured risk is made.

  11. Lanthanum Bromide Detectors for Safeguards Measurements

    SciTech Connect

    Wright, J.

    2011-05-25

    Lanthanum bromide has advantages over other popular inorganic scintillator detectors. Lanthanum bromide offers superior resolution, and good efficiency when compared to sodium iodide and lanthanum chloride. It is a good alternative to high purity germanium detectors for some safeguards applications. This paper offers an initial look at lanthanum bromide detectors. Resolution of lanthanum bromide will be compared lanthanum chloride and sodium-iodide detectors through check source measurements. Relative efficiency and angular dependence will be looked at. Nuclear material spectra, to include plutonium and highly enriched uranium, will be compared between detector types.

  12. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    SciTech Connect

    Demuth, Scott Francis; Sprinkle, James K.

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  13. A colalborative environment for information driven safeguards

    SciTech Connect

    Scott, Mark R; Michel, Kelly D

    2010-09-15

    For two decades, the IAEA has recognized the need for a comprehensive and strongly integrated Knowledge Management system to support its Information Driven Safeguards activities. In the past, plans for the development of such a system have progressed slowly due to concerns over costs and feasibility. In recent years, Los Alamos National Laboratory has developed a knowledge management system that could serve as the basis for an IAEA Collaborative Environment (ICE). The ICE derivative knowledge management system described in this paper addresses the challenge of living in an era of information overload coupled with certain knowledge shortfalls. The paper describes and defines a system that is flexible, yet ensures coordinated and focused collaboration, broad data evaluation capabilities, architected and organized work flows, and improved communications. The paper and demonstration of ICE will utilize a hypothetical scenario to highlight the functional features that facilitate collaboration amongst and between information analysts and inspectors. The scenario will place these two groups into a simulated planning exercise for a safeguards inspection drawing upon past data acquisitions, inspection reports, analyst conclusions, and a coordinated walk-through of a 3-D model of the facility. Subsequent to the conduct of the simulated facility inspection, the detection of an anomaly and pursuit of follow up activities will illustrate the event notification, information sharing, and collaborative capabilities of the system. The use of a collaborative environment such as ICE to fulfill the complicated knowledge management demands of the Agency and facilitate the completion of annual State Evaluation Reports will also be addressed.

  14. Electrochemically Modulated Separation for Plutonium Safeguards

    SciTech Connect

    Pratt, Sandra H.; Breshears, Andrew T.; Arrigo, Leah M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2013-12-31

    Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned "on" and "off" depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 µg Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

  15. Non-proliferation, safeguards, and security for the fissile materials disposition program immobilization alternatives

    SciTech Connect

    Duggan, R.A.; Jaeger, C.D.; Tolk, K.M.; Moore, L.R.

    1996-05-01

    The Department of Energy is analyzing long-term storage and disposition alternatives for surplus weapons-usable fissile materials. A number of different disposition alternatives are being considered. These include facilities for storage, conversion and stabilization of fissile materials, immobilization in glass or ceramic material, fabrication of fissile material into mixed oxide (MOX) fuel for reactors, use of reactor based technologies to convert material into spent fuel, and disposal of fissile material using geologic alternatives. This paper will focus on how the objectives of reducing security and proliferation risks are being considered, and the possible facility impacts. Some of the areas discussed in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threats, and (4) potential proliferation, safeguards, and security issues and impacts on the facilities. Issues applicable to all of the possible disposition alternatives will be discussed in this paper. However, particular attention is given to the plutonium immobilization alternatives.

  16. The US Support Program Assistance to the IAEA Safeguards Information Technology, Collection, and Analysis 2008

    SciTech Connect

    Tackentien,J.

    2008-06-12

    One of the United States Support Program's (USSP) priorities for 2008 is to support the International Atomic Energy Agency's (IAEA) development of an integrated and efficient safeguards information infrastructure, including reliable and maintainable information systems, and effective tools and resources to collect and analyze safeguards-relevant information. The USSP has provided funding in support of this priority for the ISIS Re-engineering Project (IRP), and for human resources support to the design and definition of the enhanced information analysis architecture project (nVision). Assistance for several other information technology efforts is provided. This paper will report on the various ongoing support measures undertaken by the USSP to support the IAEA's information technology enhancements and will provide some insights into activities that the USSP may support in the future.

  17. Application of Telepresence Technologies to Nuclear Material Safeguards

    SciTech Connect

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  18. Safeguarding and Protecting Children in Maternity Services: Implications for Practice

    ERIC Educational Resources Information Center

    Lazenbatt, Anne; Greer, Jean

    2009-01-01

    This article debates the issues involved in safeguarding and protecting children in maternity services and offers implications for professional practice. Midwives and other staff who work as members of the maternity team have a safeguarding role to play in the identification of babies and children who have been abused, or are at risk of abuse, and…

  19. 42 CFR 438.58 - Conflict of interest safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Conflict of interest safeguards. 438.58 Section 438... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE State Responsibilities § 438.58 Conflict of interest... safeguards against conflict of interest on the part of State and local officers and employees and agents...

  20. 42 CFR 438.58 - Conflict of interest safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Conflict of interest safeguards. 438.58 Section 438... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE State Responsibilities § 438.58 Conflict of interest... safeguards against conflict of interest on the part of State and local officers and employees and agents...

  1. 42 CFR 438.58 - Conflict of interest safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Conflict of interest safeguards. 438.58 Section 438... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE State Responsibilities § 438.58 Conflict of interest... safeguards against conflict of interest on the part of State and local officers and employees and agents...

  2. 42 CFR 438.58 - Conflict of interest safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Conflict of interest safeguards. 438.58 Section 438... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE State Responsibilities § 438.58 Conflict of interest... safeguards against conflict of interest on the part of State and local officers and employees and agents...

  3. 29 CFR 1910.335 - Safeguards for personnel protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... eyes or face from electric arcs or flashes or from flying objects resulting from electrical explosion... 29 Labor 5 2011-07-01 2011-07-01 false Safeguards for personnel protection. 1910.335 Section 1910....335 Safeguards for personnel protection. (a) Use of protective equipment—(1) Personal...

  4. 29 CFR 1910.335 - Safeguards for personnel protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... eyes or face from electric arcs or flashes or from flying objects resulting from electrical explosion... 29 Labor 5 2013-07-01 2013-07-01 false Safeguards for personnel protection. 1910.335 Section 1910....335 Safeguards for personnel protection. (a) Use of protective equipment—(1) Personal...

  5. 29 CFR 1910.335 - Safeguards for personnel protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... eyes or face from electric arcs or flashes or from flying objects resulting from electrical explosion... 29 Labor 5 2014-07-01 2014-07-01 false Safeguards for personnel protection. 1910.335 Section 1910....335 Safeguards for personnel protection. (a) Use of protective equipment—(1) Personal...

  6. 29 CFR 1910.335 - Safeguards for personnel protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... eyes or face from electric arcs or flashes or from flying objects resulting from electrical explosion... 29 Labor 5 2012-07-01 2012-07-01 false Safeguards for personnel protection. 1910.335 Section 1910....335 Safeguards for personnel protection. (a) Use of protective equipment—(1) Personal...

  7. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another....

  8. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another....

  9. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another....

  10. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and...

  11. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another....

  12. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and...

  13. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and...

  14. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and...

  15. 30 CFR 77.1008 - Relocation of drills; safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Relocation of drills; safeguards. 77.1008... COAL MINES Ground Control § 77.1008 Relocation of drills; safeguards. (a) When a drill is being moved from one drilling area to another, drill steel, tools, and other equipment shall be secured and...

