Remote Access to Wireless Communications Systems Laboratory--New Technology Approach
ERIC Educational Resources Information Center
Kafadarova, Nadezhda; Sotirov, Sotir; Milev, Mihail
2012-01-01
Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable students to use expensive laboratory equipment, which is not usually available to students. In…
ERIC Educational Resources Information Center
Stokes, Alison; Collins, Trevor; Maskall, John; Lea, John; Lunt, Paul; Davies, Sarah
2012-01-01
This study considers the pedagogical effectiveness of remote access to fieldwork locations. Forty-one students from across the GEES disciplines (geography, earth and environmental sciences) undertook a fieldwork exercise, supported by two lecturers. Twenty students accessed the field site directly and the remainder accessed the site remotely using…
Remote Access Laboratories in Australia and Europe
ERIC Educational Resources Information Center
Ku, H.; Ahfock, T.; Yusaf, T.
2011-01-01
Remote access laboratories (RALs) were first developed in 1994 in Australia and Switzerland. The main purposes of developing them are to enable students to do their experiments at their own pace, time and locations and to enable students and teaching staff to get access to facilities beyond their institutions. Currently, most of the experiments…
Virtual Computing Laboratories: A Case Study with Comparisons to Physical Computing Laboratories
ERIC Educational Resources Information Center
Burd, Stephen D.; Seazzu, Alessandro F.; Conway, Christopher
2009-01-01
Current technology enables schools to provide remote or virtual computing labs that can be implemented in multiple ways ranging from remote access to banks of dedicated workstations to sophisticated access to large-scale servers hosting virtualized workstations. This paper reports on the implementation of a specific lab using remote access to…
Putting a Medical Library Online: Phase III--Remote Access to CD-ROMs.
ERIC Educational Resources Information Center
Kittle, Paul
1989-01-01
Describes the implementation of a project that provides dial-up access to MEDLINE on remote optical data disk (CD-ROM) using software that enables callers to use programs like Wordstar, Lotus, and dBase. Highlights include networking CD-ROM databases, hardware considerations, advantages and disadvantages of remote access, and future plans. A…
Dr. Tulga Ersal at NSF Workshop Accessible Remote Testbeds ART'15
;Enabling High-Fidelity Closed-Loop Integration of Remotely Accessible Testbeds" at the NSF Sponsored project (2010-2013) "Internet-Distributed Hardware-in-the-Loop Simulation". Sponsored by U.S
Patel, J; Hearn, L; Slack-Smith, L M
2015-09-01
Aboriginal Australians face significant disparities in oral health and this is particularly the case in remote communities where access to dental services can be difficult. Using volunteers to provide dental care in the remote Kimberley region of Western Australia is a novel approach. This study comprised an anonymous online survey of volunteers working with the Kimberley Dental Team (KDT). The survey had a response fraction of 66% and explored volunteer demographic characteristics, factors that motivated their involvement, perceptions of oral health among Aboriginal communities, and barriers and enablers to oral health in remote Aboriginal communities. Volunteers were more likely to be female, middle-aged and engaged in full-time employment. The two most common reasons reported for volunteering were to assist the community and visit the Kimberley region. Education and access to reliable, culturally appropriate care were perceived as enablers to good oral health for Aboriginal people in the Kimberley while limited access to services, poor nutrition and lack of government support were cited as barriers. Volunteers providing dental services to remote areas in Western Australia had a diverse demographic profile. However, they share similar motivating factors and views on the current barriers and enablers to good oral health in remote Aboriginal communities. © 2015 Australian Dental Association.
Remote infrared audible signage (RIAS) pilot program report.
DOT National Transportation Integrated Search
2011-07-01
The Remote Infrared Audible Sign Model Accessibility Program (RIAS MAP) is a program funded by the Federal Transit Administration (FTA) to evaluate the effectiveness of remote infrared audible sign systems in enabling persons with visual and cognitiv...
ERIC Educational Resources Information Center
Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi
2015-01-01
This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…
High-quality remote interactive imaging in the operating theatre
NASA Astrophysics Data System (ADS)
Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan
2009-02-01
We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.
OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Greiner, Annette; Cholia, Shreyas
Mass spectrometry imaging (MSI) enables researchers to directly probe endogenous molecules directly within the architecture of the biological matrix. Unfortunately, efficient access, management, and analysis of the data generated by MSI approaches remain major challenges to this rapidly developing field. Despite the availability of numerous dedicated file formats and software packages, it is a widely held viewpoint that the biggest challenge is simply opening, sharing, and analyzing a file without loss of information. Here we present OpenMSI, a software framework and platform that addresses these challenges via an advanced, high-performance, extensible file format and Web API for remote data accessmore » (http://openmsi.nersc.gov). The OpenMSI file format supports storage of raw MSI data, metadata, and derived analyses in a single, self-describing format based on HDF5 and is supported by a large range of analysis software (e.g., Matlab and R) and programming languages (e.g., C++, Fortran, and Python). Careful optimization of the storage layout of MSI data sets using chunking, compression, and data replication accelerates common, selective data access operations while minimizing data storage requirements and are critical enablers of rapid data I/O. The OpenMSI file format has shown to provide >2000-fold improvement for image access operations, enabling spectrum and image retrieval in less than 0.3 s across the Internet even for 50 GB MSI data sets. To make remote high-performance compute resources accessible for analysis and to facilitate data sharing and collaboration, we describe an easy-to-use yet powerful Web API, enabling fast and convenient access to MSI data, metadata, and derived analysis results stored remotely to facilitate high-performance data analysis and enable implementation of Web based data sharing, visualization, and analysis.« less
Networking Technologies Enable Advances in Earth Science
NASA Technical Reports Server (NTRS)
Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard
2004-01-01
This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.
Spatial access disparities to primary health care in rural and remote Australia.
McGrail, Matthew Richard; Humphreys, John Stirling
2015-11-04
Poor spatial access to health care remains a key issue for rural populations worldwide. Whilst geographic information systems (GIS) have enabled the development of more sophisticated access measures, they are yet to be adopted into health policy and workforce planning. This paper provides and tests a new national-level approach to measuring primary health care (PHC) access for rural Australia, suitable for use in macro-level health policy. The new index was constructed using a modified two-step floating catchment area method framework and the smallest available geographic unit. Primary health care spatial access was operationalised using three broad components: availability of PHC (general practitioner) services; proximity of populations to PHC services; and PHC needs of the population. Data used in its measurement were specifically chosen for accuracy, reliability and ongoing availability for small areas. The resultant index reveals spatial disparities of access to PHC across rural Australia. While generally more remote areas experienced poorer access than more populated rural areas, there were numerous exceptions to this generalisation, with some rural areas close to metropolitan areas having very poor access and some increasingly remote areas having relatively good access. This new index provides a geographically-sensitive measure of access, which is readily updateable and enables a fine granulation of access disparities. Such an index can underpin national rural health programmes and policies designed to improve rural workforce recruitment and retention, and, importantly, health service planning and resource allocation decisions designed to improve equity of PHC access.
A prototype Upper Atmospheric Research Collaboratory (UARC)
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Atkins, D. E; Weymouth, T. E.; Olson, G. M.; Niciejewski, R.; Finholt, T. A.; Prakash, A.; Rasmussen, C. E.; Killeen, T.; Rosenberg, T. J.
1995-01-01
The National Collaboratory concept has great potential for enabling 'critical mass' working groups and highly interdisciplinary research projects. We report here on a new program to build a prototype collaboratory using the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland and a group of associated scientists. The Upper Atmospheric Research Collaboratory (UARC) is a joint venture of researchers in upper atmospheric and space science, computer science, and behavioral science to develop a testbed for collaborative remote research. We define the 'collaboratory' as an advanced information technology environment which enables teams to work together over distance and time on a wide variety of intellectual tasks. It provides: (1) human-to-human communications using shared computer tools and work spaces; (2) group access and use of a network of information, data, and knowledge sources; and (3) remote access and control of instruments for data acquisition. The UARC testbed is being implemented to support a distributed community of space scientists so that they have network access to the remote instrument facility in Kangerlussuaq and are able to interact among geographically distributed locations. The goal is to enable them to use the UARC rather than physical travel to Greenland to conduct team research campaigns. Even on short notice through the collaboratory from their home institutions, participants will be able to meet together to operate a battery of remote interactive observations and to acquire, process, and interpret the data.
Improving Access to Data While Protecting Confidentiality: Prospects for the Future.
ERIC Educational Resources Information Center
Duncan, George T.; Pearson, Robert W.
Providing researchers, especially those in the social sciences, with access to publicly collected microdata furthers research while advancing public policy goals in a democratic society. However, while technological improvements have eased remote access to these databases and enabled computer using researchers to perform sophisticated statistical…
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)
2003-01-01
The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote access from outside of NASA centers. A SAFE enabled IPG can enable IPG capabilities to be available to NASA mission design teams across different NASA center and partner company firewalls. This paper will first discuss some of the potential security issues for IPG to work across NASA center firewalls. We will then present the SAFE federated security model. Finally we will present the concept of the architecture of a SAFE enabled IPG and how it can benefit NASA mission development.
ERIC Educational Resources Information Center
Childers, Gina; Jones, M. Gail
2015-01-01
Remote access technologies enable students to investigate science by utilizing scientific tools and communicating in real-time with scientists and researchers with only a computer and an Internet connection. Very little is known about student perceptions of how real remote investigations are and how immersed the students are in the experience.…
ERIC Educational Resources Information Center
Newton, Robert; Marcella, Rita; Middleton, Iain; McConnell, Michael
This paper reports on ReMOTE (Research Methods Online Teaching Environment), a Robert Gordon University (Scotland) project focusing on the development of a World Wide Web (WWW) site devoted to the teaching of research methods. The aim of ReMOTE is to provide an infrastructure that allows direct links to specialist sources in order to enable the…
Remote access laboratories in Australia and Europe
NASA Astrophysics Data System (ADS)
Ku, H.; Ahfock, T.; Yusaf, T.
2011-06-01
Remote access laboratories (RALs) were first developed in 1994 in Australia and Switzerland. The main purposes of developing them are to enable students to do their experiments at their own pace, time and locations and to enable students and teaching staff to get access to facilities beyond their institutions. Currently, most of the experiments carried out through RALs in Australia are heavily biased towards electrical, electronic and computer engineering disciplines. However, the experiments carried out through RALs in Europe had more variety, in addition to the traditional electrical, electronic and computer engineering disciplines, there were experiments in mechanical and mechatronic disciplines. It was found that RALs are now being developed aggressively in Australia and Europe and it can be argued that RALs will develop further and faster in the future with improving Internet technology. The rising costs of real experimental equipment will also speed up their development because by making the equipment remotely accessible, the cost can be shared by more universities or institutions and this will improve their cost-effectiveness. Their development would be particularly rapid in large countries with small populations such as Australia, Canada and Russia, because of the scale of economy. Reusability of software, interoperability in software implementation, computer supported collaborative learning and convergence with learning management systems are the required development of future RALs.
Fast-responder: Rapid mobile-phone access to recent remote sensing imagery for first responders
NASA Astrophysics Data System (ADS)
Talbot, L. M.; Talbot, B. G.
We introduce Fast-Responder, a novel prototype data-dissemination application and architecture concept to rapidly deliver remote sensing imagery to smartphones to enable situational awareness. The architecture implements a Fast-Earth image caching system on the phone and interacts with a Fast-Earth server. Prototype evaluation successfully demonstrated that National Guard users could select a location, download multiple remote sensing images, and flicker between images, all in less than a minute on a 3G mobile commercial link. The Fast-Responder architecture is a significant advance that is designed to meet the needs of mobile users, such as National Guard response units, to rapidly access information during a crisis, such as a natural or man-made disaster. This paper focuses on the architecture design and advanced user interface concepts for small-screens for highly active mobile users. Novel Fast-Responder concepts can also enable rapid dissemination and evaluation of imagery on the desktop, opening new technology horizons for both desktop and mobile users.
The U.S. Geological Survey land remote sensing program
Saunders, T.; Feuquay, J.; Kelmelis, J.A.
2003-01-01
The U.S. Geological Survey has been a provider of remotely sensed information for decades. As the availability and use of satellite data has grown, USGS has placed increasing emphasis on expanding the knowledge about the science of remote sensing and on making remotely sensed data more accessible. USGS encourages widespread availability and distribution of these data and through its programs, encourages and enables a variety of research activities and the development of useful applications of the data. The science of remote sensing has great potential for assisting in the monitoring and assessment of the impacts of natural disasters, management and analysis of environmental, biological, energy, and mineral investigations, and supporting informed public policy decisions. By establishing the Land Remote Sensing Program (LRS) as a major unit of the USGS Geography Program, USGS has taken the next step to further increase support for the accessibility, understanding, and use of remotely sensed data. This article describes the LRS Program, its mission and objectives, and how the program has been structured to accomplish its goals.
Experiences with http/WebDAV protocols for data access in high throughput computing
NASA Astrophysics Data System (ADS)
Bernabeu, Gerard; Martinez, Francisco; Acción, Esther; Bria, Arnau; Caubet, Marc; Delfino, Manuel; Espinal, Xavier
2011-12-01
In the past, access to remote storage was considered to be at least one order of magnitude slower than local disk access. Improvement on network technologies provide the alternative of using remote disk. For those accesses one can today reach levels of throughput similar or exceeding those of local disks. Common choices as access protocols in the WLCG collaboration are RFIO, [GSI]DCAP, GRIDFTP, XROOTD and NFS. HTTP protocol shows a promising alternative as it is a simple, lightweight protocol. It also enables the use of standard technologies such as http caching or load balancing which can be used to improve service resilience and scalability or to boost performance for some use cases seen in HEP such as the "hot files". WebDAV extensions allow writing data, giving it enough functionality to work as a remote access protocol. This paper will show our experiences with the WebDAV door for dCache, in terms of functionality and performance, applied to some of the HEP work flows in the LHC Tier1 at PIC.
Total centralisation and optimisation of an oncology management suite via Citrix®
NASA Astrophysics Data System (ADS)
James, C.; Frantzis, J.; Ripps, L.; Fenton, P.
2014-03-01
The management of patient information and treatment planning is traditionally an intra-departmental requirement of a radiation oncology service. Epworth Radiation Oncology systems must support the transient nature of Visiting Medical Officers (VMOs). This unique work practice created challenges when implementing the vision of a completely paperless solution that allows for a responsive and efficient service delivery. ARIA® and EclipseTM (Varian Medical Systems, Palo Alto, CA, USA) have been deployed across four dedicated Citrix® (Citrix Systems, Santa Clara, CA, USA) servers allowing VMOs to access these applications remotely. A range of paperless solutions were developed within ARIA® to facilitate clinical and organisational management whilst optimising efficient work practices. The IT infrastructure and paperless workflow has enabled VMOs to securely access the VarianTM (Varian Medical Systems, Palo Alto, CA, USA) oncology software and experience full functionality from any location on multiple devices. This has enhanced access to patient information and improved the responsiveness of the service. Epworth HealthCare has developed a unique solution to enable remote access to a centralised oncology management suite, while maintaining a secure and paperless working environment.
Remote visual analysis of large turbulence databases at multiple scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulido, Jesus; Livescu, Daniel; Kanov, Kalin
The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less
Remote visual analysis of large turbulence databases at multiple scales
Pulido, Jesus; Livescu, Daniel; Kanov, Kalin; ...
2018-06-15
The remote analysis and visualization of raw large turbulence datasets is challenging. Current accurate direct numerical simulations (DNS) of turbulent flows generate datasets with billions of points per time-step and several thousand time-steps per simulation. Until recently, the analysis and visualization of such datasets was restricted to scientists with access to large supercomputers. The public Johns Hopkins Turbulence database simplifies access to multi-terabyte turbulence datasets and facilitates the computation of statistics and extraction of features through the use of commodity hardware. In this paper, we present a framework designed around wavelet-based compression for high-speed visualization of large datasets and methodsmore » supporting multi-resolution analysis of turbulence. By integrating common technologies, this framework enables remote access to tools available on supercomputers and over 230 terabytes of DNS data over the Web. Finally, the database toolset is expanded by providing access to exploratory data analysis tools, such as wavelet decomposition capabilities and coherent feature extraction.« less
Bringing Up Gopher: Access to Local & Remote Electronic Resources for University Library Users.
ERIC Educational Resources Information Center
Brown, Melvin Marlo; And Others
Some of the administrative and organizational issues in creating a gopher, specifically a library gopher for university libraries, are discussed. In 1993 the Electronic Collections Task Force of the New Mexico State University library administration began to develop a library-based gopher system that would enable users to have unlimited access to…
Kim, Jong Bae; Brienza, David M
2006-01-01
A Remote Accessibility Assessment System (RAAS) that uses three-dimensional (3-D) reconstruction technology is being developed; it enables clinicians to assess the wheelchair accessibility of users' built environments from a remote location. The RAAS uses commercial software to construct 3-D virtualized environments from photographs. We developed custom screening algorithms and instruments for analyzing accessibility. Characteristics of the camera and 3-D reconstruction software chosen for the system significantly affect its overall reliability. In this study, we performed an accuracy assessment to verify that commercial hardware and software can construct accurate 3-D models by analyzing the accuracy of dimensional measurements in a virtual environment and a comparison of dimensional measurements from 3-D models created with four cameras/settings. Based on these two analyses, we were able to specify a consumer-grade digital camera and PhotoModeler (EOS Systems, Inc, Vancouver, Canada) software for this system. Finally, we performed a feasibility analysis of the system in an actual environment to evaluate its ability to assess the accessibility of a wheelchair user's typical built environment. The field test resulted in an accurate accessibility assessment and thus validated our system.
Test-bed for the remote health monitoring system for bridge structures using FBG sensors
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog
2009-05-01
This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.
UPC++ Programmer’s Guide (v1.0 2017.9)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, J.; Baden, S.; Bonachea, D.
UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less
UPC++ Programmer’s Guide, v1.0-2018.3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, J.; Baden, S.; Bonachea, Dan
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less
Telerobotic Haptic Exploration in Art Galleries and Museums for Individuals with Visual Impairments.
Park, Chung Hyuk; Ryu, Eun-Seok; Howard, Ayanna M
2015-01-01
This paper presents a haptic telepresence system that enables visually impaired users to explore locations with rich visual observation such as art galleries and museums by using a telepresence robot, a RGB-D sensor (color and depth camera), and a haptic interface. The recent improvement on RGB-D sensors has enabled real-time access to 3D spatial information in the form of point clouds. However, the real-time representation of this data in the form of tangible haptic experience has not been challenged enough, especially in the case of telepresence for individuals with visual impairments. Thus, the proposed system addresses the real-time haptic exploration of remote 3D information through video encoding and real-time 3D haptic rendering of the remote real-world environment. This paper investigates two scenarios in haptic telepresence, i.e., mobile navigation and object exploration in a remote environment. Participants with and without visual impairments participated in our experiments based on the two scenarios, and the system performance was validated. In conclusion, the proposed framework provides a new methodology of haptic telepresence for individuals with visual impairments by providing an enhanced interactive experience where they can remotely access public places (art galleries and museums) with the aid of haptic modality and robotic telepresence.
McQueen, Carl; Roberts, David; Evans, Daniel; Wyse, Matthew
2013-06-01
Responding to incidents where access by conventional land-based ambulance assets is limited is an important facet of helicopter emergency medical services operations in rural areas. Often in such cases extra resources must be utilised to enable access to patients and facilitate egress to transport platforms. This case illustrates the importance of coordination and integration with additional resources that can be utilised in remote rural locations.
Davis, Brian N.; Werpy, Jason; Friesz, Aaron M.; Impecoven, Kevin; Quenzer, Robert; Maiersperger, Tom; Meyer, David J.
2015-01-01
Current methods of searching for and retrieving data from satellite land remote sensing archives do not allow for interactive information extraction. Instead, Earth science data users are required to download files over low-bandwidth networks to local workstations and process data before science questions can be addressed. New methods of extracting information from data archives need to become more interactive to meet user demands for deriving increasingly complex information from rapidly expanding archives. Moving the tools required for processing data to computer systems of data providers, and away from systems of the data consumer, can improve turnaround times for data processing workflows. The implementation of middleware services was used to provide interactive access to archive data. The goal of this middleware services development is to enable Earth science data users to access remote sensing archives for immediate answers to science questions instead of links to large volumes of data to download and process. Exposing data and metadata to web-based services enables machine-driven queries and data interaction. Also, product quality information can be integrated to enable additional filtering and sub-setting. Only the reduced content required to complete an analysis is then transferred to the user.
Incorporating Brokers within Collaboration Environments
NASA Astrophysics Data System (ADS)
Rajasekar, A.; Moore, R.; de Torcy, A.
2013-12-01
A collaboration environment, such as the integrated Rule Oriented Data System (iRODS - http://irods.diceresearch.org), provides interoperability mechanisms for accessing storage systems, authentication systems, messaging systems, information catalogs, networks, and policy engines from a wide variety of clients. The interoperability mechanisms function as brokers, translating actions requested by clients to the protocol required by a specific technology. The iRODS data grid is used to enable collaborative research within hydrology, seismology, earth science, climate, oceanography, plant biology, astronomy, physics, and genomics disciplines. Although each domain has unique resources, data formats, semantics, and protocols, the iRODS system provides a generic framework that is capable of managing collaborative research initiatives that span multiple disciplines. Each interoperability mechanism (broker) is linked to a name space that enables unified access across the heterogeneous systems. The collaboration environment provides not only support for brokers, but also support for virtualization of name spaces for users, files, collections, storage systems, metadata, and policies. The broker enables access to data or information in a remote system using the appropriate protocol, while the collaboration environment provides a uniform naming convention for accessing and manipulating each object. Within the NSF DataNet Federation Consortium project (http://www.datafed.org), three basic types of interoperability mechanisms have been identified and applied: 1) drivers for managing manipulation at the remote resource (such as data subsetting), 2) micro-services that execute the protocol required by the remote resource, and 3) policies for controlling the execution. For example, drivers have been written for manipulating NetCDF and HDF formatted files within THREDDS servers. Micro-services have been written that manage interactions with the CUAHSI data repository, the DataONE information catalog, and the GeoBrain broker. Policies have been written that manage transfer of messages between an iRODS message queue and the Advanced Message Queuing Protocol. Examples of these brokering mechanisms will be presented. The DFC collaboration environment serves as the intermediary between community resources and compute grids, enabling reproducible data-driven research. It is possible to create an analysis workflow that retrieves data subsets from a remote server, assemble the required input files, automate the execution of the workflow, automatically track the provenance of the workflow, and share the input files, workflow, and output files. A collaborator can re-execute a shared workflow, compare results, change input files, and re-execute an analysis.
Biomedical image analysis and processing in clouds
NASA Astrophysics Data System (ADS)
Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John
2013-10-01
Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.
A remote data access architecture for home-monitoring health-care applications.
Lin, Chao-Hung; Young, Shuenn-Tsong; Kuo, Te-Son
2007-03-01
With the aging of the population and the increasing patient preference for receiving care in their own homes, remote home care is one of the fastest growing areas of health care in Taiwan and many other countries. Many remote home-monitoring applications have been developed and implemented to enable both formal and informal caregivers to have remote access to patient data so that they can respond instantly to any abnormalities of in-home patients. The aim of this technology is to give both patients and relatives better control of the health care, reduce the burden on informal caregivers and reduce visits to hospitals and thus result in a better quality of life for both the patient and his/her family. To facilitate their widespread adoption, remote home-monitoring systems take advantage of the low-cost features and popularity of the Internet and PCs, but are inherently exposed to several security risks, such as virus and denial-of-service (DoS) attacks. These security threats exist as long as the in-home PC is directly accessible by remote-monitoring users over the Internet. The purpose of the study reported in this paper was to improve the security of such systems, with the proposed architecture aimed at increasing the system availability and confidentiality of patient information. A broker server is introduced between the remote-monitoring devices and the in-home PCs. This topology removes direct access to the in-home PC, and a firewall can be configured to deny all inbound connections while the remote home-monitoring application is operating. This architecture helps to transfer the security risks from the in-home PC to the managed broker server, on which more advanced security measures can be implemented. The pros and cons of this novel architecture design are also discussed and summarized.
An integrated solution for remote data access
NASA Astrophysics Data System (ADS)
Sapunenko, Vladimir; D'Urso, Domenico; dell'Agnello, Luca; Vagnoni, Vincenzo; Duranti, Matteo
2015-12-01
Data management constitutes one of the major challenges that a geographically- distributed e-Infrastructure has to face, especially when remote data access is involved. We discuss an integrated solution which enables transparent and efficient access to on-line and near-line data through high latency networks. The solution is based on the joint use of the General Parallel File System (GPFS) and of the Tivoli Storage Manager (TSM). Both products, developed by IBM, are well known and extensively used in the HEP computing community. Owing to a new feature introduced in GPFS 3.5, so-called Active File Management (AFM), the definition of a single, geographically-distributed namespace, characterised by automated data flow management between different locations, becomes possible. As a practical example, we present the implementation of AFM-based remote data access between two data centres located in Bologna and Rome, demonstrating the validity of the solution for the use case of the AMS experiment, an astro-particle experiment supported by the INFN CNAF data centre with the large disk space requirements (more than 1.5 PB).
NASA Astrophysics Data System (ADS)
Teng, W.; Chiu, L.; Kempler, S.; Liu, Z.; Nadeau, D.; Rui, H.
2006-12-01
Using NASA satellite remote sensing data from multiple sources for hydrologic applications can be a daunting task and requires a detailed understanding of the data's internal structure and physical implementation. Gaining this understanding and applying it to data reduction is a time-consuming task that must be undertaken before the core investigation can begin. In order to facilitate such investigations, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has developed the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure or "Giovanni," which supports a family of Web interfaces (instances) that allow users to perform interactive visualization and analysis online without downloading any data. Two such Giovanni instances are particularly relevant to hydrologic applications: the Tropical Rainfall Measuring Mission (TRMM) Online Visualization and Analysis System (TOVAS) and the Agricultural Online Visualization and Analysis System (AOVAS), both highly popular and widely used for a variety of applications, including those related to several NASA Applications of National Priority, such as Agricultural Efficiency, Disaster Management, Ecological Forecasting, Homeland Security, and Public Health. Dynamic, context- sensitive Web services provided by TOVAS and AOVAS enable users to seamlessly access NASA data from within, and deeply integrate the data into, their local client environments. One example is between TOVAS and Florida International University's TerraFly, a Web-enabled system that serves a broad segment of the research and applications community, by facilitating access to various textual, remotely sensed, and vector data. Another example is between AOVAS and the U.S. Department of Agriculture Foreign Agricultural Service (USDA FAS)'s Crop Explorer, the primary decision support tool used by FAS to monitor the production, supply, and demand of agricultural commodities worldwide. AOVAS is also part of GES DISC's Agricultural Information System (AIS), which can operationally provide satellite remote sensing data products (e.g., near- real-time rainfall) and analysis services to agricultural users. AIS enables the remote, interoperable access to distributed data, by using the GrADS-Data Server (GDS) and the Open Geospatial Consortium (OGC)- compliant MapServer. The latter allows the access of AIS data from any OGC-compliant client, such as the Earth-Sun System Gateway (ESG) or Google Earth. The Giovanni system is evolving towards a Service- Oriented Architecture and is highly customizable (e.g., adding new products or services), thus availing the hydrologic applications user community of Giovanni's simple-to-use and powerful capabilities to improve decision-making.
Towards ubiquitous access of computer-assisted surgery systems.
Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin
2006-01-01
Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.
Enabling Remote Activity: Using mobile technology for remote participation in geoscience fieldwork
NASA Astrophysics Data System (ADS)
Davies, Sarah; Collins, Trevor; Gaved, Mark; Bartlett, Jessica; Valentine, Chris; McCann, Lewis
2010-05-01
Field-based activities are regarded as essential to the development of a range of professional and personal skills within the geosciences. Students enjoy field activities, preferring these to learning with simulations (Spicer and Stratford 2001), and these improve deeper learning and understanding (Kern and Carpenter, 1984; Elkins and Elkins, 2007). However, some students find it difficult to access these field-based learning opportunities. Field sites may be remote and often require travel across uneven, challenging or potentially dangerous terrain. Mobility-impaired students are particularly limited in their opportunities to participate in field-based learning activities and, as higher education institutions have a responsibility to provide inclusive opportunities for students (UK Disability Discrimination Act 1995, UK Special Education Needs and Disability Rights Act 2001), the need for inclusive fieldwork learning is being increasingly recognised. The Enabling Remote Activity (ERA) project has been investigating how mobile communications technologies might allow field learning experiences to be brought to students who would otherwise find it difficult to participate, and also to enhance activities for all participants. It uses a rapidly deployable, battery-powered wireless network to transmit video, audio, and high resolution still images to connect participants at an accessible location with participants in the field. Crucially, the system uses a transient wireless network, allowing multiple locations to be explored during a field visit, and for plans to be changed dynamically if required. Central to the concept is the requirement for independent investigative learning: students are enabled to participate actively in the learning experience and to direct the investigations, as opposed to being simply remote viewers of the experience. Two ways of using the ERA system have been investigated: remote access and collaborative groupwork. In 2006 and 2008 remote access was used to enable mobility-impaired students to take part in and complete a field course. This involved connecting the student in an accessible vehicle located close to the field site, via a wireless network, to a geologist in the field. The geologist worked alongside the general body of students and the field tutor as each geological site was investigated. Two-way communications allowed the student to guide the geologist to provide video panoramas of the area, to select areas of interest for further study and to obtain high resolution images of specific points. The students were able to work through the field activities alongside the rest of the student group. A collaborative groupwork trial (2007) was used to connect two groups of students; one in an accessible laboratory, the other at a field site. Traditionally, students collect data in the field and analyze it on return to the laboratory; this system proposes a more rapid collection and analysis procedure, with information being transmitted between sites with field and laboratory participants having their own distinct, significant roles within the learning activity. This project recently received an award at the 2008 Handheld Learning Conference and a HEFCE sponsored Open University Teaching Award. In contrast to the use of ‘virtual fieldwork' that aims to provide simulations or a resource for a student to use, the focus of this project is on how technology can be used to support actual fieldwork activities. This approach has been trialled now over three field seasons, with students using the system to remotely participate in fieldwork activities. Interviews with tutors and students have shown that this was perceived as valuable and allowed participants to achieve the learning objectives of the course alongside their peers. The challenges of remote fieldwork concern the co-ordination of students' activities, the integration of remote and field activities and practical issues of lightweight, easy-to-use, robust technologies and the provision of a reliable communications network. References Elkins, J.T. & Elkins, N.M.L. (2007) Teaching geology in the field: significant geoscience concept gains in entirely field-based introductory geology courses. Journal of Geoscience Education, 55 (2), 126-132. Kern, E. and Carpenter, J. (2004). Enhancement of student values, interests and attitudes in Earth Science through a field-oriented approach. Journal of Geological Education, 32 (5), 299-305. Spicer, J. I. and Stratford, J. (2001) Student perceptions of a virtual field trip to replace a real field trip. Journal of Computer Assisted Learning, 17(4), 345-354.
Remote direct memory access over datagrams
Grant, Ryan Eric; Rashti, Mohammad Javad; Balaji, Pavan; Afsahi, Ahmad
2014-12-02
A communication stack for providing remote direct memory access (RDMA) over a datagram network is disclosed. The communication stack has a user level interface configured to accept datagram related input and communicate with an RDMA enabled network interface card (NIC) via an NIC driver. The communication stack also has an RDMA protocol layer configured to supply one or more data transfer primitives for the datagram related input of the user level. The communication stack further has a direct data placement (DDP) layer configured to transfer the datagram related input from a user storage to a transport layer based on the one or more data transfer primitives by way of a lower layer protocol (LLP) over the datagram network.
Securely implementing remote access within health information management.
Carroll, E T; Wright, S; Zakoworotny, C
1998-03-01
As technology changes, our definition of the workplace expands, and we no longer are limited to working at our desk in an office. The authors describe technologies that enable us to work from home or on the road and examine security regulations and precautions.
NASA Astrophysics Data System (ADS)
Hellman, Brandon; Bosset, Erica; Ender, Luke; Jafari, Naveed; McCann, Phillip; Nguyen, Chris; Summitt, Chris; Wang, Sunglin; Takashima, Yuzuru
2017-11-01
The ray formalism is critical to understanding light propagation, yet current pedagogy relies on inadequate 2D representations. We present a system in which real light rays are visualized through an optical system by using a collimated laser bundle of light and a fog chamber. Implementation for remote and immersive access is enabled by leveraging a commercially available 3D viewer and gesture-based remote controlling of the tool via bi-directional communication over the Internet.
Enhancing the Remote Variable Operations in NPSS/CCDK
NASA Technical Reports Server (NTRS)
Sang, Janche; Follen, Gregory; Kim, Chan; Lopez, Isaac; Townsend, Scott
2001-01-01
Many scientific applications in aerodynamics and solid mechanics are written in Fortran. Refitting these legacy Fortran codes with distributed objects can increase the code reusability. The remote variable scheme provided in NPSS/CCDK helps programmers easily migrate the Fortran codes towards a client-server platform. This scheme gives the client the capability of accessing the variables at the server site. In this paper, we review and enhance the remote variable scheme by using the operator overloading features in C++. The enhancement enables NPSS programmers to use remote variables in much the same way as traditional variables. The remote variable scheme adopts the lazy update approach and the prefetch method. The design strategies and implementation techniques are described in details. Preliminary performance evaluation shows that communication overhead can be greatly reduced.
NASA Astrophysics Data System (ADS)
Weber, J.; Domenico, B.
2004-12-01
This paper is an example of what we call data interactive publications. With a properly configured workstation, the readers can click on "hotspots" in the document that launches an interactive analysis tool called the Unidata Integrated Data Viewer (IDV). The IDV will enable the readers to access, analyze and display datasets on remote servers as well as documents describing them. Beyond the parameters and datasets initially configured into the paper, the analysis tool will have access to all the other dataset parameters as well as to a host of other datasets on remote servers. These data interactive publications are built on top of several data delivery, access, discovery, and visualization tools developed by Unidata and its partner organizations. For purposes of illustrating this integrative technology, we will use data from the event of Hurricane Charley over Florida from August 13-15, 2004. This event illustrates how components of this process fit together. The Local Data Manager (LDM), Open-source Project for a Network Data Access Protocol (OPeNDAP) and Abstract Data Distribution Environment (ADDE) services, Thematic Realtime Environmental Distributed Data Service (THREDDS) cataloging services, and the IDV are highlighted in this example of a publication with embedded pointers for accessing and interacting with remote datasets. An important objective of this paper is to illustrate how these integrated technologies foster the creation of documents that allow the reader to learn the scientific concepts by direct interaction with illustrative datasets, and help build a framework for integrated Earth System science.
An Online Virtual Laboratory of Electricity
ERIC Educational Resources Information Center
Gómez Tejedor, J. A.; Moltó Martínez, G.; Barros Vidaurre, C.
2008-01-01
In this article, we describe a Java-based virtual laboratory, accessible via the Internet by means of a Web browser. This remote laboratory enables the students to build both direct and alternating current circuits. The program includes a graphical user interface which resembles the connection board, and also the electrical components and tools…
ERIC Educational Resources Information Center
Ritz, John; Knaack, Zane
2017-01-01
In the 21st century, electronic connectivity is a major component of everyday life. One expects to have mobile phone coverage and to have access to log a computer or tablet onto the internet. This connectivity enables users to keep track of personal affairs and conduct work from remote locations. Designers and manufacturers are also connecting…
Development of the remote diagnosis system of the solar radio telescope
NASA Astrophysics Data System (ADS)
Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki
2005-04-01
"The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.
NASA Astrophysics Data System (ADS)
Lee, C. M.
2016-02-01
The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.
NASA Astrophysics Data System (ADS)
Lee, C. M.
2016-12-01
The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.
Integrated remotely sensed datasets for disaster management
NASA Astrophysics Data System (ADS)
McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart
2008-10-01
Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.
NASA Astrophysics Data System (ADS)
Neidhardt, Alexander; Collioud, Arnaud
2014-12-01
A central VLBI network status monitoring can be realized by using online status information about current VLBI sessions, real-time, and status data directly from each radio telescope. Such monitoring helps to organize sessions or to get immediate feedback from the active telescopes. Therefore the remote control software for VLBI radio telescopes ``e-RemoteCtrl'' (http://www.econtrol-software.de), which enables remote access as extension to the NASA Field System, realizes real-time data streams to dedicated data centers. The software has direct access to the status information about the current observation (e.g., schedule, scan, source) and the telescope (e.g., current state, temperature, pressure) in real-time. This information are directly sent to ``IVS Live''. ``IVS Live'' (http://ivslive.obs.u-bordeaux1.fr/) is a Web tool that can be used to follow the observing sessions, organized by the International VLBI Service for Geodesy and Astrometry (IVS), navigate through past or upcoming sessions, or search and display specific information about sessions, sources (like VLBI images), and stations, by using an Internet browser.
Simple video format for mobile applications
NASA Astrophysics Data System (ADS)
Smith, John R.; Miao, Zhourong; Li, Chung-Sheng
2000-04-01
With the advent of pervasive computing, there is a growing demand for enabling multimedia applications on mobile devices. Large numbers of pervasive computing devices, such as personal digital assistants (PDAs), hand-held computer (HHC), smart phones, portable audio players, automotive computing devices, and wearable computers are gaining access to online information sources. However, the pervasive computing devices are often constrained along a number of dimensions, such as processing power, local storage, display size and depth, connectivity, and communication bandwidth, which makes it difficult to access rich image and video content. In this paper, we report on our initial efforts in designing a simple scalable video format with low-decoding and transcoding complexity for pervasive computing. The goal is to enable image and video access for mobile applications such as electronic catalog shopping, video conferencing, remote surveillance and video mail using pervasive computing devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Lissa; Hall, Cheri; Rambo, Christian
Teleworking, also known as telecommuting, has grown in popularity in today’s workforce, evolving from an employment perk to a business imperative. Facilitated by improved mobile connectivity and ease of remote access, employees and organizations are increasingly embracing teleworking.
ERIC Educational Resources Information Center
Best, Marnie; MacGregor, Denise
2017-01-01
Technology-mediated teaching and learning enables access to educational opportunities, irrespective of locality, ruruality or remoteness. The design, development and delivery of technology enhanced learning in pre-service teacher education programs is therefore gaining momentum, both in Australia and internationally. Much research regarding…
Belard, Arnaud; Dolney, Derek; Zelig, Tochner; McDonough, James; O'Connell, John
2011-06-01
Proton radiotherapy is a relatively scarce treatment modality in radiation oncology, with only nine centers currently operating in the United States. Funded by Public Law 107-248, the University of Pennsylvania and the Walter Reed Army Medical Center have developed a remote proton radiation therapy solution with the goals of improving access to proton radiation therapy for Department of Defense (DoD) beneficiaries while minimizing treatment delays and time spent away from home/work (time savings of up to 3 weeks per patient). To meet both Health Insurance Portability and Accountability Act guidelines and the more stringent security restrictions imposed by the DoD, our program developed a hybrid remote proton radiation therapy solution merging a CITRIX server with a JITIC-certified (Joint Interoperability Test Command) desktop videoconferencing unit. This conduit, thoroughly tested over a period of 6 months, integrates both institutions' radiation oncology treatment planning infrastructures into a single entity for DoD patients' treatment planning and delivery. This telemedicine solution enables DoD radiation oncologists and medical physicists the ability to (1) remotely access a proton therapy treatment planning platform, (2) transfer patient plans securely to the University of Pennsylvania patient database, and (3) initiate ad-hoc point-to-point and multipoint videoconferences to dynamically optimize and validate treatment plans. Our robust and secure remote treatment planning solution grants DoD patients not only access to a state-of-the-art treatment modality, but also participation in the treatment planning process by Walter Reed Army Medical Center radiation oncologists and medical physicists. This telemedicine system has the potential to lead to a greater integration of military treatment facilities and/or satellite clinics into regional proton therapy centers.
A Virtual Mission Operations Center: Collaborative Environment
NASA Technical Reports Server (NTRS)
Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.
D3: A Collaborative Infrastructure for Aerospace Design
NASA Technical Reports Server (NTRS)
Walton, Joan; Filman, Robert E.; Knight, Chris; Korsmeyer, David J.; Lee, Diana D.; Clancy, Daniel (Technical Monitor)
2001-01-01
DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid dynamics) model executions. DARWIN captures, stores and indexes data, manages derived knowledge (such as visualizations across multiple data sets) and provides an environment for designers to collaborate in the analysis of the results of testing. DARWIN is an interesting application because it supports high volumes of data, integrates multiple modalities of data display (e.g. images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and view of data.
Evaluating impact of clinical guidelines using a realist evaluation framework.
Reddy, Sandeep; Wakerman, John; Westhorp, Gill; Herring, Sally
2015-12-01
The Remote Primary Health Care Manuals (RPHCM) project team manages the development and publication of clinical protocols and procedures for primary care clinicians practicing in remote Australia. The Central Australian Rural Practitioners Association Standard Treatment Manual, the flagship manual of the RPHCM suite, has been evaluated for accessibility and acceptability in remote clinics three times in its 20-year history. These evaluations did not consider a theory-based framework or a programme theory, resulting in some limitations with the evaluation findings. With the RPHCM having an aim of enabling evidence-based practice in remote clinics and anecdotally reported to do so, testing this empirically for the full suite is vital for both stakeholders and future editions of the RPHCM. The project team utilized a realist evaluation framework to assess how, why and for what the RPHCM were being used by remote practitioners. A theory regarding the circumstances in which the manuals have and have not enabled evidence-based practice in the remote clinical context was tested. The project assessed this theory for all the manuals in the RPHCM suite, across government and aboriginal community-controlled clinics, in three regions of Australia. Implementing a realist evaluation framework to generate robust findings in this context has required innovation in the evaluation design and adaptation by researchers. This article captures the RPHCM team's experience in designing this evaluation. © 2015 John Wiley & Sons, Ltd.
JHelioviewer: Open-Source Software for Discovery and Image Access in the Petabyte Age
NASA Astrophysics Data System (ADS)
Mueller, D.; Dimitoglou, G.; Garcia Ortiz, J.; Langenberg, M.; Nuhn, M.; Dau, A.; Pagel, S.; Schmidt, L.; Hughitt, V. K.; Ireland, J.; Fleck, B.
2011-12-01
The unprecedented torrent of data returned by the Solar Dynamics Observatory is both a blessing and a barrier: a blessing for making available data with significantly higher spatial and temporal resolution, but a barrier for scientists to access, browse and analyze them. With such staggering data volume, the data is accessible only from a few repositories and users have to deal with data sets effectively immobile and practically difficult to download. From a scientist's perspective this poses three challenges: accessing, browsing and finding interesting data while avoiding the proverbial search for a needle in a haystack. To address these challenges, we have developed JHelioviewer, an open-source visualization software that lets users browse large data volumes both as still images and movies. We did so by deploying an efficient image encoding, storage, and dissemination solution using the JPEG 2000 standard. This solution enables users to access remote images at different resolution levels as a single data stream. Users can view, manipulate, pan, zoom, and overlay JPEG 2000 compressed data quickly, without severe network bandwidth penalties. Besides viewing data, the browser provides third-party metadata and event catalog integration to quickly locate data of interest, as well as an interface to the Virtual Solar Observatory to download science-quality data. As part of the ESA/NASA Helioviewer Project, JHelioviewer offers intuitive ways to browse large amounts of heterogeneous data remotely and provides an extensible and customizable open-source platform for the scientific community. In addition, the easy-to-use graphical user interface enables the general public and educators to access, enjoy and reuse data from space missions without barriers.
Academic and Non-Profit Accessibility to Commercial Remote Sensing Software
NASA Astrophysics Data System (ADS)
O'Connor, A. S.; Farr, B.
2013-12-01
Remote Sensing as a topic of teaching and research at the university and college level continues to increase. As more data is made freely available and software becomes easier to use, more and more academic and non-profits institutions are turning to remote sensing to solve their tough and large spatial scale problems. Exelis Visual Information Solutions (VIS) has been supporting teaching and research endeavors for over 30 years with a special emphasis over the last 5 years with scientifically proven software and accessible training materials. The Exelis VIS academic program extends to US and Canadian 2 year and 4 year colleges and universities with tools for analyzing aerial and satellite multispectral and hyperspectral imagery, airborne LiDAR and Synthetic Aperture Radar. The Exelis VIS academic programs, using the ENVI Platform, enables labs and classrooms to be outfitted with software and makes software accessible to students. The ENVI software provides students hands on experience with remote sensing software, an easy teaching platform for professors and allows researchers scientifically vetted software they can trust. Training materials are provided at no additional cost and can either serve as a basis for course curriculum development or self paced learning. Non-profit organizations like The Nature Conservancy (TNC) and CGIAR have deployed ENVI and IDL enterprise wide licensing allowing researchers all over the world to have cost effective access COTS software for their research. Exelis VIS has also contributed licenses to the NASA DEVELOP program. Exelis VIS is committed to supporting the academic and NGO community with affordable enterprise licensing, access to training materials, and technical expertise to help researchers tackle today's Earth and Planetary science big data challenges.
Spiers, M C; Harris, M
2015-01-01
The optimum supply of an allied health workforce in rural and remote communities is a persistent challenge. Despite previous indicative research and government investment, the primary focus for rural and remote recruitment has been on the medical profession. The consequent shortage of allied health professionals leaves these communities less able to receive appropriate health care. This comprehensive review incorporates a literature analysis while articulating policy and further research implications. The objective was to identify drivers to recruitment and retention of an allied health workforce in rural and remote communities. This issue was observed in two parts: identification of barriers and enablers for students accessing allied health undergraduate tertiary education, and barriers and enablers to clinical placement experience in rural and remote communities. A search of empirical literature was conducted together with review of theoretical publications, including public health strategies and policy documents. Database searches of CINAHL, Medline, ERIC, PsychInfo and Scopus were performed. Selection criteria included Australian research in English, full text online, keywords in title or abstract, year of publication 1990 to 2012 and research inclusive of rural and remote context by application of the Australian Standard Geographical Classication (ASGC) Remoteness Structure. Theoretical publications, or grey literature, were identified by broad Google searches utilising a variety of search terms relevant to the review objective. Allied health professions were defined as including audiology, dietetics, occupational therapy, optometry, orthoptics, orthotics and prosthetics, pharmacy, physiotherapy, podiatry, psychology, radiography, social work, speech pathology and Aboriginal and Torres Strait Islander Health Workers. A total of 28 empirical publications met the selection criteria with a further 22 grey literature texts identified with relevance to the research objective. Patterns of barriers and enablers for rural and remote student transition in the allied health professions were identified in the literature. Recruitment pathways to allied health tertiary studies in rural and remote communities are vague and often interrupted, and the return of graduates is haphazard. Students from rural and remote communities face an assembly of barriers. They often experience secondary education disadvantage with inadequate subject choices, pathways and opportunities. Programs designed to facilitate transition to tertiary study are often limited in their capacity to address cumulative concerns. Students also face financial imposts and are confronted by daunting social isolation, and separation from families and support systems. In regard to clinical placement, the disincentives weigh heavily. The financial burdens of a rural placement offer little inducement. Social isolation associated with a placement far from home is more acutely felt by students when there is inadequate administrative support and consequent disillusionment. Students also lack a frame of reference to pursue a rural placement option, and are often discouraged by the cumulative commitments involved. Clear and accessible pathways to allied health training for students from rural and remote communities are pivotal to a stronger representation of this cohort among graduates. Similarly, greater representation of rural and remote clinical placements for allied health undergraduate students is an important facilitator. Despite regional coordination and strategies designed to promote a broader range of placement opportunities, the problems remain. This review has consequences for policy and program development for growth of the rural allied health workforce in Australia, as well as identifying knowledge deficits to guide future research endeavours.
Lee, Jae Dong; Yoon, Tae Sik; Chung, Seung Hyun
2015-01-01
Objectives Remote medical services have been expanding globally, and this is expansion is steadily increasing. It has had many positive effects, including medical access convenience, timeliness of service, and cost reduction. The speed of research and development in remote medical technology has been gradually accelerating. Therefore, it is expected to expand to enable various high-tech information and communications technology (ICT)-based remote medical services. However, the current state lacks an appropriate security framework that can resolve security issues centered on the Internet of things (IoT) environment that will be utilized significantly in telemedicine. Methods This study developed a medical service-oriented frame work for secure remote medical services, possessing flexibility regarding new service and security elements through its service-oriented structure. First, the common architecture of remote medical services is defined. Next medical-oriented secu rity threats and requirements within the IoT environment are identified. Finally, we propose a "service-oriented security frame work for remote medical services" based on previous work and requirements for secure remote medical services in the IoT. Results The proposed framework is a secure framework based on service-oriented cases in the medical environment. A com parative analysis focusing on the security elements (confidentiality, integrity, availability, privacy) was conducted, and the analysis results demonstrate the security of the proposed framework for remote medical services with IoT. Conclusions The proposed framework is service-oriented structure. It can support dynamic security elements in accordance with demands related to new remote medical services which will be diversely generated in the IoT environment. We anticipate that it will enable secure services to be provided that can guarantee confidentiality, integrity, and availability for all, including patients, non-patients, and medical staff. PMID:26618034
Lee, Jae Dong; Yoon, Tae Sik; Chung, Seung Hyun; Cha, Hyo Soung
2015-10-01
Remote medical services have been expanding globally, and this is expansion is steadily increasing. It has had many positive effects, including medical access convenience, timeliness of service, and cost reduction. The speed of research and development in remote medical technology has been gradually accelerating. Therefore, it is expected to expand to enable various high-tech information and communications technology (ICT)-based remote medical services. However, the current state lacks an appropriate security framework that can resolve security issues centered on the Internet of things (IoT) environment that will be utilized significantly in telemedicine. This study developed a medical service-oriented frame work for secure remote medical services, possessing flexibility regarding new service and security elements through its service-oriented structure. First, the common architecture of remote medical services is defined. Next medical-oriented secu rity threats and requirements within the IoT environment are identified. Finally, we propose a "service-oriented security frame work for remote medical services" based on previous work and requirements for secure remote medical services in the IoT. The proposed framework is a secure framework based on service-oriented cases in the medical environment. A com parative analysis focusing on the security elements (confidentiality, integrity, availability, privacy) was conducted, and the analysis results demonstrate the security of the proposed framework for remote medical services with IoT. The proposed framework is service-oriented structure. It can support dynamic security elements in accordance with demands related to new remote medical services which will be diversely generated in the IoT environment. We anticipate that it will enable secure services to be provided that can guarantee confidentiality, integrity, and availability for all, including patients, non-patients, and medical staff.
Social accountability in medical education--an Australian rural and remote perspective.
Worley, Paul; Murray, Richard
2011-01-01
Australia's medical education system is undergoing a socially motivated transformation focused on improving access to medical care for rural and remote communities. A rural and remote backbone of Rural Clinical Schools (RCS), University Departments of Rural Health, regional medical schools, and the postgraduate college, ACRRM, have enabled community responsive innovation and partnerships with rural health services that once would have been difficult to imagine. This article argues that this transformation is succeeding because of the passionate leadership of rural medical and community leaders, government seed funding to encourage rural medicine as an academic discipline, rigorous research and consultation that underpinned each step of the innovation pathway, and a political campaign to invest in rural medical education as a form of rural social capital.
Correlated Attack Modeling (CAM)
2003-10-01
describing attack models to a scenario recognition engine, a prototype of such an engine was developed, using components of the EMERALD intrusion...content. Results – The attacker gains information enabling remote access to database (i.e., privileged login information, database layout to allow...engine that uses attack specifications written in CAML. The implementation integrates two advanced technologies devel- oped in the EMERALD program [27, 31
Object and image retrieval over the Internet
NASA Astrophysics Data System (ADS)
Gilles, Sebastien; Winter, A.; Feldmar, J.; Poirier, N.; Bousquet, R.; Bussy, B.; Lamure, H.; Demarty, C.-H.; Nastar, Chahab
2000-12-01
In this article, we describe some of the work that was carried out at LookThatUp for designing an infrastructure enabling image-based search over the Internet. The service was designed to be remotely accessible and easily integrated to partner sites. One application of the technology, called Image-Shopper, is described and demonstrated. The technological basis of the system is then reviewed.
ERIC Educational Resources Information Center
Mander, David J.
2015-01-01
This study explored the experience of having a child educated away from home at boarding school for Aboriginal parents living in regional and remote communities in Western Australia (WA). In-depth interviews were conducted with 11 participants and thematic analysis found the following major themes emerged from the data: (1) Access, Standards and…
Geobrowser Enhanced Access of Real-Time Antarctic Data
NASA Astrophysics Data System (ADS)
Breen, P.; Judge, D.; Cunningham, N.; Kirsch, P. J.
