2008-09-01
Psychophysiologic Response and Technology -Enabled Learning and Intervention Systems PRINCIPAL INVESTIGATOR: Leigh W. Jerome, Ph.D...NUMBER Transformative Learning : Patterns of Psychophysiologic Response and Technology - Enabled Learning and Intervention Systems 5b. GRANT NUMBER...project entitled “Transformative Learning : Patterns of Psychophysiologic Response in Technology Enabled Learning and Intervention Systems.” The
Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.;
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.
Towards G2G: Systems of Technology Database Systems
NASA Technical Reports Server (NTRS)
Maluf, David A.; Bell, David
2005-01-01
We present an approach and methodology for developing Government-to-Government (G2G) Systems of Technology Database Systems. G2G will deliver technologies for distributed and remote integration of technology data for internal use in analysis and planning as well as for external communications. G2G enables NASA managers, engineers, operational teams and information systems to "compose" technology roadmaps and plans by selecting, combining, extending, specializing and modifying components of technology database systems. G2G will interoperate information and knowledge that is distributed across organizational entities involved that is ideal for NASA future Exploration Enterprise. Key contributions of the G2G system will include the creation of an integrated approach to sustain effective management of technology investments that supports the ability of various technology database systems to be independently managed. The integration technology will comply with emerging open standards. Applications can thus be customized for local needs while enabling an integrated management of technology approach that serves the global needs of NASA. The G2G capabilities will use NASA s breakthrough in database "composition" and integration technology, will use and advance emerging open standards, and will use commercial information technologies to enable effective System of Technology Database systems.
Space power systems technology enablement study. [for the space transportation system
NASA Technical Reports Server (NTRS)
Smith, L. D.; Stearns, J. W.
1978-01-01
The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed.
Microwave sensing technology issues related to a global change technology architecture trade study
NASA Technical Reports Server (NTRS)
Campbell, Thomas G.; Shiue, Jim; Connolly, Denis; Woo, Ken
1991-01-01
The objectives are to enable the development of lighter and less power consuming, high resolution microwave sensors which will operate at frequencies from 1 to 200 GHz. These systems will use large aperture antenna systems (both reflector and phased arrays) capable of wide scan angle, high polarization purity, and utilize sidelobe suppression techniques as required. Essentially, the success of this technology program will enable high resolution microwave radiometers from geostationary orbit, lightweight and more efficient radar systems from low Earth orbit, and eliminate mechanical scanning methods to the fullest extent possible; a main source of platform instability in large space systems. The Global Change Technology Initiative (GCTI) will develop technology which will enable the use of satellite systems for Earth observations on a global scale.
Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Jennifer; Cappers, Peter
The Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs research describe a variety of DR opportunities and the various bulk power system services they can provide. The bulk power system services are mapped to a generalized taxonomy of DR “service types”, which allows us to discuss DR opportunities and bulk power system services in fewer yet broader categories that share similar technological requirements which mainly drive DR enablement costs. The research presents a framework for the costs to automate DR and provides descriptions of the various elements that drive enablement costs. The report introduces the various DRmore » enabling technologies and end-uses, identifies the various services that each can provide to the grid and provides the cost assessment for each enabling technology. In addition to a report, this research includes a Demand Response Advanced Controls Database and User Manual. They are intended to provide users with the data that underlies this research and instructions for how to use that database more effectively and efficiently.« less
CMOS Enabled Microfluidic Systems for Healthcare Based Applications.
Khan, Sherjeel M; Gumus, Abdurrahman; Nassar, Joanna M; Hussain, Muhammad M
2018-04-01
With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fission Technology for Exploring and Utilizing the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,
Enabling technologies for Chinese Mars lander guidance system
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang
2017-04-01
Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.
NASA Technology Area 07: Human Exploration Destination Systems Roadmap
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.
Overview of the NASA Advanced In-Space Propulsion Project
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2011-01-01
In FY11, NASA established the Enabling Technologies Development and Demonstration (ETDD) Program, a follow on to the earlier Exploration Technology Development Program (ETDP) within the NASA Exploration Systems Mission Directorate. Objective: Develop, mature and test enabling technologies for human space exploration.
Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.
2009-01-01
Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.
Pellet to Part Manufacturing System for CNCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.
Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.
NASA Technical Reports Server (NTRS)
Wercinski, Paul F.; Venkatapathy, Ethiraj; Gage, Peter J.; Yount, Bryan C.; Prabhu, Dinesh K.; Smith, Brandon; Arnold, James O.; Makino, alberto; Peterson, Keith Hoppe; Chinnapongse, Ronald I.
2012-01-01
Venus is one of the important planetary destinations for scientific exploration, but: The combination of extreme entry environment coupled with extreme surface conditions have made mission planning and proposal efforts very challenging. We present an alternate, game-changing approach (ADEPT) where a novel entry system architecture enables more benign entry conditions and this allows for greater flexibility and lower risk in mission design
Advanced Microelectronics Technologies for Future Small Satellite Systems
NASA Technical Reports Server (NTRS)
Alkalai, Leon
1999-01-01
Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.
Recent progress in sensor-enhanced health information systems - slowly but sustainably.
Marschollek, Michael
2009-12-01
The use of health-enabling technologies is regarded as one important means to face some of the challenges which accompany the demographic change with an expected rise in multi-morbidity and an increased need of care. A precondition for the sensible use of these technologies is their integration in existing information system structures, and - preferably - the enhancement of these into sensor-enhanced health information systems (seHIS). The aim of this review is to report on recent progress in seHIS, and thus to identify relevant areas of research that have to be addressed to provide patient-centered services in a semantically interoperable environment. A literature search in PubMed/Medline was combined with a manual search of papers (n = 1004) in three prominent health/medical informatics journals and one biomedical engineering journal starting from the year 2007. Despite a multitude of papers that present advanced systems using health-enabling technologies, only few papers could be identified that explicitly describe the design of seHIS or the integration of health-enabling technologies into health information systems. Recurring statements emphasise the importance of the following areas of research: patient-centered care using all available sources of information, data security, the stringent use of data representation and device connectivity standards, and adequate methods for data fusion and diagnostic analysis. There is a broad range of research in health-enabling technologies, often focused on specific diseases. The transition from current institution-centered health information systems to person-centered seHIS will be gradual, yet unavoidable for tapping the full potential of health-enabling technologies. seHIS is a growing field of research, and many ambitious challenges are still open. This literature review gives a brief outline of the most frequently mentioned research foci.
NASA Technical Reports Server (NTRS)
Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping
2011-01-01
NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.
A Probabilistic System Analysis of Intelligent Propulsion System Technologies
NASA Technical Reports Server (NTRS)
Tong, Michael T.
2007-01-01
NASA s Intelligent Propulsion System Technology (Propulsion 21) project focuses on developing adaptive technologies that will enable commercial gas turbine engines to produce fewer emissions and less noise while increasing reliability. It features adaptive technologies that have included active tip-clearance control for turbine and compressor, active combustion control, turbine aero-thermal and flow control, and enabling technologies such as sensors which are reliable at high operating temperatures and are minimally intrusive. A probabilistic system analysis is performed to evaluate the impact of these technologies on aircraft CO2 (directly proportional to fuel burn) and LTO (landing and takeoff) NO(x) reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that NASA s Intelligent Propulsion System technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decisionmaking on the development of the intelligent propulsion system technology portfolio for CO2 and NO(x) reductions.
Disruptive Technology: An Uncertain Future
2005-05-21
Technology that overturns market -- Military - Technology that causes a fundamental change in force structure, basing, and capability balance * Disruptive Technologies may arise from systems or enabling technology.
Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, We use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.
Pointing and control system enabling technology for future automated space missions
NASA Technical Reports Server (NTRS)
Dahlgren, J. B.
1978-01-01
Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.
Engineering Specifications derived from Science Requirements
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Arnold, William; Bevan, Ryan M.; Smith, W. Scott; Kirk, Charles S.; Postman, Marc
2013-01-01
Advanced Mirror Technology Development (AMTD) is a multi-year effort to systematically mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. This technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. To accomplish our objective, we use a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system.
AFC-Enabled Vertical Tail System Integration Study
NASA Technical Reports Server (NTRS)
Mooney, Helen P.; Brandt, John B.; Lacy, Douglas S.; Whalen, Edward A.
2014-01-01
This document serves as the final report for the SMAAART AFC-Enabled Vertical Tail System Integration Study. Included are the ground rule assumptions which have gone into the study, layouts of the baseline and AFC-enabled configurations, critical sizing information, system requirements and architectures, and assumed system properties that result in an NPV assessment of the two candidate AFC technologies.
Large Space Antenna Systems Technology, 1984
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1985-01-01
Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.
Benefits of information technology-enabled diabetes management.
Bu, Davis; Pan, Eric; Walker, Janice; Adler-Milstein, Julia; Kendrick, David; Hook, Julie M; Cusack, Caitlin M; Bates, David W; Middleton, Blackford
2007-05-01
To determine the financial and clinical benefits of implementing information technology (IT)-enabled disease management systems. A computer model was created to project the impact of IT-enabled disease management on care processes, clinical outcomes, and medical costs for patients with type 2 diabetes aged >25 years in the U.S. Several ITs were modeled (e.g., diabetes registries, computerized decision support, remote monitoring, patient self-management systems, and payer-based systems). Estimates of care process improvements were derived from published literature. Simulations projected outcomes for both payer and provider organizations, scaled to the national level. The primary outcome was medical cost savings, in 2004 U.S. dollars discounted at 5%. Secondary measures include reduction of cardiovascular, cerebrovascular, neuropathy, nephropathy, and retinopathy clinical outcomes. All forms of IT-enabled disease management improved the health of patients with diabetes and reduced health care expenditures. Over 10 years, diabetes registries saved $14.5 billion, computerized decision support saved $10.7 billion, payer-centered technologies saved $7.10 billion, remote monitoring saved $326 million, self-management saved $285 million, and integrated provider-patient systems saved $16.9 billion. IT-enabled diabetes management has the potential to improve care processes, delay diabetes complications, and save health care dollars. Of existing systems, provider-centered technologies such as diabetes registries currently show the most potential for benefit. Fully integrated provider-patient systems would have even greater potential for benefit. These benefits must be weighed against the implementation costs.
Concentrating solar power (CSP) power cycle improvements through application of advanced materials
NASA Astrophysics Data System (ADS)
Siefert, John A.; Libby, Cara; Shingledecker, John
2016-05-01
Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.
NASA Astrophysics Data System (ADS)
Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik
2015-03-01
SEMATECH aims to identify and enable disruptive technologies to meet the ever-increasing demands of semiconductor high volume manufacturing (HVM). As such, a program was initiated in 2012 focused on high-speed e-beam defect inspection as a complement, and eventual successor, to bright field optical patterned defect inspection [1]. The primary goal is to enable a new technology to overcome the key gaps that are limiting modern day inspection in the fab; primarily, throughput and sensitivity to detect ultra-small critical defects. The program specifically targets revolutionary solutions based on massively parallel e-beam technologies, as opposed to incremental improvements to existing e-beam and optical inspection platforms. Wafer inspection is the primary target, but attention is also being paid to next generation mask inspection. During the first phase of the multi-year program multiple technologies were reviewed, a down-selection was made to the top candidates, and evaluations began on proof of concept systems. A champion technology has been selected and as of late 2014 the program has begun to move into the core technology maturation phase in order to enable eventual commercialization of an HVM system. Performance data from early proof of concept systems will be shown along with roadmaps to achieving HVM performance. SEMATECH's vision for moving from early-stage development to commercialization will be shown, including plans for development with industry leading technology providers.
NASA Technical Reports Server (NTRS)
Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad
2016-01-01
NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
MEMS: Enabled Drug Delivery Systems.
Cobo, Angelica; Sheybani, Roya; Meng, Ellis
2015-05-01
Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microsystems Enabled Photovoltaics
Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz
2018-06-07
Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.
Microsystems Technology Symposium: Enabling Future Capability (BRIEFING CHARTS)
2007-03-07
Microsystems I t r t i r t Wireless and Networked Systems Embedded Computation Signal Processing Communications 4 Microsystems Technology Office: Enabling...Regency Ballroom) (Regency Ballroom) 1330 1400 Communciation Actuation 1430 (Imperial Ballroom) (Imperial Ballroom) 1500 1530 1600 1630 1700 1730 1800
An Approach to Establishing System Benefits for Technologies In NASA's Spaceliner Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Pannell, Bill; Lyles, Garry M. (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued. The Spaceliner Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. Advancements in design tools and better characterization of the operational environment will result in reduced design and operational variabilities leading to improvements in margins. Improvements in operational efficiencies will be obtained through the introduction of integrated vehicle health management, operations and range technologies. Investments in these technologies will enable the reduction in the high operational costs associated with today's vehicles by allowing components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. The introduction of advanced technologies may enable horizontal takeoff by significantly reducing the takeoff weight and allowing use of existing infrastructure. This would be a major step toward the goal of airline-like operation. These factors in conjunction with increased flight rates, resulting from reductions in transportation costs, will result in significant improvements of future vehicles. The real-world problem is that resources are limited and technologies need to be prioritized to assure the resources are spent on technologies that provide the highest system level benefits. Toward that end, a systems approach is being taken to determine the benefits of technologies for the Spaceliner Investment Area. Technologies identified to be enabling will be funded. However, the other technologies will be funded based on their system's benefits. Since the final launch system concept will not be decided for many years, several vehicle concepts are being evaluated to determine technology benefits. Not only performance, but also cost and operability are being assessed. This will become an annual process to assess these technologies against their goals and the benefits to various launch systems concepts. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Spaceliner Investment Area.
From Research to Flight: Surviving the TRL Valley of Death for Robotic and Human Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les
2009-01-01
Fundamental research is critical to taking the next giant leap in the scientific exploration of space. NASA should be pushing the envelope and asking "what if?" .. Technology push enables new capabilities. When NASA began, everything was enabling. .. Technology pull is often required to meet current mission requirements. Technology management requires more than issuing NRAs and overseeing contracts. Continuous assessment, peer review, and system systems studies are vital to credible TRL advancement. A strategy for taking technology R&D to new heights will lead to discoveries at far-reaching destinations..
Critical Issues of Web-Enabled Technologies in Modern Organizations.
ERIC Educational Resources Information Center
Khosrow-Pour, Mehdi; Herman, Nancy
2001-01-01
Discusses results of a Delphi study that explored issues related to the utilization and management of Web-enabled technologies by modern organizations. Topics include bandwidth restrictions; security; data integrity; inadequate search facilities; system incompatibilities; failure to adhere to standards; email; use of metadata; privacy and…
NASA Technical Reports Server (NTRS)
Quon, Leighton
2010-01-01
The key objectives of the NASA ASP are to: Improve mobility, capacity efficiency and access of the airspace system. Improve collaboration, predictability, and flexibility for the airspace users. Enable accurate modeling and simulation of air transportation systems. Accommodate operations of all classes of aircraft. Maintain system safety and environmental protection. In support of these program objectives, the major goal of the NextGen-SAIE Project is to enable the transition of key capacity and efficiency improvements to the NAS. Since many aspects of the NAS are unique to specific airport or airspace environments, demand on various parts of the NAS is not expected to increase equally as system demand grows. SAIE will provide systems level analysis of the NAS characteristics, constraints, and demands such that a suite of capacity-increasing concepts and technologies for system solutions are enabled and facilitated. The technical objectives in support of this goal are the following: Integration, evaluation, and transition of more mature concepts and technologies in an environment that faithfully emulates real-world complexities. Interoperability research and analysis of ASP technologies across ATM functions is performed to facilitate integration and take ASP concepts and technologies to higher Technology Readiness Level (TRL). Analyses are conducted on the program s concepts to identify the system benefits or impacts. System level analysis is conducted to increase understanding of the characteristics and constraints of airspace system and its domains.
NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2009-01-01
This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.
Enabling MEMS technologies for communications systems
NASA Astrophysics Data System (ADS)
Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne
2001-11-01
Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya Lee; Spielman, Zachary Alexander; Rice, Brandon Charles
2016-04-01
This report describes the installation of two advanced control room technologies, an advanced alarm system and a computerized procedure system, into the Human Systems Simulation Laboratory (HSSL). Installation of these technologies enables future phases of this research by providing a platform to systematically evaluate the effect of these technologies on operator and plant performance.
Engineering Specification for Large-aperture UVO Space Telescopes Derived from Science Requirements
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Postman, Marc; Smith, W. Scott
2013-01-01
The Advance Mirror Technology Development (AMTD) project is a three year effort initiated in FY12 to mature by at least a half TRL step six critical technologies required to enable 4 to 8 meter UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. A key accomplishment is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints.
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.
2014-08-01
The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.
2014-01-01
The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope
ACES: An Enabling Technology for Next Generation Space Transportation
NASA Astrophysics Data System (ADS)
Crocker, Andrew M.; Wuerl, Adam M.; Andrews, Jason E.; Andrews, Dana G.
2004-02-01
Andrews Space has developed the ``Alchemist'' Air Collection and Enrichment System (ACES), a dual-mode propulsion system that enables safe, economical launch systems that take off and land horizontally. Alchemist generates liquid oxygen through separation of atmospheric air using the refrigeration capacity of liquid hydrogen. The key benefit of Alchemist is that it minimizes vehicle takeoff weight. All internal and NASA-funded activities have shown that ACES, previously proposed for hypersonic combined cycle RLVs, is a higher payoff, lower-risk technology if LOX generation is performed while the vehicle cruises subsonically. Andrews Space has developed the Alchemist concept from a small system study to viable Next Generation launch system technology, conducting not only feasibility studies but also related hardware tests, and it has planned a detailed risk reduction program which employs an experienced, proven contractor team. Andrews also has participated in preliminary studies of an evolvable Next Generation vehicle architecture-enabled by Alchemist ACES-which could meet civil, military, and commercial space requirements within two decades.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.
2011-01-01
A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.
Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya
2016-01-01
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era. PMID:27649151
Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya
2016-09-14
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.
Remote Access to Wireless Communications Systems Laboratory--New Technology Approach
ERIC Educational Resources Information Center
Kafadarova, Nadezhda; Sotirov, Sotir; Milev, Mihail
2012-01-01
Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable students to use expensive laboratory equipment, which is not usually available to students. In…
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
Technology perspectives in the future exploration of extreme environments
NASA Astrophysics Data System (ADS)
Cutts, J.; Balint, T.; Kolawa, El.; Peterson, C.
2007-08-01
Solar System exploration is driven by high priority science goals and objectives at diverse destinations, as described in the NRC Decadal Survey and in NASA's 2006 Solar System Exploration (SSE) Roadmap. Proposed missions to these targets encounter extreme environments, including high or low temperatures, high pressure, corrosion, high heat flux, radiation and thermal cycling. These conditions are often coupled, such as low temperature and high radiation at Europa; and high temperature and high pressure near the surface of Venus. Mitigation of these environmental conditions frequently reaches beyond technologies developed for terrestrial applications, for example, by the automotive and oil industries. Therefore, space agencies require dedicated technology developments to enable these future missions. Within NASA, proposed missions are divided into three categories. Competed small (Discovery class) and medium (New Frontiers class) missions are cost capped, thus limiting significant technology developments. Therefore, large (Flagship class) missions are required not only to tackle key science questions which can't be addressed by smaller missions, but also to develop mission enabling technologies that can feed forward to smaller missions as well. In a newly completed extreme environment technology assessment at NASA, we evaluated technologies from the current State of Practice (SoP) to advanced concepts for proposed missions over the next decades. Highlights of this report are discussed here, including systems architectures, such as hybrid systems; protection systems; high temperature electronics; power generation and storage; mobility technologies; sample acquisition and mechanisms; and the need to test these technologies in relevant environments. It is expected that the findings - documented in detail in NASA's Extreme Environments Technologies report - would help identifying future technology investment areas, and in turn enable or enhance planned SSE missions, while reducing mission cost and risk.
A survey of enabling technologies in synthetic biology
2013-01-01
Background Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies. Results We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants. Conclusions The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non-exclusive licensing. Access to some patent protected technologies is less clear and use of these technologies may be subject to restrictions imposed by material transfer agreements or other contract terms. We expect the technologies considered enabling for synthetic biology to change as the field advances. By monitoring the enabling technologies of synthetic biology and addressing the policies and practices that impact their development and use, our hope is that the field will be better able to realize its full potential. PMID:23663447
The era of micro and nano systems in the biomedical area: bridging the research and innovation gap.
Lymberis, A
2011-01-01
The area of Micro and Nano systems (MNS) focuses on heterogeneous integration of technologies (e.g. electronics, mechanics and biotechnology) and implementation of multiple functionalities (e.g. sensing, processing, communication, energy and actuation) into small systems. A significant amount of MNS activities targets development and testing of systems enabling biomedicine and personal health solutions. Convergence of micro-nano-bio and Information & communication technologies is being leading to enabling innovative solutions e.g. for in-vitro testing and in vivo interaction with the human body for early diagnosis and minimally invasive therapy. Of particular interest are smart wearable systems such as smart textiles aiming at the full integration of sensors/actuators, energy sources, processing and communication within the clothes to enable non-invasive personal health, lifestyle, safety and emergency applications. The paper presents on going major R&D activities on micro-nano-bio systems (MNBS) and wearable systems for pHealth under the European Union R&D Programs, Information and Communication Technologies (ICT) priority; it also identifies gaps and discusses key challenges for the future.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad
2016-01-01
The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
Vibration isolation technology: An executive summary of systems development and demonstration
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Vibration isolation technology - An executive summary of systems development and demonstration
NASA Astrophysics Data System (ADS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
Guide to federal intelligent transportation system (ITS) research.
DOT National Transportation Integrated Search
2013-01-01
The U.S. Department of Transportations (USDOT) Intelligent Transportation System (ITS) Program aims to bring connectivity to transportation through the use of advanced wireless technologies powerful technologies that enable transformative chan...
Vehicle telematics as a platform for road use fees : final report.
DOT National Transportation Integrated Search
2016-11-01
Vehicle telematics systems are composed of various onboard communications, positioning technologies, and computing technologies. Much of the data generated and/or gathered by these systems can be used to determine travel. These systems enable a range...
Design theory, modelling and the application for the Internet of Things service
NASA Astrophysics Data System (ADS)
Shang, Xiaopu; Zhang, Runtong; Zhu, Xiaomin; Zhou, Quan
2016-03-01
The Internet of Things (IoT) makes it possible for us to sense the physical world and locate objects in it using the enabling technologies associated with IoT. Compared with traditional information systems, IoT enabling technologies can help acquire real-time data necessary for managing enterprise business process. An IoT system should have an ability beyond integrating enabling technologies and traditional information systems that are only used to access environmental data. This paper begins with a literature review of IoT-related issues and a discussion of the difference between traditional information service and IoT service. Three principles for IoT service design from the perceptive of service classification, coordination and compatibility are proposed. The paper also proposes a utility model for resource allocation in order to improve IoT service performance, and an application involving a cold chain visibility platform is given to illustrate our research.
Cunningham, James; Ainsworth, John
2017-01-01
The rise of distributed ledger technology, initiated and exemplified by the Bitcoin blockchain, is having an increasing impact on information technology environments in which there is an emphasis on trust and security. Management of electronic health records, where both conformation to legislative regulations and maintenance of public trust are paramount, is an area where the impact of these new technologies may be particularly beneficial. We present a system that enables fine-grained personalized control of third-party access to patients' electronic health records, allowing individuals to specify when and how their records are accessed for research purposes. The use of the smart contract based Ethereum blockchain technology to implement this system allows it to operate in a verifiably secure, trustless, and openly auditable environment, features crucial to health information systems moving forward.
Survey of Enabling Technologies for CAPS
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.
2005-01-01
The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.
Human Support Technology Research to Enable Exploration
NASA Technical Reports Server (NTRS)
Joshi, Jitendra
2003-01-01
Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.
Engineering Review of ANCAUS/AVATAR: An Enabling Technology for the Autonomous Land Systems Program?
2003-12-01
technology for future Autonomous Land System (ALS) autonomous vehicles . Since 1989, forward thinking engineering has characterized the history of ANC/EUS and...technology for future autonomous vehicles and that; (2) ALS should adopt commercial/open source technology to support a new ALS architecture and (3) ALS
Integration of e-Management, e-Development and e-Learning Technologies for Blended Course Delivery
ERIC Educational Resources Information Center
Johnson, Lynn E.; Tang, Michael
2005-01-01
This paper describes and assesses a pre-engineering curriculum development project called Foundations of Engineering, Science and Technology (FEST). FEST integrates web-based technologies into an inter-connected system to enable delivery of a blended program at multiple institutions. Tools and systems described include 1) technologies to deliver…
Nanowire systems: technology and design
Gaillardon, Pierre-Emmanuel; Amarù, Luca Gaetano; Bobba, Shashikanth; De Marchi, Michele; Sacchetto, Davide; De Micheli, Giovanni
2014-01-01
Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this study, we consider double independent gate, vertically stacked nanowire field effect transistors (FETs) with gate-all-around structures and typical diameter of 20 nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behaviour of the nanostructure by selectively enabling one type of carriers. These transistors work as switches with electrically programmable polarity and thus realize an exclusive or operation. The intrinsic higher expressive power of these FETs, when compared with standard complementary metal oxide semiconductor technology, enables us to realize more efficient logic gates, which we organize as tiles to realize nanowire systems by regular arrays. This article surveys both the technology for double independent gate FETs as well as physical and logic design tools to realize digital systems with this fabrication technology. PMID:24567471
NASA Technical Reports Server (NTRS)
Van Zante, Dale; Suder, Kenneth
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
NASA Technical Reports Server (NTRS)
Van Zante, Dale E.; Suder, Kenneth L.
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
Annotated Bibliography of Enabling Technologies for the Small Aircraft Transportation System
NASA Technical Reports Server (NTRS)
ONeil, Patrick D.; Tarry, Scott E.
2002-01-01
The following collection of research summaries are submitted as fulfillment of a request from NASA LaRC to conduct research into existing enabling technologies that support the development of the Small Aircraft Transportation System aircraft and accompanying airspace management infrastructure. Due to time and fiscal constraints, the included studies focus primarily on visual systems and architecture, flight control design, instrumentation and display, flight deck design considerations, Human-Machine Interface issues, and supporting augmentation technologies and software. This collation of summaries is divided in sections in an attempt to group similar technologies and systems. However, the reader is advised that many of these studies involve multiple technologies and systems that span across many categories. Because of this fact, studies are not easily categorized into single sections. In an attempt to help the reader more easily identify topics of interest, a SATS application description is provided for each summary. In addition, a list of acronyms provided at the front of the report to aid the reader.
NASA Technical Reports Server (NTRS)
Krabach, Timothy
1998-01-01
Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.
Designing Technology-Enabled Instruction to Utilize Learning Analytics
ERIC Educational Resources Information Center
Davies, Randall; Nyland, Robert; Bodily, Robert; Chapman, John; Jones, Brian; Young, Jay
2017-01-01
A key notion conveyed by those who advocate for the use of data to enhance instruction is an awareness that learning analytics has the potential to improve instruction and learning but is not currently reaching that potential. Gibbons (2014) suggested that a lack of learning facilitated by current technology-enabled instructional systems may be…
DOT National Transportation Integrated Search
1995-04-01
Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...
Cascade Distillation System Development
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah
2014-01-01
NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.
Modular High-Energy Systems for Solar Power Satellites
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.
2006-01-01
Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.
Sandia National Laboratories: Sandia Enabled Communications and
Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia Licensing & Technology Transfer Browse Technology Portfolios Technology Partnerships Business, Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth
2013-11-01
Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.
2013-08-01
Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.
Using ESB and BPEL for Evolving Healthcare Systems Towards Pervasive, Grid-Enabled SOA
NASA Astrophysics Data System (ADS)
Koufi, V.; Malamateniou, F.; Papakonstantinou, D.; Vassilacopoulos, G.
