Heavy-Lift for a New Paradigm in Space Operations
NASA Technical Reports Server (NTRS)
Morris, Bruce; Burkey, Martin
2010-01-01
NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.
Design for an 8 Meter Monolithic UV/OIR Space Telescope
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Postman, Marc; Hornsby, Linda; Hopkins, Randall; Mosier, Gary E.; Pasquale, Bert A.; Arnold, William R.
2009-01-01
ATLAST-8 is an 8-meter monolithic UV/optical/NIR space observatory to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V cargo launch vehicle. The ATLAST-8 will yield fundamental astronomical breakthroughs. The mission concept utilizes two enabling technologies: planned Ares-V launch vehicle (scheduled for 2019) and autonomous rendezvous and docking (AR&D). The unprecedented Ares-V payload and mass capacity enables the use of a massive, monolithic, thin-meniscus primary mirror - similar to a VLT or Subaru. Furthermore, it enables simple robust design rules to mitigate cost, schedule and performance risk. AR&D enables on-orbit servicing, extending mission life and enhancing science return.
NASA's Space Launch System (SLS) Program: Mars Program Utilization
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2012-01-01
NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.
Progress on Enabling Unprecedented Payloads for Space in the 21st Century
NASA Technical Reports Server (NTRS)
Creech, Steve
2010-01-01
The NASA Ares Projects Office is developing the launch vehicles to move the United States and humanity beyond low earth orbit. Ares V is a heavy lift vehicle being designed to launch cargo into LEO and transfer cargo and crews to the Moon. Heavy Lift is a national asset with applications to science, business, and national defense. This is a snapshot of development. Ares V is early in the requirements formulation stage of development pending White House and Congressional deliberations. Work date will be useful to any future heavy lift development.
NASA Technical Reports Server (NTRS)
Hopkins, Randall C.; Stahl, H. Philip
2007-01-01
The payload mass and volume capabilities of the planned Ares V launch vehicle provide the science community with unprecedented opportunities to place large science payloads into low earth orbit and beyond. One example, the outcome of a recent study conducted at the NASA Marshall Space Flight Center, is a large, monolithic telescope with a primary mirror diameter of 6.2 meters placed into a halo orbit about the second Sun-Earth Lagrange point, or L2, approximately 1.5 million kin beyond Earth's orbit. Operating in the visible and ultraviolet regions of the electromagnetic spectrum, such a large telescope would allow astronomers to detect bio-signatures and characterize the atmospheres of transiting exoplanets, provide high resolution imaging three or more times better than the Hubble Space Telescope and the James Webb Space Telescope, and observe the ultraviolet light from warm baryonic matter.
Miniature vibration isolation system for space applications
NASA Astrophysics Data System (ADS)
Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.
2001-06-01
In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.
Ares V: Enabling Unprecedented Payloads for Space in the 21st Century
NASA Technical Reports Server (NTRS)
Creech, Steve
2010-01-01
Numerous technical and programmatic studies since the U.S. space program began in the 1960s has emphasized the need for a heavy lift capability for exploration beyond low Earth orbit (LEO). The Saturn V once embodied that capability until it was retired. Now the Ares V cargo launch vehicle (CaLV) promises to restore and improve on that capability, providing unprecedented opportunities for human and robotic exploration, science, national security and commercial uses. This paper provides an overview of the capabilities of Ares V, both as an opportunity for payloads of increased mass and/or volume, and as a means of reducing risk in the payload design process. The Ares V is part of NASA s Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and Altair lunar lander. This architecture is designed to carry out the national space policy goals of completing the International Space Station (ISS), retiring the Space Shuttle fleet, and expanding human exploration beyond LEO. The Ares V is designed to loft upper stages and/or cargo, such as the Altair lander, into LEO. The Ares I is designed to put Orion into LEO with a crew of up to four for rendezvous with the ISS or with the Ares V Earth departure stage for journeys to the Moon. While retaining the goals of heritage hardware and commonality, the Ares V configuration continues to be refined through a series of internal trades. The current reference configuration was recommended by the Ares Projects and approved by the Constellation Program during the Lunar Capabilities Concept Review (LCCR) June 2008. The reference configuration defines the Ares V as 381 feet (116m) tall with a gross lift-off mass (GLOM) of 8.1 million pounds (3,704.5 mT). Its first stage will generate 11 million pounds of sea-level liftoff thrust. It will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. It could also launch 123,100 pounds (55.8 mT) to Sun-Earth L2. Assessment of astronomy payload requirements since Spring 2008 has indicated that Ares V has the potential to support a range of payloads and missions. Some of these missions were impossible in the absence of Ares V s capabilities. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. A 2008 study by a National Research Council (NRC) panel, as well as analyses presented by astronomers and planetary scientists at two weekend conferences in 2008, support the position that Ares V has benefit to a broad range of planetary and astronomy missions. This early dialogue with Ares V engineers is permitting the greatest opportunity for payload/transportation/mission synergy and with the least financial impact to Ares V development. In addition, independent analyses suggest that Ares V has the opportunity to enable more cost-effective mission design. 1
Constellation Launch Vehicles Overview
NASA Technical Reports Server (NTRS)
Cook, Steve; Fragola, Joseph R.; Priskos, Alex; Davis, Danny; Kaynard, Mike; Hutt, John; Davis, Stephan; Creech, Steve
2009-01-01
This slide presentation reviews the current status of the launch vehicles associated with the Constellation Program. These are the Ares I and the Ares V. An overview of the Ares launch vehicles is included. The presentation stresses that the major criteria for the Ares I launcher is the safety of the crew, and the presentation reviews the various features that are designed to assure that aim. The Ares I vehicle is being built on a foundation of proven technologies, and the Ares V will give NASA unprecedented performance and payload volume that can enable a range of future missions. The CDs contain videos of scenes from various activities surrounding the design, construction and testing of the vehicles.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians prepare the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured on a special test stand. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician prepares the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is being prepared for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
NICER Transfer (for SpaceX CRS-11)
2017-04-12
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
Extending the International Space Station Life and Operability
NASA Technical Reports Server (NTRS)
Cecil, Andrew J.; Pitts, R. Lee; Sparks, Ray N.; Wickline, Thomas W.; Zoller, David A.