  16. 30 CFR 77.1013 - Air drills; safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air drills; safeguards. 77.1013 Section 77.1013... Control § 77.1013 Air drills; safeguards. Air shall be turned off and bled from the air hoses before hand-held air drills are moved from one working area to another....

  17. 42 CFR 438.58 - Conflict of interest safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Conflict of interest safeguards. 438.58 Section 438... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE State Responsibilities § 438.58 Conflict of interest... safeguards against conflict of interest on the part of State and local officers and employees and agents...

  18. 7 CFR 352.10 - Inspection; safeguards; disposal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Inspection; safeguards; disposal. 352.10 Section 352...; safeguards; disposal. (a) Inspection and release. Prohibited and restricted products and articles subject to... refused such entry or movement before unloading or landing, or which were refused such entry or...

  19. 7 CFR 996.60 - Safeguard procedures for imported peanuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Safeguard procedures for imported peanuts. 996.60... QUALITY AND HANDLING STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Quality and Handling Standards § 996.60 Safeguard procedures for imported peanuts. (a) Prior to, or upon, arrival of...

  20. 7 CFR 996.60 - Safeguard procedures for imported peanuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Safeguard procedures for imported peanuts. 996.60... QUALITY AND HANDLING STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Quality and Handling Standards § 996.60 Safeguard procedures for imported peanuts. (a) Prior to, or upon, arrival of...

  1. 7 CFR 996.60 - Safeguard procedures for imported peanuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Safeguard procedures for imported peanuts. 996.60... QUALITY AND HANDLING STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Quality and Handling Standards § 996.60 Safeguard procedures for imported peanuts. (a) Prior to, or upon, arrival of...

  2. 7 CFR 996.60 - Safeguard procedures for imported peanuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Safeguard procedures for imported peanuts. 996.60... QUALITY AND HANDLING STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Quality and Handling Standards § 996.60 Safeguard procedures for imported peanuts. (a) Prior to, or upon, arrival of...

  3. 7 CFR 996.60 - Safeguard procedures for imported peanuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguard procedures for imported peanuts. 996.60... QUALITY AND HANDLING STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Quality and Handling Standards § 996.60 Safeguard procedures for imported peanuts. (a) Prior to, or upon, arrival of...

  4. 48 CFR 52.239-1 - Privacy or Security Safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Privacy or Security....239-1 Privacy or Security Safeguards. As prescribed in 39.107, insert a clause substantially the same as the following: Privacy or Security Safeguards (AUG 1996) (a) The Contractor shall not publish...

  5. 48 CFR 52.239-1 - Privacy or Security Safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Privacy or Security....239-1 Privacy or Security Safeguards. As prescribed in 39.107, insert a clause substantially the same as the following: Privacy or Security Safeguards (AUG 1996) (a) The Contractor shall not publish...

  6. 48 CFR 52.239-1 - Privacy or Security Safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Privacy or Security....239-1 Privacy or Security Safeguards. As prescribed in 39.107, insert a clause substantially the same as the following: Privacy or Security Safeguards (AUG 1996) (a) The Contractor shall not publish...

  7. 48 CFR 52.239-1 - Privacy or Security Safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Privacy or Security....239-1 Privacy or Security Safeguards. As prescribed in 39.107, insert a clause substantially the same as the following: Privacy or Security Safeguards (AUG 1996) (a) The Contractor shall not publish...

  8. 48 CFR 52.239-1 - Privacy or Security Safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Privacy or Security....239-1 Privacy or Security Safeguards. As prescribed in 39.107, insert a clause substantially the same as the following: Privacy or Security Safeguards (AUG 1996) (a) The Contractor shall not publish...

  9. 30 CFR 77.204 - Openings in surface installations; safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Openings in surface installations; safeguards... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.204 Openings in surface installations; safeguards....

  10. 75 FR 28074 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... Accidental Radionuclide Releases.'' 10:15 a.m.-12 p.m.: Status of Risk-Informing Guidance of New...

  11. 76 FR 30404 - Advisory Committee On Reactor Safeguards; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... [Federal Register Volume 76, Number 101 (Wednesday, May 25, 2011)] [Notices] [Pages 30404-30405] [FR Doc No: 2011-12954] NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards... (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS) will hold a meeting...

  12. 75 FR 3501 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards...

  13. 75 FR 70304 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... Power Reactors;'' Interim Staff Guidance (ISG) NSIR/DPR-ISG- 01,''Emergency Planning for Nuclear...

  14. 75 FR 21046 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... discussions with the NRC Chairman to discuss topics of mutual interest. 1 p.m.-4 p.m.: Boiling Water...

  15. 75 FR 64366 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards...

  16. 75 FR 51500 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... Generic Safety Issue (GSI)-191, Assessment of Debris Accumulation on Pressurized Water Reactor...

  17. 75 FR 13799 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... Evaluation Report (SER) with Open Items Associated with the Review of the U.S. Evolutionary Power...

  18. 76 FR 5218 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... Facilities and Probabilistic Risk Assessments (PRAs) for Reactors (Open)--The Committee will...

  19. 75 FR 8154 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... NRC staff regarding Digital I&C DAC Inspection Methodology. 10:30 a.m.-12 p.m.: New Advanced...

  20. 10 CFR 73.71 - Reporting of safeguards events.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Reporting of safeguards events. 73.71 Section 73.71 Energy... § 73.71 Reporting of safeguards events. (a)(1) Each licensee subject to the provisions of §§ 73.25, 73... revised information. Each licensee shall maintain a copy of the written report of an event submitted...

  1. 10 CFR 73.71 - Reporting of safeguards events.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Reporting of safeguards events. 73.71 Section 73.71 Energy... § 73.71 Reporting of safeguards events. (a)(1) Each licensee subject to the provisions of §§ 73.25, 73... revised information. Each licensee shall maintain a copy of the written report of an event submitted...

  2. 10 CFR 73.71 - Reporting of safeguards events.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Reporting of safeguards events. 73.71 Section 73.71 Energy... § 73.71 Reporting of safeguards events. (a)(1) Each licensee subject to the provisions of §§ 73.25, 73... revised information. Each licensee shall maintain a copy of the written report of an event submitted...

  3. 10 CFR 73.71 - Reporting of safeguards events.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Reporting of safeguards events. 73.71 Section 73.71 Energy... § 73.71 Reporting of safeguards events. (a)(1) Each licensee subject to the provisions of §§ 73.25, 73... revised information. Each licensee shall maintain a copy of the written report of an event submitted...

  4. 10 CFR 73.71 - Reporting of safeguards events.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Reporting of safeguards events. 73.71 Section 73.71 Energy... § 73.71 Reporting of safeguards events. (a)(1) Each licensee subject to the provisions of §§ 73.25, 73... revised information. Each licensee shall maintain a copy of the written report of an event submitted...

  5. 18 CFR 1301.69 - Safeguarding classified information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Safeguarding classified information. 1301.69 Section 1301.69 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY PROCEDURES Protection of National Security Classified Information § 1301.69 Safeguarding...