Healthcare organizations often face the challenge of integrating diverse and geographically disparate information technology systems to respond to changing requirements and to exploit the capabilities of modern technologies. Hence, systems evolution, through modification and extension of the existing information technology infrastructure, becomes a necessity. Moreover, the availability of these systems at the point of care when needed is a vital issue for the quality of healthcare provided to patients. This chapter takes a process perspective of healthcare delivery within and across organizational boundaries and presents a disciplined approach for evolving healthcare systems towards a pervasive, grid-enabled service-oriented architecture using the enterprise system bus middleware technology for resolving integration issues, the business process execution language for supporting collaboration requirements and grid middleware technology for both addressing common SOA scalability requirements and complementing existing system functionality. In such an environment, appropriate security mechanisms must ensure authorized access to integrated healthcare services and data. To this end, a security framework addressing security aspects such as authorization and access control is also presented.
Electrically Isolating Subsystems in SOAC Technologies
NASA Technical Reports Server (NTRS)
Boyd, R. M.; Mojarradi, M. M.; Kuhn, W. B.; Shumaker, E. A.
2001-01-01
Integrated circuit fabrication technology has evolved to the point that it is possible to construct complete systems, including power, data processing, and communications, on a single chip. Such System-on-a-chip (SOAC) technologies can enable drastic reductions in spacecraft size and weight, lowering the cost of missions and presenting new mission opportunities. This paper overviews some key enabling technologies unique to the needs of spacecraft for outer-planet exploration and missions requiring extreme resistance to radiation such as Europa orbiters and Europa Landers. The work is being carried out by Kansas State University (KSU) under direction of the Center for Integrated Space Microsystems (CISM) at NASA's Jet Propulsion Laboratory. Additional information is contained in the original extended abstract.
Logistics Reduction Technologies for Exploration Missions
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.
2014-01-01
Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.
2015-01-16
Enablers Draft Technical Report SERC -2015-049-1 January 16, 2015 Principal Investigator: Dr. Richard Turner, Stevens Institute of...Hudson, Hoboken, NJ 07030 1 Copyright © 2015 Stevens Institute of Technology The Systems Engineering Research Center ( SERC ) is a federally...inappropriate enablers are not pursued. The identification criteria developed for RT-124 are based on earlier SERC work. [4, 5, 6]: 1 Operated by DAU
ERIC Educational Resources Information Center
Meeks, Glenn E.; Fisher, Ricki; Loveless, Warren
Personnel involved in planning or developing schools lack the costing tools that will enable them to determine educational technology costs. This report presents an overview of the technology costing process and the general costs used in estimating educational technology systems on a macro-budget basis, along with simple cost estimates for…
Highly Automated Arrival Management and Control System Suitable for Early NextGen
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Jung, Jaewoo
2013-01-01
This is a presentation of previously published work conducted in the development of the Terminal Area Precision Scheduling and Spacing (TAPSS) system. Included are concept and technical descriptions of the TAPSS system and results from human in the loop simulations conducted at Ames Research Center. The Terminal Area Precision Scheduling and Spacing system has demonstrated through research and extensive high-fidelity simulation studies to have benefits in airport arrival throughput, supporting efficient arrival descents, and enabling mixed aircraft navigation capability operations during periods of high congestion. NASA is currently porting the TAPSS system into the FAA TBFM and STARS system prototypes to ensure its ability to operate in the FAA automation Infrastructure. NASA ATM Demonstration Project is using the the TAPSS technologies to provide the ground-based automation tools to enable airborne Interval Management (IM) capabilities. NASA and the FAA have initiated a Research Transition Team to enable potential TAPSS and IM Technology Transfer.
Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2012-01-01
The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and the status and results to date will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less
Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Propulsion Risk Reduction Activities for Nontoxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth L.
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for nontoxic or "green" propellants. The PCAD project focuses on the development of nontoxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of nontoxic propellants for space missions. Implementation of nontoxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that nontoxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Revolutionary Aerospace Systems Concepts - Planning for the Future of Technology Investments
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J., Jr.; Breckenridge, Roger A.; Hall, John B., Jr.
2002-01-01
In January, 2000, the NASA Administrator gave the following directions to Langley: "We will create a new role for Langley as a leader for the assessment of revolutionary aerospace system concepts and architectures, and provide resources needed to assure technology breakthroughs will be there to support these advanced concepts. This is critical in determining how NASA can best invest its resources to enable future missions." The key objective of the RASC team is to look beyond current research and technology (R&T) programs and missions and evolutionary technology development approaches with a "top-down" perspective to explore possible new mission capabilities. The accomplishment of this objective will allow NASA to provide the ability to go anywhere, anytime - safely, and affordably- to meet its strategic goals for exploration, science, and commercialization. The RASC Team will seek to maximize the cross-Enterprise benefits of these revolutionary capabilities as it defines the revolutionary enabling technology areas and performance levels needed. The product of the RASC Team studies will be revolutionary systems concepts along with enabling technologies and payoffs in new mission capabilities, which these concepts can provide. These results will be delivered to the NASA Enterprises and the NASA Chief Technologist for use in planning revolutionary future NASA R&T program investments.
The Computing And Interdisciplinary Systems Office: Annual Review and Planning Meeting
NASA Technical Reports Server (NTRS)
Lytle, John K.
2003-01-01
The goal of this research is to develop an advanced engineering analysis system that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process (a virtual test cell that integrates propulsion and information technologies). This will enable rapid, high-confidence, cost-effective design of revolutionary systems.
HTS machines as enabling technology for all-electric airborne vehicles
NASA Astrophysics Data System (ADS)
Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.
2007-08-01
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
NASA Astrophysics Data System (ADS)
Houser, P. I. Q.
2017-12-01
21st century earth science is data-intensive, characterized by heterogeneous, sometimes voluminous collections representing phenomena at different scales collected for different purposes and managed in disparate ways. However, much of the earth's surface still requires boots-on-the-ground, in-person fieldwork in order to detect the subtle variations from which humans can infer complex structures and patterns. Nevertheless, field experiences can and should be enabled and enhanced by a variety of emerging technologies. The goal of the proposed research project is to pilot test emerging data integration, semantic and visualization technologies for evaluation of their potential usefulness in the field sciences, particularly in the context of field geology. The proposed project will investigate new techniques for data management and integration enabled by semantic web technologies, along with new techniques for augmented reality that can operate on such integrated data to enable in situ visualization in the field. The research objectives include: Develop new technical infrastructure that applies target technologies to field geology; Test, evaluate, and assess the technical infrastructure in a pilot field site; Evaluate the capabilities of the systems for supporting and augmenting field science; and Assess the generality of the system for implementation in new and different types of field sites. Our hypothesis is that these technologies will enable what we call "field science situational awareness" - a cognitive state formerly attained only through long experience in the field - that is highly desirable but difficult to achieve in time- and resource-limited settings. Expected outcomes include elucidation of how, and in what ways, these technologies are beneficial in the field; enumeration of the steps and requirements to implement these systems; and cost/benefit analyses that evaluate under what conditions the investments of time and resources are advisable to construct such system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE PRODUCTIVITY, TECHNOLOGY AND INNOVATION Strategic Partnership Initiative... enabling technologies, using a systems management approach. The design of and participants in a specific...
Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions
NASA Astrophysics Data System (ADS)
Wu, Pae C.; Knaack, Gretchen; Weber, Douglas J.
2016-05-01
The rapid and exponential advances in micro- and nanotechnologies over the last decade have enabled devices that communicate directly with the nervous system to measure and influence neural activity. Many of the earliest implementations focused on restoration of sensory and motor function, but as knowledge of physiology advances and technology continues to improve in accuracy, precision, and safety, new modes of engaging with the autonomic system herald an era of health restoration that may augment or replace many conventional pharmacotherapies. DARPA's Biological Technologies Office is continuing to advance neurotechnology by investing in neural interface technologies that are effective, reliable, and safe for long-term use in humans. DARPA's Hand Proprioception and Touch Interfaces (HAPTIX) program is creating a fully implantable system that interfaces with peripheral nerves in amputees to enable natural control and sensation for prosthetic limbs. Beyond standard electrode implementations, the Electrical Prescriptions (ElectRx) program is investing in innovative approaches to minimally or non-invasively interface with the peripheral nervous system using novel magnetic, optogenetic, and ultrasound-based technologies. These new mechanisms of interrogating and stimulating the peripheral nervous system are driving towards unparalleled spatiotemporal resolution, specificity and targeting, and noninvasiveness to enable chronic, human-use applications in closed-loop neuromodulation for the treatment of disease.
NASA Technical Reports Server (NTRS)
Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.
1993-01-01
A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.
In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.
2012-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.
In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions
Mathematical Modeling Of Life-Support Systems
NASA Technical Reports Server (NTRS)
Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.
1994-01-01
Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.
Software-Based Student Response Systems: An Interdisciplinary Initiative
ERIC Educational Resources Information Center
Fischer, Carol M.; Hoffman, Michael S.; Casey, Nancy C.; Cox, Maureen P.
2015-01-01
Colleagues from information technology and three academic departments collaborated on an instructional technology initiative to employ student response systems in classes in mathematics, accounting and education. The instructors assessed the viability of using software-based systems to enable students to use their own devices (cell phones,…
Solar Electric Propulsion Technology Development for Electric Propulsion
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie
2015-01-01
NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.
Spectral domain, common path OCT in a handheld PIC based system
NASA Astrophysics Data System (ADS)
Leinse, Arne; Wevers, Lennart; Marchenko, Denys; Dekker, Ronald; Heideman, René G.; Ruis, Roosje M.; Faber, Dirk J.; van Leeuwen, Ton G.; Kim, Keun Bae; Kim, Kyungmin
2018-02-01
Optical Coherence Tomography (OCT) has made it into the clinic in the last decade with systems based on bulk optical components. The next disruptive step will be the introduction of handheld OCT systems. Photonic Integrated Circuit (PIC) technology is the key enabler for this further miniaturization. PIC technology allows signal processing on a stable platform and the implementation of a common path interferometer in that same platform creates a robust fully integrated OCT system with a flexible fiber probe. In this work the first PIC based handheld and integrated common path based spectral domain OCT system is described and demonstrated. The spectrometer in the system is based on an Arrayed Waveguide Grating (AWG) and fully integrated with the CCD and a fiber probe into a system operating at 850 nm. The AWG on the PIC creates a 512 channel spectrometer with a resolution of 0.22 nm enabling a high speed analysis of the full A-scan. The silicon nitride based proprietary waveguide technology (TriPleXTM) enables low loss complex photonic structures from the visible (405 nm) to IR (2350 nm) range, making it a unique candidate for OCT applications. Broadband AWG operation from visible to 1700 nm has been shown in the platform and Photonic Design Kits (PDK) are available enabling custom made designs in a system level design environment. This allows a low threshold entry for designing new (OCT) designs for a broad wavelength range.
Heat Treatment Used to Strengthen Enabling Coating Technology for Oil-Free Turbomachinery
NASA Technical Reports Server (NTRS)
Edmonds, Brian J.; DellaCorte, Christopher
2002-01-01
The PS304 high-temperature solid lubricant coating is a key enabling technology for Oil- Free turbomachinery propulsion and power systems. Breakthroughs in the performance of advanced foil air bearings and improvements in computer-based finite element modeling techniques are the key technologies enabling the development of Oil-Free aircraft engines being pursued by the Oil-Free Turbomachinery team at the NASA Glenn Research Center. PS304 is a plasma spray coating applied to the surface of shafts operating against foil air bearings or in any other component requiring solid lubrication at high temperatures, where conventional materials such as graphite cannot function.
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
Advanced Information Technology Investments at the NASA Earth Science Technology Office
NASA Astrophysics Data System (ADS)
Clune, T.; Seablom, M. S.; Moe, K.
2012-12-01
The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground-based systems, increase the accessibility and utility of science data, and to enable new observation measurements and information products. We will discuss the ESTO investment strategy for information technology development, the methods used to assess stakeholder needs and technology advancements, and technology partnerships to enhance the infusion for the resulting technology. We also describe specific investments and their potential impact on enabling NASA missions and scientific discovery. [1] "Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey", 2012: National Academies Press, http://www.nap.edu/catalog.php?record_id=13405 [2] "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space", 2010: NASA Tech Memo, http://science.nasa.gov/media/medialibrary/2010/07/01/Climate_Architecture_Final.pdf
Advances in shutter drive technology to enhance man-portable infrared cameras
NASA Astrophysics Data System (ADS)
Durfee, David
2012-06-01
With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.
A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.
2005-01-01
Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.
Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants
NASA Astrophysics Data System (ADS)
Amsbeck, Lars; Buck, Reiner; Prosin, Tobias
2016-05-01
Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.
Leong, T Y; Kaiser, K; Miksch, S
2007-01-01
Guideline-based clinical decision support is an emerging paradigm to help reduce error, lower cost, and improve quality in evidence-based medicine. The free and open source (FOS) approach is a promising alternative for delivering cost-effective information technology (IT) solutions in health care. In this paper, we survey the current FOS enabling technologies for patient-centric, guideline-based care, and discuss the current trends and future directions of their role in clinical decision support. We searched PubMed, major biomedical informatics websites, and the web in general for papers and links related to FOS health care IT systems. We also relied on our background and knowledge for specific subtopics. We focused on the functionalities of guideline modeling tools, and briefly examined the supporting technologies for terminology, data exchange and electronic health record (EHR) standards. To effectively support patient-centric, guideline-based care, the computerized guidelines and protocols need to be integrated with existing clinical information systems or EHRs. Technologies that enable such integration should be accessible, interoperable, and scalable. A plethora of FOS tools and techniques for supporting different knowledge management and quality assurance tasks involved are available. Many challenges, however, remain in their implementation. There are active and growing trends of deploying FOS enabling technologies for integrating clinical guidelines, protocols, and pathways into the main care processes. The continuing development and maturation of such technologies are likely to make increasingly significant contributions to patient-centric, guideline-based clinical decision support.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers
NASA Technical Reports Server (NTRS)
Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry
2006-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.
Options For Development of Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2014-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Increasing the Capacity of Primary Care Through Enabling Technology.
Young, Heather M; Nesbitt, Thomas S
2017-04-01
Primary care is the foundation of effective and high-quality health care. The role of primary care clinicians has expanded to encompass coordination of care across multiple providers and management of more patients with complex conditions. Enabling technology has the potential to expand the capacity for primary care clinicians to provide integrated, accessible care that channels expertise to the patient and brings specialty consultations into the primary care clinic. Furthermore, technology offers opportunities to engage patients in advancing their health through improved communication and enhanced self-management of chronic conditions. This paper describes enabling technologies in four domains (the body, the home, the community, and the primary care clinic) that can support the critical role primary care clinicians play in the health care system. It also identifies challenges to incorporating these technologies into primary care clinics, care processes, and workflow.
AlGaInN laser diode technology for systems applications
NASA Astrophysics Data System (ADS)
Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bockowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.
2016-02-01
Gallium Nitride (GaN) laser diodes fabricated from the AlGaInN material system is an emerging technology that allows laser diodes to be fabricated over a very wide wavelength range from u.v. to the visible, and is a key enabler for the development of new system applications such as (underwater and terrestrial) telecommunications, quantum technologies, display sources and medical instrumentation.
Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip E.
2004-01-01
The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and mitigation of potential equipment malfunctions. As an additional benefit, team advancements were incorporated into open standards, ensuring technology transfer. Low-cost, commercial products incorporating the new technology are already available. Furthermore, these products are fully interoperable with legacy network technology equipment currently being used throughout the world.
NASA Technical Reports Server (NTRS)
Spangelo, Sara
2015-01-01
The goal of this paper is to explore the mission opportunities that are uniquely enabled by U-class Solar Electric Propulsion (SEP) technologies. Small SEP thrusters offers significant advantages relative to existing technologies and will revolutionize the class of mission architectures that small spacecraft can accomplish by enabling trajectory maneuvers with significant change in velocity requirements and reaction wheel-free attitude control. This paper aims to develop and apply a common system-level modeling framework to evaluate these thrusters for relevant upcoming mission scenarios, taking into account the mass, power, volume, and operational constraints of small highly-constrained missions. We will identify the optimal technology for broad classes of mission applications for different U-class spacecraft sizes and provide insights into what constrains the system performance to identify technology areas where improvements are needed.
Haux, Reinhold
2006-12-01
This paper discusses aspects of information technologies for health care, in particular on transinstitutional health information systems (HIS) and on health-enabling technologies, with some consequences for the aim of medical informatics. It is argued that with the extended range of health information systems and the perspective of having adequate transinstitutional HIS architectures, a substantial contribution can be made to better patient-centered care, with possibilities ranging from regional, national to even global care. It is also argued that in applying health-enabling technologies, using ubiquitous, pervasive computing environments and ambient intelligence approaches, we can expect that in addition care will become more specific and tailored for the individual, and that we can achieve better personalized care. In developing health care systems towards transinstitutional HIS and health-enabling technologies, the aim of medical informatics, to contribute to the progress of the sciences and to high-quality, efficient, and affordable health care that does justice to the individual and to society, may be extended to also contributing to self-determined and self-sufficient (autonomous) life. Reference is made and examples are given from the Yearbook of Medical Informatics of the International Medical Informatics Association (IMIA) and from the work of Professor Jochen Moehr.
Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise
NASA Technical Reports Server (NTRS)
Meredith, Barry D.
2000-01-01
Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.
High-Capacity Communications from Martian Distances Part 2: Spacecraft Antennas and Power Systems
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Kodis, Mary Anne; Epp, Larry W.; Orr, Richard; Schuchman, Leonard; Collins, Michael; Sands, O. Scott; Vyas, Hemali; Williams, W. Dan
2006-01-01
This paper summarizes recent advances in antenna and power systems technology to enable a high data rate Ka-band Mars-to-Earth telecommunications system. Promising antenna technologies are lightweight, deployable space qualified structures at least 12-m in diameter (potentially up to 25-m). These technologies include deployable mesh reflectors, inflatable reflectarray and folded thermosetting composite. Advances in 1kW-class RF power amplifiers include both TWTA and SSPA technologies.
An Overview of Power Capability Requirements for Exploration Missions
NASA Technical Reports Server (NTRS)
Davis, Jose M.; Cataldo, Robert L.; Soeder, James F.; Manzo, Michelle A.; Hakimzadeh, Roshanak
2005-01-01
Advanced power is one of the key capabilities that will be needed to achieve NASA's missions of exploration and scientific advancement. Significant gaps exist in advanced power capabilities that are on the critical path to enabling human exploration beyond Earth orbit and advanced robotic exploration of the solar system. Focused studies and investment are needed to answer key development issues for all candidate technologies before down-selection. The viability of candidate power technology alternatives will be a major factor in determining what exploration mission architectures are possible. Achieving the capabilities needed to enable the CEV, Moon, and Mars missions is dependent on adequate funding. Focused investment in advanced power technologies for human and robotic exploration missions is imperative now to reduce risk and to make informed decisions on potential exploration mission decisions beginning in 2008. This investment would begin the long lead-time needed to develop capabilities for human exploration missions in the 2015 to 2030 timeframe. This paper identifies some of the key technologies that will be needed to fill these power capability gaps. Recommendations are offered to address capability gaps in advanced power for Crew Exploration Vehicle (CEV) power, surface nuclear power systems, surface mobile power systems, high efficiency power systems, and space transportation power systems. These capabilities fill gaps that are on the critical path to enabling robotic and human exploration missions. The recommendations address the following critical technology areas: Energy Conversion, Energy Storage, and Power Management and Distribution.
Fabric opto-electronics enabling healthcare applications; a case study.
van Pieterson, L; van Abeelen, F A; van Os, K; Hornix, E; Zhou, G; Oversluizen, G
2011-01-01
Textiles are a ubiquitous part of human life. By combining them with electronics to create electronic textile systems, new application fields emerge. In this paper, technology and applications of light-emitting textile systems are presented, with emphasis on the healthcare domain: A fabric substrate is described for electronic textile with robust interwoven connections between the conductive yarns in it. This fabric enables the creation of different forms of comfortable light therapy systems. Specific challenges to enable this use in medical applications are discussed.
77 FR 71089 - Pilot Loading of Aeronautical Database Updates
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-29
... the use of newer systems and data-transfer mechanisms such as those employing wireless technology. In... which enables wireless updating of systems and databases. The current regulation does not accommodate... maintenance); Recordkeeping requirements; Training for pilots; Technological advancements in data-transfer...
NASA Technical Reports Server (NTRS)
Waterman, Robert D.; Rice, Herbert D.; Waterman, Susan J.
2010-01-01
Command, Control and Communications (CCC) has evolved through the years from simple switches, dials, analogue hardwire networks and lights to a modern computer based digital network. However there are two closely coupled pillars upon which a CCC system is built. The first, is that technology drives the pace of advancement. The second is that a culture that fosters resistance to change can limit technological advancements in the CCC system. While technology has advanced at a tremendous rate throughout the years, the change in culture has moved slowly. This paper will attempt to show through a historical perspective where specific design decisions for early CCC systems have erroneously evolved into general requirements being imposed on later systems. Finally this paper will provide a glimpse into the future directions envisioned for CCC capabilities that will enable 21st century missions.
Information data systems for a global change technology initiative architecture trade study
NASA Technical Reports Server (NTRS)
Murray, Nicholas D.
1991-01-01
The Global Change Technology Initiative (GCTI) was established to develop technology which will enable use of satellite systems of Earth observations on a global scale, enable use of the observations to predictively model Earth's changes, and provide scientists, government, business, and industry with quick access to the resulting information. At LaRC, a GCTI Architecture Trade Study was undertaken to develop and evaluate the architectural implications to meet the requirements of the global change studies and the eventual implementation of a global change system. The output of the trade study are recommended technologies for the GCTI. That portion of the study concerned with the information data system is documented. The information data system for an earth global change modeling system can be very extensive and beyond affordability in terms of today's costs. Therefore, an incremental approach to gaining a system is most likely. An options approach to levels of capability versus needed technologies was developed. The primary drivers of the requirements for the information data system evaluation were the needed science products, the science measurements, the spacecraft orbits, the instruments configurations, and the spacecraft configurations and their attendant architectures. The science products requirements were not studied here; however, some consideration of the product needs were included in the evaluation results. The information data system technology items were identified from the viewpoint of the desirable overall information system characteristics.
System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa
NASA Astrophysics Data System (ADS)
Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter
2004-11-01
The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Critical Technology Determination for Future Human Space Flight
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Steckleim, Jonette M.; Alexander, Leslie; Rahman, Shamin A.; Rosenthal, Matthew; Wiley, Dianne S.; Davison, Stephan C.; Korsmeyer, David J.;
2012-01-01
As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture driven technology development assessment (technology pull), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.
Critical Technology Determination for Future Human Space Flight
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.;
2012-01-01
As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.
NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology
NASA Technical Reports Server (NTRS)
Haller, Bill
2015-01-01
Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.
2017-02-01
enable high scalability and reconfigurability for inter-CPU/Memory communications with an increased number of communication channels in frequency ...interconnect technology (MRFI) to enable high scalability and re-configurability for inter-CPU/Memory communications with an increased number of communication ...testing in the University of California, Los Angeles (UCLA) Center for High Frequency Electronics, and Dr. Afshin Momtaz at Broadcom Corporation for
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Delaat, John C.
2012-01-01
The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and highlights of the results obtained during the first phase of ERA will be presented.
Space Propulsion Synergy Group ETO technology assessments
NASA Astrophysics Data System (ADS)
Bray, James
The Space Propulsion Synergy Group (SPSG), which was chartered to support long-range strategic planning, has, using a broad industry/government team, evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long-term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a priori. The SPSG invented a dual prioritization approach that balances long-term strategic thrusts with current programmatic constraints. This enables individual program managers to make decisions based on both individual project needs and long-term strategic needs. Results indicate that an SSTO using an integrated modular engine has the best long-term potential for a 20 Klb class vehicle, and that health monitoring and control technologies are among the highest dual priority liquid rocket technologies.
In the blink of an eye: head mounted displays development within BAE Systems
NASA Astrophysics Data System (ADS)
Cameron, Alex
2015-05-01
There has been an explosion of interest in head worn displays in recent years, particularly for consumer applications with an attendant ramping up of investment into key enabling technologies to provide what is essence a mobile computer display. However, head mounted system have been around for over 40 years and today's consumer products are building on a legacy of knowledge and technology created by companies such as BAE Systems who have been designing and fielding helmet mounted displays (HMD) for a wide range of specialist applications. Although the dominant application area has been military aviation, solutions have been fielded for solider, ground vehicle, simulation, medical, racing car and even subsea navigation applications. What sets these HMDs apart is that they provide the user with accurate conformal information embedded in the users real world view where the information presented is intuitive and easy to use because it overlays the real world and enables them to stay head up, eyes out, - improving their effectiveness, reducing workload and improving safety. Such systems are an enabling technology in the provision of enhanced Situation Awareness (SA) and reducing user workload in high intensity situations. These capabilities are finding much wider application in new types of compact man mounted audio/visual products enabled by the emergence of new families of micro displays, novel optical concepts and ultra-compact low power processing solutions. This paper therefore provides a personal summary of BAE Systems 40 year's journey in developing and fielding Head Mounted systems, their applications.
Overview and Recent Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2)
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2015-01-01
AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Wertz, Julie; Weisbin, Charles
2004-01-01
This paper describes an information technology innovation developed to assist decision makers faced with complex R&D tasks. The decision support system (DSS) was developed and applied to the analysis of a 10-year, 700 million dollar technology program for the exploration of Mars. The technologies were to enable a 4.8 billion dollar portfolio of exploration flight missions to Mars.
GSFC Cutting Edge Avionics Technologies for Spacecraft
NASA Technical Reports Server (NTRS)
Luers, Philip J.; Culver, Harry L.; Plante, Jeannette
1998-01-01
With the launch of NASA's first fiber optic bus on SAMPEX in 1992, GSFC has ushered in an era of new technology development and insertion into flight programs. Predating such programs the Lewis and Clark missions and the New Millenium Program, GSFC has spearheaded the drive to use cutting edge technologies on spacecraft for three reasons: to enable next generation Space and Earth Science, to shorten spacecraft development schedules, and to reduce the cost of NASA missions. The technologies developed have addressed three focus areas: standard interface components, high performance processing, and high-density packaging techniques enabling lower cost systems. To realize the benefits of standard interface components GSFC has developed and utilized radiation hardened/tolerant devices such as PCI target ASICs, Parallel Fiber Optic Data Bus terminals, MIL-STD-1773 and AS1773 transceivers, and Essential Services Node. High performance processing has been the focus of the Mongoose I and Mongoose V rad-hard 32-bit processor programs as well as the SMEX-Lite Computation Hub. High-density packaging techniques have resulted in 3-D stack DRAM packages and Chip-On-Board processes. Lower cost systems have been demonstrated by judiciously using all of our technology developments to enable "plug and play" scalable architectures. The paper will present a survey of development and insertion experiences for the above technologies, as well as future plans to enable more "better, faster, cheaper" spacecraft. Details of ongoing GSFC programs such as Ultra-Low Power electronics, Rad-Hard FPGAs, PCI master ASICs, and Next Generation Mongoose processors.
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.
1991-01-01
Control-Structures Interaction (CSI) technology embraces the understanding of the interaction between the spacecraft structure and the control system, and the creation and validation of concepts, techniques, and tools, for enabling the interdisciplinary design of an integrated structure and control system, rather than the integration of a structural design and a control system design. The goal of this program is to develop validated CSI technology for integrated design/analysis and qualification of large flexible space systems and precision space structures. A description of the CSI technology program is presented.
Demonstrations of Deployable Systems for Robotic Precursor Missions
NASA Technical Reports Server (NTRS)
Dervan, J.; Johnson, L.; Lockett, T.; Carr, J.; Boyd, D.
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that serve as enabling technologies for exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, deployment systems, and miniaturized electronics, new mission-level capabilities will be demonstrated aboard small spacecraft enabling a new generation of frequent, inexpensive, and highly capable robotic precursor missions with goals extensible to future human exploration. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication as demonstrated by recent advances on the Near Earth Asteroid (NEA) Scout and Lightweight Integrated Solar Array and anTenna (LISA-T) projects.
NASA Technical Reports Server (NTRS)
Sato, Kevin Y.