2012-01-01
The International Space Station (ISS) is in an operational configuration with final assembly complete. To fully utilize ISS and extend the operational life, it became necessary to upgrade and extend the onboard systems with the Obsolescence Driven Avionics Redesign (ODAR) project. ODAR enabled a joint project between the Johnson Space Center (JSC) and Marshall Space Flight Center (MSFC) focused on upgrading the onboard payload and Ku-Band systems, expanding the voice and video capabilities, and including more modern protocols allowing unprecedented access for payload investigators to their on-orbit payloads. The MSFC Huntsville Operations Support Center (HOSC) was tasked with developing a high-rate enhanced Functionally Distributed Processor (eFDP) to handle 300Mbps Return Link data, double the legacy rate, and incorporate a Line Outage Recorder (LOR). The eFDP also provides a 25Mbps uplink transmission rate with a Space Link Extension (SLE) interface. HOSC also updated the Payload Data Services System (PDSS) to incorporate the latest Consultative Committee for Space Data Systems (CCSDS) protocols, most notably the use of the Internet Protocol (IP) Encapsulation, in addition to the legacy capabilities. The Central Command Processor was also updated to interact with the new onboard and ground capabilities of Mission Control Center -- Houston (MCC-H) for the uplink functionality. The architecture, implementation, and lessons learned, including integration and incorporation of Commercial Off The Shelf (COTS) hardware and software into the operational mission of the ISS, is described herein. The applicability of this new technology provides new benefits to ISS payload users and ensures better utilization of the ISS by the science community
2012-08-10
CAPE CANAVERAL, Fla. – The Radiation Belt Storm Probes, or RBSP, spacecraft are moved inside their payload fairing on the payload transporter from the Astrotech payload processing facility in Titusville, Fla. to Space Launch Complex-41 at Cape Canaveral Air Force Station. The fairing, which holds the twin RBSP spacecraft, will be lifted to the top of a United Launch Alliance Atlas V rocket for launch later in August. The two spacecraft are designed to study the Van Allen radiation belts in unprecedented detail. Photo credit: NASA/Dmitri Gerondidakis
Innovative approach for low-cost quick-access small payload missions
NASA Astrophysics Data System (ADS)
Friis, Jan W., Jr.
2000-11-01
A significant part of the burgeoning commercial space industry is placing an unprecedented number of satellites into low earth orbit for a variety of new applications and services. By some estimates the commercial space industry now exceeds that of government space activities. Yet the two markets remain largely separate, with each deploying dedicated satellites and infrastructure for their respective missions. One commercial space firm, Final Analysis, has created a new program wherein either government, scientific or new technology payloads can be integrated on a commercial spacecraft on commercial satellites for a variety of mission scenarios at a fraction of the cost of a dedicated mission. NASA has recognized the advantage of this approach, and has awarded the Quick Ride program to provide frequent, low cost flight opportunities for small independent payloads aboard the Final Analysis constellation, and investigators are rapidly developing science programs that conform to the proposed payload accommodations envelope. Missions that were not feasible using dedicated launches are now receiving approval under the lower cost Quick Ride approach. Final Analysis has dedicated ten out of its thirty-eight satellites in support of the Quick Ride efforts. The benefit of this type of space access extend beyond NASA science programs. Commercial space firms can now gain valuable flight heritage for new technology and satellite product offerings. Further, emerging international space programs can now place a payload in orbit enabling the country to allocate its resources against the payload and mission requirements rather htan increased launch costs of a dedicated spacecraft. Finally, the low cost nature provides University-based research educational opportunities previously out of the reach of most space-related budgets. This paper will describe the motivation, benefits, technical features, and program costs of the Final Analysis secondary payload program. Payloads can be accommodated on up to thirty-eight separate satellites. Since the secondary payloads will fly on satellites designed for global wireless data services, each user can utilize low cost communication system already in place for sending and retrieving digital information from its payload.
NASA's Space Launch System: A Transformative Capability for Deep Space Missions
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2017-01-01
Already making substantial progress toward its first launches, NASA’s Space Launch System (SLS) exploration-class launch vehicle presents game-changing new opportunities in spaceflight, enabling human exploration of deep space, as well as a variety of missions and mission profiles that are currently impossible. Today, the initial configuration of SLS, able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), is well into final production and testing ahead of its planned first flight, which will send NASA’s new Orion crew vehicle around the moon and will deploy 13 CubeSats, representing multiple disciplines, into deep space. At the same time, production work is already underway toward the more-capable Block 1B configuration, planned to debut on the second flight of SLS, and capable of lofting 105 tons to LEO or of co-manifesting large exploration systems with Orion on launches to the lunar vicinity. Progress being made on the vehicle for that second flight includes initial welding of its core stage and testing of one of its engines, as well as development of new elements such as the powerful Exploration Upper Stage and the Universal Stage Adapter “payload bay.” Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO to support humans missions to Mars. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles or substantially increased spacecraft mass. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe. This presentation will give an overview of SLS’ capabilities and its current status, and discuss the vehicle’s potential for human exploration of deep space and other game-changing utilization opportunities.