2007-12-01
A proof of principle project was initiated in the Fall of 2006 to develop a system enabling remote field station and ship borne data, collected in near real-time to be discovered, visualised and acquired through a web accessible framework. The two principal enabling drivers for this system were the recent improvements in communications with remote field stations and ships and the advent of low cost, easily accessible geobrowser technology providing the ability to visualise multiple, sometimes physically disparate datasets within a common interface. Strongly spatial in nature the oceanographic datasets suggested the incorporation of geobrowser (Google Earth) technology into this framework. A number of scientific benefits were identified by the project, these include the overall enhancing of the value of many of the datasets through their real-time contribution to forecasting models, satellite ground truthing and calibration of autonomous instrumentation. Improved efficacy of fieldwork led to rapid discovery of problems and the ability to deal with them promptly. The ability to correct or improve experiment parameters and increase capability of routine collection of high-quality data. In the past it may have been over a year before data arrived back at HQ potentially unusable, definitely unrepeatable and significantly reducing or delaying scientific output. The geobrowser interface provides the platform from which the spatial data is discovered, for example ship tracks and aspects of the physical oceanography such as sea surface temperature can be directly visualized. Importantly, ancillary and auxiliary information and metadata can be linked to the cruise data in a straightforward and accessible manner; scientists in Cambridge using a geobrowser were able to access and visualize cruise data from the Southern ocean 20 minutes after collection.
Index of Access: a new innovative and dynamic tool for rural health service and workforce planning.
McGrail, Matthew R; Russell, Deborah J; Humphreys, John S
2017-10-01
Objective Improving access to primary health care (PHC) remains a key issue for rural residents and health service planners. This study aims to show that how access to PHC services is measured has important implications for rural health service and workforce planning. Methods A more sophisticated tool to measure access to PHC services is proposed, which can help health service planners overcome the shortcomings of existing measures and long-standing access barriers to PHC. Critically, the proposed Index of Access captures key components of access and uses a floating catchment approach to better define service areas and population accessibility levels. Moreover, as demonstrated through a case study, the Index of Access enables modelling of the effects of workforce supply variations. Results Hypothetical increases in supply are modelled for a range of regional centres, medium and small rural towns, with resulting changes of access scores valuable to informing health service and workforce planning decisions. Conclusions The availability and application of a specific 'fit-for-purpose' access measure enables a more accurate empirical basis for service planning and allocation of health resources. This measure has great potential for improved identification of PHC access inequities and guiding redistribution of PHC services to correct such inequities. What is known about the topic? Resource allocation and health service planning decisions for rural and remote health settings are currently based on either simple measures of access (e.g. provider-to-population ratios) or proxy measures of access (e.g. standard geographical classifications). Both approaches have substantial limitations for informing rural health service planning and decision making. What does this paper add? The adoption of a new improved tool to measure access to PHC services, the Index of Access, is proposed to assist health service and workforce planning. Its usefulness for health service planning is demonstrated using a case study to hypothetically model changes in rural PHC workforce supply. What are the implications for practitioners? The Index of Access has significant potential for identifying how rural and remote primary health care access inequities can be addressed. This critically important information can assist health service planners, for example those working in primary health networks, to determine where and how much redistribution of PHC services is needed to correct existing inequities.
Capacity Building for the Access and Application of NASA Earth Science Data
NASA Astrophysics Data System (ADS)
Blevins, B.; Prados, A. I.; Hook, E.
2016-12-01
Since 2008, NASA's Applied Remote Sensing Training (ARSET) program has built capacity in applied remote sensing by building awareness, and enabling access and use of NASA Earth science data. To reach decision and policy makers from all sectors, ARSET hosts hands-on workshops and online webinars. With over 70 trainings, reaching more than 6,000 people from 130 countries and 1,600 organizations, ARSET has ample experience with assessing and meeting end-user needs. To meet the spectrum of needs and levels of attendee expertise, ARSET holds trainings for both the novice and experienced end-user. Trainings employ exercises, assignments, and live demonstrations of data access tools to reinforce remote sensing concepts and to facilitate data use and analysis techniques. This program is in a unique position to collect important feedback from thousands of participants each year through formal surveys and informal methods on NASA tools, portals, data formats, and the applications of Earth science data for end-user decision making activities. This information is shared with NASA data centers and program managers to help inform data portal development and to help prioritize the production of new satellite derived data products. This presentation will discuss the challenges that arise in capacity building trainings, the integration of community feedback into the training development cycle, and lessons learned throughout the process.
Implementation of Multispectral Image Classification on a Remote Adaptive Computer
NASA Technical Reports Server (NTRS)
Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna
1999-01-01
As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).
[Remote radiation planning support system].
Atsumi, Kazushige; Nakamura, Katsumasa; Yoshidome, Satoshi; Shioyama, Yoshiyuki; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Shinoto, Makoto; Asai, Kaori; Sakamoto, Katsumi; Hirakawa, Masakazu; Honda, Hiroshi
2012-08-01
We constructed a remote radiation planning support system between Kyushu University Hospital (KUH) in Fukuoka and Kyushu University Beppu Hospital (KBH) in Oita. Between two institutions, radiology information system for radiotherapy division (RT-RIS) and radiation planning system (RTPS) were connected by virtual private network (VPN). This system enables the radiation oncologists at KUH to perform radiotherapy planning for the patients at KBH. The detail of the remote radiation planning support system in our institutions is as follows: The radiation oncologist at KBH performs radiotherapy planning and the data of the patients are sent anonymously to the radiation oncologists at KUH. The radiation oncologists at KUH receive the patient's data, access to RTPS at KBH, verify or change the radiation planning at KBH: Radiation therapy is performed at KBH according to the confirmed plan by the radiation oncologists at KUH. Our remote radiation planning system is useful for providing radiation therapy with safety and accuracy.
RTS2: a powerful robotic observatory manager
NASA Astrophysics Data System (ADS)
Kubánek, Petr; Jelínek, Martin; Vítek, Stanislav; de Ugarte Postigo, Antonio; Nekola, Martin; French, John
2006-06-01
RTS2, or Remote Telescope System, 2nd Version, is an integrated package for remote telescope control under the Linux operating system. It is designed to run in fully autonomous mode, picking targets from a database table, storing image meta data to the database, processing images and storing their WCS coordinates in the database and offering Virtual-Observatory enabled access to them. It is currently running on various telescope setups world-wide. For control of devices from various manufacturers we developed an abstract device layer, enabling control of all possible combinations of mounts, CCDs, photometers, roof and cupola controllers. We describe the evolution of RTS2 from Python-based RTS to C and later C++ based RTS2, focusing on the problems we faced during development. The internal structure of RTS2, focusing on object layering, which is used to uniformly control various devices and provides uniform reporting layer, is also discussed.
Tapia-Conyer, Roberto; Lyford, Shelley; Saucedo, Rodrigo; Casale, Michael; Gallardo, Hector; Becerra, Karen; Mack, Jonathan; Mujica, Ricardo; Estrada, Daniel; Sanchez, Antonio; Sabido, Ramon; Meier, Carlos; Smith, Joseph
2015-01-01
Background. Fetal and neonatal morbidity and mortality are significant problems in developing countries; remote maternal-fetal monitoring offers promise in addressing this challenge. The Gary and Mary West Health Institute and the Instituto Carlos Slim de la Salud conducted a demonstration project of wirelessly enabled antepartum maternal-fetal monitoring in the state of Yucatán, Mexico, to assess whether there were any fundamental barriers preventing deployment and use. Methods. Following informed consent, high-risk pregnant women at 27–29 weeks of gestation at the Chemax primary clinic participated in remote maternal-fetal monitoring. Study participants were randomized to receive either prototype wireless monitoring or standard-of-care. Feasibility was evaluated by assessing technical aspects of performance, adherence to monitoring appointments, and response to recommendations. Results. Data were collected from 153 high-risk pregnant indigenous Mayan women receiving either remote monitoring (n = 74) or usual standard-of-care (n = 79). Remote monitoring resulted in markedly increased adherence (94.3% versus 45.1%). Health outcomes were not statistically different in the two groups. Conclusions. Remote maternal-fetal monitoring is feasible in resource-constrained environments and can improve maternal compliance for monitoring sessions. Improvement in maternal-fetal health outcomes requires integration of such technology into sociocultural context and addressing logistical challenges of access to appropriate emergency services. PMID:25691900
Instrument Remote Control via the Astronomical Instrument Markup Language
NASA Technical Reports Server (NTRS)
Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard
1998-01-01
The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.
Space Flight Middleware: Remote AMS over DTN for Delay-Tolerant Messaging
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2011-01-01
This paper describes a technique for implementing scalable, reliable, multi-source multipoint data distribution in space flight communications -- Delay-Tolerant Reliable Multicast (DTRM) -- that is fully supported by the "Remote AMS" (RAMS) protocol of the Asynchronous Message Service (AMS) proposed for standardization within the Consultative Committee for Space Data Systems (CCSDS). The DTRM architecture enables applications to easily "publish" messages that will be reliably and efficiently delivered to an arbitrary number of "subscribing" applications residing anywhere in the space network, whether in the same subnet or in a subnet on a remote planet or vehicle separated by many light minutes of interplanetary space. The architecture comprises multiple levels of protocol, each included for a specific purpose and allocated specific responsibilities: "application AMS" traffic performs end-system data introduction and delivery subject to access control; underlying "remote AMS" directs this application traffic to populations of recipients at remote locations in a multicast distribution tree, enabling the architecture to scale up to large networks; further underlying Delay-Tolerant Networking (DTN) Bundle Protocol (BP) advances RAMS protocol data units through the distribution tree using delay-tolerant storeand- forward methods; and further underlying reliable "convergence-layer" protocols ensure successful data transfer over each segment of the end-to-end route. The result is scalable, reliable, delay-tolerant multi-source multicast that is largely self-configuring.
NASA Astrophysics Data System (ADS)
Galkin, A.; Klump, J.; Wiedenbeck, M.
2012-04-01
Secondary Ion Mass Spectrometers (SIMS) is an highly sensitive technique for analyzing the surfaces of solids and thin film samples, but has the major drawback that such instruments are both rare and expensive. The Virtual SIMS project aims to design, develop and operate the IT infrastructure around the CAMECA IMS 1280-HR SIMS at GFZ Potsdam. The system will cover the whole spectrum of the procedures in the lab - from the online application for measurement time, to the remote access to the instrument and finally the maintenance of the data for publishing and future re-use. A virtual lab infrastructure around the IMS 1280 will enable remote access to the instrument and make measurement time available to the broadest possible user community. Envisioned is that the IT infrastructure would consist of the following: web portal, data repository, sample repository, project management software, communication arrangements between the lab staff and distant researcher and remote access to the instruments. The web portal will handle online applications for the measurement time. The data from the experiments, the monitoring sensor logs and the lab logbook entries are to be stored and archived. Researchers will be able to access their data remotely in real time, thus imposing a user rights management strucuture. Also planned is that all samples and the standards will be assigned a unique International GeoSample Number (IGSN) and that the images of the samples will be stored and made accessible in addition to any additional documents which might be uploaded by the researcher. The project management application will schedule the application process, the measurements times, notifications and alerts. A video conference capability is forseen for communication between the Potsdam staff and the remote researcher. The remote access to the instruments requires a sophisticated client-server solution. This highly sensitive instrument has to be controlled in real-time with latencies diminished to a minimum. Also, failures and shortages of the internet connection, as well as possible outages on the client side, have to be considered and safe fallbacks for such events must be provided. The level of skills of the researcher remotely operating the instrument will define the scope of control given during an operating session. An important aspect of the project is the design of the virtual lab system in collaboration with the laboratory operators and the researchers who will use the instrument and its peripherals. Different approaches for the IT solutions will be tested and evaluated, so imporved guidelines can evolve from obsperved operating performance.
A Browser-Server-Based Tele-audiology System That Supports Multiple Hearing Test Modalities
Yao, Daoyuan; Givens, Gregg
2015-01-01
Abstract Introduction: Millions of global citizens suffering from hearing disorders have limited or no access to much needed hearing healthcare. Although tele-audiology presents a solution to alleviate this problem, existing remote hearing diagnosis systems support only pure-tone tests, leaving speech and other test procedures unsolved, due to the lack of software and hardware to enable communication required between audiologists and their remote patients. This article presents a comprehensive remote hearing test system that integrates the two most needed hearing test procedures: a pure-tone audiogram and a speech test. Materials and Methods: This enhanced system is composed of a Web application server, an embedded smart Internet-Bluetooth® (Bluetooth SIG, Kirkland, WA) gateway (or console device), and a Bluetooth-enabled audiometer. Several graphical user interfaces and a relational database are hosted on the application server. The console device has been designed to support the tests and auxiliary communication between the local site and the remote site. Results: The study was conducted at an audiology laboratory. Pure-tone audiogram and speech test results from volunteers tested with this tele-audiology system are comparable with results from the traditional face-to-face approach. Conclusions: This browser-server–based comprehensive tele-audiology offers a flexible platform to expand hearing services to traditionally underserved groups. PMID:25919376
A Browser-Server-Based Tele-audiology System That Supports Multiple Hearing Test Modalities.
Yao, Jianchu Jason; Yao, Daoyuan; Givens, Gregg
2015-09-01
Millions of global citizens suffering from hearing disorders have limited or no access to much needed hearing healthcare. Although tele-audiology presents a solution to alleviate this problem, existing remote hearing diagnosis systems support only pure-tone tests, leaving speech and other test procedures unsolved, due to the lack of software and hardware to enable communication required between audiologists and their remote patients. This article presents a comprehensive remote hearing test system that integrates the two most needed hearing test procedures: a pure-tone audiogram and a speech test. This enhanced system is composed of a Web application server, an embedded smart Internet-Bluetooth(®) (Bluetooth SIG, Kirkland, WA) gateway (or console device), and a Bluetooth-enabled audiometer. Several graphical user interfaces and a relational database are hosted on the application server. The console device has been designed to support the tests and auxiliary communication between the local site and the remote site. The study was conducted at an audiology laboratory. Pure-tone audiogram and speech test results from volunteers tested with this tele-audiology system are comparable with results from the traditional face-to-face approach. This browser-server-based comprehensive tele-audiology offers a flexible platform to expand hearing services to traditionally underserved groups.
Patel, Shireen; Malins, Sam; Guo, Boliang; James, Marilyn; Kai, Joe; Kaylor-Hughes, Catherine; Rowley, Emma; Simpson, Jayne; Smart, David; Stubley, Michelle; Tyrer, Helen
2016-01-01
Background Health anxiety and medically unexplained symptoms cost the National Health Service (NHS) an estimated £3 billion per year in unnecessary costs with little evidence of patient benefit. Effective treatment is rarely taken up due to issues such as stigma or previous negative experiences with mental health services. An approach to overcome this might be to offer remotely delivered psychological therapy, which can be just as effective as face-to-face therapy and may be more accessible and suitable. Aims To investigate the clinical outcomes and cost-effectiveness of remotely delivered cognitive–behavioural therapy (CBT) to people with high health anxiety repeatedly accessing unscheduled care (trial registration: NCT02298036). Method A multicentre randomised controlled trial (RCT) will be undertaken in primary and secondary care providers of unscheduled care across the East Midlands. One hundred and forty-four eligible participants will be equally randomised to receive either remote CBT (6–12 sessions) or treatment as usual (TAU). Two doctoral research studies will investigate the barriers and facilitators to delivering the intervention and the factors contributing to the optimisation of therapeutic outcome. Results This trial will be the first to test the clinical outcomes and cost-effectiveness of remotely delivered CBT for the treatment of high health anxiety. Conclusions The findings will enable an understanding as to how this intervention might fit into a wider care pathway to enhance patient experience of care. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-commercial, No Derivatives (CC BY-NC-ND) licence. PMID:27703758
High-resolution digital brain atlases: a Hubble telescope for the brain.
Jones, Edward G; Stone, James M; Karten, Harvey J
2011-05-01
We describe implementation of a method for digitizing at microscopic resolution brain tissue sections containing normal and experimental data and for making the content readily accessible online. Web-accessible brain atlases and virtual microscopes for online examination can be developed using existing computer and internet technologies. Resulting databases, made up of hierarchically organized, multiresolution images, enable rapid, seamless navigation through the vast image datasets generated by high-resolution scanning. Tools for visualization and annotation of virtual microscope slides enable remote and universal data sharing. Interactive visualization of a complete series of brain sections digitized at subneuronal levels of resolution offers fine grain and large-scale localization and quantification of many aspects of neural organization and structure. The method is straightforward and replicable; it can increase accessibility and facilitate sharing of neuroanatomical data. It provides an opportunity for capturing and preserving irreplaceable, archival neurohistological collections and making them available to all scientists in perpetuity, if resources could be obtained from hitherto uninterested agencies of scientific support. © 2011 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Childers, Gina; Jones, M. Gail
2015-10-01
Remote access technologies enable students to investigate science by utilizing scientific tools and communicating in real-time with scientists and researchers with only a computer and an Internet connection. Very little is known about student perceptions of how real remote investigations are and how immersed the students are in the experience. This study, conducted with high school students and their teachers, explored the impact of students' perception of ownership and virtual presence during a remote investigation using a scanning electron microscope. Students were randomly assigned to one of two treatment groups: students able to select their own insect to use during the remote investigation, and students that did not select their own insects to view during the remote investigation. The results of this study showed that students in the experimental group who had choice and ownership of their insect reported being more present (less distracted) during the remote investigation than students in the control group, whereas students in the control group reported controlling the technology was easier than the experimental group. Students indicated the remote investigation was very real; however, the teachers of these students were less likely to describe the investigation as being real. The results of this study have practical implications for designing remote learning environments.
Helping Hands: Using Augmented Reality to Provide Remote Guidance to Health Professionals.
Mather, Carey; Barnett, Tony; Broucek, Vlasti; Saunders, Annette; Grattidge, Darren; Huang, Weidong
2017-01-01
Access to expert practitioners or geographic distance can compound the capacity for appropriate supervision of health professionals in the workplace. Guidance and support of clinicians and students to undertake new or infrequent procedures can be resource intensive. The Helping Hands remote augmented reality system is an innovation to support the development of, and oversee the acquisition of procedural skills through remote learning and teaching supervision while in clinical practice. Helping Hands is a wearable, portable, hands-free, low cost system comprised of two networked laptops, a head-mounted display worn by the recipient and a display screen used remotely by the instructor. Hand hygiene was used as the test procedure as it is a foundation skill learned by all health profession students. The technology supports unmediated remote gesture guidance by augmenting the object with the Helping Hands of a health professional. A laboratory-based study and field trial tested usability and feasibility of the remote guidance system. The study found the Helping Hands system did not compromise learning outcomes. This innovation has the potential to transform remote learning and teaching supervision by enabling health professionals and students opportunities to develop and improve their procedural performance at the workplace.
Masters, Stacey C; Elliott, Sandi; Boyd, Sarah; Dunbar, James A
2017-10-01
There is a lack of access to simulation-based education (SBE) for professional entry students (PES) and health professionals at rural and remote locations. A descriptive study. Health and education facilities in regional South Australia and south-west Victoria. Number of training recipients who participated in SBE; geographical distribution and locations where SBE was delivered; number of rural clinical educators providing SBE. A distributed model to deliver SBE in rural and remote locations in collaboration with local health and community services, education providers and the general public. Face-to-face meetings with health services and education providers identified gaps in locally delivered clinical skills training and availability of simulation resources. Clinical leadership, professional development and community of practice strategies were implemented to enhance capacity of rural clinical educators to deliver SBE. The number of SBE participants and training hours delivered exceeded targets. The distributed model enabled access to regular, localised training for PES and health professionals, minimising travel and staff backfill costs incurred when attending regional centres. The skills acquired by local educators remain in rural areas to support future training. The distributed collaborative model substantially increased access to clinical skills training for PES and health professionals in rural and remote locations. Developing the teaching skills of rural clinicians optimised the use of simulation resources. Consequently, health services were able to provide students with flexible and realistic learning opportunities in clinical procedures, communication techniques and teamwork skills. © 2017 National Rural Health Alliance Inc.
Development of a fusion approach selection tool
NASA Astrophysics Data System (ADS)
Pohl, C.; Zeng, Y.
2015-06-01
During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.
Real-time Data Access From Remote Observatories
NASA Astrophysics Data System (ADS)
Detrick, D. L.; Lutz, L. F.; Etter, J. E.; Rosenberg, T. J.; Weatherwax, A. T.
2006-12-01
Real-time access to solar-terrestrial data is becoming increasingly important, not only because it is now possible to acquire and access data rapidly via the internet, but also because of the need for timely publication of real-time data for analysis and modeling efforts. Currently, engineering-scaled summary data are available routinely on a daily basis from many observatories, but only when the observatories have continuous, or at least daily network access. Increasingly, the upgrading of remote data acquisition hardware makes it possible to provide data in real-time, and it is becoming normal to expect timely access to data products. The NSF- supported PENGUIn/AGO constellation of autonomous Antarctic research observatories has provided real-time data since December, 2002, when Iridium satellite modems were installed at three sites. The Iridium telecommunications links are maintained continuously, transferring data between the remote observatories and a U.S.-based data acquisition site. The time-limiting factor with this scenario is now the delay in completing a data record before transmission, which can be as short as minutes depending on the sampling rate. The single-channel data throughput of the current systems is 20-MB/day (megabytes per day), but planned installations will be capable of operating with multiple modem channels. The data records are currently posted immediately to a web site accessible by anonymous FTP client software, for use by the instruments' principal investigators, and survey plots of selected signals are published daily. The web publication facilities are being upgraded, in order to allow other interested researchers rapid access to engineering-scaled data products, in several common formats, as well as providing interactive plotting capabilities. The web site will provide access to data from other collaborating observatories (including South Pole and McMurdo Stations), as well as ancillary data accessible from public sites (e.g., Kp, AE, Dst). The site will be accessible via common HTML interface protocols, enabling access to the data products by browsers or other compatible application software. We describe details of the hardware and software components of the Iridium telecommunications linkage, as well as details of the current and planned web publication capabilities.
NASA Technical Reports Server (NTRS)
Sinderson, Elias; Magapu, Vish; Mak, Ronald
2004-01-01
We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.
Reeve, Carole; Humphreys, John; Wakerman, John; Carroll, Vicki; Carter, Maureen; O'Brien, Tim; Erlank, Carol; Mansour, Rafik; Smith, Bec
2015-01-01
The aim of this study was to describe the reorientation of a remote primary health-care service, in the Kimberley region of Australia, its impact on access to services and the factors instrumental in bringing about change. A unique community-initiated health service partnership was developed between a community-controlled Aboriginal health organisation, a government hospital and a population health unit, in order to overcome the challenges of delivering primary health care to a dispersed, highly disadvantaged Aboriginal population in a very remote area. The shared goals and clear delineation of responsibilities achieved through the partnership reoriented an essentially acute hospital-based service to a prevention-focussed comprehensive primary health-care service, with a focus on systematic screening for chronic disease, interdisciplinary follow up, health promotion, community advocacy and primary prevention. This formal partnership enabled the primary health-care service to meet the major challenges of providing a sustainable, prevention-focussed service in a very remote and socially disadvantaged area.
Robot Would Climb Steep Terrain
NASA Technical Reports Server (NTRS)
Kennedy, Brett; Ganino, Anthony; Aghazarian, Hrand; Hogg, Robert; McHerny, Michael; Garrett, Michael
2007-01-01
This brief describes the steep terrain access robot (STAR) -- a walking robot that has been proposed for exploring steep terrain on remote planets. The STAR would be able to climb up or down on slopes as steep as vertical, and even beyond vertical to overhangs. Its system of walking mechanisms and controls would be to react forces and maintain stability. To enable the STAR to anchor itself in the terrain on steep slopes to maintain stability and react forces, it would be necessary to equip the tips of the walking legs with new ultrasonic/ sonic drill corers (USDCs) and to develop sensors and control algorithms to enable robust utilization of the USDCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
Weird Project: E-Health Service Improvement Using WiMAX
NASA Astrophysics Data System (ADS)
Cimmino, Antonio; Casali, Fulvio; Mambretti, Cinzia
Today the major obstacle to massive deployment of telemedicine applications are the security issues related to the exchange of real time information between different elements that are not at fixed locations. WiMAX, the new standard for wireless communications, is one of the most promising technologies for broadband access in a fixed and mobile environment and it is expected to overcome the above mentioned obstacle. The FP6-WEIRD [1] (WiMax Extension to Isolated Remote Data networks) project has: analysed how this technology can guarantee secure real time data transmission between mobile elements, built some successful demonstrations and paved the way to future commercial applications. This paper in particular describes: main promising e-health applications that WiMax would enable; the technological highlights and the main challenges that WiMax has to face in e-health applications such as accounting, privacy, security, data integrity; the way in which the WEIRD project 0 has studied the wireless access to medical communities and equipment in remote or impervious areas. 0 0; some envisaged implementations.
The imaging node for the Planetary Data System
Eliason, E.M.; LaVoie, S.K.; Soderblom, L.A.
1996-01-01
The Planetary Data System Imaging Node maintains and distributes the archives of planetary image data acquired from NASA's flight projects with the primary goal of enabling the science community to perform image processing and analysis on the data. The Node provides direct and easy access to the digital image archives through wide distribution of the data on CD-ROM media and on-line remote-access tools by way of Internet services. The Node provides digital image processing tools and the expertise and guidance necessary to understand the image collections. The data collections, now approaching one terabyte in volume, provide a foundation for remote sensing studies for virtually all the planetary systems in our solar system (except for Pluto). The Node is responsible for restoring data sets from past missions in danger of being lost. The Node works with active flight projects to assist in the creation of their archive products and to ensure that their products and data catalogs become an integral part of the Node's data collections.
Software to Facilitate Remote Sensing Data Access for Disease Early Warning Systems
Liu, Yi; Hu, Jiameng; Snell-Feikema, Isaiah; VanBemmel, Michael S.; Lamsal, Aashis; Wimberly, Michael C.
2015-01-01
Satellite remote sensing produces an abundance of environmental data that can be used in the study of human health. To support the development of early warning systems for mosquito-borne diseases, we developed an open-source, client based software application to enable the Epidemiological Applications of Spatial Technologies (EASTWeb). Two major design decisions were full automation of the discovery, retrieval and processing of remote sensing data from multiple sources, and making the system easily modifiable in response to changes in data availability and user needs. Key innovations that helped to achieve these goals were the implementation of a software framework for data downloading and the design of a scheduler that tracks the complex dependencies among multiple data processing tasks and makes the system resilient to external errors. EASTWeb has been successfully applied to support forecasting of West Nile virus outbreaks in the United States and malaria epidemics in the Ethiopian highlands. PMID:26644779
A Mobile Robot for Remote Response to Incidents Involving Hazardous Materials
NASA Technical Reports Server (NTRS)
Welch, Richard V.
1994-01-01
This paper will describe a teleoperated mobile robot system being developed at JPL for use by the JPL Fire Department/HAZMAT Team. The project, which began in October 1990, is focused on prototyping a robotic vehicle which can be quickly deployed and easily operated by HAZMAT Team personnel allowing remote entry and exploration of a hazardous material incident site. The close involvement of JPL Fire Department personnel has been critical in establishing system requirements as well as evaluating the system. The current robot, called HAZBOT III, has been especially designed for operation in environments that may contain combustible gases. Testing of the system with the Fire Department has shown that teleoperated robots can successfully gain access to incident sites allowing hazardous material spills to be remotely located and identified. Work is continuing to enable more complex missions through enhancement of the operator interface and by allowing tetherless operation.
Formal Home Care Utilization Patterns by Rural–Urban Community Residence
Spector, William; Van Nostrand, Joan
2009-01-01
Background We examined formal home care utilization among civilian adults across metro and nonmetro residential categories before and after adjustment for predisposing, enabling, and need variables. Methods Two years of the Medical Expenditure Panel Survey (MEPS) were combined to produce a nationally representative sample of adults who resided in the community for a calendar year. We established 6 rural–urban categories based upon Urban Influence Codes and examined 2 dependent variables: (a) likelihood of using any formal home care and (b) number of provider days received by users. The Area Resource File provided county-level information. Logistic and negative binomial regression analyses were employed, with adjustments for the MEPS complex sampling design and the combined years. Results Under controls for predisposing, enabling, and need variables, differences in likelihood of any formal home care use disappear, but differences in number of provider days received by users emerged, with fewer provider days in remote areas than in metro and several other nonmetro types. Conclusions It is important to fully account for predisposing, enabling, and need factors when assessing rural and urban home care utilization patterns. The limited provider days in remote counties under controls suggest a possible access problem for adults in these areas. PMID:19196690
Design and Execution of make-like, distributed Analyses based on Spotify’s Pipelining Package Luigi
NASA Astrophysics Data System (ADS)
Erdmann, M.; Fischer, B.; Fischer, R.; Rieger, M.
2017-10-01
In high-energy particle physics, workflow management systems are primarily used as tailored solutions in dedicated areas such as Monte Carlo production. However, physicists performing data analyses are usually required to steer their individual workflows manually which is time-consuming and often leads to undocumented relations between particular workloads. We present a generic analysis design pattern that copes with the sophisticated demands of end-to-end HEP analyses and provides a make-like execution system. It is based on the open-source pipelining package Luigi which was developed at Spotify and enables the definition of arbitrary workloads, so-called Tasks, and the dependencies between them in a lightweight and scalable structure. Further features are multi-user support, automated dependency resolution and error handling, central scheduling, and status visualization in the web. In addition to already built-in features for remote jobs and file systems like Hadoop and HDFS, we added support for WLCG infrastructure such as LSF and CREAM job submission, as well as remote file access through the Grid File Access Library. Furthermore, we implemented automated resubmission functionality, software sandboxing, and a command line interface with auto-completion for a convenient working environment. For the implementation of a t \\overline{{{t}}} H cross section measurement, we created a generic Python interface that provides programmatic access to all external information such as datasets, physics processes, statistical models, and additional files and values. In summary, the setup enables the execution of the entire analysis in a parallelized and distributed fashion with a single command.
Design and Implementation of Cloud-Centric Configuration Repository for DIY IoT Applications
Ahmad, Shabir; Kim, Do Hyeun
2018-01-01
The Do-It-Yourself (DIY) vision for the design of a smart and customizable IoT application demands the involvement of the general public in its development process. The general public lacks the technical knowledge for programming state-of-the-art prototyping and development kits. The latest IoT kits, for example, Raspberry Pi, are revolutionizing the DIY paradigm for IoT, and more than ever, a DIY intuitive programming interface is required to enable the masses to interact with and customize the behavior of remote IoT devices on the Internet. However, in most cases, these DIY toolkits store the resultant configuration data in local storage and, thus, cannot be accessed remotely. This paper presents the novel implementation of such a system, which not only enables the general public to customize the behavior of remote IoT devices through a visual interface, but also makes the configuration available everywhere and anytime by leveraging the power of cloud-based platforms. The interface enables the visualization of the resources exposed by remote embedded resources in the form of graphical virtual objects (VOs). These VOs are used to create the service design through simple operations like drag-and-drop and the setting of properties. The configuration created as a result is maintained as an XML document, which is ingested by the cloud platform, thus making it available to be used anywhere. We use the HTTP approach for the communication between the cloud and IoT toolbox and the cloud and real devices, but for communication between the toolbox and actual resources, CoAP is used. Finally, a smart home case study has been implemented and presented in order to assess the effectiveness of the proposed work. PMID:29415450
Design and Implementation of Cloud-Centric Configuration Repository for DIY IoT Applications.
Ahmad, Shabir; Hang, Lei; Kim, Do Hyeun
2018-02-06
The Do-It-Yourself (DIY) vision for the design of a smart and customizable IoT application demands the involvement of the general public in its development process. The general public lacks the technical knowledge for programming state-of-the-art prototyping and development kits. The latest IoT kits, for example, Raspberry Pi, are revolutionizing the DIY paradigm for IoT, and more than ever, a DIY intuitive programming interface is required to enable the masses to interact with and customize the behavior of remote IoT devices on the Internet. However, in most cases, these DIY toolkits store the resultant configuration data in local storage and, thus, cannot be accessed remotely. This paper presents the novel implementation of such a system, which not only enables the general public to customize the behavior of remote IoT devices through a visual interface, but also makes the configuration available everywhere and anytime by leveraging the power of cloud-based platforms. The interface enables the visualization of the resources exposed by remote embedded resources in the form of graphical virtual objects (VOs). These VOs are used to create the service design through simple operations like drag-and-drop and the setting of properties. The configuration created as a result is maintained as an XML document, which is ingested by the cloud platform, thus making it available to be used anywhere. We use the HTTP approach for the communication between the cloud and IoT toolbox and the cloud and real devices, but for communication between the toolbox and actual resources, CoAP is used. Finally, a smart home case study has been implemented and presented in order to assess the effectiveness of the proposed work.
Vroom: designing an augmented environment for remote collaboration in digital cinema production
NASA Astrophysics Data System (ADS)
Margolis, Todd; Cornish, Tracy
2013-03-01
As media technologies become increasingly affordable, compact and inherently networked, new generations of telecollaborative platforms continue to arise which integrate these new affordances. Virtual reality has been primarily concerned with creating simulations of environments that can transport participants to real or imagined spaces that replace the "real world". Meanwhile Augmented Reality systems have evolved to interleave objects from Virtual Reality environments into the physical landscape. Perhaps now there is a new class of systems that reverse this precept to enhance dynamic media landscapes and immersive physical display environments to enable intuitive data exploration through collaboration. Vroom (Virtual Room) is a next-generation reconfigurable tiled display environment in development at the California Institute for Telecommunications and Information Technology (Calit2) at the University of California, San Diego. Vroom enables freely scalable digital collaboratories, connecting distributed, high-resolution visualization resources for collaborative work in the sciences, engineering and the arts. Vroom transforms a physical space into an immersive media environment with large format interactive display surfaces, video teleconferencing and spatialized audio built on a highspeed optical network backbone. Vroom enables group collaboration for local and remote participants to share knowledge and experiences. Possible applications include: remote learning, command and control, storyboarding, post-production editorial review, high resolution video playback, 3D visualization, screencasting and image, video and multimedia file sharing. To support these various scenarios, Vroom features support for multiple user interfaces (optical tracking, touch UI, gesture interface, etc.), support for directional and spatialized audio, giga-pixel image interactivity, 4K video streaming, 3D visualization and telematic production. This paper explains the design process that has been utilized to make Vroom an accessible and intuitive immersive environment for remote collaboration specifically for digital cinema production.
McFarlane, Kathryn A; Judd, Jenni; Wapau, Hylda; Nichols, Nina; Watt, Kerrianne; Devine, Sue
2018-05-01
Health promotion is a key component of comprehensive primary health care. Health promotion approaches complement healthcare management by enabling individuals to increase control over their health. Many primary healthcare staff have a role to play in health promotion practice, but their ability to integrate health promotion into practice is influenced by their previous training and experience. For primary healthcare staff working in rural and remote locations, access to professional development can be limited by what is locally available and prohibitive in terms of cost for travel and accommodation. This study provides insight into how staff at a large north Queensland Aboriginal community controlled health service access skill development and health promotion expertise to support their work. A qualitative exploratory study was conducted. Small group and individual semi-structured interviews were conducted with staff at Apunipima Cape York Health Council (n=9). A purposive sampling method was used to recruit participants from a number of primary healthcare teams that were more likely to be involved in health promotion work. Both on-the-ground staff and managers were interviewed. All participants were asked how they access skill development and expertise in health promotion practice and what approaches they prefer for ongoing health promotion support. The interviews were transcribed verbatim and analysed thematically. All participants valued access to skill development, advice and support that would assist their health promotion practice. Skill development and expertise in health promotion was accessed from a variety of sources: conferences, workshops, mentoring or shared learning from internal and external colleagues, and access to online information and resources. With limited funds and limited access to professional development locally, participants fostered external and internal organisational relationships to seek in-kind advice and support. Irrespective of where the advice came from, it needed to be applicable to work with Aboriginal and Torres Strait Islander remote communities. To improve health outcomes in rural and remote communities, the focus on health promotion and prevention approaches must be strengthened. Primary healthcare staff require ongoing access to health promotion skill development and expertise to increase their capacity to deliver comprehensive primary health care. Practice-based evidence from staff working in the field provides a greater understanding of how skill development and advice are accessed. Many of these strategies can be formalised through organisational plans and systems, which would ensure that a skilled health promotion workforce is sustained.
An easy-to-build remote laboratory with data transfer using the Internet School Experimental System
NASA Astrophysics Data System (ADS)
Schauer, František; Lustig, František; Dvořák, Jiří; Ožvoldová, Miroslava
2008-07-01
The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.
ERIC Educational Resources Information Center
Howe, Grant
2009-01-01
With money tight, more and more districts are considering remote access as a way to reduce expenses and budget information technology costs more effectively. Remote access allows staff members to work with a hosted software application from any school campus without being tied to a specific physical location. Each school can access critical…
Social Networking Adapted for Distributed Scientific Collaboration
NASA Technical Reports Server (NTRS)
Karimabadi, Homa
2012-01-01
Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and messaging encryption; and g) Easy-to-use intuitive workflow.
"One-Stop Shopping" for Ocean Remote-Sensing and Model Data
NASA Technical Reports Server (NTRS)
Li, P. Peggy; Vu, Quoc; Chao, Yi; Li, Zhi-Jin; Choi, Jei-Kook
2006-01-01
OurOcean Portal 2.0 (http:// ourocean.jpl.nasa.gov) is a software system designed to enable users to easily gain access to ocean observation data, both remote-sensing and in-situ, configure and run an Ocean Model with observation data assimilated on a remote computer, and visualize both the observation data and the model outputs. At present, the observation data and models focus on the California coastal regions and Prince William Sound in Alaska. This system can be used to perform both real-time and retrospective analyses of remote-sensing data and model outputs. OurOcean Portal 2.0 incorporates state-of-the-art information technologies (IT) such as MySQL database, Java Web Server (Apache/Tomcat), Live Access Server (LAS), interactive graphics with Java Applet at the Client site and MatLab/GMT at the server site, and distributed computing. OurOcean currently serves over 20 real-time or historical ocean data products. The data are served in pre-generated plots or their native data format. For some of the datasets, users can choose different plotting parameters and produce customized graphics. OurOcean also serves 3D Ocean Model outputs generated by ROMS (Regional Ocean Model System) using LAS. The Live Access Server (LAS) software, developed by the Pacific Marine Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), is a configurable Web-server program designed to provide flexible access to geo-referenced scientific data. The model output can be views as plots in horizontal slices, depth profiles or time sequences, or can be downloaded as raw data in different data formats, such as NetCDF, ASCII, Binary, etc. The interactive visualization is provided by graphic software, Ferret, also developed by PMEL. In addition, OurOcean allows users with minimal computing resources to configure and run an Ocean Model with data assimilation on a remote computer. Users may select the forcing input, the data to be assimilated, the simulation period, and the output variables and submit the model to run on a backend parallel computer. When the run is complete, the output will be added to the LAS server for
Woods, Cindy E; McPherson, Karen; Tikoft, Erik; Usher, Kim; Hosseini, Fariborz; Ferns, Janine; Jersmann, Hubertus; Antic, Ral; Maguire, Graeme Paul
2015-11-15
To compare the use of sleep diagnostic tests, the risks, and cofactors, and outcomes of the care of Indigenous and non-indigenous Australian adults in regional and remote Australia in whom sleep related breathing disorders have been diagnosed. A retrospective cohort study of 200 adults; 100 Aboriginal and Torres Strait Islander and 100 non-indigenous adults with a confirmed sleep related breathing disorder diagnosed prior to September 2011 at Alice Springs Hospital and Cairns Hospital, Australia. Results showed overall Indigenous Australians were 1.8 times more likely to have a positive diagnostic sleep study performed compared with non-indigenous patients, 1.6 times less likely in central Australia and 3.4 times more likely in far north Queensland. All regional and remote residents accessed diagnostic sleep studies at a rate less than Australia overall (31/100,000/y (95% confidence interval, 21-44) compared with 575/100,000/y). The barriers to diagnosis and ongoing care are likely to relate to remote residence, lower health self-efficacy, the complex nature of the treatment tool, and environmental factors such as electricity and sleeping area. Indigeneity, remote residence, environmental factors, and low awareness of sleep health are likely to affect service accessibility and rate of use and capacity to enhance patient and family education and support following a diagnosis. A greater understanding of enablers and barriers to care and evaluation of interventions to address these are required. A commentary on this article appears in this issue on page 1255. © 2015 American Academy of Sleep Medicine.
Suprayitno, Nano; Narakusumo, Raden Pramesa; von Rintelen, Thomas; Hendrich, Lars; Balke, Michael
2017-01-01
Taxonomy and biogeography can benefit from citizen scientists. The use of social networking and open access cooperative publishing can easily connect naturalists even in more remote areas with in-country scientists and institutions, as well as those abroad. This enables taxonomic efforts without frontiers and at the same time adequate benefit sharing measures. We present new distribution and habitat data for diving beetles of Bali island, Indonesia, as a proof of concept. The species Hydaticus luczonicus Aubé, 1838 and Eretes griseus (Fabricius, 1781) are reported from Bali for the first time. The total number of Dytiscidae species known from Bali is now 34.
Suprayitno, Nano; Narakusumo, Raden Pramesa; von Rintelen, Thomas; Hendrich, Lars
2017-01-01
Abstract Background Taxonomy and biogeography can benefit from citizen scientists. The use of social networking and open access cooperative publishing can easily connect naturalists even in more remote areas with in-country scientists and institutions, as well as those abroad. This enables taxonomic efforts without frontiers and at the same time adequate benefit sharing measures. New information We present new distribution and habitat data for diving beetles of Bali island, Indonesia, as a proof of concept. The species Hydaticus luczonicus Aubé, 1838 and Eretes griseus (Fabricius, 1781) are reported from Bali for the first time. The total number of Dytiscidae species known from Bali is now 34. PMID:29104436
Oxyfunctionalization of the Remote C-H Bonds of Aliphatic Amines by Decatungstate Photocatalysis.
Schultz, Danielle M; Lévesque, François; DiRocco, Daniel A; Reibarkh, Mikhail; Ji, Yining; Joyce, Leo A; Dropinski, James F; Sheng, Huaming; Sherry, Benjamin D; Davies, Ian W
2017-11-27
Aliphatic amines, oxygenated at remote positions within the molecule, represent an important class of synthetic building blocks to which there are currently no direct means of access. Reported herein is an efficient and scalable solution that relies upon decatungstate photocatalysis under acidic conditions using either H 2 O 2 or O 2 as the terminal oxidant. By using these reaction conditions a series of simple and unbiased aliphatic amine starting materials can be oxidized to value-added ketone products. Lastly, NMR spectroscopy using in situ LED-irradiated samples was utilized to monitor the kinetics of the reaction, thus enabling direct translation of the reaction into flow. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remoteness and Access to Learning Opportunities in the Pacific Region.
ERIC Educational Resources Information Center
Pacific Region Educational Lab., Honolulu, HI.
The Remoteness and Access to Learning Opportunities in the Pacific Region Study was carried out to investigate whether access to learning opportunities (ALO) is related to the remoteness and isolation of many schools in the Pacific region. The study also profiles the conditions of remote and isolated schools and the ALO for Pacific students. Seven…
John, Sheila; Premila, M; Javed, Mohd; Vikas, G; Wagholikar, Amol
2015-01-01
To inform about a very unique and first of its kind telehealth pilot study in India that has provided virtual telehealth consultation to eye care patients in low resource at remote villages. Provision of Access to eye care services in remote population is always challenging due to pragmatic reasons. Advances in Telehealth technologies have provided an opportunity to improve access to remote population. However, current Telehealth technologies are limited to face-to-face video consultation only. We inform about a pilot study that illustrates real-time imaging access to ophthalmologists. Our innovative software led technology solution allowed screening of patients with varying ocular conditions. Eye camps were conducted in 2 districts in South India over a 12-month period in 2014. Total of 196 eye camps were conducted. Total of 19,634 patients attended the eye camps. Innovative software was used to conduct consultation with the ophthalmologist located in the city hospital. The software enabled virtual visit and allowed instant sharing of fundus camera images for assessment and diagnosis. About 71% of the patients were found to have Refractive Error problems, 15% of them were found to have cataract, 7% of the patients were diagnosed to have Retina problems and 7% of the patients were found to have other ocular diseases. The patients requiring cataract surgery were immediately transferred to city hospital for treatment. Software led assessment of fundus camera images assisted in identifying retinal eye diseases. Our real-time virtual visit software assisted in specialist care provision and illustrated a novel tele health solution for low resource population.
Enabling private and public sector organizations as agents of homeland security
NASA Astrophysics Data System (ADS)
Glassco, David H. J.; Glassco, Jordan C.
2006-05-01
Homeland security and defense applications seek to reduce the risk of undesirable eventualities across physical space in real-time. With that functional requirement in mind, our work focused on the development of IP based agent telecommunication solutions for heterogeneous sensor / robotic intelligent "Things" that could be deployed across the internet. This paper explains how multi-organization information and device sharing alliances may be formed to enable organizations to act as agents of homeland security (in addition to other uses). Topics include: (i) using location-aware, agent based, real-time information sharing systems to integrate business systems, mobile devices, sensor and actuator based devices and embedded devices used in physical infrastructure assets, equipment and other man-made "Things"; (ii) organization-centric real-time information sharing spaces using on-demand XML schema formatted networks; (iii) object-oriented XML serialization as a methodology for heterogeneous device glue code; (iv) how complex requirements for inter / intra organization information and device ownership and sharing, security and access control, mobility and remote communication service, tailored solution life cycle management, service QoS, service and geographic scalability and the projection of remote physical presence (through sensing and robotics) and remote informational presence (knowledge of what is going elsewhere) can be more easily supported through feature inheritance with a rapid agent system development methodology; (v) how remote object identification and tracking can be supported across large areas; (vi) how agent synergy may be leveraged with analytics to complement heterogeneous device networks.
Remotely Sensed Imagery from USGS: Update on Products and Portals
NASA Astrophysics Data System (ADS)
Lamb, R.; Lemig, K.
2016-12-01
The USGS Earth Resources Observation and Science (EROS) Center has recently implemented a number of additions and changes to its existing suite of products and user access systems. Together, these changes will enhance the accessibility, breadth, and usability of the remotely sensed image products and delivery mechanisms available from USGS. As of late 2016, several new image products are now available for public download at no charge from USGS/EROS Center. These new products include: (1) global Level 1T (precision terrain-corrected) products from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), provided via NASA's Land Processes Distributed Active Archive Center (LP DAAC); and (2) Sentinel-2 Multispectral Instrument (MSI) products, available through a collaborative effort with the European Space Agency (ESA). Other new products are also planned to become available soon. In an effort to enable future scientific analysis of the full 40+ year Landsat archive, the USGS also introduced a new "Collection Management" strategy for all Landsat Level 1 products. This new archive and access schema involves quality-based tier designations that will support future time series analysis of the historic Landsat archive at the pixel level. Along with the quality tier designations, the USGS has also implemented a number of other Level 1 product improvements to support Landsat science applications, including: enhanced metadata, improved geometric processing, refined quality assessment information, and angle coefficient files. The full USGS Landsat archive is now being reprocessed in accordance with the new `Collection 1' specifications. Several USGS data access and visualization systems have also seen major upgrades. These user interfaces include a new version of the USGS LandsatLook Viewer which was released in Fall 2017 to provide enhanced functionality and Sentinel-2 visualization and access support. A beta release of the USGS Global Visualization Tool ("GloVis Next") was also released in Fall 2017, with many new features including data visualization at full resolution. The USGS also introduced a time-enabled web mapping service (WMS) to support time-based access to the existing LandsatLook "natural color" full-resolution browse image services.
OASIS: A Data Fusion System Optimized for Access to Distributed Archives
NASA Astrophysics Data System (ADS)
Berriman, G. B.; Kong, M.; Good, J. C.
2002-05-01
The On-Line Archive Science Information Services (OASIS) is accessible as a java applet through the NASA/IPAC Infrared Science Archive home page. It uses Geographical Information System (GIS) technology to provide data fusion and interaction services for astronomers. These services include the ability to process and display arbitrarily large image files, and user-controlled contouring, overlay regeneration and multi-table/image interactions. OASIS has been optimized for access to distributed archives and data sets. Its second release (June 2002) provides a mechanism that enables access to OASIS from "third-party" services and data providers. That is, any data provider who creates a query form to an archive containing a collection of data (images, catalogs, spectra) can direct the result files from the query into OASIS. Similarly, data providers who serve links to datasets or remote services on a web page can access all of these data with one instance of OASIS. In this was any data or service provider is given access to the full suite of capabilites of OASIS. We illustrate the "third-party" access feature with two examples: queries to the high-energy image datasets accessible from GSFC SkyView, and links to data that are returned from a target-based query to the NASA Extragalactic Database (NED). The second release of OASIS also includes a file-transfer manager that reports the status of multiple data downloads from remote sources to the client machine. It is a prototype for a request management system that will ultimately control and manage compute-intensive jobs submitted through OASIS to computing grids, such as request for large scale image mosaics and bulk statistical analysis.
JHelioviewer: Open-Source Software for Discovery and Image Access in the Petabyte Age (Invited)
NASA Astrophysics Data System (ADS)
Mueller, D.; Dimitoglou, G.; Langenberg, M.; Pagel, S.; Dau, A.; Nuhn, M.; Garcia Ortiz, J. P.; Dietert, H.; Schmidt, L.; Hughitt, V. K.; Ireland, J.; Fleck, B.
2010-12-01
The unprecedented torrent of data returned by the Solar Dynamics Observatory is both a blessing and a barrier: a blessing for making available data with significantly higher spatial and temporal resolution, but a barrier for scientists to access, browse and analyze them. With such staggering data volume, the data is bound to be accessible only from a few repositories and users will have to deal with data sets effectively immobile and practically difficult to download. From a scientist's perspective this poses three challenges: accessing, browsing and finding interesting data while avoiding the proverbial search for a needle in a haystack. To address these challenges, we have developed JHelioviewer, an open-source visualization software that lets users browse large data volumes both as still images and movies. We did so by deploying an efficient image encoding, storage, and dissemination solution using the JPEG 2000 standard. This solution enables users to access remote images at different resolution levels as a single data stream. Users can view, manipulate, pan, zoom, and overlay JPEG 2000 compressed data quickly, without severe network bandwidth penalties. Besides viewing data, the browser provides third-party metadata and event catalog integration to quickly locate data of interest, as well as an interface to the Virtual Solar Observatory to download science-quality data. As part of the Helioviewer Project, JHelioviewer offers intuitive ways to browse large amounts of heterogeneous data remotely and provides an extensible and customizable open-source platform for the scientific community.
Support Services for Remote Users of Online Public Access Catalogs.
ERIC Educational Resources Information Center
Kalin, Sally W.
1991-01-01
Discusses the needs of remote users of online public access catalogs (OPACs). User expectations are discussed; problems encountered by remote-access users are examined, including technical problems and searching problems; support services are described, including instruction, print guides, and online help; and differences from the needs of…
Data distribution service-based interoperability framework for smart grid testbed infrastructure
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
2016-03-02
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
Kim, Dong Keun; Yoo, Sun K; Park, Jeong Jin; Kim, Sun Ho
2007-06-01
Remote teleconsultation by specialists is important for timely, correct, and specialized emergency surgical and medical decision making. In this paper, we designed a new personal digital assistant (PDA)-phone-based emergency teleradiology system by combining cellular communication with Bluetooth-interfaced local wireless links. The mobility and portability resulting from the use of PDAs and wireless communication can provide a more effective means of emergency teleconsultation without requiring the user to be limited to a fixed location. Moreover, it enables synchronized radiological image sharing between the attending physician in the emergency room and the remote specialist on picture archiving and communication system terminals without distorted image acquisition. To enable rapid and fine-quality radiological image transmission over a cellular network in a secure manner, progressive compression and security mechanisms have been incorporated. The proposed system is tested over a code division Multiple Access 1x-Evolution Data-Only network to evaluate the performance and to demonstrate the feasibility of this system in a real-world setting.
Virtual Solar Observatory Distributed Query Construction
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Dimitoglou, G.; Bogart, R.; Davey, A.; Hill, F.; Martens, P.
2003-01-01
Through a prototype implementation (Tian et al., this meeting) the VSO has already demonstrated the capability of unifying geographically distributed data sources following the Web Services paradigm and utilizing mechanisms such as the Simple Object Access Protocol (SOAP). So far, four participating sites (Stanford, Montana State University, National Solar Observatory and the Solar Data Analysis Center) permit Web-accessible, time-based searches that allow browse access to a number of diverse data sets. Our latest work includes the extension of the simple, time-based queries to include numerous other searchable observation parameters. For VSO users, this extended functionality enables more refined searches. For the VSO, it is a proof of concept that more complex, distributed queries can be effectively constructed and that results from heterogeneous, remote sources can be synthesized and presented to users as a single, virtual data product.
The Neotoma Paleoecology Database
NASA Astrophysics Data System (ADS)
Grimm, E. C.; Ashworth, A. C.; Barnosky, A. D.; Betancourt, J. L.; Bills, B.; Booth, R.; Blois, J.; Charles, D. F.; Graham, R. W.; Goring, S. J.; Hausmann, S.; Smith, A. J.; Williams, J. W.; Buckland, P.