2013-01-01
Oral presentation at the ASGSR 2013 Annual Meeting. The presentation describes the NASA Bioculture System hardware design, capabilities, enabling science research capabilities, and flight concept of operations. The presentation is part of the Enabling Technologies special session and will be presented to perspective users in both academics and commercial communities.
XML and Bibliographic Data: The TVS (Transport, Validation and Services) Model.
ERIC Educational Resources Information Center
de Carvalho, Joaquim; Cordeiro, Maria Ines
This paper discusses the role of XML in library information systems at three major levels: as are presentation language that enables the transport of bibliographic data in a way that is technologically independent and universally understood across systems and domains; as a language that enables the specification of complex validation rules…
Kaufman, Neal D; Woodley, Paula D Patnoe
2011-05-01
Patients with diabetes need a complex set of services and supports. The challenge of integrating these services into the diabetes regimen can be successfully overcome through self-management support interventions that are clinically linked and technology enabled: self-management support because patients need help mastering the knowledge, attitudes, skills, and behaviors so necessary for good outcomes; interventions because comprehensive theory-based, evidence-proven, long-term, longitudinal interventions work better than direct-to-consumer or nonplanned health promotion approaches; clinically linked because patients are more likely to adopt new behaviors when the approach is in the context of a trusted therapeutic relationship and within an effective medical care system; and technology enabled because capitalizing on the amazing power of information technology leads to the delivery of cost-effective, scalable, engaging solutions that prevent and manage diabetes. © 2011 Diabetes Technology Society.
Oil-Free Shaft Support System Rotordynamics: Past, Present, and Future Challenges and Opportunities
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2011-01-01
Recent breakthroughs in Oil-Free technologies have enabled new high-speed rotor systems and turbomachinery. Such technologies can include compliant-surface gas bearings, magnetic bearings, and advanced solid lubricants and tribo-materials. This presentation briefly reviews critical technology developments and the current state-of-the-art, emerging Oil-Free rotor systems and discusses obstacles preventing more widespread use. Key examples of "best practices" for deploying Oil-Free technologies will be presented and remaining major technical questions surrounding Oil-Free technologies will be brought forward.
Key enablers to facilitate healthy behavior change: workshop summary.
Teyhen, Deydre S; Aldag, Matt; Centola, Damon; Edinborough, Elton; Ghannadian, Jason D; Haught, Andrea; Jackson, Theresa; Kinn, Julie; Kunkler, Kevin J; Levine, Betty; Martindale, Valerie E; Neal, David; Snyder, Leslie B; Styn, Mindi A; Thorndike, Frances; Trabosh, Valerie; Parramore, David J
2014-05-01
The increases in preventable chronic diseases and the rising costs of health care are unsustainable. The US Army Surgeon General's vision to transition from a health care system to a system of health requires the identification of key health enablers to facilitate the adoption of healthy behaviors. In support of this vision, the US Army Telemedicine and Advanced Technology Research Center hosted a workshop in April 2013 titled "Incentives to Create and Sustain Change for Health." Members of government and academia participated to identify key health enablers that could ultimately be leveraged by technology. The key health enablers discussed included (1) public health messaging, (2) changing health habits and the environmental influence on health, (3) goal setting and tracking, (4) the role of incentives in behavior-change intervention, and (5) the role of peer and social networks on change. This report summarizes leading evidence and the group consensus on evidence-based practices with respect to the key enablers in creating healthy behavior change.
NASA Technical Reports Server (NTRS)
Wolfe, Jean
2010-01-01
Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment
Wireless as Enabler of Innovation in 21.
Ball, Eddie; Vasileiadis, Athanasios
2017-01-01
This paper overviews new and emerging wireless technologies that could positively impact on the lives of the elderly or disabled, as Social Care users of Assistive Technology (AT) for 'independent living'. Novel Internet of Things (IoT) radio systems and wireless locating systems being researched at The University of Sheffield are discussed in the context of Social Care technology use-cases.
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin
2010-01-01
Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the technologies needed for Mars mission. Agencies see the importance of assessing gaps and overlaps in their plans to advance technologies in order to leverage their investments and enable exciting missions as soon as practical. They see the importance of respecting the ability of any agency to invest in any technologies considered interesting or strategic. This paper will describe the importance of developing an appropriate international strategy for technology development and ideas for effective mechanisms for advancing an international strategy. This work will both inform and be informed by the development of an ISECG Global Exploration Roadmap and serve as a concrete step forward in advancing the Global Exploration Strategy.
NASA's Mobile and Telecom Antenna Development at JPL
NASA Technical Reports Server (NTRS)
Huang, John
1997-01-01
Chartered by NASA to develop and demonstrate enabling technologies for mobile and satellite telecommuniation systems, JPL has developed various antenna technologies throughout the microwave spectrum in the past two decades.
Using IoT Device Technology in Spacecraft Checkout Systems
NASA Astrophysics Data System (ADS)
Plummer, Chris
2015-09-01
The Internet of Things (IoT) has become a common theme in both the technical and popular press in recent years because many of the enabling technologies that are required to make IoT a reality have now matured. Those technologies are revolutionising the way industrial systems and products are developed because they offer significant advantages over older technologies. This paper looks at how IoT device technology can be used in spacecraft checkout systems to achieve smaller, more capable, and more scalable solutions than are currently available. It covers the use of IoT device technology for classical spacecraft test systems as well as for hardware-in-the-loop simulation systems used to support spacecraft checkout.
Health-enabling technologies for pervasive health care: on services and ICT architecture paradigms.
Haux, Reinhold; Howe, Jurgen; Marschollek, Michael; Plischke, Maik; Wolf, Klaus-Hendrik
2008-06-01
Progress in information and communication technologies (ICT) is providing new opportunities for pervasive health care services in aging societies. To identify starting points of health-enabling technologies for pervasive health care. To describe typical services of and contemporary ICT architecture paradigms for pervasive health care. Summarizing outcomes of literature analyses and results from own research projects in this field. Basic functions for pervasive health care with respect to home care comprise emergency detection and alarm, disease management, as well as health status feedback and advice. These functions are complemented by optional (non-health care) functions. Four major paradigms for contemporary ICT architectures are person-centered ICT architectures, home-centered ICT architectures, telehealth service-centered ICT architectures and health care institution-centered ICT architectures. Health-enabling technologies may lead to both new ways of living and new ways of health care. Both ways are interwoven. This has to be considered for appropriate ICT architectures of sensor-enhanced health information systems. IMIA, the International Medical Informatics Association, may be an appropriate forum for interdisciplinary research exchange on health-enabling technologies for pervasive health care.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.
Helu, Moneer; Hedberg, Thomas
2015-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed
Helu, Moneer; Hedberg, Thomas
2017-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167
Technologies for Networked Enabled Operations
NASA Technical Reports Server (NTRS)
Glass, B.; Levine, J.
2005-01-01
Current point-to-point data links will not scale to support future integration of surveillance, security, and globally-distributed air traffic data, and already hinders efficiency and capacity. While the FAA and industry focus on a transition to initial system-wide information management (SWIM) capabilities, this paper describes a set of initial studies of NAS network-enabled operations technology gaps targeted for maturity in later SWIM spirals (201 5-2020 timeframe).
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
A remote sensing and GIS-enabled highway asset management system : final report.
DOT National Transportation Integrated Search
2016-04-01
The objective of this project is to validate the use of commercial remote sensing and spatial information : (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile LiDAR, image : processing algorithms, and GPS/GIS technolog...
Earth Science Enterprise Technology Strategy
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.
Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okawa, David
Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaicmore » (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra Solar’s Next-Generation Dense Cell Interconnect PV Module Manufacturing Technology. This program is now very successfully building off of this work and commercializing the technology to enable increased solar adoption.« less
The Ground Control Room as an Enabling Technology in the Unmanned Aerial System
NASA Technical Reports Server (NTRS)
Gear, Gary; Mace, Thomas
2007-01-01
This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.
Securing the Global Airspace System Via Identity-Based Security
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2015-01-01
Current telecommunications systems have very good security architectures that include authentication and authorization as well as accounting. These three features enable an edge system to obtain access into a radio communication network, request specific Quality-of-Service (QoS) requirements and ensure proper billing for service. Furthermore, the links are secure. Widely used telecommunication technologies are Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) This paper provides a system-level view of network-centric operations for the global airspace system and the problems and issues with deploying new technologies into the system. The paper then focuses on applying the basic security architectures of commercial telecommunication systems and deployment of federated Authentication, Authorization and Accounting systems to provide a scalable, evolvable reliable and maintainable solution to enable a globally deployable identity-based secure airspace system.
Identification, Characterization, and Evaluation Criteria for Systems Engineering Agile Enablers
2015-01-16
Identification, Characterization, and Evaluation Criteria for Systems Engineering Agile Enablers Technical Report SERC -2015-TR-049-1...Task Order 024, RT 124 Report No. SERC -2015-TR-049-1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Technology The Systems Engineering Research Center ( SERC ) is a federally funded University Affiliated Research Center managed by Stevens Institute of
Cradle-to-Grave Logistic Technologies for Exploration Missions
NASA Technical Reports Server (NTRS)
Broyan, James L.; Ewert, Michael K.; Shull, Sarah
2013-01-01
Human exploration missions under study are very limited by the launch mass capacity of exiting and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA is Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing four logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion supply gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description, benefits, and challenges of the four technologies under development and a status of progress at the mid ]point of the three year AES project.
NASA Technical Reports Server (NTRS)
Dryer, Jay
2017-01-01
This briefing is an overview of NASA's hypersonic portfolio and core capabilities. The scope of work is fundamental research spanning technology readiness and system complexity levels; critical technologies enabling re-usable hypersonic systems; system-level research, design, analysis, validation; and, engage, invigorate and train the next generation of engineers. This briefing was requested by the Aeronautics Subcommittee of the NASA Advisory Council.
Lunar Surface Systems Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony;
2011-01-01
The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.
Emerging University Student Experiences of Learning Technologies across the Asia Pacific
ERIC Educational Resources Information Center
Barrett, B. F. D.; Higa, C.; Ellis, R. A.
2012-01-01
Three hundred students across eight countries and eleven higher education institutions in the Asia Pacific Region participated in two courses on climate change and disaster management that were supported by learning technologies: a satellite-enabled video-conferencing system and a learning management system. Evaluation of the student experience…
Embedded 100 Gbps Photonic Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznia, Charlie
This innovation to fiber optic component technology increases the performance, reduces the size and reduces the power consumption of optical communications within dense network systems, such as advanced distributed computing systems and data centers. VCSEL technology is enabling short-reach (< 100 m) and >100 Gbps optical interconnections over multi-mode fiber in commercial applications.
Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan
2010-01-01
In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.
Research | Computational Science | NREL
Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples
47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... technologies, such as instant messaging and email) the distribution of Common Alert Protocol (CAP)-formatted... Integrated Public Alert and Warning System (IPAWS) to enable (whether through “pull” interface technologies...
47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... technologies, such as instant messaging and email) the distribution of Common Alert Protocol (CAP)-formatted... Integrated Public Alert and Warning System (IPAWS) to enable (whether through “pull” interface technologies...
47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... technologies, such as instant messaging and email) the distribution of Common Alert Protocol (CAP)-formatted... Integrated Public Alert and Warning System (IPAWS) to enable (whether through “pull” interface technologies...
The Cutting Edge of High-Temperature Composites
NASA Technical Reports Server (NTRS)
2006-01-01
NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.
Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development
NASA Technical Reports Server (NTRS)
Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony
2015-01-01
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.
A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications
NASA Astrophysics Data System (ADS)
Rajbhandari, Sujan; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Chun, Hyunchae; Faulkner, Grahame; Haas, Harald; Watson, Ian M.; O'Brien, Dominic; Dawson, Martin D.
2017-02-01
The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost polymer optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb s-1 are also outlined.
Applications in Educational Assessment: Future Technologies.
ERIC Educational Resources Information Center
Bank Street Coll. of Education, New York, NY. Center for Children and Technology.
The development of improved and alternative methods of educational assessment should take advantage of technologies that enable different aspects of learning, teaching, and student achievement to be part of an improved assessment system. The current understanding of knowledge assessment, new approaches to assessment, and technologies that may…
NASA In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.
NASA's In-Space Propulsion Technology Program: Overview and Status
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.
NASA's In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.
Civil propulsion technology for the next twenty-five years
NASA Technical Reports Server (NTRS)
Rosen, Robert; Facey, John R.
1987-01-01
The next twenty-five years will see major advances in civil propulsion technology that will result in completely new aircraft systems for domestic, international, commuter and high-speed transports. These aircraft will include advanced aerodynamic, structural, and avionic technologies resulting in major new system capabilities and economic improvements. Propulsion technologies will include high-speed turboprops in the near term, very high bypass ratio turbofans, high efficiency small engines and advanced cycles utilizing high temperature materials for high-speed propulsion. Key fundamental enabling technologies include increased temperature capability and advanced design methods. Increased temperature capability will be based on improved composite materials such as metal matrix, intermetallics, ceramics, and carbon/carbon as well as advanced heat transfer techniques. Advanced design methods will make use of advances in internal computational fluid mechanics, reacting flow computation, computational structural mechanics and computational chemistry. The combination of advanced enabling technologies, new propulsion concepts and advanced control approaches will provide major improvements in civil aircraft.
Status of NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David; Pencil, Eric; Vento, Dan; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.
An IT-enabled supply chain model: a simulation study
NASA Astrophysics Data System (ADS)
Cannella, Salvatore; Framinan, Jose M.; Barbosa-Póvoa, Ana
2014-11-01
During the last decades, supply chain collaboration practices and the underlying enabling technologies have evolved from the classical electronic data interchange (EDI) approach to a web-based and radio frequency identification (RFID)-enabled collaboration. In this field, most of the literature has focused on the study of optimal parameters for reducing the total cost of suppliers, by adopting operational research (OR) techniques. Herein we are interested in showing that the considered information technology (IT)-enabled structure is resilient, that is, it works well across a reasonably broad range of parameter settings. By adopting a methodological approach based on system dynamics, we study a multi-tier collaborative supply chain. Results show that the IT-enabled supply chain improves operational performance and customer service level. Nonetheless, benefits for geographically dispersed networks are of minor entity.
Space Propulsion Synergy Group ETO technology assessments
NASA Astrophysics Data System (ADS)
Bray, James
There exists within the aerospace community a widely recognized need to improve future space launch systems. While these needs have been expressed by many national committees, potential solutions have not achieved consensus nor have they endured. Facing the challenge to remain competitive with limited national resources, the U.S. must improve its strategic planning efforts. A nationally accepted strategic plan for space would enable a focused research & development program. The Space Propulsion Synergy Group (SPSG), chartered to support long range strategic planning, has achieved several breakthroughs. First, using a broad industry/government team, the SPSG evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a-priori. Second, realizing that systems having the best long term payoffs can loose support when constraints are tight, the SPSG invented a dual prioritization approach that balances long term strategic thrusts with current programmatic constraints. This breakthrough enables individual program managers to make decisions based on both individual project needs and long term strategic needs. Results indicate that a SSTO using an integrated modular engine has the best long term potential for a 20 Klb class vehicle and that health monitoring and control technologies rank among the highest dual priority liquid rocket technologies.
Superconductor Digital Electronics: -- Current Status, Future Prospects
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg
2011-03-01
Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.
Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC
NASA Technical Reports Server (NTRS)
Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr
2014-01-01
Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.
Sensor Webs with a Service-Oriented Architecture for On-demand Science Products
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Ungar, Stephen; Ames, Troy; Justice, Chris; Frye, Stuart; Chien, Steve; Tran, Daniel; Cappelaere, Patrice; Derezinsfi, Linda; Paules, Granville;
2007-01-01
This paper describes the work being managed by the NASA Goddard Space Flight Center (GSFC) Information System Division (ISD) under a NASA Earth Science Technology Ofice (ESTO) Advanced Information System Technology (AIST) grant to develop a modular sensor web architecture which enables discovery of sensors and workflows that can create customized science via a high-level service-oriented architecture based on Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) web service standards. These capabilities serve as a prototype to a user-centric architecture for Global Earth Observing System of Systems (GEOSS). This work builds and extends previous sensor web efforts conducted at NASA/GSFC using the Earth Observing 1 (EO-1) satellite and other low-earth orbiting satellites.
Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2015-01-01
Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum mirror substrate size, first fundamental mode frequency (i.e., stiffness) and mass required to fabricate without quilting, survive launch, and achieve stable pointing and maximum thermal time constant.
NASA Stennis Space Center integrated system health management test bed and development capabilities
NASA Astrophysics Data System (ADS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-05-01
Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.
Software Analytical Instrument for Assessment of the Process of Casting Slabs
NASA Astrophysics Data System (ADS)
Franěk, Zdeněk; Kavička, František; Štětina, Josef; Masarik, Miloš
2010-06-01
The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.
Feedstock Supply and Logistics: Biomass as a Commodity
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-05-06
The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.
2013-01-01
Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.
Macdonald, Emma M; Perrin, Byron M; Kingsley, Michael Ic
2017-01-01
Background This systematic review aimed to explore the enablers and barriers faced by adults with diabetes using two-way information communication technologies to support diabetes self-management. Methods Relevant literature was obtained from five databases using search strategies combining four major constructs: adults with diabetes, biomedical technology, communication technology and patient utilisation. Results Of 8430 unique articles identified, 48 were included for review. Risk of bias was assessed using either the Newcastle-Ottowa or Cochrane risk of bias assessment tools. Seventy-one percent of studies were of cohort design with the majority of studies assessed at high or unclear risk of bias. Consistently identified barriers included poorly designed interfaces requiring manual data entry and systems that lacked functionalities valued by patients. Commonly cited enablers included access to reliable technology, highly automated data entry and transmission, graphical display of data with immediate feedback, and supportive health care professionals and family members. Conclusions People with diabetes face a number of potentially modifiable barriers in using technology to support their diabetes management. In order to address these barriers, end users should be consulted in the design process and consideration given to theories of technology adoption to inform design and implementation. Systems should be designed to solve clinical or behavioural problems that are identified by patients as priorities. Technology should be as automated, streamlined, mobile, low cost and integrated as possible in order to limit the burden of usage for the patient and maximise clinical usefulness.
An Analysis of Biometric Technology as an Enabler to Information Assurance
2005-03-01
29 Facial Recognition ................................................................................................ 30...al., 2003) Facial Recognition Facial recognition systems are gaining momentum as of late. The reason for this is that facial recognition systems...the traffic camera on the street corner, video technology is everywhere. There are a couple of different methods currently being used for facial
Overview of Silicon Carbide Technology: Device, Converter, System, and Application
Wang, Fei; Zhang, Zheyu
2016-12-28
This article overviews the silicon carbide (SiC) technology. The focus is on the benefits of SiC based power electronics for converters and systems, as well as their ability in enabling new applications. The challenges and research trends on the design and application of SiC power electronics are also discussed.
NASA Technical Reports Server (NTRS)
Riddlebaugh, Stephen M. (Editor)
2008-01-01
The NASA Glenn Research Center is pushing the envelope of research and technology in aeronautics, space exploration, science, and space operations. Our research in aeropropulsion, structures and materials, and instrumentation and controls is enabling next-generation transportation systems that are faster, more environmentally friendly, more fuel efficient, and safer. Our research and development of space flight systems is enabling advanced power, propulsion, communications, and human health systems that will advance the exploration of our solar system. This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2007. Comprising 104 short articles submitted by the staff scientists and engineers, the report is organized into six major sections: Aeropropulsion, Power and Space Propulsion, Communications, Space Processes and Experiments, Instrumentation and Controls, and Structures and Materials. It is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year; most of the work is reported in Glenn-published technical reports, journal articles, and presentations. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained.
Enabling Technologies for Characterizing Exoplanet Systems with Exo-C
NASA Astrophysics Data System (ADS)
Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul
2015-01-01
The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental requirements) and to integrate these subsystems together for a hardware-in-the-loop end-to-end demonstration, the overall readiness of the suite of enabling technologies makes a compelling case for Exo-C among the exoplanet direct imaging mission candidates.
NASA Astrophysics Data System (ADS)
Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan
2016-07-01
Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
NASA Technical Reports Server (NTRS)
Aquilina, Rudolph A.
2015-01-01
The SMART-NAS Testbed for Safe Trajectory Based Operations Project will deliver an evaluation capability, critical to the ATM community, allowing full NextGen and beyond-NextGen concepts to be assessed and developed. To meet this objective a strong focus will be placed on concept integration and validation to enable a gate-to-gate trajectory-based system capability that satisfies a full vision for NextGen. The SMART-NAS for Safe TBO Project consists of six sub-projects. Three of the sub-projects are focused on exploring and developing technologies, concepts and models for evolving and transforming air traffic management operations in the ATM+2 time horizon, while the remaining three sub-projects are focused on developing the tools and capabilities needed for testing these advanced concepts. Function Allocation, Networked Air Traffic Management and Trajectory Based Operations are developing concepts and models. SMART-NAS Test-bed, System Assurance Technologies and Real-time Safety Modeling are developing the tools and capabilities to test these concepts. Simulation and modeling capabilities will include the ability to assess multiple operational scenarios of the national airspace system, accept data feeds, allowing shadowing of actual operations in either real-time, fast-time and/or hybrid modes of operations in distributed environments, and enable integrated examinations of concepts, algorithms, technologies, and NAS architectures. An important focus within this project is to enable the development of a real-time, system-wide safety assurance system. The basis of such a system is a continuum of information acquisition, analysis, and assessment that enables awareness and corrective action to detect and mitigate potential threats to continuous system-wide safety at all levels. This process, which currently can only be done post operations, will be driven towards "real-time" assessments in the 2035 time frame.
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
Bults, Richard G. A.; Van Sinderen, Marten J.; Widya, Ing; Hermens, Hermie J.
2015-01-01
Clinical data are crucial for any medical case to study and understand a patient’s condition and to give the patient the best possible treatment. Pervasive healthcare systems apply information and communication technology to enable the usage of ubiquitous clinical data by authorized medical persons. However, quality of clinical data in these applications is, to a large extent, determined by the technological context of the patient. A technological context is characterized by potential technological disruptions that affect optimal functioning of technological resources. The clinical data based on input from these technological resources can therefore have quality degradations. If these degradations are not noticed, the use of this clinical data can lead to wrong treatment decisions, which potentially puts the patient’s safety at risk. This paper presents an ontology that specifies the relation among technological context, quality of clinical data, and patient treatment. The presented ontology provides a formal way to represent the knowledge to specify the effect of technological context variations in the clinical data quality and the impact of the clinical data quality on a patient’s treatment. Accordingly, this ontology is the foundation for a quality of data framework that enables the development of telemedicine systems that are capable of adapting the treatment when the quality of the clinical data degrades, and thus guaranteeing patients’ safety even when technological context varies. PMID:27170903
Long-range, low-cost electric vehicles enabled by robust energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ping; Ross, Russel; Newman, Aron
2015-09-18
ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less
An Integrated Decision Support System for Water Quality Management of Songhua River Basin
NASA Astrophysics Data System (ADS)
Zhang, Haiping; Yin, Qiuxiao; Chen, Ling
2010-11-01
In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.
Envisioning a Future of Computational Geoscience in a Data Rich Semantic World
NASA Astrophysics Data System (ADS)
Kumar, P.; Elag, M.; Jiang, P.; Marini, L.
2015-12-01
Advances in observational systems and reduction in their cost are allowing us to explore, monitor, and digitally represent our environment in unprecedented details and over large areas. Low cost in situ sensors, unmanned autonomous vehicles, imaging technologies, and other new observational approaches along with airborne and space borne systems are allowing us to measure nearly everything, almost everywhere, and at almost all the time. Under the aegis of observatories they are enabling an integrated view across space and time scales ranging from storms to seasons to years and, in some cases, decades. Rapid increase in the convergence of computational, communication and information systems and their inter-operability through advances in technologies such as semantic web can provide opportunities to further facilitate fusion and synthesis of heterogeneous measurements with knowledge systems. This integration can enable us to break disciplinary boundaries and bring sensor data directly to desktop or handheld devices. We describe CyberInfrastructure effort that is being developed through projects such as Earthcube Geosemantics (http://geosemantics.hydrocomplexity.net), (SEAD (http://sead-data.net/), and Browndog (http://browndog.ncsa.illinois.edu/)s o that data across all of earth science can be easily shared and integrated with models. This also includes efforts to enable models to become interoperable among themselves and with data using technologies that enable human-out-of-the-loop integration. Through such technologies our ability to use real time information for decision-making and scientific investigations will increase multifold. The data goes through a sequence of steps, often iterative, from collection to long-term preservation. Similarly the scientific investigation and associated outcomes are composed of a number of iterative steps from problem identification to solutions. However, the integration between these two pathways is rather limited. We describe characteristics of new technologies that are needed to bring these processes together in the near future to significantly reduce the latency between data, science, and agile and informed actions that support sustainability.
NASA Technical Reports Server (NTRS)
Tang, Tony K.
1999-01-01
At NASA, the focus for smaller, less costly missions has given impetus for the development of microspacecraft. MicroElectroMechanical System (MEMS) technology advances in the area of sensor, propulsion systems, and instruments, make the notion of a specialized microspacecraft feasible in the immediate future. Similar to the micro-electronics revolution,the emerging MEMS technology offers the integration of recent advances in micromachining and nanofabrication techniques with microelectronics in a mass-producible format,is viewed as the next step in device and instrument miniaturization. MEMS technology offers the potential of enabling or enhancing NASA missions in a variety of ways. This new technology allows the miniaturization of components and systems, where the primary benefit is a reduction in size, mass and power. MEMS technology also provides new capabilities and enhanced performance, where the most significant impact is in performance, regardless of system size. Finally,with the availability of mass-produced, miniature MEMS instrumentation comes the opportunity to rethink our fundamental measurement paradigms. It is now possible to expand our horizons from a single instrument perspective to one involving multi-node distributed systems. In the distributed systems and missions, a new system in which the functionality is enabled through a multiplicity of elements. Further in the future, the integration of electronics, photonics, and micromechanical functionalities into "instruments-on-a-chip" will provide the ultimate size, cost, function, and performance advantage. In this presentation, I will discuss recent development, requirement, and applications of various MEMS technologies and devices for space applications.
Data-Base Software For Tracking Technological Developments
NASA Technical Reports Server (NTRS)
Aliberti, James A.; Wright, Simon; Monteith, Steve K.
1996-01-01
Technology Tracking System (TechTracS) computer program developed for use in storing and retrieving information on technology and related patent information developed under auspices of NASA Headquarters and NASA's field centers. Contents of data base include multiple scanned still images and quick-time movies as well as text. TechTracS includes word-processing, report-editing, chart-and-graph-editing, and search-editing subprograms. Extensive keyword searching capabilities enable rapid location of technologies, innovators, and companies. System performs routine functions automatically and serves multiple users.
2014-10-01
Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for
Propulsion System Modeling and Simulation
NASA Technical Reports Server (NTRS)
Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile
2002-01-01
The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.
NASA's Advanced Communications Technology Satellite (ACTS)
NASA Technical Reports Server (NTRS)
Gedney, R. T.
1983-01-01
NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.
Extravehicular Activity (EVA) Technology Development Status and Forecast
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Westheimer, David T.