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians assist as a crane is used to lift the Neutron star Interior Composition Explorer, or NICER, payload up from its carrier. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
NICER Transfer (for SpaceX CRS-11)
2017-04-12
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container and loaded onto a truck outside the high bay. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
Fault tolerant and lifetime control architecture for autonomous vehicles
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Chen, Yi-Liang; Sundareswaran, Venkataraman; Altshuler, Thomas
2008-04-01
Increased vehicle autonomy, survivability and utility can provide an unprecedented impact on mission success and are one of the most desirable improvements for modern autonomous vehicles. We propose a general architecture of intelligent resource allocation, reconfigurable control and system restructuring for autonomous vehicles. The architecture is based on fault-tolerant control and lifetime prediction principles, and it provides improved vehicle survivability, extended service intervals, greater operational autonomy through lower rate of time-critical mission failures and lesser dependence on supplies and maintenance. The architecture enables mission distribution, adaptation and execution constrained on vehicle and payload faults and desirable lifetime. The proposed architecture will allow managing missions more efficiently by weighing vehicle capabilities versus mission objectives and replacing the vehicle only when it is necessary.
NICER Transfer (for SpaceX CRS-11)
2017-04-12
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. A technician uses a Hyster forklift to pick up the container and move it outside of the high bay. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
Low Frequency Radio Experiment (LORE)
NASA Astrophysics Data System (ADS)
Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.
2016-03-01
In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.
NASA's Space Launch System: A Transformative Capability for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Cook, Jerry; Hitt, David
2016-01-01
Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 tons to LEO or co-manifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6-unit smallsat payloads, representing multiple disciplines, including three spacecraft competitively chosen through NASA's Centennial Challenges competition. Private organizations have also identified benefits of SLS for unique public-private partnerships. This paper will give an overview of SLS' capabilities and its current status, and discuss the vehicle's potential for human exploration of deep space and other game-changing utilization opportunities.
NASA's Space Launch System: A Transformative Capability for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Cook, Jerry
2016-01-01
Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 t to LEO or comanifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 t to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6U smallsat payloads, representing multiple disciplines, including three spacecraft competitively chosen through NASA's Centennial Challenges competition. Private organizations have also identified benefits of SLS for unique public-private partnerships. This paper will give an overview of SLS' capabilities and its current status, and discuss the vehicle's potential for human exploration of deep space and other game-changing utilization opportunities.
Using Orbital Platforms to Study Planet Formation
NASA Astrophysics Data System (ADS)
Brisset, J.; Colwell, J. E.; Dove, A.; Maukonen, D.
2017-08-01
We will present results from the ISS NanoRocks experiment as well as the design of the Q-PACE CubeSat to demonstrate how orbital miniaturized payloads can be used to collect unprecedented amounts of data on the collision behavior of PPD dust grains.
Mars NanoOrbiter: A CubeSat for Mars System Science
NASA Astrophysics Data System (ADS)
Ehlmann, Bethany; Klesh, Andrew; Alsedairy, Talal
2017-10-01
The Mars NanoOrbiter mission consists of two identical 12U spacecraft, launched simultaneously as secondary payloads on a larger planetary mission launch, and deployed to Earth-escape, as early as with Mars 2020. The nominal mission will last for 1 year, during which time the craft will independently navigate to Mars, enter into elliptical orbit, and achieve close flybys of Phobos and Deimos, obtaining unprecedented coverage of each moon. The craft will additionally provide high temporal resolution data of Mars clouds and atmospheric phenomena at multiple times of day. Two spacecraft provide redundancy to reduce the risk in meeting the science objectives at the Mars moons and enhanced coverage of the dynamic Mars atmosphere. This technology is enabled by recent advances in CubeSat propulsion technology, attitude control systems, guidance, navigation and control. NanoOrbiter builds directly on the systems heritage of the MarCO mission, scheduled to launch with the 2018 Discovery mission Insight.
Using NASA's Space Launch System to Enable Game Changing Science Mission Designs
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2013-01-01
NASA's Marshall Space Flight Center is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will help restore U.S. leadership in space by carrying the Orion Multi-Purpose Crew Vehicle and other important payloads far beyond Earth orbit. Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids, Mars, and the outer solar system. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip times and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as monolithic telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.
Propellant-Less Spacecraft Formation-Flying and Maneuvering with Photonic Laser Thrusters
NASA Technical Reports Server (NTRS)
Bae, Young K.
2015-01-01
The present NIAC Phase II program explored an amplified photon thruster, Photonic Laser Thruster (PLT), as a means of enabling unprecedented maneuverability of small spacecraft, such as cubesats, and reducing space system SWaP for future NASA missions and other commercial and DoD space endeavors. In addition to its propellantless operation capability, PLT can provide orders of magnitude more precise controls in thrust magnitude and vector than conventional thrusters. Furthermore, PLT promises to enable innovative CONOPS (Concept of Operations) to change how some NASA missions are conceived and to represent a revolutionary departure from the "all-in-one" single-spacecraft approach, where a primary factor that dominates spacecraft design is a heavy and risk-intolerant mission-critical payload. Instead, the PLT CONOPS has evolved from a different path based on interbody dynamics via thrust and power beaming. As interbody atomic dynamics unfolds completely new classes of molecular structures that cannot be formed by solo acting atoms alone, the PLT interbody dynamics is predicted to unfold unprecedented multibody spacecraft structures. Therefore, the revolutionary path of the PLT CONOPS represents a technology push rather than a mission pull, and will enable an entirely new generation of planetary, heliospheric, and Earth-centric missions. The chief accomplishments of the present Phase II program are: 1) achievement of photon thrust up to 3.5 mN (100 times scaling up of Phase I PLT) and amplification factor up to 1,500 (15 times enhancement of Phase I PLT), 2) laboratory demonstration of propelling, slowing and stopping a 1U cubesat on an air track with PLT, 3) proof of feasibility on persistent out-of-plane formation flying with PLT in simulation studies, 4) preliminary SolidWorks designs of 1-mN class PLT, 5) establishment of SWaP for flight-ready PLT, 6) designs for proof-ofconcept missions of precision formation flying with cubesats, 7) definition of PLT-based NASA missions, such as Virtual Telescope. In sum, the present study conclusively demonstrated the potential of PLT to revolutionize future space endeavors by drastically enhancing maneuverability of spacecraft, reducing future space system SWaP by exploiting small spacecraft multi-system, and enabling innovative CONOPS.