  6. Systems Analysis of Safeguards Effectiveness in a Uranium Conversion Facility

    SciTech Connect

    Elayat, H A; Lambert, H; O'Connell, W J

    2004-06-16

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems. For this goal several DOE National Laboratories are defining the characteristics of typical facilities of several size scales, and the safeguards measures and instrumentation that could be applied. Lawrence Livermore National Laboratory is providing systems modeling and analysis of facility and safeguards operations, diversion path generation, and safeguards system effectiveness. The constituent elements of diversion scenarios are structured using directed graphs (digraphs) and fault trees. Safeguards indicator probabilities are based on sampling statistics and/or measurement accuracies. Scenarios are ranked based on value and quantity of material removed and the estimated probability of non-detection. Significant scenarios, especially those involving timeliness or randomly varying order of events, are transferred to simulation analysis. Simulations show the range of conditions encountered by the safeguards measurements and inspections, e.g., the quantities of intermediate materials in temporary storage and the time sequencing of material flow. Given a diversion campaign, simulations show how much the range of the same parameters observed by the safeguards system can differ from the base-case range. The combination of digraphs, fault trees, statistics and simulation constitute a method for evaluation of the estimated benefit of alternate or additional safeguards equipment or features. A generic example illustrates the method.

  7. Organizational Culture, 3S, and Safeguards by Design

    SciTech Connect

    Mladineo, Stephen V.; Frazar, Sarah L.

    2012-01-31

    While Safety and Security Culture are well socialized among nuclear facility designers, the concept of safeguards culture is less well defined. One area where safeguards culture may play a helpful role is in the area of Safeguards by Design. This paper will include a theoretical discussion of organizational culture, leading with safety culture and security culture that are well known, and positing that there may be room to think about safeguards culture along with the others. It will also examine the utility of the 3S concept and how this concept has been used in training for newcomer states. These will lead into a discussion of how the addition of safeguards to the mix of safety by design and security by design can be valuable, particularly as it is socialized to newcomer states.

  8. Radio-Frequency (RF) Devices for Safeguards: Where We Are and Where We Need to Go

    SciTech Connect

    Rowe, Nathan C; Younkin, James R; Pickett, Chris A; Whitaker, J Michael

    2011-01-01

    Radio-Frequency (RF) devices have revolutionized many aspects of modern industrial processes. RF technology can enable wireless communication for tag identification, sensor communication, and asset tracking. Radio-frequency identification (RFID) is a technology that utilizes wireless communication to interrogate and identify an electronic tag attached to an item in order to identify the item. The technology can come in many forms: passive or active tags, low to ultra-wideband frequencies, small paper-thin tags to brick-sized units, and simple tags or highly integrated sensor packages. RF technology, and specifically RFID, has been applied widely in commercial markets for inventory, supply chain management, and asset tracking. Several recent studies have demonstrated the safeguards benefits of utilizing RFID versus conventional inventory tagging methods for tracking nuclear material. These studies have indicated that the RF requirements for safeguards functions are more stringent than the RF requirements for other inventory tracking and accounting applications. Additionally, other requirements must be addressed, including environmental and operating conditions, authentication, and tag location and attachment. Facility restrictions on radio spectrum, method of tag attachment, and sensitivity of the data collected impact the tag selection and system design. More important, the intended use of the system must be considered. The requirements for using RF to simply replace or supplement container identifiers such as bar codes that facilitate the inventory function will differ greatly from the requirements for deploying RF for unattended monitoring applications. Several studies have investigated these considerations to advance commercial RF devices for safeguards use, and a number of system concepts have been developed. This paper will provide an overview of past studies and current technologies, and will investigate the requirements, existing gaps, and several potential

  9. Robot speeds assays and enhances safeguards

    SciTech Connect

    Phelan, P.F.; Powell, W.D.; Blankenship, R.W.

    1990-01-01

    At the Los Alamos National Laboratory Plutonium Facility, a robotics system utilizing a gantry robot and an automated inventory system operates five calorimeters and two gamma isotopic assay instruments. This system has significantly improved safeguards, because the opportunity for diversion has been greatly reduced. Not only is the accountability much more timely because throughput has doubled but the special nuclear material has been made physically more secure in several ways. First, items awaiting assay are kept in the inventory system, whose doors remain locked whenever the robot is unattended. An alarm sounds if the doors are unlocked without authorization. Second, light curtains surround the robot's work envelope and pressure-sensitive pads cover the floor to detect entry into the assay area. Third, the robot weighs each item whenever it is moved, and the result is compared with the weight that was measured when the item was first put into inventory. 2 refs., 3 figs.

  10. Apparatus for safeguarding a radiological source

    DOEpatents

    Bzorgi, Fariborz M

    2014-10-07

    A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

  11. Analysis of the impact of safeguards criteria

    SciTech Connect

    Mullen, M.F.; Reardon, P.T.

    1981-01-01

    As part of the US Program of Technical Assistance to IAEA Safeguards, the Pacific Northwest Laboratory (PNL) was asked to assist in developing and demonstrating a model for assessing the impact of setting criteria for the application of IAEA safeguards. This report presents the results of PNL's work on the task. The report is in three parts. The first explains the technical approach and methodology. The second contains an example application of the methodology. The third presents the conclusions of the study. PNL used the model and computer programs developed as part of Task C.5 (Estimation of Inspection Efforts) of the Program of Technical Assistance. The example application of the methodology involves low-enriched uranium conversion and fuel fabrication facilities. The effects of variations in seven parameters are considered: false alarm probability, goal probability of detection, detection goal quantity, the plant operator's measurement capability, the inspector's variables measurement capability, the inspector's attributes measurement capability, and annual plant throughput. Among the key results and conclusions of the analysis are the following: the variables with the greatest impact on the probability of detection are the inspector's measurement capability, the goal quantity, and the throughput; the variables with the greatest impact on inspection costs are the throughput, the goal quantity, and the goal probability of detection; there are important interactions between variables. That is, the effects of a given variable often depends on the level or value of some other variable. With the methodology used in this study, these interactions can be quantitatively analyzed; reasonably good approximate prediction equations can be developed using the methodology described here.

  12. Safeguards Evaluation Method for evaluating vulnerability to insider threats

    SciTech Connect

    Al-Ayat, R.A.; Judd, B.R.; Renis, T.A.

    1986-01-01

    As protection of DOE facilities against outsiders increases to acceptable levels, attention is shifting toward achieving comparable protection against insiders. Since threats and protection measures for insiders are substantially different from those for outsiders, new perspectives and approaches are needed. One such approach is the Safeguards Evaluation Method. This method helps in assessing safeguards vulnerabilities to theft or diversion of special nuclear meterial (SNM) by insiders. The Safeguards Evaluation Method-Insider Threat is a simple model that can be used by safeguards and security planners to evaluate safeguards and proposed upgrades at their own facilities. The method is used to evaluate the effectiveness of safeguards in both timely detection (in time to prevent theft) and late detection (after-the-fact). The method considers the various types of potential insider adversaries working alone or in collusion with other insiders. The approach can be used for a wide variety of facilities with various quantities and forms of SNM. An Evaluation Workbook provides documentation of the baseline assessment; this simplifies subsequent on-site appraisals. Quantitative evaluation is facilitated by an accompanying computer program. The method significantly increases an evaluation team's on-site analytical capabilities, thereby producing a more thorough and accurate safeguards evaluation.

  13. Safeguards Options for Natural Uranium Conversion Facilities ? A Collaborative Effort between the U.S. Department of Energy (DOE) and the National Nuclear Energy Commission of Brazil (CNEN)

    SciTech Connect

    Raffo-Caiado, Ana Claudia; Begovich, John M; Ferrada, Juan J

    2008-01-01

    In 2005, the National Nuclear Energy Commission of Brazil (CNEN) and the U.S. Department of Energy (DOE) agreed on a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE's Oak Ridge National Laboratory and CNEN. A generic model of an NUCP was developed and typical processing steps were defined. The study, completed in early 2007, identified potential safeguards measures and evaluated their effectiveness and impacts on operations. In addition, advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was framed by the International Atomic Energy Agency's (IAEA's) 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Before this policy, only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and, therefore, subject to AEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, and the IAEA. This paper highlights the findings of this joint collaborative effort and identifies technical measures to strengthen international safeguards in NUCPs.