2010-01-01
Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast
Enabling NVM for Data-Intensive Scientific Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carns, Philip; Jenkins, John; Seo, Sangmin
Specialized, transient data services are playing an increasingly prominent role in data-intensive scientific computing. These services offer flexible, on-demand pairing of applications with storage hardware using semantics that are optimized for the problem domain. Concurrent with this trend, upcoming scientific computing and big data systems will be deployed with emerging NVM technology to achieve the highest possible price/productivity ratio. Clearly, therefore, we must develop techniques to facilitate the confluence of specialized data services and NVM technology. In this work we explore how to enable the composition of NVM resources within transient distributed services while still retaining their essential performance characteristics.more » Our approach involves eschewing the conventional distributed file system model and instead projecting NVM devices as remote microservices that leverage user-level threads, RPC services, RMA-enabled network transports, and persistent memory libraries in order to maximize performance. We describe a prototype system that incorporates these concepts, evaluate its performance for key workloads on an exemplar system, and discuss how the system can be leveraged as a component of future data-intensive architectures.« less
Huang, Anpeng; Xu, Wenyao; Li, Zhinan; Xie, Linzhen; Sarrafzadeh, Majid; Li, Xiaoming; Cong, Jason
2014-09-01
Cardiovascular disease (CVD) is a major issue to public health. It contributes 41% to the Chinese death rate each year. This huge loss encouraged us to develop a Wearable Efficient teleCARdiology systEm (WE-CARE) for early warning and prevention of CVD risks in real time. WE-CARE is expected to work 24/7 online for mobile health (mHealth) applications. Unfortunately, this purpose is often disrupted in system experiments and clinical trials, even if related enabling technologies work properly. This phenomenon is rooted in the overload issue of complex Electrocardiogram (ECG) data in terms of system integration. In this study, our main objective is to get a system light-loading technology to enable mHealth with a benchmarked ECG anomaly recognition rate. To achieve this objective, we propose an approach to purify clinical features from ECG raw data based on manifold learning, called the Manifold-based ECG-feature Purification algorithm. Our clinical trials verify that our proposal can detect anomalies with a recognition rate of up to 94% which is highly valuable in daily public health-risk alert applications based on clinical criteria. Most importantly, the experiment results demonstrate that the WE-CARE system enabled by our proposal can enhance system reliability by at least two times and reduce false negative rates to 0.76%, and extend the battery life by 40.54%, in the system integration level.
NASA Technical Reports Server (NTRS)
2003-01-01
NASA Glenn Research Center (GRC) is responsible for the Advanced Communications for Air Traffic Management (AC/ATM) Project, a sub-element task of the Advanced Air Transportation Technologies (AATT) Project of the NASA Aviation System Capacity Program (ASC). The AC/ATM Project is developing new communications technologies and tools that will improve throughput in the U.S. Air Traffic Control System. The goal of the AC/ATM Project is to enable a communications infrastructure providing the capacity, efficiency, and flexibility necessary to realize benefits of the future mature Free-Flight environment. The capabilities and scope of communications technologies needed to accomplish this goal depend on characteristics of the future Free-Flight environment. There are many operational concepts being proposed for a future ATM system to enable user flexibility and efficiency. GRC s focus is on developing new technologies and techniques to support the digital communication of information involving airborne and ground-based users. However, the technologies and techniques must be integrated with the systems and services that industry and the Federal Aviation Administration (FAA) are developing. Thus, GRC needs to monitor and provide input to the various industry and FAA organizations and committees that are specifying new systems and services. Adoption of technologies by the FAA is partially dependent on acceptance of the technology by the aviation community. The commercial aviation community in particular would like to adopt technologies that can be used throughout the world. As a result, the adoption of common or at least compatible technologies by European countries is a key factor in getting commitments to those technologies by the US aviation community. GRC desires to keep informed of European activities that relate to aviation communication technologies, particularly those that are being supported by Eurocontrol.
Chau, Cheuk Wing; Leung, Eman
2017-01-01
The aging population creates tremendous pressure to healthcare. To resolve, scholars recognized the solution to this challenge is integrated care. To facilitate integrated care, health information technologies (HIT) is a critical enabler. This paper will first review how technology enhanced integrated care, and review on the existing literatures in system effective use and the three key external factors that enable HIT implementation. Applying Burton-Jones and Volkoff's contextualized theories of effective use of HIT to understand the role of health informatics and technology in the unique context of Hong Kong, we have conducted a case study research to identify the levers for improving HK integration of care through HIT.
Achieving cost reductions in EOSDIS operations through technology evolution
NASA Technical Reports Server (NTRS)
Newsome, Penny; Moe, Karen; Harberts, Robert
1996-01-01
The earth observing system (EOS) data information system (EOSDIS) mission includes the cost-effective management and distribution of large amounts of data to the earth science community. The effect of the introduction of new information system technologies on the evolution of EOSDIS is considered. One of the steps taken by NASA to enable the introduction of new information system technologies into the EOSDIS is the funding of technology development through prototyping. Recent and ongoing prototyping efforts and their potential impact on the performance and cost-effectiveness of the EOSDIS are discussed. The technology evolution process as it related to the effective operation of EOSDIS is described, and methods are identified for the support of the transfer of relevant technology to EOSDIS components.
A new architecture for enterprise information systems.
Covvey, H D; Stumpf, J J
1999-01-01
Irresistible economic and technical forces are forcing healthcare institutions to develop regionalized services such as consolidated or virtual laboratories. Technical realities, such as the lack of an enabling enterprise-level information technology (IT) integration infrastructure, the existence of legacy systems, and non-existent or embryonic enterprise-level IT services organizations, are delaying or frustrating the achievement of the desired configuration of shared services. On attempting to address this matter, we discover that the state-of-the-art in integration technology is not wholly adequate, and itself becomes a barrier to the full realization of shared healthcare services. In this paper we report new work from the field of Co-operative Information Systems that proposes a new architecture of systems that are intrinsically cooperation-enabled, and we extend this architecture to both the regional and national scales.
NASA Astrophysics Data System (ADS)
Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.
2016-12-01
We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.
Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors
Gao, Jian; Kim, Young Duck; Liang, Liangbo; ...
2016-09-20
Semiconductor impurity doping has enabled an entire generation of technology. The emergence of alternative semiconductor material systems, such as transition metal dichalcogenides (TMDCs), requires the development of scalable doping strategies. We report an unprecedented one-pot synthesis for transition-metal substitution in large-area, synthetic monolayer TMDCs. Electron microscopy, optical and electronic transport characterization and ab initio calculations indicate that our doping strategy preserves the attractive qualities of TMDC monolayers, including semiconducting transport and strong direct-gap luminescence. These results are expected to encourage exploration of transition-metal substitution in two-dimensional systems, potentially enabling next-generation optoelectronic technology in the atomically-thin regime.
NASA's Orbital Space Plane Risk Reduction Strategy
NASA Technical Reports Server (NTRS)
Dumbacher, Dan
2003-01-01
This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.
Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; McClain, Charles R.
2010-01-01
Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
NextGen-Airportal Project Technologies: Systems Analysis, Integration, and Evaluation (SAIE)
NASA Technical Reports Server (NTRS)
Huang, Alex; Trapani, Andrew; Poage, Jim; Howell, Daniel; Slocum, Douglas
2012-01-01
NASA has been conducting Concept & Technology (C&T) research to enable capacity, efficiency, and safety improvements under the Airspace Systems Program, Aeronautics Research Mission Directorate (ARMD). These C&Ts provide various benefits (e.g., improved airport departure/arrival throughputs, fuel saving, and taxi efficiency) with costs and benefits apportioned among various Air Traffic Management (ATM) system stakeholders (e.g., FAA, aircraft operators, or public).
Learning the Language of Healthcare Enabling Semantic Web Technology in CHCS
2013-09-01
tuples”, (subject, predicate, object), to relate data and achieve semantic interoperability . Other similar technologies exist, but their... Semantic Healthcare repository [5]. Ultimately, both of our data approaches were successful. However, our current test system is based on the CPRS demo...to extract system dependencies and workflows; to extract semantically related patient data ; and to browse patient- centric views into the system . We
An Intrusion Detection System for the Protection of Railway Assets Using Fiber Bragg Grating Sensors
Catalano, Angelo; Bruno, Francesco Antonio; Pisco, Marco; Cutolo, Antonello; Cusano, Andrea
2014-01-01
We demonstrate the ability of Fiber Bragg Gratings (FBGs) sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology. PMID:25268920
Advanced Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Borowski, Stanley K.
2010-01-01
Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust-to-weight ratio. This presentation will discuss potential space fission propulsion options ranging from first generation systems to highly advanced systems. Ongoing research that shows promise for enabling second generation NTP systems with Isp greater than 1000 s will be discussed, as will the potential for liquid, gas, or plasma core systems. Space fission propulsion systems could also be used in conjunction with simple (water-based) propellant depots to enable routine, affordable missions to various destinations (e.g. moon, Mars, asteroids) once in-space infrastructure is sufficiently developed. As fuel and material technologies advance, very high performance Nuclear Electric Propulsion (NEP) systems may also become viable. These systems could enable sophisticated science missions, highly efficient cargo delivery, and human missions to numerous destinations. Commonalities between NTP, fission power systems, and NEP will be discussed.
Transforming Legacy Systems to Obtain Information Superiority
2001-01-01
is imperative that innovative technologies be developed to enable legacy weapon systems to exploit the information revolution, achieve information ... dominance , and meet the required operational tempo. This paper presents an embedded-system architecture, open system middleware services, and a software
NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy
2005-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.
NASA Astrophysics Data System (ADS)
Clauwaert, Peter; Muys, Maarten; Alloul, Abbas; De Paepe, Jolien; Luther, Amanda; Sun, Xiaoyan; Ilgrande, Chiara; Christiaens, Marlies E. R.; Hu, Xiaona; Zhang, Dongdong; Lindeboom, Ralph E. F.; Sas, Benedikt; Rabaey, Korneel; Boon, Nico; Ronsse, Frederik; Geelen, Danny; Vlaeminck, Siegfried E.
2017-05-01
In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.
Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko
As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEETmore » 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.« less
CICT Computing, Information, and Communications Technology Program
NASA Technical Reports Server (NTRS)
Laufenberg, Lawrence; Tu, Eugene (Technical Monitor)
2002-01-01
The CICT Program is part of the NASA Aerospace Technology Enterprise's fundamental technology thrust to develop tools. processes, and technologies that enable new aerospace system capabilities and missions. The CICT Program's four key objectives are: Provide seamless access to NASA resources- including ground-, air-, and space-based distributed information technology resources-so that NASA scientists and engineers can more easily control missions, make new scientific discoveries, and design the next-generation space vehicles, provide high-data delivery from these assets directly to users for missions, develop goal-oriented human-centered systems, and research, develop and evaluate revolutionary technology.
The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor
2009-01-01
The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.
NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability
NASA Technical Reports Server (NTRS)
Dankanich, John; Anderson, David J.
2008-01-01
The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Feldman, Jay; Ellerby, Donald T.; Wercinski, Paul F.; Beck, Robin A S.
2017-01-01
NASA's future missions will be more demanding. They require materials to be mass efficient, robust, multi-functional, scalable and able to be integrated with other subsystems to enable innovative missions to accomplish future science missions. Thermal protection systems and materials (TPSM) are critical for the robotic and human exploration of the solar system when it involves entry. TPSM is a single string system with no back-up. Mass efficiency and robustness are required. Integration of TPSM with the aeroshell is both a challenge and an opportunity. Since 2010, NASA's Space Technology Mission Directorate has invested in innovative new materials and systems across a spectrum of game changing technologies. In this keynote address, we plan to highlight and present our successful approaches utilized in developing four different materials and system technologies that use innovative new manufacturing techniques to meet mission needs. 3-D weaving and felt manufacturing allowed us to successfully propose new ways of addressing TPSM challenges. In the 3-D MAT project, we developed and delivered a multi-functional TPS materials solution, in under three years that is an enabler for Lunar Capable Orion Spacecraft. Under the HEEET project, we are developing a robust heat-shield that can withstand extreme entry conditions, both thermally and mechanically, for entry at Venus, Saturn or higher speed sample return missions. The improved efficiency of HEEET allows science missions entry at much reduced G'loads enabling delicate science instruments to be used. The ADEPT concept is a foldable and deployable entry system and the critical component is a multi-functional fabric that is foldable and deployable and also functions as a mechanical aeroshell and a TPS. The fourth technology we will highlight involves felt to address integration challenges of rigid ablative system such as PICA that was used on MSL. The felt technology allows us to develop a compliant TPS for easy integration. The above four technology developments have focused on mission infusion as the success criteria. These technologies are in different stages of mission infusion. These innovations have led to new mission concepts to be proposed in the future. In our keynote address we will present approaches we have employed throughout the project to create the bridge to transition from low TRL to mission infusion and to overcome the traditional TRL valley of death.
ERIC Educational Resources Information Center
Kesner, Richard M.; Russell, Bruce
2009-01-01
The "FastFit Case Study" and its companion, the "Winter Gear Distributors Case Study" provide undergraduate business students with a suitable and even familiar business context within which to initially consider the role of information management (IM) and to a lesser extent the role of information technology (IT) systems in enabling a business.…
NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover
2017-01-01
Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture.
NASA's Advanced Radioisotope Power Conversion Technology Development Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre
2007-01-01
NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).
Photonic technology revolution influence on the defence area
NASA Astrophysics Data System (ADS)
Galas, Jacek; Litwin, Dariusz; Błocki, Narcyz; Daszkiewicz, Marek
2017-10-01
Revolutionary progress in the photonic technology provides the ability to develop military systems of new properties not possible to obtain with the use of classical technologies. In recent years, this progress has resulted in developing advanced, complex, multifunctional and relatively cheap Photonic Integrated Circuits (PIC) or Hybrid Photonics Circuits (HPC) built of a collection of standardized optical, optoelectronic and photonic components. This idea is similar to the technology of Electronic Integrated Circuits, which has revolutionized the microelectronic market. The novel approach to photonic technology is now revolutionizing the photonics' market. It simplifies the photonics technology and enables creation of technological centers for designing, development and production of advanced optical and photonic systems in the EU and other countries. This paper presents some selected photonic technologies and their impact on such defense systems like radars, radiolocation, telecommunication, and radio-communication systems.
Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra
2015-08-15
There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.
A Briefing on Metrics and Risks for Autonomous Decision-Making in Aerospace Applications
NASA Technical Reports Server (NTRS)
Frost, Susan; Goebel, Kai Frank; Galvan, Jose Ramon
2012-01-01
Significant technology advances will enable future aerospace systems to safely and reliably make decisions autonomously, or without human interaction. The decision-making may result in actions that enable an aircraft or spacecraft in an off-nominal state or with slightly degraded components to achieve mission performance and safety goals while reducing or avoiding damage to the aircraft or spacecraft. Some key technology enablers for autonomous decision-making include: a continuous state awareness through the maturation of the prognostics health management field, novel sensor development, and the considerable gains made in computation power and data processing bandwidth versus system size. Sophisticated algorithms and physics based models coupled with these technological advances allow reliable assessment of a system, subsystem, or components. Decisions that balance mission objectives and constraints with remaining useful life predictions can be made autonomously to maintain safety requirements, optimal performance, and ensure mission objectives. This autonomous approach to decision-making will come with new risks and benefits, some of which will be examined in this paper. To start, an account of previous work to categorize or quantify autonomy in aerospace systems will be presented. In addition, a survey of perceived risks in autonomous decision-making in the context of piloted aircraft and remotely piloted or completely autonomous unmanned autonomous systems (UAS) will be presented based on interviews that were conducted with individuals from industry, academia, and government.
NASA Astrophysics Data System (ADS)
Okawa, Tsutomu; Kaminishi, Tsukasa; Hirabayashi, Syuichi; Suzuki, Ryo; Mitsui, Hiroyasu; Koizumi, Hisao
The business in the enterprise is closely related with the information system to such an extent that the business activities are difficult without the information system. The system design technique that considers the business process well, and that enables a quick system development is requested. In addition, the demand for the development cost is also severe than before. To cope with the current situation, the modeling technology named BPM(Business Process Management/Modeling)is drawing attention and becoming important as a key technology. BPM is a technology to model business activities as business processes and visualize them to improve the business efficiency. However, a general methodology to develop the information system using the analysis result of BPM doesn't exist, and a few development cases are reported. This paper proposes an information system development method combining business process modeling with executable modeling. In this paper we describe a guideline to support consistency of development and development efficiency and the framework enabling to develop the information system from model. We have prototyped the information system with the proposed method and our experience has shown that the methodology is valuable.
Yu, Xunyi; Ganz, Aura
2011-01-01
In this paper we introduce a Mixed Reality Triage and Evacuation game, MiRTE, that is used in the development, testing and training of Mass Casualty Incident (MCI) information systems for first responders. Using the Source game engine from Valve software, MiRTE creates immersive virtual environments to simulate various incident scenarios, and enables interactions between multiple players/first responders. What distinguishes it from a pure computer simulation game is that it can interface with external mass casualty incident management systems, such as DIORAMA. The game will enable system developers to specify technical requirements of underlying technology, and test different alternatives of design. After the information system hardware and software are completed, the game can simulate various algorithms such as localization technologies, and interface with an actual user interface on PCs and Smartphones. We implemented and tested the game with the DIORAMA system.
Rover and Telerobotics Technology Program
NASA Technical Reports Server (NTRS)
Weisbin, Charles R.
1998-01-01
The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.
Towards a Decision Support System for Space Flight Operations
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Hogle, Charles; Ruszkowski, James
2013-01-01
The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of MOD. The paper provides a roadmap for the three increments of this vision. These increments include (1) hardware and software system components and interfaces with the NASA ground system, (2) uncertainty management and (3) re-planning and automated execution. Each of these increments provide value independently; but some may also enable building of a subsequent increment.
Airborne Lidar Surface Topography (LIST) Simulator
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael;
2011-01-01
In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).
Development of NASA's Small Fission Power System for Science and Human Exploration
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Mason, Lee; Bowman, Cheryl; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris
2014-01-01
Exploration of our solar system has brought great knowledge to our nation's scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASA's Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (greater than 1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue, assuming its availability, to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named "Kilopower" that is scalable from approximately 1-10 kWe.
Development of NASA's Small Fission Power System for Science and Human Exploration
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Mason, Lee S.; Bowman, Cheryl L.; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris
2015-01-01
Exploration of our solar system has brought many exciting challenges to our nations scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASAs Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named Kilopower that is scalable from approximately 1-10 kWe.
Ultrashort pulsed laser technology development program
NASA Astrophysics Data System (ADS)
Manke, Gerald C.
2014-10-01
The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.
Optical interconnection networks for high-performance computing systems
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr; Bergman, Keren
2012-04-01
Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.
Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun
2018-01-01
Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips. PMID:29883387
Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun
2018-05-21
Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.
Battery energy storage market feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, S.; Akhil, A.
1997-07-01
Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as amore » means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).« less
Ultra-high-speed optical transmission using digital-preprocessed analog-multiplexed DAC
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Nagatani, Munehiko; Hamaoka, Fukutaro; Horikoshi, Kengo; Nakamura, Masanori; Matsushita, Asuka; Kanazawa, Shigeru; Hashimoto, Toshikazu; Nosaka, Hideyuki; Miyamoto, Yutaka
2018-02-01
In advanced fiber transmission systems with digital signal processors (DSPs), analog bandwidths of digital-to-analog converters (DACs), which interface the DSPs and optics, are the major factors limiting the data rates. We have developed a technology to extend the DACs' bandwidth using a digital preprocessor, two sub-DACs, and an analog multiplexer. This technology enables us to generate baseband signals with bandwidths of up to around 60 GHz, which is almost twice that of signals generated by typical CMOS DACs. In this paper, we describe the principle of the bandwidth extension and review high-speed transmission experiments enabled by this technology.
van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix
2013-08-07
Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.
Advanced Traveler Information Systems (ATIS) 2.0 Precursor System: Final Report
DOT National Transportation Integrated Search
2018-03-01
Advanced Traveler Information Systems (ATIS) have experienced significant growth since their initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler informatio...
A review of multifunctional structure technology for aerospace applications
NASA Astrophysics Data System (ADS)
Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.
2016-03-01
The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.
NASA Astrophysics Data System (ADS)
Croft, John; Deily, John; Hartman, Kathy; Weidow, David
1998-01-01
In the twenty-first century, NASA envisions frequent low-cost missions to explore the solar system, observe the universe, and study our planet. To realize NASA's goal, the Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center sponsors technology programs that enhance spacecraft performance, streamline processes and ultimately enable cheaper science. Our technology programs encompass control system architectures, sensor and actuator components, electronic systems, design and development of algorithms, embedded systems and space vehicle autonomy. Through collaboration with government, universities, non-profit organizations, and industry, the GNCC incrementally develops key technologies that conquer NASA's challenges. This paper presents an overview of several innovative technology initiatives for the autonomous guidance, navigation, and control (GN&C) of satellites.
DOT National Transportation Integrated Search
2016-12-01
Advanced Traveler Information Systems (ATIS) have experienced significant growth since their initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler informatio...
A REMOTE SENSING AND GIS-ENABLED HIGHWAY ASSET MANAGEMENT SYSTEM PHASE 2
DOT National Transportation Integrated Search
2018-02-02
The objective of this project is to validate the use of commercial remote sensing and spatial information (CRS&SI) technologies, including emerging 3D line laser imaging technology, mobile light detection and ranging (LiDAR), image processing algorit...
Digital microscopy. Bringing new technology into focus.
2010-06-01
Digital microscopy enables the scanning of microscope slides so that they can be viewed, analyzed, and archived on a computer. While the technology is not yet widely accepted by pathologists, a switch to digital microscopy systems seems to be inevitable in the near future.
Application of the Enabler to nuclear electric propulsion
NASA Astrophysics Data System (ADS)
Pierce, Bill L.
This paper describes a power system concept that provides the electric power for a baseline electric propulsion system for a piloted mission to Mars. A 10-MWe space power system is formed by coupling an Enabler reactor with a simple non-recuperated closed Brayton cycle. The Enabler reactor is a gas-cooled reactor based on proven reactor technology developed under the NERVA/Rover programs. The selected power cycle, which uses a helium-xenon mixture at 1920 K at the turbine inlet, is diagramed and described. The specific mass of the power system over the power range from 5 to 70 MWe is given. The impact of operating life on the specific mass of a 10-MWe system is also shown.
A New Look at NASA: Strategic Research In Information Technology
NASA Technical Reports Server (NTRS)
Alfano, David; Tu, Eugene (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on research undertaken by NASA to facilitate the development of information technologies. Specific ideas covered here include: 1) Bio/nano technologies: biomolecular and nanoscale systems and tools for assembly and computing; 2) Evolvable hardware: autonomous self-improving, self-repairing hardware and software for survivable space systems in extreme environments; 3) High Confidence Software Technologies: formal methods, high-assurance software design, and program synthesis; 4) Intelligent Controls and Diagnostics: Next generation machine learning, adaptive control, and health management technologies; 5) Revolutionary computing: New computational models to increase capability and robustness to enable future NASA space missions.
A new architecture for enterprise information systems.
Covvey, H. D.; Stumpf, J. J.
1999-01-01
Irresistible economic and technical forces are forcing healthcare institutions to develop regionalized services such as consolidated or virtual laboratories. Technical realities, such as the lack of an enabling enterprise-level information technology (IT) integration infrastructure, the existence of legacy systems, and non-existent or embryonic enterprise-level IT services organizations, are delaying or frustrating the achievement of the desired configuration of shared services. On attempting to address this matter, we discover that the state-of-the-art in integration technology is not wholly adequate, and itself becomes a barrier to the full realization of shared healthcare services. In this paper we report new work from the field of Co-operative Information Systems that proposes a new architecture of systems that are intrinsically cooperation-enabled, and we extend this architecture to both the regional and national scales. PMID:10566455
Monitors Enable Medication Management in Patients' Homes
NASA Technical Reports Server (NTRS)
2014-01-01
Glenn Research Center awarded SBIR funding to ZIN Technologies to develop a platform that could incorporate sensors quantifying an astronaut’s health status and then communicate with the ground. ZIN created a device, developed the system further, and then formed Cleveland-based FlexLife Health to commercialize the technology. Today it is part of an anti-coagulation management system for people with cardiovascular disease.
Maritime In Situ Sensing Inter-Operable Networks (MISSION)
2013-09-30
creating acoustic communications (acomms) technologies enabling underwater sensor networks and distributed systems. Figure 1. Project MISSION...Marn, S. Ramp, F. Bahr, “Implementation of an Underwater Wireless Sensor Network in San Francisco Bay,” Proc. 10th International Mine Warfare...NILUS – An Underwater Acoustic Sensor Network Demonstrator System,” Proc. 10th International Mine Warfare Technology Symposium, Monterey, CA, May 7
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Applications of CRISPR genome editing technology in drug target identification and validation.
Lu, Quinn; Livi, George P; Modha, Sundip; Yusa, Kosuke; Macarrón, Ricardo; Dow, David J
2017-06-01
The analysis of pharmaceutical industry data indicates that the major reason for drug candidates failing in late stage clinical development is lack of efficacy, with a high proportion of these due to erroneous hypotheses about target to disease linkage. More than ever, there is a requirement to better understand potential new drug targets and their role in disease biology in order to reduce attrition in drug development. Genome editing technology enables precise modification of individual protein coding genes, as well as noncoding regulatory sequences, enabling the elucidation of functional effects in human disease relevant cellular systems. Areas covered: This article outlines applications of CRISPR genome editing technology in target identification and target validation studies. Expert opinion: Applications of CRISPR technology in target validation studies are in evidence and gaining momentum. Whilst technical challenges remain, we are on the cusp of CRISPR being applied in complex cell systems such as iPS derived differentiated cells and stem cell derived organoids. In the meantime, our experience to date suggests that precise genome editing of putative targets in primary cell systems is possible, offering more human disease relevant systems than conventional cell lines.
Barriers affecting successful technology enablement of supply chain: An Indian perspective
NASA Astrophysics Data System (ADS)
Arora, R.; Haleem, A.; Farooquie, J. A.
2018-03-01
In order to compete, organizations need to focus on improving supply chain and technology acts as a major enabler. Technology enablement of supply chain has not always been successful and has been examined by many researchers. The purpose of this paper is to do a systematic literature review of technology enabled supply chain from a strategic viewpoint. The literature is examined from two perspectives. Firstly, it studies the growing interest in technology-enabled supply chain in India. Secondly, it studies barriers affecting technology enablement of supply chain. The literature review identifies that technology enabled supply chain helps in improving performance via effective decision making, monitoring entire supply chain, faster reaction to customer service problems, etc. The research has emphasized the importance of 12 barriers affecting technology enablement. This research will help as a guide for practitioners in order to successfully implement technology and fills the gap in existing literature by highlighting and consolidating the significant research work done in past.
FY10 Engineering Innovations, Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, M A; Aceves, S M; Paulson, C N
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
ERIC Educational Resources Information Center
Department of Education, Washington, DC.
This conference focused on the effective use of technology in schools by examining the following issues: (1) What value-added does technology bring to schools? (2) What does it take at the system level to enable learners, teachers, administrators, and communities to use technology effectively? (3) What assessment strategies and designs are…
Future Data Communication Architectures for Safety Critical Aircraft Cabin Systems
NASA Astrophysics Data System (ADS)
Berkhahn, Sven-Olaf
2012-05-01
The cabin of modern aircraft is subject to increasing demands for fast reconfiguration and hence flexibility. These demands require studies for new network architectures and technologies of the electronic cabin systems, which consider also weight and cost reductions as well as safety constraints. Two major approaches are in consideration to reduce the complex and heavy wiring harness: the usage of a so called hybrid data bus technology, which enables the common usage of the same data bus for several electronic cabin systems with different safety and security requirements and the application of wireless data transfer technologies for electronic cabin systems.
Rangachari, Pavani
2014-12-01
Despite the federal policy momentum towards "meaningful use" of Electronic Health Records, the healthcare organizational literature remains replete with reports of unintended adverse consequences of implementing Electronic Health Records, including: increased work for clinicians, unfavorable workflow changes, and unexpected changes in communication patterns & practices. In addition to being costly and unsafe, these unintended adverse consequences may pose a formidable barrier to "meaningful use" of Electronic Health Records. Correspondingly, it is essential for hospital administrators to understand and detect the causes of unintended adverse consequences, to ensure successful implementation of Electronic Health Records. The longstanding Technology-in-Practice framework emphasizes the role of human agency in enacting structures of technology use or "technologies-in-practice." Given a set of unintended adverse consequences from health information technology implementation, this framework could help trace them back to specific actions (types of technology-in-practice) and institutional conditions (social structures). On the other hand, the more recent Knowledge-in-Practice framework helps understand how information and communication technologies ( e.g. , social knowledge networking systems) could be implemented alongside existing technology systems, to create new social structures, generate new knowledge-in-practice, and transform technology-in-practice. Therefore, integrating the two literature streams could serve the dual purpose of understanding and overcoming unintended adverse consequences of Electronic Health Record implementation. This paper seeks to: (1) review the theoretical literatures on technology use & implementation, and identify a framework for understanding & overcoming unintended adverse consequences of implementing Electronic Health Records; (2) outline a broad project proposal to test the applicability of the framework in enabling "meaningful use" of Electronic Health Records in a healthcare context; and (3) identify strategies for successful implementation of Electronic Health Records in hospitals & health systems, based on the literature review and application.