2015-12-01
The Neotoma Paleoecology Database (www.neotomadb.org) is a multiproxy, open-access, relational database that includes fossil data for the past 5 million years (the late Neogene and Quaternary Periods). Modern distributional data for various organisms are also being made available for calibration and paleoecological analyses. The project is a collaborative effort among individuals from more than 20 institutions worldwide, including domain scientists representing a spectrum of Pliocene-Quaternary fossil data types, as well as experts in information technology. Working groups are active for diatoms, insects, ostracodes, pollen and plant macroscopic remains, testate amoebae, rodent middens, vertebrates, age models, geochemistry and taphonomy. Groups are also active in developing online tools for data analyses and for developing modules for teaching at different levels. A key design concept of NeotomaDB is that stewards for various data types are able to remotely upload and manage data. Cooperatives for different kinds of paleo data, or from different regions, can appoint their own stewards. Over the past year, much progress has been made on development of the steward software-interface that will enable this capability. The steward interface uses web services that provide access to the database. More generally, these web services enable remote programmatic access to the database, which both desktop and web applications can use and which provide real-time access to the most current data. Use of these services can alleviate the need to download the entire database, which can be out-of-date as soon as new data are entered. In general, the Neotoma web services deliver data either from an entire table or from the results of a view. Upon request, new web services can be quickly generated. Future developments will likely expand the spatial and temporal dimensions of the database. NeotomaDB is open to receiving new datasets and stewards from the global Quaternary community. Research is supported by NSF EAR-0622349.
SOAR remote observing: tactics and early results
NASA Astrophysics Data System (ADS)
Cecil, Gerald N.; Crain, J. Adam
2004-09-01
Travel from North America to the 4.1m SOAR telescope atop Cerro Pachon exceeds $1000, and takes >16 hours door to door (20+ hours typically). SOAR aims to exploit best seeing, requiring dynamic scheduling that is impossible to accomplish when catering to peripatetic astronomers. According to technical arguments at www.peakoil.org, we are near the peak rate of depleting world petroleum, so can expect travel costs to climb sharply. With the telecom bubble's glut of optical fiber, we can transmit data more efficiently than astronomers and "observe remotely". With data compression, less than half of the 6 Mbps bandwidth shared currently by SOAR and CTIO is enough to enable a high-fidelity observing presence for SOAR partners in North America, Brazil, and Chile. We discuss access from home by cable modem/DSL link.
Final report: Prototyping a combustion corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.; Leach, Joshua
2001-12-15
The Combustion Corridor is a concept in which researchers in combustion and thermal sciences have unimpeded access to large volumes of remote computational results. This will enable remote, collaborative analysis and visualization of state-of-the-art combustion science results. The Engine Research Center (ERC) at the University of Wisconsin - Madison partnered with Lawrence Berkeley National Laboratory, Argonne National Laboratory, Sandia National Laboratory, and several other universities to build and test the first stages of a combustion corridor. The ERC served two important functions in this partnership. First, we work extensively with combustion simulations so we were able to provide real worldmore » research data sets for testing the Corridor concepts. Second, the ERC was part of an extension of the high bandwidth based DOE National Laboratory connections to universities.« less
A Web-Based Remote Access Laboratory Using SCADA
ERIC Educational Resources Information Center
Aydogmus, Z.; Aydogmus, O.
2009-01-01
The Internet provides an opportunity for students to access laboratories from outside the campus. This paper presents a Web-based remote access real-time laboratory using SCADA (supervisory control and data acquisition) control. The control of an induction motor is used as an example to demonstrate the effectiveness of this remote laboratory,…
Evaluation of Google Glass Technical Limitations on Their Integration in Medical Systems.
Martinez-Millana, Antonio; Bayo-Monton, Jose-Luis; Lizondo, Aroa; Fernandez-Llatas, Carlos; Traver, Vicente
2016-12-15
Google Glass is a wearable sensor presented to facilitate access to information and assist while performing complex tasks. Despite the withdrawal of Google in supporting the product, today there are multiple applications and much research analyzing the potential impact of this technology in different fields of medicine. Google Glass satisfies the need of managing and having rapid access to real-time information in different health care scenarios. Among the most common applications are access to electronic medical records, display monitorizations, decision support and remote consultation in specialties ranging from ophthalmology to surgery and teaching. The device enables a user-friendly hands-free interaction with remote health information systems and broadcasting medical interventions and consultations from a first-person point of view. However, scientific evidence highlights important technical limitations in its use and integration, such as failure in connectivity, poor reception of images and automatic restart of the device. This article presents a technical study on the aforementioned limitations (specifically on the latency, reliability and performance) on two standard communication schemes in order to categorize and identify the sources of the problems. Results have allowed us to obtain a basis to define requirements for medical applications to prevent network, computational and processing failures associated with the use of Google Glass.
Evaluation of Google Glass Technical Limitations on Their Integration in Medical Systems
Martinez-Millana, Antonio; Bayo-Monton, Jose-Luis; Lizondo, Aroa; Fernandez-Llatas, Carlos; Traver, Vicente
2016-01-01
Google Glass is a wearable sensor presented to facilitate access to information and assist while performing complex tasks. Despite the withdrawal of Google in supporting the product, today there are multiple applications and much research analyzing the potential impact of this technology in different fields of medicine. Google Glass satisfies the need of managing and having rapid access to real-time information in different health care scenarios. Among the most common applications are access to electronic medical records, display monitorizations, decision support and remote consultation in specialties ranging from ophthalmology to surgery and teaching. The device enables a user-friendly hands-free interaction with remote health information systems and broadcasting medical interventions and consultations from a first-person point of view. However, scientific evidence highlights important technical limitations in its use and integration, such as failure in connectivity, poor reception of images and automatic restart of the device. This article presents a technical study on the aforementioned limitations (specifically on the latency, reliability and performance) on two standard communication schemes in order to categorize and identify the sources of the problems. Results have allowed us to obtain a basis to define requirements for medical applications to prevent network, computational and processing failures associated with the use of Google Glass. PMID:27983691
MED31/437: A Web-based Diabetes Management System: DiabNet
Zhao, N; Roudsari, A; Carson, E
1999-01-01
Introduction A web-based system (DiabNet) was developed to provide instant access to the Electronic Diabetes Records (EDR) for end-users, and real-time information for healthcare professionals to facilitate their decision-making. It integrates portable glucometer, handheld computer, mobile phone and Internet access as a combined telecommunication and mobile computing solution for diabetes management. Methods: Active Server Pages (ASP) embedded with advanced ActiveX controls and VBScript were developed to allow remote data upload, retrieval and interpretation. Some advisory and Internet-based learning features, together with a video teleconferencing component make DiabNet web site an informative platform for Web-consultation. Results The evaluation of the system is being implemented among several UK Internet diabetes discussion groups and the Diabetes Day Centre at the Guy's & St. Thomas' Hospital. Many positive feedback are received from the web site demonstrating DiabNet is an advanced web-based diabetes management system which can help patients to keep closer control of self-monitoring blood glucose remotely, and is an integrated diabetes information resource that offers telemedicine knowledge in diabetes management. Discussion In summary, DiabNet introduces an innovative online diabetes management concept, such as online appointment and consultation, to enable users to access diabetes management information without time and location limitation and security concerns.
Development of a monitoring system for physical frailty in independent elderly.
Hewson, David J; Jaber, Rana; Chkeir, Aly; Hammoud, Ali; Gupta, Dhruv; Bassement, Jennifer; Vermeulen, Joan; Yadav, Sandeep; de Witte, Luc; Duchene, Jacques
2013-01-01
Frailty is of increasing concern due to the associated decrease in independence of elderly who suffer from the condition. An innovative system was designed in order to objectively quantify the level of frailty based on a series of remote tests, each of which used objects similar to those found in peoples' homes. A modified ball, known as the Grip-ball was used to evaluate maximal grip force and exhaustion during an entirely remote assessment. A smartphone equipped with a tri-axial accelerometer was used to estimate gait velocity and physical activity level. Finally, a bathroom scale was used to assess involuntary weight loss. The smart phone processes all of the data generated, before it is transferred to a remote server where the user, their entourage, and any medical professionals with authorization can access the data. This innovative system could enable the onset of frailty to be detected early, thus giving sufficient time for a targeted intervention program to be implemented, thereby increasing independence for elderly users.
Plugin free remote visualization in the browser
NASA Astrophysics Data System (ADS)
Tamm, Georg; Slusallek, Philipp
2015-01-01
Today, users access information and rich media from anywhere using the web browser on their desktop computers, tablets or smartphones. But the web evolves beyond media delivery. Interactive graphics applications like visualization or gaming become feasible as browsers advance in the functionality they provide. However, to deliver large-scale visualization to thin clients like mobile devices, a dedicated server component is necessary. Ideally, the client runs directly within the browser the user is accustomed to, requiring no installation of a plugin or native application. In this paper, we present the state-of-the-art of technologies which enable plugin free remote rendering in the browser. Further, we describe a remote visualization system unifying these technologies. The system transfers rendering results to the client as images or as a video stream. We utilize the upcoming World Wide Web Consortium (W3C) conform Web Real-Time Communication (WebRTC) standard, and the Native Client (NaCl) technology built into Chrome, to deliver video with low latency.
Stuckey, Ruth; Domingues-Montanari, Sophie
2017-08-01
Telecommunication technologies are advancing rapidly with huge investment to improve infrastructure in rural areas. Telemedicine brings the benefits of telecommunication to healthcare, especially in resource-limited and remote communities. The recent literature on telemedicine in paediatrics will be reviewed, with particular focus on its application to help children with neurodevelopmental disorders and their families living in remote regions and/or low-income countries, and gaps identified for future research. Studies show that telemedicine can enable a family's access to appropriately qualified help that physically may only be available hundreds of miles away, helping to overcome geographic barriers. Telemedicine can also train parents and equip them with the knowledge and skills to better care for their children. Despite some technological barriers to implementation, telemedicine can help transform all stages of autism treatment. However, more studies are required in low- and middle-income countries to fully elucidate the benefits offered by telemedicine to autistic children and their families.
Data management and analysis for the Earth System Grid
NASA Astrophysics Data System (ADS)
Williams, D. N.; Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Henson, V. E.; Jones, P.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.
2008-07-01
The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. In order to address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.
NASA Astrophysics Data System (ADS)
Malik, M. A.; Cantwell, K. L.; Reser, B.; Gray, L. M.
2016-02-01
Marine researchers and managers routinely rely on interdisciplinary data sets collected using hull-mounted sonars, towed sensors, or submersible vehicles. These data sets can be broadly categorized into acoustic remote sensing, imagery-based observations, water property measurements, and physical samples. The resulting raw data sets are overwhelmingly large and complex, and often require specialized software and training to process. To address these challenges, NOAA's Office of Ocean Exploration and Research (OER) is developing tools to improve the discoverability of raw data sets and integration of quality-controlled processed data in order to facilitate re-use of archived oceanographic data. Majority of recently collected OER raw oceanographic data can be retrieved from national data archives (e.g. NCEI and NOAA central library). Merging of disperse data sets by scientists with diverse expertise, however remains problematic. Initial efforts at OER have focused on merging geospatial acoustic remote sensing data with imagery and water property measurements that typically lack direct geo-referencing. OER has developed `smart' ship and submersible tracks that can provide a synopsis of geospatial coverage of various data sets. Tools under development enable scientists to quickly assess the relevance of archived OER data to their respective research or management interests, and enable quick access to the desired raw and processed data sets. Pre-processing of the data and visualization to combine various data sets also offers benefits to streamline data quality assurance and quality control efforts.
Remote Patron Validation: Posting a Proxy Server at the Digital Doorway.
ERIC Educational Resources Information Center
Webster, Peter
2002-01-01
Discussion of remote access to library services focuses on proxy servers as a method for remote access, based on experiences at Saint Mary's University (Halifax). Topics include Internet protocol user validation; browser-directed proxies; server software proxies; vendor alternatives for validating remote users; and Internet security issues. (LRW)
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Stone, Leland (Technical Monitor)
1997-01-01
This paper details two projects that use the World Wide Web (WWW) for dissemination of curricula that focus on remote sensing. 1) Presenting grade-school students with the concepts used in remote sensing involves educating the teacher and then providing the teacher with lesson plans. In a NASA-sponsored project designed to introduce students in grades 4 through 12 to some of the ideas and terminology used in remote sensing, teachers from local grade schools and middle schools were recruited to write lessons about remote sensing concepts they could use in their classrooms. Twenty-two lessons were produced and placed in seven modules that include: the electromagnetic spectrum, two- and three-dimensional perception, maps and topography, scale, remote sensing, biotic and abiotic concepts, and landscape chi rise. Each lesson includes a section that evaluates what students have learned by doing the exercise. The lessons, instead of being published in a workbook and distributed to a limited number of teachers, have been placed on a WWW server, enabling much broader access to the package. This arrangement also allows for the lessons to be modified after feedback from teachers accessing the package. 2) Two-year colleges serve to teach trade skills, prepare students for enrollment in senior institutions of learning, and more and more, retrain students who have college degrees in new technologies and skills. A NASA-sponsored curriculum development project is producing a curriculum using remote sensing analysis an Earth science applications. The project has three major goals. First, it will implement the use of remote sensing data in a broad range of community college courses. Second, it will create curriculum modules and classes that are transportable to other community colleges. Third, the project will be an ongoing source of data and curricular materials to other community colleges. The curriculum will have these course pathways to a certificate; a) a Science emphasis, b) an Arts and Letters emphasis, and c) a Computer Science emphasis Each pathway includes course work in remote sensing, geographical information systems (GIS), computer science, Earth science, software and technology utilization, and communication. Distribution of products from this project to other two-year colleges will be accomplished using the WWW.
Woods, Cindy E.; McPherson, Karen; Tikoft, Erik; Usher, Kim; Hosseini, Fariborz; Ferns, Janine; Jersmann, Hubertus; Antic, Ral; Maguire, Graeme Paul
2015-01-01
Study Objectives: To compare the use of sleep diagnostic tests, the risks, and cofactors, and outcomes of the care of Indigenous and non-indigenous Australian adults in regional and remote Australia in whom sleep related breathing disorders have been diagnosed. Methods: A retrospective cohort study of 200 adults; 100 Aboriginal and Torres Strait Islander and 100 non-indigenous adults with a confirmed sleep related breathing disorder diagnosed prior to September 2011 at Alice Springs Hospital and Cairns Hospital, Australia. Results: Results showed overall Indigenous Australians were 1.8 times more likely to have a positive diagnostic sleep study performed compared with non-indigenous patients, 1.6 times less likely in central Australia and 3.4 times more likely in far north Queensland. All regional and remote residents accessed diagnostic sleep studies at a rate less than Australia overall (31/100,000/y (95% confidence interval, 21–44) compared with 575/100,000/y). Conclusion: The barriers to diagnosis and ongoing care are likely to relate to remote residence, lower health self-efficacy, the complex nature of the treatment tool, and environmental factors such as electricity and sleeping area. Indigeneity, remote residence, environmental factors, and low awareness of sleep health are likely to affect service accessibility and rate of use and capacity to enhance patient and family education and support following a diagnosis. A greater understanding of enablers and barriers to care and evaluation of interventions to address these are required. Commentary: A commentary on this article appears in this issue on page 1255. Citation: Woods CE, McPherson K, Tikoft E, Usher K, Hosseini F, Ferns J, Jersmann H, Antic R, Maguire GP. Sleep disorders in Aboriginal and Torres Strait Islander people and residents of regional and remote Australia. J Clin Sleep Med 2015;11(11):1263–1271. PMID:26094934
NASA Astrophysics Data System (ADS)
Collard, F.; Quartly, G. D.; Konik, M.; Johannessen, J. A.; Korosov, A.; Chapron, B.; Piolle, J.-F.; Herledan, S.; Darecki, M.; Isar, A.; Nafornita, C.
2015-12-01
Ocean Virtual Laboratory is an ESA-funded project to prototype the concept of a single point of access for all satellite remote-sensing data with ancillary model output and in situ measurements for a given region. The idea is to provide easy access for the non-specialist to both data and state-of-the-art processing techniques and enable their easy analysis and display. The project, led by OceanDataLab, is being trialled in the region of the Agulhas Current, as it contains signals of strong contrast (due to very energetic upper ocean dynamics) and special SAR data acquisitions have been recorded there. The project also encourages the take up of Earth Observation data by developing training material to help those not in large scientific or governmental organizations make the best use of what data are available. The website for access is: http://ovlproject.oceandatalab.com/
Use of clinical guidelines in remote Australia: A realist evaluation.
Reddy, Sandeep; Orpin, Victoria; Herring, Sally; Mackie-Schneider, Stephanie; Struber, Janet
2018-02-01
The aim of this evaluation was to assess the acceptability, accessibility, and compliance with the 2014 editions of the Remote Primary Health Care Manuals (RPHCM) in health care centres across remote areas of Northern and Central Australia. To undertake a comprehensive evaluation that considered context, the evaluation used a realist evaluation framework. The evaluation used a variety of methods including interviews and survey to develop and test a programme theory. Many remote health practitioners have adopted standardized, evidence-based practice because of the use of the RPHCM. The mechanisms that led to the use of the manuals include acceptance of the worth of the protocols to their clinical practice, reliance on manual content to guide their practice, the perception of credibility, the applicability of RPHCM content to the context, and a fear of the consequences of not using the RPHCMs. Some remote health practitioners are less inclined to use the RPHCM regularly because of a perception that the content is less suited to their needs and daily practice or it is hard to navigate or understand. The evaluation concluded that there is work to be done to widen the RPHCM user base, and organizations need to increase support for their staff to use the RPHCM protocols better. These measures are expected to enable standardized clinical practice in the remote context. © 2017 John Wiley & Sons, Ltd.
Remote monitoring of electromagnetic signals and seismic events using smart mobile devices
NASA Astrophysics Data System (ADS)
Georgiadis, Pantelis; Cavouras, Dionisis; Sidiropoulos, Konstantinos; Ninos, Konstantinos; Nomicos, Constantine
2009-06-01
This study presents the design and development of a novel mobile wireless system to be used for monitoring seismic events and related electromagnetic signals, employing smart mobile devices like personal digital assistants (PDAs) and wireless communication technologies such as wireless local area networks (WLANs), general packet radio service (GPRS) and universal mobile telecommunications system (UMTS). The proposed system enables scientists to access critical data while being geographically independent of the sites of data sources, rendering it as a useful tool for preliminary scientific analysis.
Godfrey, Alexander G; Masquelin, Thierry; Hemmerle, Horst
2013-09-01
This article describes our experiences in creating a fully integrated, globally accessible, automated chemical synthesis laboratory. The goal of the project was to establish a fully integrated automated synthesis solution that was initially focused on minimizing the burden of repetitive, routine, rules-based operations that characterize more established chemistry workflows. The architecture was crafted to allow for the expansion of synthetic capabilities while also providing for a flexible interface that permits the synthesis objective to be introduced and manipulated as needed under the judicious direction of a remote user in real-time. This innovative central synthesis suite is herein described along with some case studies to illustrate the impact such a system is having in expanding drug discovery capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
RISA: Remote Interface for Science Analysis
NASA Astrophysics Data System (ADS)
Gabriel, C.; Ibarra, A.; de La Calle, I.; Salgado, J.; Osuna, P.; Tapiador, D.
2008-08-01
The Scientific Analysis System (SAS) is the package for interactive and pipeline data reduction of all XMM-Newton data. Freely distributed by ESA to run under many different operating systems, the SAS has been used by almost every one of the 1600 refereed scientific publications obtained so far from the mission. We are developing RISA, the Remote Interface for Science Analysis, which makes it possible to run SAS through fully configurable web service workflows, enabling observers to access and analyse data making use of all of the existing SAS functionalities, without any installation/download of software/data. The workflows run primarily but not exclusively on the ESAC Grid, which offers scalable processing resources, directly connected to the XMM-Newton Science Archive. A first project internal version of RISA was issued in May 2007, a public release is expected already within this year.
PmiRExAt: plant miRNA expression atlas database and web applications
Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S.
2016-01-01
High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database. Database URL: http://pmirexat.nabi.res.in. PMID:27081157
Tools and Services for Working with Multiple Land Remote Sensing Data Products
NASA Astrophysics Data System (ADS)
Krehbiel, C.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.; Maiersperger, T.
2016-12-01
The availability of increasingly large and diverse satellite remote sensing datasets provides both an opportunity and a challenge across broad Earth science research communities. On one hand, the extensive assortment of available data offer unprecedented opportunities to improve our understanding of Earth science and enable data use across a multitude of science disciplines. On the other hand, increasingly complex formats, data structures, and metadata can be an obstacle to data use for the broad user community that is interested in incorporating remote sensing Earth science data into their research. NASA's Land Processes Distributed Active Archive Center (LP DAAC) provides easy to use Python notebook tutorials for services such as accessing land remote sensing data from the LP DAAC Data Pool and interpreting data quality information from MODIS. We use examples to demonstrate the capabilities of the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), such as spatially and spectrally subsetting data, decoding valuable quality information, and exploring initial analysis results within the user interface. We also show data recipes for R and Python scripts that help users process ASTER L1T and ASTER Global Emissivity Datasets.
Remote access and automation of SPring-8 MX beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Go, E-mail: ueno@spring8.or.jp; Hikima, Takaaki; Yamashita, Keitaro
At SPring-8 MX beamlines, a remote access system has been developed and started user operation in 2010. The system has been developed based on an automated data collection and data management architecture utilized for the confirmed scheme of SPring-8 mail-in data collection. Currently, further improvement to the remote access and automation which covers data processing and analysis are being developed.
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Grange, B.; Morton, J. J.; Soule, S. A.; Carbotte, S. M.; Lehnert, K.
2016-12-01
The National Deep Submergence Facility (NDSF) operates the Human Occupied Vehicle (HOV) Alvin, the Remotely Operated Vehicle (ROV) Jason, and the Autonomous Underwater Vehicle (AUV) Sentry. These vehicles are deployed throughout the global oceans to acquire sensor data and physical samples for a variety of interdisciplinary science programs. As part of the EarthCube Integrative Activity Alliance Testbed Project (ATP), new web services were developed to improve access to existing online NDSF data and metadata resources. These services make use of tools and infrastructure developed by the Interdisciplinary Earth Data Alliance (IEDA) and enable programmatic access to metadata and data resources as well as the development of new service-driven user interfaces. The Alvin Frame Grabber and Jason Virtual Van enable the exploration of frame-grabbed images derived from video cameras on NDSF dives. Metadata available for each image includes time and vehicle position, data from environmental sensors, and scientist-generated annotations, and data are organized and accessible by cruise and/or dive. A new FrameGrabber web service and service-driven user interface were deployed to offer integrated access to these data resources through a single API and allows users to search across content curated in both systems. In addition, a new NDSF Dive Metadata web service and service-driven user interface was deployed to provide consolidated access to basic information about each NDSF dive (e.g. vehicle name, dive ID, location, etc), which is important for linking distributed data resources curated in different data systems.
Menychtas, Andreas; Tsanakas, Panayiotis
2016-01-01
The proper acquisition of biosignals data from various biosensor devices and their remote accessibility are still issues that prevent the wide adoption of point-of-care systems in the routine of monitoring chronic patients. This Letter presents an advanced framework for enabling patient monitoring that utilises a cloud computing infrastructure for data management and analysis. The framework introduces also a local mechanism for uniform biosignals collection from wearables and biosignal sensors, and decision support modules, in order to enable prompt and essential decisions. A prototype smartphone application and the related cloud modules have been implemented for demonstrating the value of the proposed framework. Initial results regarding the performance of the system and the effectiveness in data management and decision-making have been quite encouraging. PMID:27222731
Adaptive Behavior for Mobile Robots
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance
2009-01-01
The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.
Menychtas, Andreas; Tsanakas, Panayiotis; Maglogiannis, Ilias
2016-03-01
The proper acquisition of biosignals data from various biosensor devices and their remote accessibility are still issues that prevent the wide adoption of point-of-care systems in the routine of monitoring chronic patients. This Letter presents an advanced framework for enabling patient monitoring that utilises a cloud computing infrastructure for data management and analysis. The framework introduces also a local mechanism for uniform biosignals collection from wearables and biosignal sensors, and decision support modules, in order to enable prompt and essential decisions. A prototype smartphone application and the related cloud modules have been implemented for demonstrating the value of the proposed framework. Initial results regarding the performance of the system and the effectiveness in data management and decision-making have been quite encouraging.
2009-09-01
Tele-maintenance Capability with Remote Serial Console Access and Proactive Monitoring of Medical Devices PRINCIPAL INVESTIGATOR...Remote Serial Console Access and Proactive Monitoring of Medical Devices 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...ORGANIZATION REPORT NUMBER Concepteers LLC 880 Bergen Avenue, Suite 403 Jersey City, NJ 07306 9. SPONSORING / MONITORING
Packet spacing : an enabling mechanism for delivering multimedia content in computational grids /
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, A. C.; Feng, W. C.; Belford, Geneva G.
2001-01-01
Streaming multimedia with UDP has become increasingly popular over distributed systems like the Internet. Scientific applications that stream multimedia include remote computational steering of visualization data and video-on-demand teleconferencing over the Access Grid. However, UDP does not possess a self-regulating, congestion-control mechanism; and most best-efort traflc is served by congestion-controlled TCF! Consequently, UDP steals bandwidth from TCP such that TCP$ows starve for network resources. With the volume of Internet traffic continuing to increase, the perpetuation of UDP-based streaming will cause the Internet to collapse as it did in the mid-1980's due to the use of non-congestion-controlled TCP. To address thismore » problem, we introduce the counterintuitive notion of inter-packet spacing with control feedback to enable UDP-based applications to perform well in the next-generation Internet and computational grids. When compared with traditional UDP-based streaming, we illustrate that our approach can reduce packet loss over SO% without adversely afecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, streaming, TCI: UDlq rate-adjusting congestion control, computational grid, Access Grid.« less
Distributed observing facility for remote access to multiple telescopes
NASA Astrophysics Data System (ADS)
Callegari, Massimo; Panciatici, Antonio; Pasian, Fabio; Pucillo, Mauro; Santin, Paolo; Aro, Simo; Linde, Peter; Duran, Maria A.; Rodriguez, Jose A.; Genova, Francoise; Ochsenbein, Francois; Ponz, J. D.; Talavera, Antonio
2000-06-01
The REMOT (Remote Experiment Monitoring and conTrol) project was financed by 1996 by the European Community in order to investigate the possibility of generalizing the remote access to scientific instruments. After the feasibility of this idea was demonstrated, the DYNACORE (DYNAmically, COnfigurable Remote Experiment monitoring and control) project was initiated as a REMOT follow-up. Its purpose is to develop software technology to support scientists in two different domains, astronomy and plasma physics. The resulting system allows (1) simultaneous multiple user access to different experimental facilities, (2) dynamic adaptability to different kinds of real instruments, (3) exploitation of the communication infrastructures features, (4) ease of use through intuitive graphical interfaces, and (5) additional inter-user communication using off-the-shelf projects such as video-conference tools, chat programs and shared blackboards.
NASA Astrophysics Data System (ADS)
Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry
2006-12-01
We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.
Healthcare Access and Health Beliefs of the Indigenous Peoples in Remote Amazonian Peru
Brierley, Charlotte K.; Suarez, Nicolas; Arora, Gitanjli; Graham, Devon
2014-01-01
Little is published about the health issues of traditional communities in the remote Peruvian Amazon. This study assessed healthcare access, health perceptions, and beliefs of the indigenous population along the Ampiyacu and Yaguasyacu rivers in north-eastern Peru. One hundred and seventy-nine adult inhabitants of 10 remote settlements attending health clinics were interviewed during a medical services trip in April 2012. Demographics, health status, access to healthcare, health education, sanitation, alcohol use, and smoke exposure were recorded. Our findings indicate that poverty, household overcrowding, and poor sanitation remain commonplace in this group. Furthermore, there are poor levels of health education and on-going barriers to accessing healthcare. Healthcare access and health education remain poor in the remote Peruvian Amazon. This combined with poverty and its sequelae render this population vulnerable to disease. PMID:24277789
Enhanced Multi-Modal Access to Planetary Exploration
NASA Technical Reports Server (NTRS)
Lamarra, Norm; Doyle, Richard; Wyatt, Jay
2003-01-01
Tomorrow's Interplanetary Network (IPN) will evolve from JPL's Deep-Space Network (DSN) and provide key capabilities to future investigators, such as simplified acquisition of higher-quality science at remote sites and enriched access to these sites. These capabilities could also be used to foster public interest, e.g., by making it possible for students to explore these environments personally, eventually perhaps interacting with a virtual world whose models could be populated by data obtained continuously from the IPN. Our paper looks at JPL's approach to making this evolution happen, starting from improved communications. Evolving space protocols (e.g., today's CCSDS proximity and file-transfer protocols) will provide the underpinning of such communications in the next decades, just as today's rich web was enabled by progress in Internet Protocols starting from the early 1970's (ARPAnet research). A key architectural thrust of this effort is to deploy persistent infrastructure incrementally, using a layered service model, where later higher-layer capabilities (such as adaptive science planning) are enabled by earlier lower-layer services (such as automated routing of object-based messages). In practice, there is also a mind shift needed from an engineering culture raised on point-to-point single-function communications (command uplink, telemetry downlink), to one in which assets are only indirectly accessed, via well-defined interfaces. We are aiming to foster a 'community of access' both among space assets and the humans who control them. This enables appropriate (perhaps eventually optimized) sharing of services and resources to the greater benefit of all participants. We envision such usage to be as automated in the future as using a cell phone is today - with all the steps in creating the real-time link being automated.
Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning
Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron; ...
2017-11-21
Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less
Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron
Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less
Experiment Software and Projects on the Web with VISPA
NASA Astrophysics Data System (ADS)
Erdmann, M.; Fischer, B.; Fischer, R.; Geiser, E.; Glaser, C.; Müller, G.; Rieger, M.; Urban, M.; von Cube, R. F.; Welling, C.
2017-10-01
The Visual Physics Analysis (VISPA) project defines a toolbox for accessing software via the web. It is based on latest web technologies and provides a powerful extension mechanism that enables to interface a wide range of applications. Beyond basic applications such as a code editor, a file browser, or a terminal, it meets the demands of sophisticated experiment-specific use cases that focus on physics data analyses and typically require a high degree of interactivity. As an example, we developed a data inspector that is capable of browsing interactively through event content of several data formats, e.g., MiniAOD which is utilized by the CMS collaboration. The VISPA extension mechanism can also be used to embed external web-based applications that benefit from dynamic allocation of user-defined computing resources via SSH. For example, by wrapping the JSROOT project, ROOT files located on any remote machine can be inspected directly through a VISPA server instance. We introduced domains that combine groups of users and role-based permissions. Thereby, tailored projects are enabled, e.g. for teaching where access to student’s homework is restricted to a team of tutors, or for experiment-specific data that may only be accessible for members of the collaboration. We present the extension mechanism including corresponding applications and give an outlook onto the new permission system.
Remote Authentication: The Obvia Solution.
ERIC Educational Resources Information Center
Eckley, Tami-Jo
1999-01-01
This article focuses on Obvia Corporation, a New York-based company that offers remote data access (RDA) through a server software system allowing for an easy, controllable, cost-effective management solution to the remote access problem. Using Obvia's RDA service, librarians can focus on administrative and professional decisions and spend more…
Time Patterns in Remote OPAC Use.
ERIC Educational Resources Information Center
Lucas, Thomas A.
1993-01-01
Describes a transaction log analysis of the New York Public Library research libraries' OPAC (online public access catalog). Much of the remote searching occurred when the libraries were closed and was more evenly distributed than internal searching, demonstrating that remote searching could expand access and reduce peak system loads. (Contains…
Beyond the Blueprints: Enhancing Access to Materials in Remote Storage
ERIC Educational Resources Information Center
Kruger, Betsy
2003-01-01
For most research libraries, remote storage of significant portions of their print collections has become an economic necessity. Historically, user objections to remote storage have focused on access-related issues: i.e., lack of browsability, cumbersome requesting procedures, lengthy retrieval times, and lack of content information about…
An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data
NASA Technical Reports Server (NTRS)
Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan
2005-01-01
Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.
Software Supports Distributed Operations via the Internet
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Backers, Paul; Steinke, Robert
2003-01-01
Multi-mission Encrypted Communication System (MECS) is a computer program that enables authorized, geographically dispersed users to gain secure access to a common set of data files via the Internet. MECS is compatible with legacy application programs and a variety of operating systems. The MECS architecture is centered around maintaining consistent replicas of data files cached on remote computers. MECS monitors these files and, whenever one is changed, the changed file is committed to a master database as soon as network connectivity makes it possible to do so. MECS provides subscriptions for remote users to automatically receive new data as they are generated. Remote users can be producers as well as consumers of data. Whereas a prior program that provides some of the same services treats disconnection of a user from the network of users as an error from which recovery must be effected, MECS treats disconnection as a nominal state of the network: This leads to a different design that is more efficient for serving many users, each of whom typically connects and disconnects frequently and wants only a small fraction of the data at any given time.
Guidelines for Outsourcing Remote Access.
ERIC Educational Resources Information Center
Hassler, Ardoth; Neuman, Michael
1996-01-01
Discusses the advantages and disadvantages of outsourcing remote access to campus computer networks and the Internet, focusing on improved service, cost-sharing, partnerships with vendors, supported protocols, bandwidth, scope of access, implementation, support, network security, and pricing. Includes a checklist for a request for proposals on…
HPC enabled real-time remote processing of laparoscopic surgery
NASA Astrophysics Data System (ADS)
Ronaghi, Zahra; Sapra, Karan; Izard, Ryan; Duffy, Edward; Smith, Melissa C.; Wang, Kuang-Ching; Kwartowitz, David M.
2016-03-01
Laparoscopic surgery is a minimally invasive surgical technique. The benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures. One particular laparoscopic system is the daVinci-si robotic surgical system. The video streams generate approximately 360 megabytes of data per second. Real-time processing this large stream of data on a bedside PC, single or dual node setup, has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. We have implement and compared performance of compression, segmentation and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 GPUs per node. Our computing framework will also enable reliability using replication of computation. We will securely transfer the files to remote HPC clusters utilizing an OpenFlow-based network service, Steroid OpenFlow Service (SOS) that can increase performance of large data transfers over long-distance and high bandwidth networks. As a result, utilizing high-speed OpenFlow- based network to access computing clusters with GPUs will improve surgical procedures by providing real-time medical image processing and laparoscopic data.
Web-based remote sensing of building energy performance
NASA Astrophysics Data System (ADS)
Martin, William; Nassiopoulos, Alexandre; Le Cam, Vincent; Kuate, Raphaël; Bourquin, Frédéric
2013-04-01
The present paper describes the design and the deployment of an instrumentation system enabling the energy monitoring of a building in a smart-grid context. The system is based on a network of wireless low power IPv6 sensors. Ambient temperature and electrical power for heating are measured. The management, storage, visualisation and treatment of the data is done through a web-based application that can be deployed as an online web service. The same web-based framework enables the acquisition of distant measured data such as those coming from a nearby weather station. On-site sensor and weather station data are then adequately treated based on inverse identification methods. The algorithms aim at determining the parameters of a numerical model suitable for a short-time horizon prediction of indoor climate. The model is based on standard multi-zone modelling assumptions and takes into account solar, airflow and conductive transfers. It was specially designed to render accurately inertia effects that are used in a demand-response strategy. All the hardware or software technologies that are used in the system are open and low cost so that they comply with the constraints of on-site deployment in buildings. The measured data as well as the model predictions can be accessed ubiquously through the web. This feature enables to consider a wide range of energy management applications at the disctrict, city or national level. The entire system has been deployed and tested in an experimental office building in Angers, France. It demonstrates the potential of ICT technologies to enable remotely controlled monitoring and surveillance in real time.
Marziniak, Martin; Brichetto, Giampaolo; Feys, Peter; Meyding-Lamadé, Uta; Vernon, Karen
2018-01-01
Despite recent advances in multiple sclerosis (MS) care, many patients only infrequently access health care services, or are unable to access them easily, for reasons such as mobility restrictions, travel costs, consultation and treatment time constraints, and a lack of locally available MS expert services. Advances in mobile communications have led to the introduction of electronic health (eHealth) technologies, which are helping to improve both access to and the quality of health care services. As the Internet is now readily accessible through smart mobile devices, most people can take advantage of eHealth apps. The development of digital applications and remote communication technologies for patients with MS has increased rapidly in recent years. These apps are intended to complement traditional in-clinic approaches and can bring significant benefits to both patients with MS and health care providers (HCPs). For patients, such eHealth apps have been shown to improve outcomes and increase access to care, disease information, and support. These apps also help patients to participate actively in self-management, for example, by tracking adherence to treatment, changes in bladder and bowel habits, and activity and mood. For HCPs, MS eHealth solutions can simplify the multidisciplinary approaches needed to tailor MS management strategies to individual patients; facilitate remote monitoring of patient symptoms, adverse events, and outcomes; enable the efficient use of limited resources and clinic time; and potentially allow more timely intervention than is possible with scheduled face-to-face visits. These benefits are important because MS is a long-term, multifaceted chronic condition that requires ongoing monitoring, assessment, and management. We identified in the literature 28 eHealth solutions for patients with MS that fall within the four categories of screening and assessment, disease monitoring and self-management, treatment and rehabilitation, and advice and education. We review each solution, focusing on any clinical evidence supporting their use from prospective trials (including ASSESS MS, Deprexis, MSdialog, and the Multiple Sclerosis Performance Test) and consider the opportunities, barriers to adoption, and potential pitfalls of eHealth technologies in routine health care. PMID:29691208
Lyle, David; Saurman, Emily; Kirby, Sue; Jones, Debra; Humphreys, John; Wakerman, John
2017-01-01
A Centre of Research Excellence (CRE) in Rural and Remote Primary Healthcare was established in 2012 with the goal of providing evidence to inform policy development to increase equity of access to quality health care and the identification of services that should be available to the diverse communities characterising Australia. This article reports on the key findings from seven CRE service evaluations to better understand what made these primary health care (PHC) models work where they worked, and why. We conducted a narrative synthesis of 15 articles reporting on seven CRE service evaluations of different PHC models published between 2012 and 2015. Three different contexts for PHC reform were evaluated: community, regional and clinic based. Themes identified were factors that enabled changes to PHC delivery, processes that supported services to improve access to PHC and requirements for service adaptation to promote sustainability. In both Indigenous and mainstream community settings, the active engagement with local communities, and their participation in, or leadership of, shared decision-making was reported across the three themes. In addition, local governance processes, informed by service activity and impact data, enabled these service changes to be sustained over time. The considerations were different for the outreach, regional and clinic services that relied on internal processes to drive change because they did not require the cooperation of multiple organisations to succeed. The review highlighted that shared decision-making, negotiation and consultation with communities is important and should be used to promote feasible strategies that improve access to community-based PHC services. There is a growing need for service evaluations to report on the feasibility, acceptability and fit of successful service models within context, in addition to reach and effectiveness in order to provide evidence for local dissemination, adaption and implementation strategies.
NASA Astrophysics Data System (ADS)
Schneider, C. A.; Aggett, G. R.; Nevo, A.; Babel, N. C.; Hattendorf, M. J.
2008-12-01
The western United States face an increasing threat from drought - and the social, economic, and environmental impacts that come with it. The combination of diminished water supplies along with increasing demand for urban and other uses is rapidly depleting surface and ground water reserves traditionally allocated for agricultural use. Quantification of water consumptive use is increasingly important as water resources are placed under growing tension by increased users and interests. Scarce water supplies can be managed more efficiently through use of information and prediction tools accessible via the internet. METRIC (Mapping ET at high Resolution with Internalized Calibration) represents a maturing technology for deriving a remote sensing-based surface energy balance for estimating ET from the earth's surface. This technology has the potential to become widely adopted and used by water resources communities providing critical support to a host of water decision support tools. ET images created using METRIC or similar remote- sensing based processing systems could be routinely used as input to operational and planning models for water demand forecasting, reservoir operations, ground-water management, irrigation water supply planning, water rights regulation, and for the improvement, validation, and use of hydrological models. The ET modeling and subsequent validation and distribution of results via the web presented here provides a vehicle through which METRIC ET parameters can be made more accessible to hydrologic modelers. It will enable users of the data to assess the results of the spatially distributed ET modeling and compare with results from conventional ET estimation methods prior to assimilation in surface and ground water models. In addition, this ET-Server application will provide rapid and transparent access to the data enabling quantification of uncertainties due to errors in temporal sampling and METRIC modeling, while the GIS-based analytical tools will facilitate quality assessments associated with the selected spatio-temporal scale of interest.
Eurasian Reindeer Pastoralism in a Changing Climate: Indigenous Knowledge and NASA Remote Sensing
NASA Technical Reports Server (NTRS)
Maynard, N. G.; Burgess, P.; Oskal, P.; Turi, A.; Mathiesen, J. M.; Gaup, I. G. E.; Yurchak, B.; Etylin, V.; Gebelein, J.
2008-01-01
It is intended that Reindeer Mapper/EALAT will be able to provide reindeer herders with an efficient tool for managing the real-time movements and migrations of their herds through enabling improved efficiency in linking different members of the herder settlements or communities and providing real-time local, satellite or other data (e.g., ice melt in lakes and rivers, weather events), thus enabling real time adjustments to herd movements to avoid problems such as changing weather/climate conditions, freeze-thaw "lock-out" problems, or take advantage of availability of better pasturelands along migration routes. The system is being designed to incorporate local data to allow users to bring their own data into the system for analysis in addition to the data provided by the system itself. With the local information of the population, up to date environmental data and habitat characteristics, the system could generate maps depicting important features of interest for reindeer managers. One of the products derived from the planned Reindeer Mapper system will be a web-based graphic display that allows analysts to quickly pinpoint areas of interest such as those with large concentrations of reindeer and provide surrounding environmental information. The system could be automatically updated with near-real-time information such as hourly precipitation and snowfall rate and accumulation, daily surface and air temperatures, and vegetation cover conditions. The system could bring attention to the proximity of human and animal populations as part of the need for control response. A local GIS will bring these many layers together with several supporting models, showing only a straightforward graphic of the real-time situation in the field. Because the system proposed will be operating in the Internet environment, it should be virtually accessible from any network computers and wireless remote access from the field. The International Center for Reindeer Husbandry in Kautokeino, Norway, is providing regional and international coordination of and access to data sets and expertise, and will act as overall clearinghouse for EALAT information.
The Research Tools of the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO
2013-01-01
Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.
Marzegalli, Maurizio; Landolina, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Pappone, Alessia; Guenzati, Giuseppe; Campana, Carlo; Frigerio, Maria; Parati, Gianfranco; Curnis, Antonio; Colangelo, Irene; Valsecchi, Sergio
2009-01-01
Background Heart failure patients with implantable defibrillators (ICD) frequently visit the clinic for routine device monitoring. Moreover, in the case of clinical events, such as ICD shocks or alert notifications for changes in cardiac status or safety issues, they often visit the emergency department or the clinic for an unscheduled visit. These planned and unplanned visits place a great burden on healthcare providers. Internet-based remote device interrogation systems, which give physicians remote access to patients' data, are being proposed in order to reduce routine and interim visits and to detect and notify alert conditions earlier. Methods The EVOLVO study is a prospective, randomized, parallel, unblinded, multicenter clinical trial designed to compare remote ICD management with the current standard of care, in order to assess its ability to treat and triage patients more effectively. Two-hundred patients implanted with wireless-transmission-enabled ICD will be enrolled and randomized to receive either the Medtronic CareLink® monitor for remote transmission or the conventional method of in-person evaluations. The purpose of this manuscript is to describe the design of the trial. The results, which are to be presented separately, will characterize healthcare utilizations as a result of ICD follow-up by means of remote monitoring instead of conventional in-person evaluations. Trial registration ClinicalTrials.gov: NCT00873899 PMID:19538734
DICOM-compliant PACS with CD-based image archival
NASA Astrophysics Data System (ADS)
Cox, Robert D.; Henri, Christopher J.; Rubin, Richard K.; Bret, Patrice M.
1998-07-01
This paper describes the design and implementation of a low- cost PACS conforming to the DICOM 3.0 standard. The goal was to provide an efficient image archival and management solution on a heterogeneous hospital network as a basis for filmless radiology. The system follows a distributed, client/server model and was implemented at a fraction of the cost of a commercial PACS. It provides reliable archiving on recordable CD and allows access to digital images throughout the hospital and on the Internet. Dedicated servers have been designed for short-term storage, CD-based archival, data retrieval and remote data access or teleradiology. The short-term storage devices provide DICOM storage and query/retrieve services to scanners and workstations and approximately twelve weeks of 'on-line' image data. The CD-based archival and data retrieval processes are fully automated with the exception of CD loading and unloading. The system employs lossless compression on both short- and long-term storage devices. All servers communicate via the DICOM protocol in conjunction with both local and 'master' SQL-patient databases. Records are transferred from the local to the master database independently, ensuring that storage devices will still function if the master database server cannot be reached. The system features rules-based work-flow management and WWW servers to provide multi-platform remote data access. The WWW server system is distributed on the storage, retrieval and teleradiology servers allowing viewing of locally stored image data directly in a WWW browser without the need for data transfer to a central WWW server. An independent system monitors disk usage, processes, network and CPU load on each server and reports errors to the image management team via email. The PACS was implemented using a combination of off-the-shelf hardware, freely available software and applications developed in-house. The system has enabled filmless operation in CT, MR and ultrasound within the radiology department and throughout the hospital. The use of WWW technology has enabled the development of an intuitive we- based teleradiology and image management solution that provides complete access to image data.
Aggregating Queries Against Large Inventories of Remotely Accessible Data
NASA Astrophysics Data System (ADS)
Gallagher, J. H. R.; Fulker, D. W.
2016-12-01
Those seeking to discover data for a specific purpose often encounter search results that are so large as to be useless without computing assistance. This situation arises, with increasing frequency, in part because repositories contain ever greater numbers of granules, and their granularities may well be poorly aligned or even orthogonal to the data-selection needs of the user. This presentation describes a recently developed service for simultaneously querying large lists of OPeNDAP-accessible granules to extract specified data. The specifications include a richly expressive set of data-selection criteria—applicable to content as well as metadata—and the service has been tested successfully against lists naming hundreds of thousands of granules. Querying such numbers of local files (i.e., granules) on a desktop or laptop computer is practical (by using a scripting language, e.g.), but this practicality is diminished when the data are remote and thus best accessed through a Web-services interface. In these cases, which are increasingly common, scripted queries can take many hours because of inherent network latencies. Furthermore, communication dropouts can add fragility to such scripts, yielding gaps in the acquired results. In contrast, OPeNDAP's new aggregated-query services enable data discovery in the context of very large inventory sizes. These capabilities have been developed for use with OPeNDAP's Hyrax server, which is an open-source realization of DAP (for "Data Access Protocol," a specification widely used in NASA, NOAA and other data-intensive contexts). These aggregated-query services exhibit good response times (on the order of seconds, not hours) even for inventories that list hundreds of thousands of source granules.
Integrating Reservations and Queuing in Remote Laboratory Scheduling
ERIC Educational Resources Information Center
Lowe, D.
2013-01-01
Remote laboratories (RLs) have become increasingly seen as a useful tool in supporting flexible shared access to scarce laboratory resources. An important element in supporting shared access is coordinating the scheduling of the laboratory usage. Optimized scheduling can significantly decrease access waiting times and improve the utilization level…
Cellular phone enabled non-invasive tissue classifier.
Laufer, Shlomi; Rubinsky, Boris
2009-01-01
Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro.
Experience with procuring, deploying and maintaining hardware at remote co-location centre
NASA Astrophysics Data System (ADS)
Bärring, O.; Bonfillou, E.; Clement, B.; Coelho Dos Santos, M.; Dore, V.; Gentit, A.; Grossir, A.; Salter, W.; Valsan, L.; Xafi, A.
2014-05-01
In May 2012 CERN signed a contract with the Wigner Data Centre in Budapest for an extension to CERN's central computing facility beyond its current boundaries set by electrical power and cooling available for computing. The centre is operated as a remote co-location site providing rack-space, electrical power and cooling for server, storage and networking equipment acquired by CERN. The contract includes a 'remote-hands' services for physical handling of hardware (rack mounting, cabling, pushing power buttons, ...) and maintenance repairs (swapping disks, memory modules, ...). However, only CERN personnel have network and console access to the equipment for system administration. This report gives an insight to adaptations of hardware architecture, procurement and delivery procedures undertaken enabling remote physical handling of the hardware. We will also describe tools and procedures developed for automating the registration, burn-in testing, acceptance and maintenance of the equipment as well as an independent but important change to the IT assets management (ITAM) developed in parallel as part of the CERN IT Agile Infrastructure project. Finally, we will report on experience from the first large delivery of 400 servers and 80 SAS JBOD expansion units (24 drive bays) to Wigner in March 2013. Changes were made to the abstract file on 13/06/2014 to correct errors, the pdf file was unchanged.
Kingfisher: a system for remote sensing image database management
NASA Astrophysics Data System (ADS)
Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.
2003-04-01
At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.
Cellular Phone Enabled Non-Invasive Tissue Classifier
Laufer, Shlomi; Rubinsky, Boris
2009-01-01
Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro. PMID:19365554
Karampelas, Vasilios; Pallikarakis, Nicholas; Mantas, John
2013-01-01
The healthcare researchers', academics' and practitioners' interest concerning the development of Healthcare Information Systems has been on a steady rise for the last decades. Fueling this steady rise has been the healthcare professional need of quality information, in every healthcare provision incident, whenever and wherever this incident may take place. In order to address this need a truly mobile health care system is required, one that will be able to provide a healthcare provider with accurate patient-related information regardless of the time and place that healthcare is provided. In order to fulfill this role the present study proposes the architecture for a Healthcare Smartcard system, which provides authenticated healthcare professionals with remote mobile access to a Patient's Healthcare Record, through their Smartphone. Furthermore the research proceeds to develop a working prototype system.
Integrated multimedia medical data agent in E-health.
di Giacomo, P; Ricci, Fabrizio L; Bocchi, Leonardo
2006-01-01
E-Health is producing a great impact in the field of information distribution of the health services to the intra-hospital and the public. Previous researches have addressed the development of system architectures in the aim of integrating the distributed and heterogeneous medical information systems. The easing of difficulties in the sharing and management of medical data and the timely accessibility to these data is a critical need for health care providers. We have proposed a client-server agent that allows a portal to the every permitted Information System of the Hospital that consists of PACS, RIS and HIS via the Intranet and the Internet. Our proposed agent enables remote access into the usually closed information system of the hospital and a server that indexes all the medical data which allows for in-depth and complex search queries for data retrieval.
The comparative effectiveness of conventional and digital image libraries.
McColl, R I; Johnson, A
2001-03-01
Before introducing a hospital-wide image database to improve access, navigation and retrieval speed, a comparative study between a conventional slide library and a matching image database was undertaken to assess its relative benefits. Paired time trials and personal questionnaires revealed faster retrieval rates, higher image quality, and easier viewing for the pilot digital image database. Analysis of confidentiality, copyright and data protection exposed similar issues for both systems, thus concluding that the digital image database is a more effective library system. The authors suggest that in the future, medical images will be stored on large, professionally administered, centrally located file servers, allowing specialist image libraries to be tailored locally for individual users. The further integration of the database with web technology will enable cheap and efficient remote access for a wide range of users.
Design of flood early warning system with wifi network based on smartphone
NASA Astrophysics Data System (ADS)
Supani, Ahyar; Andriani, Yuli; Taqwa, Ahmad
2017-11-01
Today, the development using internet of things enables activities surrounding us to be monitored, controlled, predicted and calculated remotely through connections to the internet network such as monitoring activities of long-distance flood warning with information technology. Applying an information technology in the field of flood early warning has been developed in the world, either connected to internet network or not. The internet network that has been done in this paper is the design of WiFi network to access data of rainfall, water level and flood status at any time with a smartphone coming from flood early warning system. The results obtained when test of data accessing with smartphone are in form of rainfall and water level graphs against time and flood status indicators consisting of 3 flood states: Standby 2, Standby 1 and Flood. It is concluded that data are from flood early warning system has been able to accessed and displayed on smartphone via WiFi network in any time and real time.
Ehlers, Shawn G; Field, William E
2018-02-14
This research focused on the advancements made in enabling agricultural workers with impaired mobility to access and operate off-road agricultural machinery. Although not a new concept, technological advancements in remote-controlled lifts, electronic actuators, electric over hydraulic controllers, and various modes of hand controls have advanced significantly, allowing operators with limited mobility to resume a high level of productivity in agricultural-related enterprises. In the United States, approximately 1.7% of the population is living with some form of paralysis or significant mobility impairment. When paired with the 2012 USDA Agriculture Census of 3.2 million farmers, it can be extrapolated that these technologies could impact 54,000 agricultural workers who have encountered disabling injuries or disease, which inhibit their ability to access and operate tractors, combines, and other self-propelled agricultural machines. Advancements in agricultural-specific technologies can allow for many of these individuals to regain the ability to effectively operate machinery once more.