  14. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D.

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  15. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    SciTech Connect

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P.

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  16. Implementation of IT-based applications in the safeguards field

    SciTech Connect

    Ekenstam, G.C. af; Sallstrom, M.

    1995-12-31

    For many years the Swedish Nuclear Power Inspectorate, SKI, has used computers as a tool within nuclear material control and accountancy. Over the last five years a lot of effort has been put into projects related to the increasing possibilities of fast and reliable data transfer over large distances. The paper discusses related administrative and technical issues and presents experience gained in tasks of the Swedish Support Program to IAEA Safeguards and during the alternative Safeguards trials carried out by SKI. The following topics will be presented: (1) Main Safeguards purposes and data transfer; (2) Administrative systems and requirements; (3) Technical possibilities and experiences; and (4) The cost aspect.

  17. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    SciTech Connect

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  18. Criteria for internal auditing.

    PubMed

    Holder, W W; Clay, R J

    1979-01-01

    An effective, inclusive internal auditing endeavor should help assure hospital managements that (1) an adequate system of internal control exists to assure the safeguarding of assets and the reliability of data produced by the financial information system, (2) uneconomic operating practices are detected promptly so they can be remedied, and (3) program results and effectiveness levels are of sufficiently high quality to demonstrate managerial competence.

  19. Global Survey of the Concepts and Understanding of the Interfaces Between Nuclear Safety, Security, and Safeguards

    SciTech Connect

    Kovacic, Don N.; Stewart, Scott; Erickson, Alexa R.; Ford, Kerrie D.; Mladineo, Stephen V.

    2015-07-15

    There is increasing global discourse on how the elements of nuclear safety, security, and safeguards can be most effectively implemented in nuclear power programs. While each element is separate and unique, they must nevertheless all be addressed in a country’s laws and implemented via regulations and in facility operations. This topic is of particular interest to countries that are currently developing the infrastructure to support nuclear power programs. These countries want to better understand what is required by these elements and how they can manage the interfaces between them and take advantages of any synergies that may exist. They need practical examples and guidance in this area in order to develop better organizational strategies and technical capacities. This could simplify their legal, regulatory, and management structures and avoid inefficient approaches and costly mistakes that may not be apparent to them at this early stage of development. From the perspective of IAEA International Safeguards, supporting Member States in exploring such interfaces and synergies provides a benefit to them because it acknowledges that domestic safeguards in a country do not exist in a vacuum. Instead, it relies on a strong State System of Accounting and Control that is in turn dependent on a capable and independent regulatory body as well as a competent operator and technical staff. These organizations must account for and control nuclear material, communicate effectively, and manage and transmit complete and correct information to the IAEA in a timely manner. This, while in most cases also being responsible for the safety and security of their facilities. Seeking efficiencies in this process benefits international safeguards and nonproliferation. This paper will present the results of a global survey of current and anticipated approaches and practices by countries and organizations with current or future nuclear power programs on how they are implementing, or

  20. 32 CFR 310.13 - Safeguarding personal information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (a) General responsibilities. DoD Components shall establish appropriate administrative, technical and physical safeguards to ensure that the records in each system of records are protected from unauthorized access, alteration, or disclosure and that their confidentiality is preserved and...

  1. Development of Pattern Recognition Options for Combining Safeguards Subsystems

    SciTech Connect

    Burr, Thomas L.; Hamada, Michael S.

    2012-08-24

    This talk reviews project progress in combining process monitoring data and nuclear material accounting data to improve the over nuclear safeguards system. Focus on 2 subsystems: (1) nuclear materials accounting (NMA); and (2) process monitoring (PM).

  2. Advanced integrated safeguards using front-end-triggering devices

    SciTech Connect

    Howell, J.A.; Whitty, W.J.

    1995-12-01

    This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

  3. Termination of Safeguards on ULWBR Material

    SciTech Connect

    Ivan R. Thomas; Ernest L. Laible

    2008-07-01

    The Department of Energy (DOE), Office of Environmental Management, has approved the disposition of 31 metric tons of Unirradiated Light Water Breeder Reactor (ULWBR) material in canisters stored within dry wells of the Underground Fuel Storage Facility at the Idaho Nuclear Technology and Engineering Center (INTEC). This unirradiated material consists primarily of ceramic pellets of thorium oxide in stainless steel cladding, but it also contains 300 kilograms of uranium that is 98 wt% U-233. The ULWBR material was not processed at the INTEC because it was incompatible with prior chemical separation schemes. Other economical recovery options have not been identified, and expressions of interest for consolidating the material with existing projects at other DOE sites have not been received. The U-233 could be used for producing the medical isotope Actinium-225, but the proof-of-principle demonstration and follow-on pilot program have not been developed to the point of requiring production quantities of U-233. Consequently, the selected disposition of the ULWBR material was burial as Low Level Waste at the Nevada Test Site (NTS), which required terminating safeguards controls for the contained Category II quantity of Attractiveness Level D special nuclear material (SNM). The requested termination followed the twelve point evaluation criteria of the Historical Defense Program Discard Guidance and included a security analysis for evaluating the risks of theft, diversion, and radiological sabotage associated with the material. Continuity of knowledge in the book inventory was assured by documenting that the original shipper’s measurements accurately reflected the quantities of materials received and that the ULWBR materials had remained under adequate physical protection and had been subject to periodic physical inventories. The method selected for substantiating the book values as the basis for terminating safeguards was the nondestructive assay used during physical

  4. Emerging National Space Launch Programs. Economics and Safeguards

    DTIC Science & Technology

    1993-01-01

    safeguard system (3ee Table 3.2). Now let us elaborate why SLV flight testi might not provide timely warniing. There are three reasons. First, some countries...ballistic missiles hereafter means surface-to-surface guided ballistic missiles only, Space launch vehicles ( SLVs ) are surface-to-space ballistic missiles...support missile nonproliferation. This dream is, however, hard to fulfill. xii A likely scheme for safeguarding SLVs , including sounding rockets, would

  5. Passive Measurement of Organic-Scintillator Neutron Signatures for Nuclear Safeguards Applications

    SciTech Connect

    Jennfier L. Dolan; Eric C. Miller; Alexis C. Kaplan; Andreas Enqvist; Marek Flaska; Alice Tomanin; Paolo Peerani; David L. Chichester; Sara A. Pozzi

    2012-10-01

    At nuclear facilities, domestically and internationally, most measurement systems used for nuclear materials’ control and accountability rely on He-3 detectors. Due to resource shortages, alternatives to He-3 systems are needed. This paper presents preliminary simulation and experimental efforts to develop a fast-neutron-multiplicity counter based on liquid organic scintillators. This mission also provides the opportunity to broaden the capabilities of such safeguards measurement systems to improve current neutron-multiplicity techniques and expand the scope to encompass advanced nuclear fuels.

  6. Advanced techniques in safeguarding a conditioning facility for spent fuel

    SciTech Connect

    Rudolf, K.; Weh, R. )

    1992-01-01

    Although reprocessing continues to be the main factor in the waste management of nuclear reactors, the alternative of direct final disposal is currently being developed to the level of industrial applications, based on an agreement between the heads of the federal government and the federal states of Germany. Thus, the Konrad and Gorleben sites are being studied as potential final repositories as is the pilot conditioning facility (PKA) under construction. Discussions on the application of safeguards measures have led to the drafting of an approach that will cover the entire back end of the fuel cycle. The conditioning of fuel prior to direct final disposal represents one element in the overall approach. A modern facility equipped with advanced technology, PKA is a pilot plant with regard to conditioning techniques as well as to safeguards. Therefore, the PKA safeguards approach is expected to facilitate future industrial applications of the conditioning procedure. This cannot be satisfactorily implemented without advanced safeguards techniques. The level of development of the safeguards techniques varies. While advanced camera and seal systems are basically available, the other techniques and methods still require research and development. Feasibility studies and equipment development are geared to providing applicable safeguards techniques in time for commissioning of the PKA.