Massively Clustered CubeSats NCPS Demo Mission
NASA Technical Reports Server (NTRS)
Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike
2013-01-01
Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.
GAIA payload module mechanical development
NASA Astrophysics Data System (ADS)
Touzeau, S.; Sein, E.; Lebranchu, C.
2017-11-01
Gaia is the European Space Agency's cornerstone mission for global space astrometry. Its goal is to make the largest, most precise three-dimensional map of our Galaxy by surveying an unprecedented number of stars. This paper gives an overview of the mechanical system engineering and verification of the payload module. This development includes several technical challenges. First of all, the very high stability performance as required for the mission is a key driver for the design, which incurs a high degree of stability. This is achieved through the extensive use of Silicon Carbide (Boostec® SiC) for both structures and mirrors, a high mechanical and thermal decoupling between payload and service modules, and the use of high-performance engineering tools. Compliance of payload mass and volume with launcher capability is another key challenge, as well as the development and manufacturing of the 3.2-meter diameter toroidal primary structure. The spacecraft mechanical verification follows an innovative approach, with direct testing on the flight model, without any dedicated structural model.
On-Board Software Reference Architecture for Payloads
NASA Astrophysics Data System (ADS)
Bos, Victor; Rugina, Ana; Trcka, Adam
2016-08-01
The goal of the On-board Software Reference Architecture for Payloads (OSRA-P) is to identify an architecture for payload software to harmonize the payload domain, to enable more reuse of common/generic payload software across different payloads and missions and to ease the integration of the payloads with the platform.To investigate the payload domain, recent and current payload instruments of European space missions have been analyzed. This led to a Payload Catalogue describing 12 payload instruments as well as a Capability Matrix listing specific characteristics of each payload. In addition, a functional decomposition of payload software was prepared which contains functionalities typically found in payload systems. The definition of OSRA-P was evaluated by case studies and a dedicated OSRA-P workshop to gather feedback from the payload community.
NASA's Space Launch System: Enabling Exploration and Discovery
NASA Technical Reports Server (NTRS)
Schorr, Andrew; Robinson, Kimberly F.; Hitt, David
2017-01-01
As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 t to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 t to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.
NASA's Space Launch System: Enabling Exploration and Discovery
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Schorr, Andrew
2017-01-01
As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 metric tons to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 metric tons to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.
Enhanced International Space Station Ku-Band Telemetry Service
NASA Technical Reports Server (NTRS)
Cecil, Andrew; Pitts, Lee; Welch, Steven; Bryan, Jason
2014-01-01
(1) The ISS is diligently working to increase utilization of the resources this unique laboratory provides; (2) Recent upgrades enabled the use of Internet Protocol communication using the CCSDS IP Encapsulation protocol; and (3) The Huntsville Operations Support Center has extended the onboard LAN to payload teams enabling the use of standard IP protocols for payload operations.
HERO: Program Status and Fist Images from a Balloon-Borne Focusing Hard-X-ray Telescope
NASA Technical Reports Server (NTRS)
Ramsey, B. D.; Alexander, C. D.; Apple, J. A.; Benson, C. M.; Dietz, K. L.; Elsner, R. F.; Engelhaupt. D. E.; Ghosh, K. K.; Kolodziejczak, J. J.; ODell, S. L.;
2001-01-01
HERO is a balloon payload featuring shallow-graze angle replicated optics for hard-x-ray imaging. When completed, the instrument will offer unprecedented sensitivity in the hard-x-ray region, giving thousands of sources to choose from for detailed study on long flights. A recent proof-of-concept flight captured the first hard-x-ray focused images of the Crab Nebula, Cygnus X-1 and GRS 1915+105. Full details of the HERO program are presented, including the design and performance of the optics, the detectors and the gondola. Results from the recent proving flight are discussed together with expected future performance when the full science payload is completed.