American Thyroid Association Statement on Remote-Access Thyroid Surgery
Bernet, Victor; Fahey, Thomas J.; Kebebew, Electron; Shaha, Ashok; Stack, Brendan C.; Stang, Michael; Steward, David L.; Terris, David J.
2016-01-01
Background: Remote-access techniques have been described over the recent years as a method of removing the thyroid gland without an incision in the neck. However, there is confusion related to the number of techniques available and the ideal patient selection criteria for a given technique. The aims of this review were to develop a simple classification of these approaches, describe the optimal patient selection criteria, evaluate the outcomes objectively, and define the barriers to adoption. Methods: A review of the literature was performed to identify the described techniques. A simple classification was developed. Technical details, outcomes, and the learning curve were described. Expert opinion consensus was formulated regarding recommendations for patient selection and performance of remote-access thyroid surgery. Results: Remote-access thyroid procedures can be categorized into endoscopic or robotic breast, bilateral axillo-breast, axillary, and facelift approaches. The experience in the United States involves the latter two techniques. The limited data in the literature suggest long operative times, a steep learning curve, and higher costs with remote-access thyroid surgery compared with conventional thyroidectomy. Nevertheless, a consensus was reached that, in appropriate hands, it can be a viable option for patients with unilateral small nodules who wish to avoid a neck incision. Conclusions: Remote-access thyroidectomy has a role in a small group of patients who fit strict selection criteria. These approaches require an additional level of expertise, and therefore should be done by surgeons performing a high volume of thyroid and robotic surgery. PMID:26858014
American Thyroid Association Statement on Remote-Access Thyroid Surgery.
Berber, Eren; Bernet, Victor; Fahey, Thomas J; Kebebew, Electron; Shaha, Ashok; Stack, Brendan C; Stang, Michael; Steward, David L; Terris, David J
2016-03-01
Remote-access techniques have been described over the recent years as a method of removing the thyroid gland without an incision in the neck. However, there is confusion related to the number of techniques available and the ideal patient selection criteria for a given technique. The aims of this review were to develop a simple classification of these approaches, describe the optimal patient selection criteria, evaluate the outcomes objectively, and define the barriers to adoption. A review of the literature was performed to identify the described techniques. A simple classification was developed. Technical details, outcomes, and the learning curve were described. Expert opinion consensus was formulated regarding recommendations for patient selection and performance of remote-access thyroid surgery. Remote-access thyroid procedures can be categorized into endoscopic or robotic breast, bilateral axillo-breast, axillary, and facelift approaches. The experience in the United States involves the latter two techniques. The limited data in the literature suggest long operative times, a steep learning curve, and higher costs with remote-access thyroid surgery compared with conventional thyroidectomy. Nevertheless, a consensus was reached that, in appropriate hands, it can be a viable option for patients with unilateral small nodules who wish to avoid a neck incision. Remote-access thyroidectomy has a role in a small group of patients who fit strict selection criteria. These approaches require an additional level of expertise, and therefore should be done by surgeons performing a high volume of thyroid and robotic surgery.
Accessing remote data bases using microcomputers
Saul, Peter D.
1985-01-01
General practitioners' access to remote data bases using microcomputers is increasing, making even the most obscure information readily available. Some of the systems available to general practitioners in the UK are described and the methods of access are outlined. General practitioners should be aware of the advances in technology; data bases are increasing in size, the cost of access is falling and their use is becoming easier. PMID:4020756
Development of multi-mission satellite data systems at the German Remote Sensing Data Centre
NASA Astrophysics Data System (ADS)
Lotz-Iwen, H. J.; Markwitz, W.; Schreier, G.
1998-11-01
This paper focuses on conceptual aspects of the access to multi-mission remote sensing data by online catalogue and information systems. The system ISIS of the German Remote Sensing Data Centre is described as an example of a user interface to earth observation data. ISIS has been designed to support international scientific research as well as operational applications by offering online access to the database via public networks. It provides catalogue retrieval, visualisation and transfer of image data, and is integrated in international activities dedicated to catalogue and archive interoperability. Finally, an outlook is given on international projects dealing with access to remote sensing data in distributed archives.
Large optical 3D MEMS switches in access networks
NASA Astrophysics Data System (ADS)
Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.
2007-09-01
Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.
Telepharmacy: a pharmacist’s perspective on the clinical benefits and challenges
Poudel, Arjun; Nissen, Lisa M
2016-01-01
The use of information and telecommunication technologies has expanded at a rapid rate, which has a strong influence on healthcare delivery in many countries. Rural residents and communities, however, often lack easy access to healthcare services due to geographical and demographical factors. Telepharmacy, a more recent concept that refers to pharmaceutical service provision, enables healthcare services, such as medication review, patients counseling, and prescription verification, by a qualified pharmacist for the patients located at a distance from a remotely located hospital, pharmacy, or healthcare center. Telepharmacy has many recognizable benefits such as the easy access to healthcare services in remote and rural locations, economic benefits, patient satisfaction as a result of medication access and information in rural areas, effective patient counseling, and minimal scarcity of local pharmacist and pharmacy services. Telepharmacy undoubtedly is a great concept, but it is sometimes challenging to put into practice. Inherent to the adoption of these practices are legal challenges and pitfalls that need to be addressed. The start-up of telepharmacy (hardware, software, connectivity, and operational cost) involves considerable time, effort, and money. For rural hospitals with fewer patients, the issue of costs appears to be one of the biggest barriers to telepharmacy services. Moreover, execution and implementation of comprehensive and uniform telepharmacy law is still a challenge. A well-developed system, however, can change the practice of pharmacy that is beneficial to both the rural communities and the hospitals or retail pharmacies that deliver these services. PMID:29354542
NASA Astrophysics Data System (ADS)
Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.
2011-08-01
In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.
2017-05-01
We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.
Using IKAROS as a data transfer and management utility within the KM3NeT computing model
NASA Astrophysics Data System (ADS)
Filippidis, Christos; Cotronis, Yiannis; Markou, Christos
2016-04-01
KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. IKAROS is a framework that enables creating scalable storage formations on-demand and helps addressing several limitations that the current file systems face when dealing with very large scale infrastructures. It enables creating ad-hoc nearby storage formations and can use a huge number of I/O nodes in order to increase the available bandwidth (I/O and network). IKAROS unifies remote and local access in the overall data flow, by permitting direct access to each I/O node. In this way we can handle the overall data flow at the network layer, limiting the interaction with the operating system. This approach allows virtually connecting, at the users level, the several different computing facilities used (Grids, Clouds, HPCs, Data Centers, Local computing Clusters and personal storage devices), on-demand, based on the needs, by using well known standards and protocols, like HTTP.
NASA Astrophysics Data System (ADS)
Druken, K. A.; Trenham, C. E.; Steer, A.; Evans, B. J. K.; Richards, C. J.; Smillie, J.; Allen, C.; Pringle, S.; Wang, J.; Wyborn, L. A.
2016-12-01
The Australian National Computational Infrastructure (NCI) provides access to petascale data in climate, weather, Earth observations, and genomics, and terascale data in astronomy, geophysics, ecology and land use, as well as social sciences. The data is centralized in a closely integrated High Performance Computing (HPC), High Performance Data (HPD) and cloud facility. Despite this, there remain significant barriers for many users to find and access the data: simply hosting a large volume of data is not helpful if researchers are unable to find, access, and use the data for their particular need. Use cases demonstrate we need to support a diverse range of users who are increasingly crossing traditional research discipline boundaries. To support their varying experience, access needs and research workflows, NCI has implemented an integrated data platform providing a range of services that enable users to interact with our data holdings. These services include: - A GeoNetwork catalog built on standardized Data Management Plans to search collection metadata, and find relevant datasets; - Web data services to download or remotely access data via OPeNDAP, WMS, WCS and other protocols; - Virtual Desktop Infrastructure (VDI) built on a highly integrated on-site cloud with access to both the HPC peak machine and research data collections. The VDI is a fully featured environment allowing visualization, code development and analysis to take place in an interactive desktop environment; and - A Learning Management System (LMS) containing User Guides, Use Case examples and Jupyter Notebooks structured into courses, so that users can self-teach how to use these facilities with examples from our system across a range of disciplines. We will briefly present these components, and discuss how we engage with data custodians and consumers to develop standardized data structures and services that support the range of needs. We will also highlight some key developments that have improved user experience in utilizing the services, particularly enabling transdisciplinary science. This work combines with other developments at NCI to increase the confidence of scientists from any field to undertake research and analysis on these important data collections regardless of their preferred work environment or level of skill.
MedXViewer: an extensible web-enabled software package for medical imaging
NASA Astrophysics Data System (ADS)
Looney, P. T.; Young, K. C.; Mackenzie, Alistair; Halling-Brown, Mark D.
2014-03-01
MedXViewer (Medical eXtensible Viewer) is an application designed to allow workstation-independent, PACS-less viewing and interaction with anonymised medical images (e.g. observer studies). The application was initially implemented for use in digital mammography and tomosynthesis but the flexible software design allows it to be easily extended to other imaging modalities. Regions of interest can be identified by a user and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. The extensible nature of the design allows for other functionality and hanging protocols to be available for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled e.g. quadrant zooming in mammographic studies. MedXViewer can integrate with a web-based image database allowing results and images to be stored centrally. The software and images can be downloaded remotely from this centralised data-store. Alternatively, the software can run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. Due to the advanced workstation-style functionality, the simple deployment on heterogeneous systems over the internet without a requirement for administrative access and the ability to utilise a centralised database, MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and co-ordinating remote collaborative viewing sessions (e.g. cancer reviews, interesting cases).
Mobile microscopy as a screening tool for oral cancer in India: A pilot study.
Skandarajah, Arunan; Sunny, Sumsum P; Gurpur, Praveen; Reber, Clay D; D'Ambrosio, Michael V; Raghavan, Nisheena; James, Bonney Lee; Ramanjinappa, Ravindra D; Suresh, Amritha; Kandasarma, Uma; Birur, Praveen; Kumar, Vinay V; Galmeanu, Honorius-Cezar; Itu, Alexandru Mihail; Modiga-Arsu, Mihai; Rausch, Saskia; Sramek, Maria; Kollegal, Manohar; Paladini, Gianluca; Kuriakose, Moni; Ladic, Lance; Koch, Felix; Fletcher, Daniel
2017-01-01
Oral cancer is the most common type of cancer among men in India and other countries in South Asia. Late diagnosis contributes significantly to this mortality, highlighting the need for effective and specific point-of-care diagnostic tools. The same regions with high prevalence of oral cancer have seen extensive growth in mobile phone infrastructure, which enables widespread access to telemedicine services. In this work, we describe the evaluation of an automated tablet-based mobile microscope as an adjunct for telemedicine-based oral cancer screening in India. Brush biopsy, a minimally invasive sampling technique was combined with a simplified staining protocol and a tablet-based mobile microscope to facilitate local collection of digital images and remote evaluation of the images by clinicians. The tablet-based mobile microscope (CellScope device) combines an iPad Mini with collection optics, LED illumination and Bluetooth-controlled motors to scan a slide specimen and capture high-resolution images of stained brush biopsy samples. Researchers at the Mazumdar Shaw Medical Foundation (MSMF) in Bangalore, India used the instrument to collect and send randomly selected images of each slide for telepathology review. Evaluation of the concordance between gold standard histology, conventional microscopy cytology, and remote pathologist review of the images was performed as part of a pilot study of mobile microscopy as a screening tool for oral cancer. Results indicated that the instrument successfully collected images of sufficient quality to enable remote diagnoses that show concordance with existing techniques. Further studies will evaluate the effectiveness of oral cancer screening with mobile microscopy by minimally trained technicians in low-resource settings.
State of the art of teledermatopathology.
Massone, Cesare; Brunasso, Alexandra M G; Campbell, Terri M; Soyer, H Peter
2008-10-01
Teledermatopathology may involve real-time transmission of images from distant locations to consulting pathologists by the remote manipulation of a robotic microscope. Alternatively, the static store-and-forward option involves the single-file transmission of subjectively preselected and captured areas of microscopic images by a referring physician. The recent introduction of virtual slide systems (VSS) involves the digitization of whole slides at high resolution thus enabling the user to view any part of the specimen at any magnification. Such technology has surmounted previous restrictions caused by the size of preselected areas and specimen sampling for telepathology. In terms of client access, these VSS may be stored on a virtual slide server, made available on the Web for remote consultation by pathologists via an integrated virtual slide client network. Despite store-and-forward teledermatopathology being the most frequently used and less expensive approach to teledermatopathology, VSS represents the future in this discipline. The recent pilot studies suggest that the use of remote expert consultants in diagnostic dermatopathology can be integrated into daily routine, teleconsultation, and teleteaching. The new technology enables rapid and reproducible diagnoses, but despite its usability, VSS is not completely feasible for teledermatopathology of inflammatory skin diseases as the performance seems to be influenced by the availability of complete clinical data. Improvements in the diagnostic facility will no doubt follow from further development of the VSS, the slide processor, and of course training in the use of virtual microscope. Undoubtedly, as technology becomes even more sophisticated in the future, VSS will overcome the present drawbacks and find its place in all facets of teledermatopathology.
Storage and retrieval of digital images in dermatology.
Bittorf, A; Krejci-Papa, N C; Diepgen, T L
1995-11-01
Differential diagnosis in dermatology relies on the interpretation of visual information in the form of clinical and histopathological images. Up until now, reference images have had to be retrieved from textbooks and/or appropriate journals. To overcome inherent limitations of those storage media with respect to the number of images stored, display, and search parameters available, we designed a computer-based database of digitized dermatologic images. Images were taken from the photo archive of the Dermatological Clinic of the University of Erlangen. A database was designed using the Entity-Relationship approach. It was implemented on a PC-Windows platform using MS Access* and MS Visual Basic®. As WWW-server a Sparc 10 workstation was used with the CERN Hypertext-Transfer-Protocol-Daemon (httpd) 3.0 pre 6 software running. For compressed storage on a hard drive, a quality factor of 60 allowed on-screen differential diagnosis and corresponded to a compression factor of 1:35 for clinical images and 1:40 for histopathological images. Hierarchical keys of clinical or histopathological criteria permitted multi-criteria searches. A script using the Common Gateway Interface (CGI) enabled remote search and image retrieval via the World-Wide-Web (W3). A dermatologic image database, featurig clinical and histopathological images was constructed which allows for multi-parameter searches and world-wide remote access.
Design of smart home gateway based on Wi-Fi and ZigBee
NASA Astrophysics Data System (ADS)
Li, Yang
2018-04-01
With the increasing demand for home lifestyle, the traditional smart home products have been unable to meet the needs of users. Aim at the complex wiring, high cost and difficult operation problems of traditional smart home system, this paper designs a home gateway for smart home system based on Wi-Fi and ZigBee. This paper first gives a smart home system architecture base on cloud server, Wi-Fi and ZigBee. This architecture enables users to access the smart home system remotely from Internet through the cloud server or through Wi-Fi at home. It also offers the flexibility and low cost of ZigBee wireless networking for home equipment. This paper analyzes the functional requirements of the home gateway, and designs a modular hardware architecture based on the RT5350 wireless gateway module and the CC2530 ZigBee coordinator module. Also designs the software of the home gateway, including the gateway master program and the ZigBee coordinator program. Finally, the smart home system and home gateway are tested in two kinds of network environments, internal network and external network. The test results show that the designed home gateway can meet the requirements, support remote and local access, support multi-user, support information security technology, and can timely report equipment status information.
The Searching Behavior of Remote Users: A Study of One Online Public Access Catalog (OPAC).
ERIC Educational Resources Information Center
Kalin, Sally W.
1991-01-01
Describes a study that was conducted to determine whether the searching behavior of remote users of LIAS (Library Information Access System), Pennsylvania State University's online public access catalog (OPAC), differed from those using the OPAC within the library. Differences in search strategies and in user satisfaction are discussed. (eight…
A Simple Solution to Providing Remote Access to CD-ROM.
ERIC Educational Resources Information Center
Garnham, Carla T.; Brodie, Kent
1990-01-01
A pilot project at the Medical College of Wisconsin illustrates how even small computing organizations with limited financial and staff resources can provide remote access to CD-ROM (Compact Disc-Read-Only-Memory) databases, and that providing such convenient access to a vast array of useful information can greatly benefit faculty and students.…
ERIC Educational Resources Information Center
Griffith, D. A.
The Griffith Service Access Frame (GSAF) is a model used for quantifying the access disadvantage to educational services of remote and rural areas in Australia. The model was specifically developed to assist policymakers and administrators in allocating resources. The problem with the current funding formula used by the Australian federal…
Martin, Shannon K; Tulla, Kiara; Meltzer, David O; Arora, Vineet M; Farnan, Jeanne M
2017-12-01
Advances in information technology have increased remote access to the electronic health record (EHR). Concurrently, standards defining appropriate resident supervision have evolved. How often and under what circumstances inpatient attending physicians remotely access the EHR for resident supervision is unknown. We described a model of attending remote EHR use for resident supervision, and quantified the frequency and magnitude of use. Using a mixed methods approach, general medicine inpatient attendings were surveyed and interviewed about their remote EHR use. Frequency of use and supervisory actions were quantitatively examined via survey. Transcripts from semistructured interviews were analyzed using grounded theory to identify codes and themes. A total of 83% (59 of 71) of attendings participated. Fifty-seven (97%) reported using the EHR remotely, with 54 (92%) reporting they discovered new clinical information not relayed by residents via remote EHR use. A majority (93%, 55 of 59) reported that this resulted in management changes, and 54% (32 of 59) reported making immediate changes by contacting cross-covering teams. Six major factors around remote EHR use emerged: resident, clinical, educational, personal, technical, and administrative. Attendings described resident and clinical factors as facilitating "backstage" supervision via remote EHR use. In our study to assess attending remote EHR use for resident supervision, attendings reported frequent remote use with resulting supervisory actions, describing a previously uncharacterized form of "backstage" oversight supervision. Future work should explore best practices in remote EHR use to provide effective supervision and ultimately improve patient safety.
Meta Data Mining in Earth Remote Sensing Data Archives
NASA Astrophysics Data System (ADS)
Davis, B.; Steinwand, D.
2014-12-01
Modern search and discovery tools for satellite based remote sensing data are often catalog based and rely on query systems which use scene- (or granule-) based meta data for those queries. While these traditional catalog systems are often robust, very little has been done in the way of meta data mining to aid in the search and discovery process. The recently coined term "Big Data" can be applied in the remote sensing world's efforts to derive information from the vast data holdings of satellite based land remote sensing data. Large catalog-based search and discovery systems such as the United States Geological Survey's Earth Explorer system and the NASA Earth Observing System Data and Information System's Reverb-ECHO system provide comprehensive access to these data holdings, but do little to expose the underlying scene-based meta data. These catalog-based systems are extremely flexible, but are manually intensive and often require a high level of user expertise. Exposing scene-based meta data to external, web-based services can enable machine-driven queries to aid in the search and discovery process. Furthermore, services which expose additional scene-based content data (such as product quality information) are now available and can provide a "deeper look" into remote sensing data archives too large for efficient manual search methods. This presentation shows examples of the mining of Landsat and Aster scene-based meta data, and an experimental service using OPeNDAP to extract information from quality band from multiple granules in the MODIS archive.
Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone
Im, Hyungsoon; Castro, Cesar M.; Shao, Huilin; Liong, Monty; Song, Jun; Pathania, Divya; Fexon, Lioubov; Min, Changwook; Avila-Wallace, Maria; Zurkiya, Omar; Rho, Junsung; Magaoay, Brady; Tambouret, Rosemary H.; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho
2015-01-01
The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts. PMID:25870273
An implementation and evaluation of the MPI 3.0 one-sided communication interface
Dinan, James S.; Balaji, Pavan; Buntinas, Darius T.; ...
2016-01-09
The Q1 Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI’s remote memory access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to greatly enhance the usability and performance ofMPI RMA.We present the first complete implementation of MPI-3 RMA and document implementation techniques and performance optimization opportunities enabled by the new interface. Our implementation targets messaging-based networks and is publicly available in the latest release of the MPICH MPI implementation. Here using this implementation, we explore the performance impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA interface providesmore » significant advantages over the MPI-2 interface by enabling increased communication concurrency through relaxed semantics in the interface and additional routines that provide new window types, synchronization modes, and atomic operations.« less
An implementation and evaluation of the MPI 3.0 one-sided communication interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinan, James S.; Balaji, Pavan; Buntinas, Darius T.
The Q1 Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI’s remote memory access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to greatly enhance the usability and performance ofMPI RMA.We present the first complete implementation of MPI-3 RMA and document implementation techniques and performance optimization opportunities enabled by the new interface. Our implementation targets messaging-based networks and is publicly available in the latest release of the MPICH MPI implementation. Here using this implementation, we explore the performance impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA interface providesmore » significant advantages over the MPI-2 interface by enabling increased communication concurrency through relaxed semantics in the interface and additional routines that provide new window types, synchronization modes, and atomic operations.« less
Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone.
Im, Hyungsoon; Castro, Cesar M; Shao, Huilin; Liong, Monty; Song, Jun; Pathania, Divya; Fexon, Lioubov; Min, Changwook; Avila-Wallace, Maria; Zurkiya, Omar; Rho, Junsung; Magaoay, Brady; Tambouret, Rosemary H; Pivovarov, Misha; Weissleder, Ralph; Lee, Hakho
2015-05-05
The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables molecular and cellular diagnostics. The D3 (digital diffraction diagnosis) system uses microbeads to generate unique diffraction patterns which can be acquired by smartphones and processed by a remote server. We applied the D3 platform to screen for precancerous or cancerous cells in cervical specimens and to detect human papillomavirus (HPV) DNA. The D3 assay generated readouts within 45 min and showed excellent agreement with gold-standard pathology or HPV testing, respectively. This approach could have favorable global health applications where medical access is limited or when pathology bottlenecks challenge prompt diagnostic readouts.
Design and Development of a Portable WiFi enabled BIA device
NASA Astrophysics Data System (ADS)
Križaj, D.; Baloh, M.; Brajkovič, R.; Žagar, T.
2013-04-01
A bioimpedance device (BIA) for evaluation of sarcopenia - age related muscle mass loss - is designed, developed and evaluated. The requirements were based on lightweight design, flexible and user enabled incorporation of measurement protocols and WiFi protocol for remote device control, full internet integration and fast development and usage of measurement protocols. The current design is based on usage of a microcontroller with integrated AD/DA converters. The prototype system was assembled and the operation and connectivity to different handheld devices and laptop computers was successfully tested. The designed BIA device can be accessed using TCP sockets and once the connection is established the data transfer runs successfully at the specified speed. The accuracy of currently developed prototype is about 5% for the impedance modulus and 5 deg. for the phase for the frequencies below 20 kHz with an unfiltered excitation signal and no additional amplifiers employed.
Martin, Suzanne; Armstrong, Elaine; Thomson, Eileen; Vargiu, Eloisa; Solà, Marc; Dauwalder, Stefan; Miralles, Felip; Daly Lynn, Jean
2017-07-14
Cognitive rehabilitation is established as a core intervention within rehabilitation programs following a traumatic brain injury (TBI). Digitally enabled assistive technologies offer opportunities for clinicians to increase remote access to rehabilitation supporting transition into home. Brain Computer Interface (BCI) systems can harness the residual abilities of individuals with limited function to gain control over computers through their brain waves. This paper presents an online cognitive rehabilitation application developed with therapists, to work remotely with people who have TBI, who will use BCI at home to engage in the therapy. A qualitative research study was completed with people who are community dwellers post brain injury (end users), and a cohort of therapists involved in cognitive rehabilitation. A user-centered approach over three phases in the development, design and feasibility testing of this cognitive rehabilitation application included two tasks (Find-a-Category and a Memory Card task). The therapist could remotely prescribe activity with different levels of difficulty. The service user had a home interface which would present the therapy activities. This novel work was achieved by an international consortium of academics, business partners and service users.
Providing Data Quality Information for Remote Sensing Applications
NASA Astrophysics Data System (ADS)
Albrecht, F.; Blaschke, T.; Lang, S.; Abdulmutalib, H. M.; Szabó, G.; Barsi, Á.; Batini, C.; Bartsch, A.; Kugler, Zs.; Tiede, D.; Huang, G.
2018-04-01
The availability and accessibility of remote sensing (RS) data, cloud processing platforms and provided information products and services has increased the size and diversity of the RS user community. This development also generates a need for validation approaches to assess data quality. Validation approaches employ quality criteria in their assessment. Data Quality (DQ) dimensions as the basis for quality criteria have been deeply investigated in the database area and in the remote sensing domain. Several standards exist within the RS domain but a general classification - established for databases - has been adapted only recently. For an easier identification of research opportunities, a better understanding is required how quality criteria are employed in the RS lifecycle. Therefore, this research investigates how quality criteria support decisions that guide the RS lifecycle and how they relate to the measured DQ dimensions. Subsequently follows an overview of the relevant standards in the RS domain that is matched to the RS lifecycle. Conclusively, the required research needs are identified that would enable a complete understanding of the interrelationships between the RS lifecycle, the data sources and the DQ dimensions, an understanding that would be very valuable for designing validation approaches in RS.
NASA Astrophysics Data System (ADS)
Walther, Christian; Frei, Michaela
2017-04-01
Mining of so-called "conflict minerals" is often related with small-scale mining activities. The here discussed activities are located in forested areas in the eastern DRC, which are often remote, difficult to access and insecure for traditional geological field inspection. In order to accelerate their CTC (Certified Trading Chain)-certification process, remote sensing data are used for detection and monitoring of these small-scale mining operations. This requires a high image acquisition frequency due to mining site relocations and for compensation of year-round high cloud coverage, especially for optical data evaluation. Freely available medium resolution optical data of Sentinel-2 and Landsat-8 as well as SAR data of Sentinel-1 are used for detecting small mining targets with a minimum size of approximately 0.5 km2. The developed method enables a robust multi-temporal detection of mining sites, monitoring of mining site spatio-temporal relocations and environmental changes. Since qualitative and quantitative comparable results are generated, the followed change detection approach is objective and transparent and may push the certification process forward.
Remote observing environment using a KVM-over-IP for the OAO 188 cm telescope
NASA Astrophysics Data System (ADS)
Yanagisawa, Kenshi; Inoue, Goki; Kuroda, Daisuke; Ukita, Nobuharu; Mizumoto, Yoshihiko; Izumiura, Hideyuki
2016-08-01
We have prepared remote observing environment for the 188 cm telescope at Okayama Astrophysical Observatory. A KVM-over-IP and a VPN gateway are employed as core devices, which offer reliable, secure and fast link between on site and remote sites. We have confirmed the KVM-over-IP has ideal characteristics for serving the remote observing environment; the use is simple for both users and maintainer; access from any platform is available; multiple and simultaneous access is possible; and maintenance load is small. We also demonstrated that the degradation of observing efficiency specific to the remote observing is negligibly small. The remote observing environment has fully opened since the semester 2016A, about 30% of the total observing time in the last semester was occupied by remote observing.
Benefits of cloud computing for PACS and archiving.
Koch, Patrick
2012-01-01
The goal of cloud-based services is to provide easy, scalable access to computing resources and IT services. The healthcare industry requires a private cloud that adheres to government mandates designed to ensure privacy and security of patient data while enabling access by authorized users. Cloud-based computing in the imaging market has evolved from a service that provided cost effective disaster recovery for archived data to fully featured PACS and vendor neutral archiving services that can address the needs of healthcare providers of all sizes. Healthcare providers worldwide are now using the cloud to distribute images to remote radiologists while supporting advanced reading tools, deliver radiology reports and imaging studies to referring physicians, and provide redundant data storage. Vendor managed cloud services eliminate large capital investments in equipment and maintenance, as well as staffing for the data center--creating a reduction in total cost of ownership for the healthcare provider.
Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno
2015-01-01
The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of engagement, learning, and overall experience. Feedback from students suggests that the use of remote access technology is effective in teaching students the principles of chemical analysis by atomic absorption spectroscopy. © 2014 The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
McKee, Shawn;
2017-10-01
Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks. We will report on a number of networking initiatives in ATLAS including participation in the global perfSONAR network monitoring and measuring efforts of WLCG and OSG, the collaboration with the LHCOPN/LHCONE effort, the integration of network awareness into PanDA, the use of the evolving ATLAS analytics framework to better understand our networks and the changes in our DDM system to allow remote access to data. We will also discuss new efforts underway that are exploring the inclusion and use of software defined networks (SDN) and how ATLAS might benefit from: • Orchestration and optimization of distributed data access and data movement. • Better control of workflows, end to end. • Enabling prioritization of time-critical vs normal tasks • Improvements in the efficiency of resource usage
NASA Astrophysics Data System (ADS)
Li, J.; Zhang, T.; Huang, Q.; Liu, Q.
2014-12-01
Today's climate datasets are featured with large volume, high degree of spatiotemporal complexity and evolving fast overtime. As visualizing large volume distributed climate datasets is computationally intensive, traditional desktop based visualization applications fail to handle the computational intensity. Recently, scientists have developed remote visualization techniques to address the computational issue. Remote visualization techniques usually leverage server-side parallel computing capabilities to perform visualization tasks and deliver visualization results to clients through network. In this research, we aim to build a remote parallel visualization platform for visualizing and analyzing massive climate data. Our visualization platform was built based on Paraview, which is one of the most popular open source remote visualization and analysis applications. To further enhance the scalability and stability of the platform, we have employed cloud computing techniques to support the deployment of the platform. In this platform, all climate datasets are regular grid data which are stored in NetCDF format. Three types of data access methods are supported in the platform: accessing remote datasets provided by OpenDAP servers, accessing datasets hosted on the web visualization server and accessing local datasets. Despite different data access methods, all visualization tasks are completed at the server side to reduce the workload of clients. As a proof of concept, we have implemented a set of scientific visualization methods to show the feasibility of the platform. Preliminary results indicate that the framework can address the computation limitation of desktop based visualization applications.
Marziniak, Martin; Brichetto, Giampaolo; Feys, Peter; Meyding-Lamadé, Uta; Vernon, Karen; Meuth, Sven G
2018-04-24
Despite recent advances in multiple sclerosis (MS) care, many patients only infrequently access health care services, or are unable to access them easily, for reasons such as mobility restrictions, travel costs, consultation and treatment time constraints, and a lack of locally available MS expert services. Advances in mobile communications have led to the introduction of electronic health (eHealth) technologies, which are helping to improve both access to and the quality of health care services. As the Internet is now readily accessible through smart mobile devices, most people can take advantage of eHealth apps. The development of digital applications and remote communication technologies for patients with MS has increased rapidly in recent years. These apps are intended to complement traditional in-clinic approaches and can bring significant benefits to both patients with MS and health care providers (HCPs). For patients, such eHealth apps have been shown to improve outcomes and increase access to care, disease information, and support. These apps also help patients to participate actively in self-management, for example, by tracking adherence to treatment, changes in bladder and bowel habits, and activity and mood. For HCPs, MS eHealth solutions can simplify the multidisciplinary approaches needed to tailor MS management strategies to individual patients; facilitate remote monitoring of patient symptoms, adverse events, and outcomes; enable the efficient use of limited resources and clinic time; and potentially allow more timely intervention than is possible with scheduled face-to-face visits. These benefits are important because MS is a long-term, multifaceted chronic condition that requires ongoing monitoring, assessment, and management. We identified in the literature 28 eHealth solutions for patients with MS that fall within the four categories of screening and assessment, disease monitoring and self-management, treatment and rehabilitation, and advice and education. We review each solution, focusing on any clinical evidence supporting their use from prospective trials (including ASSESS MS, Deprexis, MSdialog, and the Multiple Sclerosis Performance Test) and consider the opportunities, barriers to adoption, and potential pitfalls of eHealth technologies in routine health care. ©Martin Marziniak, Giampaolo Brichetto, Peter Feys, Uta Meyding-Lamadé, Karen Vernon, Sven G. Meuth. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 24.04.2018.
Moon, Jongho; Choi, Younsung; Jung, Jaewook; Won, Dongho
2015-01-01
In multi-server environments, user authentication is a very important issue because it provides the authorization that enables users to access their data and services; furthermore, remote user authentication schemes for multi-server environments have solved the problem that has arisen from user's management of different identities and passwords. For this reason, numerous user authentication schemes that are designed for multi-server environments have been proposed over recent years. In 2015, Lu et al. improved upon Mishra et al.'s scheme, claiming that their remote user authentication scheme is more secure and practical; however, we found that Lu et al.'s scheme is still insecure and incorrect. In this paper, we demonstrate that Lu et al.'s scheme is vulnerable to outsider attack and user impersonation attack, and we propose a new biometrics-based scheme for authentication and key agreement that can be used in multi-server environments; then, we show that our proposed scheme is more secure and supports the required security properties.
Unmanned and Unattended Response Capability for Homeland Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENNETT, PHIL C.
2002-11-01
An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less
Application of NASA Giovanni to Coastal Zone Remote Sensing Research
NASA Technical Reports Server (NTRS)
Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung
2007-01-01
The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.
Application of NASA Giovanni to Coastal Zone Remote Sensing Search
NASA Technical Reports Server (NTRS)
Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung
2007-01-01
The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.
An SNMP-based solution to enable remote ISO/IEEE 11073 technical management.
Lasierra, Nelia; Alesanco, Alvaro; García, José
2012-07-01
This paper presents the design and implementation of an architecture based on the integration of simple network management protocol version 3 (SNMPv3) and the standard ISO/IEEE 11073 (X73) to manage technical information in home-based telemonitoring scenarios. This architecture includes the development of an SNMPv3-proxyX73 agent which comprises a management information base (MIB) module adapted to X73. In the proposed scenario, medical devices (MDs) send information to a concentrator device [designated as compute engine (CE)] using the X73 standard. This information together with extra information collected in the CE is stored in the developed MIB. Finally, the information collected is available for remote access via SNMP connection. Moreover, alarms and events can be configured by an external manager in order to provide warnings of irregularities in the MDs' technical performance evaluation. This proposed SNMPv3 agent provides a solution to integrate and unify technical device management in home-based telemonitoring scenarios fully adapted to X73.
Software for Remote Monitoring of Space-Station Payloads
NASA Technical Reports Server (NTRS)
Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Gillis, Robert; Sellers, Donna; Sims, Chris; Rice, James
2003-01-01
Telescience Resource Kit (TReK) is a suite of application programs that enable geographically dispersed users to monitor scientific payloads aboard the International Space Station (ISS). TReK provides local ground support services that can simultaneously receive, process, record, playback, and display data from multiple sources. TReK also provides interfaces to use the remote services provided by the Payload Operations Integration Center which manages all ISS payloads. An application programming interface (API) allows for payload users to gain access to all data processed by TReK and allows payload-specific tools and programs to be built or integrated with TReK. Used in conjunction with other ISS-provided tools, TReK provides the ability to integrate payloads with the operational ground system early in the lifecycle. This reduces the potential for operational problems and provides "cradle-to-grave" end-to-end operations. TReK contains user guides and self-paced tutorials along with training applications to allow the user to become familiar with the system.
Using Aoristic Analysis to Link Remote and Ground-Level Phenological Observations
NASA Astrophysics Data System (ADS)
Henebry, G. M.
2013-12-01
Phenology is about observing events in time and space. With the advent of publically accessible geospatial datastreams and easy to use mapping software, specifying where an event occurs is much less of a challenge than it was just two decades ago. In contrast, specifying when an event occurs remains a nontrivial function of a population of organismal responses, sampling interval, compositing period, and reporting precision. I explore how aoristic analysis can be used to analyzing spatiotemporal events for which the location is known to acceptable levels of precision but for which temporal coordinates are poorly specified or only partially bounded. Aoristic analysis was developed in the late 1990s in the field of quantitative criminology to leverage temporally imprecise geospatial data of crime reports. Here I demonstrate how aoristic analysis can be used to link remotely sensed observations of land surface phenology to ground-level observations of organismal phenophase transitions. Explicit representation of the windows of temporal uncertainty with aoristic weights enables cross-validation exercises and forecasting efforts to avoid false precision.
Exploring Remote Sensing Products Online with Giovanni for Studying Urbanization
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina; Kempler, Steve
2012-01-01
Recently, a Large amount of MODIS land products at multi-spatial resolutions have been integrated into the online system, Giovanni, to support studies on land cover and land use changes focused on Northern Eurasia and Monsoon Asia regions. Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC) providing a simple and intuitive way to visualize, analyze, and access Earth science remotely-sensed and modeled data. The customized Giovanni Web portals (Giovanni-NEESPI and Giovanni-MAIRS) are created to integrate land, atmospheric, cryospheric, and social products, that enable researchers to do quick exploration and basic analyses of land surface changes and their relationships to climate at global and regional scales. This presentation documents MODIS land surface products in Giovanni system. As examples, images and statistical analysis results on land surface and local climate changes associated with urbanization over Yangtze River Delta region, China, using data in Giovanni are shown.
A remote laboratory for USRP-based software defined radio
NASA Astrophysics Data System (ADS)
Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David
2014-02-01
Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.
Bhatia, Parisha; Mohamed, Hossam Eldin; Kadi, Abida; Walvekar, Rohan R.
2015-01-01
Robot assisted thyroid surgery has been the latest advance in the evolution of thyroid surgery after endoscopy assisted procedures. The advantage of a superior field vision and technical advancements of robotic technology have permitted novel remote access (trans-axillary and retro-auricular) surgical approaches. Interestingly, several remote access surgical ports using robot surgical system and endoscopic technique have been customized to avoid the social stigma of a visible scar. Current literature has displayed their various advantages in terms of post-operative outcomes; however, the associated financial burden and also additional training and expertise necessary hinder its widespread adoption into endocrine surgery practices. These approaches offer excellent cosmesis, with a shorter learning curve and reduce discomfort to surgeons operating ergonomically through a robotic console. This review aims to provide details of various remote access techniques that are being offered for thyroid resection. Though these have been reported to be safe and feasible approaches for thyroid surgery, further evaluation for their efficacy still remains. PMID:26425450
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip
2011-01-01
Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.
OntoCAT -- simple ontology search and integration in Java, R and REST/JavaScript
2011-01-01
Background Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal. However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively difficult to access each ontology source separately, map their contents to research data, and much of this effort is being replicated across different research groups. Results OntoCAT provides a seamless programming interface to query heterogeneous ontology resources including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a Google App Engine application. Conclusions OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress, MOLGENIS, EFO and Gen2Phen phenotype use cases. Availability http://www.ontocat.org PMID:21619703
OntoCAT--simple ontology search and integration in Java, R and REST/JavaScript.
Adamusiak, Tomasz; Burdett, Tony; Kurbatova, Natalja; Joeri van der Velde, K; Abeygunawardena, Niran; Antonakaki, Despoina; Kapushesky, Misha; Parkinson, Helen; Swertz, Morris A
2011-05-29
Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal. However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively difficult to access each ontology source separately, map their contents to research data, and much of this effort is being replicated across different research groups. OntoCAT provides a seamless programming interface to query heterogeneous ontology resources including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a Google App Engine application. OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress, MOLGENIS, EFO and Gen2Phen phenotype use cases. http://www.ontocat.org.
Design of a secure remote management module for a software-operated medical device.
Burnik, Urban; Dobravec, Štefan; Meža, Marko
2017-12-09
Software-based medical devices need to be maintained throughout their entire life cycle. The efficiency of after-sales maintenance can be improved by managing medical systems remotely. This paper presents how to design the remote access function extensions in order to prevent risks imposed by uncontrolled remote access. A thorough analysis of standards and legislation requirements regarding safe operation and risk management of medical devices is presented. Based on the formal requirements, a multi-layer machine design solution is proposed that eliminates remote connectivity risks by strict separation of regular device functionalities from remote management service, deploys encrypted communication links and uses digital signatures to prevent mishandling of software images. The proposed system may also be used as an efficient version update of the existing medical device designs.
Online catalog access and distribution of remotely sensed information
NASA Astrophysics Data System (ADS)
Lutton, Stephen M.
1997-09-01
Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.
Data Access Services that Make Remote Sensing Data Easier to Use
NASA Technical Reports Server (NTRS)
Lynnes, Christopher
2010-01-01
This slide presentation reviews some of the processes that NASA uses to make the remote sensing data easy to use over the World Wide Web. This work involves much research into data formats, geolocation structures and quality indicators, often to be followed by coding a preprocessing program. Only then are the data usable within the analysis tool of choice. The Goddard Earth Sciences Data and Information Services Center is deploying a variety of data access services that are designed to dramatically shorten the time consumed in the data preparation step. On-the-fly conversion to the standard network Common Data Form (netCDF) format with Climate-Forecast (CF) conventions imposes a standard coordinate system framework that makes data instantly readable through several tools, such as the Integrated Data Viewer, Gridded Analysis and Display System, Panoply and Ferret. A similar benefit is achieved by serving data through the Open Source Project for a Network Data Access Protocol (OPeNDAP), which also provides subsetting. The Data Quality Screening Service goes a step further in filtering out data points based on quality control flags, based on science team recommendations or user-specified criteria. Further still is the Giovanni online analysis system which goes beyond handling formatting and quality to provide visualization and basic statistics of the data. This general approach of automating the preparation steps has the important added benefit of enabling use of the data by non-human users (i.e., computer programs), which often make sub-optimal use of the available data due to the need to hard-code data preparation on the client side.
Remotely accessible laboratory for MEMS testing
NASA Astrophysics Data System (ADS)
Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.
2010-02-01
We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.
Internet Enabled Remote Driving of a Combat Hybrid Electric Power System for Duty Cycle Measurement
2007-06-01
INTERNET ENABLED REMOTE DRIVING OF A COMBAT HYBRID ELECTRIC POWER SYSTEM FOR DUTY CYCLE MEASUREMENT Jarrett Goodell1 Marc Compere , Ph.D.2...Orlando, FL, April 2006. 2. Compere , M.; M.; Goodell, J.; Simon, M; Smith, W.; Brudnak, M, “Robust Control Techniques Enabling Duty Cycle...2006-01-3077, SAE Power Systems Conference, Nov. 2006. 3. Compere , M.; Simon, M.; Kajs, J.; Pozolo, M., “Tracked Vehicle Mobility Load Emulation for a
Science Discoveries Enabled by Hosting Optical Imagers on Commercial Satellite Constellations
NASA Astrophysics Data System (ADS)
Erlandson, R. E.; Kelly, M. A.; Hibbitts, C.; Kumar, C.; Dyrud, L. P.
2012-12-01
The advent of commercial space activities that utilize large space-based constellations provide a new and cost effective opportunity to acquire multi-point observations. Previously, a custom designed space-based constellation, while technically feasible, would require a substantial monetary investment. However, commercial industry has now been entertaining the concept of hosting payloads on their space-based constellations resulting in low-cost access to space. Examples, include the low Earth orbit Iridium Next constellation as well as communication satellites in geostationary. In some of these constellations data distribution can be provided in real time, a feature relevant to applications in the areas of space weather and disaster monitoring. From the perspective of new scientific discoveries enabled by low cost access to space, the cost and thus value proposition is dramatically changed. For example, a constellation of sixty-six satellites (Iridium Next), hosting a single band or multi-spectral imager can now provide observations of the aurora with a spatial resolution of a few hundred meters at all local times and in both hemispheres simultaneously. Remote sensing of clouds is another example where it is now possible to acquire global imagery at resolutions between 100-1000m. Finally, land use imagery is another example where one can use either imaging or spectrographic imagers to solve a multitude of problems. In this work, we will discuss measurement architectures and the multi-disciplinary scientific discoveries that are enable by large space based constellations.
Autonomous telemetry system by using mobile networks for a long-term seismic observation
NASA Astrophysics Data System (ADS)
Hirahara, S.; Uchida, N.; Nakajima, J.
2012-04-01
When a large earthquake occurs, it is important to know the detailed distribution of aftershocks immediately after the main shock for the estimation of the fault plane. The large amount of seismic data is also required to determine the three-dimensional seismic velocity structure around the focal area. We have developed an autonomous telemetry system using mobile networks, which is specialized for aftershock observations. Because the newly developed system enables a quick installation and real-time data transmission by using mobile networks, we can construct a dense online seismic network even in mountain areas where conventional wired networks are not available. This system is equipped with solar panels that charge lead-acid battery, and enables a long-term seismic observation without maintenance. Furthermore, this system enables a continuous observation at low costs with flat-rate or prepaid Internet access. We have tried to expand coverage areas of mobile communication and back up Internet access by configuring plural mobile carriers. A micro server embedded with Linux consists of automatic control programs of the Internet connection and data transmission. A status monitoring and remote maintenance are available via the Internet. In case of a communication failure, an internal storage can back up data for two years. The power consumption of communication device ranges from 2.5 to 4.0 W. With a 50 Ah lead-acid battery, this system continues to record data for four days if the battery charging by solar panels is temporarily unavailable.
Mobile microscopy as a screening tool for oral cancer in India: A pilot study
Skandarajah, Arunan; Sunny, Sumsum P.; Gurpur, Praveen; Reber, Clay D.; D’Ambrosio, Michael V.; Raghavan, Nisheena; James, Bonney Lee; Ramanjinappa, Ravindra D.; Suresh, Amritha; Kandasarma, Uma; Birur, Praveen; Kumar, Vinay V.; Galmeanu, Honorius-Cezar; Itu, Alexandru Mihail; Modiga-Arsu, Mihai; Rausch, Saskia; Sramek, Maria; Kollegal, Manohar; Paladini, Gianluca; Kuriakose, Moni; Koch, Felix; Fletcher, Daniel
2017-01-01
Oral cancer is the most common type of cancer among men in India and other countries in South Asia. Late diagnosis contributes significantly to this mortality, highlighting the need for effective and specific point-of-care diagnostic tools. The same regions with high prevalence of oral cancer have seen extensive growth in mobile phone infrastructure, which enables widespread access to telemedicine services. In this work, we describe the evaluation of an automated tablet-based mobile microscope as an adjunct for telemedicine-based oral cancer screening in India. Brush biopsy, a minimally invasive sampling technique was combined with a simplified staining protocol and a tablet-based mobile microscope to facilitate local collection of digital images and remote evaluation of the images by clinicians. The tablet-based mobile microscope (CellScope device) combines an iPad Mini with collection optics, LED illumination and Bluetooth-controlled motors to scan a slide specimen and capture high-resolution images of stained brush biopsy samples. Researchers at the Mazumdar Shaw Medical Foundation (MSMF) in Bangalore, India used the instrument to collect and send randomly selected images of each slide for telepathology review. Evaluation of the concordance between gold standard histology, conventional microscopy cytology, and remote pathologist review of the images was performed as part of a pilot study of mobile microscopy as a screening tool for oral cancer. Results indicated that the instrument successfully collected images of sufficient quality to enable remote diagnoses that show concordance with existing techniques. Further studies will evaluate the effectiveness of oral cancer screening with mobile microscopy by minimally trained technicians in low-resource settings. PMID:29176904
Techtalk: Telecommunications for Improving Developmental Education.
ERIC Educational Resources Information Center
Caverly, David C.; Broderick, Bill
1993-01-01
Explains how to access the Internet, discussing hardware and software considerations, connectivity, and types of access available to users. Describes the uses of electronic mail; TELNET, a method for remotely logging onto another computer; and anonymous File Transfer Protocol (FTP), a method for downloading files from a remote computer. (MAB)
Networking the Light Fantastic--CD-ROMs on LANs.
ERIC Educational Resources Information Center
Kittle, Paul W.
1992-01-01
Describes the development of a local area network (LAN) at Loma Linda University that allows remote access for both IBM and Macintosh microcomputers to CD-ROMs. Topics discussed include types of networks; fiber optic technology; networking CD-ROM drives; remote access; modems; CD-ROM databases; memory management; interface software; and future…
A remote sensing and GIS-enabled asset management system (RS-GAMS).
DOT National Transportation Integrated Search
2013-04-01
Under U.S. Department of Transportation (DOT) Commercial Remote Sensing and : Spatial Information (CRS&SI) Technology Initiative 2 of the Transportation : Infrastructure Construction and Condition Assessment, an intelligent Remote Sensing and : GIS-b...
Rural and remote speech-language pathology service inequities: An Australian human rights dilemma.
Jones, Debra M; McAllister, Lindy; Lyle, David M
2018-02-01
Access to healthcare is a fundamental human right for all Australians. Article 19 of the Universal Declaration of Human Rights acknowledges the right to freedom of opinion and to seek, receive and impart information and ideas. Capacities for self-expression and effective communication underpin the realisation of these fundamental human rights. For rural and remote Australian children this realisation is compromised by complex disadvantages and inequities that contribute to communication delays, inequity of access to essential speech-language pathology services and poorer later life outcomes. Localised solutions to the provision of civically engaged, accessible, acceptable and sustainable speech-language pathology services within rural and remote Australian contexts are required if we are to make substantive human rights gains. However, civically engaged and sustained healthcare can significantly challenge traditional professionalised perspectives on how best to design and implement speech-language pathology services that seek to address rural and remote communication needs and access inequities. A failure to engage these communities in the identification of childhood communication delays and solutions to address these delays, ultimately denies children, families and communities of their human rights for healthcare access, self-expression, self-dignity and meaningful inclusion within Australian society.
Exploring the Martian Highlands using a Rover-Deployed Ground Penetrating Radar
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schutz, A. E.; Campbell, B. A.
2001-01-01
The Martian highlands record a long and often complex history of geologic activity that has shaped the planet over time. Results of geologic mapping and new data from the Mars Global Surveyor spacecraft reveal layered surfaces created by multiple processes that are often mantled by eolian deposits. Knowledge of the near-surface stratigraphy as it relates to evolution of surface morphology will provide critical context for interpreting rover/lander remote sensing data and for defining the geologic setting of a highland lander. Rover-deployed ground penetrating radar (GPR) can directly measure the range and character of in situ radar properties, thereby helping to constrain near-surface geology and structure. As is the case for most remote sensing instruments, a GPR may not detect water unambiguously on Mars. Nevertheless, any local, near-surface occurrence of liquid water will lead to large, easily detected dielectric contrasts. Moreover, definition of stratigraphy and setting will help in evaluating the history of aqueous activity and where any water might occur and be accessible. GPR data can also be used to infer the degree of any post-depositional pedogenic alteration or weathering, thereby enabling assessment of pristine versus secondary morphology. Most importantly perhaps, GPR can provide critical context for other rover and orbital instruments/data sets. Hence, rover-deployment of a GPR deployment should enable 3-D mapping of local stratigraphy and could guide subsurface sampling.
A web Accessible Framework for Discovery, Visualization and Dissemination of Polar Data
NASA Astrophysics Data System (ADS)
Kirsch, P. J.; Breen, P.; Barnes, T. D.
2007-12-01
A web accessible information framework, currently under development within the Physical Sciences Division of the British Antarctic Survey is described. The datasets accessed are generally heterogeneous in nature from fields including space physics, meteorology, atmospheric chemistry, ice physics, and oceanography. Many of these are returned in near real time over a 24/7 limited bandwidth link from remote Antarctic Stations and ships. The requirement is to provide various user groups - each with disparate interests and demands - a system incorporating a browsable and searchable catalogue; bespoke data summary visualization, metadata access facilities and download utilities. The system allows timely access to raw and processed datasets through an easily navigable discovery interface. Once discovered, a summary of the dataset can be visualized in a manner prescribed by the particular projects and user communities or the dataset may be downloaded, subject to accessibility restrictions that may exist. In addition, access to related ancillary information including software, documentation, related URL's and information concerning non-electronic media (of particular relevance to some legacy datasets) is made directly available having automatically been associated with a dataset during the discovery phase. Major components of the framework include the relational database containing the catalogue, the organizational structure of the systems holding the data - enabling automatic updates of the system catalogue and real-time access to data -, the user interface design, and administrative and data management scripts allowing straightforward incorporation of utilities, datasets and system maintenance.
Exploring Pacific Seamounts through Telepresence Mapping on the NOAA Ship Okeanos Explorer
NASA Astrophysics Data System (ADS)
Lobecker, E.; Malik, M.; Sowers, D.; Kennedy, B. R.
2016-12-01
Telepresence utilizes modern computer networks and a high bandwidth satellite connection to enable remote users to participate virtually in ocean research and exploration cruises. NOAA's Office of Ocean Exploration and Research (OER) has been leveraging telepresence capabilities since the early 2000s. Through telepresence, remote users have provided support for operations planning and execution, troubleshooting hardware and software, and data interpretation during exploratory ocean mapping and remotely operated vehicle missions conducted by OER. The potential for this technology's application to immersive data acquisition and processing during mapping missions, however, has not yet been fully realized. We report the results of the application of telepresence to an 18-day 24 hour / day seafloor mapping expedition with the NOAA Ship Okeanos Explorer. The mapping team was split between shipboard and shore-based mission team members based at the Exploration Command Center at the University of New Hampshire. This cruise represented the third dedicated mapping cruise in a multi-year NOAA Campaign to Address the Pacific monument Science, Technology, and Ocean Needs (CAPSTONE). Cruise objectives included mapping several previously unmapped seamounts in the Wake Atoll Unit of the recently expanded Pacific Remote Islands Marine National Monument, and mapping of prominent seamount, ridge, and fracture zone features during transits. We discuss (1) expanded shore-based data processing of multiple sonar data streams leading to enhanced, rapid, initial site characterization, (2) remote access control of shipboard sonar data acquisition and processing computers, and (3) potential for broadening multidisciplinary applications of ocean mapping cruises including outreach, education, and communications efforts focused on expanding societal cognition and benefits of ocean exploration.