Development of Sic Gas Sensor Systems
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.
2002-01-01
Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.
Platform Architecture for Decentralized Positioning Systems.
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2017-04-26
A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.
Platform Architecture for Decentralized Positioning Systems
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2017-01-01
A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system. PMID:28445414
Optical computing, optical memory, and SBIRs at Foster-Miller
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.
1994-03-01
A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.
NASA Astrophysics Data System (ADS)
Tekin, Tolga; Töpper, Michael; Reichl, Herbert
2009-05-01
Technological frontiers between semiconductor technology, packaging, and system design are disappearing. Scaling down geometries [1] alone does not provide improvement of performance, less power, smaller size, and lower cost. It will require "More than Moore" [2] through the tighter integration of system level components at the package level. System-in-Package (SiP) will deliver the efficient use of three dimensions (3D) through innovation in packaging and interconnect technology. A key bottleneck to the implementation of high-performance microelectronic systems, including SiP, is the lack of lowlatency, high-bandwidth, and high density off-chip interconnects. Some of the challenges in achieving high-bandwidth chip-to-chip communication using electrical interconnects include the high losses in the substrate dielectric, reflections and impedance discontinuities, and susceptibility to crosstalk [3]. Obviously, the incentive for the use of photonics to overcome the challenges and leverage low-latency and highbandwidth communication will enable the vision of optical computing within next generation architectures. Supercomputers of today offer sustained performance of more than petaflops, which can be increased by utilizing optical interconnects. Next generation computing architectures are needed with ultra low power consumption; ultra high performance with novel interconnection technologies. In this paper we will discuss a CMOS compatible underlying technology to enable next generation optical computing architectures. By introducing a new optical layer within the 3D SiP, the development of converged microsystems, deployment for next generation optical computing architecture will be leveraged.
Maturing Technologies for Stirling Space Power Generation
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James
2016-01-01
Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.
NASA Composite Cryotank Technology Project Game Changing Program
NASA Technical Reports Server (NTRS)
Fikes, John
2015-01-01
The fundamental goal of this project was to provide new and innovative cryotank technologies that enable human space exploration to destinations beyond low earth orbit such as the moon, near-earth asteroids, and Mars. The goal ... to mature technologies in preparation for potential system level flight demonstrations through significant ground-based testing and/or laboratory experimentation
New NASA Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2015-01-01
NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.
Heat Shield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
2017-01-01
The Heat Shield for Extreme Entry Environment Technology (HEEET) project seeks to mature a game changing Woven Thermal Protection System (TPS) technology to enable in situ robotic science missions recommended by the NASA Research Council Planetary Science Decadal Survey committee. Recommended science missions include Venus probes and landers; Saturn and Uranus probes; and high-speed sample return missions.
NASA Astrophysics Data System (ADS)
Kimura, Toshiaki; Kasai, Fumio; Kamio, Yoichi; Kanda, Yuichi
This research paper discusses a manufacturing support system which supports not only maintenance services but also consulting services for manufacturing systems consisting of multi-vendor machine tools. In order to do this system enables inter-enterprise collaboration between engineering companies and machine tool vendors. The system is called "After-Sales Support Inter-enterprise collaboration System using information Technologies" (ASSIST). This paper describes the concept behind the planned ASSIST, the development of a prototype of the system, and discusses test operation results of the system.
Cloud-based distributed control of unmanned systems
NASA Astrophysics Data System (ADS)
Nguyen, Kim B.; Powell, Darren N.; Yetman, Charles; August, Michael; Alderson, Susan L.; Raney, Christopher J.
2015-05-01
Enabling warfighters to efficiently and safely execute dangerous missions, unmanned systems have been an increasingly valuable component in modern warfare. The evolving use of unmanned systems leads to vast amounts of data collected from sensors placed on the remote vehicles. As a result, many command and control (C2) systems have been developed to provide the necessary tools to perform one of the following functions: controlling the unmanned vehicle or analyzing and processing the sensory data from unmanned vehicles. These C2 systems are often disparate from one another, limiting the ability to optimally distribute data among different users. The Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to address this technology gap through the UxV to the Cloud via Widgets project. The overarching intent of this three year effort is to provide three major capabilities: 1) unmanned vehicle control using an open service oriented architecture; 2) data distribution utilizing cloud technologies; 3) a collection of web-based tools enabling analysts to better view and process data. This paper focuses on how the UxV to the Cloud via Widgets system is designed and implemented by leveraging the following technologies: Data Distribution Service (DDS), Accumulo, Hadoop, and Ozone Widget Framework (OWF).
NASA Technical Reports Server (NTRS)
Sullivan, Steven J.
2014-01-01
"Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.
Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.
2011-01-01
Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal H.
2016-01-01
Unmanned Aircraft System (UAS) Traffic Management (UTM) Enabling Civilian Low-Altitude Airspace and Unmanned Aircraft System Operations What is the problem? Many beneficial civilian applications of UAS have been proposed, from goods delivery and infrastructure surveillance, to search and rescue, and agricultural monitoring. Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS operations, regardless of the type of UAS. A UAS traffic management (UTM) system for low-altitude airspace may be needed, perhaps leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today, whether the vehicles are driven by humans or are automated. What system technologies is NASA exploring? Building on its legacy of work in air traffic management for crewed aircraft, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that could develop airspace integration requirements for enabling safe, efficient low-altitude operations. While incorporating lessons learned from the today's well-established air traffic management system, which was a response that grew out of a mid-air collision over the Grand Canyon in the early days of commercial aviation, the UTM system would enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning and re-routing, separation management, sequencing and spacing, and contingency management. One of the attributes of the UTM system is that it would not require human operators to monitor every vehicle continuously. The system could provide to human managers the data to make strategic decisions related to initiation, continuation, and termination of airspace operations. This approach would ensure that only authenticated UAS could operate in the airspace. In its most mature form, the UTM system could be developed using autonomicity characteristics that include self-configuration, self-optimization and self-protection. The self-configuration aspect could determine whether the operations should continue given the current andor predicted windweather conditions. NASA envisions concepts for two types of possible UTM systems. The first type would be a Portable UTM system, which would move from between geographical areas and support operations such as precision agriculture and disaster relief. The second type of system would be a Persistent UTM system, which would support low-altitude operations and provide continuous coverage for a geographical area. Either system would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. What is NASA doing to test the technologies? NASA's near-term goal is the development and demonstration of a possible future UTM system that could safely enable low-altitude airspace and UAS operations. Working alongside many committed government, industry and academic partners, NASA is leading the research, development and testing that is taking place in a series of activities called Technology Capability Levels (TCL), each increasing in complexity. UTM TCL1 concluded field testing in August 2015 and is undergoing additional testing at an FAA site.
NASA Astrophysics Data System (ADS)
Little, M. M.; Moe, K.; Komar, G.
2014-12-01
NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.
NASA Technical Reports Server (NTRS)
Brady, Tye; Bailey, Erik; Crain, Timothy; Paschall, Stephen
2011-01-01
NASA has embarked on a multiyear technology development effort to develop a safe and precise lunar landing capability. The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is investigating a range of landing hazard detection methods while developing a hazard avoidance capability to best field test the proper set of relevant autonomous GNC technologies. Ultimately, the advancement of these technologies through the ALHAT Project will provide an ALHAT System capable of enabling next generation lunar lander vehicles to globally land precisely and safely regardless of lighting condition. This paper provides an overview of the ALHAT System and describes recent validation experiments that have advanced the highly capable GNC architecture.
Shadow Mode Assessment Using Realistic Technologies for the National Airspace (SMART NAS)
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal H.
2014-01-01
Develop a simulation and modeling capability that includes: (a) Assessment of multiple parallel universes, (b) Accepts data feeds, (c) Allows for live virtual constructive distribute environment, (d) Enables integrated examinations of concepts, algorithms, technologies and National Airspace System (NAS) architectures.
Developing Intranets: Practical Issues for Implementation and Design.
ERIC Educational Resources Information Center
Trowbridge, Dave
1996-01-01
An intranet is a system which has "domesticated" the technologies of the Internet for specific organizational settings and goals. Although the adaptability of Hypertext Markup Language to intranets is sometimes limited, implementing various protocols and technologies enable organizations to share files among heterogeneous computers,…
Steele Gray, Carolyn; Barnsley, Jan; Gagnon, Dominique; Belzile, Louise; Kenealy, Tim; Shaw, James; Sheridan, Nicolette; Wankah Nji, Paul; Wodchis, Walter P
2018-06-26
Information communication technology (ICT) is a critical enabler of integrated models of community-based primary health care; however, little is known about how existing technologies have been used to support new models of integrated care. To address this gap, we draw on data from an international study of integrated models, exploring how ICT is used to support activities of integrated care and the organizational and environmental barriers and enablers to its adoption. We take an embedded comparative multiple-case study approach using data from a study of implementation of nine models of integrated community-based primary health care, the Implementing Integrated Care for Older Adults with Complex Health Needs (iCOACH) study. Six cases from Canada, three each in Ontario and Quebec, and three in New Zealand, were studied. As part of the case studies, interviews were conducted with managers and front-line health care providers from February 2015 to March 2017. A qualitative descriptive approach was used to code data from 137 interviews and generate word tables to guide analysis. Despite different models and contexts, we found strikingly similar accounts of the types of activities supported through ICT systems in each of the cases. ICT systems were used most frequently to support activities like care coordination by inter-professional teams through information sharing. However, providers were limited in their ability to efficiently share patient data due to data access issues across organizational and professional boundaries and due to system functionality limitations, such as a lack of interoperability. Even in innovative models of care, managers and providers in our cases mainly use technology to enable traditional ways of working. Technology limitations prevent more innovative uses of technology that could support disruption necessary to improve care delivery. We argue the barriers to more innovative use of technology are linked to three factors: (1) information access barriers, (2) limited functionality of available technology, and (3) organizational and provider inertia.
An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.
ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT
Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC
2017-01-01
Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678
Roads less traveled : intelligent transportation system for sustainable communities
DOT National Transportation Integrated Search
1998-01-01
The communities highlighted in this booklet have chosen new paths through intelligent transportation systems. By harnessing existing resources with new technologies, ITS propels sustainable local development by enabling communities to use those resou...
Propulsion Technology Needs for Exploration
NASA Technical Reports Server (NTRS)
Brown, Thomas
2007-01-01
The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.
Technology Assessment for Large Vertical-Lift Transport Tiltrotors
NASA Technical Reports Server (NTRS)
Germanowski, Peter J.; Stille, Brandon L.; Strauss, Michael P.
2010-01-01
The technical community has identified rotor efficiency as a critical enabling technology for large vertical-lift transport (LVLT) rotorcraft. The size and performance of LVLT aircraft will be far beyond current aircraft capabilities, enabling a transformational change in cargo transport effectiveness. Two candidate approaches for achieving high efficiency were considered for LVLT applications: a variable-diameter tiltrotor (VDTR) and a variable-speed tiltrotor (VSTR); the former utilizes variable-rotor geometry and the latter utilizes variable-rotor speed. Conceptual aircraft designs were synthesized for the VDTR and VSTR and compared to a conventional tiltrotor (CTR). The aircraft were optimized to a common objective function and bounded by a set of physical- and requirements-driven constraints. The resulting aircraft were compared for weight, size, performance, handling qualities, and other attributes. These comparisons established a measure of the relative merits of the variable-diameter and -speed rotor systems as enabling technologies for LVLT capability.
Framework for Building Collaborative Research Environment
Devarakonda, Ranjeet; Palanisamy, Giriprakash; San Gil, Inigo
2014-10-25
Wide range of expertise and technologies are the key to solving some global problems. Semantic web technology can revolutionize the nature of how scientific knowledge is produced and shared. The semantic web is all about enabling machine-machine readability instead of a routine human-human interaction. Carefully structured data, as in machine readable data is the key to enabling these interactions. Drupal is an example of one such toolset that can render all the functionalities of Semantic Web technology right out of the box. Drupal’s content management system automatically stores the data in a structured format enabling it to be machine. Withinmore » this paper, we will discuss how Drupal promotes collaboration in a research setting such as Oak Ridge National Laboratory (ORNL) and Long Term Ecological Research Center (LTER) and how it is effectively using the Semantic Web in achieving this.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Middleton, Bobby
Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.
Advanced Power and Propulsion: 2000-2004
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes primarily nuclear thermal and nuclear electric technologies, to enable spacecraft and instrument operation and communications, particularly in the outer solar system, where sunlight can no longer be exploited by solar panels. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
The role of CORBA in enabling telemedicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslund, D.W.
1997-07-01
One of the most powerful tools available for telemedicine is a multimedia medical record accessible over a wide area and simultaneously editable by multiple physicians. The ability to do this through an intuitive interface linking multiple distributed data repositories while maintaining full data integrity is a fundamental enabling technology in healthcare. The author discusses the role of distributed object technology using CORBA in providing this capability including an example of such a system (TeleMed) which can be accessed through the World Wide Web. Issues of security, scalability, data integrity, and useability are emphasized.
A self-learning camera for the validation of highly variable and pseudorandom patterns
NASA Astrophysics Data System (ADS)
Kelley, Michael
2004-05-01
Reliable and productive manufacturing operations have depended on people to quickly detect and solve problems whenever they appear. Over the last 20 years, more and more manufacturing operations have embraced machine vision systems to increase productivity, reliability and cost-effectiveness, including reducing the number of human operators required. Although machine vision technology has long been capable of solving simple problems, it has still not been broadly implemented. The reason is that until now, no machine vision system has been designed to meet the unique demands of complicated pattern recognition. The ZiCAM family was specifically developed to be the first practical hardware to meet these needs. To be able to address non-traditional applications, the machine vision industry must include smart camera technology that meets its users" demands for lower costs, better performance and the ability to address applications of irregular lighting, patterns and color. The next-generation smart cameras will need to evolve as a fundamentally different kind of sensor, with new technology that behaves like a human but performs like a computer. Neural network based systems, coupled with self-taught, n-space, non-linear modeling, promises to be the enabler of the next generation of machine vision equipment. Image processing technology is now available that enables a system to match an operator"s subjectivity. A Zero-Instruction-Set-Computer (ZISC) powered smart camera allows high-speed fuzzy-logic processing, without the need for computer programming. This can address applications of validating highly variable and pseudo-random patterns. A hardware-based implementation of a neural network, Zero-Instruction-Set-Computer, enables a vision system to "think" and "inspect" like a human, with the speed and reliability of a machine.
Enabling Airspace Integration for High Density Urban Air Mobility
NASA Technical Reports Server (NTRS)
Mueller, Eric Richard
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude - the UAS traffic management (UTM) system - to higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODM's economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
Unlocking Flexibility: Energy Systems Integration [Guest Editorial
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Malley, Mark; Kroposki, Benjamin
2017-01-01
The articles in this special section focus on energy systems integration (ESI). Electric power systems around the world are experiencing great changes, including the retirement of coal and nuclear plants along with a rapid increase in the use of natural gas turbines and variable renewable technologies such as wind and solar. There is also much more use of information and communications technologies to enhance the visibility and controllability of the grid. Flexibility of operation, the ability of a power system to respond to change in demand and supply, is critical to enable higher levels of variable generation. One way tomore » unlock this potential flexibility is to tap into other energy domains. This concept of interconnecting energy domains is called ESI. ESI is the process of coordinating the operation and planning of energy systems across multiple pathways and/or geographical scales to deliver reliable, cost-effective energy services with minimal impact on the environment. Integrating energy domains adds flexibility to the electrical power system. ESI includes interactions among energy vectors and with other large-scale infrastructures including water, transport, and data and communications networks, which are an enabling technology for ESI.« less
Toward cost-effective solar energy use.
Lewis, Nathan S
2007-02-09
At present, solar energy conversion technologies face cost and scalability hurdles in the technologies required for a complete energy system. To provide a truly widespread primary energy source, solar energy must be captured, converted, and stored in a cost-effective fashion. New developments in nanotechnology, biotechnology, and the materials and physical sciences may enable step-change approaches to cost-effective, globally scalable systems for solar energy use.
Transforming System Engineering through Model-Centric Engineering
2015-11-18
best practices and provide computational technologies for real-time training within digital engineering environments Multidisciplinary System...MBSE well due to continued training and practicing . While MBSE is a part of the MCE it does not encompass the full idea and enabling technologies of... practices against other Industry contractors and it was believed that ABC was trailing the others in the use of MDAO capabilities. They decided that
Kodak AMSD Mirror Development Program
NASA Technical Reports Server (NTRS)
Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)
2002-01-01
The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.
Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.
2009-01-01
Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported
Wearable medical systems for p-Health.
Teng, Xiao-Fei; Zhang, Yuan-Ting; Poon, Carmen C Y; Bonato, Paolo
2008-01-01
Driven by the growing aging population, prevalence of chronic diseases, and continuously rising healthcare costs, the healthcare system is undergoing a fundamental transformation, from the conventional hospital-centered system to an individual-centered system. Current and emerging developments in wearable medical systems will have a radical impact on this paradigm shift. Advances in wearable medical systems will enable the accessibility and affordability of healthcare, so that physiological conditions can be monitored not only at sporadic snapshots but also continuously for extended periods of time, making early disease detection and timely response to health threats possible. This paper reviews recent developments in the area of wearable medical systems for p-Health. Enabling technologies for continuous and noninvasive measurements of vital signs and biochemical variables, advances in intelligent biomedical clothing and body area networks, approaches for motion artifact reduction, strategies for wearable energy harvesting, and the establishment of standard protocols for the evaluation of wearable medical devices are presented in this paper with examples of clinical applications of these technologies.
Assessment of the State-of-the-Art of System-Wide Safety and Assurance Technologies
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil; Reveley, Mary S.; Phojanamongkolkij, Nipa; Leone, Karen M.
2017-01-01
Since its initiation, the System-wide Safety Assurance Technologies (SSAT) Project has been focused on developing multidisciplinary tools and techniques that are verified and validated to ensure prevention of loss of property and life in NextGen and enable proactive risk management through predictive methods. To this end, four technical challenges have been listed to help realize the goals of SSAT, namely (i) assurance of flight critical systems, (ii) discovery of precursors to safety incidents, (iii) assuring safe human-systems integration, and (iv) prognostic algorithm design for safety assurance. The objective of this report is to provide an extensive survey of SSAT-related research accomplishments by researchers within and outside NASA to get an understanding of what the state-of-the-art is for technologies enabling each of the four technical challenges. We hope that this report will serve as a good resource for anyone interested in gaining an understanding of the SSAT technical challenges, and also be useful in the future for project planning and resource allocation for related research.
Passive RFID Localisation Framework in Smart Homes Healthcare Settings.
Alsinglawi, Belal; Liu, Tony; Nguyen, Quang Vinh; Gunawardana, Upul; Maeder, Anthony; Simoff, Simeon
2016-01-01
In recent years, Smart Homes have become a solution to benefit impaired individuals and elderly in their daily life settings. In healthcare applications, pervasive technologies have enabled the practicality of personal monitoring using Indoor positioning technologies. Radio-Frequency Identification (RFID) is a promising technology, which is useful for non-invasive tracking of activities of daily living. Many implementations have focused on using battery-enabled tags like in RFID active tags, which require frequent maintenance and they are costly. Other systems can use wearable sensors requiring individuals to wear tags which may be inappropriate for elders. Successful implementations of a tracking system are dependent on multiple considerations beyond the physical performance of the solution, such as affordability and human acceptance. This paper presents a localisation framework using passive RFID sensors. It aims to provide a low cost solution for subject location in Smart Homes healthcare.
New dynamic silicon photonic components enabled by MEMS technology
NASA Astrophysics Data System (ADS)
Errando-Herranz, Carlos; Edinger, Pierre; Colangelo, Marco; Björk, Joel; Ahmed, Samy; Stemme, Göran; Niklaus, Frank; Gylfason, Kristinn B.
2018-02-01
Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.
Lightning protection of full authority digital electronic systems
NASA Astrophysics Data System (ADS)
Crofts, David
1991-08-01
Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.
Lightning protection of full authority digital electronic systems
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.
DOT National Transportation Integrated Search
2016-10-27
Advanced Traveler Information Systems (ATIS) have experienced significant growth since its initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler information ...
DOT National Transportation Integrated Search
2017-05-01
Advanced Traveler Information Systems (ATIS) have experienced significant growth since their initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler informatio...
Making Conferences Human Places of Learning
ERIC Educational Resources Information Center
Kenny, Michael
2014-01-01
Open Space Technology is a cumbersome name for a participative conference model that enables dynamic inclusive engagement and challenges traditional, highly structured hierarchical conference formats. Based on self-organising systems, (Wenger, 1998) Open Space Technology conferences have an open process, start with no agenda and empower the most…
EPA’s Village Green Project: New Directions
The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level, real-time air pollution measurements using low-cost sensor technologies. The VGP is an air monitoring system configured as a park bench located outside of a public lib...
NASA Astrophysics Data System (ADS)
Furukawa, Tatsuya; Aoki, Noriyuki; Ohchi, Masashi; Nakao, Masaki
The image proccessing has become a useful and important technology in various reserch and development fields. According to such demands for engineering problems, we have designed and implemented the educational support system for that using a Java Applet technology. However in the conventional system, it required the tedious procedure for the end user to code his own programs. Therefore, in this study, we have improved the defect in the previous system by using a Java Servlet technology. The new system will make it possible for novice user to experience a practical digital image proccessing and an advanced programming with ease. We will describe the architecture of the proposed system function, that has been introduced to facilitate the client-side programming.
Enabling Logistics With Portable and Wireless Technology Study. Volume 1
2004-08-06
Project”, Ubiquitous Computing Group Microsoft Research, 2001. 102 Enabling Logistics with Portable and Wireless Technology Study ...Enabling Logistics with Portable and Wireless Technology Study Final Report FINAL REPORT...Volume I) Enabling Logistics with Portable and Wireless Technology Study AUTHORS School of Industrial Engineering Dr. Soundar Kumara
NASA Technical Reports Server (NTRS)
Aaron, Kim
1991-01-01
The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.
New Millenium Inflatable Structures Technology
NASA Technical Reports Server (NTRS)
Mollerick, Ralph
1997-01-01
Specific applications where inflatable technology can enable or enhance future space missions are tabulated. The applicability of the inflatable technology to large aperture infra-red astronomy missions is discussed. Space flight validation and risk reduction are emphasized along with the importance of analytical tools in deriving structurally sound concepts and performing optimizations using compatible codes. Deployment dynamics control, fabrication techniques, and system testing are addressed.
Greased Lightning (GL-10) Flight Testing Campaign
NASA Technical Reports Server (NTRS)
Fredericks, William J.; McSwain, Robert G.; Beaton, Brian F.; Klassman, David W.; Theodore, Colin R.
2017-01-01
Greased Lightning (GL-10) is an aircraft configuration that combines the characteristics of a cruise efficient airplane with the ability to perform vertical takeoff and landing (VTOL). This aircraft has been designed, fabricated and flight tested at the small unmanned aerial system (UAS) scale. This technical memorandum will document the procedures and findings of the flight test experiments. The GL-10 design utilized two key technologies to enable this unique aircraft design; namely, distributed electric propulsion (DEP) and inexpensive closed loop controllers. These technologies enabled the flight of this inherently unstable aircraft. Overall it has been determined thru flight test that a design that leverages these new technologies can yield a useful VTOL cruise efficient aircraft.
NASA Astrophysics Data System (ADS)
Chalhoub, Michel S.
The present paper studies the relationship between social networks enabled by technological advances in social software, and overall business performance. With the booming popularity of online communication and the rise of knowledge communities, businesses are faced with a challenge as well as an opportunity - should they monitor the use of social software or encourage it and learn from it? We introduce the concept of user-autonomy and user-fun, which go beyond the traditional user-friendly requirement of existing information technologies. We identified 120 entities out of a sample of 164 from Mediterranean countries and the Gulf region, to focus on the effect of social exchange information systems in thought leadership.
Area navigation and required navigation performance procedures and depictions
DOT National Transportation Integrated Search
2012-09-30
Area navigation (RNAV) and required navigation performance (RNP) procedures are fundamental to the implementation of a performance based navigation (PBN) system, which is a key enabling technology for the Next Generation Air Transportation System (Ne...
Early Deployment Of Atms/Atis For Metropolitan Detroit, Final Report
DOT National Transportation Integrated Search
1994-09-26
TECHNOLOGY, ARCHITECTURE, CONTRACTING, AND DEPLOYMENT RECOMMENDATIONS RESULTING FROM THE STUDY ENABLE MDOT TO BEGIN SYSTEM DESIGN AND CONSTRUCTION. HOWEVER, IN ORDER TO DEMONSTRATE THE IMPLEMENTATION METHODS OF NEW ATMS/ATIS COMPONENTS AND SYSTEM ARC...
Fast Switching Magnet for Heavy Ion Beam Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartzell, Josiah
2017-10-03
Fast magnets for multiplexing ion beams between different beamlines are technologically challenging and expensive, but there is an ever-growing need to develop such systems for beam separation at research and industrial facilities. For example, The Argonne Tandem Linac Accelerator System (ATLAS) is planning to expand its operations as a multi-user facility and there is a clear need, presently unmet by the industry, for a switching magnet system with the sub-millisecond transient times.In response to this problem, RadiaBeam Technologies is developing a novel pulsed switching magnet system capable of producing a 1.1T peak field over 45 cm length with a shortmore » (<1 ms) rise and fall time. The key enabling innovation in this project is an introduction of a solid-state interposed modulator architecture, which enables to improve magnet performance and reliability and reduce the cost to a practical level.« less
Follow-On Technology Requirement Study for Advanced Subsonic Transport
NASA Technical Reports Server (NTRS)
Wendus, Bruce E.; Stark, Donald F.; Holler, Richard P.; Funkhouser, Merle E.
2003-01-01
A study was conducted to define and assess the critical or enabling technologies required for a year 2005 entry into service (EIS) engine for subsonic commercial aircraft, with NASA Advanced Subsonic Transport goals used as benchmarks. The year 2005 EIS advanced technology engine is an Advanced Ducted Propulsor (ADP) engine. Performance analysis showed that the ADP design offered many advantages compared to a baseline turbofan engine. An airplane/ engine simulation study using a long range quad aircraft quantified the effects of the ADP engine on the economics of typical airline operation. Results of the economic analysis show the ADP propulsion system provides a 6% reduction in direct operating cost plus interest, with half the reduction resulting from reduced fuel consumption. Critical and enabling technologies for the year 2005 EIS ADP were identified and prioritized.
The Technology-Enabled Patient Advocate: A Valuable Emerging Healthcare Partner.
Kent, Susan M; Yellowlees, Peter
2015-12-01
The U.S. healthcare system is changing and is becoming more patient-centered and technology-supported, with greater emphasis on population health outcomes and team-based care. The roles of healthcare providers are changing, and new healthcare roles are developing such as that of the patient advocate. This article reviews the history of this type of role, the changes that have taken place over time, the technological innovations in service delivery that further enable the role, and how the role could increasingly be developed in the future. Logical future extensions of the current typical patient advocate are the appearance of a virtual or avatar-driven care navigator, using telemedicine and related information technologies, as healthcare provision moves increasingly in a hybrid direction, with care being given both in-person and online.
Mission Architecture and Technology Options for a Flagship Class Venus In Situ Mission
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Kwok, Johnny H.; Kolawa, Elizabeth A.; Cutts, James A.; Senske, David A.