  7. Health Information Security in Hospitals: the Application of Security Safeguards

    PubMed Central

    Mehraeen, Esmaeil; Ayatollahi, Haleh; Ahmadi, Maryam

    2016-01-01

    Introduction: A hospital information system has potentials to improve the accessibility of clinical information and the quality of health care. However, the use of this system has resulted in new challenges, such as concerns over health information security. This paper aims to assess the status of information security in terms of administrative, technical and physical safeguards in the university hospitals. Methods: This was a survey study in which the participants were information technology (IT) managers (n=36) who worked in the hospitals affiliated to the top ranked medical universities (university A and university B). Data were collected using a questionnaire. The content validity of the questionnaire was examined by the experts and the reliability of the questionnaire was determined using Cronbach’s coefficient alpha (α=0.75). Results: The results showed that the administrative safeguards were arranged at a medium level. In terms of the technical safeguards and the physical safeguards, the IT managers rated them at a strong level. Conclusion: According to the results, among three types of security safeguards, the administrative safeguards were assessed at the medium level. To improve it, developing security policies, implementing access control models and training users are recommended. PMID:27046944

  8. THIEF: An interactive simulation of nuclear materials safeguards

    SciTech Connect

    Stanbro, W. D.

    1990-01-01

    The safeguards community is facing an era in which it will be called upon to tighten protection of nuclear material. At the same time, it is probable that safeguards will face more competition for available resources from other activities such as environmental cleanup. To exist in this era, it will be necessary to understand and coordinate all aspects of the safeguards system. Because of the complexity of the interactions involved, this process puts a severe burden on designers and operators of safeguards systems. This paper presents a simulation tool developed at the Los Alamos National Laboratory to allow users to examine the interactions among safeguards elements as they apply to combating the insider threat. The tool consists of a microcomputer-based simulation in which the user takes the role of the insider trying to remove nuclear material from a facility. The safeguards system is run by the computer and consists of both physical protection and MC A computer elements. All data elements describing a scenario can be altered by the user. The program can aid in training, as well as in developing threat scenarios. 4 refs.

  9. SAFEGUARDS AND SECURITY INTEGRATION WITH SAFETY ANALYSIS

    SciTech Connect

    Hearn, J; James Lightner, J

    2007-04-13

    The objective of this paper is to share the Savannah River Site lessons learned on Safeguards and Security (S&S) program integration with K-Area Complex (KAC) safety basis. The KAC Documented Safety Analysis (DSA), is managed by the Washington Savannah River Company (WSRC), and the S&S program, managed by Wackenhut Services, Incorporated--Savannah River Site (WSI-SRS). WSRC and WSI-SRS developed a contractual arrangement to recognize WSI-SRS requirements in the KAC safety analysis. Design Basis Threat 2003 (DBT03) security upgrades required physical modifications and operational changes which included the availability of weapons which could potentially impact the facility safety analysis. The KAC DSA did not previously require explicit linkage to the S&S program to satisfy the safety analysis. WSI-SRS have contractual requirements with the Department of Energy (DOE) which are separate from WSRC contract requirements. The lessons learned will include a discussion on planning, analysis, approval of the controls and implementation issues.

  10. The Next Generation Safeguards Initiative s High-Purity Uranium-233 Preservation Effort

    SciTech Connect

    Krichinsky, Alan M; Bostick, Debra A; Giaquinto, Joseph; Bayne, Charles; Goldberg, Dr. Steven A.; Humphrey, Dr. Marc; Hutcheon, Dr. Ian D.; Sobolev, Taissa

    2012-01-01

    High-purity 233U serves as a crucial reference material for accurately quantifying and characterizing uranium. The most accurate analytical results which can be obtained only with high-purity 233U certified reference material (CRM) are required when used to confirm compliance with international safeguards obligations and international nonproliferation agreements. The U.S. supply of 233U CRM is almost depleted, and existing domestic stocks of this synthetic isotope are scheduled to be down-blended for disposition with depleted uranium beginning in 2015. Down blending batches of high-purity 233U will permanently eliminate the value of this material as a CRM. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of replacing such capability. Therefore, preserving select batches of high-purity 233U is of great value and will assist in retaining current analytical capabilities for uranium-bearing samples. Any organization placing a priority on accurate results of uranium analyses, or on the confirmation of trace uranium in environmental samples, has a vested interest in preserving this material. This paper describes the need for high-purity 233U, the consequences organizations and agencies face if this material is not preserved, and the progress and future plans for preserving select batches of the purest 233U materials from disposition. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

  11. Development of a Safeguards Verification Method and Instrument to Detect Pin Diversion from Pressurized Water Reactor (PWR) Spent Fuel Assemblies Phase I Study

    SciTech Connect

    Ham, Y S; Sitaraman, S

    2008-12-24

    A novel methodology to detect diversion of spent fuel from Pressurized Water Reactors (PWR) has been developed in order to address a long unsolved safeguards verification problem for international safeguards community such as International Atomic Energy Agency (IAEA) or European Atomic Energy Community (EURATOM). The concept involves inserting tiny neutron and gamma detectors into the guide tubes of a spent fuel assembly and measuring the signals. The guide tubes form a quadrant symmetric pattern in the various PWR fuel product lines and the neutron and gamma signals from these various locations are processed to obtain a unique signature for an undisturbed fuel assembly. Signatures based on the neutron and gamma signals individually or in a combination can be developed. Removal of fuel pins from the assembly will cause the signatures to be visibly perturbed thus enabling the detection of diversion. All of the required signal processing to obtain signatures can be performed on standard laptop computers. Monte Carlo simulation studies and a set of controlled experiments with actual commercial PWR spent fuel assemblies were performed and validated this novel methodology. Based on the simulation studies and benchmarking measurements, the methodology developed promises to be a powerful and practical way to detect partial defects that constitute 10% or more of the total active fuel pins. This far exceeds the detection threshold of 50% missing pins from a spent fuel assembly, a threshold defined by the IAEA Safeguards Criteria. The methodology does not rely on any operator provided data like burnup or cooling time and does not require movement of the fuel assembly from the storage rack in the spent fuel pool. A concept was developed to build a practical field device, Partial Defect Detector (PDET), which will be completely portable and will use standard radiation measuring devices already in use at the IAEA. The use of the device will not require any information provided

  12. ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR SAFEGUARDS MEASUREMENTS

    SciTech Connect

    Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Hazelton, Sandra G.; Duckworth, Douglas C.