A Low-Cost Tele-Imaging Platform for Developing Countries
Adambounou, Kokou; Adjenou, Victor; Salam, Alex P.; Farin, Fabien; N’Dakena, Koffi Gilbert; Gbeassor, Messanvi; Arbeille, Philippe
2014-01-01
Purpose: To design a “low-cost” tele-imaging method allowing real-time tele-ultrasound expertise, delayed tele-ultrasound diagnosis, and tele-radiology between remote peripherals hospitals and clinics (patient centers) and university hospital centers (expert center). Materials and methods: A system of communication via internet (IP camera and remote access software) enabling transfer of ultrasound videos and images between two centers allows a real-time tele-radiology expertise in the presence of a junior sonographer or radiologist at the patient center. In the absence of a sonographer or radiologist at the patient center, a 3D reconstruction program allows a delayed tele-ultrasound diagnosis with images acquired by a lay operator (e.g., midwife, nurse, technician). The system was tested both with high and low bandwidth. The system can further accommodate non-ultrasound tele-radiology (conventional radiography, mammography, and computer tomography for example). The system was tested on 50 patients between CHR Tsevie in Togo (40 km from Lomé-Togo and 4500 km from Tours-France) and CHU Campus at Lomé and CHU Trousseau in Tours. Results: A real-time tele-expertise was successfully performed with a delay of approximately 1.5 s with an internet bandwidth of around 1 Mbps (IP Camera) and 512 kbps (remote access software). A delayed tele-ultrasound diagnosis was also performed with satisfactory results. The transmission of radiological images from the patient center to the expert center was of adequate quality. Delayed tele-ultrasound and tele-radiology was possible even in the presence of a low-bandwidth internet connection. Conclusion: This tele-imaging method, requiring nothing by readily available and inexpensive technology and equipment, offers a major opportunity for telemedicine in developing countries. PMID:25250306
An optimized web-based approach for collaborative stereoscopic medical visualization
Kaspar, Mathias; Parsad, Nigel M; Silverstein, Jonathan C
2013-01-01
Objective Medical visualization tools have traditionally been constrained to tethered imaging workstations or proprietary client viewers, typically part of hospital radiology systems. To improve accessibility to real-time, remote, interactive, stereoscopic visualization and to enable collaboration among multiple viewing locations, we developed an open source approach requiring only a standard web browser with no added client-side software. Materials and Methods Our collaborative, web-based, stereoscopic, visualization system, CoWebViz, has been used successfully for the past 2 years at the University of Chicago to teach immersive virtual anatomy classes. It is a server application that streams server-side visualization applications to client front-ends, comprised solely of a standard web browser with no added software. Results We describe optimization considerations, usability, and performance results, which make CoWebViz practical for broad clinical use. We clarify technical advances including: enhanced threaded architecture, optimized visualization distribution algorithms, a wide range of supported stereoscopic presentation technologies, and the salient theoretical and empirical network parameters that affect our web-based visualization approach. Discussion The implementations demonstrate usability and performance benefits of a simple web-based approach for complex clinical visualization scenarios. Using this approach overcomes technical challenges that require third-party web browser plug-ins, resulting in the most lightweight client. Conclusions Compared to special software and hardware deployments, unmodified web browsers enhance remote user accessibility to interactive medical visualization. Whereas local hardware and software deployments may provide better interactivity than remote applications, our implementation demonstrates that a simplified, stable, client approach using standard web browsers is sufficient for high quality three-dimensional, stereoscopic, collaborative and interactive visualization. PMID:23048008
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community.
Krampis, Konstantinos; Booth, Tim; Chapman, Brad; Tiwari, Bela; Bicak, Mesude; Field, Dawn; Nelson, Karen E
2012-03-19
A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them.
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community
2012-01-01
Background A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Results Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Conclusions Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them. PMID:22429538
Reflections on Earth--Remote-Sensing Research from Your Classroom.
ERIC Educational Resources Information Center
Campbell, Bruce A.
2001-01-01
Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)
Hospitals in rural or remote areas: An exploratory review of policies in 8 high-income countries.
Rechel, Bernd; Džakula, Aleksandar; Duran, Antonio; Fattore, Giovanni; Edwards, Nigel; Grignon, Michel; Haas, Marion; Habicht, Triin; Marchildon, Gregory P; Moreno, Antonio; Ricciardi, Walter; Vaughan, Louella; Smith, Tina Anderson
2016-07-01
Our study reviewed policies in 8 high-income countries (Australia, Canada, United States, Italy, Spain, United Kingdom, Croatia and Estonia) in Europe, Australasia and North America with regard to hospitals in rural or remote areas. We explored whether any specific policies on hospitals in rural or remote areas are in place, and, if not, how countries made sure that the population in remote or rural areas has access to acute inpatient services. We found that only one of the eight countries (Italy) had drawn up a national policy on hospitals in rural or remote areas. In the United States, although there is no singular comprehensive national plan or vision, federal levers have been used to promote access in rural or remote areas and provide context for state and local policy decisions. In Australia and Canada, intermittent policies have been developed at the sub-national level of states and provinces respectively. In those countries where access to hospital services in rural or remote areas is a concern, common challenges can be identified, including the financial sustainability of services, the importance of medical education and telemedicine and the provision of quick transport to more specialized services. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Goth, Ursula S.; Hammer, Hugo L.; Claussen, Bjørgulf
2014-01-01
Utilization of services is an important indicator for estimating access to healthcare. In Norway, the General Practitioner Scheme, a patient list system, was established in 2001 to enable a stable doctor-patient relationship. Although satisfaction with the system is generally high, people often choose a more accessible but inferior solution for routine care: emergency wards. The aim of the article is to investigate contact patterns in primary health care situations for the total population in urban and remote areas of Norway and for major immigrant groups in Oslo. The primary regression model had a cross-sectional study design analyzing 2,609,107 consultations in representative municipalities across Norway, estimating the probability of choosing the emergency ward in substitution to a general practitioner. In a second regression model comprising 625,590 consultations in Oslo, we calculated this likelihood for immigrants from the 14 largest groups. We noted substantial differences in emergency ward utilization between ethnic Norwegians both in rural and remote areas and among the various immigrant groups residing in Oslo. Oslo utilization of emergency ward services for the whole population declined, and so did this use among all immigrant groups after 2009. Other municipalities, while overwhelmingly ethnically Norwegian, showed diverse patterns including an increase in some and a decrease in others, results which we were unable to explain. PMID:24662997
NASA Astrophysics Data System (ADS)
Drapkin, J. K.; Wagner, L.
2017-12-01
Decision-making, science tells us, accesses multiple parts of the brain: both logic and data as well as memory and emotion. It is this mix of signals that propels individuals and communities to act. Founded in 2012, ISeeChange is the nation's first community crowdsourced climate and weather journal that empowers users to document environmental changes with others and discuss the impacts over time. Our neighborhood investigation methodology includes residents documenting their personal experiences alongside collected data, Earth remote sensing data, and local artists interpreting community questions and experiences into place-based public art in the neighborhood to inspire a culture of resilience and climate literacy. ISeeChange connects the public with national media, scientists, and data tools that support community dialogue and enable collaborative science and journalism investigations about our changing environment. Our groundbreaking environmental reporting platform—available online and through a mobile app—personalizes and tracks climate change from the perspective of every day experiences, bringing Eearth science home and into the placesspaces people know best and trust most- their own communities Our session will focus on our newest neighborhood pilot program in New Orleans, furthering the climate resilience, green infrastructure, and creative placemaking efforts of the Trust for Public Land, the City of New Orleans, and other resilience community partners.
A Web-Based Development Environment for Collaborative Data Analysis
NASA Astrophysics Data System (ADS)
Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Müller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.
2014-06-01
Visual Physics Analysis (VISPA) is a web-based development environment addressing high energy and astroparticle physics. It covers the entire analysis spectrum from the design and validation phase to the execution of analyses and the visualization of results. VISPA provides a graphical steering of the analysis flow, which consists of self-written, re-usable Python and C++ modules for more demanding tasks. All common operating systems are supported since a standard internet browser is the only software requirement for users. Even access via mobile and touch-compatible devices is possible. In this contribution, we present the most recent developments of our web application concerning technical, state-of-the-art approaches as well as practical experiences. One of the key features is the use of workspaces, i.e. user-configurable connections to remote machines supplying resources and local file access. Thereby, workspaces enable the management of data, computing resources (e.g. remote clusters or computing grids), and additional software either centralized or individually. We further report on the results of an application with more than 100 third-year students using VISPA for their regular particle physics exercises during the winter term 2012/13. Besides the ambition to support and simplify the development cycle of physics analyses, new use cases such as fast, location-independent status queries, the validation of results, and the ability to share analyses within worldwide collaborations with a single click become conceivable.
Using component technologies for web based wavelet enhanced mammographic image visualization.
Sakellaropoulos, P; Costaridou, L; Panayiotakis, G
2000-01-01
The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.
Medical e-commerce for regional Australia.
Kumar, D K; Mikelaitis, P
2001-12-01
The residents of rural and regional Australia have less access to health care services than in capital cities. There is a reluctance of General Practitioners to practice in the country. New information technology and government initiatives are now addressing this problem. High bandwidth videoconferencing is now being routinely used to provide psychiatric consultations to areas without this service. But this (like many other implementations of telecommunication technologies to health) has resulted in loss of revenue to regional Australia while benefiting capital cities. Thus, the current implementation of telecommunication technology to health has resulted in loss of revenue of the regions while increasing the bias towards the cities. Further, the system is not economically viable and requires the Government to inject funds for the smooth operation of the system. This paper proposes the use of telecommunication technology for enabling the communities of regional Australia to access health facilities via physical and virtual clinics. The proposed technique is self supporting and is based in the country with the intent to prevent the drain of resources from regional Australia. The technique attempts to eradicate the problem at the root level by providing a business opportunity that is based in and to cater for the needs of the remote communities. The proposed system would provide health services by physical and virtual clinics and while serving the communities would be profit centres- and thus attracting doctors and other resources to the remote communities.
High performance bilateral telerobot control.
Kline-Schoder, Robert; Finger, William; Hogan, Neville
2002-01-01
Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.
geoknife: Reproducible web-processing of large gridded datasets
Read, Jordan S.; Walker, Jordan I.; Appling, Alison P.; Blodgett, David L.; Read, Emily K.; Winslow, Luke A.
2016-01-01
Geoprocessing of large gridded data according to overlap with irregular landscape features is common to many large-scale ecological analyses. The geoknife R package was created to facilitate reproducible analyses of gridded datasets found on the U.S. Geological Survey Geo Data Portal web application or elsewhere, using a web-enabled workflow that eliminates the need to download and store large datasets that are reliably hosted on the Internet. The package provides access to several data subset and summarization algorithms that are available on remote web processing servers. Outputs from geoknife include spatial and temporal data subsets, spatially-averaged time series values filtered by user-specified areas of interest, and categorical coverage fractions for various land-use types.
A remote sensing and GIS-enabled asset management system (RS-GAMS) : phase 2.
DOT National Transportation Integrated Search
2014-04-01
Under the U.S. Department of Transportation (DOT) Commercial Remote Sensing and Spatial : Information (CRS&SI) Technology Initiative 2 of the Transportation Infrastructure Construction : and Condition Assessment, an intelligent Remote Sensing and GIS...
Accessing and Visualizing scientific spatiotemporal data
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Bergou, Attila; Berriman, Bruce G.; Block, Gary L.; Collier, Jim; Curkendall, David W.; Good, John; Husman, Laura; Jacob, Joseph C.; Laity, Anastasia;
2004-01-01
This paper discusses work done by JPL 's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids These tools do one or more of the following tasks visualize local data sets for local users, visualize local data sets for remote users, and access and visualize remote data sets The tools are used for various types of data, including remotely sensed image data, digital elevation models, astronomical surveys, etc The paper attempts to pull some common elements out of these tools that may be useful for others who have to work with similarly large data sets.
Picture archiving and communication in radiology.
Napoli, Marzia; Nanni, Marinella; Cimarra, Stefania; Crisafulli, Letizia; Campioni, Paolo; Marano, Pasquale
2003-01-01
After over 80 years of exclusive archiving of radiologic films, at present, in Radiology, digital archiving is increasingly gaining ground. Digital archiving allows a considerable reduction in costs and space saving, but most importantly, immediate or remote consultation of all examinations and reports in the hospital clinical wards, is feasible. The RIS system, in this case, is the starting point of the process of electronic archiving which however is the task of PACS. The latter can be used as radiologic archive in accordance with the law provided that it is in conformance with some specifications as the use of optical long-term storage media or with electronic track of change. PACS archives, in a hierarchical system, all digital images produced by each diagnostic imaging modality. Images and patient data can be retrieved and used for consultation or remote consultation by the reporting radiologist who requires images and reports of previous radiologic examinations or by the referring physician of the ward. Modern PACS owing to the WEB server allow remote access to extremely simplified images and data however ensuring the due regulations and access protections. Since the PACS enables a simpler data communication within the hospital, security and patient privacy should be protected. A secure and reliable PACS should be able to minimize the risk of accidental data destruction, and should prevent non authorized access to the archive with adequate security measures in relation to the acquired knowledge and based on the technological advances. Archiving of data produced by modern digital imaging is a problem now present also in small Radiology services. The technology is able to readily solve problems which were extremely complex up to some years ago as the connection between equipment and archiving system owing also to the universalization of the DICOM 3.0 standard. The evolution of communication networks and the use of standard protocols as TCP/IP can minimize problems of data and image remote transmission within the healthcare enterprise as well as over the territory. However, new problems are appearing as that of digital data security profiles and of the different systems which should ensure it. Among these, algorithms of electronic signature should be mentioned. In Italy they are validated by law and therefore can be used in digital archives in accordance with the law.
A Systematic Review of Services to DHH Children in Rural and Remote Regions
ERIC Educational Resources Information Center
Barr, Megan; Duncan, Jill; Dally, Kerry
2018-01-01
Children in regional, rural and remote areas have less access to services than those living in urban areas. Practitioners serving children with a hearing loss have attempted to address this gap, however there are few studies investigating service access and experiences of non-metropolitan families and professionals. This systematic review…
Remote Monitoring of the Polarized Target's Control for E1039
NASA Astrophysics Data System (ADS)
Fox, David; SeaQuest Collaboration
2017-09-01
The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.
Thomas, Susan L; Wakerman, John; Humphreys, John S
2014-08-21
Australians living in rural and remote areas experience poorer access to primary health care (PHC) and poorer health outcomes compared to metropolitan populations. Current health reform in Australia aims to ensure all Australians, regardless of where they live, have access to essential PHC services. However, at a national level policy makers and health planners lack an evidence-based set of core PHC services to assist in implementing this goal. A Delphi method was used to reach consensus on an evidence-based list of core PHC services to which all Australians should have access and their necessary support functions. Experts in rural and remote and/or Indigenous PHC, including policy-makers, academics, clinicians and consumers, were invited to consider a list of core services derived from the literature. Thirty nine experts agreed to participate. After three survey rounds there was a strong consensus (≥80% agreement) on core PHC services namely; 'care of the sick and injured', 'mental health', 'maternal/child health', 'allied health', 'sexual/reproductive health', 'rehabilitation', 'oral/dental health' and 'public health/illness prevention'; and on the PHC support functions of; 'management/governance/leadership', 'coordination', 'health infrastructure', 'quality systems', 'data systems', 'professional development' and 'community participation'. Themes emerging from qualitative data included challenges in providing equitable PHC in rural and remote areas, the importance of service coordination and diverse strategies to overcome access barriers. This study identifies a basket of PHC services that consumers in rural and remote communities can expect to access. It provides rigorously derived evidence that will contribute to a more systematic approach to PHC service planning and availability and will assist policy makers in the allocation of scarce resources necessary to improve the health outcomes of residents of rural and remote areas.
Tap Testing Hammer using Unmanned Aerial Systems (UASs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, JaMein DeShon; Ayorinde, Emmanuel Temiloluwa; Mascarenas, David Dennis
This is the final poster for a Student Symposium at Los Alamos National Laboratory. This research describes the development, validation, and testing of a remote concrete tapping mechanism enabled by UAS. The conclusion is the following: The results quantify for the first time concrete tapping data collected remotely with UAS, enabling cost-effective, safer and sustainable upgrade prioritization of railroad bridges inventories.
Real-time visual mosaicking and navigation on the seafloor
NASA Astrophysics Data System (ADS)
Richmond, Kristof
Remote robotic exploration holds vast potential for gaining knowledge about extreme environments accessible to humans only with great difficulty. Robotic explorers have been sent to other solar system bodies, and on this planet into inaccessible areas such as caves and volcanoes. In fact, the largest unexplored land area on earth lies hidden in the airless cold and intense pressure of the ocean depths. Exploration in the oceans is further hindered by water's high absorption of electromagnetic radiation, which both inhibits remote sensing from the surface, and limits communications with the bottom. The Earth's oceans thus provide an attractive target for developing remote exploration capabilities. As a result, numerous robotic vehicles now routinely survey this environment, from remotely operated vehicles piloted over tethers from the surface to torpedo-shaped autonomous underwater vehicles surveying the mid-waters. However, these vehicles are limited in their ability to navigate relative to their environment. This limits their ability to return to sites with precision without the use of external navigation aids, and to maneuver near and interact with objects autonomously in the water and on the sea floor. The enabling of environment-relative positioning on fully autonomous underwater vehicles will greatly extend their power and utility for remote exploration in the furthest reaches of the Earth's waters---even under ice and under ground---and eventually in extraterrestrial liquid environments such as Europa's oceans. This thesis presents an operational, fielded system for visual navigation of underwater robotic vehicles in unexplored areas of the seafloor. The system does not depend on external sensing systems, using only instruments on board the vehicle. As an area is explored, a camera is used to capture images and a composite view, or visual mosaic, of the ocean bottom is created in real time. Side-to-side visual registration of images is combined with dead-reckoned navigation information in a framework allowing the creation and updating of large, locally consistent mosaics. These mosaics are used as maps in which the vehicle can navigate and localize itself with respect to points in the environment. The system achieves real-time performance in several ways. First, wherever possible, direct sensing of motion parameters is used in place of extracting them from visual data. Second, trajectories are chosen to enable a hierarchical search for side-to-side links which limits the amount of searching performed without sacrificing robustness. Finally, the map estimation is formulated as a sparse, linear information filter allowing rapid updating of large maps. The visual navigation enabled by the work in this thesis represents a new capability for remotely operated vehicles, and an enabling capability for a new generation of autonomous vehicles which explore and interact with remote, unknown and unstructured underwater environments. The real-time mosaic can be used on current tethered vehicles to create pilot aids and provide a vehicle user with situational awareness of the local environment and the position of the vehicle within it. For autonomous vehicles, the visual navigation system enables precise environment-relative positioning and mapping, without requiring external navigation systems, opening the way for ever-expanding autonomous exploration capabilities. The utility of this system was demonstrated in the field at sites of scientific interest using the ROVs Ventana and Tiburon operated by the Monterey Bay Aquarium Research Institute. A number of sites in and around Monterey Bay, California were mosaicked using the system, culminating in a complete imaging of the wreck site of the USS Macon , where real-time visual mosaics containing thousands of images were generated while navigating using only sensor systems on board the vehicle.
Augmented Reality as a Telemedicine Platform for Remote Procedural Training.
Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew
2017-10-10
Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor's hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers' perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform.
Augmented Reality as a Telemedicine Platform for Remote Procedural Training
Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew
2017-01-01
Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor’s hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers’ perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform. PMID:28994720
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.; Yurchak, Boris; Turi, Johan Mathis; Mathiesen, Svein D.; Aissi-Wespi, Rita L.
2004-01-01
As scientists and policy-makers from both indigenous and non-indigenous communities begin to build closer partnerships to address common sustainability issues such as the health impacts of climate change and anthropogenic activities, it becomes increasingly important to create shared information management systems which integrate all relevant factors for optimal information sharing and decision-making. This paper describes a new GIs-based system being designed to bring local and indigenous traditional knowledge together with scientific data and information, remote sensing, and information technologies to address health-related environment, weather, climate, pollution and land use change issues for improved decision/policy-making for reindeer husbandry. The system is building an easily-accessible archive of relevant current and historical, traditional, local and remotely-sensed and other data and observations for shared analysis, measuring, and monitoring parameters of interest. Protection of indigenous culturally sensitive information will be respected through appropriate data protocols. A mechanism which enables easy information sharing among all participants, which is real time and geo-referenced and which allows interconnectivity with remote sites is also being designed into the system for maximum communication among partners. A preliminary version of our system will be described for a Russian reindeer test site, which will include a combination of indigenous knowledge about local conditions and issues, remote sensing and ground-based data on such parameters as the vegetation state and distribution, snow cover, temperature, ice condition, and infrastructure.
A Study on the Deriving Requirements of ARGO Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk
2009-12-01
Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.
Remote Learning for the Manipulation and Control of Robotic Cells
ERIC Educational Resources Information Center
Goldstain, Ofir; Ben-Gal, Irad; Bukchin, Yossi
2007-01-01
This work proposes an approach to remote learning of robotic cells based on internet and simulation tools. The proposed approach, which integrates remote-learning and tele-operation into a generic scheme, is designed to enable students and developers to set-up and manipulate a robotic cell remotely. Its implementation is based on a dedicated…
Francis, Anna; Didsbury, Madeleine; Lim, Wai H; Kim, Siah; White, Sarah; Craig, Jonathan C; Wong, Germaine
2016-06-01
Low socioeconomic status (SES) and geographic disparity have been associated with worse outcomes and poorer access to pre-emptive transplantation in the adult end-stage kidney disease (ESKD) population, but little is known about their impact in children with ESKD. The aim of our study was to determine whether access to pre-emptive transplantation and transplant outcomes differ according to SES and geographic remoteness in Australia. Using data from the Australia and New Zealand Dialysis and Transplant Registry (1993-2012), we compared access to pre-emptive transplantation, the risk of acute rejection and graft failure, based on SES and geographic remoteness among Australian children with ESKD (≤ 18 years), using adjusted logistic and Cox proportional hazard modelling. Of the 768 children who commenced renal replacement therapy, 389 (50.5%) received living donor kidney transplants and 28.5% of these (111/389) were pre-emptive. There was no significant association between SES quintiles and access to pre-emptive transplantation, acute rejection or allograft failure. Children residing in regional or remote areas were 35% less likely to receive a pre-emptive transplant compared to those living in major cities [adjusted odds ratio (OR) 0.65, 95% confidence interval (CI) 0.45-1.0]. There was no significant association between geographic disparity and acute rejection (adjusted OR 1.03, 95% CI 0.68-1.57) or graft loss (adjusted hazard ratio 1.05, 95% CI 0.74-1.41). In Australia, children from regional or remote regions are much less likely to receive pre-emptive kidney transplantation. Strategies such as improved access to nephrology services through expanding the scope of outreach clinics, and support for regional paediatricians to promote early referral may ameliorate this inequity.
Morgan, Alison; Jimenez Soto, Eliana; Bhandari, Gajananda; Kermode, Michelle
2014-12-01
In Nepal, where difficult geography and an under-resourced health system contribute to poor health care access, the government has increased the number of trained skilled birth attendants (SBAs) and posted them in newly constructed birthing centres attached to peripheral health facilities that are available to women 24 h a day. This study describes their views on their enabling environment. Qualitative methods included semi-structured interviews with 22 SBAs within Palpa district, a hill district in the Western Region of Nepal; a focus group discussion with ten SBA trainees, and in-depth interviews with five key informants. Participants identified the essential components of an enabling environment as: relevant training; ongoing professional support; adequate infrastructure, equipment and drugs; and timely referral pathways. All SBAs who practised alone felt unable to manage obstetric complications because quality management of life-threatening complications requires the attention of more than one SBA. Maternal health guidelines should account for the provision of an enabling environment in addition to the deployment of SBAs. In Nepal, referral systems require strengthening, and the policy of posting SBAs alone, in remote clinics, needs to be reconsidered to achieve the goal of reducing maternal deaths through timely management of obstetric complications. © 2014 John Wiley & Sons Ltd.
Implementing an anti-smoking program in rural-remote communities: challenges and strategies.
Tall, Julie A; Brew, Bronwyn K; Saurman, Emily; Jones, Therese C
2015-01-01
Rural-remote communities report higher smoking rates and poorer health outcomes than that of metropolitan areas. While anti-smoking programs are an important measure for addressing smoking and improving health, little is known of the challenges faced by primary healthcare staff implementing those programs in the rural-remote setting. The aim of this study was to explore the challenges and strategies of implementing an anti-smoking program by primary healthcare staff in rural-remote Australia. Guided by a phenomenological approach, semi-structured interviews and focus groups were conducted with health service managers, case managers and general practitioners involved in program implementation in Australian rural-remote communities between 2008 and 2010. Program implementation was reported to be challenged by limited primary and mental healthcare resources and client access to services; limited collaboration between health services; the difficulty of accessing staff training; high levels of community distress and disadvantage; the normalisation of smoking and its deleterious impact on smoking abstinence among program clients; and low morale among health staff. Strategies identified to overcome challenges included appointing tobacco-dedicated staff; improving health service collaboration, access and flexibility; providing subsidised pharmacotherapies and boosting staff morale. Findings may assist health services to better tailor anti-smoking programs for the rural-remote setting, where smoking rates are particularly high. Catering for the unique challenges of the rural-remote setting is necessary if anti-smoking programs are to be efficacious, cost-effective and capable of improving rural-remote health outcomes.
NASA Astrophysics Data System (ADS)
Bell, K. L. C.; Raineault, N.; Carey, S.; Eberli, G. P.; John, B. E.; Cheadle, M. J.; German, C. R.; Mirmalek, Z.; Pallant, A.
2016-02-01
As the US oceanographic research fleet shrinks, reducing seagoing opportunities for scientists and students, remote participation in cruises via telepresence will become increasingly vital. The Nautilus Exploration Program is improving the experience of shoreside participants through the development of new tools and methodologies for connecting them to expeditions in real time increasing accessibility to oceanographic cruises. The Scientist Ashore Program is a network of scientists around the world who participate in Exploration Vessel Nautilus expeditions from their own labs or homes. We have developed a suite of collaboration tools to allow scientists to view video and data in real time, as well as to communicate with ship-based and other shore-based participants to enable remote participation in cruises. Post-cruise, scientists and students may access digital data and biological and geological samples from our partner shore-based repositories: the University of Rhode Island Inner Space Center, Harvard Museum of Comparative Zoology, and URI Marine Geological Samples Lab. We present examples of successful shore-based participation by scientists and students in Nautilus expeditions. In 2013, Drs. Cheadle and John stood watch 24/7 with ten undergraduate and graduate students at the University of Wyoming, recording geologic features and samples, during a cruise to the Cayman Rise. The Straits of Florida & Great Bahama Bank cruise was co-led by Dr. Eberli at the University of Miami in 2014, greatly complementing existing data. That same year, the ISC hosted four early career scientists and their twelve undergraduate students who led dives from shore in collaboration with Dr. Carey, Lead Scientist at sea on the Kick'em Jenny Volcano & the Barbados Mud Volcanoes cruise. In 2015, 12 Scientists Ashore worked in collaboration with the ship-based team on the exploration of Galapagos National Park, and more than 20 are working with OET on post-cruise data & sample analysis.
Charting the future course of rural health and remote health in Australia: Why we need theory.
Bourke, Lisa; Humphreys, John S; Wakerman, John; Taylor, Judy
2010-04-01
This paper argues that rural and remote health is in need of theoretical development. Based on the authors' discussions, reflections and critical analyses of literature, this paper proposes key reasons why rural and remote health warrants the development of theoretical frameworks. The paper cites five reasons why theory is needed: (i) theory provides an approach for how a topic is studied; (ii) theory articulates key assumptions in knowledge development; (iii) theory systematises knowledge, enabling it to be transferable; (iv) theory provides predictability; and (v) theory enables comprehensive understanding. This paper concludes with a call for theoretical development in both rural and remote health to expand its knowledge and be more relevant to improving health care for rural Australians.
Albon, Simon P.; Cancilla, Devon A.; Hubball, Harry
2006-01-01
Objectives To pilot test and evaluate a gas chromatography-mass spectrometry (GCMS) case study as a teaching and learning tool. Design A case study incorporating remote access to a GCMS instrument through the Integrated Laboratory Network (ILN) at Western Washington University was developed and implemented. Student surveys, faculty interviews, and examination score data were used to evaluate learning. Assessment While the case study did not impact final examination scores, approximately 70% of students and all faculty members felt the ILN-supported case study improved student learning about GCMS. Faculty members felt the “live” instrument access facilitated more authentic teaching. Students and faculty members felt the ILN should continue to be developed as a teaching tool. Conclusion Remote access to scientific instrumentation can be used to modify case studies to enhance student learning and teaching practice in pharmaceutical analysis. PMID:17149450
BigWig and BigBed: enabling browsing of large distributed datasets.
Kent, W J; Zweig, A S; Barber, G; Hinrichs, A S; Karolchik, D
2010-09-01
BigWig and BigBed files are compressed binary indexed files containing data at several resolutions that allow the high-performance display of next-generation sequencing experiment results in the UCSC Genome Browser. The visualization is implemented using a multi-layered software approach that takes advantage of specific capabilities of web-based protocols and Linux and UNIX operating systems files, R trees and various indexing and compression tricks. As a result, only the data needed to support the current browser view is transmitted rather than the entire file, enabling fast remote access to large distributed data sets. Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/. Source code for the creation and visualization software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. The UCSC Genome Browser is available at http://genome.ucsc.edu.
Home Automation System Based on Intelligent Transducer Enablers.
Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Dapena, Adriana; González-López, Miguel
2016-09-28
This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.
Home Automation System Based on Intelligent Transducer Enablers
Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Dapena, Adriana; González-López, Miguel
2016-01-01
This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet. PMID:27690031
Collaboration tools and techniques for large model datasets
Signell, R.P.; Carniel, S.; Chiggiato, J.; Janekovic, I.; Pullen, J.; Sherwood, C.R.
2008-01-01
In MREA and many other marine applications, it is common to have multiple models running with different grids, run by different institutions. Techniques and tools are described for low-bandwidth delivery of data from large multidimensional datasets, such as those from meteorological and oceanographic models, directly into generic analysis and visualization tools. Output is stored using the NetCDF CF Metadata Conventions, and then delivered to collaborators over the web via OPeNDAP. OPeNDAP datasets served by different institutions are then organized via THREDDS catalogs. Tools and procedures are then used which enable scientists to explore data on the original model grids using tools they are familiar with. It is also low-bandwidth, enabling users to extract just the data they require, an important feature for access from ship or remote areas. The entire implementation is simple enough to be handled by modelers working with their webmasters - no advanced programming support is necessary. ?? 2007 Elsevier B.V. All rights reserved.
A wireless trust model for healthcare.
Wickramasinghe, Nilmini; Misra, Santosh K
2004-01-01
In today's context of escalating costs, managed care, regulations such as the Health Insurance Portability and Accountability Act (HIPAA) and a technology savvy patient, the healthcare industry can no longer be complacent regarding embracing technologies to enable better, more effective and efficient practice management. In such an environment, many healthcare organisations are turning to m-commerce or wireless solutions. These solutions, in particular the mobile electronic patient record, have many advantages over their wired counterparts, including significant cost advantages, higher levels of physician acceptance, more functionalities as well as enabling easy accessibility to healthcare in remote geographic regions, however, they also bring with them challenges of their own. One such major challenge is security. To date, few models exist that help establish an appropriate framework, in the context of wireless in healthcare, in which to understand and evaluate all the security issues let alone facilitate the development of systematic and robust solutions. Our paper addresses this need by outlining an appropriate mobile trust model for such a scenario in healthcare organisations.
Remote observing with the Nickel Telescope at Lick Observatory
NASA Astrophysics Data System (ADS)
Grigsby, Bryant; Chloros, Konstantinos; Gates, John; Deich, William T. S.; Gates, Elinor; Kibrick, Robert
2008-07-01
We describe a project to enable remote observing on the Nickel 1-meter Telescope at Lick Observatory. The purpose was to increase the subscription rate and create more economical means for graduate- and undergraduate students to observe with this telescope. The Nickel Telescope resides in a 125 year old dome on Mount Hamilton. Remote observers may work from any of the University of California (UC) remote observing facilities that have been created to support remote work at both Keck Observatory and Lick Observatory. The project included hardware and software upgrades to enable computer control of all equipment that must be operated by the astronomer; a remote observing architecture that is closely modeled on UCO/Lick's work to implement remote observing between UC campuses and Keck Observatory; new policies to ensure safety of Observatory staff and equipment, while ensuring that the telescope subsystems would be suitably configured for remote use; and new software to enforce the safety-related policies. The results increased the subscription rate from a few nights per month to nearly full subscription, and has spurred the installation of remote observing sites at more UC campuses. Thanks to the increased automation and computer control, local observing has also benefitted and is more efficient. Remote observing is now being implemented for the Shane 3- meter telescope.
Torterolo, Livia; Ruffino, Francesco
2012-01-01
In the proposed demonstration we will present DCV (Desktop Cloud Visualization): a unique technology that allows users to remote access 2D and 3D interactive applications over a standard network. This allows geographically dispersed doctors work collaboratively and to acquire anatomical or pathological images and visualize them for further investigations.
2010-04-01
failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE APR 2010 2. REPORT...The second is a ‘mechanical’ part that is controlled by circuit boards and is accessible by the technician via the serial console and running...was the use of conventional remote access solution designed for telecommuters or teleworkers in the Information Technology (IT) world, such as a
Evaluation of Student Learning in Remotely Controlled Instrumental Analyses
ERIC Educational Resources Information Center
Meintzer, Chris; Sutherland, Frances; Kennepohl, Dietmar K.
2017-01-01
The Canadian Remote Sciences Laboratories (CRSL) website (www.remotelab.ca) was successfully employed in a study of the differences in the performance and perceptions of students' about their learning in the laboratory (in-person) versus learning at a remote location (remote access). The experiment was completed both in-person and via remote…
Commercial future: making remote sensing a media event
NASA Astrophysics Data System (ADS)
Lurie, Ian
1999-12-01
The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.
NASA Astrophysics Data System (ADS)
Halem, M.; Dorband, J.; Rao, R.; Lomonaco, S.; Chapman, D. R.; LeMoigne, J.; Nearing, G. S.; Pelissier, C. S.; Simpson, D. G.; Clune, T.
2014-12-01
Recent aircraft measurements from scattered records have shown long-term, global, seasonal photosynthetic CO2 uptake over land accelerating over the past 50 years. The successful launch of the sun-synchronous Orbiting Carbon Observatory 2 (OCO-2) on July 2, 2014 is expected to provide global, high spatial and spectral resolution datasets of vertical CO2 concentrations with surface spectral resolutions capable of yielding accurate CO2 flux profiles. It is unclear whether the biosphere will continue to act as a sink for anthropogenic CO2 loading of the atmosphere. Since current climate models with detailed terrestrial ecosystems are unable to simulate the observed increase in net ecosystem production (NEP), we will conduct assimilation studies with the derived CO2 fluxes in the GSFC Land Information System hydrological model to validate the generated NEP uptake. Further, we plan to use the OCO-2 CO2 concentrations to train a neural network to enable the calculation of long term trends from a decade of AIRS CO2 concentration data to produce regional NEP. To address this important Big Data science issue, a multi-institutional collaboration was formed to leverage their combined resources and the expertise of the researchers at the NASA GSFC, the Lamont Doherty Earth Observatory and UMBC. We will employ a high speed 10Gb network to connect the collaborating researchers and provide them with remote access to dedicated computational hybrid multicore resources at UMBC, as well as access to an archive containing more than a decade of readily accessible continuous daily gridded AIRS data and ten years of daily MODIS data for each September. The status of the following research efforts is planned to be presented; (i) acquisition and processing of the expected CO2 profile data from OCO-2 for two test sites, a low latitude region over the Amazon and a Boral forest at high latitude, (ii) initial impact of 3-D data assimilation of CO2 fluxes with the advanced Goddard LIS hydrological surface model, (iii) preliminary results in training AIRS CO2 data. In addition, early results of innovative exploration on quantum annealing optimization for 3-D data assimilation, image registration and a Hopfield neural network for training the AIRS CO2 spectral data through UMBC remote access to the D-Wave system in Vancouver, CA, will be introduced.
Opoku, Daniel; Stephani, Victor; Quentin, Wilm
2017-02-06
The prevalence of non-communicable diseases (NCDs) is increasing in sub-Saharan Africa. At the same time, the use of mobile phones is rising, expanding the opportunities for the implementation of mobile phone-based health (mHealth) interventions. This review aims to understand how, why, for whom, and in what circumstances mHealth interventions against NCDs improve treatment and care in sub-Saharan Africa. Four main databases (PubMed, Cochrane Library, Web of Science, and Google Scholar) and references of included articles were searched for studies reporting effects of mHealth interventions on patients with NCDs in sub-Saharan Africa. All studies published up until May 2015 were included in the review. Following a realist review approach, middle-range theories were identified and integrated into a Framework for Understanding the Contribution of mHealth Interventions to Improved Access to Care for patients with NCDs in sub-Saharan Africa. The main indicators of the framework consist of predisposing characteristics, needs, enabling resources, perceived usefulness, and perceived ease of use. Studies were analyzed in depth to populate the framework. The search identified 6137 titles for screening, of which 20 were retained for the realist synthesis. The contribution of mHealth interventions to improved treatment and care is that they facilitate (remote) access to previously unavailable (specialized) services. Three contextual factors (predisposing characteristics, needs, and enabling resources) influence if patients and providers believe that mHealth interventions are useful and easy to use. Only if they believe mHealth to be useful and easy to use, will mHealth ultimately contribute to improved access to care. The analysis of included studies showed that the most important predisposing characteristics are a positive attitude and a common language of communication. The most relevant needs are a high burden of disease and a lack of capacity of first-contact providers. Essential enabling resources are the availability of a stable communications network, accessible maintenance services, and regulatory policies. Policy makers and program managers should consider predisposing characteristics and needs of patients and providers as well as the necessary enabling resources prior to the introduction of an mHealth intervention. Researchers would benefit from placing greater attention on the context in which mHealth interventions are being implemented instead of focusing (too strongly) on the technical aspects of these interventions.
The Present and Future of Robotic Technology in Rehabilitation
Laut, Jeffrey; Porfiri, Maurizio; Raghavan, Preeti
2016-01-01
Robotic technology designed to assist rehabilitation can potentially increase the efficiency of and accessibility to therapy by assisting therapists to provide consistent training for extended periods of time, and collecting data to assess progress. Automatization of therapy may enable many patients to be treated simultaneously and possibly even remotely, in the comfort of their own homes, through telerehabilitation. The data collected can be used to objectively assess performance and document compliance as well as progress. All of these characteristics can make therapists more efficient in treating larger numbers of patients. Most importantly for the patient, it can increase access to therapy which is often in high demand and rationed severely in today’s fiscal climate. In recent years, many consumer grade low-cost and off-the-shelf devices have been adopted for use in therapy sessions and methods for increasing motivation and engagement have been integrated with them. This review paper outlines the effort devoted to the development and integration of robotic technology for rehabilitation. PMID:28603663
Web-based system for surgical planning and simulation
NASA Astrophysics Data System (ADS)
Eldeib, Ayman M.; Ahmed, Mohamed N.; Farag, Aly A.; Sites, C. B.
1998-10-01
The growing scientific knowledge and rapid progress in medical imaging techniques has led to an increasing demand for better and more efficient methods of remote access to high-performance computer facilities. This paper introduces a web-based telemedicine project that provides interactive tools for surgical simulation and planning. The presented approach makes use of client-server architecture based on new internet technology where clients use an ordinary web browser to view, send, receive and manipulate patients' medical records while the server uses the supercomputer facility to generate online semi-automatic segmentation, 3D visualization, surgical simulation/planning and neuroendoscopic procedures navigation. The supercomputer (SGI ONYX 1000) is located at the Computer Vision and Image Processing Lab, University of Louisville, Kentucky. This system is under development in cooperation with the Department of Neurological Surgery, Alliant Health Systems, Louisville, Kentucky. The server is connected via a network to the Picture Archiving and Communication System at Alliant Health Systems through a DICOM standard interface that enables authorized clients to access patients' images from different medical modalities.
The Image Data Resource: A Bioimage Data Integration and Publication Platform.
Williams, Eleanor; Moore, Josh; Li, Simon W; Rustici, Gabriella; Tarkowska, Aleksandra; Chessel, Anatole; Leo, Simone; Antal, Bálint; Ferguson, Richard K; Sarkans, Ugis; Brazma, Alvis; Salas, Rafael E Carazo; Swedlow, Jason R
2017-08-01
Access to primary research data is vital for the advancement of science. To extend the data types supported by community repositories, we built a prototype Image Data Resource (IDR) that collects and integrates imaging data acquired across many different imaging modalities. IDR links data from several imaging modalities, including high-content screening, super-resolution and time-lapse microscopy, digital pathology, public genetic or chemical databases, and cell and tissue phenotypes expressed using controlled ontologies. Using this integration, IDR facilitates the analysis of gene networks and reveals functional interactions that are inaccessible to individual studies. To enable re-analysis, we also established a computational resource based on Jupyter notebooks that allows remote access to the entire IDR. IDR is also an open source platform that others can use to publish their own image data. Thus IDR provides both a novel on-line resource and a software infrastructure that promotes and extends publication and re-analysis of scientific image data.
Agronomic Challenges and Opportunities for Smallholder Terrace Agriculture in Developing Countries.
Chapagain, Tejendra; Raizada, Manish N
2017-01-01
Improving land productivity is essential to meet increasing food and forage demands in hillside and mountain communities. Tens of millions of smallholder terrace farmers in Asia, Africa, and Latin America who earn $1-2 per day do not have access to peer-reviewed knowledge of best agronomic practices, though they have considerable traditional ecological knowledge. Terrace farmers also lack access to affordable farm tools and inputs required to increase crop yields. The objectives of this review are to highlight the agronomic challenges of terrace farming, and offer innovative, low-cost solutions to intensify terrace agriculture while improving local livelihoods. The article focuses on smallholder farmers in developing nations, with particular reference to Nepal. The challenges of terrace agriculture in these regions include lack of quality land area for agriculture, erosion and loss of soil fertility, low yield, poor access to agricultural inputs and services, lack of mechanization, labor shortages, poverty, and illiteracy. Agronomic strategies that could help address these concerns include intensification of terraces using agro-ecological approaches along with introduction of light-weight, low-cost, and purchasable tools and affordable inputs that enhance productivity and reduce female drudgery. To package, deliver, and share these technologies with remote hillside communities, effective scaling up models are required. One opportunity to enable distribution of these products could be to "piggy-back" onto pre-existing snackfood/cigarette/alcohol distribution networks that are prevalent even in the most remote mountainous regions of the world. Such strategies, practices, and tools could be supported by formalized government policies dedicated to the well-being of terrace farmers and ecosystems, to maintain resiliency at a time of alarming climate change. We hope this review will inform governments, non-governmental organizations, and the private sector to draw attention to this neglected and vulnerable agro-ecosystem in developing countries.
The NCAR Research Data Archive's Hybrid Approach for Data Discovery and Access
NASA Astrophysics Data System (ADS)
Schuster, D.; Worley, S. J.
2013-12-01
The NCAR Research Data Archive (RDA http://rda.ucar.edu) maintains a variety of data discovery and access capabilities for it's 600+ dataset collections to support the varying needs of a diverse user community. In-house developed and standards-based community tools offer services to more than 10,000 users annually. By number of users the largest group is external and access the RDA through web based protocols; the internal NCAR HPC users are fewer in number, but typically access more data volume. This paper will detail the data discovery and access services maintained by the RDA to support both user groups, and show metrics that illustrate how the community is using the services. The distributed search capability enabled by standards-based community tools, such as Geoportal and an OAI-PMH access point that serves multiple metadata standards, provide pathways for external users to initially discover RDA holdings. From here, in-house developed web interfaces leverage primary discovery level metadata databases that support keyword and faceted searches. Internal NCAR HPC users, or those familiar with the RDA, may go directly to the dataset collection of interest and refine their search based on rich file collection metadata. Multiple levels of metadata have proven to be invaluable for discovery within terabyte-sized archives composed of many atmospheric or oceanic levels, hundreds of parameters, and often numerous grid and time resolutions. Once users find the data they want, their access needs may vary as well. A THREDDS data server running on targeted dataset collections enables remote file access through OPENDAP and other web based protocols primarily for external users. In-house developed tools give all users the capability to submit data subset extraction and format conversion requests through scalable, HPC based delayed mode batch processing. Users can monitor their RDA-based data processing progress and receive instructions on how to access the data when it is ready. External users are provided with RDA server generated scripts to download the resulting request output. Similarly they can download native dataset collection files or partial files using Wget or cURL based scripts supplied by the RDA server. Internal users can access the resulting request output or native dataset collection files directly from centralized file systems.
Remote sensing education and Internet/World Wide Web technology
Griffith, J.A.; Egbert, S.L.
2001-01-01
Remote sensing education is increasingly in demand across academic and professional disciplines. Meanwhile, Internet technology and the World Wide Web (WWW) are being more frequently employed as teaching tools in remote sensing and other disciplines. The current wealth of information on the Internet and World Wide Web must be distilled, nonetheless, to be useful in remote sensing education. An extensive literature base is developing on the WWW as a tool in education and in teaching remote sensing. This literature reveals benefits and limitations of the WWW, and can guide its implementation. Among the most beneficial aspects of the Web are increased access to remote sensing expertise regardless of geographic location, increased access to current material, and access to extensive archives of satellite imagery and aerial photography. As with other teaching innovations, using the WWW/Internet may well mean more work, not less, for teachers, at least at the stage of early adoption. Also, information posted on Web sites is not always accurate. Development stages of this technology range from on-line posting of syllabi and lecture notes to on-line laboratory exercises and animated landscape flyovers and on-line image processing. The advantages of WWW/Internet technology may likely outweigh the costs of implementing it as a teaching tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.
1997-06-01
Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haan, J.F. de; Kokke, J.M.M.; Hoogenboom, H.J.
1997-06-01
Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air-water interface correction, and application of water quality algorithms. A prototype version of an integrated software environment has recently been developed that enables the user to perform and control these processing steps. Major parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code, (ii) a database of water quality algorithms, and (iii) a spectral library of Dutch coastal and inland waters, containing subsurface irradiance reflectance spectra and associated water quality parameters. The atmosphericmore » correction part of this environment is discussed here. It is shown that this part can be used to accurately retrieve spectral signatures of inland water for wavelengths between 450 and 750 nm, provided in situ measurements are used to determine atmospheric model parameters. Assessment of the usefulness of the completely integrated software system in an operational environment requires a revised version that is presently being developed.« less
Moon, Jongho; Choi, Younsung; Jung, Jaewook; Won, Dongho
2015-01-01
In multi-server environments, user authentication is a very important issue because it provides the authorization that enables users to access their data and services; furthermore, remote user authentication schemes for multi-server environments have solved the problem that has arisen from user’s management of different identities and passwords. For this reason, numerous user authentication schemes that are designed for multi-server environments have been proposed over recent years. In 2015, Lu et al. improved upon Mishra et al.’s scheme, claiming that their remote user authentication scheme is more secure and practical; however, we found that Lu et al.’s scheme is still insecure and incorrect. In this paper, we demonstrate that Lu et al.’s scheme is vulnerable to outsider attack and user impersonation attack, and we propose a new biometrics-based scheme for authentication and key agreement that can be used in multi-server environments; then, we show that our proposed scheme is more secure and supports the required security properties. PMID:26709702
NASA Astrophysics Data System (ADS)
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
Zou, Zhengxia; Shi, Zhenwei
2018-03-01
We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.
Barnett, Tony; Hoang, Ha; Stuart, Jackie; Crocombe, Len
2015-01-01
Objectives To investigate the challenges of providing oral health advice/treatment as experienced by non-dental primary care providers in rural and remote areas with no resident dentist, and their views on ways in which oral health and oral health services could be improved for their communities. Design Qualitative study with semistructured interviews and thematic analysis. Setting Four remote communities in outback Queensland, Australia. Participants 35 primary care providers who had experience in providing oral health advice to patients and four dental care providers who had provided oral health services to patients from the four communities. Results In the absence of a resident dentist, rural and remote residents did present to non-dental primary care providers with oral health problems such as toothache, abscess, oral/gum infection and sore mouth for treatment and advice. Themes emerged from the interview data around communication challenges and strategies to improve oral health. Although, non-dental care providers commonly advised patients to see a dentist, they rarely communicated with the dentist in the nearest regional town. Participants proposed that oral health could be improved by: enabling access to dental practitioners, educating communities on preventive oral healthcare, and building the skills and knowledge base of non-dental primary care providers in the field of oral health. Conclusions Prevention is a cornerstone to better oral health in rural and remote communities as well as in more urbanised communities. Strategies to improve the provision of dental services by either visiting or resident dental practitioners should include scope to provide community-based oral health promotion activities, and to engage more closely with other primary care service providers in these small communities. PMID:26515687
Need for an Australian Indigenous disability workforce strategy: review of the literature.
Gilroy, John; Dew, Angela; Lincoln, Michelle; Hines, Monique
2017-08-01
To identify approaches for developing workforce capacity to deliver the National Disability Insurance Scheme (NDIS) to Indigenous people with disability in Australian rural and remote communities. A narrative review of peer-reviewed and gray literature was undertaken. Searches of electronic databases and websites of key government and non-government organizations were used to supplement the authors' knowledge of literature that (a) focused on Indigenous peoples in Australia or other countries; (b) referred to people with disability; (c) considered rural/remote settings; (d) recommended workforce strategies; and (e) was published in English between 2004 and 2014. Recommended workforce strategies in each publication were summarized in a narrative synthesis. Six peer-reviewed articles and 12 gray publications met inclusion criteria. Three broad categories of workforce strategies were identified: (a) community-based rehabilitation (CBR) and community-centered approaches; (b) cultural training for all workers; and (c) development of an Indigenous disability workforce. An Indigenous disability workforce strategy based on community-centered principles and incorporating cultural training and Indigenous disability workforce development may help to ensure that Indigenous people with a disability in rural and remote communities benefit from current disability sector reforms. Indigenous workforce development requires strategies to attract and retain Aboriginal workers. Implications for Rehabilitation Indigenous people with disability living in rural and remote areas experience significant access and equity barriers to culturally appropriate supports and services that enable them to live independent, socially inclusive lives. A workforce strategy based on community-centered principles has potential for ensuring that the disability services sector meets the rehabilitation needs of Aboriginal people with disability living in rural and remote areas. Cultural training and development of an Indigenous disability workforce may help to ensure a culturally safe disability services sector and workforce.
Mobile based Appliances switching using Bluetooth
NASA Astrophysics Data System (ADS)
Gupta, Sureshchandra J., Dr; Desai, Kalp; Gaikawad, Deepak; Pawar, Vijay N.; Gangal, Devendranath R.
2008-04-01
How many times do you have to get up from your desk to switch on your Air conditioner or fan when you are completely into your table work? How many times do you feel lazy to get off your comfort to switch on/off your home appliances in different rooms? How much energy do you lose in a day for operating your appliances? The solution is either a large amount of manual work—or the idea that is presented over here: APP-CON (APP-CON stands for appliances control). Here the ordinary cell phone with bluetooth capability acts as remote designed in such a manner that it acts as a helping hand to human by reducing its manual work and therefore saving human energy. The cell phone control of APP-CON units lets you access many of your home appliances situated in different rooms by using just a single remote from distance. Electronics hobbyists would love to make such a remote control themselves. But they find it difficult due to complex circuitry rather than the high cost because of using a number of frequency counting techniques and decade counters. The APP-CON system given here overcomes the aforesaid problems by using a single microcontroller and moreover a simple program or software for bluetooth enabled cell phone and employing simple coding and decoding of remote signals. Here the mobile based remote control is used to operate a number of home appliances basically consists of Bluetooth technology. The unit consists of a transmitter and a receiver consisting of a microcontroller. The importance of bluetooth technology is that the signal to be transmitted from transmitter to the receiver is done without requiring line of sight.