NASA Technical Reports Server (NTRS)
Honeycutt, John
2017-01-01
Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle Payload fairings of up to 10-meter diameter are being studied Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t Evolved version of SLS will offer Mars-enabling capability of greater than 130 metric tons to LEO SLS offers reduced transit times to the outer solar system by half or greater Higher characteristic energy (C3) also enables larger payloads to destination
NASA Astrophysics Data System (ADS)
Holasek, Rick; Nakanishi, Keith; Ziph-Schatzberg, Leah; Santman, Jeff; Woodman, Patrick; Zacaroli, Richard; Wiggins, Richard
2017-04-01
Hyperspectral imaging (HSI) has been used for over two decades in laboratory research, academic, environmental and defense applications. In more recent time, HSI has started to be adopted for commercial applications in machine vision, conservation, resource exploration, and precision agriculture, to name just a few of the economically viable uses for the technology. Corning Incorporated (Corning) has been developing and manufacturing HSI sensors, sensor systems, and sensor optical engines, as well as HSI sensor components such as gratings and slits for over a decade and a half. This depth of experience and technological breadth has allowed Corning to design and develop unique HSI spectrometers with an unprecedented combination of high performance, low cost and low Size, Weight, and Power (SWaP). These sensors and sensor systems are offered with wavelength coverage ranges from the visible to the Long Wave Infrared (LWIR). The extremely low SWaP of Corning's HSI sensors and sensor systems enables their deployment using limited payload platforms such as small unmanned aerial vehicles (UAVs). This paper discusses use of the Corning patented monolithic design Offner spectrometer, the microHSI™, to build a highly compact 400-1000 nm HSI sensor in combination with a small Inertial Navigation System (INS) and micro-computer to make a complete turn-key airborne remote sensing payload. This Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) has industry leading SWaP (1.5 lbs) at a disruptively low price due, in large part, to Corning's ability to manufacture the monolithic spectrometer out of polymers (i.e. plastic) and therefore reduce manufacturing costs considerably. The other factor in lowering costs is Corning's well established in house manufacturing capability in optical components and sensors that further enable cost-effective fabrication. The competitive SWaP and low cost of the microHSI™ sensor is approaching, and in some cases less than the price point of Multi Spectral Imaging (MSI) sensors. Specific designs of the Corning microHSI™ SHARK visNIR turn-key system are presented along with salient performance characteristics. Initial focus market areas include precision agriculture and historic and recent microHSI™ SHARK prototype test results are presented.
NASA'S Space Launch System: Progress Toward the Proving Ground
NASA Technical Reports Server (NTRS)
Jackman, Angie; Johnson, Les
2017-01-01
With significant and substantial progress being accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight – using an upgraded version of the vehicle – and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and together with the Orion spacecraft will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 metric tons. For that flight, the new configuration introduces two major new elements to the vehicle – an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a “payload bay” for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Beyond the second flight, additional upgrades will be made to the vehicle. The Block 1B vehicle will also be able to launch 8.4-meter-diameter payload fairings, larger than any previously flown, and the Spacecraft Payload Integration and Evolution (SPIE) Element will oversee development and production of those fairings. Ultimately, SLS will be evolved to a Block 2 configuration, which will replace the solid rocket boosters on the Block 1 and 1B vehicles with more powerful boosters, and will be capable of delivering at least 130 metric tons to LEO. The Block 2 vehicle will be capable of launching even larger 10-meter diameter fairings, which will enable human mission of Mars. With these fairings, the Block 1B and 2 configurations of SLS will also be enabling for a wide variety of other payloads. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. This paper will provide a description of the SLS vehicle, and an overview of the vehicle’s capabilities and utilization potential.
Spacelab payload accommodation handbook. Main volume
NASA Technical Reports Server (NTRS)
1978-01-01
The main characteristics of the Spacelab system are described to enable individual experimenters or payload planning groups to determine how their payload equipment can be accommodated by Spacelab. Spacelab/experiment interfaces, Spacelab payload support systems and requirements that the experiments have to comply with are described to allow experiment design and development. The basic operational aspects are outlined as far as they have an impact on experiment design. The relationship of the Spacelab Payload Accommodation Handbook to Space Transportation System documentation is outlined. Data concerning the space shuttle system are briefly described.
Applications of a new mass-driver concept
NASA Technical Reports Server (NTRS)
Oneill, G. K.
1981-01-01
A description of the operating principles and requirements of a novel mass-driver concept is presented. The design obtains acceleration of payload bucket coils by means of transverse focussing from strong, off-axis restoring forces that are produced by drive coils operating in a 'pull-only' mode. The concept offers the unprecedented possibility of operating high-performance mass-drivers entirely within the limitations of existing commercial switching devices, such as silicon-controlled rectifiers, spark gaps, vacuum-triggered arcs or vacuum mechanical switches. Representative applications of the concept described are: (1) a large-diameter magnetic lunar launcher for payloads having autonomous maneuvering; (2) an intermediate-diameter launcher with long operational life; and (3) a reaction engine for orbit transfer of large, massive objects.
Enhanced International Space Station Ku-Band Telemetry Service
NASA Technical Reports Server (NTRS)
Cecil, Andrew J.; Pitts, R. Lee; Welch, Steven J.; Bryan, Jason D.
2014-01-01
The International Space Station (ISS) is in an operational configuration. To fully utilize the ISS and take advantage of the modern protocols and updated Ku-band access, the Huntsville Operations Support Center (HOSC) has designed an approach to extend the Kuband forward link access for payload investigators to their on-orbit payloads. This dramatically increases the ground to ISS communications for those users. This access also enables the ISS flight controllers operating in the Payload Operations and Integration Center to have more direct control over the systems they are responsible for managing and operating. To extend the Ku-band forward link to the payload user community the development of a new command server is necessary. The HOSC subsystems were updated to process the Internet Protocol Encapsulated packets, enable users to use the service based on their approved services, and perform network address translation to insure that the packets are forwarded from the user to the correct payload repeating that process in reverse from ISS to the payload user. This paper presents the architecture, implementation, and lessons learned. This will include the integration of COTS hardware and software as well as how the device is incorporated into the operational mission of the ISS. Thus, this paper also discusses how this technology can be applicable to payload users of the ISS.