    2010-08-11

    A critical objective of materials accountability in safeguards is the accurate and timely analysis of fuel reprocessing streams to detect both abrupt and prolonged diversions of nuclear materials. For this reason both on-line nondestructive (NDA) and destructive analysis (DA) approaches are sought-after. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. While direct on-line gamma measurements of Pu are desirable, they are not possible due to contributions from other actinides and fission products. Researchers at Pacific Northwest National Laboratory are currently investigating electrochemically-modulated separation (EMS) as a straightforward, cost-effective technology for selective separation of Pu or U from aqueous reprocessing streams. The EMS selectivity is electrochemically controlled and results from the sorption of Pu4+ and U4+ redox states onto the anodized target electrode, allowing for selective accumulation of U or Pu from nitric acid streams to be turned “on” or “off.” It is envisioned that this technology can be utilized to isolate Pu for both NDA and DA analysis. For the NDA approach, rapid Pu analysis by gamma-ray spectroscopy could be performed after chemical clean-up of activation and fission products by EMS. Likewise, in the DA approach, EMS could be used to retain and concentrate the Pu in nanogram quantities on the electrode surface to be transported to the lab for analysis using high precision mass spectrometry. Due to the challenges associated with complex matrices, a systematic investigation of the redox-dependent accumulation of Pu using EMS was necessary, and results will be presented. Approaches to mitigate interelement effects using large surface area cells will also be discussed. The EMS chemistry and spectroscopy for Pu isolation and measurement will be presented, proof-of-principle measurements will be described, and the application of this

  13. Enabling Exploration Through Docking Standards

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2012-01-01

    Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.

  14. Monitoring REDD+: From Social Safeguards to Social Learning

    NASA Astrophysics Data System (ADS)

    Ravikumar, A.; Andersson, K.

    2010-12-01

    Krister Andersson 1 and Ashwin Ravikumar 1 The UNFCCC requires countries that participate in the REDD+ (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries) program to monitor both forest carbon inventories as well as the governance of REDD+ activities and their social consequences. Exactly how this should be done, however, remains an open question. This paper addresses this question by drawing on existing research on social-ecological systems and new institutional economics. We make the case for a monitoring system that goes beyond a narrow focus of qualitative indicators of REDD+ governance that seek to provide social safeguards for international investors to create a more comprehensive monitoring system that is useful for social learning about how policies affect a variety of forest outcomes. We describe the defining characteristics of five existing approaches to monitoring REDD+ governance. Applying evaluative criteria of affordability, comprehensiveness, transparency, uncertainty specification, and explanatory potential, we analyze the extent to which each of the programs contribute to broader social learning processes in participating countries. Our analysis finds that it makes sense to move from the current narrow focus of monitoring for control to monitoring for social learning. Particularly valuable to participating REDD+ actors would be the creation of learning systems that can help policy makers to identify opportunities for policy improvements, with the ultimate goal of making REDD+ more effective, efficient, and equitable. Such learning is not possible, however, without timely and systematic collection of data on the relationships between forests and forest users. 1University of Colorado at Boulder, Environmental Studies Program, Boulder, CO 80309-0397

  15. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    SciTech Connect

    Santi, Peter A; Demuth, Scott F; Klasky, Kristen L; Lee, Haeok; Miller, Michael C; Sprinkle, James K; Tobin, Stephen J; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  16. Promoting global safeguards cooperation: Argentine-U.S. technical achievements

    SciTech Connect

    Owens, L.; Smith, C.

    1996-04-01

    The bilateral ENREN (Argentina National Nuclear Regulatory Board)-DOE Safeguards Agreement was signed by Dr. Dan Beninson, ENREN, and Dr. Kenneth Baker, DOE, at the Peaceful Uses Conference in Bariloche in 1994. Two major activities identified for immediate cooperation were: nondestructive assay (NDA) techniques for Pilcaniyeu, and advanced containment and surveillance at Embalse. Both of these are discussed here. While the activities of the past year and a half are significant, many more opportunities remain for valuable cooperative partnering to discover more effective and efficient ways to apply safeguards. Several that have been identified by ENREN and DOE for 1996 are: (1) environmental monitoring as a safeguards technique; (2) Pilcaniyeu measurement studies and joint IAEA support program activities; (3) information management and analysis tools; (4) safeguards analytical laboratory support; (5) study of the safeguards approach for Embalse; (6) expansion of the remote monitoring system at Embalse; (7) use of ground-penetrating radar technology at Embalse; and (8) computerized material control and accounting tools for Pilcaniyeu.

  17. Remote instrumentation and safeguards monitoring for the star project

    SciTech Connect

    Buettner, H M; Labiak, W; Spiridon, A

    2000-06-15

    A part of the Nuclear Energy Research Initiative (NERI) is the development of the Small Transportable Autonomous Reactor (STAR) for deployment in countries that do not have a nuclear industry. STARs would have an output of from 100 to 150 MW electric, would be fueled in the country of manufacture, and after 15 to 20 years of operation the reactor core would be returned to the country of manufacture for refueling. A candidate STAR design can be found in (Greenspan, 2000). This paper describes the design of the control and monitoring system that might be used. There are two unique features to this system. One is that the monitored information will be transmitted to a remote site for two purposes, safeguards, and allowing experts a great distance away direct access to view the reactor's operating parameters. The second feature is safeguards sensors will be designed into the system and there will monitoring of the safeguards aspects of the system for tampering. Any safeguards anomalies will be sent to the remote site as alarms. Encrypted satellite communications will be used to transmit the data. These features allow the STAR to be operated by a small staff and will reduce the costs of safeguards monitoring by reducing the number of plant visits by inspectors.

  18. Irans Nuclear Program: Tehrans Compliance with International Obligations

    DTIC Science & Technology

    2016-03-03

    Research Service Summary Several U.N. Security Council resolutions required Iran to cooperate fully with the International Atomic Energy Agency’s (IAEA’s...comprehensive International Atomic Energy Agency (IAEA) safeguards; Tehran concluded a comprehensive safeguards agreement with the IAEA in 1974. 2 In 2002...discuss what the agency has termed a “ structured approach to the clarification of all outstanding issues related to Iran’s nuclear programme.” 8

  19. Intrusion detection capabilities of smart video: Collaborative efforts to improve remote monitoring for safeguards surveillance

    SciTech Connect

    Kadner, S.P.; Ondrik, M.; Reisman, A.

    1996-12-31

    Collaborative efforts between the International Projects Division (IPD) of the Department of Advanced Technology at Brookhaven National Laboratory, Aquila Technologies Group, Inc. (Aquila), and the General Physics Institute (GPI) in Moscow have developed object recognition technologies to provide real-time intrusion detection capabilities for Aquila`s GEMINI Digital Surveillance System. The research, development and testing for integrating enhanced surveillance capabilities into Aquila`s GEMINI system will receive support from the US Industry Coalition (USIC), an initiative funded by the Initiatives for Proliferation Prevention (IPP), in the coming year. Oversight of the research and development effort is being provided by the IPD staff to ensure that the technical standards of safeguards systems for use by the International Atomic Energy Agency (IAEA) are met. The scientific expertise at GPI is providing breakthroughs in the realm of motion detection for surveillance. Aquila`s contribution to the project focuses on the integration of authenticated digital camera technology for front-end detection. This project illustrates how the application of technology can increase efficiency and reliability of remote monitoring, as well as the timely detection of Safeguards-significant events.

  20. 45 CFR 2508.10 - Who has the responsibility for maintaining adequate technical, physical, and security safeguards...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... adequate technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of... security safeguards to prevent unauthorized disclosure or destruction of manual and automatic record..., and security safeguards to prevent unauthorized disclosure or destruction of manual and...

  1. 45 CFR 2508.10 - Who has the responsibility for maintaining adequate technical, physical, and security safeguards...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... adequate technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of... security safeguards to prevent unauthorized disclosure or destruction of manual and automatic record..., and security safeguards to prevent unauthorized disclosure or destruction of manual and...

  2. 45 CFR 1159.15 - Who has the responsibility for maintaining adequate technical, physical, and security safeguards...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... adequate technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of... adequate technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of... of maintaining adequate technical, physical, and security safeguards to prevent...