Remote Observing with the Keck Telescope Using the ACTS Satellite
NASA Technical Reports Server (NTRS)
Cohen, Judy; Shopbell, Patrick; Bergman, Larry
1998-01-01
As a technical demonstration project for the NASA Advanced Communications Technology Satellite (ACTS), we have implemented remote observing on the 10-meter Keck II telescope on Mauna Kea in Hawaii from the California Institute of Technology campus in Pasadena. The data connection consists of optical fiber networks in Hawaii and California, connecting the end-points to high data rate (HDR) ACTS satellite antennae at JPL in Pasadena and at the Tripler Army Medical Center in Honolulu. The terrestrial fiber networks run the asynchronous transfer mode (ATM) protocol at DS-3 (45 Mbit/sec) speeds, providing ample bandwidth to enable remote observing with a software environment identical to that used for on-site observing in Hawaii. This experiment has explored the data requirements of remote observing with a modern research telescope and large-format detector arrays. While the maximum burst data rates are lower than those required for many other applications (e.g., HDTV), the network reliability and data integrity requirements are critical. As we show in this report, the former issue particularly may be the greatest challenge for satellite networks for this class of application. We have also experimented with the portability of standard TCP/IP applications to satellite networks, demonstrating the need for alternative TCP congestion algorithms and minimization of bit error rates (BER). Reliability issues aside, we have demonstrated that true remote observing over high-speed networks provides several important advantages over standard observing paradigms. Technical advantages of the high-speed network access include more rapid download of data to a user's home institution and the opportunity for alternative communication facilities between members of an observing team, such as audio- and videoconferencing.
NASA Astrophysics Data System (ADS)
Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.
2003-12-01
Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to agriculture-related products from other data producers. The AIS? system approach will provide a generic mechanism for easily incorporating new products and making them accessible to users.
The Open Microscopy Environment: open image informatics for the biological sciences
NASA Astrophysics Data System (ADS)
Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.
2016-07-01
Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).
ERIC Educational Resources Information Center
Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno
2015-01-01
The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…
ERIC Educational Resources Information Center
Mazuritskiy, M. I.; Safontsev, S. A.; Konoplev, B. G.; Boldyreva, A. M.
2014-01-01
This article describes the competency-based approach to e-learning education that utilizes remote access to the laboratory equipment. The main focus of the paper is the structure and design of the e-learning system used in the Southern Federal University (Russia). The article discusses the related pedagogical strategies and presents system's…
A Robot for Coastal Marine Studies Under Hostile Conditions
NASA Astrophysics Data System (ADS)
Consi, T. R.
2012-12-01
Robots have long been used for scientific exploration of extremely remote environments such as planetary surfaces and the deep ocean. In addition to these physically remote places, there are many environments that are transiently remote in the sense that they are inaccessible to humans for a period of time. Coastal marine environments fall into this category. While quite accessible (and enjoyable) during good weather, the coast can become as remote as the moon when it is impacted by severe storms or hurricanes. For near shore and shallow water marine science unmanned underwater ground vehicles (UUGVs) are the robots of choice for reliable access under a variety of conditions. Ground vehicles are inherently amphibious being able to operate in complex coastal environments that can range from the completely dry beach, through the transiently wet swash zone, into the surf zone and beyond. During storms, UUGVs provide stable sensor platforms resistant to waves and currents by virtue of being locked to the substrate. In such situations free-swimming robots would be swept away. Mobility during storms enables a UUGV to orient itself to optimally resist forces that would dislodge fixed, moored platforms. Mobility can also enable a UUGV to either avoid burial, or unbury itself after a storm. Finally, the ability to submerge provides a great advantage over buoys and surface vehicles which would be smashed by heavy wave action. We have developed a prototype UUGV to enable new science in the surf zone and other shallow water environments. Named LMAR for Lake Michigan Amphibious Robot, it is designed to be deployed from the dry beach, enter the water to perform a near-shore survey, and return to the deployment point for recovery. The body of the robot is a heavy flattened box (base dimensions: 1.07 m X 1.10 m X .393 m, dry weight: ~127 kg, displacement: ~ 45 kg) with a low center of gravity for stability and robust construction to withstand waves and currents. It is topped by a 1.5 m surface penetrating mast which currently limits the operational depth, although the core vehicle can be deployed to depths in excess of 10 m. Propulsion is accomplished with two DC brushless motors driving six wide heavy tread pneumatic wheels, three on each side. Power is provided by NiMH batteries. An onboard computer controls propulsion, navigation and communications. Guidance and navigation utilize inertial sensors, an electronic compass and a GPS unit mounted on the mast. A scientist onshore can monitor data from the scientific payload as well as command the robot through a mast-mounted radio Ethernet bridge. Standard, off the shelf oceanographic sensors such as sondes and ADCPs can easily be integrated onto the robot making it a versatile sensing platform. We have successfully deployed the vehicle off a sandy beach in Lake Michigan where it has performed lawn-mower surveys in the surf zone. LMAR's design and field test results will be presented along with a discussion of how to further harden the vehicle for deployment in storms.
High Data Rate Satellite Communications for Environmental Remote Sensing
NASA Astrophysics Data System (ADS)
Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.
2014-12-01
Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.
Remote Optical Control of an Optical Flip-Flop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maywar, D.N.; Solomon, K.P.; Agrawal, G.P.
2007-11-01
We experimentally demonstrate control of a holding-beam–enabled optical flip-flop by means of optical signals that act in a remote fashion. These optical-control signals vary the holding-beam power by means of cross-gain modulation within a remotely located semiconductor optical amplifier (SOA). The power-modulated holding beam then travels through a resonant-type SOA, where flip-flop action occurs as the holding-beam power falls above and below the switching thresholds of the bistable hysteresis. Control is demonstrated using submilliwatt pulses whose wavelengths are not restricted to the vicinity of the holding beam. Benefits of remote control include the potential for controlling multiple flip-flops with amore » single pair of optical signals and for realizing all-optical control of any holding-beam–enabled flip-flop.« less
Yokohama, Noriya
2003-09-01
The author constructed a medical image network system using open source software that took security into consideration. This system was enabled for search and browse with a WWW browser, and images were stored in a DICOM server. In order to realize this function, software was developed to fill in the gap between the DICOM protocol and HTTP using PHP language. The transmission speed was evaluated by the difference in protocols between DICOM and HTTP. Furthermore, an attempt was made to evaluate the convenience of medical image access with a personal information terminal via the Internet through the high-speed mobile communication terminal. Results suggested the feasibility of remote diagnosis and application to emergency care.
Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications
NASA Technical Reports Server (NTRS)
2009-01-01
This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.
Device Data Protection in Mobile Healthcare Applications
NASA Astrophysics Data System (ADS)
Weerasinghe, Dasun; Rajarajan, Muttukrishnan; Rakocevic, Veselin
The rapid growth in mobile technology makes the delivery of healthcare data and services on mobile phones a reality. However, the healthcare data is very sensitive and has to be protected against unauthorized access. While most of the development work on security of mobile healthcare today focuses on the data encryption and secure authentication in remote servers, protection of data on the mobile device itself has gained very little attention. This paper analyses the requirements and the architecture for a secure mobile capsule, specially designed to protect the data that is already on the device. The capsule is a downloadable software agent with additional functionalities to enable secure external communication with healthcare service providers, network operators and other relevant communication parties.
Flexible distributed architecture for semiconductor process control and experimentation
NASA Astrophysics Data System (ADS)
Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.
1997-01-01
Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.
NASA Astrophysics Data System (ADS)
Palanisamy, Giriprakash; Wilson, Bruce E.; Cook, Robert B.; Lenhardt, Chris W.; Santhana Vannan, Suresh; Pan, Jerry; McMurry, Ben F.; Devarakonda, Ranjeet
2010-12-01
The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) is one of the science-oriented data centers in EOSDIS, aligned primarily with terrestrial ecology. The ORNL DAAC archives and serves data from NASA-funded field campaigns (such as BOREAS, FIFE, and LBA), regional and global data sets relevant to biogeochemical cycles, land validation studies for remote sensing, and source code for some terrestrial ecology models. Users of the ORNL DAAC include field ecologists, remote sensing scientists, modelers at various scales, synthesis scientific groups, a range of educational users (particularly baccalaureate and graduate instruction), and decision support analysts. It is clear that the wide range of users served by the ORNL DAAC have differing needs and differing capabilities for accessing and using data. It is also not possible for the ORNL DAAC, or the other data centers in EDSS to develop all of the tools and interfaces to support even most of the potential uses of data directly. As is typical of Information Technology to support a research enterprise, the user needs will continue to evolve rapidly over time and users themselves cannot predict future needs, as those needs depend on the results of current investigation. The ORNL DAAC is addressing these needs by targeted implementation of web services and tools which can be consumed by other applications, so that a modeler can retrieve data in netCDF format with the Climate Forecasting convention and a field ecologist can retrieve subsets of that same data in a comma separated value format, suitable for use in Excel or R. Tools such as our MODIS Subsetting capability, the Spatial Data Access Tool (SDAT; based on OGC web services), and OPeNDAP-compliant servers such as THREDDS particularly enable such diverse means of access. We also seek interoperability of metadata, recognizing that terrestrial ecology is a field where there are a very large number of relevant data repositories. ORNL DAAC metadata is published to several metadata repositories using the Open Archive Initiative Protocol for Metadata Handling (OAI-PMH), to increase the chances that users can find data holdings relevant to their particular scientific problem. ORNL also seeks to leverage technology across these various data projects and encourage standardization of processes and technical architecture. This standardization is behind current efforts involving the use of Drupal and Fedora Commons. This poster describes the current and planned approaches that the ORNL DAAC is taking to enable cost-effective interoperability among data centers, both across the NASA EOSDIS data centers and across the international spectrum of terrestrial ecology-related data centers. The poster will highlight the standards that we are currently using across data formats, metadata formats, and data protocols. References: [1]Devarakonda R., et al. Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics (2010), 3(1): 87-94. [2]Devarakonda R., et al. Data sharing and retrieval using OAI-PMH. Earth Science Informatics (2011), 4(1): 1-5.
Implementation of the Web-based laboratory
NASA Astrophysics Data System (ADS)
Ying, Liu; Li, Xunbo
2005-12-01
With the rapid developments of Internet technologies, remote access and control via Internet is becoming a reality. A realization of the web-based laboratory (the W-LAB) was presented. The main target of the W-LAB was to allow users to easily access and conduct experiments via the Internet. While realizing the remote communication, a system, which adopted the double client-server architecture, was introduced. It ensures the system better security and higher functionality. The experimental environment implemented in the W-Lab was integrated by both virtual lab and remote lab. The embedded technology in the W-LAB system as an economical and efficient way to build the distributed infrastructural network was introduced. Furthermore, by introducing the user authentication mechanism in the system, it effectively secures the remote communication.
Running VisIt Software on the Peregrine System | High-Performance Computing
kilobyte range. VisIt features a robust remote visualization capability. VisIt can be started on a local machine and used to visualize data on a remote compute cluster.The remote machine must be able to send VisIt module must be loaded as part of this process. To enable remote visualization the 'module load
Barriers to accessing termination of pregnancy in a remote and rural setting: a qualitative study.
Heller, R; Purcell, C; Mackay, L; Caird, L; Cameron, S T
2016-09-01
To explore the experiences of women from a remote and rural setting who had a termination of pregnancy (TOP), in relation to any barriers they may have experienced trying to access TOP. Qualitative interview study. Scottish Highlands and Western Isles. Women who had undergone TOP in the Scottish Highlands National Health Service between October 2014 and May 2015. Sixteen semi-structured, audio-recorded telephone interviews were conducted by a researcher with women who had consented to be interviewed at their initial assessment. Six stages of thematic analysis were followed to explore themes in and across participant accounts. Themes derived from interview transcripts. Four themes emerged relating to barriers to access and experience: (1) the impact of travel for TOP, (2) temporal factors unique to this population and how they affected women, (3) the attitude of health professionals, notably general practitioners, as a result of local culture, and (4) stigma surrounding TOP and the expectation that abortion will be traumatising. Women in remote and rural areas experience barriers to accessing TOP. Prompt referrals, more providers of TOP and tackling stigma associated with TOP could make delivery of this service more equitable and improve women's journey through TOP. Women in remote and rural areas of Scotland face multiple barriers to accessing termination of pregnancy. © 2016 Royal College of Obstetricians and Gynaecologists.
NASA Technical Reports Server (NTRS)
Kingsbury, Brent K.
1986-01-01
Described is the implementation of a networked, UNIX based queueing system developed on contract for NASA. The system discussed supports both batch and device requests, and provides the facilities of remote queueing, request routing, remote status, queue access controls, batch request resource quota limits, and remote output return.
User-friendly cognitive training for the elderly: a technical report.
Boquete, Luciano; Rodríguez-Ascariz, José Manuel; Amo-Usanos, Carlos; Martínez-Arribas, Alejandro; Amo-Usanos, Javier; Otón, Salvador
2011-01-01
This article presents a system that implements a cognitive training program in users' homes. The system comprises various applications designed to create a daily brain-fitness regime. The proposed mental training system uses television and a remote control specially designed for the elderly. This system integrates Java applications to promote brain-fitness training in three areas: arithmetic, memory, and idea association. The system comprises the following: Standard television set, simplified wireless remote control, black box (system's core hardware and software), brain-fitness games (language Java), and Wi-Fi-enabled Internet-connected router. All data from the user training sessions are monitored through a control center. This control center analyzes the evolution of the user and the proper performance of the system during the test. The implemented system has been tested by six healthy volunteers. The results for this user group demonstrated the accessibility and usability of the system in a controlled real environment. The impressions of the users were very favorable, and they reported high adaptability to the system. The mean score for usability and accessibility assigned by the users was 3.56 out of 5 points. The operation stress test (over 200 h) was successful. The proposed system was used to implement a cognitive training program in users' homes, which was developed to be a low-cost tool with a high degree of user interactivity. The results of this preliminary study indicate that this user-friendly system could be adopted as a form of cognitive training for the elderly.
An object-based storage model for distributed remote sensing images
NASA Astrophysics Data System (ADS)
Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng
2006-10-01
It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuli, J.K.; Sonzogni,A.
The National Nuclear Data Center has provided remote access to some of its resources since 1986. The major databases and other resources available currently through NNDC Web site are summarized. The National Nuclear Data Center (NNDC) has provided remote access to the nuclear physics databases it maintains and to other resources since 1986. With considerable innovation access is now mostly through the Web. The NNDC Web pages have been modernized to provide a consistent state-of-the-art style. The improved database services and other resources available from the NNOC site at www.nndc.bnl.govwill be described.
Using collaborative technologies in remote lab delivery systems for topics in automation
NASA Astrophysics Data System (ADS)
Ashby, Joe E.
Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative communication tools for remote labs involving automation equipment, the results of this work points to making voice chat the default method of communication; but the webcam video with voice chat option should be included. Standards are only beginning to be developed for the design of remote lab systems. Research, design and innovation involving collaboration and presence should be included.
ERIC Educational Resources Information Center
International Business Machines Corp., Gaithersburg, MD. Data Processing Div.
The Ohio State University Libraries On-line Remote Catalog Access and Circulation Control System (LCS) began on-line operations with the conversion of one department library in November 1970. By December all 26 libraries had been converted to the automated system and LCS was fully operational one month ahead of schedule. LCS is designed as a…
ERIC Educational Resources Information Center
Buckland, Lawrence F.; Madden, Mary
From experimental work performed, and reported upon in this document, it is concluded that converting the New York State Library (NYSL) shelf list sample to machine readable form, and searching this shelf list using a remote access catalog are technically sound concepts though the capital costs of data conversion and system installation will be…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuracko, K. L.; Parang, M.; Landguth, D. C.
2004-09-13
TOADS (Total On-line Access Data System) is a new generation of real-time monitoring and information management system developed to support unattended environmental monitoring and long-term stewardship of U.S. Department of Energy facilities and sites. TOADS enables project managers, regulators, and stakeholders to view environmental monitoring information in realtime over the Internet. Deployment of TOADS at government facilities and sites will reduce the cost of monitoring while increasing confidence and trust in cleanup and long term stewardship activities. TOADS: Reliably interfaces with and acquires data from a wide variety of external databases, remote systems, and sensors such as contaminant monitors, areamore » monitors, atmospheric condition monitors, visual surveillance systems, intrusion devices, motion detectors, fire/heat detection devices, and gas/vapor detectors; Provides notification and triggers alarms as appropriate; Performs QA/QC on data inputs and logs the status of instruments/devices; Provides a fully functional data management system capable of storing, analyzing, and reporting on data; Provides an easy-to-use Internet-based user interface that provides visualization of the site, data, and events; and Enables the community to monitor local environmental conditions in real time. During this Phase II STTR project, TOADS has been developed and successfully deployed for unattended facility, environmental, and radiological monitoring at a Department of Energy facility.« less
Digital technology in respiratory diseases: Promises, (no) panacea and time for a new paradigm.
Pinnock, Hilary; McKinstry, Brian
2016-05-01
In a world where digital technology has revolutionized the way we work, shop and manage our finances it is unsurprising that digital systems are suggested as potential solutions to delivering clinically and cost-effective care for an aging population with one or more long-term conditions. However, recent evidence suggesting that telehealth may not be quite the panacea that was promised, has led to discussions on the mechanisms and role of digital technology in respiratory care. Implementation in rural and remote settings offers significant benefits in terms of convenient access to care, but is contingent on technical and organizational infrastructure. Telemonitoring systems rely on algorithms to detect deterioration and trigger alerts; machine learning may enable telemonitoring of the future to develop personalized systems that are sensitive to clinical status whilst reducing false alerts. By providing access to information, offering convenient and flexible modes of communication and enabling the transfer of monitoring data to support professional assessment, telehealth can support self-management. At present, all too often, expensive 'off the shelf' systems are purchased and given to clinicians to use. It is time for the paradigm to shift. As clinicians we should identify the specific challenges we face in delivering care, and expect flexible systems that can be customized to individual patients' requirements and adapted to our diverse healthcare contexts. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossno, Patricia J.; Gittinger, Jaxon; Hunt, Warren L.
Slycat™ is a web-based system for performing data analysis and visualization of potentially large quantities of remote, high-dimensional data. Slycat™ specializes in working with ensemble data. An ensemble is a group of related data sets, which typically consists of a set of simulation runs exploring the same problem space. An ensemble can be thought of as a set of samples within a multi-variate domain, where each sample is a vector whose value defines a point in high-dimensional space. To understand and describe the underlying problem being modeled in the simulations, ensemble analysis looks for shared behaviors and common features acrossmore » the group of runs. Additionally, ensemble analysis tries to quantify differences found in any members that deviate from the rest of the group. The Slycat™ system integrates data management, scalable analysis, and visualization. Results are viewed remotely on a user’s desktop via commodity web clients using a multi-tiered hierarchy of computation and data storage, as shown in Figure 1. Our goal is to operate on data as close to the source as possible, thereby reducing time and storage costs associated with data movement. Consequently, we are working to develop parallel analysis capabilities that operate on High Performance Computing (HPC) platforms, to explore approaches for reducing data size, and to implement strategies for staging computation across the Slycat™ hierarchy. Within Slycat™, data and visual analysis are organized around projects, which are shared by a project team. Project members are explicitly added, each with a designated set of permissions. Although users sign-in to access Slycat™, individual accounts are not maintained. Instead, authentication is used to determine project access. Within projects, Slycat™ models capture analysis results and enable data exploration through various visual representations. Although for scientists each simulation run is a model of real-world phenomena given certain conditions, we use the term model to refer to our modeling of the ensemble data, not the physics. Different model types often provide complementary perspectives on data features when analyzing the same data set. Each model visualizes data at several levels of abstraction, allowing the user to range from viewing the ensemble holistically to accessing numeric parameter values for a single run. Bookmarks provide a mechanism for sharing results, enabling interesting model states to be labeled and saved.« less
A Web Service and Interface for Remote Electronic Device Characterization
ERIC Educational Resources Information Center
Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.
2011-01-01
A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…
Integrating telehealth services into a remote allied health service: A pilot study.
O'Hara, Rebecca; Jackson, Sarah
2017-02-01
The continuity of care for people with neurological conditions in a remote northwest Queensland town as services are currently only available intermittently. Mixed methods design using questionnaires and staff review of the program and processes. Intermittent community rehabilitation service for clients with neurological conditions has been offered in Mount Isa and is supported by a similar fulltime service in Townsville. Both services use a unique client-centred, student-assisted, interprofessional model of care. Understanding participant experiences by obtaining feedback from clients, students and allied health professionals (AHPs) regarding their experiences of using telehealth in this setting. Previous clients of the North West Community Rehabilitation service were offered a review assessment using telehealth by an interprofessional team. Using telehealth enabled the client, remote AHP and students in Mount Isa to be connected to expert assistance in Townsville. The findings suggest that telehealth was useful in a community rehabilitation setting to provide review services for clients. This improved continuity of care for these clients because without this telehealth assessment, the clients would have had to wait up to 12 months for the next service period in Mount Isa or travel to a major urban centre to access a similar service. Feedback from clients, students and AHPs was positive; however, some challenges were identified. Recommendations for future service delivery using telehealth are outlined in the paper. © 2015 National Rural Health Alliance Inc.
Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris
2010-05-01
The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval. PsycINFO Database Record (c) 2010 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Krehbiel, C.; Maiersperger, T.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.
2016-12-01
Three major obstacles facing big Earth data users include data storage, management, and analysis. As the amount of satellite remote sensing data increases, so does the need for better data storage and management strategies to exploit the plethora of data now available. Standard GIS tools can help big Earth data users whom interact with and analyze increasingly large and diverse datasets. In this presentation we highlight how NASA's Land Processes Distributed Active Archive Center (LP DAAC) is tackling these big Earth data challenges. We provide a real life use case example to describe three tools and services provided by the LP DAAC to more efficiently exploit big Earth data in a GIS environment. First, we describe the Open-source Project for a Network Data Access Protocol (OPeNDAP), which calls to specific data, minimizing the amount of data that a user downloads and improves the efficiency of data downloading and processing. Next, we cover the LP DAAC's Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), a web application interface for extracting and analyzing land remote sensing data. From there, we review an ArcPython toolbox that was developed to provide quality control services to land remote sensing data products. Locating and extracting specific subsets of larger big Earth datasets improves data storage and management efficiency for the end user, and quality control services provides a straightforward interpretation of big Earth data. These tools and services are beneficial to the GIS user community in terms of standardizing workflows and improving data storage, management, and analysis tactics.
Musko, Stephen B; Clauer, C Robert; Ridley, Aaron J; Arnett, Kennneth L
2009-04-01
A major driver in the advancement of geophysical sciences is improvement in the quality and resolution of data for use in scientific analysis, discovery, and for assimilation into or validation of empirical and physical models. The need for more and better measurements together with improvements in technical capabilities is driving the ambition to deploy arrays of autonomous geophysical instrument platforms in remote regions. This is particularly true in the southern polar regions where measurements are presently sparse due to the remoteness, lack of infrastructure, and harshness of the environment. The need for the acquisition of continuous long-term data from remote polar locations exists across geophysical disciplines and is a generic infrastructure problem. The infrastructure, however, to support autonomous instrument platforms in polar environments is still in the early stages of development. We report here the development of an autonomous low-power magnetic variation data collection system. Following 2 years of field testing at the south pole station, the system is being reproduced to establish a dense chain of stations on the Antarctic plateau along the 40 degrees magnetic meridian. The system is designed to operate for at least 5 years unattended and to provide data access via satellite communication. The system will store 1 s measurements of the magnetic field variation (<0.2 nT resolution) in three vector components plus a variety of engineering status and environment parameters. We believe that the data collection platform can be utilized by a variety of low-power instruments designed for low-temperature operation. The design, technical characteristics, and operation results are presented here.
Promoting women's health in remote Aboriginal settings: Midwifery students' insights for practice.
Thackrah, Rosalie D; Thompson, Sandra C; Durey, Angela
2015-12-01
To describe midwifery students' insights on promoting health to Aboriginal women in remote Australia following a supervised clinical placement. Semistructured, in-depth interviews were conducted with all midwifery students who undertook the placement between 2010 and 2013. Aboriginal communities on the Ngaanyatjarra Lands, Western Australia. Undergraduate and postgraduate midwifery students from a Western Australian university. Remote cultural immersion clinical placement. Student learning related to culturally respectful health care delivery and promotion of health. Students observed that, despite vast distances, high rates of participation in a breast screening program were achieved due to the informal provision of culturally relevant information and support. Opportunistic encounters in communities also enabled sexual health messages to be delivered more widely and in less formal settings. The role played by Aboriginal Health Workers and female family members was vital. The importance of culturally respectful approaches to sensitive women's business, including discretion, the use of local language and pictorial representations of information, was recognised as was the socio-cultural context and its impact on the health and well-being of the community. Although short in duration, the Ngaanyatjarra Lands clinical placement provided midwifery students with a rare opportunity to observe the importance of local contexts and cultural protocols in Aboriginal communities, and to adapt health promotion strategies to meet local needs and ways of doing things. These strategies embraced the strengths, assets and capacities of communities, yet students also witnessed challenges associated with access, delivery and acceptance of health care in remote settings. © 2015 National Rural Health Alliance Inc.
Lopez, Velma K; Dombecki, Carolyn; Trostle, James; Mogrovejo, Patricia; Castro Morillo, Nancy; Cevallos, William; Goldstick, Jason; Jones, Andrew D; Eisenberg, Joseph N S
2018-02-07
Road access can influence protective and risk factors associated with nutrition by affecting various social and biological processes. In northern coastal Ecuador, the construction of new roads created a remoteness gradient among villages, providing a unique opportunity to examine the impact of roads on child nutritional outcomes 10 years after the road was built. Anthropometric and haemoglobin measurements were collected from 2,350 children <5 years in Esmeraldas, Ecuador, from 2004 to 2013 across 28 villages with differing road access. Logistic generalized estimating equation models assessed the longitudinal association between village remoteness and prevalence of stunting, wasting, underweight, overweight, obesity, and anaemia. We examined the influence of socio-economic characteristics on the pathway between remoteness and nutrition by comparing model results with and without household-level socio-economic covariates. Remoteness was associated with stunting (OR = 0.43, 95% CI [0.30, 0.63]) and anaemia (OR = 0.56, 95% CI [0.44, 0.70]). Over time, the prevalence of stunting was generally decreasing but remained higher in villages closer to the road compared to those farther away. Obesity increased (0.5% to 3%) over time; wasting was high (6%) but stable during the study period. Wealth and education partially explained the better nutritional outcomes in remote vs. road villages more than a decade after some communities gained road access. Establishing the extent to which these patterns persist requires additional years of observation. © 2018 John Wiley & Sons Ltd.
Specialist clinics in remote Australian Aboriginal communities: where rock art meets rocket science.
Gruen, Russell; Bailie, Ross
2004-10-01
People in remote Aboriginal communities in the Northern Territory have greater morbidity and mortality than other Australians, but face considerable barriers when accessing hospital-based specialist services. The Specialist Outreach Service, which began in 1997, was a novel policy initiative to improve access by providing a regular multidisciplinary visiting specialist services to remote communities. It led to two interesting juxtapositions: that of 'state of the art' specialist services alongside under-resourced primary care in remote and relatively traditional Aboriginal communities; and that of attempts to develop an evidence base for the effectiveness of outreach, while meeting the short-term evaluative requirements of policy-makers. In this essay, first we describe the development of the service in the Northern Territory and its initial process evaluation. Through a Cochrane systematic review we then summarise the published research on the effectiveness of specialist outreach in improving access to tertiary and hospital-based care. Finally we describe the findings of an observational population-based study of the use of specialist services and the impact of outreach to three remote communities over 11 years. Specialist outreach improves access to specialist care and may lessen the demand for both outpatient and inpatient hospital care. Specialist outreach is, however, dependent on well-functioning primary care. According to the way in which outreach is conducted and the service is organised, it can either support primary care or it can hinder primary care and, as a result, reduce its own effectiveness.
Remote sensing of multimodal transportation systems : research brief.
DOT National Transportation Integrated Search
2016-09-01
Remote Sensing of Multimodal Transportation Systems : Rapid condition monitoring and performance evaluations of the vast and vulnerable transportation infrastructure has been elusive. The framework and models developed in this research will enable th...
Evaluating existing access opportunities for disabled persons at remote shoreline recreation sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bley, M.R.; Kearns, M.T.
1995-12-31
Draft guidelines for providing outdoor recreation access opportunities for disabled persons have been recommended by the Recreation Access Advisory Committee and in the Universal Access to Outdoor Recreation: A Design Guide. The Federal Energy Regulatory Commission requires applicants for new hydropower licenses to consider access opportunities for disabled persons at existing hydropower projects. A process for evaluating existing access opportunities for disabled persons at remote shoreline recreation sites at hydropower projects is described. The process includes five steps: (1) preparing a preliminary map of existing recreation sites; (2) data collection in the field; (3) evaluating compliance of existing facilities; (4)more » feasibility of enhancing existing facilities; and (5) designing enhancements. The process will be refined when final standards and processes are approved by the appropriate agencies and organizations.« less
Remote Teaching Experiments on Magnetic Domains in Thin Films
ERIC Educational Resources Information Center
Dobrogowski, W.; Maziewski, A.; Zablotskii, V.
2007-01-01
We describe our experience in building a remote laboratory for teaching magnetic domains. Fulfilling the proposed on-line experiments, students can observe and study magnetization processes that are often difficult to explain with written material. It is proposed that networks of remotely accessible laboratories could be integrated in the Global…
Design and Implementation Issues for Modern Remote Laboratories
ERIC Educational Resources Information Center
Guimaraes, E. G.; Cardozo, E.; Moraes, D. H.; Coelho, P. R.
2011-01-01
The design and implementation of remote laboratories present different levels of complexity according to the nature of the equipments operated by the remote laboratory, the requirements imposed on the accessing computers, the network linking the user to the laboratory, and the type of experiments the laboratory supports. This paper addresses the…
Redefining nondiscriminatory access to remote sensing imagery and its impact on global transparency
NASA Astrophysics Data System (ADS)
Aten, Michelle L.
2003-04-01
Global transparency is founded on the Open Skies philosophy and its precept of non-discriminatory access. Global transparency implies that anyone can have anytime, anyplace access to a wide-array of remotely sensed imagery. The custom of non-discriminatory access requires that datasets of interest must be affordable, usable, and obtainable in a timely fashion devoid of political, economic or technical obstacles. Thus, an assessment of the correlation between the availability of satellite imagery and changes in governmental policies, pricing fluctuations of data, and advances in technology is critical to assessing the viability of global transparency. The Open Skies philosophy was originally proposed at the 1955 Geneva Summit to advocate mutually beneficial aerial reconnaissance missions over the USSR and the US as a verification tool for arms control and non-proliferation agreements. However, due to Cold War tensions, this philosophy and the custom of non-discriminatory were not widely adopted in the civilian remote sensing community until the commissioning of the Landsat Program in 1972. Since this time, commercial high-resolution satellites have drastically changed the circumstances on which the fundamental tenets of this philosophy are based. Since the successful launch of the first of this satellite class, the IKONOS satellite, high-resolution imagery is now available to non-US governments and an unlimited set of non-state actors. As more advanced capabilities are added to the growing assortment of remote sensing satellites, the reality of global transparency will rapidly evolve. This assessment includes an overview of historical precedents and a brief explanation of relevant US policy decisions that define non-discriminatory access with respect to US government and US based corporate assets. It also presents the dynamics of the political, economic, and technical barriers that may dictate or influence the remote sensing community's access to satellite data. In conclusion, this analysis considers strategies for balancing the dual-use nature of hyperspectral and high-resolution satellite imagery and discusses the potential impact of these policies on gloal transparency.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
CubeSat constellations for disaster management in remote areas
NASA Astrophysics Data System (ADS)
Santilli, Giancarlo; Vendittozzi, Cristian; Cappelletti, Chantal; Battistini, Simone; Gessini, Paolo
2018-04-01
In recent years, CubeSats have considerably extended their range of possible applications, from a low cost means to train students and young researchers in space related activities up to possible complementary solutions to larger missions. Increasingly popular, whereas CubeSats are still not a solution for all types of missions, they offer the possibility of performing ambitious scientific experiments. Especially worth considering is the possibility of performing Distributed Space Missions, in which CubeSat systems can be used to increase observation sampling rates and resolutions, as well as to perform tasks that a single satellite is unable to handle. The cost of access to space for traditional Earth Observation (EO) missions is still quite high. Efficient architecture design would allow reducing mission costs by employing CubeSat systems, while maintaining a level of performance that, for some applications, could be close to that provided by larger platforms, and decreasing the time needed to design and deploy a fully functional constellation. For these reasons many countries, including developing nations, agencies and organizations are looking to CubeSat platforms to access space cheaply with, potentially, tens of remote sensing satellites. During disaster management, real-time, fast and continuous information broadcast is a fundamental requirement. In this sense, a constellation of small satellites can considerably decrease the revisit time (defined as the time elapsed between two consecutive observations of the same point on Earth by a satellite) over remote areas, by increasing the number of spacecraft properly distributed in orbit. This allows collecting as much data as possible for the use by Disaster Management Centers. This paper describes the characteristics of a constellation of CubeSats built to enable access over the most remote regions of Brazil, supporting an integrated system for mitigating environmental disasters in an attempt to prevent the catastrophic effects of natural events such as heavy rains that cause flooding. In particular, the paper defines the number of CubeSats and the orbital planes required to minimize the revisit time, depending on the application that is the mission objective. Each CubeSat is equipped with the suitable payloads and possesses the autonomy and pointing capabilities needed to meet the mission requirements. Thanks to the orbital features of the constellation, this service could be exploited by other tropical countries. Coverage of other areas of the Earth might be provided by adjusting the number and in-orbit distribution of the spacecraft.
J-Earth: An Essential Resource for Terrestrial Remote Sensing and Data Analysis
NASA Astrophysics Data System (ADS)
Dunn, S.; Rupp, J.; Cheeseman, S.; Christensen, P. R.; Prashad, L. C.; Dickenshied, S.; Anwar, S.; Noss, D.; Murray, K.
2011-12-01
There is a need for a software tool that has the ability to display and analyze various types of earth science and social data through a simple, user-friendly interface. The J-Earth software tool has been designed to be easily accessible for download and intuitive use, regardless of the technical background of the user base. This tool does not require courses or text books to learn to use, yet is powerful enough to allow a more general community of users to perform complex data analysis. Professions that will benefit from this tool range from geologists, geographers, and climatologists to sociologists, economists, and ecologists as well as policy makers. J-Earth was developed by the Arizona State University Mars Space Flight Facility as part of the JMARS (Java Mission-planning and Analysis for Remote Sensing) suite of open-source tools. The program is a Geographic Information Systems (GIS) application used for viewing and processing satellite and airborne remote sensing data. While the functionality of JMARS has historically focused on the research needs of the planetary science community, J-Earth has been designed for a much broader Earth-based user audience. NASA instrument products accessible within J-Earth include data from ASTER, GOES, Landsat, MODIS, and TIMS. While J-Earth contains exceptionally comprehensive and high resolution satellite-derived data and imagery, this tool also includes many socioeconomic data products from projects lead by international organizations and universities. Datasets used in J-Earth take the form of grids, rasters, remote sensor "stamps", maps, and shapefiles. Some highly demanded global datasets available within J-Earth include five levels of administrative/political boundaries, climate data for current conditions as well as models for future climates, population counts and densities, land cover/land use, and poverty indicators. While this application does share the same powerful functionality of JMARS, J-Earth's apperance is enhanced for much easier data analysis. J-Earth utilizes a layering system to view data from different sources which can then be exported, scaled, colored and superimposed for quick comparisons. Users may now perform spatial analysis over several diverse datasets with respect to a defined geographic area or the entire globe. In addition, several newly acquired global datasets contain a temporal dimension which when accessed through J-Earth, make this a unique and powerful tool for spatial analysis over time. The functionality and ease of use set J-Earth apart from all other terrestrial GIS software packages and enable endless social, political, and scientific possibilities
NASA Technical Reports Server (NTRS)
Kiang, Richard; Adimi, Farida; Kempler, Steven
2008-01-01
Background: The transmission of vectorborne infectious diseases is often influenced by environmental, meteorological and climatic parameters, because the vector life cycle depends on these factors. For example, the geophysical parameters relevant to malaria transmission include precipitation, surface temperature, humidity, elevation, and vegetation type. Because these parameters are routinely measured by satellites, remote sensing is an important technological tool for predicting, preventing, and containing a number of vectorborne infectious diseases, such as malaria, dengue, West Nile virus, etc. Methods: A variety of NASA remote sensing data can be used for modeling vectorborne infectious disease transmission. We will discuss both the well known and less known remote sensing data, including Landsat, AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer), TRMM (Tropical Rainfall Measuring Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), EO-1 (Earth Observing One) ALI (Advanced Land Imager), and SIESIP (Seasonal to Interannual Earth Science Information Partner) dataset. Giovanni is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center. It provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. After remote sensing data is obtained, a variety of techniques, including generalized linear models and artificial intelligence oriented methods, t 3 can be used to model the dependency of disease transmission on these parameters. Results: The processes of accessing, visualizing and utilizing precipitation data using Giovanni, and acquiring other data at additional websites are illustrated. Malaria incidence time series for some parts of Thailand and Indonesia are used to demonstrate that malaria incidences are reasonably well modeled with generalized linear models and artificial intelligence based techniques. Conclusions: Remote sensing data relevant to the transmission of vectorborne infectious diseases can be conveniently accessed at NASA and some other websites. These data are useful for vectorborne infectious disease surveillance and modeling.
Mitton, Craig; Dionne, Francois; Masucci, Lisa; Wong, Sabrina; Law, Susan
2011-01-01
To identify and review innovations relevant to improving access, quality, efficiency and/or effectiveness in the organization and delivery of health care services in rural and remote areas. Literature review. Key bibliographic databases that index health research were searched: MEDLINE, EMBASE and CINAHL. Other databases relevant to Arctic health were also accessed. Abstracts were assessed for relevancy and full articles were reviewed and categorized according to emergent themes. Many innovations in delivering services to rural and remote areas were identified, particularly in the public health realm. These innovations were grouped into 4 key themes: organizational structure of health services; utilization of telehealth and ehealth; medical transportation; and public health challenges. Despite the challenges facing rural and remote regions, there is a distinctly positive message from this broad literature review. Evidence-based initiatives exist across a range of areas - which include operational efficiency and integration, access to care, organizational structure, public health, continuing education and workforce composition - that have the potential to positively impact health care quality and health-related outcomes.
Using a Web Application to Conduct and Investigate Syntheses of Methyl Orange Remotely
ERIC Educational Resources Information Center
van Rens, Lisette; van Dijk, Hans; Mulder, Jan; Nieuwland, Pieter
2013-01-01
Thirty-six pre-university chemistry students and two chemistry teachers used flow chemistry as a technology for the synthesis of methyl orange. FutureChemistry and VU University Amsterdam cooperatively created FlowStart Remote, a device that enabled the students to remotely conduct this synthesis and in real time monitor and control the device via…
Peacock, Amy; Nielsen, Suzanne; Bruno, Raimondo; Campbell, Gabrielle; Larance, Briony; Degenhardt, Louisa
2016-11-01
Rates of chronic non-cancer pain are increasing worldwide, with concerns regarding poorer access to specialist treatment services in remote areas. The current study comprised the first in-depth examination of use and barriers to access of health services in Australia according to remoteness. A cohort of Australian adults prescribed pharmaceutical opioids for chronic non-cancer pain (n = 1,235) were interviewed between August 2012 and April 2014, and grouped into 'major city' (49%), 'inner regional' (37%), and 'outer regional/remote' (14%) according to the Australian Standard Geographical Classification based on postcode. Multinomial logistic regression analyses were conducted to determine geographical differences in socio-demographic and clinical characteristics, health service use, and perceived barriers to health service access. The 'inner regional group' and 'outer regional/remote group' were more likely to be male (relative risk ratio (RRR)=1.38,95%CI 1.08-1.77 and RRR = 1.60, 95%CI 1.14-2.24) and have no private health insurance (RRR = 1.53, 95%CI 1.19-1.97 and RRR = 1.65, 95%CI 1.16-2.37) than the 'major city group' (49%). However, the 'inner regional group' reported lower pain severity and better mental health relative to the 'major city group' = 0.92, 95%CI 0.86-0.98 and RRR = 1.02, 95%CI 1.01-1.03, respectively). Although rates of health service access were generally similar, the 'outer regional/remote group' were more likely to report client-practitioner communication problems (RRR = 1.57, 95%CI 1.03-2.37), difficulties accessing specialists (RRR = 1.56, 95%CI 1.01-2.39), and perception of practitioner lack of confidence in prescribing pain medication (RRR = 1.73, 1.14-2.62), relative to both groups. Perceived communication, access, and financial barriers to healthcare indicate the need for increased efforts to address geographic inequality in pain treatment. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Shiika, Yulia; Kruger, Estie; Tennant, Marc
Australia has a significant mal-distribution of its limited dental workforce. Outside the major capital cities, the distribution of accessible dental care is at best patchy. This study applied geo-spatial analysis technology to locate gaps in dental service accessibility for rural and remote dwelling Australians, in order to test the hypothesis that there are a few key location points in Australia where further dental services could make a significant contribution to ameliorating the immediate shortage crisis. A total of 2,086 dental practices were located in country areas, covering a combined catchment area of 1.84 million square kilometers, based on 50 km catchment zones around each clinic. Geo-spatial analysis technology was used to identify gaps in the accessibility of dental services for rural and remote dwelling Australians. An extraction of data was obtained to analyse the integrated geographically-aligned database. Results: Resolution of the lack of dental practices for 74 townships (of greater than 500 residents) across Australia could potentially address access for 104,000 people. An examination of the socio-economic mix found that the majority of the dental practices (84%) are located in areas classified as less disadvantaged. Output from the study provided a cohesive national map that has identified locations that could have health improvement via the targeting of dental services to that location. The study identified potential location sites for dental clinics, to address the current inequity in accessing dental services in rural and remote Australia.
Point-of-Care Programming for Neuromodulation: A Feasibility Study Using Remote Presence.
Mendez, Ivar; Song, Michael; Chiasson, Paula; Bustamante, Luis
2013-01-01
The expansion of neuromodulation and its indications has resulted in hundreds of thousands of patients with implanted devices worldwide. Because all patients require programming, this growth has created a heavy burden on neuromodulation centers and patients. Remote point-of-care programming may provide patients with real-time access to neuromodulation expertise in their communities. To test the feasibility of remotely programming a neuromodulation device using a remote-presence robot and to determine the ability of an expert programmer to telementor a nonexpert in programming the device. A remote-presence robot (RP-7) was used for remote programming. Twenty patients were randomly assigned to either conventional programming or a robotic session. The expert remotely mentored 10 nurses with no previous experience to program the devices of patients assigned to the remote-presence sessions. Accuracy of programming, adverse events, and satisfaction scores for all participants were assessed. There was no difference in the accuracy or clinical outcomes of programming between the standard and remote-presence sessions. No adverse events occurred in any session. The patients, nurses, and the expert programmer expressed high satisfaction scores with the remote-presence sessions. This study establishes the proof-of-principle that remote programming of neuromodulation devices using telepresence and expert telementoring of an individual with no previous experience to accurately program a device is feasible. We envision a time in the future when patients with implanted devices will have real-time access to neuromodulation expertise from the comfort of their own home.
Automated sensor networks to advance ocean science
NASA Astrophysics Data System (ADS)
Schofield, O.; Orcutt, J. A.; Arrott, M.; Vernon, F. L.; Peach, C. L.; Meisinger, M.; Krueger, I.; Kleinert, J.; Chao, Y.; Chien, S.; Thompson, D. R.; Chave, A. D.; Balasuriya, A.
2010-12-01
The National Science Foundation has funded the Ocean Observatories Initiative (OOI), which over the next five years will deploy infrastructure to expand scientist’s ability to remotely study the ocean. The deployed infrastructure will be linked by a robust cyberinfrastructure (CI) that will integrate marine observatories into a coherent system-of-systems. OOI is committed to engaging the ocean sciences community during the construction pahse. For the CI, this is being enabled by using a “spiral design strategy” allowing for input throughout the construction phase. In Fall 2009, the OOI CI development team used an existing ocean observing network in the Mid-Atlantic Bight (MAB) to test OOI CI software. The objective of this CI test was to aggregate data from ships, autonomous underwater vehicles (AUVs), shore-based radars, and satellites and make it available to five different data-assimilating ocean forecast models. Scientists used these multi-model forecasts to automate future glider missions in order to demonstrate the feasibility of two-way interactivity between the sensor web and predictive models. The CI software coordinated and prioritized the shared resources that allowed for the semi-automated reconfiguration of assett-tasking, and thus enabled an autonomous execution of observation plans for the fixed and mobile observation platforms. Efforts were coordinated through a web portal that provided an access point for the observational data and model forecasts. Researchers could use the CI software in tandem with the web data portal to assess the performance of individual numerical model results, or multi-model ensembles, through real-time comparisons with satellite, shore-based radar, and in situ robotic measurements. The resulting sensor net will enable a new means to explore and study the world’s oceans by providing scientists a responsive network in the world’s oceans that can be accessed via any wireless network.
USDA-ARS?s Scientific Manuscript database
Remote detection of invasive plant species using geospatial imagery may significantly improve monitoring, planning, and management practices by eliminating shortfalls such as observer bias and accessibility involved in ground-based surveys. The use of remote sensing for accurate mapping invasion ex...
An intelligent remote monitoring system for artificial heart.
Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G
2005-12-01
A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data.
Secure distribution for high resolution remote sensing images
NASA Astrophysics Data System (ADS)
Liu, Jin; Sun, Jing; Xu, Zheng Q.
2010-09-01
The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.
Improving Access to Behavioral Health Care for Remote Service Members and Their Families
2015-01-01
that drive times exceeding 30 minutes are associated with marked decrements in utilization of care.6 The researchers find that remote service members...location, the location of behavioral health services, and information on insurance coverage and regulations surrounding access. A drive time of 30...geographic and health insurance data; how- ever, the data are somewhat limited due to their sensitive nature and availability. Third, the team considered
[Digital pathology : The time has come!
Grobholz, R
2018-05-01
Digital pathology (DP) and whole-slide imaging (WSI) technology have matured substantially over the last few years. Meanwhile, commercial systems are available that can be used in routine practice. Illustration of DP experiences in a routine diagnostic setting. A DP system offers several advantages: 1) glass slides are no longer unique; 2) access to cases is possible from any location; 3) digital image analysis can be applied; and 4) archived WSI can be easily accessed. From this point, several secondary advantages arise: a) the slide compilation of the case and the case assignment is fast and safe; b) carrying cases to the pathologist is obsolete and paperless work is possible; c) WSI can be used for a second opinion and be accessible in remote locations; d) WSI of referred cases are still accessible after returning the slides; e) histological images can easily be provided in tumor boards; f) the office desk is clean; and g) a "home office" is possible. To introduce a DP system, a comprehensive workflow analysis is needed that clarifies the needs and wishes of the respective institute. In order to optimally meet the requirements, open DP platforms are of particular advantage, because they enable the integration of scanners from various manufacturers. Further developments in image analysis, such as virtual tissue reconstruction, could enrich the diagnostic process in the future and improve treatment quality.
Increasing Access and Usability of Remote Sensing Data: The NASA Protected Area Archive
NASA Technical Reports Server (NTRS)
Geller, Gary N.
2004-01-01
Although remote sensing data are now widely available, much of it at low or no-cost, many managers of protected conservation areas do not have the expertise or tools to view or analyze it. Thus access to it by the protected area management community is effectively blocked. The Protected Area Archive will increase access to remote sensing data by creating collections of satellite images of protected areas and packaging them with simple-to-use visualization and analytical tools. The user can easily locate the area and image of interest on a map, then display, roam, and zoom the image. A set of simple tools will be provided so the user can explore the data and employ it to assist in management and monitoring of their area. The 'Phase 1 ' version requires only a Windows-based computer and basic computer skills, and may be of particular help to protected area managers in developing countries.
Secure Remote Access Issues in a Control Center Environment
NASA Technical Reports Server (NTRS)
Pitts, Lee; McNair, Ann R. (Technical Monitor)
2002-01-01
The ISS finally reached an operational state and exists for local and remote users. Onboard payload systems are managed by the Huntsville Operations Support Center (HOSC). Users access HOSC systems by internet protocols in support of daily operations, preflight simulation, and test. In support of this diverse user community, a modem security architecture has been implemented. The architecture has evolved over time from an isolated but open system to a system which supports local and remote access to the ISS over broad geographic regions. This has been accomplished through the use of an evolved security strategy, PKI, and custom design. Through this paper, descriptions of the migration process and the lessons learned are presented. This will include product decision criteria, rationale, and the use of commodity products in the end architecture. This paper will also stress the need for interoperability of various products and the effects of seemingly insignificant details.
NASA Astrophysics Data System (ADS)
Mantas, Vasco M.; Pereira, A. J. S. C.; Liu, Zhong
2013-12-01
A project was devised to develop a set of freely available applications and web services that can (1) simplify access from Mobile Devices to TOVAS data and (2) support the development of new datasets through data repackaging and mash-up. The bottom-up approach enables the multiplication of new services, often of limited direct interest to the organizations that produces the original, global datasets, but significant to small, local users. Through this multiplication of services, the development cost is transferred to the intermediate or end users and the entire process is made more efficient, even allowing new players to use the data in innovative ways.
Monitoring Change Through Hierarchical Segmentation of Remotely Sensed Image Data
NASA Technical Reports Server (NTRS)
Tilton, James C.; Lawrence, William T.
2005-01-01
NASA's Goddard Space Flight Center has developed a fast and effective method for generating image segmentation hierarchies. These segmentation hierarchies organize image data in a manner that makes their information content more accessible for analysis. Image segmentation enables analysis through the examination of image regions rather than individual image pixels. In addition, the segmentation hierarchy provides additional analysis clues through the tracing of the behavior of image region characteristics at several levels of segmentation detail. The potential for extracting the information content from imagery data based on segmentation hierarchies has not been fully explored for the benefit of the Earth and space science communities. This paper explores the potential of exploiting these segmentation hierarchies for the analysis of multi-date data sets, and for the particular application of change monitoring.
Applying Web-Based Tools for Research, Engineering, and Operations
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2011-01-01
Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.
Data Reprocessing on Worldwide Distributed Systems
NASA Astrophysics Data System (ADS)
Wicke, Daniel
The DØ experiment faces many challenges in terms of enabling access to large datasets for physicists on four continents. The strategy for solving these problems on worldwide distributed computing clusters is presented. Since the beginning of Run II of the Tevatron (March 2001) all Monte-Carlo simulations for the experiment have been produced at remote systems. For data analysis, a system of regional analysis centers (RACs) was established which supply the associated institutes with the data. This structure, which is similar to the tiered structure foreseen for the LHC was used in Fall 2003 to reprocess all DØ data with a much improved version of the reconstruction software. This makes DØ the first running experiment that has implemented and operated all important computing tasks of a high energy physics experiment on systems distributed worldwide.
Fronthaul evolution: From CPRI to Ethernet
NASA Astrophysics Data System (ADS)
Gomes, Nathan J.; Chanclou, Philippe; Turnbull, Peter; Magee, Anthony; Jungnickel, Volker
2015-12-01
It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved.
Remote Sensing Information Gateway
Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.
Joined-up Planetary Information, in the Cloud and on Devices.
NASA Astrophysics Data System (ADS)
Smith, M. J.; Emmott, S.; Purves, D. W.; Joppa, L. N.; Lyutsarev, V.
2014-12-01
In scientific research and development, emphasis is placed on research over development. A significant cost is that the two-way interaction between scientific insights and societal needs does not function effectively to lead to impacts in the wider world. We simply must embrace new software and hardware approaches if we are to provide timely predictive information to address global problems, support businesses and inform governments and citizens. The Microsoft Research Computational Science Lab has been pioneering research into software and methodologies to provide useful and usable new environmental information. Our approach has been very joined-up: from accellerating data acquisition from the field with remote sensor technology, targetted data collection and citizen science, to enabling proces based modelling-using multiple heterogeneous data-sets in the cloud and enabling the resulting planetary information to be accessed from any device. This talk will demonstrate some of the specific research and development we are doing to accerate the pace in which important science has impact on the wider world and will emphasise the important insights gained from advancing the research and develoment together.
Golberg, Alexander; Linshiz, Gregory; Kravets, Ilia; Stawski, Nina; Hillson, Nathan J; Yarmush, Martin L; Marks, Robert S; Konry, Tania
2014-01-01
We report an all-in-one platform - ScanDrop - for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a "cloud" network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2-4 days for other currently available standard detection methods.
Lapão, Luís Velez; Correia, Artur
2015-01-01
This paper addresses the role of international telemedicine services in supporting the evacuation procedures from Cape Verde to Portugal, enabling better quality and cost reductions in the management of the global health system. The Cape Verde, as other African countries, health system lacks many medical specialists, like pediatric cardiologists, neurosurgery, etc. In this study, tele-cardiology shows good results as diagnostic support to the evacuation decision. Telemedicine services show benefits while monitoring patients in post-evacuation, helping to address the lack of responsive care in some specialties whose actual use will help save resources both in provision and in management of the evacuation procedures. Additionally, with tele-cardiology collaborative service many evacuations can be avoided whereas many cases will be treated and followed locally in Cape Verde with remote technical support from Portugal. This international telemedicine service enabled more efficient evacuations, by reducing expenses in travel and housing, and therefore contributed to the health system's improvement. This study provides some evidence of how important telemedicine really is to cope with both the geography and the shortage of physicians.