STS-30 Magellan spacecraft processing at Kennedy Space Center (KSC) SAEF-2
1988-10-08
S89-25281 (8 Oct 1988) --- The Magellan spacecraft is hoisted from the transport trailer of the Payload Environmental Transportation System (PETS) to the floor of the cleanroom in the SAEF-2 planetary checkout facility at the Kennedy Space Center (KSC). The spacecraft, destined for unprecedented studies of Venusian topographic features, is to be deployed by the crew of NASA's STS-30 mission in April 1989.
The High Definition Earth Viewing (HDEV) Payload
NASA Technical Reports Server (NTRS)
Muri, Paul; Runco, Susan; Fontanot, Carlos; Getteau, Chris
2017-01-01
The High Definition Earth Viewing (HDEV) payload enables long-term experimentation of four, commercial-of-the-shelf (COTS) high definition video, cameras mounted on the exterior of the International Space Station. The payload enables testing of cameras in the space environment. The HDEV cameras transmit imagery continuously to an encoder that then sends the video signal via Ethernet through the space station for downlink. The encoder, cameras, and other electronics are enclosed in a box pressurized to approximately one atmosphere, containing dry nitrogen, to provide a level of protection to the electronics from the space environment. The encoded video format supports streaming live video of Earth for viewing online. Camera sensor types include charge-coupled device and complementary metal-oxide semiconductor. Received imagery data is analyzed on the ground to evaluate camera sensor performance. Since payload deployment, minimal degradation to imagery quality has been observed. The HDEV payload continues to operate by live streaming and analyzing imagery. Results from the experiment reduce risk in the selection of cameras that could be considered for future use on the International Space Station and other spacecraft. This paper discusses the payload development, end-to- end architecture, experiment operation, resulting image analysis, and future work.
NASA Astrophysics Data System (ADS)
Gendreau, Keith; Arzoumanian, Zaven; NICER Team
2017-01-01
The Neutron star Interior Composition Explorer (NICER) Mission of Opportunity will fly to the International Space Station (ISS) in 2017 aboard a SpaceX resupply vehicle. Once installed as an external attached payload, NICER will provide an unprecedented soft X-ray timing spectroscopy capability for neutron stars and other phenomena. In June 2016, the NICER payload was delivered from NASA Goddard Space Flight Center to Cape Canaveral to await launch processing. We present measurements made as part of NICER's preship testing to verify performance of its X-ray Timing Instrument and associated subsystems; these measurements demonstrate that NICER meets or surpasses its design requirements in the areas of photon time-tagging resolution, energy resolution, effective collecting area, and high-rate throughput.
Express Payload Project - A new method for rapid access to Space Station Freedom
NASA Technical Reports Server (NTRS)
Uhran, Mark L.; Timm, Marc G.
1993-01-01
The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.
2002-05-24
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon (left), with the Israeli Space Agency, and Payload Commander Michael Anderson pause during a payload check in the Orbiter Processing Facility. A research mission, STS-107 will carry as the primary payload the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. Another payload is FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) comprising Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. STS-107 is scheduled to launch July 11, 2002
A Trajectory Generation Approach for Payload Directed Flight
NASA Technical Reports Server (NTRS)
Ippolito, Corey A.; Yeh, Yoo-Hsiu
2009-01-01
Presently, flight systems designed to perform payload-centric maneuvers require preconstructed procedures and special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and function. Research into payload directed flight examines sensor and payload-centric autopilot modes, architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to achieve mission goals related to the payload sensors, taking into account various constraints such as the performance limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction. Payload directed flight requires a methodology for accurate trajectory planning that lets the system anticipate expected return from a suite of onboard sensors. This paper presents an extension to the existing techniques used in the literature to quickly and accurately plan flight trajectories that predict and optimize the expected return of onboard payload sensors.
Ares V: Game Changer for National Security Launch
NASA Technical Reports Server (NTRS)
Sumrall, Phil; Morris, Bruce
2009-01-01
NASA is designing the Ares V cargo launch vehicle to vastly expand exploration of the Moon begun in the Apollo program and enable the exploration of Mars and beyond. As the largest launcher in history, Ares V also represents a national asset offering unprecedented opportunities for new science, national security, and commercial missions of unmatched size and scope. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping-stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study (ESAS), NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V consists of a Core Stage, two Reusable Solid Rocket Boosters (RSRBs), Earth Departure Stage (EDS), and a payload shroud. For lunar missions, the shroud would cover the Lunar Surface Access Module (LSAM). The Ares V Core Stage is 33 feet in diameter and 212 feet in length, making it the largest rocket stage ever built. It is the same diameter as the Saturn V first stage, the S-IC. However, its length is about the same as the combined length of the Saturn V first and second stages. The Core Stage uses a cluster of five Pratt & Whitney Rocketdyne RS-68B rocket engines, each supplying about 700,000 pounds of thrust. Its propellants are liquid hydrogen and liquid oxygen. The two solid rocket boosters provide about 3.5 million pounds of thrust at liftoff. These 5.5-segment boosters are derived from the 4-segment boosters now used on the Space Shuttle, and are similar to those used in the Ares I first stage. The EDS is powered by one J-2X engine. The J-2X, which has roughly 294,000 pounds of thrust, also powers the Ares I Upper Stage. It is derived from the J-2 that powered the Saturn V second and third stages. The EDS performs two functions. Its initial suborbital burns will place the lunar lander into a stable Earth orbit. After the Orion crew vehicle, launched separately on an Ares I, docks with the lander/EDS stack, EDS will ignite a second time to put the combined 65-metric ton vehicle into a lunar transfer orbit. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be approximately 381 feet tall and have a gross liftoff mass of 8.1 million pounds. The current point-of-departure design exceeds Saturn V s mass capability by approximately 40 percent. Using the current payload shroud design, Ares V can carry 315,000 pounds to 29-degree low Earth orbit (LEO) or 77,000 pounds to a geosynchronous orbit. Another unique aspect of the Ares V is the 33-foot-diameter payload shroud, which encloses approximately 30,400 cubic feet of usable volume. A larger hypothetical shroud for encapsulating larger payloads has been studied. While Ares V makes possible larger payload masses and volumes, it may alternately make possible more cost-effective mission design if the relevant payload communities are willing to consider an alternative to the existing approach that has driven them to employ complexity to solve current launch vehicle mass and volume constraints. By using Ares V s mass and volume capabilities as margin, payload designers stand to reduce development risk and cost. Significant progress has been made on the Ares V to support a plaed fiscal 2011 authority-to-proceed (ATP) milestone. The Ares V team is actively reaching out to external organizations during this early concept phase to ensure that the Ares V vehicle can be leveraged for national security, science, and commercial development needs. This presentation will discuss Ares V vehicle configuration, the path to the current concept, accomplishments to date, and potential payload utilization opportunities.
Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Benson, Scott W.; Falck, Robert D.; Oleson, Steven R.; Greenhouse, Matthew A.; Kruk, Jeffrey W.; Gardner, Jonathan P.; Thronson, Harley A.; Vaughn, Frank J.; Fixsen, Dale J.
2011-01-01
Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The SEP stage architecture approach offers benefits beyond a single astrophysics mission. A variety of low-cost astrophysics missions could employ a standard SEP stage to achieve substantial science benefit. This paper describes the results of this study in detail, including trajectory analysis, spacecraft concept definition, description of telescope/instrument benefits, and application of the resulting SEP stage to other missions. In addition, the benefits of cooperative development and use of the SEP stage, in conjunction with a SEP flight demonstration mission currently in definition at NASA, are considered.
Spacelab payload accommodation handbook. Preliminary issue
NASA Technical Reports Server (NTRS)
1976-01-01
The main characteristics of the Spacelab system are described. Sufficient information on Spacelab capabilities is provided to enable individual experimenters or payload planning groups to determine how their payload equipment can be accomodated by Spacelab topics discussed include major spacelab/experiment interfaces; Spacelab payload support systems and requirements the experiments must comply with to allow experiment design; and development and integration up to a level where a group of individual experiments are integrated into a complete Spacelab payload using Spacelab racks/floors and pallet segments. Integration of a complete Spacelab payload with Spacelab subsystems, primary module structure etc., integration of Spacelab with the Orbiter and basic operational aspects are also covered in this preliminary edition of the handbook which reflects the current Spacelab baseline design and is for information only.
Workshop Report on Ares V Solar System Science
NASA Technical Reports Server (NTRS)
Langhoff, Stephanie; Spilker, Tom; Martin, Gary; Sullivan, Greg
2008-01-01
The workshop blended three major themes: (1) How can elements of the Constellation program, and specifically, the planned Ares-V heavy-launch vehicle, benefit the planetary community by enabling the launch of large planetary payloads that cannot be launched on existing vehicles, and how can the capabilities of an Ares V allow the planetary community to redesign missions to achieve lower risk, and perhaps lower cost on these missions? (2) What are some of the planetary missions that either can be significantly enhanced or enabled by an Ares-V launch vehicle? What constraints do these mission concepts place on the payload environment of the Ares V? (3) Technology challenges that need to be addressed for launching large planetary payloads. Presentations varied in length from 15-40 minutes. Ample time was provided for discussion.
NASA Technical Reports Server (NTRS)
Michel, E. L.; Huffstetler, W. J.
1986-01-01
The utilization of the middeck, designed as the crew quarters, for experiments is examined. The dimensions of the middeck's standard lockers, double lockers, adapter plates, and the galley, which are applicable for experiments, are described. The utilities available for middeck payloads include ac and dc electrical power supply, active and passive cooling, vacuum/vent line connections, and data handling, and four basic payload configurations are possible. The development of a middeck accommodations rack to make payload space more flexible and to enable an optimum number and variety of experiments to be flown is proposed. Diagrams of the orbiter's middeck and experimental designs are provided.
2002-05-24
KENNEDY SPACE CENTER, FLA. -- Dressed in bunny suits, STS-107 Payload Commander Michael Anderson (left) and 107 Payload Specialist Ilan Ramon (right), who is with the Israeli Space Agency, review data in Columbia's payload bay for the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) experiments for the mission. FREESTAR comprises Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. Another payload is the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. STS-107 is scheduled to launch July 11, 2002
2002-05-24
KENNEDY SPACE CENTER, FLA. -- Dressed in bunny suits, STS-107 Payload Commander Michael Anderson (left) and 107 Payload Specialist Ilan Ramon, with the Israeli Space Agency, are ready to enter Columbia's payload bay to work on Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) experiments for the mission. FREESTAR comprises Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. Another payload is the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. STS-107 is scheduled to launch July 11, 2002
Data base architecture for instrument characteristics critical to spacecraft conceptual design
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Allen, Cheryl L.
1990-01-01
Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.
NASA Technical Reports Server (NTRS)
Cissom, R. D.; Melton, T. L.; Schneider, M. P.; Lapenta, C. C.
1999-01-01
The objective of this paper is to provide the future ISS scientist and/or engineer a sense of what ISS payload operations are expected to be. This paper uses a real-time operations scenario to convey this message. The real-time operations scenario begins at the initiation of payload operations and runs through post run experiment analysis. In developing this scenario, it is assumed that the ISS payload operations flight and ground capabilities are fully available for use by the payload user community. Emphasis is placed on telescience operations whose main objective is to enable researchers to utilize experiment hardware onboard the International Space Station as if it were located in their terrestrial laboratory. An overview of the Payload Operations Integration Center (POIC) systems and user ground system options is included to provide an understanding of the systems and interfaces users will utilize to perform payload operations. Detailed information regarding POIC capabilities can be found in the POIC Capabilities Document, SSP 50304.