2008-01-01
Venus, as part of the inner triad with Earth and Mars, represents an important exploration target if we want to learn more about solar system formation and evolution. Comparative planetology could also elucidate the differences between the past, present, and future of these three planets, and can help with the characterization of potential habitable zones in our solar system and, by extension, extrasolar systems. A long lived in situ Venus mission concept, called the Venus Mobile Explorer, was prominently featured in NASA's 2006 SSE Roadmap and supported in the community White Paper by the Venus Exploration Analysis Group (VEXAG). Long-lived in situ missions are expected to belong to the largest (Flagship) mission class, which would require both enabling and enhancing technologies beside mission architecture options. Furthermore, extreme environment mitigation technologies for Venus are considered long lead development items and are expected to require technology development through a dedicated program. To better understand programmatic and technology needs and the motivating science behind them, in this fiscal year (FY08) NASA is funding a Venus Flaghip class mission study, based on key science and technology drivers identified by a NASA appointed Venus Science and Technology Definition Team (STDT). These mission drivers are then assembled around a suitable mission architecture to further refine technology and cost elements. In this paper we will discuss the connection between the final mission architecture and the connected technology drivers from this NASA funded study, which - if funded - could enable a future Flagship class Venus mission and potentially drive a proposed Venus technology development program.
Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.
2009-01-01
NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.
Nuclear power technology requirements for NASA exploration missions
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1990-01-01
It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.
NASA information sciences and human factors program
NASA Technical Reports Server (NTRS)
1991-01-01
The Data Systems Program consists of research and technology devoted to controlling, processing, storing, manipulating, and analyzing space-derived data. The objectives of the program are to provide the technology advancements needed to enable affordable utilization of space-derived data, to increase substantially the capability for future missions of on-board processing and recording and to provide high-speed, high-volume computational systems that are anticipated for missions such as the evolutionary Space Station and Earth Observing System.
An overview of tested and analyzed NTP concepts
NASA Technical Reports Server (NTRS)
Walton, James T.
1991-01-01
If we buy into the goals of the Space Exploration Initiative (SEI) and accept that they are worthy of the hefty investment of our tax dollars, then we must begin to evaluate the technologies which enable their attainment. The main driving technology is the propulsion systems; for interplanetary missions, the safest and most affordable is a Nuclear Thermal Propulsion (NTP) system. An overview is presented of the NTP systems which received detailed conceptual design and, for several, testing.
NASA Technical Reports Server (NTRS)
Ayon, Juan A. (Editor)
1992-01-01
A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities.
AlGaInN laser diode technology and systems for defence and security applications
NASA Astrophysics Data System (ADS)
Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.
2015-05-01
The latest developments in AlGaInN laser diode technology are reviewed for defence and security applications such as underwater communications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries.
FaceIt: face recognition from static and live video for law enforcement
NASA Astrophysics Data System (ADS)
Atick, Joseph J.; Griffin, Paul M.; Redlich, A. N.
1997-01-01
Recent advances in image and pattern recognition technology- -especially face recognition--are leading to the development of a new generation of information systems of great value to the law enforcement community. With these systems it is now possible to pool and manage vast amounts of biometric intelligence such as face and finger print records and conduct computerized searches on them. We review one of the enabling technologies underlying these systems: the FaceIt face recognition engine; and discuss three applications that illustrate its benefits as a problem-solving technology and an efficient and cost effective investigative tool.
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
1990-01-01
The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.
Integrating medical imaging analyses through a high-throughput bundled resource imaging system
NASA Astrophysics Data System (ADS)
Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.
2011-03-01
Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.
LEVERAGING TECHNOLOGY TO ENHANCE ADDICTION TREATMENT AND RECOVERY
Marsch, Lisa A.
2012-01-01
Technology such as the Internet and mobile phones offers considerable promise for affecting the assessment, prevention, and treatment of and recovery from substance use disorders. Technology may enable entirely new models of behavioral health care within and outside of formal systems of care. This article reviews the promise of technology-based therapeutic tools for affecting the quality and reach of addiction treatment and recovery support systems, as well as the empirical support to date for this approach. Potential models for implementing technology-based interventions targeting substance use disorders are described. Opportunities to optimize the effectiveness and impact of technology-based interventions targeting addiction and recovery, along with outstanding research needs, are discussed. PMID:22873192
A systematic collaborative process for assessing launch vehicle propulsion technologies
NASA Astrophysics Data System (ADS)
Odom, Pat R.
1999-01-01
A systematic, collaborative process for prioritizing candidate investments in space transportation systems technologies has been developed for the NASA Space Transportation Programs Office. The purpose of the process is to provide a repeatable and auditable basis for selecting technology investments to enable achievement of NASA's strategic space transportation objectives. The paper describes the current multilevel process and supporting software tool that has been developed. Technologies are prioritized across system applications to produce integrated portfolios for recommended funding. An example application of the process to the assessment of launch vehicle propulsion technologies is described and illustrated. The methodologies discussed in the paper are expected to help NASA and industry ensure maximum returns from technology investments under constrained budgets.
Leveraging technology to enhance addiction treatment and recovery.
Marsch, Lisa A
2012-01-01
Technology such as the Internet and mobile phones offers considerable promise for affecting the assessment, prevention, and treatment of and recovery from substance use disorders. Technology may enable entirely new models of behavioral health care within and outside of formal systems of care. This article reviews the promise of technology-based therapeutic tools for affecting the quality and reach of addiction treatment and recovery support systems, as well as the empirical support to date for this approach. Potential models for implementing technology-based interventions targeting substance use disorders are described. Opportunities to optimize the effectiveness and impact of technology-based interventions targeting addiction and recovery, along with outstanding research needs, are discussed.
Sensing systems using chip-based spectrometers
NASA Astrophysics Data System (ADS)
Nitkowski, Arthur; Preston, Kyle J.; Sherwood-Droz, Nicolás.; Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Schmidt, Bradley S.; Hajian, Arsen R.
2014-06-01
Tornado Spectral Systems has developed a new chip-based spectrometer called OCTANE, the Optical Coherence Tomography Advanced Nanophotonic Engine, built using a planar lightwave circuit with integrated waveguides fabricated on a silicon wafer. While designed for spectral domain optical coherence tomography (SD-OCT) systems, the same miniaturized technology can be applied to many other spectroscopic applications. The field of integrated optics enables the design of complex optical systems which are monolithically integrated on silicon chips. The form factors of these systems can be significantly smaller, more robust and less expensive than their equivalent free-space counterparts. Fabrication techniques and material systems developed for microelectronics have previously been adapted for integrated optics in the telecom industry, where millions of chip-based components are used to power the optical backbone of the internet. We have further adapted the photonic technology platform for spectroscopy applications, allowing unheard-of economies of scale for these types of optical devices. Instead of changing lenses and aligning systems, these devices are accurately designed programmatically and are easily customized for specific applications. Spectrometers using integrated optics have large advantages in systems where size, robustness and cost matter: field-deployable devices, UAVs, UUVs, satellites, handheld scanning and more. We will discuss the performance characteristics of our chip-based spectrometers and the type of spectral sensing applications enabled by this technology.
NASA Technical Reports Server (NTRS)
McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)
2002-01-01
The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.
Generic worklist handler for workflow-enabled products
NASA Astrophysics Data System (ADS)
Schmidt, Joachim; Meetz, Kirsten; Wendler, Thomas
1999-07-01
Workflow management (WfM) is an emerging field of medical information technology. It appears as a promising key technology to model, optimize and automate processes, for the sake of improved efficiency, reduced costs and improved patient care. The Application of WfM concepts requires the standardization of architectures and interfaces. A component of central interest proposed in this report is a generic work list handler: A standardized interface between a workflow enactment service and application system. Application systems with embedded work list handlers will be called 'Workflow Enabled Application Systems'. In this paper we discus functional requirements of work list handlers, as well as their integration into workflow architectures and interfaces. To lay the foundation for this specification, basic workflow terminology, the fundamentals of workflow management and - later in the paper - the available standards as defined by the Workflow Management Coalition are briefly reviewed.
Leadership for a Technology-Rich Educational Environment.
ERIC Educational Resources Information Center
Riedl, Richard; Smith, Tracy; Ware, Anita; Wark, Alan; Yount, Peter
This paper emphasizes the importance of exploring the attitudes, skills, and knowledge that will enable individuals in educational leadership positions to function effectively and to provide support to create and maintain technology-rich educational systems. The discussion is guided by the following five elements, the understanding of which are…
Adaptive Social Learning Based on Crowdsourcing
ERIC Educational Resources Information Center
Karataev, Evgeny; Zadorozhny, Vladimir
2017-01-01
Many techniques have been developed to enhance learning experience with computer technology. A particularly great influence of technology on learning came with the emergence of the web and adaptive educational hypermedia systems. While the web enables users to interact and collaborate with each other to create, organize, and share knowledge via…
A Security Audit Framework to Manage Information System Security
NASA Astrophysics Data System (ADS)
Pereira, Teresa; Santos, Henrique
The widespread adoption of information and communication technology have promoted an increase dependency of organizations in the performance of their Information Systems. As a result, adequate security procedures to properly manage information security must be established by the organizations, in order to protect their valued or critical resources from accidental or intentional attacks, and ensure their normal activity. A conceptual security framework to manage and audit Information System Security is proposed and discussed. The proposed framework intends to assist organizations firstly to understand what they precisely need to protect assets and what are their weaknesses (vulnerabilities), enabling to perform an adequate security management. Secondly, enabling a security audit framework to support the organization to assess the efficiency of the controls and policy adopted to prevent or mitigate attacks, threats and vulnerabilities, promoted by the advances of new technologies and new Internet-enabled services, that the organizations are subject of. The presented framework is based on a conceptual model approach, which contains the semantic description of the concepts defined in information security domain, based on the ISO/IEC_JCT1 standards.
New Directions for NASA's Advanced Life Support Program
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2006-01-01
Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The Exploration Life Support (ELS) Project, under the Exploration Technology Development Program, has recently been initiated to perform directed life support technology development in support of Constellation and the Crew Exploration Vehicle (CEV). ELS) has replaced ALS, with several major differences. Thermal Control Systems have been separated into a new stand alone project (Thermal Systems for Exploration Missions). Tasks in Advanced Food Technology have been relocated to the Human Research Program. Tasks in a new discipline area, Habitation Engineering, have been added. Research and technology development for capabilities required for longer duration stays on the Moon and Mars, including bioregenerative system, have been deferred.
Aspects of Synthetic Vision Display Systems and the Best Practices of the NASA's SVS Project
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Jones, Denise R.; Young, Steven D.; Arthur, Jarvis J.; Prinzel, Lawrence J.; Glaab, Louis J.; Harrah, Steven D.; Parrish, Russell V.
2008-01-01
NASA s Synthetic Vision Systems (SVS) Project conducted research aimed at eliminating visibility-induced errors and low visibility conditions as causal factors in civil aircraft accidents while enabling the operational benefits of clear day flight operations regardless of actual outside visibility. SVS takes advantage of many enabling technologies to achieve this capability including, for example, the Global Positioning System (GPS), data links, radar, imaging sensors, geospatial databases, advanced display media and three dimensional video graphics processors. Integration of these technologies to achieve the SVS concept provides pilots with high-integrity information that improves situational awareness with respect to terrain, obstacles, traffic, and flight path. This paper attempts to emphasize the system aspects of SVS - true systems, rather than just terrain on a flight display - and to document from an historical viewpoint many of the best practices that evolved during the SVS Project from the perspective of some of the NASA researchers most heavily involved in its execution. The Integrated SVS Concepts are envisagements of what production-grade Synthetic Vision systems might, or perhaps should, be in order to provide the desired functional capabilities that eliminate low visibility as a causal factor to accidents and enable clear-day operational benefits regardless of visibility conditions.
Design options for advanced manned launch systems
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.
1995-03-01
Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.
Physician communication via Internet-enabled technology: A systematic review.
Barr, Neil G; Randall, Glen E; Archer, Norman P; Musson, David M
2017-10-01
The use of Internet-enabled technology (information and communication technology such as smartphone applications) may enrich information exchange among providers and, consequently, improve health care delivery. The purpose of this systematic review was to gain a greater understanding of the role that Internet-enabled technology plays in enhancing communication among physicians. Studies were identified through a search in three electronic platforms: the Association for Computing Machinery Digital Library, ProQuest, and Web of Science. The search identified 5140 articles; of these, 21 met all inclusion criteria. In general, physicians were satisfied with Internet-enabled technology, but consensus was lacking regarding whether Internet-enabled technology improved efficiency or made a difference to clinical decision-making. Internet-enabled technology can play an important role in enhancing communication among physicians, but the extent of that benefit is influenced by (1) the impact of Internet-enabled technology on existing work practices, (2) the availability of adequate resources, and (3) the nature of institutional elements, such as privacy legislation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Jeffrey S; Zinaman, Owen R; Littell, David
Performance-based regulation (PBR) enables regulators to reform hundred-year-old regulatory structures to unleash innovations within 21st century power systems. An old regulatory paradigm built to ensure safe and reliable electricity at reasonable prices from capital-intensive electricity monopolies is now adjusting to a new century of disruptive technological advances that change the way utilities make money and what value customers expect from their own electricity company. Advanced technologies are driving change in power sectors around the globe. Innovative technologies are transforming the way electricity is generated, delivered, and consumed. These emerging technology drivers include renewable generation, distributed energy resources such as distributedmore » generation and energy storage, demand-side management measures such as demand-response, electric vehicles, and smart grid technologies and energy efficiency (EE). PBR enables regulators to recognize the value that electric utilities bring to customers by enabling these advanced technologies and integrating smart solutions into the utility grid and utility operations. These changes in the electric energy system and customer capacities means that there is an increasing interest in motivating regulated entities in other areas beyond traditional cost-of-service performance regulation. This report addresses best practices gleaned from more than two decades of PBR in practice, and analyzes how those best practices and lessons can be used to design innovative PBR programs. Readers looking for an introduction to PBR may want to focus on Chapters 1-5. Chapters 6 and 7 contain more detail for those interested in the intricate workings of PBR or particularly innovative PBR.« less
An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology
Winata, Doni
2018-01-01
The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer’s smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol. PMID:29587399
An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology.
Yohan, Alexander; Lo, Nai-Wei; Winata, Doni
2018-03-25
The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer's smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol.
Goldstone-Apple Valley Radio Telescope System Theory of Operation
NASA Technical Reports Server (NTRS)
Stephan, George R.
1997-01-01
The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.
Future Concepts for Modular, Intelligent Aerospace Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.; Soeder, James F.
2004-01-01
Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.
Neuronix enables continuous, simultaneous neural recording and electrical microstimulation.
Zhi Yang; Jian Xu; Anh Tuan Nguyen; Tong Wu; Wenfeng Zhao; Wing-Kin Tam
2016-08-01
This paper reports a novel neurotechnology (Neuronix) and its validation through experiments. It is a miniature system-on-chip (SoC) that allows recording with simultaneous electrical microstimulation. This function has not been demonstrated before and enables precise, closed-loop neuromodulation. Neuronix represents recent advancement in brain technology and applies to both animal research and clinical applications.
Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa
2017-04-01
A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visible quality aluminum and nickel superpolish polishing technology enabling new missions
NASA Astrophysics Data System (ADS)
Carrigan, Keith G.
2011-06-01
It is now well understood that with US Department of Defense (DoD) budgets shrinking and the Services and Agencies demanding new systems which can be fielded more quickly, cost and schedule are being emphasized more and more. At the same time, the US has ever growing needs for advanced capabilities to support evolving Intelligence, Surveillance and Reconnaissance objectives. In response to this market demand for ever more cost-effective, faster to market, single-channel, athermal optical systems, we have developed new metal polishing technologies which allow for short-lead, low-cost metal substrates to replace more costly, longer-lead material options. In parallel, the commercial marketplace is being driven continually to release better, faster and cheaper electronics. Growth according to Moore's law, enabled by advancements in photolithography, has produced denser memory, higher resolution displays and faster processors. While the quality of these products continues to increase, their price is falling. This seeming paradox is driven by industry advancements in manufacturing technology. The next steps on this curve can be realized via polishing technology which allows low-cost metal substrates to replace costly Silicon based optics for use in ultra-short wavelength systems.
Design of a SIP device cooperation system on OSGi service platforms
NASA Astrophysics Data System (ADS)
Takayama, Youji; Koita, Takahiro; Sato, Kenya
2007-12-01
Home networks feature such various technologies as protocols, specifications, and middleware, including HTTP, UPnP, and Jini. A service platform is required to handle such technologies to enable them to cooperate with different devices. The OSGi service platform, which meets the requirements based on service-oriented architecture, is designed and standardized by OSGi Alliance and consists of two parts: one OSGi Framework and bundles. On the OSGi service platform, APIs are defined as services that can handle these technologies and are implemented in the bundle. By using the OSGi Framework with bundles, various technologies can cooperate with each other. On the other hand, in IP networks, Session Initiation Protocol (SIP) is often used in device cooperation services to resolve an IP address, control a session between two or more devices, and easily exchange the statuses of devices. However, since many existing devices do not correspond to SIP, it cannot be used for device cooperation services. A device that does not correspond to SIP is called an unSIP device. This paper proposes and implements a prototype system that enables unSIP devices to correspond to SIP. For unSIP devices, the proposed system provides device cooperation services with SIP.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.
2011-01-01
An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.
NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation
NASA Technical Reports Server (NTRS)
DelRosario, Ruben
2014-01-01
The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.
NASA Astrophysics Data System (ADS)
Ibrahim, Maslina Mohd; Yussup, Nolida; Haris, Mohd Fauzi; Soh @ Shaari, Syirrazie Che; Azman, Azraf; Razalim, Faizal Azrin B. Abdul; Yapp, Raymond; Hasim, Harzawardi; Aslan, Mohd Dzul Aiman
2017-01-01
One of the applications for radiation detector is area monitoring which is crucial for safety especially at a place where radiation source is involved. An environmental radiation monitoring system is a professional system that combines flexibility and ease of use for data collection and monitoring. Nowadays, with the growth of technology, devices and equipment can be connected to the network and Internet to enable online data acquisition. This technology enables data from the area monitoring devices to be transmitted to any place and location directly and faster. In Nuclear Malaysia, area radiation monitor devices are located at several selective locations such as laboratories and radiation facility. This system utilizes an Ethernet as a communication media for data acquisition of the area radiation levels from radiation detectors and stores the data at a server for recording and analysis. This paper discusses on the design and development of website that enable all user in Nuclear Malaysia to access and monitor the radiation level for each radiation detectors at real time online. The web design also included a query feature for history data from various locations online. The communication between the server's software and web server is discussed in detail in this paper.
Electrical power technology for robotic planetary rovers
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.
1993-01-01
Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.
NASA Technical Reports Server (NTRS)
1997-01-01
Through the Technology Affiliates Program at the Jet Propulsion Laboratory, the ACTS antenna system was transferred from experimental testing status to commercial development with KVH Industries, Inc. The ACTS design enables mobile satellite antennas to remain pointed at the satellite, regardless of the motion or vibration on which it is mounted. KVH's first product based on the ACTS design is a land-mobile satellite antenna system that will enable direct broadcast satellite television aboard moving trucks, recreational vehicles, trains, and buses. Future products could include use in broadcasting, emergency medical and military vehicles.
NASA Astrophysics Data System (ADS)
Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.
2011-08-01
In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.
NASA Astrophysics Data System (ADS)
Gilman, Charles R.; Aparicio, Manuel; Barry, J.; Durniak, Timothy; Lam, Herman; Ramnath, Rajiv
1997-12-01
An enterprise's ability to deliver new products quickly and efficiently to market is critical for competitive success. While manufactureres recognize the need for speed and flexibility to compete in this market place, companies do not have the time or capital to move to new automation technologies. The National Industrial Information Infrastructure Protocols Consortium's Solutions for MES Adaptable Replicable Technology (NIIIP SMART) subgroup is developing an information infrastructure to enable the integration and interoperation among Manufacturing Execution Systems (MES) and Enterprise Information Systems within an enterprise or among enterprises. The goal of these developments is an adaptable, affordable, reconfigurable, integratable manufacturing system. Key innovative aspects of NIIIP SMART are: (1) Design of an industry standard object model that represents the diverse aspects of MES. (2) Design of a distributed object network to support real-time information sharing. (3) Product data exchange based on STEP and EXPRESS (ISO 10303). (4) Application of workflow and knowledge management technologies to enact manufacturing and business procedures and policy. (5) Application of intelligent agents to support emergent factories. This paper illustrates how these technologies have been incorporated into the NIIIP SMART system architecture to enable the integration and interoperation of existing tools and future MES applications in a 'plug and play' environment.
Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng
2018-02-02
In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.
Infusion of innovative technologies for mission operations
NASA Astrophysics Data System (ADS)
Donati, Alessandro
2010-11-01
The Advanced Mission Concepts and Technologies Office (Mission Technologies Office, MTO for short) at the European Space Operations Centre (ESOC) of ESA is entrusted with research and development of innovative mission operations concepts systems and provides operations support to special projects. Visions of future missions and requests for improvements from currently flying missions are the two major sources of inspiration to conceptualize innovative or improved mission operations processes. They include monitoring and diagnostics, planning and scheduling, resource management and optimization. The newly identified operations concepts are then proved by means of prototypes, built with embedded, enabling technology and deployed as shadow applications in mission operations for an extended validation phase. The technology so far exploited includes informatics, artificial intelligence and operational research branches. Recent outstanding results include artificial intelligence planning and scheduling applications for Mars Express, advanced integrated space weather monitoring system for the Integral space telescope and a suite of growing client applications for MUST (Mission Utilities Support Tools). The research, development and validation activities at the Mission technologies office are performed together with a network of research institutes across Europe. The objective is narrowing the gap between enabling and innovative technology and space mission operations. The paper first addresses samples of technology infusion cases with their lessons learnt. The second part is focused on the process and the methodology used at the Mission technologies office to fulfill its objectives.
Deployable Propulsion, Power and Communications Systems for Solar System Exploration
NASA Technical Reports Server (NTRS)
Johnson, L.; Carr, J.; Boyd, D.
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.
Own, Chung-Ming; Lee, Da-Sheng; Wang, Ti-Ho; Wang, De-Jun; Ting, Yu-Lun
2013-01-01
Transport stations such as airports, ports, and railways have adopted blocked-type pathway management to process and control travel systems in a one-directional manner. However, this excludes highway transportation where large buses have great variability and mobility; thus, an instant influx of numerous buses increases risks and complicates station management. Focusing on Taipei Bus Station, this study employed RFID technology to develop a system platform integrated with modern information technology that has numerous characteristics. This modern information technology comprised the following systems: ultra-high frequency (UHF) radio-frequency identification (RFID), ultrasound and license number identification, and backstage graphic controls. In conclusion, the system enabled management, bus companies, and passengers to experience the national bus station's new generation technology, which provides diverse information and synchronization functions. Furthermore, this technology reached a new milestone in the energy-saving and efficiency-increasing performance of Taiwan's buses. PMID:23778192
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2005-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2007-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.
ERIC Educational Resources Information Center
Dastjerdi, Negin Barat
2016-01-01
The incorporation of Information and Communication Technologies (ICT) into education systems is an active program and movement in education that illustrates modern education and enables an all-encompassing presence in the third millennium; however, prior to applying ICT, the factors affecting the adoption and use of these technologies should be…
High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems
NASA Technical Reports Server (NTRS)
Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)
2001-01-01
Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In addition, the temperature dependence of the coil's resistance was measured from 77 to 300 K. Following this series of tests, the coil was transported to NHMFL facilities in Los Alamos, NM, and pulsed to 2 T using an existing capacitor bank pulse generator. The coil was completely successful in producing the desired field without damage to the windings.
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Callahan, Lisa Wood; Curran, Francis M.
1996-01-01
Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.
2014-06-17
NASA is investing in a number of technologies to extend Entry, Descent and Landing (EDL) capabilities to enable Human Missions to Mars. These technologies will also enable robotic Science missions. Human missions will require landing payloads of 10?s of metric tons, not possible with today's technology. Decelerating from entry speeds around 15,000 miles per hour to landing in a matter of minutes will require very large drag or deceleration. The one way to achieve required deceleration is to deploy a large surface that can be stowed during launch and deployed prior to entry. This talk will highlight a simple concept similar to an umbrella. Though the concept is simple, the size required for human Mars missions and the heating encountered during entry are significant challenges. The mechanically deployable system can also enable robotic science missions to Venus and is also equally applicable for bringing back cube-satellites and other small payloads. The scalable concept called Adaptive Deployable Entry and Placement Technology (ADEPT) is under development and is the focus of this talk.
Deutsch, Eric W.; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L.
2015-01-01
Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include mass spectrometry to define protein sequence, protein:protein interactions, and protein post-translational modifications. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative mass spectrometry proteomics. It supports all major operating systems and instrument vendors via open data formats. Here we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of tandem mass spectrometry datasets, as well as some major upcoming features. PMID:25631240
Deutsch, Eric W; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L
2015-08-01
Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Data management and analysis for the Earth System Grid
NASA Astrophysics Data System (ADS)
Williams, D. N.; Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Henson, V. E.; Jones, P.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.
2008-07-01
The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. In order to address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Jones, Perry T
2014-01-01
While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to themore » energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.« less
[Web-based support system for medical device maintenance].
Zhao, Jinhai; Hou, Wensheng; Chen, Haiyan; Tang, Wei; Wang, Yihui
2015-01-01
A Web-based technology system was put forward aiming at the actual problems of the long maintenance cycle and the difficulties of the maintenance and repairing of medical equipments. Based on analysis of platform system structure and function, using the key technologies such as search engine, BBS, knowledge base and etc, a platform for medical equipment service technician to use by online or offline was designed. The platform provides users with knowledge services and interactive services, enabling users to get a more ideal solution.
Advances in single mode and high power AlGaInN laser diode technology for systems applications
NASA Astrophysics Data System (ADS)
Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Michal; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Smalc-Koziorowska, Julita; Stanczyk, Szymon; Watson, Scott; Kelly, Antony E.
2015-03-01
The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries.
Satellite voice broadcast. Volume 2: System study
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.; Farrell, C. E.
1985-01-01
The Technical Volume of the Satellite Broadcast System Study is presented. Designs are synthesized for direct sound broadcast satellite systems for HF-, VHF-, L-, and Ku-bands. Methods are developed and used to predict satellite weight, volume, and RF performance for the various concepts considered. Cost and schedule risk assessments are performed to predict time and cost required to implement selected concepts. Technology assessments and tradeoffs are made to identify critical enabling technologies that require development to bring technical risk to acceptable levels for full scale development.
Modular, Reconfigurable, High-Energy Systems Stepping Stones
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Mankins, John C.
2005-01-01
Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.
Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P
2015-03-07
Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.
Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.
2015-01-01
Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308
Plun-Favreau, Juliette; Immonen-Charalambous, Kaisa; Steuten, Lotte; Strootker, Anja; Rouzier, Roman; Horgan, Denis; Lawler, Mark
2016-01-01
Molecular diagnostics can offer important benefits to patients and are a key enabler of the integration of personalised medicine into health care systems. However, despite their promise, few molecular diagnostics are embedded into clinical practice (especially in Europe) and access to these technologies remains unequal across countries and sometimes even within individual countries. If research translation and the regulatory environments have proven to be more challenging than expected, reimbursement and value assessment remain the main barriers to providing patients with equal access to molecular diagnostics. Unclear or non-existent reimbursement pathways, together with the lack of clear evidence requirements, have led to significant delays in the assessment of molecular diagnostics technologies in certain countries. Additionally, the lack of dedicated diagnostics budgets and the siloed nature of resource allocation within certain health care systems have significantly delayed diagnostics commissioning. This article will consider the perspectives of different stakeholders (patients, health care payers, health care professionals, and manufacturers) on the provision of a research-enabled, patient-focused molecular diagnostics platform that supports optimal patient care. Through the discussion of specific case studies, and building on the experience from countries that have successfully integrated molecular diagnostics into clinical practice, this article will discuss the necessary evolutions in policy and health technology assessment to ensure that patients can have equal access to appropriate molecular diagnostics. © 2016 S. Karger AG, Basel.
The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap
NASA Technical Reports Server (NTRS)
Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.;
2014-01-01
We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.