  3. 45 CFR 2508.10 - Who has the responsibility for maintaining adequate technical, physical, and security safeguards...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... adequate technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of... security safeguards to prevent unauthorized disclosure or destruction of manual and automatic record..., and security safeguards to prevent unauthorized disclosure or destruction of manual and...

  4. 45 CFR 1159.15 - Who has the responsibility for maintaining adequate technical, physical, and security safeguards...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... adequate technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of... adequate technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of... of maintaining adequate technical, physical, and security safeguards to prevent...

  5. Integrated safeguards & security for material protection, accounting, and control.

    SciTech Connect

    Duran, Felicia Angelica; Cipiti, Benjamin B.

    2009-10-01

    Traditional safeguards and security design for fuel cycle facilities is done separately and after the facility design is near completion. This can result in higher costs due to retrofits and redundant use of data. Future facilities will incorporate safeguards and security early in the design process and integrate the systems to make better use of plant data and strengthen both systems. The purpose of this project was to evaluate the integration of materials control and accounting (MC&A) measurements with physical security design for a nuclear reprocessing plant. Locations throughout the plant where data overlap occurs or where MC&A data could be a benefit were identified. This mapping is presented along with the methodology for including the additional data in existing probabilistic assessments to evaluate safeguards and security systems designs.

  6. Safeguards Approaches for Black Box Processes or Facilities

    SciTech Connect

    Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

    2013-09-25

    The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

  7. Safeguarding the Seeds of Native Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As pharmaceutical demand, land restoration efforts, and conservation concerns increase there is an emerging emphasis by various organizations worldwide prioritizing germplasm collection of both native and medicinal taxa. Bioversity International, an organization coordinating the conservation of gen...

  8. RECRUITMENT OF U.S. CITIZENS FOR VACANCIES IN IAEA SAFEGUARDS.

    SciTech Connect

    OCCHIOGROSSO, D.; PEPPER, S.

    2006-07-16

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is likewise important to the U.S. government for U.S. citizens to take positions with the IAEA to contribute to its success. It is important for persons within and outside the U.S. nuclear and safeguards industries to become aware of the job opportunities available at the IAEA and to be informed of important vacancies as they arise. The International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) is tasked by the U.S. government with recruiting candidates for positions within the Department of Safeguards at the IAEA and since 1998, has been actively seeking methods for improving outreach. In addition, ISPO has been working more closely with the IAEA Division of Personnel. ISPO staff members attend trade shows to distribute information about IAEA opportunities. The shows target the nuclear industry as well as shows that are unrelated to the nuclear industry. ISPO developed a web site that provides information for prospective candidates. They have worked with the IAEA to understand its recruitment processes, to make suggestions for improvements, and to understand employment benefits so they can be communicated to potential U.S. applicants. ISPO is also collaborating with a State Department working group that is focused on increasing U.S. representation within the United Nations as a whole. Most recently Secretary of State Condoleezza Rice issued a letter to all Federal Agency heads encouraging details and transfers of their employees to international organizations to the maximum extent feasible and with due regard to their manpower requirements. She urged all federal agencies to review their detail and transfer policies and practices to ensure that employment in international organizations is promoted in a positive and active manner. In addition, she wrote that it is

  9. Outcomes from Enabling Courses.

    ERIC Educational Resources Information Center

    Phan, Oanh; Ball, Katrina

    The outcomes of enabling courses offered in Australia's vocational education and training (VET) sector were examined. "Enabling course" was defined as lower-level preparatory and prevocational courses covering a wide range of areas, including remedial education, bridging courses, precertificate courses, and general employment preparation…

  10. Technology Enabled Learning. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers on technology-enabled learning and human resource development. Among results found in "Current State of Technology-enabled Learning Programs in Select Federal Government Organizations: a Case Study of Ten Organizations" (Letitia A. Combs) are the following: the dominant delivery method is traditional…

  11. Nuclear material control and accounting safeguards in the United States

    SciTech Connect

    Woltermann, H.A.; Rudy, C.R.; Rakel, D.A.; DeVer, E.A.

    1982-07-01

    Material control and accounting (MC and A) of special nuclear material (SNM) must supplement physical security to protect SNM from unlawful use such as terrorist activities. This article reviews MC and A safeguards of SNM in the United States. The following topics are covered: a brief perspective and history of MC and A safeguards, current MC and A practices, measurement methods for SNM, historical MC and A performance, a description of near-real-time MC and A systems, and conclusions on the status of MC and A in the United States.

  12. Working Toward Robust Process Monitoring for Safeguards Applications

    SciTech Connect

    Krichinsky, Alan M; Bell, Lisa S; Gilligan, Kimberly V; Laughter, Mark D; Miller, Paul; Pickett, Chris A; Richardson, Dave; Rowe, Nathan C; Younkin, James R

    2010-01-01

    New safeguards technologies allow continuous monitoring of plant processes. Efforts to deploy these technologies, as described in a preponderance of literature, typically have consisted of case studies attempting to prove their efficacy in proof-of-principle installations. While the enhanced safeguards capabilities of continuous monitoring have been established, studies thus far have not addressed such challenges as manipulation of a system by a host nation. To prevent this and other such vulnerabilities, one technology, continuous load cell monitoring, was reviewed. This paper will present vulnerabilities as well as mitigation strategies that were identified.

  13. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and

  14. High-resolution microcalorimeter detectors as a tool in the future of nuclear safeguards

    SciTech Connect

    Hoteling, Nathan J; Hoover, Andrew S

    2010-01-01

    New measurements are presented from the LANL-NIST microcalorimeter array for two standard plutonium sources. The results demonstrate substantially smaller error bars obtained from the spectral analysis program FRAM. Some areas of improvement to the analysis technique have been identified, indicating that the micro calorimeter results can be improved upon. These results support the viability of a device for performing real nuclear safeguards measurements in the near future. The challenge of providing reliably accurate and precise data is a critical component of any safeguards initiative. In the realm of nuclear safeguards, this is an especially daunting task since inaccurate and/or imprecise data could have very serious international consequences. As such, there is a constant drive within the community to establish better measurement and analysis techniques in order to further reduce the associated errors and uncertainties. Even with todays state of the art equipment, measurement uncertainties can extend to several significant quantities worth of material over a relatively modest period of time. Furthermore, there is a strong desire for improved nondestructive analysis techniques in order to reduce both the cost, turnover rate, and inconvenience of destructive analyses. One promising new technology that may help to realize these goals is that of gamma-ray microcalorimeter detectors. The hallmark quality of this new technique is the ability to achieve energy resolution nearly an order of magnitude better than typical planar high-purity germanium (HPGe) detectors. Such an improvement may help reduce uncertainties associated with, for instance, plutonium isotopics or uranium enrichment measurements. This may, in turn, help to reduce uncertainties in total plutonium and/or uranium content in a given sample without the need for destructive analysis. In this paper, we will describe this new detector technology as well as some recent measurements carried out with the LANL

  15. 77 FR 76089 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  16. 78 FR 3474 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels... Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  17. 78 FR 29159 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels.... Cayetano Santos, Chief, Technical Support Branch, Advisory Committee on Reactor Safeguards. BILLING...

  18. Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report ending March 31, 1996

    SciTech Connect

    Davis, B.; Davis, G.; Johnson, D.; Mansur, D.L.; Ruhter, W.D.; Strait, R.S.

    1996-04-01

    LLNL carries out safeguards and security activities for DOE Office of Safeguards and Security (OSS) and other organizations within and outside DOE. LLNL is supporting OSS in 6 areas: safeguards technology, safeguards and materials accountability, computer security--distributed systems, complex-wide access control, standardization of security systems, and information technology and security center. This report describes the activities in each of these areas.