Kravets, Ilia; Stawski, Nina; Hillson, Nathan J.; Yarmush, Martin L.; Marks, Robert S.; Konry, Tania
2014-01-01
We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods. PMID:24475107
Simons, Richard; Brasher, Penelope; Taulu, Tracey; Lakha, Nasira; Molnar, Nadine; Caron, Nadine; Schuurman, Nadine; Evans, David; Hameed, Morad
2010-07-01
Injury rates and injury mortality rates are generally higher in rural and remote communities compared with urban jurisdictions as has been shown to be the case in the rural-remote area of Northwest (NW) British Columbia (BC). The purpose of study was to identify: (1) the place and timing of death following injury in NW BC, (2) access to and quality of local trauma services, and (3) opportunities to improve trauma outcomes. Quantitative data from demographic and geographic databases, the BC Trauma Registry, Hospital discharge abstract database, and the BC Coroner's Office, along with qualitative data from chart reviews of selected major trauma cases, and interviews with front-line trauma care providers were collated and analyzed for patients sustaining injury in NW BC from April 2001 to March 2006. The majority of trauma deaths (82%) in NW BC occur prehospital. Patients arriving alive to NW hospitals have low hospital mortality (1.0%), and patients transferring from NW BC to tertiary centers have better outcomes than matched patients achieving direct entry into the tertiary center by way of geographic proximity. Access to local trauma services was compromised by: incident discovery, limited phone service (land lines/cell), incomplete 911 emergency medical services system access, geographical and climate challenges compounded by limited transportation options, airport capabilities and paramedic training level, dysfunctional hospital no-refusal policies, lack of a hospital destination policies, and lack of system leadership and coordination. Improving trauma outcomes in this rural-remote jurisdiction requires a systems approach to address root causes of delays in access to care, focusing on improved access to emergency medical services, hospital bypass and destination protocols, improved transportation options, advanced life support transfer capability, and designated, coordinated local trauma services.
NASA Astrophysics Data System (ADS)
Chaudhary, A.; DeMarle, D.; Burnett, B.; Harris, C.; Silva, W.; Osmari, D.; Geveci, B.; Silva, C.; Doutriaux, C.; Williams, D. N.
2013-12-01
The impact of climate change will resonate through a broad range of fields including public health, infrastructure, water resources, and many others. Long-term coordinated planning, funding, and action are required for climate change adaptation and mitigation. Unfortunately, widespread use of climate data (simulated and observed) in non-climate science communities is impeded by factors such as large data size, lack of adequate metadata, poor documentation, and lack of sufficient computational and visualization resources. We present ClimatePipes to address many of these challenges by creating an open source platform that provides state-of-the-art, user-friendly data access, analysis, and visualization for climate and other relevant geospatial datasets, making the climate data available to non-researchers, decision-makers, and other stakeholders. The overarching goals of ClimatePipes are: - Enable users to explore real-world questions related to climate change. - Provide tools for data access, analysis, and visualization. - Facilitate collaboration by enabling users to share datasets, workflows, and visualization. ClimatePipes uses a web-based application platform for its widespread support on mainstream operating systems, ease-of-use, and inherent collaboration support. The front-end of ClimatePipes uses HTML5 (WebGL, Canvas2D, CSS3) to deliver state-of-the-art visualization and to provide a best-in-class user experience. The back-end of the ClimatePipes is built around Python using the Visualization Toolkit (VTK, http://vtk.org), Climate Data Analysis Tools (CDAT, http://uv-cdat.llnl.gov), and other climate and geospatial data processing tools such as GDAL and PROJ4. ClimatePipes web-interface to query and access data from remote sources (such as ESGF). Shown in the figure is climate data layer from ESGF on top of map data layer from OpenStreetMap. The ClimatePipes workflow editor provides flexibility and fine grained control, and uses the VisTrails (http://www.vistrails.org) workflow engine in the backend.
The D3 Middleware Architecture
NASA Technical Reports Server (NTRS)
Walton, Joan; Filman, Robert E.; Korsmeyer, David J.; Lee, Diana D.; Mak, Ron; Patel, Tarang
2002-01-01
DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid-dynamics) model executions. DARWIN captures, stores and indexes data; manages derived knowledge (such as visualizations across multiple datasets); and provides an environment for designers to collaborate in the analysis of test results. DARWIN is an interesting application because it supports high-volumes of data. integrates multiple modalities of data display (e.g., images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and views of data. Here we provide an overview of the architecture of D3, the third generation of DARWIN. Earlier versions of DARWIN were characterized by browser-based interfaces and a hodge-podge of server technologies: CGI scripts, applets, PERL, and so forth. But browsers proved difficult to control, and a proliferation of computational mechanisms proved inefficient and difficult to maintain. D3 substitutes a pure-Java approach for that medley: A Java client communicates (though RMI over HTTPS) with a Java-based application server. Code on the server accesses information from JDBC databases, distributed LDAP security services, and a collaborative information system. D3 is a three tier-architecture, but unlike 'E-commerce' applications, the data usage pattern suggests different strategies than traditional Enterprise Java Beans - we need to move volumes of related data together, considerable processing happens on the client, and the 'business logic' on the server-side is primarily data integration and collaboration. With D3, we are extending DARWIN to handle other data domains and to be a distributed system, where a single login allows a user transparent access to test results from multiple servers and authority domains.
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.
2007-12-01
The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* & Globus Alliance toolkits), and enables scientists to do multi- instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client & server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. SciFlo also publishes its own SOAP services for space/time query and subsetting of Earth Science datasets, and automated access to large datasets via lists of (FTP, HTTP, or DAP) URLs which point to on-line HDF or netCDF files. Typical distributed workflows obtain datasets by calling standard WMS/WCS servers or discovering and fetching data granules from ftp sites; invoke remote analysis operators available as SOAP services (interface described by a WSDL document); and merge results into binary containers (netCDF or HDF files) for further analysis using local executable operators. Naming conventions (HDFEOS and CF-1.0 for netCDF) are exploited to automatically understand and read on-line datasets. More interoperable conventions, and broader adoption of existing converntions, are vital if we are to "scale up" automated choreography of Web Services beyond toy applications. Recently, the ESIP Federation sponsored a collaborative activity in which several ESIP members developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, the benefits of doing collaborative science analysis at the "touch of a button" once services are connected, and further collaborations that are being pursued.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Wang, Shu-Hui; Chang, Man-Ling; Shih, Ching-Hsiang
2012-01-01
The latest researches have adopted software technology, turning the Nintendo Wii Remote Controller into a high performance three-dimensional object orientation detector. This study extended Wii Remote Controller functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple…
NASA Technical Reports Server (NTRS)
Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna;
2000-01-01
Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.
Remote Sensing Decision Support System for Optimal Access Restoration in Post Disaster Environments
DOT National Transportation Integrated Search
2017-01-01
Access restoration is an extremely important part of disaster response. Without access to the site, critically important emergency functions like search and rescue, emergency evacuation, and relief distribution, cannot commence. Frequently, roads are...
NASA Astrophysics Data System (ADS)
Politi, Eirini; Scarrott, Rory; Tuohy, Eimear; Terra Homem, Miguel; Caumont, Hervé; Grosso, Nuno; Mangin, Antoine; Catarino, Nuno
2017-04-01
According to the United Nations Environment Programme (UNEP), half the world's population lives within 60 km of the sea, and three-quarters of all large cities are located on the coast. Natural hazards and changing coastal processes due to environmental and climate change and intensified human activities, can affect coastal regions in many ways, such as coastal inundation, erosion and marine pollution among others, causing loss of life and degradation of vulnerable coastal and marine habitats. To fully understand how the environment is changing across transitional landscapes, such as the coastal zone, a combination of methods and disciplines is required. Geospatial approaches that harness global and regional datasets, along with new generation remote sensing products and climate variables, can help characterise trajectories of change in coastal systems and improve our knowledge and understanding of complex processes. However, such approaches often require Big Data and often Real-Time (RT) datasets to ensure timeliness in risk prediction, assessment and management. In addition, the task of identifying suitable datasets from the plethora of data repositories and sources that currently exist can be challenging, even for experienced researchers. As geospatial datasets continue to increase in quantity and quality, processing has become slower and demanding of better, often faster, computing facilities. To address these issues, an EU-funded project is developing an online platform to bring geospatial data, processing and coastal communities together in a collaborative cloud-based environment. The European Commission (EC) H2020 Coastal Water Research Synergy Framework (Co-ReSyF) project is developing a platform based on cloud computing to maximise processing effort and task orchestration. Users will be able to access, view and process satellite data, and visualise and share their outputs on the platform. This will allow faster processing and innovative data synergies, by advancing collaboration between different scientific communities. With core research applications currently ranging from bathymetry mapping to oil spill detection, sea level change and exploitation of data-rich time series to explore oceanic processes, the Co-ReSyF capabilities will be further enhanced by its users, who will be able to upload their own algorithms and processors onto the system. Co-ReSyF aims to address gaps and issues faced by remote sensing scientists and researchers, but also target non-remote sensing coastal experts, marine scientists and downstream users, with main focus on enabling Big Data access and processing for coastal and marine applications.
Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web.
Miller, Chase A; Anthony, Jon; Meyer, Michelle M; Marth, Gabor
2013-02-01
High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported.
Achievable Performance and Effective Interrogator Design for SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton Richard J.
2012-01-01
For many NASA missions, remote sensing is a critical application that supports activities such as environmental monitoring, planetary science, structural shape and health monitoring, non-destructive evaluation, etc. The utility of the remote sensing devices themselves is greatly increased if they are passive V that is, they do not require any on-board power supply such as batteries V and if they can be identified uniquely during the sensor interrogation process. Additional passive sensor characteristics that enable greater utilization in space applications are small size and weight, long read ranges with low interrogator power, ruggedness, and operability in extreme environments (vacuum, extreme high/low temperature, high radiation, etc.) In this paper, we consider one very promising passive sensor technology, called surface acoustic wave (SAW) radio-frequency identification (RFID), that satisfies all of these criteria. In general, RFID is a method of identifying items using radio waves to interrogate tags encoded with a unique identifier that are affixed to the items of interest. In the case of passive tags, only the interrogator, which transmits power to the tags in the form of radio-frequency electromagnetic radiation, requires access to a power supply. Passive RFID technologies are used today in many applications, including asset tracking and management, security and access control, and remote sensing. To date, most of the development and application in RFID technology has focused on either asset/inventory tracking and control or security and access control because these are the largest commercial application areas. Recently however, there has been growing interest in using passive RFID technology for remote sensing applications, and SAW devices are at the forefront of RFID sensing technology development. Although SAW RFID tags have great potential for use in numerous space-based remote sensing applications, the limited collision resolution capability of current generation tags limits the performance in a cluttered sensing environment. That is, as more SAW-based sensors are added to the environment, numerous tag responses are superimposed at the receiver and decoding all or even a subset of the telemetry becomes increasingly difficult. Background clutter generated by reflectors other than the sensors themselves is also a problem, as is multipath interference and signal distortion, but the limiting factor in many remote sensing applications can be expected to be tag mutual interference. This problem may be greatly mitigated by proper design of the SAW tag waveform, but that remains an open research problem, and in the meantime, several other related questions remain to be answered including: (1) What are the fundamental relationships between tag parameters such as bit-rate, time-bandwidth-product, SNR, and achievable collision resolution? (2) What are the differences in optimal or near-optimal interrogator designs between noise-limited environments and interference-limited environments? (3) What are the performance characteristics of different interrogator designs in term of parameters such as transmitter power level, range, and number of interfering tags? In this paper, we will present the results of a research effort aimed at providing at least partial answers to all of these questions.
NASA Technical Reports Server (NTRS)
2013-01-01
Topics covered include: Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes; Conical Seat Shut-Off Valve; Impact-Actuated Digging Tool for Lunar Excavation; Flexible Mechanical Conveyors for Regolith Extraction and Transport; Remote Memory Access Protocol Target Node Intellectual Property; Soft Decision Analyzer; Distributed Prognostics and Health Management with a Wireless Network Architecture; Minimal Power Latch for Single-Slope ADCs; Bismuth Passivation Technique for High-Resolution X-Ray Detectors; High-Strength, Super-elastic Compounds; Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications; Microgravity Storage Vessels and Conveying-Line Feeders for Cohesive Regolith; CRUQS: A Miniature Fine Sun Sensor for Nanosatellites; On-Chip Microfluidic Components for In Situ Analysis, Separation, and Detection of Amino Acids; Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen; Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities; Atomic Force Microscope Mediated Chromatography; Sample Analysis at Mars Instrument Simulator; Access Control of Web- and Java-Based Applications; Tool for Automated Retrieval of Generic Event Tracks (TARGET); Bilayer Protograph Codes for Half-Duplex Relay Channels; Influence of Computational Drop Representation in LES of a Droplet-Laden Mixing Layer.
Web-based Tool Suite for Plasmasphere Information Discovery
NASA Astrophysics Data System (ADS)
Newman, T. S.; Wang, C.; Gallagher, D. L.
2005-12-01
A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).
NASA Astrophysics Data System (ADS)
Johnston, Michael A.; Farrell, Damien; Nielsen, Jens Erik
2012-04-01
The exchange of information between experimentalists and theoreticians is crucial to improving the predictive ability of theoretical methods and hence our understanding of the related biology. However many barriers exist which prevent the flow of information between the two disciplines. Enabling effective collaboration requires that experimentalists can easily apply computational tools to their data, share their data with theoreticians, and that both the experimental data and computational results are accessible to the wider community. We present a prototype collaborative environment for developing and validating predictive tools for protein biophysical characteristics. The environment is built on two central components; a new python-based integration module which allows theoreticians to provide and manage remote access to their programs; and PEATDB, a program for storing and sharing experimental data from protein biophysical characterisation studies. We demonstrate our approach by integrating PEATSA, a web-based service for predicting changes in protein biophysical characteristics, into PEATDB. Furthermore, we illustrate how the resulting environment aids method development using the Potapov dataset of experimentally measured ΔΔGfold values, previously employed to validate and train protein stability prediction algorithms.
A free market in telescope time?
NASA Astrophysics Data System (ADS)
Etherton, Jason; Steele, Iain A.; Mottram, Christopher J.
2004-09-01
As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few. This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.
Innovative Robot Archetypes for In-Space Construction and Maintenance
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher
2005-01-01
The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts
Internet Distribution of Spacecraft Telemetry Data
NASA Technical Reports Server (NTRS)
Specht, Ted; Noble, David
2006-01-01
Remote Access Multi-mission Processing and Analysis Ground Environment (RAMPAGE) is a Java-language server computer program that enables near-real-time display of spacecraft telemetry data on any authorized client computer that has access to the Internet and is equipped with Web-browser software. In addition to providing a variety of displays of the latest available telemetry data, RAMPAGE can deliver notification of an alarm by electronic mail. Subscribers can then use RAMPAGE displays to determine the state of the spacecraft and formulate a response to the alarm, if necessary. A user can query spacecraft mission data in either binary or comma-separated-value format by use of a Web form or a Practical Extraction and Reporting Language (PERL) script to automate the query process. RAMPAGE runs on Linux and Solaris server computers in the Ground Data System (GDS) of NASA's Jet Propulsion Laboratory and includes components designed specifically to make it compatible with legacy GDS software. The client/server architecture of RAMPAGE and the use of the Java programming language make it possible to utilize a variety of competitive server and client computers, thereby also helping to minimize costs.
The CCSDS return all frames Space Link Extension service
NASA Technical Reports Server (NTRS)
Uhrig, Hans; Pietras, John; Stoloff, Michael
1994-01-01
Existing Consultative Committee for Space Data Systems (CCSDS) Recommendations for Telemetry Channel Coding, Packet Telemetry, Advanced Orbiting Systems, and Telecommand have facilitated cross-support between Agencies by standardizing the link between spacecraft and ground terminal. CCSDS is currently defining a set of Space Link Extension (SLE) services that will enable remote science and mission operations facilities to access the ground termination of the Space Link services in a standard manner. The first SLE service to be defined is the Return All Frames (RAF) service. The RAF service delivers all CCSDS link-layer frames received on a single space link physical channel. The service provides both on-line and off-line data transfer modes to accommodate the variety of access methods typical of space mission operations. This paper describes the RAF service as of the Summer of 1994. It characterizes the behavior of the service as seen across the interface between the user and the service and gives an overview of the interactions involved in setting up and operating the service in a cross-support environment.
Automated ground-water monitoring with Robowell: case studies and potential applications
NASA Astrophysics Data System (ADS)
Granato, Gregory E.; Smith, Kirk P.
2002-02-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/
Automated ground-water monitoring with robowell-Case studies and potential applications
Granato, G.E.; Smith, K.P.; ,
2001-01-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.
NASA Astrophysics Data System (ADS)
Blevins, B.; Prados, A. I.; Hook, E.
2017-12-01
The Group on Earth Observations (GEO) looks to build a future where the international community uses Earth observations to make better, informed decisions. This includes application in international agreements such as the UN Sustainable Development Goals (SDGs), the Sendai Framework for Disaster Risk Reduction, and the Convention on Biological Diversity. To do this, decision makers first need to build the necessary skills. NASA's Applied Remote Sensing Training program (ARSET) seeks to build capacity through remote sensing training. In-person and online trainings raise awareness, enable data access, and demonstrate applications of Earth observations. Starting in 2017, ARSET began offering training focused on applying Earth data to the UN SDGs. These trainings offer insight into applications of satellite data in support of implementing, monitoring, and evaluating the SDGs. This presentation will provide an overview of the use of NASA satellite data to track progress towards increased food security, disaster risk reduction, and conservation of natural resources for societal benefit. It will also include a discussion on capacity building best practices and lessons learned for using Earth observations to meet SDG targets, based on feedback from engaging over 800 participants from 89 nations and 580 organizations in ARSET SDG trainings.
A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays
Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl
2017-01-01
This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system. PMID:28245623
NASA Astrophysics Data System (ADS)
Ganendra, T. R.; Khan, N. M.; Razak, W. J.; Kouame, Y.; Mobarakeh, E. T.
2016-06-01
The use of Light Detection and Ranging (LiDAR) remote sensing technology to scan and map landscapes has proven to be one of the most popular techniques to accurately map topography. Thus, LiDAR technology is the ultimate method of unveiling the surface feature under dense vegetation, and, this paper intends to emphasize the diverse techniques that can be utilized to elucidate topographical changes over the study area, using multi-temporal airborne full waveform LiDAR datasets collected in 2012 and 2014. Full waveform LiDAR data offers access to an almost unlimited number of returns per shot, which enables the user to explore in detail topographical changes, such as vegetation growth measurement. The study also found out topography changes at the study area due to earthwork activities contributing to soil consolidation, soil erosion and runoff, requiring cautious monitoring. The implications of this study not only concurs with numerous investigations undertaken by prominent researchers to improve decision making, but also corroborates once again that investigations employing multi-temporal LiDAR data to unveil topography changes in vegetated terrains, produce more detailed and accurate results than most other remote sensing data.
Precision global health in the digital age.
Flahault, Antoine; Geissbuhler, Antoine; Guessous, Idris; Guérin, Philippe; Bolon, Isabelle; Salathé, Marcel; Escher, Gérard
2017-04-19
Precision global health is an approach similar to precision medicine, which facilitates, through innovation and technology, better targeting of public health interventions on a global scale, for the purpose of maximising their effectiveness and relevance. Illustrative examples include: the use of remote sensing data to fight vector-borne diseases; large databases of genomic sequences of foodborne pathogens helping to identify origins of outbreaks; social networks and internet search engines for tracking communicable diseases; cell phone data in humanitarian actions; drones to deliver healthcare services in remote and secluded areas. Open science and data sharing platforms are proposed for fostering international research programmes under fair, ethical and respectful conditions. Innovative education, such as massive open online courses or serious games, can promote wider access to training in public health and improving health literacy. The world is moving towards learning healthcare systems. Professionals are equipped with data collection and decision support devices. They share information, which are complemented by external sources, and analysed in real time using machine learning techniques. They allow for the early detection of anomalies, and eventually guide appropriate public health interventions. This article shows how information-driven approaches, enabled by digital technologies, can help improving global health with greater equity.
Enhanced smartcard-based password-authenticated key agreement using extended chaotic maps.
Lee, Tian-Fu; Hsiao, Chia-Hung; Hwang, Shi-Han; Lin, Tsung-Hung
2017-01-01
A smartcard based password-authenticated key agreement scheme enables a legal user to log in to a remote authentication server and access remote services through public networks using a weak password and a smart card. Lin recently presented an improved chaotic maps-based password-authenticated key agreement scheme that used smartcards to eliminate the weaknesses of the scheme of Guo and Chang, which does not provide strong user anonymity and violates session key security. However, the improved scheme of Lin does not exhibit the freshness property and the validity of messages so it still fails to withstand denial-of-service and privileged-insider attacks. Additionally, a single malicious participant can predetermine the session key such that the improved scheme does not exhibit the contributory property of key agreements. This investigation discusses these weaknesses and proposes an enhanced smartcard-based password-authenticated key agreement scheme that utilizes extended chaotic maps. The session security of this enhanced scheme is based on the extended chaotic map-based Diffie-Hellman problem, and is proven in the real-or-random and the sequence of games models. Moreover, the enhanced scheme ensures the freshness of communicating messages by appending timestamps, and thereby avoids the weaknesses in previous schemes.
A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.
Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl
2017-02-25
This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.
NASA Astrophysics Data System (ADS)
Hughes, B. K.
2010-12-01
The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.
Enhanced smartcard-based password-authenticated key agreement using extended chaotic maps
Lee, Tian-Fu; Hsiao, Chia-Hung; Hwang, Shi-Han
2017-01-01
A smartcard based password-authenticated key agreement scheme enables a legal user to log in to a remote authentication server and access remote services through public networks using a weak password and a smart card. Lin recently presented an improved chaotic maps-based password-authenticated key agreement scheme that used smartcards to eliminate the weaknesses of the scheme of Guo and Chang, which does not provide strong user anonymity and violates session key security. However, the improved scheme of Lin does not exhibit the freshness property and the validity of messages so it still fails to withstand denial-of-service and privileged-insider attacks. Additionally, a single malicious participant can predetermine the session key such that the improved scheme does not exhibit the contributory property of key agreements. This investigation discusses these weaknesses and proposes an enhanced smartcard-based password-authenticated key agreement scheme that utilizes extended chaotic maps. The session security of this enhanced scheme is based on the extended chaotic map-based Diffie-Hellman problem, and is proven in the real-or-random and the sequence of games models. Moreover, the enhanced scheme ensures the freshness of communicating messages by appending timestamps, and thereby avoids the weaknesses in previous schemes. PMID:28759615
Designed cell consortia as fragrance-programmable analog-to-digital converters.
Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin
2017-03-01
Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.
System and method for controlling remote devices
Carrender, Curtis Lee [Richland, WA; Gilbert, Ronald W [Benton City, WA; Scott, Jeff W [Pasco, WA; Clark, David A [Kennewick, WA
2006-02-07
A system and method for controlling remote devices utilizing a radio frequency identification (RFID) tag device having a control circuit adapted to render the tag device, and associated objects, permanently inoperable in response to radio-frequency control signals. The control circuit is configured to receive the control signals that can include an enable signal, and in response thereto enable an associated object, such as a weapon; and in response to a disable signal, to disable the tag itself, or, if desired, to disable the associated weapon or both the device and the weapon. Permanent disabling of the tag can be accomplished by several methods, including, but not limited to, fusing a fusable link, breaking an electrically conductive path, permanently altering the modulation or backscattering characteristics of the antenna circuit, and permanently erasing an associated memory. In this manner, tags in the possession of unauthorized employees can be remotely disabled, and weapons lost on a battlefield can be easily tracked and enabled or disabled automatically or at will.
Performance of Wireless Unattended Sensor Network in Maritime Applications
2007-06-01
longevity. Crossbow Technologies produces a number of gateways for use with their motes which include the MIB510, the MIB600 and the Stargate . The...MIB510 and MIB600 gateways require interface directly with a PC while he Stargate gateway interfaces remotely using the IEEE 802.11 standard for access...dedicated PC is unfeasible, the Stargate gateway allows remote access using the IEEE 802.11 standard. This can be accomplished via a Personal Computer
2010-08-31
Teleaudiology o FY08: Remote access of cochlear implants Teleaudiology DIACAP / FDA certification o FY08: Teleaudiology DIACAP and FDA certification to conduct...remote access, monitor, and adjust cochlear implants ECMO o FY05: Extra Corporeal Membrane Oxygenation (ECMO) o FY07 Pacific Rim ECMO/VAD...These dashboards were developed for use by appointed AFMS radiologists to monitor the flow and statistics of teleradiology. The dashboards are web
Taylor, Michael J; Taylor, Dave; Vlaev, Ivo; Elkin, Sarah
2017-01-01
Recent advances in communication technologies enable potential provision of remote education for patients using computer-generated environments known as virtual worlds. Previous research has revealed highly variable levels of patient receptiveness to using information technologies for healthcare-related purposes. This preliminary study involved implementing a questionnaire investigating attitudes and access to computer technologies of respiratory outpatients, in order to assess potential for use of virtual worlds to facilitate health-related education for this sample. Ninety-four patients with a chronic respiratory condition completed surveys, which were distributed at a Chest Clinic. In accordance with our prediction, younger participants were more likely to be able to use, and have access to a computer and some patients were keen to explore use virtual worlds for healthcare-related purposes: Of those with access to computer facilities, 14.50% expressed a willingness to attend a virtual world focus group. Results indicate future virtual world health education facilities should be designed to cater for younger patients, because this group are most likely to accept and use such facilities. Within the study sample, this is likely to comprise of people diagnosed with asthma. Future work could investigate the potential of creating a virtual world asthma education facility.
Taylor, Michael J.; Taylor, Dave; Vlaev, Ivo; Elkin, Sarah
2015-01-01
Recent advances in communication technologies enable potential provision of remote education for patients using computer-generated environments known as virtual worlds. Previous research has revealed highly variable levels of patient receptiveness to using information technologies for healthcare-related purposes. This preliminary study involved implementing a questionnaire investigating attitudes and access to computer technologies of respiratory outpatients, in order to assess potential for use of virtual worlds to facilitate health-related education for this sample. Ninety-four patients with a chronic respiratory condition completed surveys, which were distributed at a Chest Clinic. In accordance with our prediction, younger participants were more likely to be able to use, and have access to a computer and some patients were keen to explore use virtual worlds for healthcare-related purposes: Of those with access to computer facilities, 14.50% expressed a willingness to attend a virtual world focus group. Results indicate future virtual world health education facilities should be designed to cater for younger patients, because this group are most likely to accept and use such facilities. Within the study sample, this is likely to comprise of people diagnosed with asthma. Future work could investigate the potential of creating a virtual world asthma education facility. PMID:28239187
NASA Technical Reports Server (NTRS)
Reeves, R. G. (Compiler)
1972-01-01
Recent studies conducted in the Bonanza Test Site, Colorado, area indicated that: (1) more geologic structural information is available from remote sensing data than from conventional techniques; (2) greater accuracy results from using remote sensing data; (3) all major structural features were detected; (4) of all structural interpretations, about 75% were correct; and (5) interpretation of remote sensing data will not supplant field work, but it enables field work to be done much more efficiently.
The current and potential role of satellite remote sensing in the campaign against malaria
NASA Astrophysics Data System (ADS)
Kazansky, Yaniv; Wood, Danielle; Sutherlun, Jacob
2016-04-01
Malaria and other vector borne diseases claim lives and cause illness, especially in less developed countries. Although well understood methods, such as spraying and insecticidal nets, are identified as effective deterrents to malaria transmission by mosquitoes, the nations that have the greatest burden from the disease also struggle to deploy such measures sufficiently. More targeted and up to date information is needed to identify which regions of malaria-endemic countries are most likely to be at risk of malaria in the near future. This will allow national governments, local officials and public health workers to deploy protective equipment and personnel where they are most needed. This paper explores the role of environmental data generated via satellite remote sensing as an ingredient to a Malaria Early Warning System. Data from remote sensing satellites can cover broad geographical areas frequently and consistently. Much of the relevant data may be accessed by malaria-endemic countries at minimal cost via international data sharing polices. While previous research studies have demonstrated the potential to assign malaria risk to a geographic region based on indicators from satellites and other sources, there is still a need to deploy such tools in a broader and more operational manner to inform decision making on malaria management. This paper describes current research on the use of satellite-based environmental data to predict malaria risk and examines the barriers and opportunities for implementing Malaria Early Warning Systems enabled by satellite remote sensing. A Systems Architecture Framework analyses the components of a Malaria Early Warning System and highlights the need for effective coordination across public and private sector organizations.
A self-fitting hearing aid: need and concept.
Convery, Elizabeth; Keidser, Gitte; Dillon, Harvey; Hartley, Lisa
2011-12-01
The need for reliable access to hearing health care services is growing globally, particularly in developing countries and in remotely located, underserved regions in many parts of the developed world. Individuals with hearing loss in these areas are at a significant disadvantage due to the scarcity of local hearing health care professionals and the high cost of hearing aids. Current approaches to making hearing rehabilitation services more readily available to underserved populations include teleaudiology and the provision of amplification devices outside of the traditional provider-client relationship. Both strategies require access to such resources as dedicated equipment and/or specially trained staff. Another possible strategy is a self-fitting hearing aid, a personal amplification device that is equipped with an onboard tone generator to enable user-controlled, automated, in situ audiometry; an onboard prescription to determine the initial hearing aid settings; and a trainable algorithm to enable user-controlled fine-tuning. The device is thus assembled, fitted, and managed by the user without the need for audiological or computer support. This article details the self-fitting concept and its potential application in both developing and developed countries. Potential advantages and disadvantages of such a device are discussed, and considerations for further investigations into the concept are presented. Overall, the concept is considered technologically viable with the main challenges anticipated to be development of clear, simple user instructions and a delivery model that ensures reliable supplies of instant-fit ear tips and batteries.
Keidser, Gitte; Dillon, Harvey; Hartley, Lisa
2011-01-01
The need for reliable access to hearing health care services is growing globally, particularly in developing countries and in remotely located, underserved regions in many parts of the developed world. Individuals with hearing loss in these areas are at a significant disadvantage due to the scarcity of local hearing health care professionals and the high cost of hearing aids. Current approaches to making hearing rehabilitation services more readily available to underserved populations include teleaudiology and the provision of amplification devices outside of the traditional provider-client relationship. Both strategies require access to such resources as dedicated equipment and/or specially trained staff. Another possible strategy is a self-fitting hearing aid, a personal amplification device that is equipped with an onboard tone generator to enable user-controlled, automated, in situ audiometry; an onboard prescription to determine the initial hearing aid settings; and a trainable algorithm to enable user-controlled fine-tuning. The device is thus assembled, fitted, and managed by the user without the need for audiological or computer support. This article details the self-fitting concept and its potential application in both developing and developed countries. Potential advantages and disadvantages of such a device are discussed, and considerations for further investigations into the concept are presented. Overall, the concept is considered technologically viable with the main challenges anticipated to be development of clear, simple user instructions and a delivery model that ensures reliable supplies of instant-fit ear tips and batteries. PMID:22143873
Virtual and remote experiments for radiometric and photometric measurements
NASA Astrophysics Data System (ADS)
Thoms, L.-J.; Girwidz, R.
2017-09-01
The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net.
Telescience testbedding for life science missions on the Space Station
NASA Technical Reports Server (NTRS)
Rasmussen, D.; Mian, A.; Bosley, J.
1988-01-01
'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.
HTTP-based remote operational options for the Vacuum Tower Telescope, Tenerife
NASA Astrophysics Data System (ADS)
Staiger, J.
2012-09-01
We are currently developing network based tools for the Vacuum Tower Telescope (VTT), Tenerife which will allow to operate the telescope together with the newly developed 2D-spectrometer HELLRIDE under remote control conditions. The computational configuration can be viewed as a distributed system linking hardware components of various functionality from different locations. We have developed a communication protocol which is basically an extension of the HTTP standard. It will serve as a carrier for command- and data-transfers. The server-client software is based on Berkley-Unix sockets in a C++ programming environment. A customized CMS will allow to create browser accessible information on-the-fly. Java-based applet pages have been tested as optional user access GUI's. An access tool has been implemented to download near-realtime, web-based target information from NASA/SDO. Latency tests have been carried out at the VTT and the Swedish STT at La Palma for concept verification. Short response times indicate that under favorable network conditions remote interactive telescope handling may be possible. The scientific focus of possible future remote operations will be set on the helioseismology of the solar atmosphere, the monitoring of flares and the footpoint analysis of coronal loops and chromospheric events.
Dew, Angela; Bulkeley, Kim; Veitch, Craig; Bundy, Anita; Lincoln, Michelle; Brentnall, Jennie; Gallego, Gisselle; Griffiths, Scott
2013-07-01
There is a global movement for people with a disability towards person-centred practices with opportunities for self-determination and choice. Person-centred approaches may involve individual funding (IF) for the purchase of required support. A shift to a person-centred model and IF should allow people with a disability and their carers greater choice in therapy access. However, individuals who live in rural and remote areas have less choice and access to therapy services than their metropolitan counterparts. Drawing on data from a larger study into therapy service delivery in a rural and remote area of New South Wales, Australia, this study describes some benefits and barriers to using IF to access therapy services in rural areas. Ten carers and 60 service providers participated in audio-recorded focus groups and individual interviews during which IF was discussed. Transcribed data were analysed using thematic analysis and constant comparison. Greater access to and choice of therapy providers were identified as benefits of IF. Four barriers were identified: (i) lack of information and advice; (ii) limited local service options and capacity; (iii) higher costs and fewer services and (iv) complexity of self-managing packages. A range of strategies is required to address the barriers to using IF in rural and remote areas. Carers indicated a need for: accessible information; a local contact person for support and guidance; adequate financial compensation to offset additional travel expenses and coordinated eligibility and accountability systems. Service providers required: coordinated cross-sector approaches; local workforce planning to address therapist shortages; certainty around service viability and growth; clear policies and procedures around implementation of IF. This study highlights the need for further discussion and research about how to overcome the barriers to the optimal use of an IF model for those living in rural and remote areas. © 2013 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Tachi, Susumu; Arai, Hirohiko; Maeda, Taro
1989-01-01
Tele-existence is an advanced type of teleoperation system that enables a human operator at the controls to perform remote manipulation tasks dexterously with the feeling that he or she exists in the remote anthropomorphic robot in the remote environment. The concept of a tele-existence is presented, the principle of the tele-existence display method is explained, some of the prototype systems are described, and its space application is discussed.
A Dedicated Environmental Remote Sensing Facility for the Columbia Earth Institute
NASA Technical Reports Server (NTRS)
Weissel, Jeffrey K.; Small, Christopher
1999-01-01
This paper presents a final technical report on a dedicated environmental remote sensing facility for the Columbia Earth Institute. The above-referenced award enabled the Lamont-Doherty Earth Observatory to establish a state-of-the-art remote sensing image analysis and data visualization facility to serve the research and educational needs of students and staff at Lamont and the Columbia Earth Institute.
NASA Astrophysics Data System (ADS)
Cole, M.; Alameh, N.; Bambacus, M.
2006-05-01
The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online at http://esg.gsfc.nasa.gov) acts as a flexible and searchable registry of NASA-related resources (files, services, models, etc) and allows scientists, decision makers and others to discover and retrieve a wide variety of observations and predictions of natural and human phenomena related to Earth Science from NASA and other sources. To support the goals of the Applied Sciences national applications, GIO staff is also working with the national applications communities to identify opportunities where open standards-based discovery and access to NASA data can enhance the decision support process of the national applications. This paper describes the work performed to-date on that front, and summarizes key findings in terms of identified data sources and benefiting national applications. The paper also highlights the challenges encountered in making NASA-related data accessible in a cross-cutting fashion and identifies areas where interoperable approaches can be leveraged.
NASA Astrophysics Data System (ADS)
Bambacus, M.; Alameh, N.; Cole, M.
2006-12-01
The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online at http://esg.gsfc.nasa.gov) acts as a flexible and searchable registry of NASA-related resources (files, services, models, etc) and allows scientists, decision makers and others to discover and retrieve a wide variety of observations and predictions of natural and human phenomena related to Earth Science from NASA and other sources. To support the goals of the Applied Sciences national applications, GIO staff is also working with the national applications communities to identify opportunities where open standards-based discovery and access to NASA data can enhance the decision support process of the national applications. This paper describes the work performed to-date on that front, and summarizes key findings in terms of identified data sources and benefiting national applications. The paper also highlights the challenges encountered in making NASA-related data accessible in a cross-cutting fashion and identifies areas where interoperable approaches can be leveraged.
TerraHertz Free Electron Laser Applications for Satellite Remote Sensing
NASA Technical Reports Server (NTRS)
Heaps, William S.
2003-01-01
The development of a Free Electron Laser (EL) operating in the terahertz frequency regime by the group at the University of Hawaii (Elias et al.) represents a significant new opportunity in the area of atmospheric remote sensing. The FEL has 2 salient features that create a unique opportunity. First of all it represents the only source in this frequency range with sufficient power to enable lidar instrumentation. Secondly its very high electrical efficiency (several times more efficient than any currently employed spaceborne laser) renders it a strong candidate for use in satellite remote sensing. On the negative side the atmosphere is rather strongly absorbing throughout this frequency range due primarily to the water vapor continuum absorption. This means that the instruments using this laser will not be able to access the lower troposphere because of its very high water concentration.. However the instrument will be very capable of measurements in the upper troposphere and stratosphere. A passive instrument, the Microwave Limb Sounder on the UARS satellite operated by Jet Propulsion Laboratory, has already demonstrated that this wavelength region can be used for chemical species with strong emission lines. A lidar would complement the capabilities of this instrument by providing the capability to measure absorbing species in the upper atmosphere. I will discuss the design of such an instrument in greater detail and estimate its performance in measuring a number of chemical species of interest to the Earth Science community.
Telepresence in neurosurgery: the integrated remote neurosurgical system.
Kassell, N F; Downs, J H; Graves, B S
1997-01-01
This paper describes the Integrated Remote Neurosurgical System (IRNS), a remotely-operated neurosurgical microscope with high-speed communications and a surgeon-accessible user interface. The IRNS will allow high quality bidirectional mentoring in the neurosurgical suite. The research goals of this effort are twofold: to develop a clinical system allowing a remote neurosurgeon to lend expertise to the OR-based neurosurgical team and to provide an integrated training environment. The IRNS incorporates a generic microscope/transport model, Called SuMIT (Surgical Manipulator Interface Translator). Our system is currently under test using the Zeiss MKM surgical transport. A SuMIT interface is also being constructed for the Robotics Research 1607. The IRNS Remote Planning and Navigation Workstation incorporates surgical planning capabilities, real-time, 30 fps video from the microscope and overhead video camera. The remote workstation includes a force reflecting handcontroller which gives the remote surgeon an intuitive way to position the microscope head. Bidirectional audio, video whiteboarding, and image archiving are also supported by the remote workstation. A simulation mode permits pre-surgical simulation, post-surgical critique, and training for surgeons without access to an actual microscope transport system. The components of the IRNS are integrated using ATM switching to provide low latency data transfer. The research, along with the more sophisticated systems that will follow, will serve as a foundation and test-bed for extending the surgeon's skills without regard to time zone or geographic boundaries.
Remote Access to CD-ROM for the Distant Learner.
ERIC Educational Resources Information Center
Cutright, Patricia; Girrard, Kenneth M.
1991-01-01
A dial-access, multiuser, multiaccess CD-ROM search system with end-user capability was developed to provide Eastern Oregon State College distance education students with access to the information required by their studies. Based on UNIX, the system provides students with access to 12 databases, an e-mail system for messaging, interlibrary loan…
A REMOTE SENSING AND GIS-ENABLED HIGHWAY ASSET MANAGEMENT SYSTEM PHASE 2
DOT National Transportation Integrated Search
2018-02-02
The objective of this project is to validate the use of commercial remote sensing and spatial information (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile light detection and ranging (LiDAR), image processing algorit...
A remote sensing and GIS-enabled highway asset management system : final report.
DOT National Transportation Integrated Search
2016-04-01
The objective of this project is to validate the use of commercial remote sensing and spatial information : (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile LiDAR, image : processing algorithms, and GPS/GIS technolog...
The SPAN cookbook: A practical guide to accessing SPAN
NASA Technical Reports Server (NTRS)
Mason, Stephanie; Tencati, Ronald D.; Stern, David M.; Capps, Kimberly D.; Dorman, Gary; Peters, David J.
1990-01-01
This is a manual for remote users who wish to send electronic mail messages from the Space Physics Analysis Network (SPAN) to scientific colleagues on other computer networks and vice versa. In several instances more than one gateway has been included for the same network. Users are provided with an introduction to each network listed with helpful details about accessing the system and mail syntax examples. Also included is information on file transfers, remote logins, and help telephone numbers.
Virtual Interactive Classroom: A New Technology for Distance Learning Developed
NASA Technical Reports Server (NTRS)
York, David W.; Babula, Maria
1999-01-01
The Virtual Interactive Classroom (VIC) allows Internet users, specifically students, to remotely control and access data from scientific equipment. This is a significant advantage to school systems that cannot afford experimental equipment, have Internet access, and are seeking to improve science and math scores with current resources. A VIC Development Lab was established at Lewis to demonstrate that scientific equipment can be controlled by remote users over the Internet. Current projects include a wind tunnel, a room camera, a science table, and a microscope.
Adams, Robyn; Jones, Anne; Lefmann, Sophie; Sheppard, Lorraine
2015-03-27
Deciding what health services are provided is a key consideration in delivering appropriate and accessible health care for rural and remote populations. Despite residents of rural communities experiencing poorer health outcomes and exhibiting higher health need, workforce shortages and maldistribution mean that rural communities do not have access to the range of services available in metropolitan centres. Where demand exceeds available resources, decisions about resource allocation are required. A qualitative approach enabled the researchers to explore participant perspectives about decisions informing rural physiotherapy service provision. Stakeholder perspectives were obtained through surveys and in-depth interviews. A system theory-case study heuristic provided a framework for exploration across sites within the investigation area: a large area of one Australian state with a mix of rural, regional and remote communities. Thirty-nine surveys were received from participants in eleven communities. Nineteen in-depth interviews were conducted with physiotherapist and key decision-makers. Increasing demand, organisational priorities, fiscal austerity measures and workforce challenges were identified as factors influencing both decision-making and service provision. Rationing of physiotherapy services was common to all sites of this study. Rationing of services, more commonly expressed as service prioritisation, was more evident in responses of public sector physiotherapy participants compared to private physiotherapists. However, private physiotherapists in rural areas reported capacity limits, including expertise, space and affordability that constrained service provision. The imbalance between increasing service demands and limited physiotherapy capacity meant making choices was inevitable. Decreased community access to local physiotherapy services and increased workforce stress, a key determinant of retention, are two results of such choices or decisions. Decreased access was particularly evident for adults and children requiring neurological rehabilitation and for people requiring post-acute physiotherapy. It should not be presumed that rural private physiotherapy providers will cover service gaps that may emerge from changes to public sector service provision. Clinician preference combines with capacity limits and the imperative of financial viability to negate such assumptions. This study provides insight into rural physiotherapy service provision not usually evident and can be used to inform health service planning and decision-making and education of current and future rural physiotherapists.
Effect of security threats on primary care access in Logar province, Afghanistan.
Morikawa, Masahiro J
2008-01-01
Security threats are a major concern for access to health care in many war-torn communities; however, there is little quantified data on actual access to care in rural communities during war. Kinderberg International e.V. provided primary care in rural Logar province, Afghanistan, for these three years in eight districts until they were integrated into the new health care structure led by the Ministry of Health in early 2005. We examined the number of patients visiting our clinic before and during the security threats related to the parliamentary election and subsequent national assembly in 2004. The number of patients declined in remote clinics while the number increased in central locations. This finding has an important practical implication: the monitoring of access to care should include remote clinics, otherwise it may potentially underestimate compromised access to health care due to security threats.
Karpievitch, Yuliya V; Almeida, Jonas S
2006-01-01
Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707
Karpievitch, Yuliya V; Almeida, Jonas S
2006-03-15
Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.
Barnett, Tony; Hoang, Ha; Stuart, Jackie; Crocombe, Len
2015-10-29
To investigate the challenges of providing oral health advice/treatment as experienced by non-dental primary care providers in rural and remote areas with no resident dentist, and their views on ways in which oral health and oral health services could be improved for their communities. Qualitative study with semistructured interviews and thematic analysis. Four remote communities in outback Queensland, Australia. 35 primary care providers who had experience in providing oral health advice to patients and four dental care providers who had provided oral health services to patients from the four communities. In the absence of a resident dentist, rural and remote residents did present to non-dental primary care providers with oral health problems such as toothache, abscess, oral/gum infection and sore mouth for treatment and advice. Themes emerged from the interview data around communication challenges and strategies to improve oral health. Although, non-dental care providers commonly advised patients to see a dentist, they rarely communicated with the dentist in the nearest regional town. Participants proposed that oral health could be improved by: enabling access to dental practitioners, educating communities on preventive oral healthcare, and building the skills and knowledge base of non-dental primary care providers in the field of oral health. Prevention is a cornerstone to better oral health in rural and remote communities as well as in more urbanised communities. Strategies to improve the provision of dental services by either visiting or resident dental practitioners should include scope to provide community-based oral health promotion activities, and to engage more closely with other primary care service providers in these small communities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
A Survey of Ethics Content in College-Level Remote Sensing Courses in the United States
ERIC Educational Resources Information Center
Wetherholt, William A.; Rundquist, Bradley C.
2010-01-01
Easier access to submeter imagery has fueled debates over ethical uses of remote sensing. Some have called for ethics instruction to counter undesired uses of the technology. Here, this article reports the results of a survey examining attitudes related to teaching ethics in remote sensing. It was found that 52 percent of respondents teaching…
ERIC Educational Resources Information Center
Childers, Gina; Jones, M. Gail
2017-01-01
Through partnerships with scientists, students can now conduct research in science laboratories from a distance through remote access technologies. The purpose of this study was to explore factors that contribute to a remote learning environment by documenting high school students' perceptions of science motivation, science identity, and virtual…
Moreno, Gerardo; Lin, Elizabeth H; Chang, Eva; Johnson, Ron L; Berthoud, Heidi; Solomon, Cam C; Morales, Leo S
2016-03-01
Health systems are increasingly implementing remote telephone and Internet refill systems to enhance patient access to medication refills. Remote refill systems may provide an effective approach for improving medication non-adherence, but more research is needed among patients with limited English proficiency with poor access to remote refill systems. To compare the use of remote medication refill systems among limited-English-proficiency (LEP) and English-proficient (EP) patients with chronic conditions. Cross-sectional survey in six languages/dialects (English, Cantonese, Mandarin, Korean, Vietnamese, and Spanish) of 509 adults with diabetes, hypertension, or hyperlipidemia. Primary study outcomes were self-reported use of 1) Internet refills, 2) telephone refills, and 3) any remote refill system. LEP was measured by patient self-identification of a primary language other than English and a claims record of use of an interpreter. Other measures were age, gender, education, years in the U.S., insurance, health status, chronic conditions, and number of prescribed medications. Analyses included multivariable logistic regression weighted for survey non-response. Overall, 33.1 % of patients refilled their medications by telephone and 31.6 % by Internet. Among LEP patients (n = 328), 31.5 % refilled by telephone and 21.2 % by Internet, compared with 36.7 % by telephone and 52.7 % by Internet among EP patients (n = 181). Internet refill by language groups were as follows: English (52.7 %), Cantonese (34.9 %), Mandarin (17.4 %), Korean (16.7 %), Vietnamese (24.4 %), and Spanish (12.6 %). Compared to EP patients, LEP patients had lower use of any remote refill system (adjusted odds ratio [AOR] 0.18; p < 0.001), CONCLUSIONS: LEP patients are significantly less likely than EP patients to use any remote medication refill system. Increased reliance on current systems for remote medication refills may increase disparities in health outcomes affecting LEP patients with poor access to telephone and Internet medication refills.
Agronomic Challenges and Opportunities for Smallholder Terrace Agriculture in Developing Countries
Chapagain, Tejendra; Raizada, Manish N.
2017-01-01
Improving land productivity is essential to meet increasing food and forage demands in hillside and mountain communities. Tens of millions of smallholder terrace farmers in Asia, Africa, and Latin America who earn $1–2 per day do not have access to peer-reviewed knowledge of best agronomic practices, though they have considerable traditional ecological knowledge. Terrace farmers also lack access to affordable farm tools and inputs required to increase crop yields. The objectives of this review are to highlight the agronomic challenges of terrace farming, and offer innovative, low-cost solutions to intensify terrace agriculture while improving local livelihoods. The article focuses on smallholder farmers in developing nations, with particular reference to Nepal. The challenges of terrace agriculture in these regions include lack of quality land area for agriculture, erosion and loss of soil fertility, low yield, poor access to agricultural inputs and services, lack of mechanization, labor shortages, poverty, and illiteracy. Agronomic strategies that could help address these concerns include intensification of terraces using agro-ecological approaches along with introduction of light-weight, low-cost, and purchasable tools and affordable inputs that enhance productivity and reduce female drudgery. To package, deliver, and share these technologies with remote hillside communities, effective scaling up models are required. One opportunity to enable distribution of these products could be to “piggy-back” onto pre-existing snackfood/cigarette/alcohol distribution networks that are prevalent even in the most remote mountainous regions of the world. Such strategies, practices, and tools could be supported by formalized government policies dedicated to the well-being of terrace farmers and ecosystems, to maintain resiliency at a time of alarming climate change. We hope this review will inform governments, non-governmental organizations, and the private sector to draw attention to this neglected and vulnerable agro-ecosystem in developing countries. PMID:28367150
Siegel, Gabriel; Regelman, Dan; Maronpot, Robert; Rosenstock, Moti; Nyska, Abraham
2017-12-01
Real-time telepathology for use in investigative and regulated preclinical toxicology studies is now feasible. Newly developed microscope-integrated telepathology systems enable geographically remote stakeholders to view the live histopathology slide as seen by the study pathologist within the microscope. Simultaneous online viewing and dialog between study pathologist and remote colleagues is an efficient and cost-effective means for consultation, pathology working groups, and peer review, facilitating good science and economic benefits by enabling more timely and informed clinical decisions.
78 FR 22527 - TRICARE Access to Care Demonstration Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... DEPARTMENT OF DEFENSE Office of the Secretary TRICARE Access to Care Demonstration Project AGENCY... Access to Care Demonstration for TRICARE Prime/TRICARE Prime Remote Beneficiaries. SUMMARY: This notice... to utilize four visits per fiscal year to TRICARE authorized Urgent Care Centers without obtaining an...
Lab4CE: A Remote Laboratory for Computer Education
ERIC Educational Resources Information Center
Broisin, Julien; Venant, Rémi; Vidal, Philippe
2017-01-01
Remote practical activities have been demonstrated to be efficient when learners come to acquire inquiry skills. In computer science education, virtualization technologies are gaining popularity as this technological advance enables instructors to implement realistic practical learning activities, and learners to engage in authentic and…
Advances in understanding the optics of shallow water environments, submerged vegetation canopies and seagrass physiology, combined with improved spatial resolution of remote sensing platforms, now enable eelgrass ecosystems to be monitored at a variety of time scales from earth-...
Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation
Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.
2014-01-01
Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823
Shannon, Gary William; Buker, Carol Marie
2010-01-01
Teledermatology provides a partial solution to the problem of accessibility to dermatology services in underserved areas, yet methodologies to determine the locations and geographic dimensions of these areas and the locational efficiency of remote teledermatology sites have been found wanting. This article illustrates an innovative Geographic Information Systems approach using dermatologists' addresses, U.S. Census population data, and the Topologically Integrated Geographic Encoding and Referencing System. Travel-time-based service areas were calculated and mapped for each dermatologist in the state of Kentucky and for possible locations of several remote teledermatology sites. Populations within the current and possible remote service areas were determined. These populations and associated maps permit assessment of the locational efficiency of the current distribution of dermatologists, location of underserved areas, and the potential contribution of proposed hypothetical teledermatology sites. This approach is a valuable and practical tool for evaluating access to current distributions of dermatologists as well as planning for and implementing teledermatology.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb action with a Nintendo Wii Remote Controller and a newly developed limb action detection program (LADP, i.e., a new software program that turns a Wii Remote Controller into a precise limb action detector). This study was…
Hans-Erik Andersen; Strunk Jacob; Hailemariam Temesgen; Donald Atwood; Ken Winterberger
2012-01-01
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual...