EnEx-RANGE - Robust autonomous Acoustic Navigation in Glacial icE
NASA Astrophysics Data System (ADS)
Heinen, Dirk; Eliseev, Dmitry; Henke, Christoph; Jeschke, Sabina; Linder, Peter; Reuter, Sebastian; Schönitz, Sebastian; Scholz, Franziska; Weinstock, Lars Steffen; Wickmann, Stefan; Wiebusch, Christopher; Zierke, Simon
2017-03-01
Within the Enceladus Explorer Initiative of the DLR Space Administration navigation technologies for a future space mission are in development. Those technologies are the basis for the search for extraterrestrial life on the Saturn moon Enceladus. An autonomous melting probe, the EnEx probe, aims to extract a liquid sample from a water reservoir below the icy crust. A first EnEx probe was developed and demonstrated in a terrestrial scenario at the Bloodfalls, Taylor Glacier, Antarctica in November 2014. To enable navigation in glacier ice two acoustic systems were integrated into the probe in addition to conventional navigation technologies. The first acoustic system determines the position of the probe during the run based on propagation times of acoustic signals from emitters at reference positions at the glacier surface to receivers in the probe. The second system provides information about the forefield of the probe. It is based on sonographic principles with phased array technology integrated in the probe's melting head. Information about obstacles or sampling regions in the probe's forefield can be acquired. The development of both systems is now continued in the project EnEx-RANGE. The emitters of the localization system are replaced by a network of intelligent acoustic enabled melting probes. These localize each other by means of acoustic signals and create the reference system for the EnEx probe. This presentation includes the discussion of the intelligent acoustic network, the acoustic navigation systems of the EnEx probe and results of terrestrial tests.
SITE TECHNOLOGY CAPSULE: GIS\\KEY ENVIRONMENTAL DATA MANAGEMENT SYSTEM
GIS/Key™ is a comprehensive environmental database management system that integrates site data and graphics, enabling the user to create geologic cross-sections; boring logs; potentiometric, isopleth, and structure maps; summary tables; and hydrographs. GIS/Key™ is menu-driven an...
Technologies Enabling Scientific Exploration of Asteroids and Moons
NASA Astrophysics Data System (ADS)
Shaw, A.; Fulford, P.; Chappell, L.
2016-12-01
Scientific exploration of moons and asteroids is enabled by several key technologies that yield topographic information, allow excavation of subsurface materials, and allow delivery of higher-mass scientific payloads to moons and asteroids. These key technologies include lidar systems, robotics, and solar-electric propulsion spacecraft buses. Many of these technologies have applications for a variety of planetary targets. Lidar systems yield high-resolution shape models of asteroids and moons. These shape models can then be combined with radio science information to yield insight into density and internal structure. Further, lidar systems allow investigation of topographic surface features, large and small, which yields information on regolith properties. Robotic arms can be used for a variety of purposes, especially to support excavation, revealing subsurface material and acquiring material from depth for either in situ analysis or sample return. Robotic arms with built-in force sensors can also be used to gauge the strength of materials as a function of depth, yielding insight into regolith physical properties. Mobility systems allow scientific exploration of multiple sites, and also yield insight into regolith physical properties due to the interaction of wheels with regolith. High-power solar electric propulsion (SEP) spacecraft bus systems allow more science instruments to be included on missions given their ability to support greater payload mass. In addition, leveraging a cost-effective commercially-built SEP spacecraft bus can significantly reduce mission cost.
A portable magneto-optical trap with prospects for atom interferometry in civil engineering
NASA Astrophysics Data System (ADS)
Hinton, A.; Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.
2017-06-01
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue 'Quantum technology for the 21st century'.
A portable magneto-optical trap with prospects for atom interferometry in civil engineering
Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.
2017-01-01
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue ‘Quantum technology for the 21st century’. PMID:28652493
A portable magneto-optical trap with prospects for atom interferometry in civil engineering.
Hinton, A; Perea-Ortiz, M; Winch, J; Briggs, J; Freer, S; Moustoukas, D; Powell-Gill, S; Squire, C; Lamb, A; Rammeloo, C; Stray, B; Voulazeris, G; Zhu, L; Kaushik, A; Lien, Y-H; Niggebaum, A; Rodgers, A; Stabrawa, A; Boddice, D; Plant, S R; Tuckwell, G W; Bongs, K; Metje, N; Holynski, M
2017-08-06
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 10 7 atoms within a system package of 20 l and 10 kg, consuming 80 W of power.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Health-Enabled Smart Sensor Fusion Technology
NASA Technical Reports Server (NTRS)
Wang, Ray
2012-01-01
A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.
Cybersecurity and Optimization in Smart “Autonomous” Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mylrea, Michael E.; Gourisetti, Sri Nikhil Gup
Significant resources have been invested in making buildings “smart” by digitizing, networking and automating key systems and operations. Smart autonomous buildings create new energy efficiency, economic and environmental opportunities. But as buildings become increasingly networked to the Internet, they can also become more vulnerable to various cyber threats. Automated and Internet-connected buildings systems, equipment, controls, and sensors can significantly increase cyber and physical vulnerabilities that threaten the confidentiality, integrity, and availability of critical systems in organizations. Securing smart autonomous buildings presents a national security and economic challenge to the nation. Ignoring this challenge threatens business continuity and the availability ofmore » critical infrastructures that are enabled by smart buildings. In this chapter, the authors address challenges and explore new opportunities in securing smart buildings that are enhanced by machine learning, cognitive sensing, artificial intelligence (AI) and smart-energy technologies. The chapter begins by identifying cyber-threats and challenges to smart autonomous buildings. Then it provides recommendations on how AI enabled solutions can help smart buildings and facilities better protect, detect and respond to cyber-physical threats and vulnerabilities. Next, the chapter will provide case studies that examine how combining AI with innovative smart-energy technologies can increase both cybersecurity and energy efficiency savings in buildings. The chapter will conclude by proposing recommendations for future cybersecurity and energy optimization research for examining AI enabled smart-energy technology.« less
Salvemini, Anthony V; Piza, Eric L; Carter, Jeremy G; Grommon, Eric L; Merritt, Nancy
2015-06-01
Evaluations are routinely conducted by government agencies and research organizations to assess the effectiveness of technology in criminal justice. Interdisciplinary research methods are salient to this effort. Technology evaluations are faced with a number of challenges including (1) the need to facilitate effective communication between social science researchers, technology specialists, and practitioners, (2) the need to better understand procedural and contextual aspects of a given technology, and (3) the need to generate findings that can be readily used for decision making and policy recommendations. Process and outcome evaluations of technology can be enhanced by integrating concepts from human factors engineering and information processing. This systemic approach, which focuses on the interaction between humans, technology, and information, enables researchers to better assess how a given technology is used in practice. Examples are drawn from complex technologies currently deployed within the criminal justice system where traditional evaluations have primarily focused on outcome metrics. Although this evidence-based approach has significant value, it is vulnerable to fully account for human and structural complexities that compose technology operations. Guiding principles for technology evaluations are described for identifying and defining key study metrics, facilitating communication within an interdisciplinary research team, and for understanding the interaction between users, technology, and information. The approach posited here can also enable researchers to better assess factors that may facilitate or degrade the operational impact of the technology and answer fundamental questions concerning whether the technology works as intended, at what level, and cost. © The Author(s) 2015.
After globalization future security in a technology rich world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmartin, T J
Over the course of the year 2000, five one-day workshops were conducted by the Center for Global Security Research at the Lawrence Livermore National Laboratory on threats that might come against the US and its allies in the 2015 to 2020 timeframe due to the global availability of advanced technology. These workshops focused on threats that are enabled by nuclear, missile, and space technology; military technology; information technology; bio technology; and geo systems technology. In December, an Integration Workshop and Senior Review before national leaders and experts were held. The participants and reviewers were invited from the DOE National Laboratories,more » the DOD Services, OSD, DTRA, and DARPA, the DOS, NASA, Congressional technical staff, the intelligence community, universities and university study centers, think tanks, consultants on national security issues, and private industry. For each workshop the process of analysis involved identification and prioritization of the participants' perceived most severe threat scenarios (worst nightmares), discussion of the technologies which enabled those threats, and ranking of the technologies' threat potentials. We were not concerned in this exercise with defining responses, although our assessment of each threat's severity included consideration of the ease or difficulty with which it might be countered. At the concluding Integration Workshop and Senior Panel Review, we brought the various workshops' participants together, added senior participant/reviewers with broad experience and responsibility, and discussed the workshop findings to determine what is most certain, and uncertain, and what might be needed to resolve our uncertainties. This document reports the consensus and important variations of both the reviewers and the participants. In all, 45 threats over a wide range of lethality and probability of occurrence were identified. Over 60 enabling technologies were also discussed. These are each described in greater detail in the following pages, after overarching considerations are discussed. Here we present the major conclusions of this project, which each include consideration of several threats and their enabling technologies.« less
Kiparsky, Michael; Sedlak, David L; Thompson, Barton H; Truffer, Bernhard
2013-08-01
Interaction between institutional change and technological change poses important constraints on transitions of urban water systems to a state that can meet future needs. Research on urban water and other technology-dependent systems provides insights that are valuable to technology researchers interested in assuring that their efforts will have an impact. In the context of research on institutional change, innovation is the development, application, diffusion, and utilization of new knowledge and technology. This definition is intentionally inclusive: technological innovation will play a key role in reinvention of urban water systems, but is only part of what is necessary. Innovation usually depends on context, such that major changes to infrastructure include not only the technological inventions that drive greater efficiencies and physical transformations of water treatment and delivery systems, but also the political, cultural, social, and economic factors that hinder and enable such changes. On the basis of past and present changes in urban water systems, institutional innovation will be of similar importance to technological innovation in urban water reinvention. To solve current urban water infrastructure challenges, technology-focused researchers need to recognize the intertwined nature of technologies and institutions and the social systems that control change.
Hardware Based Technology Assessment in Support of Near-Term Space Fission Missions
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; BraggSitton, Shannon; Carter, Robert; Dickens, Ricky; Salvail, Pat; Williams, Eric; Harper, Roger
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. Achieving these milestones will depend on the capability to perform highly realistic non-nuclear testing of nuclear systems. This paper discusses ongoing and potential research that could help achieve these milestones.
Feedstock Supply and Logistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Providing biomass for conversion into high-quality biofuels, biopower, and bioproducts represents an economic opportunity for communities across the nation. The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) and its partners are developing the technologies and systems needed to sustainably and economically deliver a diverse range of biomass in formats that enable efficient use in biorefineries.
Real-World Neuroimaging Technologies
2013-05-10
system enables long-term wear of up to 10 consecutive hours of operation time. The system’s wireless technologies, light weight (200g), and dry sensor ...biomarkers, body sensor networks , brain computer interactionbrain, computer interfaces, data acquisition, electroencephalography monitoring, translational...brain activity in real-world scenarios. INDEX TERMS Behavioral science, biomarkers, body sensor networks , brain computer interfaces, brain computer
Building a Case for Conducting Technology Surveys On-Line.
ERIC Educational Resources Information Center
Denton, Jon J.; Strader, Arlen
A Technology in Texas Public Schools 1998 Survey instrument was integrated into a Web-based response system enabling the instrument to be accessed, completed, submitted, and instantaneously analyzed over the Internet. A mark-sense or optical scan paper version of the instrument was also developed for mail-out distribution to each school district…
Principles and Application of Geographic Information Systems and Internet/Intranet Technology
2001-04-01
technology enables the introduction of GIS based services which can be used in Intranets and in the Internet. For these services recently also eCommerce ...114 Figure 5: GIS and Internet example of USGS (screenshot) Some of these application are using eCommerce techniques and products to allow for a more
From Server to Desktop: Capital and Institutional Planning for Client/Server Technology.
ERIC Educational Resources Information Center
Mullig, Richard M.; Frey, Keith W.
1994-01-01
Beginning with a request for an enhanced system for decision/strategic planning support, the University of Chicago's biological sciences division has developed a range of administrative client/server tools, instituted a capital replacement plan for desktop technology, and created a planning and staffing approach enabling rapid introduction of new…
Integrated Energy Solutions Research | Integrated Energy Solutions | NREL
that spans the height and width of the wall they are facing. Decision Science and Informatics Enabling decision makers with rigorous, technology-neutral, data-backed decision support to maximize the impact of security in energy systems through analysis, decision support, advanced energy technology development, and
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Holmes, Bruce J.; Hahn, Andrew S.
2016-01-01
We report on an examination of potential benefits of infusing wireless technologies into various areas of aircraft and airspace operations. The analysis is done in support of a NASA seedling project Efficient Reconfigurable Cockpit Design and Fleet Operations Using Software Intensive, Network Enabled Wireless Architecture (ECON). The study has two objectives. First, we investigate one of the main benefit hypotheses of the ECON proposal: that the replacement of wired technologies with wireless would lead to significant weight reductions on an aircraft, among other benefits. Second, we advance a list of wireless technology applications and discuss their system benefits. With regard to the primary hypothesis, we conclude that the promise of weight reduction is premature. Specificity of the system domain and aircraft, criticality of components, reliability of wireless technologies, the weight of replacement or augmentation equipment, and the cost of infusion must all be taken into account among other considerations, to produce a reliable estimate of weight savings or increase.
Exploration of Terminal Procedures Enabled by NASA Wake VAS Technologies
NASA Technical Reports Server (NTRS)
Lunsford, Clark R.; Smith, Arthur P., III; Cooper, Wayne W., Jr.; Mundra, Anand D.; Gross, Amy E.; Audenaerd, Laurence F.; Killian, Bruce E.
2004-01-01
The National Aeronautics and Space Administration (NASA) tasked The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) to investigate potential air traffic control (ATC) procedures that could benefit from technology used or developed in NASA's Wake Vortex Advisory System (WakeVAS). The task also required developing an estimate of the potential benefits of the candidate procedures. The main thrust of the investigation was to evaluate opportunities for improved capacity and efficiency in airport arrival and departure operations. Other procedures that would provide safety enhancements were also considered. The purpose of this investigation was to provide input to the WakeVAS program office regarding the most promising areas of development for the program. A two-fold perspective was desired: First, identification of benefits from possible procedures enabled by both incremental components and the mature state of WakeVAS technology; second identification of procedures that could be expected to evolve from the current Federal Aviation Administration (FAA) procedures. The evolution of procedures should provide meaningful increments of benefit and a low risk implementation of the WakeVAS technologies.
Recent advances in AM OLED technologies for application to aerospace and military systems
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles
2012-06-01
While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.
Network science of biological systems at different scales: A review
NASA Astrophysics Data System (ADS)
Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž
2018-03-01
Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present
PEER Transportation Research Program | PEER Transportation Research Program
methodologies, integrating fundamental knowledge, enabling technologies, and systems. We further expect that the Bayesian Framework for Performance Assessment and Risk Management of Transportation Systems subject to Earthquakes Directivity Modeling for NGA West2 Ground Motion Studies for Transportation Systems Performance
Exploring Moodle Functionality for Managing Open Distance Learning E-Assessments
ERIC Educational Resources Information Center
Koneru, Indira
2017-01-01
Current and emerging technologies enable Open Distance Learning (ODL) institutions integrate e-Learning in innovative ways and add value to the existing teaching-learning and assessment processes. ODL e-Assessment systems have evolved from Computer Assisted/Aided Assessment (CAA) systems through intelligent assessment and feedback systems.…
A Service Oriented Infrastructure for Earth Science exchange
NASA Astrophysics Data System (ADS)
Burnett, M.; Mitchell, A.
2008-12-01
NASA's Earth Science Distributed Information System (ESDIS) program has developed an infrastructure for the exchange of Earth Observation related resources. Fundamentally a platform for Service Oriented Architectures, ECHO provides standards-based interfaces based on the basic interactions for a SOA pattern: Publish, Find and Bind. This infrastructure enables the realization of the benefits of Service Oriented Architectures, namely the reduction of stove-piped systems, the opportunity for reuse and flexibility to meet dynamic business needs, on a global scale. ECHO is the result of the infusion of IT technologies, including those standards of Web Services and Service Oriented Architecture technologies. The infrastructure is based on standards and leverages registries for data, services, clients and applications. As an operational system, ECHO currently representing over 110 million Earth Observation resources from a wide number of provider organizations. These partner organizations each have a primary mission - serving a particular facet of the Earth Observation community. Through ECHO, those partners can serve the needs of not only their target portion of the community, but also enable a wider range of users to discover and leverage their data resources, thereby increasing the value of their offerings. The Earth Observation community benefits from this infrastructure because it provides a set of common mechanisms for the discovery and access to resources from a much wider range of data and service providers. ECHO enables innovative clients to be built for targeted user types and missions. There several examples of those clients already in process. Applications built on this infrastructure can include User-driven, GUI-clients (web-based or thick clients), analysis programs (as intermediate components of larger systems), models or decision support systems. This paper will provide insight into the development of ECHO, as technologies were evaluated for infusion, and a summary of how technologies where leveraged into a significant operational system for the Earth Observation community.
Marshall Space Flight Center's Virtual Reality Applications Program 1993
NASA Technical Reports Server (NTRS)
Hale, Joseph P., II
1993-01-01
A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems.
Parallel dispatch: a new paradigm of electrical power system dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun Jason; Wang, Fei-Yue; Wang, Qiang
Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus, the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm, namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complexmore » power grids, extend system operators U+02BC capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.« less
Overview of Stirling Technology Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.
2016-01-01
Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
Overview of Stirling Technology Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.
2015-01-01
Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
Distal technologies and type 1 diabetes management.
Duke, Danny C; Barry, Samantha; Wagner, David V; Speight, Jane; Choudhary, Pratik; Harris, Michael A
2018-02-01
Type 1 diabetes requires intensive self-management to avoid acute and long-term health complications. In the past two decades, substantial advances in technology have enabled more effective and convenient self-management of type 1 diabetes. Although proximal technologies (eg, insulin pumps, continuous glucose monitors, closed-loop and artificial pancreas systems) have been the subject of frequent systematic and narrative reviews, distal technologies have received scant attention. Distal technologies refer to electronic systems designed to provide a service remotely and include heterogeneous systems such as telehealth, mobile health applications, game-based support, social platforms, and patient portals. In this Review, we summarise the empirical literature to provide current information about the effectiveness of available distal technologies to improve type 1 diabetes management. We also discuss privacy, ethics, and regulatory considerations, issues of global adoption, knowledge gaps in distal technology, and recommendations for future directions. Copyright © 2018 Elsevier Ltd. All rights reserved.
A compendium of solar dish/Stirling technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stine, W.B.; Diver, R.B.
1994-01-01
This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less
An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA
NASA Technical Reports Server (NTRS)
Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.
2005-01-01
NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02- OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), 13 August 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra
2011-01-01
In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.
Overview of Accelerator Applications in Energy
NASA Astrophysics Data System (ADS)
Garnett, Robert W.; Sheffield, Richard L.
An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.
Autonomous Systems and Robotics: 2000-2004
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies to monitor, maintain, and where possible, repair complex space systems. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard
2012-01-01
NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.
Development of inexpensive blood imaging systems: where are we now?
Chu, Kaiqin; Smith, Zachary J; Wachsmann-Hogiu, Sebastian
2015-01-01
Clinical applications in the developing world, such as malaria and anemia diagnosis, demand a change in the medical paradigm of expensive care given in central locations by highly trained professionals. There has been a recent explosion in optical technologies entering the consumer market through the widespread adoption of smartphones and LEDs. This technology commoditization has enabled the development of small, portable optical imaging systems at an unprecedentedly low cost. Here, we review the state-of-the-field of the application of these systems for low-cost blood imaging with an emphasis on cellular imaging systems. In addition to some promising results addressing specific clinical issues, an overview of the technology landscape is provided. We also discuss several key issues that need to be addressed before these technologies can be commercialized.
Advanced beamed-energy and field propulsion concepts
NASA Technical Reports Server (NTRS)
Myrabo, L. N.
1983-01-01
Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.
Wearable Health Monitoring Systems
NASA Technical Reports Server (NTRS)
Bell, John
2015-01-01
The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.
Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich
2016-03-29
A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.
Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergman, Keren
Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformationalmore » advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM architectures on Exascale computing systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-25
The Megatux platform enables the emulation of large scale (multi-million node) distributed systems. In particular, it allows for the emulation of large-scale networks interconnecting a very large number of emulated computer systems. It does this by leveraging virtualization and associated technologies to allow hundreds of virtual computers to be hosted on a single moderately sized server or workstation. Virtualization technology provided by modern processors allows for multiple guest OSs to run at the same time, sharing the hardware resources. The Megatux platform can be deployed on a single PC, a small cluster of a few boxes or a large clustermore » of computers. With a modest cluster, the Megatux platform can emulate complex organizational networks. By using virtualization, we emulate the hardware, but run actual software enabling large scale without sacrificing fidelity.« less
ERIC Educational Resources Information Center
Dias, Martin A.
2012-01-01
The purpose of this dissertation is to examine information systems-enabled interorganizational collaborations called public safety networks--their proliferation, information systems architecture, and technology evolution. These networks face immense pressures from member organizations, external stakeholders, and environmental contingencies. This…
Fuel consumption of ADS-B and non-ADS-B helicopter operation in the Gulf of Mexico
DOT National Transportation Integrated Search
2013-07-01
Automatic Dependent Surveillance Broadcast (ADSB) is a key enabling technology for the Next Generation Air Transportation System (NextGen) in the United States. The NextGen system replaces the current ground based commandandcontrol syste...
GIS\\KEY™ ENVIRONMENTAL DATA MANAGEMENT SYSTEM - INNOVATIVE TECHNOLOGY EVALUATION REPORT
GIS/Key™ is a comprehensive environmental database management system that integrates site data and graphics, enabling the user to create geologic cross-sections; boring logs; potentiometric, isopleth, and structure maps; summary tables; and hydrographs. GIS/Key™ is menu-driven an...
Automated Reasoning CICT Program/Intelligent Systems Project ATAC-PRT Review
NASA Technical Reports Server (NTRS)
Morris, Robert; Smith, Ben
2003-01-01
An overview is presented of the Automated Reasoning CICT Program/Intelligent Systems project. Automated reasoning technology will help NASA missions by increasing the amount of science achieved, ensuring safety of spacecraft and surface explorers, and by enabling more robust mission operations.
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda S.; Wunderlich, Dana A.; Willoughby, John K.
1992-01-01
New and innovative software technology is presented that provides a cost effective bridge for smoothly transitioning prototype software, in the field of planning and scheduling, into an operational environment. Specifically, this technology mixes the flexibility and human design efficiency of dynamic data typing with the rigor and run-time efficiencies of static data typing. This new technology provides a very valuable tool for conducting the extensive, up-front system prototyping that leads to specifying the correct system and producing a reliable, efficient version that will be operationally effective and will be accepted by the intended users.
Status of ERA Vehicle System Integration Technology Demonstrators
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Fernandez, Hamilton; Khorrami, Mehdi; James, Kevin D.; Thomas, Russell
2015-01-01
The Environmentally Responsible Aviation (ERA) Project within the Integrated Systems Research Program (ISRP) of the NASA Aeronautics Research Mission Directorate (ARMD) has the responsibility to explore and document the feasibility, benefits, and technical risk of air vehicle concepts and enabling technologies that will reduce the impact of aviation on the environment. The primary goal of the ERA Project is to select air vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions. In addition, the ERA Project will identify and mitigate technical risk and transfer knowledge to the aeronautics community at large so that new technologies and vehicle concepts can be incorporated into the future design of aircraft.
Schedule Risks Due to Delays in Advanced Technology Development
NASA Technical Reports Server (NTRS)
Reeves, John D. Jr.; Kayat, Kamal A.; Lim, Evan
2008-01-01
This paper discusses a methodology and modeling capability that probabilistically evaluates the likelihood and impacts of delays in advanced technology development prior to the start of design, development, test, and evaluation (DDT&E) of complex space systems. The challenges of understanding and modeling advanced technology development considerations are first outlined, followed by a discussion of the problem in the context of lunar surface architecture analysis. The current and planned methodologies to address the problem are then presented along with sample analyses and results. The methodology discussed herein provides decision-makers a thorough understanding of the schedule impacts resulting from the inclusion of various enabling advanced technology assumptions within system design.
Challenging Technology, and Technology Infusion into 21st Century
NASA Technical Reports Server (NTRS)
Chau, S. N.; Hunter, D. J.
2001-01-01
In preparing for the space exploration challenges of the next century, the National Aeronautics and Space Administration (NASA) Center for Integrated Space Micro-Systems (CISM) is chartered to develop advanced spacecraft systems that can be adapted for a large spectrum of future space missions. Enabling this task are revolutions in the miniaturization of electrical, mechanical, and computational functions. On the other hand, these revolutionary technologies usually have much lower readiness levels than those required by flight projects. The mission of the Advanced Micro Spacecraft (AMS) task in CISM is to bridge the readiness gap between advanced technologies and flight projects. Additional information is contained in the original extended abstract.
Information Science Panel joint meeting with Imaging Science Panel
NASA Technical Reports Server (NTRS)
1982-01-01
Specific activity in information extraction science (taken to include data handling) is needed to: help identify the bounds of practical missions; identify potential data handling and analysis scenarios; identify the required enabling technology; and identify the requirements for a design data base to be used by the disciplines in determining potential parameters for future missions. It was defined that specific analysis topics were a function of the discipline involved, and therefore no attempt was made to define any specific analysis developments required. Rather, it was recognized that a number of generic data handling requirements exist whose solutions cannot be typically supported by the disciplines. The areas of concern were therefore defined as: data handling aspects of system design considerations; enabling technology for data handling, with specific attention to rectification and registration; and enabling technology for analysis. Within each of these areas, the following topics were addressed: state of the art (current status and contributing factors); critical issues; and recommendations for research and/or development.
Sensors in the Stream: The High-Frequency Wave of the Present.
Rode, Michael; Wade, Andrew J; Cohen, Matthew J; Hensley, Robert T; Bowes, Michael J; Kirchner, James W; Arhonditsis, George B; Jordan, Phil; Kronvang, Brian; Halliday, Sarah J; Skeffington, Richard A; Rozemeijer, Joachim C; Aubert, Alice H; Rinke, Karsten; Jomaa, Seifeddine
2016-10-04
New scientific understanding is catalyzed by novel technologies that enhance measurement precision, resolution or type, and that provide new tools to test and develop theory. Over the last 50 years, technology has transformed the hydrologic sciences by enabling direct measurements of watershed fluxes (evapotranspiration, streamflow) at time scales and spatial extents aligned with variation in physical drivers. High frequency water quality measurements, increasingly obtained by in situ water quality sensors, are extending that transformation. Widely available sensors for some physical (temperature) and chemical (conductivity, dissolved oxygen) attributes have become integral to aquatic science, and emerging sensors for nutrients, dissolved CO 2 , turbidity, algal pigments, and dissolved organic matter are now enabling observations of watersheds and streams at time scales commensurate with their fundamental hydrological, energetic, elemental, and biological drivers. Here we synthesize insights from emerging technologies across a suite of applications, and envision future advances, enabled by sensors, in our ability to understand, predict, and restore watershed and stream systems.
Space Industry Study Industrial College of the Armed Forces National Defense University
2002-06-01
information technologies , especially fiber, cable, and cellular communications, which forced space systems away from old market roles and denied entry to... technologies fill market niches. As technology matures, small satellites have been viewed a partial solution to this cycle, enabling faster programs...years, the largely unforeseen growth in the internet has proven a valuable new market for satellite service providers. And over the past few years
Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K
2010-02-01
Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.
Technology Development Benefits and the Economics Breakdown Structure
NASA Technical Reports Server (NTRS)
Shaw, Eric J.
1998-01-01
This paper describes the construction and application of the EBS (Economics Breakdown Structure) in evaluating technology investments across multiple systems and organizations, illustrated with examples in space transportation technology. The United States Government (USG) has a long history of investing in technology to enable its missions. Agencies such as the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) have evaluated their technology development programs primarily on their effects on mission performance and cost. More and more, though, USG agencies are being evaluated on their technology transfer to the commercial sector. In addition, an increasing number of USG missions are being accomplished by industry-led or joint efforts, where the USG provides technology and funding but tasks industry with development and operation of the mission systems.