  19. 32 CFR Appendix A to Part 310 - Safeguarding Personally Identifiable Information (PII)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Risk Management and Safeguarding Standards 1. Establish administrative, technical, and physical... SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Pt. 310, App. A Appendix A to Part 310... proper safeguarding procedures. D. Physical Safeguards 1. For all unclassified facilities, areas,...

  20. 32 CFR Appendix A to Part 310 - Safeguarding Personally Identifiable Information (PII)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Risk Management and Safeguarding Standards 1. Establish administrative, technical, and physical... SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Pt. 310, App. A Appendix A to Part 310... proper safeguarding procedures. D. Physical Safeguards 1. For all unclassified facilities, areas,...

  1. 76 FR 33179 - Petition Requesting Safeguards for Glass Fronts of Gas Vented Fireplaces

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... COMMISSION 16 CFR 1460 Petition Requesting Safeguards for Glass Fronts of Gas Vented Fireplaces AGENCY: U.S... to require safeguards for glass fronts of gas vented fireplaces. We invite written comments... rulemaking to require safeguards for glass fronts of gas vented fireplaces. We are docketing this request...

  2. 14 CFR 1212.605 - Safeguarding information in systems of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Safeguarding information in systems of... PRIVACY ACT-NASA REGULATIONS Instructions for NASA Employees § 1212.605 Safeguarding information in systems of records. (a) Safeguards appropriate for a NASA system of records shall be developed by...

  3. 14 CFR 1212.605 - Safeguarding information in systems of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Safeguarding information in systems of... PRIVACY ACT-NASA REGULATIONS Instructions for NASA Employees § 1212.605 Safeguarding information in systems of records. (a) Safeguards appropriate for a NASA system of records shall be developed by...

  4. 42 CFR 431.305 - Types of information to be safeguarded.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Types of information to be safeguarded. 431.305... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS STATE ORGANIZATION AND GENERAL ADMINISTRATION Safeguarding Information on Applicants and Recipients § 431.305 Types of information to be safeguarded. (a) The agency...

  5. 75 FR 65038 - Advisory Committee on Reactor Safeguards; Procedures for Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... COMMISSION Advisory Committee on Reactor Safeguards; Procedures for Meetings Background This notice describes...'s) Advisory Committee on Reactor Safeguards (ACRS) pursuant to the Federal Advisory Committee Act... Federal Register Notice, care of the Advisory Committee on Reactor Safeguards, U.S. Nuclear...

  6. 45 CFR 1182.15 - Institute responsibility for maintaining adequate technical, physical, and security safeguards to...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of manual and..., physical, and security safeguards to prevent unauthorized disclosure or destruction of manual and automatic..., physical, and security safeguards to prevent unauthorized disclosure or destruction of manual and...

  7. 45 CFR 1182.15 - Institute responsibility for maintaining adequate technical, physical, and security safeguards to...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technical, physical, and security safeguards to prevent unauthorized disclosure or destruction of manual and..., physical, and security safeguards to prevent unauthorized disclosure or destruction of manual and automatic..., physical, and security safeguards to prevent unauthorized disclosure or destruction of manual and...

  8. Supplemental Report on Nuclear Safeguards Considerations for the Pebble Bed Modular Reactor (PBMR)

    SciTech Connect

    Moses, David Lewis; Ehinger, Michael H

    2010-05-01

    Recent reports by Department of Energy National Laboratories have discussed safeguards considerations for the low enriched uranium (LEU) fueled Pebble Bed Modular Reactor (PBMR) and the need for bulk accountancy of the plutonium in used fuel. These reports fail to account effectively for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency's (IAEA's) 'provisional' guidelines for termination of safeguards on 'measured discards.' The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel may not be judged sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of {sup 232}U and {sup 236}U in the used fuel at the target burn-up of {approx}91 GWD/MT exceed specification limits for reprocessed uranium (ASTM C787) and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the {sup 236}U content to fall within specification thus making the PBMR used fuel less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBMR specific activity of reprocessed uranium isotopic mixture and its A{sub 2} values for effective dose limit if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light water reactor spent fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product ({sup 99}Tc) and any possible plutonium contamination that may be present from attempted covert reprocessing. Thus, the potentially recoverable uranium from PBMR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of reprocessing, but a more significant

  9. 44 CFR 6.6 - Safeguarding systems of records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Safeguarding systems of records. 6.6 Section 6.6 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY..., training, special qualification, and skills, performance appraisals, and conduct, shall be stored in...

  10. 5 CFR 293.107 - Special safeguards for automated records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., reports, punched cards, magnetic tapes, disks, and on-line computer storage. The safeguards must be in... disclosure where use is made of identifiable personal data in testing of computer programs; (5) Control the flow of data into, through, and from agency computer operations; (6) Adequately protect...

  11. 5 CFR 293.107 - Special safeguards for automated records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reports, punched cards, magnetic tapes, disks, and on-line computer storage. The safeguards must be in... disclosure where use is made of identifiable personal data in testing of computer programs; (5) Control the flow of data into, through, and from agency computer operations; (6) Adequately protect...

  12. 5 CFR 293.107 - Special safeguards for automated records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reports, punched cards, magnetic tapes, disks, and on-line computer storage. The safeguards must be in... disclosure where use is made of identifiable personal data in testing of computer programs; (5) Control the flow of data into, through, and from agency computer operations; (6) Adequately protect...

  13. 5 CFR 293.107 - Special safeguards for automated records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., reports, punched cards, magnetic tapes, disks, and on-line computer storage. The safeguards must be in... disclosure where use is made of identifiable personal data in testing of computer programs; (5) Control the flow of data into, through, and from agency computer operations; (6) Adequately protect...

  14. 5 CFR 293.107 - Special safeguards for automated records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., reports, punched cards, magnetic tapes, disks, and on-line computer storage. The safeguards must be in... disclosure where use is made of identifiable personal data in testing of computer programs; (5) Control the flow of data into, through, and from agency computer operations; (6) Adequately protect...

  15. 46 CFR 503.59 - Safeguarding classified information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Information Security Program § 503.59 Safeguarding classified information. (a) All classified information... security; (2) Takes appropriate steps to protect classified information from unauthorized disclosure or... security check; (2) To protect the classified information in accordance with the provisions of...

  16. Getting the Facts Straight about Education Data. Safeguarding Data

    ERIC Educational Resources Information Center

    Data Quality Campaign, 2014

    2014-01-01

    Education data can empower educators, students, parents, and policymakers with the information they need to make the best decisions to improve student achievement, information that can move the nation toward an education system in which every student graduates prepared for college and career. Safeguarding the privacy of student data is a critical…

  17. 21 CFR 312.88 - Safeguards for patient safety.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... within parts 50, 56, 312, 314, and 600 of this chapter designed to ensure the safety of clinical testing... (part 56 of this chapter). These safeguards further include the review of animal studies prior to initial human testing (§ 312.23), and the monitoring of adverse drug experiences through the...

  18. Indiana Department of Education Notice of Procedural Safeguards

    ERIC Educational Resources Information Center

    Indiana Department of Education, 2010

    2010-01-01

    As the parent of a child who has or may have a disability, the federal and state laws give them certain rights--called procedural safeguards. If they would like a more detailed explanation of these rights, they should contact the principal of their child's school, a school administrator, their local special education director, or any of the…

  19. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect

    Boyer, Brian D

    2012-08-15

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  20. 34 CFR 300.504 - Procedural safeguards notice.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Procedural safeguards notice. 300.504 Section 300.504 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...