2011-06-01
Remote sensing from space provides critical data for many commercial space applications. Due to global market demand, it has undergone tremendous...commercial space imaging capability in the future, remote sensing policy makers, systems engineers, and industry analysts must be aware of the implications to United States National Security....available dissemination and accessibility. The analysis results, together with the findings from a review of commercial programs, initiatives, and remote
Infrastructure for Reaching Disadvantaged Consumers
Hovenga, Evelyn J. S.; Hovel, Joe; Klotz, Jeanette; Robins, Patricia
1998-01-01
Both consumers and health service providers need access to up-to-date information, including patient and practice guidelines, that allows them to make decisions in partnership about individual and public health in line with the primary health care model of health service delivery. Only then is it possible for patient preferences to be considered while the health of the general population is improved. The Commonwealth Government of Australia has allocated $250 million over five years, starting July 1, 1997, to support activities and projects designed to meet a range of telecommunication needs in regional, rural, and remote Australia. This paper defines rural and remote communities, then reviews rural and remote health services, information, and telecommunication technology infrastructures and their use in Australia to establish the current state of access to information tools by rural and remote communities and rural health workers in Australia today. It is argued that a suitable telecommunication infrastructure is needed to reach disadvantaged persons in extremely remote areas and that intersectoral support is essential to build this infrastructure. In addition, education will make its utilization possible. PMID:9609497
Industrial biomanufacturing: The future of chemical production.
Clomburg, James M; Crumbley, Anna M; Gonzalez, Ramon
2017-01-06
The current model for industrial chemical manufacturing employs large-scale megafacilities that benefit from economies of unit scale. However, this strategy faces environmental, geographical, political, and economic challenges associated with energy and manufacturing demands. We review how exploiting biological processes for manufacturing (i.e., industrial biomanufacturing) addresses these concerns while also supporting and benefiting from economies of unit number. Key to this approach is the inherent small scale and capital efficiency of bioprocesses and the ability of engineered biocatalysts to produce designer products at high carbon and energy efficiency with adjustable output, at high selectivity, and under mild process conditions. The biological conversion of single-carbon compounds represents a test bed to establish this paradigm, enabling rapid, mobile, and widespread deployment, access to remote and distributed resources, and adaptation to new and changing markets. Copyright © 2017, American Association for the Advancement of Science.
The Montage architecture for grid-enabled science processing of large, distributed datasets
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Katz, Daniel S .; Prince, Thomas; Berriman, Bruce G.; Good, John C.; Laity, Anastasia C.; Deelman, Ewa; Singh, Gurmeet; Su, Mei-Hui
2004-01-01
Montage is an Earth Science Technology Office (ESTO) Computational Technologies (CT) Round III Grand Challenge investigation to deploy a portable, compute-intensive, custom astronomical image mosaicking service for the National Virtual Observatory (NVO). Although Montage is developing a compute- and data-intensive service for the astronomy community, we are also helping to address a problem that spans both Earth and Space science, namely how to efficiently access and process multi-terabyte, distributed datasets. In both communities, the datasets are massive, and are stored in distributed archives that are, in most cases, remote from the available Computational resources. Therefore, state of the art computational grid technologies are a key element of the Montage portal architecture. This paper describes the aspects of the Montage design that are applicable to both the Earth and Space science communities.
Achieving Efficient Spectrum Usage in Passive and Active Sensing
NASA Astrophysics Data System (ADS)
Wang, Huaiyi
Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.
Operating room integration and telehealth.
Bucholz, Richard D; Laycock, Keith A; McDurmont, Leslie
2011-01-01
The increasing use of advanced automated and computer-controlled systems and devices in surgical procedures has resulted in problems arising from the crowding of the operating room with equipment and the incompatible control and communication standards associated with each system. This lack of compatibility between systems and centralized control means that the surgeon is frequently required to interact with multiple computer interfaces in order to obtain updates and exert control over the various devices at his disposal. To reduce this complexity and provide the surgeon with more complete and precise control of the operating room systems, a unified interface and communication network has been developed. In addition to improving efficiency, this network also allows the surgeon to grant remote access to consultants and observers at other institutions, enabling experts to participate in the procedure without having to travel to the site.
NASA Technical Reports Server (NTRS)
Moeller, Christopher C.; Gunshor, M. M.; Menzel, W. P.; Huh, O. K.; Walker, N. D.; Rouse, L. J.
2001-01-01
The University nf Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to model coastal circulation and resuspend sediments along the micro tidal Louisiana coast (Roberts et at. 1987, Moeller et al. 1993). Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Suspended sediment is a building material for coastal progradation and wetlands renewal, but also restricts access to marine nursery environments and impacts oyster bed health. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODerate resolution Imaging Spectroradiometer (MODIS; Barnes et al. 1998) observations may enable estimates of SSC globally.
An ingestible bacterial-electronic system to monitor gastrointestinal health.
Mimee, Mark; Nadeau, Phillip; Hayward, Alison; Carim, Sean; Flanagan, Sarah; Jerger, Logan; Collins, Joy; McDonnell, Shane; Swartwout, Richard; Citorik, Robert J; Bulović, Vladimir; Langer, Robert; Traverso, Giovanni; Chandrakasan, Anantha P; Lu, Timothy K
2018-05-25
Biomolecular monitoring in the gastrointestinal tract could offer rapid, precise disease detection and management but is impeded by access to the remote and complex environment. Here, we present an ingestible micro-bio-electronic device (IMBED) for in situ biomolecular detection based on environmentally resilient biosensor bacteria and miniaturized luminescence readout electronics that wirelessly communicate with an external device. As a proof of concept, we engineer heme-sensitive probiotic biosensors and demonstrate accurate diagnosis of gastrointestinal bleeding in swine. Additionally, we integrate alternative biosensors to demonstrate modularity and extensibility of the detection platform. IMBEDs enable new opportunities for gastrointestinal biomarker discovery and could transform the management and diagnosis of gastrointestinal disease. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Universal blind quantum computation for hybrid system
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
Remote Library Access for Pharmacy Preceptors
Soltis, Denise; Schott, Kathy
2010-01-01
Objective To institute and evaluate the response to a program providing access to electronic library resources for pharmacy preceptors. Design The pharmacy experiential office and the library collaborated using existing programs and technology to provide and market secure remote access for preceptors. Assessment Preceptor participation was tracked in the experiential office, and response to the program was assessed using an online survey instrument that included questions about use of and preference for specific library resources. Three hundred thirty-four adjunct faculty members registered, representing 34% of all preceptors with active e-mail accounts. Conclusion Preceptor participation in the program exceeded expectations. Some minor flaws in the logistics of delivering the service were identified and remedied. PMID:21179247
Remote Sensing Information Gateway (RSIG3D) Fact Sheet
The Remote Sensing Information Gateway-3D (RSIG3D) is a free and downloadable application that provides easy and secure access to petabytes (millions of gigabytes) of atmospheric data that can be used to study complex air quality issues.
Los Alamos National Laboratory Research Library Search Site submit Contact Us | Remote Access | Subject Guides Los Alamos National Laboratory Menu Contacts Remote Catalog About Awards Electronic Public Research Library: delivering essential knowledge services for national security sciences since 1947 Los
NASA Technical Reports Server (NTRS)
Kempler, Steven; Stephens, Graeme; Winkler, Dave; Leptoukh, Greg; Reinke, Don; Smith, Peter
2006-01-01
The succession of US and international Earth observing satellites that follow each other, seconds to minutes apart, across the local afternoon equator crossing is called the ATrain. The A-Train consists of the following satellites, in order of equator crossing: OCO, EOS Aqua, CloudSat, CALIPSO, PARASOL, and EOS Aura. Flying in such formation increases the number of observations, validates observations, and enables coordination between science observations, resulting in a more complete virtual science platform (Kelly, 2000). The goal of this project is to create the first ever A-Train virtual data portal/center, the A-Train Data Depot (ATDD), to process, archive, access, visualize, analyze and correlate distributed atmosphere measurements from various A-Train instruments along A-Train tracks. The ATDD will enable the free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. Once the infrastructure of the ATDD is in place, it will be easily evolved to serve data from all A-Train data measurements: one stop shopping. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) will be accommodated by reusing the GSFC Atmospheric Composition Data and Information Services Center (ACDISC) visualization and analysis tool, GIOVANNI, existing data reduction tools, on-line archiving for fast data access, access to remote data without unnecessary data transfers, and data retrieval by users finding data desirable for further study. Initial measurements utilized include CALIPSO lidar backscatter, CloudSat radar reflectivity, clear air relative humidity, water vapor and temperature from AIRS, and cloud properties and aerosols from both MODIS. This will be foilowed by associated measurements from TVILS, =MI, HIRDLS, sad TES. Given the independent nature of instrumentlplatform development, the ATDD project has been met with many interesting challenges that, once resolved, will provide a much greater understanding of the relative flight dynamics and data co-registration of the suite of A-Train instruments, thus greatly increasing the accuracy of A-Train data analysis. Some of these challenges will be illustrated and discussed. The project's early visualizations and analysis efforts illustrate the importance of managing data so that measurements from various missions can be combined to enhance the understanding of the atmosphere. A-Train data management coordination, as performed here, is extremely significant in facilitating the A-Train science of clouds, precipitation, aerosol and chemistry.
NASA Astrophysics Data System (ADS)
Kempler, S.; Stephens, G.; Winker, D.; Leptoukh, G.; Reinke, D.; Smith, P.; Savtchenko, A.; Kummerer, R.; Mao, J.
2006-12-01
The succession of US and international Earth observing satellites that follow each other, seconds to minutes apart, across the local afternoon equator crossing is called the A-Train. The A-Train consists of the following satellites, in order of equator crossing: OCO, EOS Aqua, CloudSat, CALIPSO, PARASOL, and EOS Aura. Flying in such formation increases the number of observations, validates observations, and enables coordination between science observations, resulting in a more complete virtual science platform (Kelly, 2000) The goal of this project is to create the first ever A-Train virtual data portal/center, the A-Train Data Depot (ATDD), to process, archive, access, visualize, analyze and correlate distributed atmosphere measurements from various A-Train instruments along A-Train tracks. The ATDD will enable the free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. Once the infrastructure of the ATDD is in place, it will be easily evolved to serve data from all A-Train data measurements: one stop shopping. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) will be accommodated by reusing the GSFC Atmospheric Composition Data and Information Services Center (ACDISC) visualization and analysis tool, GIOVANNI, existing data reduction tools, on-line archiving for fast data access, access to remote data without unnecessary data transfers, and data retrieval by users finding data desirable for further study. Initial measurements utilized include CALIPSO lidar backscatter, CloudSat radar reflectivity, clear air relative humidity, water vapor and temperature from AIRS, and cloud properties and aerosols from both MODIS. This will be followed by associated measurements from MLS, OMI, HIRDLS, and TES. Given the independent nature of instrument/platform development, the ATDD project has been met with many interesting challenges that, once resolved, will provide a much greater understanding of the relative flight dynamics and data co-registration of the suite of A-Train instruments, thus greatly increasing the accuracy of A-Train data analysis. Some of these challenges will be illustrated and discussed. The project's early visualizations and analysis efforts illustrate the importance of managing data so that measurements from various missions can be combined to enhance the understanding of the atmosphere. A-Train data management coordination, as performed here, is extremely significant in facilitating the A-Train science of clouds, precipitation, aerosol and chemistry.
Remote focusing for programmable multi-layer differential multiphoton microscopy
Hoover, Erich E.; Young, Michael D.; Chandler, Eric V.; Luo, Anding; Field, Jeffrey J.; Sheetz, Kraig E.; Sylvester, Anne W.; Squier, Jeff A.
2010-01-01
We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes. PMID:21326641
Method for remote detection of trace contaminants
Simonson, Robert J.; Hance, Bradley G.
2003-09-09
A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.
Integrating Social Networks and Remote Patient Monitoring Systems to Disseminate Notifications.
Ribeiro, Hugo A; Germano, Eliseu; Carvalho, Sergio T; Albuquerque, Eduardo S
2017-01-01
Healthcare workforce shortage can be compensated by using information and communication technologies. Remote patient monitoring systems allow us to identify and communicate complications and anomalies. Integrating social networking services into remote patient monitoring systems enables users to manage their relationships. User defined relationships may be used to disseminate healthcare related notifications. Hence this integration leads to quicker interventions and may reduce hospital readmission rate. As a proof of concept, a module was integrated to a remote patient monitoring platform. A mobile application to manage relationships and receive notifications was also developed.
NASA Glenn OHIOVIEW FY01/02 Project
NASA Technical Reports Server (NTRS)
2003-01-01
The results of the research performed by the university principal investigators are herein compiled. OhioView's general goals were: 1) To increase remote sensing education for Ohio s undergraduate and graduate students, and also enhancing curriculum in the mathematics and science for K-12 students using the capabilities of remote sensing; 2) To conduct advanced research to develop novel remote sensing applications, i.e. to turn data into information for more applications; 3) To maximize the use of remote sensing technology by the general public through outreach and the development of tools for more user-friendly access to remote sensing data.
Guo, Yiting Emily; Togher, Leanne; Power, Emma; Hutomo, Edwin; Yang, Yi-Fei; Tay, Arthur; Yen, Shih-Cheng; Koh, Gerald Choon-Huat
2017-04-01
Access2Aphasia™ is an iPad™-based aphasia assessment application that enables real-time audiovisual communication between people with aphasia (PWA) and speech-language pathologists (SLPs), and the use of supported conversation techniques. This study aimed to establish the reliability of aphasia assessment across the International Classification of Functioning, Disability and Health (ICF) using Access2Aphasia, and compare it with face-to-face (FTF) assessment. Consumer perspectives of Access2Aphasia were also examined. Thirty PWA were randomized into two conditions: online-led and FTF assessment. Participants in the online-led group were assessed remotely using Access2Aphasia™ in their own homes, while an FTF SLP scored silently simultaneously. Participants in the FTF group were assessed FTF using standard administration materials. Assessment included two subtests of the Psycholinguistic Assessment of Language Processing Activities (PALPA) and the Assessment of Living with Aphasia (ALA) to allow for outcomes to be captured across the ICF domains. Consumer perspectives on Access2Aphasia were obtained from both PWA and research SLPs in the online-led group. Kappa statistics indicated moderate to almost perfect agreement between online and FTF SLPs (k = 0.71-1.00). Intrarater and interrater reliability was excellent (ICC = 0.99-1.00) and equivalent for the online-led and FTF conditions. Both PWA and research SLPs in the online-led group reported being satisfied with the experience overall, with suggestions provided by research SLPs to improve Access2Aphasia. This study supports the provision of iPad-based aphasia assessments across the ICF in the online environment, with comparable reliability to FTF assessments. Future research is warranted to support the development of iPad-based aphasia assessment and treatment as an alternative mode of service delivery to PWA.
NASA Astrophysics Data System (ADS)
Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.
2005-05-01
Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with the system. We are currently testing the system at two sites on the Colorado River in Grand Canyon and at one critical monitoring site on the Paria River where we have deployed suites of instruments for monitoring flow, sediment concentration, temperature, and conductivity. One aspect of the system that may be particularly useful for ecohydrological applications is the ability to remotely control on-site pump samplers, which allows for the collection of a water sample by the press of a button in the office.
A security architecture for interconnecting health information systems.
Gritzalis, Dimitris; Lambrinoudakis, Costas
2004-03-31
Several hereditary and other chronic diseases necessitate continuous and complicated health care procedures, typically offered in different, often distant, health care units. Inevitably, the medical records of patients suffering from such diseases become complex, grow in size very fast and are scattered all over the units involved in the care process, hindering communication of information between health care professionals. Web-based electronic medical records have been recently proposed as the solution to the above problem, facilitating the interconnection of the health care units in the sense that health care professionals can now access the complete medical record of the patient, even if it is distributed in several remote units. However, by allowing users to access information from virtually anywhere, the universe of ineligible people who may attempt to harm the system is dramatically expanded, thus severely complicating the design and implementation of a secure environment. This paper presents a security architecture that has been mainly designed for providing authentication and authorization services in web-based distributed systems. The architecture has been based on a role-based access scheme and on the implementation of an intelligent security agent per site (i.e. health care unit). This intelligent security agent: (a). authenticates the users, local or remote, that can access the local resources; (b). assigns, through temporary certificates, access privileges to the authenticated users in accordance to their role; and (c). communicates to other sites (through the respective security agents) information about the local users that may need to access information stored in other sites, as well as about local resources that can be accessed remotely.
Remote powering platform for implantable sensor systems at 2.45 GHz.
Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine
2014-01-01
Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.
NASA Astrophysics Data System (ADS)
Hori, Masahiro; Kato, Takashi
While focusing on the human-computer interaction side of the Web content delivery, this article discusses problems and prospects of the mobile Web and Web accessibility in terms of what lessons and experiences we have gained from Web accessibility and what they can say about the mobile Web. One aim is to draw particular attention to the importance of explicitly distinguishing between perceptual and cognitive aspects of the users’ interactions with the Web. Another is to emphasize the increased importance of scenario-based evaluation and remote testing for the mobile Web where the limited screen space and a variety of environmental factors of mobile use are critical design issues. A newly devised inspection type of evaluation method that focuses on the perceptual-cognitive distinction of accessibility and usability issues is presented as a viable means of scenario-based, remote testing for the Web.
Expanding Your Laboratory by Accessing Collaboratory Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, David W.; Burton, Sarah D.; Peterson, Michael R.
2004-03-01
The Environmental Molecular Sciences Laboratory (EMSL) in Richland, Washington, is the home of a research facility setup by the United States Department of Energy (DOE). The facility is atypical because it houses over 100 cutting-edge research systems for the use of researchers all over the United States and the world. Access to the lab is requested through a peer-review proposal process and the scientists who use the facility are generally referred to as ‘users’. There are six main research facilities housed in EMSL, all of which host visiting researchers. Several of these facilities also participate in the EMSL Collaboratory, amore » remote access capability supported by EMSL operations funds. Of these, the High-Field Magnetic Resonance Facility (HFMRF) and Molecular Science Computing Facility (MSCF) have a significant number of their users performing remote work. The HFMRF in EMSL currently houses 12 NMR spectrometers that range in magnet field strength from 7.05T to 21.1T. Staff associated with the NMR facility offers scientific expertise in the areas of structural biology, solid-state materials/catalyst characterization, and magnetic resonance imaging (MRI) techniques. The way in which the HFMRF operates, with a high level of dedication to remote operation across the full suite of High-Field NMR spectrometers, has earned it the name “Virtual NMR Facility”. This review will focus on the operational aspects of remote research done in the High-Field Magnetic Resonance Facility and the computer tools that make remote experiments possible.« less
Vacuum-Gauge Connection For Shipping Container
NASA Technical Reports Server (NTRS)
Henry, Robert H.
1990-01-01
External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.
Analysis of Access Control Policies in Operating Systems
ERIC Educational Resources Information Center
Chen, Hong
2009-01-01
Operating systems rely heavily on access control mechanisms to achieve security goals and defend against remote and local attacks. The complexities of modern access control mechanisms and the scale of policy configurations are often overwhelming to system administrators and software developers. Therefore, mis-configurations are common, and the…
Central and peripheral information source use among rural and remote Registered Nurses.
Kosteniuk, Julie G; D'Arcy, Carl; Stewart, Norma; Smith, Barbara
2006-07-01
This paper reports a study examining the use of central (colleagues, inservice and newsletters) and peripheral information sources (Internet, library, journal subscriptions and continuing education) among a large sample of rural and remote nurses and explores the factors associated with the use of particular peripheral information sources. There have been few studies of the specific sources of information accessed by Registered Nurses, particularly rural or remote nurses, and the characteristics of nurses and their organizations that are associated with the use of particular information sources. A questionnaire survey was conducted with 3933 Registered Nurses from all regions of rural and remote Canada between October 2001 and July 2002. We used frequencies and cross-tabulations to describe rates of information use, and forward selection logistic regression with likelihood ratio selection to build the best-fitting model of the variables that affected the odds of using each peripheral information source. Nursing colleagues ranked as the information source most frequently used, and the Internet and library ranked lowest. On average, nurses used a statistically significantly greater number of central than peripheral sources. Peripheral information source use was higher among nurses who had access to current information, opportunities to share their knowledge with others, higher education levels, were in positions of authority and worked with healthcare students. The associations between age and geographical location varied according to the peripheral information source under consideration. The vast majority of rural and remote nurses used at least one peripheral information source to inform their practice. Increasing the number of research sources used by these nurses requires attention to issues of information access in these areas, as well as issues of staff recruitment and retention of staff in under-serviced rural and remote regions.
Application and Utility of iPads in Pediatric Tele-echocardiography.
Colombo, Jamie N; Seckeler, Michael D; Barber, Brent J; Krupinski, Elizabeth A; Weinstein, Ronald S; Sisk, David; Lax, Daniela
2016-05-01
Telemedicine is used with increasing frequency to improve patient care in remote areas. The interpretation of medical imaging on iPad(®) (Apple, Cupertino, CA) tablets has been reported to be accurate. There are no studies on the use of iPads for interpretation of pediatric echocardiograms. We compared the quality of echo images, diagnostic accuracy, and review time using three different modalities: remote access on an iPad Air (iPad), remote access via a computer (Remote), and direct access on a computer linked through Ethernet to the server, the "gold standard" (Direct). Fifty consecutive archived pediatric echocardiograms were interpreted using the three modalities. Studies were analyzed blindly by three pediatric cardiologists; review time, diagnostic accuracy, and image quality were documented. Diagnostic accuracy was assessed by comparing the study diagnoses with the official diagnosis in the patient's chart. Discrepancies between diagnoses were graded as major (more than one grade difference) or minor (one grade difference in severity of lesion). There were no significant differences in accuracy among the three modalities. There was one major discrepancy (size of patent ductus arteriosus); all others were minor, hemodynamically insignificant. Image quality ratings were better for iPad than Remote; Direct had the highest ratings. Review times (mean [standard deviation] minutes) were longest for iPad (5.89 [3.87]) and then Remote (4.72 [2.69]), with Direct having the shortest times (3.52 [1.42]) (p < 0.0001). Pediatric echocardiograms can be interpreted using convenient, portable devices while preserving accuracy and quality with slightly longer review times (1-2 min). These findings are important in the current era of increasing need for mobile health.
A comparative cost analysis of an integrated military telemental health-care service.
Grady, Brian J
2002-01-01
The National Naval Medical Center, Bethesda, Maryland, integrated telemental health care into its primary behavioral health-care outreach service in 1998. To date, there have been over 1,800 telemental health visits, and the service encounters approximately 100 visits per month at this time. The objective of this study was to compare and contrast the costs to the beneficiary, the medical system, and the military organization as a whole via one of the four methods currently employed to access mental health care from remotely located military medical clinics. The four methods include local access via the military's civilian health maintenance organization (HMO) network, patient travel to the military treatment facility, military mental health specialists' travel to the remote clinic (circuit riding) and TeleMental Healthcare (TMH). Interactive video conferencing, phone, electronic mail, and facsimile were used to provide telemental health care from a military treatment facility to a remote military medical clinic. The costs of health-care services, equipment, patient travel, lost work time, and communications were tabulated and evaluated. While the purpose of providing telemental healthcare services was to improve access to mental health care for our beneficiaries at remote military medical clinics, it became apparent that this could be done at comparable or reduced costs.
Measuring the Earth System in a Time of Global Environmental Change with Image Spectroscopy
NASA Technical Reports Server (NTRS)
Green, Robert O.
2005-01-01
Measuring the Earth system in a time of global environmental change. Imaging Spectroscopy enables remote measurement. Remote Measurement determination of the properties of the Earth's surface and atmosphere through the physics, chemistry and biology of the interaction of electromagnetic energy with matter.
Telepresence-Enabled Remote Fieldwork: Undergraduate Research in the Deep Sea
ERIC Educational Resources Information Center
Stephens, A. Lynn; Pallant, Amy; McIntyre, Cynthia
2016-01-01
Deep-sea research is rarely available to undergraduate students. However, as telepresence technology becomes more available, doors may open for more undergraduates to pursue research that includes remote fieldwork. This descriptive case study is an initial investigation into whether such technology might provide a feasible opportunity for…
ERIC Educational Resources Information Center
Esche, Sven K.
2006-01-01
This article presents how Stevens Institute of Technology (SIT) has adopted an Internet-based approach to implement its undergraduate student laboratories. The approach allowed student interaction with the experimental devices from remote locations at any time. Furthermore, it enabled instructors to include demonstrations of sophisticated…
Recent Progress in the Remote Detection of Vapours and Gaseous Pollutants.
ERIC Educational Resources Information Center
Moffat, A. J.; And Others
Work has been continuing on the correlation spectrometry techniques described at previous remote sensing symposiums. Advances in the techniques are described which enable accurate quantitative measurements of diffused atmospheric gases to be made using controlled light sources, accurate quantitative measurements of gas clouds relative to…
Full-scale system impact analysis: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.
NASA Technical Reports Server (NTRS)
Fernandez, J. P.; Mills, D.
1991-01-01
A Vibroacoustic Payload Environment Prediction System (VAPEPS) Management Center was established at the JPL. The center utilizes the VAPEPS software package to manage a data base of Space Shuttle and expendable launch vehicle payload flight and ground test data. Remote terminal access over telephone lines to the computer system, where the program resides, was established to provide the payload community a convenient means of querying the global VAPEPS data base. This guide describes the functions of the VAPEPS Management Center and contains instructions for utilizing the resources of the center.
Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web
Miller, Chase A.; Anthony, Jon; Meyer, Michelle M.; Marth, Gabor
2013-01-01
Motivation: High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Results: Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Availability and implementation: Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported. Contact: gabor.marth@bc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23172864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan
The synthesis of new measurement technologies with advances in high performance computing provides an unprecedented opportunity to advance our understanding of the atmosphere, particularly with regard to the complex flows in the atmospheric boundary layer. To assess current measurement capabilities for quantifying features of atmospheric flow within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment design, highlight novel approaches to boundary-layer measurements, and quantify measurement uncertainties associated with these experimental methods. Line-of-sight velocities measured bymore » scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or dual radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes,conducted with rapid lidar scans, agree with those from scanning radars, enabling assessment of spatial variability. Microwave radiometers provide temperature profiles within and above the boundary layer with approximately the same uncertainty as operational remote sensing measurements. Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. Finally, we highlight cases that could be useful for validation of large-eddy simulations or mesoscale numerical weather prediction, providing information on accessing the archived dataset. We conclude that modern remote Lundquist et al. XPIA BAMS Page 4 of 81 sensing systems provide a generational improvement in observational capabilities, enabling resolution of refined processes critical to understanding 61 inhomogeneous boundary-layer flows such as those found in wind farms.« less
Instrument Remote Control Application Framework
NASA Technical Reports Server (NTRS)
Ames, Troy; Hostetter, Carl F.
2006-01-01
The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.
Bishop, Jaclyn; Kong, David Cm; Schulz, Thomas R; Thursky, Karin A; Buising, Kirsty L
2018-05-01
Antimicrobial resistance (AMR) has been recognised as an urgent health priority, both nationally and internationally. Australian hospitals are required to have an antimicrobial stewardship (AMS) program, yet the necessary resources may not be available in regional, rural or remote hospitals. This review will describe models for AMS programs that have been introduced in regional, rural or remote hospitals internationally and showcase achievements and key considerations that may guide Australian hospitals in establishing or sustaining AMS programs in the regional, rural or remote hospital setting. A narrative review was undertaken based on literature retrieved from searches in Ovid Medline, Scopus, Web of Science and the grey literature. 'Cited' and 'cited by' searches were undertaken to identify additional articles. Articles were included if they described an AMS program in the regional, rural or remote hospital setting (defined as a bed size less than 300 and located in a non-metropolitan setting). Eighteen articles were selected for inclusion. The AMS initiatives described were categorised into models designed to address two different challenges relating to AMS program delivery in regional, rural and remote hospitals. This included models to enable regional, rural and remote hospital staff to manage AMS programs in the absence of on-site infectious diseases (ID) trained experts. Non-ID doctor-led, pharmacist-led and externally led initiatives were identified. Lack of pharmacist resources was recognised as a core barrier to the further development of a pharmacist-led model. The second challenge was access to timely off-site expert ID clinical advice when required. Examples where this had been overcome included models utilising visiting ID specialists, telehealth and hospital network structures. Formalisation of such arrangements is important to clarify the accountabilities of all parties and enhance the quality of the service. Information technology was identified as a facilitator to a number of these models. The variance in availability of information technology between hospitals and cost limits the adoption of uniform programs to support AMS. Despite known barriers, regional, rural and remote hospitals have implemented AMS programs. The examples highlighted show that difficulty recruiting ID specialists should not inhibit AMS programs in regional, rural and remote hospitals, as much of the day-to-day work of AMS can be done by non-experts. Capacity building and the strengthening of networks are core features of these programs. Descriptions of how Australian regional, rural and remote hospitals have structured and supported their AMS programs would add to the existing body of knowledge sourced from international examples. Research into AMS programs predominantly led by GPs and nursing staff will provide further possible models for regional, rural and remote hospitals.
Better access to mental health care and the failure of the Medicare principle of universality.
Meadows, Graham N; Enticott, Joanne C; Inder, Brett; Russell, Grant M; Gurr, Roger
2015-03-02
To examine whether adult use of mental health services subsidised by Medicare varies by measures of socioeconomic and geographic disadvantage in Australia. A secondary analysis of national Medicare data from 1 July 2007 to 30 June 2011 for all mental health services subsidised by Better Access to Mental Health Care (Better Access) and Medicare - providers included general practitioners, psychiatrists, clinical psychologists and mental health allied health practitioners. Service use rates followed by measurement of inequity using the concentration curve and concentration index. Increasing remoteness was consistently associated with lower service activity; eg, per 1000 population, the annual rate of use of GP items was 79 in major cities and 25 and 8 in remote and very remote areas, respectively. Apart from GP usage, higher socioeconomic disadvantage in areas was typically associated with lower usage; eg, per 1000 population per year, clinical psychologist consultations were 68, 40 and 23 in the highest, middle and lowest advantaged quintiles, respectively; and non-Better Access psychiatry items were 117, 55 and 45 in the highest, middle and lowest advantaged quintiles, respectively. Our results highlight important socioeconomic and geographical disparities associated with the use of Better Access and related Medicare services. This can inform Australia's policymakers about these priority gaps and help to stimulate targeted strategies both nationally and regionally that work towards the universal and equitable delivery of mental health care for all Australians.
Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E; Ramakrishnan, I V
2017-05-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access-an early forerunner of true ubiquitous access-screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments.
Saurman, Emily; Kirby, Sue E; Lyle, David
2015-04-14
Mental health presentations are considered to be a difficult aspect of emergency care. Although emergency department (ED) staff is qualified to provide emergency mental health care, for some, such presentations pose a challenge to their training, confidence, and time. Providing access to relevant and responsive specialist mental health care can influence care and management for these patients. The Mental Health Emergency Care-Rural Access Program (MHEC-RAP) is a telepsychiatry program that was established to improve access to specialist emergency mental health care across rural and remote western NSW, Australia. This study uses interviews with ED providers to understand their experience of managing emergency mental health patients and their use of MHEC-RAP. The lens of access was applied to assess program impact and inform continuing program development. With MHEC-RAP, these ED providers are no longer 'flying blind'. They are also more confident to manage and care for emergency mental health patients locally. For these providers, access to specialists who are able to conduct assessments and provide relevant and responsive advice for emergency mental health presentations was valued. Assessing the fit between the consumer and service as a requirement for the development, evaluation, and ongoing management of the service should result in decisions about design and delivery that achieve improved access to care and meet the needs of their consumers. The experience of these providers prior to MHEC-RAP is consistent with that reported in other rural and remote populations suggesting that MHEC-RAP could address limitations in access to specialist care and change the provision of emergency mental health care elsewhere. MHEC-RAP has not only provided access to specialist mental health care for local ED providers, but it has changed their practice and perspective. MHEC-RAP could be adapted for implementation elsewhere. Provider experience confirms that the program is accessible and offers insights to those considering how to establish an emergency telepyschiatry service in other settings.
U.S. EPA High-Field NMR Facility with Remote Accessibility
EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...
Orchestrating Distributed Resource Ensembles for Petascale Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldin, Ilya; Mandal, Anirban; Ruth, Paul
2014-04-24
Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstractmore » API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.« less
Outcomes of a peritoneal dialysis program in remote communities within Colombia.
Sanabria, Mauricio; Devia, Martha; Hernández, Gilma; Astudillo, Kindar; Trillos, Carlos; Uribe, Mauricio; Latorre, Catalina; Bernal, Astrid; Rivera, Angela
2015-01-01
Colombia is a country of diverse geographic regions, some with mountainous terrain that can make access to urban areas difficult for individuals who live in remote areas. In 2005, a program was initiated to establish remote peritoneal dialysis (PD) centers in Colombia to improve access to PD for patients with end-stage renal disease who face geographic or financial access barriers. The present study was a multi-center cohort observational study of prevalent home PD patients who were at least 18 years of age and were being managed by one of nine established remote PD centers in Colombia over a 2-year period. Data were collected from clinical records, databases, and patient interviews. Patient survival, incidence of peritonitis, and rate of withdrawal from PD therapy were assessed. A total of 345 patients were eligible for the study. The majority (87.8%) of patients lived on one to two times a minimum monthly salary (equivalent to US$243 - US$486). On average, patients traveled 1.2 hours and 4.3 hours from their home to their remote PD center or an urban reference renal clinic, respectively. The incidence rate of peritonitis was 2.54 episodes per 100 patient-months of therapy. A bivariate analysis showed a significantly higher risk of peritonitis in patients who were living on less than one times a monthly minimum salary (p < 0.05) or who had a dirt, cement, or unfinished wood floor (p < 0.05). The 1-year and 2-year patient survival rates were 92.44% and 81.55%, respectively. The 1-year and 2-year technique survival rates were 97.27% and 89.78%, respectively. With the support of remote PD centers that mitigate geographic and financial barriers to healthcare, home PD therapy is a safe and appropriate treatment option for patients who live in remote areas in Colombia. Copyright © 2015 International Society for Peritoneal Dialysis.
Outcomes of a Peritoneal Dialysis Program in Remote Communities Within Colombia
Sanabria, Mauricio; Devia, Martha; Hernández, Gilma; Astudillo, Kindar; Trillos, Carlos; Uribe, Mauricio; Latorre, Catalina; Bernal, Astrid; Rivera, Angela
2015-01-01
♦ Background and Objective: Colombia is a country of diverse geographic regions, some with mountainous terrain that can make access to urban areas difficult for individuals who live in remote areas. In 2005, a program was initiated to establish remote peritoneal dialysis (PD) centers in Colombia to improve access to PD for patients with end-stage renal disease who face geographic or financial access barriers. ♦ Patients and Methods: The present study was a multi-center cohort observational study of prevalent home PD patients who were at least 18 years of age and were being managed by one of nine established remote PD centers in Colombia over a 2-year period. Data were collected from clinical records, databases, and patient interviews. Patient survival, incidence of peritonitis, and rate of withdrawal from PD therapy were assessed. ♦ Results: A total of 345 patients were eligible for the study. The majority (87.8%) of patients lived on one to two times a minimum monthly salary (equivalent to US$243 – US$486). On average, patients traveled 1.2 hours and 4.3 hours from their home to their remote PD center or an urban reference renal clinic, respectively. The incidence rate of peritonitis was 2.54 episodes per 100 patient-months of therapy. A bivariate analysis showed a significantly higher risk of peritonitis in patients who were living on less than one times a monthly minimum salary (p < 0.05) or who had a dirt, cement, or unfinished wood floor (p < 0.05). The 1-year and 2-year patient survival rates were 92.44% and 81.55%, respectively. The 1-year and 2-year technique survival rates were 97.27% and 89.78%, respectively. ♦ Conclusions: With the support of remote PD centers that mitigate geographic and financial barriers to healthcare, home PD therapy is a safe and appropriate treatment option for patients who live in remote areas in Colombia. PMID:24497583
The Malaria System MicroApp: A New, Mobile Device-Based Tool for Malaria Diagnosis.
Oliveira, Allisson Dantas; Prats, Clara; Espasa, Mateu; Zarzuela Serrat, Francesc; Montañola Sales, Cristina; Silgado, Aroa; Codina, Daniel Lopez; Arruda, Mercia Eliane; I Prat, Jordi Gomez; Albuquerque, Jones
2017-04-25
Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment. ©Allisson Dantas Oliveira, Clara Prats, Mateu Espasa, Francesc Zarzuela Serrat, Cristina Montañola Sales, Aroa Silgado, Daniel Lopez Codina, Mercia Eliane Arruda, Jordi Gomez i Prat, Jones Albuquerque. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 25.04.2017.
Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish
2017-01-01
Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.
NASA Technical Reports Server (NTRS)
Stevens, Grady H.
1992-01-01
The Data Distribution Satellite (DDS), operating in conjunction with the planned space network, the National Research and Education Network and its commercial derivatives, would play a key role in networking the emerging supercomputing facilities, national archives, academic, industrial, and government institutions. Centrally located over the United States in geostationary orbit, DDS would carry sophisticated on-board switching and make use of advanced antennas to provide an array of special services. Institutions needing continuous high data rate service would be networked together by use of a microwave switching matrix and electronically steered hopping beams. Simultaneously, DDS would use other beams and on board processing to interconnect other institutions with lesser, low rate, intermittent needs. Dedicated links to White Sands and other facilities would enable direct access to space payloads and sensor data. Intersatellite links to a second generation ATDRS, called Advanced Space Data Acquisition and Communications System (ASDACS), would eliminate one satellite hop and enhance controllability of experimental payloads by reducing path delay. Similarly, direct access would be available to the supercomputing facilities and national data archives. Economies with DDS would be derived from its ability to switch high rate facilities amongst users needed. At the same time, having a CONUS view, DDS would interconnect with any institution regardless of how remote. Whether one needed high rate service or low rate service would be immaterial. With the capability to assign resources on demand, DDS will need only carry a portion of the resources needed if dedicated facilities were used. Efficiently switching resources to users as needed, DDS would become a very feasible spacecraft, even though it would tie together the space network, the terrestrial network, remote sites, 1000's of small users, and those few who need very large data links intermittently.
Challenges faced in implementation of a telehealth enabled chronic wound care system.
Barrett, M; Larson, A; Carville, K; Ellis, I
2009-01-01
In the rural Midwest region of Western Australia (WA), wound care is a major burden on the healthcare system. Optimal wound care was found to be impeded by issues that included the involvement of multiple healthcare providers, incomplete and inconsistent documentation, and limited access to expert review. A telehealth solution was trailed in 2007. To describe the systemic barriers encountered in implementing a telehealth program in rural WA and to provide recommendations for future telehealth initiatives. This study trialled the use of a shared electronic wound imaging and reporting system in combination with an expert remote wound consultation service for the management of patients with chronic wounds in the Midwest of WA. The trial sites included rural hospital out-patient clinics, a private domiciliary nursing service, residential aged care facilities, general practices and a podiatry clinic. The implementation conformed to accepted best practice in introducing telehealth initiatives. During the trial 12 sites had the relevant software installed and were able to access a central server. Although a total of 41 patients with chronic wounds were enrolled, four sites did not enroll any patients and only two sites successfully incorporated the system into regular practice. Major obstacles were workforce issues and significant delays in installing the software at some sites. Only 47% of the healthcare providers trained to use the software at the beginning of the trial were still employed when the trial ended. Prolonged periods of vacant positions at one remote clinic and an aged care facility made it impossible for the remaining providers to allocate time for using the wound care software. The disease burden of the patient group, funding models and workforce shortages frustrated the successful adoption of an evidence based strategy that was known to improve health outcomes.
Technology platforms for remote monitoring of vital signs in the new era of telemedicine.
Zhao, Fang; Li, Meng; Tsien, Joe Z
2015-07-01
Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.
A Software Architecture for Intelligent Synthesis Environments
NASA Technical Reports Server (NTRS)
Filman, Robert E.; Norvig, Peter (Technical Monitor)
2001-01-01
The NASA's Intelligent Synthesis Environment (ISE) program is a grand attempt to develop a system to transform the way complex artifacts are engineered. This paper discusses a "middleware" architecture for enabling the development of ISE. Desirable elements of such an Intelligent Synthesis Architecture (ISA) include remote invocation; plug-and-play applications; scripting of applications; management of design artifacts, tools, and artifact and tool attributes; common system services; system management; and systematic enforcement of policies. This paper argues that the ISA extend conventional distributed object technology (DOT) such as CORBA and Product Data Managers with flexible repositories of product and tool annotations and "plug-and-play" mechanisms for inserting "ility" or orthogonal concerns into the system. I describe the Object Infrastructure Framework, an Aspect Oriented Programming (AOP) environment for developing distributed systems that provides utility insertion and enables consistent annotation maintenance. This technology can be used to enforce policies such as maintaining the annotations of artifacts, particularly the provenance and access control rules of artifacts-, performing automatic datatype transformations between representations; supplying alternative servers of the same service; reporting on the status of jobs and the system; conveying privileges throughout an application; supporting long-lived transactions; maintaining version consistency; and providing software redundancy and mobility.
2012-01-01
Background Sub-Saharan African populations are growing in many European countries. Data on the health of these populations are rare. Additionally, many sub-Saharan African migrants are confronted with issues of low socio-economic status, acculturation and language difficulties, which may hamper their access to health care. Despite the identification of some of those barriers, little is known about the enabling factors. Knowledge about the enablers and barriers in access to healthcare experienced is important in addressing their health needs and promoting healthcare access. This study aimed to investigate the enabling factors as well as barriers in access to the Dutch healthcare system among the largest sub-Saharan African migrant group (Ghanaians) living in Amsterdam, the Netherlands. Methods Six focus groups were conducted from November 2009 to February 2010. A semi-structured interview guideline was used. Discussions were conducted in English or Twi (Ghanaian dialect), recorded and transcribed verbatim. Analysis was based on the Andersen model of healthcare utilisation using MAXQDA software. Results Knowledge and perceived quality of the health system, awareness of diseases, family and community support, community initiatives and availability of social support were the main enablers to the healthcare system. Difficulties with the Dutch language and mistrust in health care providers were major barriers in access to healthcare. Conclusions Access to healthcare is facilitated mainly by knowledge of and the perceived efficiency and quality of the Dutch healthcare system. However, poor Dutch language proficiency and mistrust in health care providers appear to be important barriers in accessing healthcare. The enablers and barriers identified by this study provide useful information for promoting healthcare access among this and similar Sub-Saharan African communities. PMID:22443162
Boateng, Linda; Nicolaou, Mary; Dijkshoorn, Henriëtte; Stronks, Karien; Agyemang, Charles
2012-03-24
Sub-Saharan African populations are growing in many European countries. Data on the health of these populations are rare. Additionally, many sub-Saharan African migrants are confronted with issues of low socio-economic status, acculturation and language difficulties, which may hamper their access to health care. Despite the identification of some of those barriers, little is known about the enabling factors. Knowledge about the enablers and barriers in access to healthcare experienced is important in addressing their health needs and promoting healthcare access. This study aimed to investigate the enabling factors as well as barriers in access to the Dutch healthcare system among the largest sub-Saharan African migrant group (Ghanaians) living in Amsterdam, the Netherlands. Six focus groups were conducted from November 2009 to February 2010. A semi-structured interview guideline was used. Discussions were conducted in English or Twi (Ghanaian dialect), recorded and transcribed verbatim. Analysis was based on the Andersen model of healthcare utilisation using MAXQDA software. Knowledge and perceived quality of the health system, awareness of diseases, family and community support, community initiatives and availability of social support were the main enablers to the healthcare system. Difficulties with the Dutch language and mistrust in health care providers were major barriers in access to healthcare. Access to healthcare is facilitated mainly by knowledge of and the perceived efficiency and quality of the Dutch healthcare system. However, poor Dutch language proficiency and mistrust in health care providers appear to be important barriers in accessing healthcare. The enablers and barriers identified by this study provide useful information for promoting healthcare access among this and similar Sub-Saharan African communities.
Jones, Kerina H; Ford, David V; Jones, Chris; Dsilva, Rohan; Thompson, Simon; Brooks, Caroline J; Heaven, Martin L; Thayer, Daniel S; McNerney, Cynthia L; Lyons, Ronan A
2014-08-01
With the current expansion of data linkage research, the challenge is to find the balance between preserving the privacy of person-level data whilst making these data accessible for use to their full potential. We describe a privacy-protecting safe haven and secure remote access system, referred to as the Secure Anonymised Information Linkage (SAIL) Gateway. The Gateway provides data users with a familiar Windows interface and their usual toolsets to access approved anonymously-linked datasets for research and evaluation. We outline the principles and operating model of the Gateway, the features provided to users within the secure environment, and how we are approaching the challenges of making data safely accessible to increasing numbers of research users. The Gateway represents a powerful analytical environment and has been designed to be scalable and adaptable to meet the needs of the rapidly growing data linkage community. Copyright © 2014 The Aurthors. Published by Elsevier Inc. All rights reserved.
Jones, Kerina H.; Ford, David V.; Jones, Chris; Dsilva, Rohan; Thompson, Simon; Brooks, Caroline J.; Heaven, Martin L.; Thayer, Daniel S.; McNerney, Cynthia L.; Lyons, Ronan A.
2014-01-01
With the current expansion of data linkage research, the challenge is to find the balance between preserving the privacy of person-level data whilst making these data accessible for use to their full potential. We describe a privacy-protecting safe haven and secure remote access system, referred to as the Secure Anonymised Information Linkage (SAIL) Gateway. The Gateway provides data users with a familiar Windows interface and their usual toolsets to access approved anonymously-linked datasets for research and evaluation. We outline the principles and operating model of the Gateway, the features provided to users within the secure environment, and how we are approaching the challenges of making data safely accessible to increasing numbers of research users. The Gateway represents a powerful analytical environment and has been designed to be scalable and adaptable to meet the needs of the rapidly growing data linkage community. PMID:24440148
Rovers, John P; Mages, Michelle D
2017-09-25
The social determinants of health include the health systems under which people live and utilize health services. One social determinant, for which pharmacists are responsible, is designing drug distribution systems that ensure patients have safe and convenient access to medications. This is critical for settings with poor access to health care. Rural and remote Australia is one example of a setting where the pharmacy profession, schools of pharmacy, and regulatory agencies require pharmacists to assure medication access. Studies of drug distribution systems in such settings are uncommon. This study describes a model for a drug distribution system in an Aboriginal Health Service in remote Australia. The results may be useful for policy setting, pharmacy system design, health professions education, benchmarking, or quality assurance efforts for health system managers in similarly remote locations. The results also suggest that pharmacists can promote access to medications as a social determinant of health. The primary objective of this study was to propose a model for a drug procurement, storage, and distribution system in a remote region of Australia. The secondary objective was to learn the opinions and experiences of healthcare workers under the model. Qualitative research methods were used. Semi-structured interviews were performed with a convenience sample of 11 individuals employed by an Aboriginal health service. Transcripts were analyzed using Event Structure Analysis (ESA) to develop the model. Transcripts were also analyzed to determine the opinions and experiences of health care workers. The model was comprised of 24 unique steps with seven distinct components: choosing a supplier; creating a list of preferred medications; budgeting and ordering; supply and shipping; receipt and storage in the clinic; prescribing process; dispensing and patient counseling. Interviewees described opportunities for quality improvement in choosing suppliers, legal issues and staffing, cold chain integrity, medication shortages and wastage, and adherence to policies. The model illustrates how pharmacists address medication access as a social determinant of health, and may be helpful for policy setting, system design, benchmarking, and quality assurance by health system designers. ESA is an effective and novel method of developing such models.
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Webley, P. W.; Dehn, J.; Arko, S. A.; McAlpin, D. B.; Gong, W.
2016-12-01
Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing has become established in operational volcano monitoring. Centers like the Alaska Volcano Observatory rely heavily on remote sensing data from optical and thermal sensors to provide time-critical hazard information. Despite this high use of remote sensing data, the presence of clouds and a dependence on solar illumination often limit their impact on decision making. Synthetic Aperture Radar (SAR) systems are widely considered superior to optical sensors in operational monitoring situations, due to their weather and illumination independence. Still, the contribution of SAR to operational volcano monitoring has been limited in the past due to high data costs, long processing times, and low temporal sampling rates of most SAR systems. In this study, we introduce the automatic SAR processing system SARVIEWS, whose advanced data analysis and data integration techniques allow, for the first time, a meaningful integration of SAR into operational monitoring systems. We will introduce the SARVIEWS database interface that allows for automatic, rapid, and seamless access to the data holdings of the Alaska Satellite Facility. We will also present a set of processing techniques designed to automatically generate a set of SAR-based hazard products (e.g. change detection maps, interferograms, geocoded images). The techniques take advantage of modern signal processing and radiometric normalization schemes, enabling the combination of data from different geometries. Finally, we will show how SAR-based hazard information is integrated in existing multi-sensor decision support tools to enable joint hazard analysis with data from optical and thermal sensors. We will showcase the SAR processing system using a set of recent natural disasters (both earthquakes and volcanic eruptions) to demonstrate its robustness. We will also show the benefit of integrating SAR with data from other sensors to support volcano monitoring. For historic eruptions at Okmok and Augustine volcano, both located in the North Pacific, we will demonstrate that the addition of SAR can lead to a significant improvement in activity detection and eruption forecasting.
NASA Technical Reports Server (NTRS)
Rosen, Paul A.
2012-01-01
This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.
Mobile capture of remote points of interest using line of sight modelling
NASA Astrophysics Data System (ADS)
Meek, Sam; Priestnall, Gary; Sharples, Mike; Goulding, James
2013-03-01
Recording points of interest using GPS whilst working in the field is an established technique in geographical fieldwork, where the user's current position is used as the spatial reference to be captured; this is known as geo-tagging. We outline the development and evaluation of a smartphone application called Zapp that enables geo-tagging of any distant point on the visible landscape. The ability of users to log or retrieve information relating to what they can see, rather than where they are standing, allows them to record observations of points in the broader landscape scene, or to access descriptions of landscape features from any viewpoint. The application uses the compass orientation and tilt of the phone to provide data for a line of sight algorithm that intersects with a Digital Surface Model stored on the mobile device. We describe the development process and design decisions for Zapp present the results of a controlled study of the accuracy of the application, and report on the use of Zapp for a student field exercise. The studies indicate the feasibility of the approach, but also how the appropriate use of such techniques will be constrained by current levels of precision in mobile sensor technology. The broader implications for interactive query of the distant landscape and for remote data logging are discussed.
Mapping and predicting sinkholes by integration of remote sensing and spectroscopy methods
NASA Astrophysics Data System (ADS)
Goldshleger, N.; Basson, U.; Azaria, I.
2013-08-01
The Dead Sea coastal area is exposed to the destructive process of sinkhole collapse. The increase in sinkhole activity in the last two decades has been substantial, resulting from the continuous decrease in the Dead Sea's level, with more than 1,000 sinkholes developing as a result of upper layer collapse. Large sinkholes can reach 25 m in diameter. They are concentrated mainly in clusters in several dozens of sites with different characteristics. In this research, methods for mapping, monitoring and predicting sinkholes were developed using active and passive remote-sensing methods: field spectrometer, geophysical ground penetration radar (GPR) and a frequency domain electromagnetic instrument (FDEM). The research was conducted in three stages: 1) literature review and data collection; 2) mapping regions abundant with sinkholes in various stages and regions vulnerable to sinkholes; 3) analyzing the data and translating it into cognitive and accessible scientific information. Field spectrometry enabled a comparison between the spectral signatures of soil samples collected near active or progressing sinkholes, and those collected in regions with no visual sign of sinkhole occurrence. FDEM and GPR investigations showed that electrical conductivity and soil moisture are higher in regions affected by sinkholes. Measurements taken at different time points over several seasons allowed monitoring the progress of an 'embryonic' sinkhole.
Wearable motion sensors to continuously measure real-world physical activities.
Dobkin, Bruce H
2013-12-01
Rehabilitation for sensorimotor impairments aims to improve daily activities, walking, exercise, and motor skills. Monitoring of practice and measuring outcomes, however, is usually restricted to laboratory-based procedures and self-reports. Mobile health devices may reverse these confounders of daily care and research trials. Wearable, wireless motion sensor data, analyzed by activity pattern-recognition algorithms, can describe the type, quantity, and quality of mobility-related activities in the community. Data transmission from the sensors to a cell phone and the Internet enable continuous monitoring. Remote access to laboratory quality data about walking speed, duration and distance, gait asymmetry and smoothness of movements, as well as cycling, exercise, and skills practice, opens new opportunities to engage patients in progressive, personalized therapies with feedback about the performance. Clinical trial designs will be able to include remote verification of the integrity of complex physical interventions and compliance with practice, as well as capture repeated, ecologically sound, ratio scale outcome measures. Given the progressively falling cost of miniaturized wearable gyroscopes, accelerometers, and other physiologic sensors, as well as inexpensive data transmission, sensing systems may become as ubiquitous as cell phones for healthcare. Neurorehabilitation can develop these mobile health platforms for daily care and clinical trials to improve exercise and fitness, skills learning, and physical functioning.