Computing, Information and Communications Technology (CICT) Website
NASA Technical Reports Server (NTRS)
Hardman, John; Tu, Eugene (Technical Monitor)
2002-01-01
The Computing, Information and Communications Technology Program (CICT) was established in 2001 to ensure NASA's Continuing leadership in emerging technologies. It is a coordinated, Agency-wide effort to develop and deploy key enabling technologies for a broad range of mission-critical tasks. The NASA CICT program is designed to address Agency-specific computing, information, and communications technology requirements beyond the projected capabilities of commercially available solutions. The areas of technical focus have been chosen for their impact on NASA's missions, their national importance, and the technical challenge they provide to the Program. In order to meet its objectives, the CICT Program is organized into the following four technology focused projects: 1) Computing, Networking and Information Systems (CNIS); 2) Intelligent Systems (IS); 3) Space Communications (SC); 4) Information Technology Strategic Research (ITSR).
Extending green technology innovations to enable greener fabs
NASA Astrophysics Data System (ADS)
Takahisa, Kenji; Yoo, Young Sun; Fukuda, Hitomi; Minegishi, Yuji; Enami, Tatsuo
2015-03-01
Semiconductor manufacturing industry has growing concerns over future environmental impacts as fabs expand and new generations of equipment become more powerful. Especially rare gases supply and price are one of prime concerns for operation of high volume manufacturing (HVM) fabs. Over the past year it has come to our attention that Helium and Neon gas supplies could be unstable and become a threat to HVM fabs. To address these concerns, Gigaphoton has implemented various green technologies under its EcoPhoton program. One of the initiatives is GigaTwin deep ultraviolet (DUV) lithography laser design which enables highly efficient and stable operation. Under this design laser systems run with 50% less electric energy and gas consumption compared to conventional laser designs. In 2014 we have developed two technologies to further reduce electric energy and gas efficiency. The electric energy reduction technology is called eGRYCOS (enhanced Gigaphoton Recycled Chamber Operation System), and it reduces electric energy by 15% without compromising any of laser performances. eGRYCOS system has a sophisticated gas flow design so that we can reduce cross-flow-fan rotation speed. The gas reduction technology is called eTGM (enhanced Total gas Manager) and it improves gas management system optimizing the gas injection and exhaust amount based on laser performances, resulting in 50% gas savings. The next steps in our roadmap technologies are indicated and we call for potential partners to work with us based on OPEN INNOVATION concept to successfully develop faster and better solutions in all possible areas where green innovation may exist.
The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program
NASA Technical Reports Server (NTRS)
Couch, J. P.; Bloomfield, H. S.
1975-01-01
The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.
VLSI technology for smaller, cheaper, faster return link systems
NASA Technical Reports Server (NTRS)
Nanzetta, Kathy; Ghuman, Parminder; Bennett, Toby; Solomon, Jeff; Dowling, Jason; Welling, John
1994-01-01
Very Large Scale Integration (VLSI) Application-specific Integrated Circuit (ASIC) technology has enabled substantially smaller, cheaper, and more capable telemetry data systems. However, the rapid growth in available ASIC fabrication densities has far outpaced the application of this technology to telemetry systems. Available densities have grown by well over an order magnitude since NASA's Goddard Space Flight Center (GSFC) first began developing ASIC's for ground telemetry systems in 1985. To take advantage of these higher integration levels, a new generation of ASIC's for return link telemetry processing is under development. These new submicron devices are designed to further reduce the cost and size of NASA return link processing systems while improving performance. This paper describes these highly integrated processing components.
FAILSAFE Health Management for Embedded Systems
NASA Technical Reports Server (NTRS)
Horvath, Gregory A.; Wagner, David A.; Wen, Hui Ying; Barry, Matthew
2010-01-01
The FAILSAFE project is developing concepts and prototype implementations for software health management in mission- critical, real-time embedded systems. The project unites features of the industry-standard ARINC 653 Avionics Application Software Standard Interface and JPL s Mission Data System (MDS) technology (see figure). The ARINC 653 standard establishes requirements for the services provided by partitioned, real-time operating systems. The MDS technology provides a state analysis method, canonical architecture, and software framework that facilitates the design and implementation of software-intensive complex systems. The MDS technology has been used to provide the health management function for an ARINC 653 application implementation. In particular, the focus is on showing how this combination enables reasoning about, and recovering from, application software problems.
Information Systems for NASA's Aeronautics and Space Enterprises
NASA Technical Reports Server (NTRS)
Kutler, Paul
1998-01-01
The aerospace industry is being challenged to reduce costs and development time as well as utilize new technologies to improve product performance. Information technology (IT) is the key to providing revolutionary solutions to the challenges posed by the increasing complexity of NASA's aeronautics and space missions and the sophisticated nature of the systems that enable them. The NASA Ames vision is to develop technologies enabling the information age, expanding the frontiers of knowledge for aeronautics and space, improving America's competitive position, and inspiring future generations. Ames' missions to accomplish that vision include: 1) performing research to support the American aviation community through the unique integration of computation, experimentation, simulation and flight testing, 2) studying the health of our planet, understanding living systems in space and the origins of the universe, developing technologies for space flight, and 3) to research, develop and deliver information technologies and applications. Information technology may be defined as the use of advance computing systems to generate data, analyze data, transform data into knowledge and to use as an aid in the decision-making process. The knowledge from transformed data can be displayed in visual, virtual and multimedia environments. The decision-making process can be fully autonomous or aided by a cognitive processes, i.e., computational aids designed to leverage human capacities. IT Systems can learn as they go, developing the capability to make decisions or aid the decision making process on the basis of experiences gained using limited data inputs. In the future, information systems will be used to aid space mission synthesis, virtual aerospace system design, aid damaged aircraft during landing, perform robotic surgery, and monitor the health and status of spacecraft and planetary probes. NASA Ames through the Center of Excellence for Information Technology Office is leading the effort in pursuit of revolutionary, IT-based approaches to satisfying NASA's aeronautics and space requirements. The objective of the effort is to incorporate information technologies within each of the Agency's four Enterprises, i.e., Aeronautics and Space Transportation Technology, Earth, Science, Human Exploration and Development of Space and Space Sciences. The end results of these efforts for Enterprise programs and projects should be reduced cost, enhanced mission capability and expedited mission completion.
Logistics Reduction Technologies for Exploration Missions
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.
2014-01-01
Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.
Nonproliferation Challenges in Space Defense Technology - PANEL
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2016-01-01
The use of highly enriched uranium (HEU) almost always "helps" space fission systems. Nuclear Thermal Propulsion (NTP) and high power fission electric systems appear able to use < 20% enriched uranium with minimal / acceptable performance impacts. However, lower power, "entry level" systems may be needed for space fission technology to be developed and utilized. Low power (i.e. approx.1 kWe) fission systems may have an unacceptable performance penalty if LEU is used instead of HEU. Are there Ways to Support Non-Proliferation Objectives While Simultaneously Helping Enable the Development and Utilization of Modern Space Fission Power and Propulsion Systems?
The Case of Nuclear Propulsion
NASA Technical Reports Server (NTRS)
Koroteev, Anatoly S.; Ponomarev-Stepnoi, Nicolai N.; Smetannikov, Vladimir P.; Gafarov, Albert A.; Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and experience necessary for developing even higher power and performance systems. To be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and the United States aimed at enabling near-term utilization of space fission systems.
Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Bushnell, Dennis M.
2016-01-01
The currently known resources on Mars are massive, including extensive quantities of water and carbon dioxide and therefore carbon, hydrogen and oxygen for life support, fuels and plastics and much else. The regolith is replete with all manner of minerals. In Situ Resource Utilization (ISRU) applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing and autonomy. These technologies combined with the vast natural resources should enable serious, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars. Various system-level transportation concepts employing Mars produced fuel would enable Mars resources to evolve into a primary center of trade for the inner solar system for eventually nearly everything required for space faring and colonization. Mars resources and their exploitation via extensive ISRU are the key to a viable, safe and affordable, human presence beyond Earth. The purpose of this paper is four-fold: 1) to highlight the latest discoveries of water, minerals, and other materials on Mars that reshape our thinking about the value and capabilities of Mars ISRU; 2) to summarize the previous literature on Mars ISRU processes, equipment, and approaches; 3) to point to frontier ISRU technologies and approaches that can lead to safe and affordable human missions to Mars; and 4) to suggest an implementation strategy whereby the ISRU elements are phased into the mission campaign over time to enable a sustainable and increasing human presence on Mars.
Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.
2006-01-01
Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.
Armstrong, Rachel
2010-01-01
This report details a workshop held at the Bartlett School of Architecture, University College London, to initiate interdisciplinary collaborations for the practice of systems architecture, which is a new model for the generation of sustainable architecture that combines the discipline of the study of the built environment with the scientific study of complexity, or systems science, and adopts the perspective of systems theory. Systems architecture offers new perspectives on the organization of the built environment that enable architects to consider architecture as a series of interconnected networks with embedded links into natural systems. The public workshop brought together architects and scientists working with the convergence of nanotechnology, biotechnology, information technology, and cognitive science and with living technology to investigate the possibility of a new generation of smart materials that are implied by this approach.
Unmanned Aircraft Systems for Monitoring Department of the Interior Lands
NASA Astrophysics Data System (ADS)
Hutt, M. E.; Quirk, B.
2013-12-01
Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.
NASA Astrophysics Data System (ADS)
Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki
2013-04-01
Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.
Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet
NASA Astrophysics Data System (ADS)
Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian
The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
Is home health technology adequate for proactive self-care?
Horwitz, C M; Mueller, M; Wiley, D; Tentler, A; Bocko, M; Chen, L; Leibovici, A; Quinn, J; Shar, A; Pentland, A P
2008-01-01
To understand whether home health technology in the market and in development can satisfy the needs of patients and their non-professional caregivers for proactive support in managing health and chronic conditions in the home. A panel of clinical providers and technology researchers was assembled to examine whether home health technology addresses consumer-defined requirements for self-care devices. A lexicon of home care and self-care technology terms was then created. A global survey of home health technology for patients with heart disease and dementia was conducted. The 254 items identified were categorized by conditions treated, primary user, function, and purpose. A focus group of patients and caregivers was convened to describe their expectations of self-care technology. Items identified in the database were then assessed for these attributes. Patients and family caregivers indicated a need for intelligent self-care technology which supports early diagnosis of health changes, intervention enablement, and improvement of communication quality among patients and the health care system. Of these, only intervention enablement was commonly found in the home health technology items identified. An opportunity exists to meet consumer self-care needs through increased research and development in intelligent self-care technology.
Integrated Tools for Future Distributed Engine Control Technologies
NASA Technical Reports Server (NTRS)
Culley, Dennis; Thomas, Randy; Saus, Joseph
2013-01-01
Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Rhett
The SDN Project completed on time and on budget and successfully accomplished 100% of the scope of work outlined in the original Statement of Project Objective (SOPO). The SDN Project formed an alliance between Ameren Corporation, University of Illinois Urbana- Champaign (UIUC), Pacific Northwest National Laboratories (PNNL), and Schweitzer Engineering Laboratories, Inc. (SEL). The objective of the SDN Project is to address Topic Area of Interest 2: Sustain critical energy delivery functions while responding to a cyber-intrusion under Funding Opportunity Announcement DE-FOA-0000797. The goal of the project is to design and commercially release technology that provides a method to sustainmore » critical energy delivery functions during a cyber intrusion and to do this control system operators need the ability to quickly identify and isolate the affected network areas, and re-route critical information and control flows around. The objective of the SDN Project is to develop a Flow Controller that monitors, configures, and maintains the safe, reliable network traffic flows of all the local area networks (LANs) on a control system in the Energy sector. The SDN team identified the core attributes of a control system and produced an SDN flow controller that has the same core attributes enabling networks to be designed, configured and deployed that maximize the whitelisted, deny-bydefault and purpose built networks. This project researched, developed and commercially released technology that: Enables all field networks be to configured and monitored as if they are a single asset to be protected; Enables greatly improved and even precalculated response actions to reliability and cyber events; Supports pre-configured localized response actions tailored to provide resilience against failures and centralized response to cyber-attacks that improve network reliability and availability; Architecturally enables the right subject matter experts, who are usually the information technology and operational technology engineers, to be the ones centrally administering the technology and responding to events; Simplifies network configuration, improving deterministic Ethernet transport times, and providing instant visualization on where the communication circuits are and how all circuits are impacted when changes (e.g., configuration changes, failures or intrusions) happen, allowing operators to minimize downtime; and Improves the ability to identify deviations in network behavior resulting in detection and analysis of potential cyber intrusions and faster response times Results: This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted while the team maintained Ethernet interoperability avoiding any legacy concerns. The team commercially released technology that accomplished all the cybersecurity goals outlined in the SOPO and completed it by executing the project management plan approved in the initial contract. The resulting Energy sector SDN flow controller model number is SEL-5056 and can be freely downloaded from the www.SELinc.com website. This technology not only improves the cybersecurity of control systems but has measured results that it improves the performance and reliability of the control system as well. This means the system owners can confidently apply it to their systems knowing that it will, “first do no harm” but actually improve the system as well. Success of the project is best measured by the sales and deployment of the technology. System owners in industrial, electric, defense, and oil and gas only months after commercial release have approved plans for deployment.« less
Applying systems engineering methodologies to the micro- and nanoscale realm
NASA Astrophysics Data System (ADS)
Garrison Darrin, M. Ann
2012-06-01
Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.
ERIC Educational Resources Information Center
Dori, Yehudit Judy; Belcher, John
2005-01-01
Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Space Technology Industry Forum
2010-07-13
Keith Belvin, NASA Systems Engineer at NASA Langley Research Center, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)
In-Space Propulsion Program Overview and Status
NASA Technical Reports Server (NTRS)
Wercinski, Paul F.; Johnson, Les; Baggett, Randy M.
2003-01-01
NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Solar Electric Propulsion, Aerocapture, Solar Sails, Momentum Exchange Tethers, Plasma Sails and other technologies such as Advanced Chemical Propulsion. The ISP Program intends to develop cost-effective propulsion technologies that will provide a broad spectrum of mission possibilities, enabling NASA to send vehicles on longer, more useful voyages and in many cases to destinations that were previously unreachable using conventional means. The ISP approach to identifying and prioritizing these most promising technologies is to use mission and system analysis and subsequent peer review. The ISP program seeks to develop technologies under consideration to Technology Readiness Level (TRL) -6 for incorporation into mission planning within 3-5 years of initiation. The NASA TRL 6 represents a level where a technology is ready for system level demonstration in a relevant environment, usually a space environment. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRA's) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA Headquarters Office of Space Science and implemented by the Marshall Space Flight Center in Huntsville, Alabama.
Phase Change Permeation Technology For Environmental Control Life Support Systems
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2014-01-01
Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.
Planning And Reasoning For A Telerobot
NASA Technical Reports Server (NTRS)
Peters, Stephen F.; Mittman, David S.; Collins, Carol E.; O'Meara Callahan, Jacquelyn S.; Rokey, Mark J.
1992-01-01
Document discusses research and development of Telerobot Interactive Planning System (TIPS). Goal in development of TIPS is to enable it to accept instructions from operator, then command run-time controller to execute operations to execute instructions. Challenges in transferring technology from testbed to operational system discussed.
Discussion of the enabling environments for decentralised water systems.
Moglia, M; Alexander, K S; Sharma, A
2011-01-01
Decentralised water supply systems are becoming increasingly affordable and commonplace in Australia and have the potential to alleviate urban water shortages and reduce pollution into natural receiving marine and freshwater streams. Learning processes are necessary to support the efficient implementation of decentralised systems. These processes reveal the complex socio-technical and institutional factors to be considered when developing an enabling environment supporting decentralised water and wastewater servicing solutions. Critical to the technological transition towards established decentralised systems is the ability to create strategic and adaptive capacity to promote learning and dialogue. Learning processes require institutional mechanisms to ensure the lessons are incorporated into the formulation of policy and regulation, through constructive involvement of key government institutions. Engagement of stakeholders is essential to the enabling environment. Collaborative learning environments using systems analysis with communities (social learning) and adaptive management techniques are useful in refining and applying scientists' and managers' knowledge (knowledge management).
Enabling technologies for robot assisted ultrasound tomography.
Aalamifar, Fereshteh; Khurana, Rishabh; Cheng, Alexis; Guo, Xiaoyu; Iordachita, Iulian; Boctor, Emad M
2017-03-01
Currently available ultrasound (US) tomography systems suggest utilizing cylindrical transducers that can be used for a specific organ. In this paper, our focus is on an alternative way of creating US tomographic images that could be used for other anatomies and more general applications. This system consists of two conventional US probes facing each other while one or several of the transducers in one probe can act as the transmitter and the rest as the receiver. Aligning the two US probes is a challenging task. To address this issue, we propose a robot assisted US tomography system in which one probe is operated freehanded and another by a robotic arm. In this paper, enabling technologies for this system are described. With the current prototype, a reconstruction precision of 4.12, 1.73, and 2.23 mm for the three calibrations, and an overall alignment repeatability in the range of 5-9 mm were achieved. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Adaptive Engine Technologies for Aviation CO2 Emissions Reduction
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.
2006-01-01
Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.
2015-01-01
Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.
Dynamic Communication Resource Negotiations
NASA Technical Reports Server (NTRS)
Chow, Edward; Vatan, Farrokh; Paloulian, George; Frisbie, Steve; Srostlik, Zuzana; Kalomiris, Vasilios; Apgar, Daniel
2012-01-01
Today's advanced network management systems can automate many aspects of the tactical networking operations within a military domain. However, automation of joint and coalition tactical networking across multiple domains remains challenging. Due to potentially conflicting goals and priorities, human agreement is often required before implementation into the network operations. This is further complicated by incompatible network management systems and security policies, rendering it difficult to implement automatic network management, thus requiring manual human intervention to the communication protocols used at various network routers and endpoints. This process of manual human intervention is tedious, error-prone, and slow. In order to facilitate a better solution, we are pursuing a technology which makes network management automated, reliable, and fast. Automating the negotiation of the common network communication parameters between different parties is the subject of this paper. We present the technology that enables inter-force dynamic communication resource negotiations to enable ad-hoc inter-operation in the field between force domains, without pre-planning. It also will enable a dynamic response to changing conditions within the area of operations. Our solution enables the rapid blending of intra-domain policies so that the forces involved are able to inter-operate effectively without overwhelming each other's networks with in-appropriate or un-warranted traffic. It will evaluate the policy rules and configuration data for each of the domains, then generate a compatible inter-domain policy and configuration that will update the gateway systems between the two domains.
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
Status of ERA Airframe Technology Demonstrators
NASA Technical Reports Server (NTRS)
Davis, Pamela; Jegley, Dawn; Rigney, Tom
2015-01-01
NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. The Airframe Technology subproject contains two elements. Under the Damage Arresting Composite Demonstration an advanced material system is being explored which will lead to lighter airframes that are more structural efficient than the composites used in aircraft today. Under the Adaptive Compliant Trailing Edge Flight Experiment a new concept of a flexible wing trailing edge is being evaluated which will reduce weight and improve aerodynamic performance. This presentation will describe the development these two airframe technologies.
NASA Technical Reports Server (NTRS)
Bauer, F. H.; Bristow, J. O.; Carpenter, J. R.; Garrison, J. L.; Hartman, K. R.; Lee, T.; Long, A. C.; Kelbel, D.; Lu, V.; How, J. P.;
2000-01-01
Formation flying is quickly revolutionizing the way the space community conducts autonomous science missions around the Earth and in space. This technological revolution will provide new, innovative ways for this community to gather scientific information, share this information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, this technology will result in swarms of space vehicles flying as a virtual platform and gathering significantly more and better science data than is possible today. Formation flying will be enabled through the development and deployment of spaceborne differential Global Positioning System (GPS) technology and through innovative spacecraft autonomy techniques, This paper provides an overview of the current status of NASA/DoD/Industry/University partnership to bring formation flying technology to the forefront as quickly as possible, the hurdles that need to be overcome to achieve the formation flying vision, and the team's approach to transfer this technology to space. It will also describe some of the formation flying testbeds, such as Orion, that are being developed to demonstrate and validate these innovative GPS sensing and formation control technologies.
Status of Technology Development to enable Large Stable UVOIR Space Telescopes
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; MSFC AMTD Team
2017-01-01
NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.
Mast, Fred D.; Ratushny, Alexander V.
2014-01-01
Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. PMID:25225336
Visions of the Future: Hybrid Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.
2016-01-01
The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.
ERIC Educational Resources Information Center
El-Masri, Mazen; Tarhini, Ali
2017-01-01
This study examines the major factors that may hinder or enable the adoption of e-learning systems by university students in developing (Qatar) as well as developed (USA) countries. To this end, we used extended Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) with Trust as an external variable. By means of an online survey, data were…
Virtual reality, robotics, and other wizardry in 21st century trauma care.
Maniscalco-Theberge, M E; Elliott, D C
1999-12-01
The former Special Assistant to the Director on Biomedical Technology, Defense Advanced Research Projects Agency (DARPA), COL RM Satava, notes "Predicting the future trends in any profession jeopardizes the credibility of the author." Thus, we have attempted to outline current systems and prototype models in testing phases. Technologic advances will enable enhanced care of trauma patients. In the acute care setting, they also will affect the educational system in theory and practice.
NASA Astrophysics Data System (ADS)
Kaplan, M.; Tadros, A.
2017-02-01
Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.
Enabling Problem Based Learning through Web 2.0 Technologies: PBL 2.0
ERIC Educational Resources Information Center
Tambouris, Efthimios; Panopoulou, Eleni; Tarabanis, Konstantinos; Ryberg, Thomas; Buus, Lillian; Peristeras, Vassilios; Lee, Deirdre; Porwol, Lukasz
2012-01-01
Advances in Information and Communications Technology (ICT), particularly the so-called Web 2.0, are affecting all aspects of our life: How we communicate, how we shop, how we socialise, how we learn. Facilitating learning through the use of ICT, also known as eLearning, is a vital part of modern educational systems. Established pedagogical…
Technology Developments Integrating a Space Network Communications Testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.
Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng
2018-01-01
In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications. PMID:29393887
Active Thermal Control System Development for Exploration
NASA Technical Reports Server (NTRS)
Westheimer, David
2007-01-01
All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.
NASA Technical Reports Server (NTRS)
Hopkins, Randall C.; Thomas, Herbert D.; Wiegmann, Bruce M.; Heaton, Andrew F.; Johnson, Les; Beers, Benjamin R.
2015-01-01
The Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the sun, within 10 years. The advanced propulsion system trade study consisted of three candidates, including a Magnetically Shielded Miniature Hall thruster, a solar sail and an electric sail. A second analysis was conducted to determine which solid rocket motor kick stage(s) would be required to provide additional thrust at various points in the trajectory, assuming a characteristic energy capability provided by a Space Launch System Block 1B vehicle architecture carrying an 8.4 meter payload fairing. Two trajectory profiles were considered, including an escape trajectory using a Jupiter gravity assist and an escape trajectory first performing a Jupiter gravity assist followed by an Oberth maneuver around the sun and an optional Saturn gravity assist. Results indicated that if the Technology Readiness Level of an electric sail could be increased in time, this technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so in even less time.
Automated Discovery and Modeling of Sequential Patterns Preceding Events of Interest
NASA Technical Reports Server (NTRS)
Rohloff, Kurt
2010-01-01
The integration of emerging data manipulation technologies has enabled a paradigm shift in practitioners' abilities to understand and anticipate events of interest in complex systems. Example events of interest include outbreaks of socio-political violence in nation-states. Rather than relying on human-centric modeling efforts that are limited by the availability of SMEs, automated data processing technologies has enabled the development of innovative automated complex system modeling and predictive analysis technologies. We introduce one such emerging modeling technology - the sequential pattern methodology. We have applied the sequential pattern methodology to automatically identify patterns of observed behavior that precede outbreaks of socio-political violence such as riots, rebellions and coups in nation-states. The sequential pattern methodology is a groundbreaking approach to automated complex system model discovery because it generates easily interpretable patterns based on direct observations of sampled factor data for a deeper understanding of societal behaviors that is tolerant of observation noise and missing data. The discovered patterns are simple to interpret and mimic human's identifications of observed trends in temporal data. Discovered patterns also provide an automated forecasting ability: we discuss an example of using discovered patterns coupled with a rich data environment to forecast various types of socio-political violence in nation-states.
Solar sail science mission applications and advancement
NASA Astrophysics Data System (ADS)
Macdonald, Malcolm; McInnes, Colin
2011-12-01
Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next. Having identified and developed a solar sail application-pull technology development roadmap, this is incorporated into a new vision for solar sailing. The development of new technologies, especially for space applications, is high-risk. The advancement difficulty of low technology readiness level research is typically underestimated due to a lack of recognition of the advancement degree of difficulty scale. Recognising the currently low technology readiness level of traditional solar sailing concepts, along with their high advancement degree of difficulty and a lack of near-term applications a new vision for solar sailing is presented which increases the technology readiness level and reduces the advancement degree of difficulty of solar sailing. Just as the basic principles of solar sailing are not new, they have also been long proven and utilised in spacecraft as a low-risk, high-return limited-capability propulsion system. It is therefore proposed that this significant heritage be used to enable rapid, near-term solar sail future advancement through coupling currently mature solar sail, and other, technologies with current solar sail technology developments. As such the near-term technology readiness level of traditional solar sailing is increased, while simultaneously reducing the advancement degree of difficulty along the solar sail application-pull technology development roadmap.
A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission
2016-08-17
and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism ...delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. Small (micrometer) scale damage in
Army AL&T, October-December 2008
2008-12-01
during the WIN-T technology demonstration Nov. 8, 2007, at Naval Air Engineering Station , Lakehurst, NJ. (U.S. Army photo by Russ Messeroll.) 16 OCTOBER...worldwide communications architecture, enabling connectivity from the global backbone to regional networks to posts/camps/ stations , and, lastly, to...Force Tracker. • Tacticomp™ wireless and Global Positioning System(GPS)-enabled hand-held computer. • One Station Remote Video Terminal. • Counter
MEMS-based microprojection system with a 1.5cc optical engine
NASA Astrophysics Data System (ADS)
Kilcher, Lucio; Abelé, Nicolas
2012-03-01
Lemoptix develops next-generation of Micro-Opto-Electromechanical Systems (MOEMS)-based laser scanning and microprojection technologies and products for professional and industrial applications. Lemoptix LSCAN laser scanning micromirrors are designed to be integrated by OEM (original equipment manufacturer) customers into a number of applications such as printers and industrial sensors, enhancing performances and enabling the development of smaller, higher resolution and lower cost products. Lemoptix MVIEW, world's smallest laser microprojection systems are ideal for integration by OEMs and ODMs (original design manufacturers) into various demanding applications such as headup displays in cars or mobile devices. Embedded MVIEW modules will enable the projection of content and information directly from the device on any nearby surface, enabling users to conveniently view and share information and content without the typical limitations of physical displays.
Cryogenic Fluid Management Technology Development Roadmaps
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Johnson, W. L.
2017-01-01
Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.
Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Piland, William M.
2004-01-01
A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.
OEM fiber laser rangefinder for long-distance measurement
NASA Astrophysics Data System (ADS)
Corman, Alexandre; Chiquet, Frédéric; Avisse, Thomas; Le Flohic, Marc
2015-05-01
SensUp designs and manufactures electro-optical systems based on laser technology, in particular from fiber lasers. Indeed, that kind of source enables us to get a significant peak power with huge repetition rates at the same time, thus combining some characteristics of the two main technologies on the telemetry field today: laser diodes and solid-state lasers. The OEM (Original Equipment Manufacturer) fiber Laser RangeFinder (LRF) set out below, aims to fit the SWaP (Size Weight and Power) requirements of military markets, and might turn out to be a real alternative to other technologies usually used in range finding systems.
Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance
NASA Astrophysics Data System (ADS)
Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun
2016-01-01
The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.
2009-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.
2011-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.