Supernova Remnant Observations with Micro-X
NASA Astrophysics Data System (ADS)
Figueroa, Enectali
Micro-X is a sounding rocket payload that combines an X-ray microcalorimeter with an imaging mirror to offer breakthrough science from high spectral resolution observations of extended X-ray sources. This payload has been in design and development for the last five years and is now completely built and undergoing integration; its first flight will be in November, 2012, as part of our current NASA award. This four-year follow-on proposal seeks funding for: (1) analysis of the first flight data, (2) the second flight and its data analysis, (3) development of payload upgrades and launch of the third flight, and (4) third flight data analysis. The scientific payload consists of a Transition Edge Sensor (TES) microcalorimeter array at the focus of a flight-proven conical imaging mirror. Micro-X capitalizes on three decades of NASA investment in the development of microcalorimeters and X-ray imaging optics. Micro-X offers a unique combination of bandpass, collecting area, and spectral and angular resolution. The spectral resolution goal across the 0.2 - 3.0 keV band is 2 - 4 eV Full-Width at Half Maximum (FWHM). The measured angular resolution of the mirror is 2.4 arcminute Half-Power Diameter (HPD). The effective area of the mirror, 300 square centimeters at 1 keV, is sufficient to provide observations of unprecedented quality of several astrophysical X-ray sources, even in a brief sounding rocket exposure of 300 sec. Our scientific program for this proposal will focus on supernova remnants (SNRs), whose spatial extent has made high-energy resolution observations with grating instruments extremely challenging. X-ray observations of SNRs with microcalorimeters will enable the study of the detailed atomic physics of the plasma; the determination of temperature, turbulence, and elemental abundances; and in conjunction with historical data, full three dimensional mapping of the kinematics of the remnant. These capabilities will open new avenues towards understanding the explosion mechanisms of supernovae and their roles in energy and heavy-element injection into galaxies, their evolution into SNRs, their interactions with their environments, and finally their roles as particle accelerators. For the first flight, we will observe an ejecta region in the Puppis A SNR. The Puppis A bright eastern knot (BEK), is the target of second flight in 2014. The third flight, in late 2015 or early 2016, will make an observation of the Cas A SNR. We will continue to advance the technology readiness of TES microcalorimeters while enhancing the science capability of the payload by implementing a series of improvements for the third flight. For the observation of Cas A in the third flight, we will upgrade from the 128-pixel array with 1 arcminute pixels used in the first two flights to a higher-energy resolution (1 eV FWHM) 256-pixel array with 20 arcsecond pixels and a new 30 arcsecond HPD mirror to enable improved imaging spectroscopy with our payload. The Micro-X team includes leaders in the development of microcalorimeters, SQUID readout systems, and segmented and full-shell grazing incidence X-ray optics, as well as highly experienced sounding rocket instrument developers, and scientific experts on supernova remnants. These investigators are located at institutions with strong space instrumentation traditions with the infrastructure to ensure a successful flight program. With Micro-X, we have designed a versatile payload capable of providing high-resolution science and a testbed for new technology. The first flight this year will make significant scientific contributions well ahead of the Astro-H mission. The program will also aid in the understanding and development of future flight-qualified microcalorimeter systems for larger orbiting missions. Finally, it will continue to attract talented young scientists to X-ray astrophysics and thus serve as a direct pipeline of future leaders of NASA missions.
2002-04-04
KENNEDY SPACE CENTER, FLA. - In the Multi-Payload Processing Facility, members of the STS-107 crew run tests on the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) experiments, part of the payload on their mission. A research mission, the primary payload is the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences (many rats). STS-107 is scheduled to launch July 11, 2002
The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS)
NASA Technical Reports Server (NTRS)
Oegerle, William (Technical Monitor); Rabin, D.; Davila, J.; Thomas, R. J.; Engler, C.; Irish, S.; Keski-Kuha, R.; Novello, J.; Nowak, M.; Payne, L.;
2003-01-01
EUNIS (Extreme Ultraviolet Normal Incidence Spectrograph) is a high-efficiency extreme ultraviolet spectrometer that is expected to fly for the first time in 2004 as a sounding rocket payload. Using two independent optical systems, EUNIS will probe the structure and dynamics of the inner solar corona high spectral resolution in two wavelength regions: 17-21 nm with 3.5 pm resolution and 30-37 nm with 7 pm resolution. The long wavelength channel includes He II 30.4 nm and strong lines from Fe XI-XVI; the short wavelength channel includes strong lines of Fe IX-XIII. Angular resolution of 2 arcsec is maintained along a slit covering a full solar radius. EUNIS will have 100 times the throughput of the highly successful SERTS payloads that have preceded it. There are only two reflections in each optical channel, from the superpolished, off-axis paraboloidal primary and the toroidal grating. Each optical element is coated with a high-efficiency multilayer coating optimized for its spectral bandpass. The detector in each channel is a microchannel plate image intensifier fiber- coupled to three 1K x 1K active pixel sensors. EUNIS will obtain spectra with a cadence as short as 1 sec, allowing unprecedented studies of the physical properties of evolving and transient structures. Diagnostics of wave heating and reconnection wil be studied at heights above 2 solar radii, in the wind acceleration region. The broad spectral coverage and high spectral resolution will provide superior temperature and density diagnostics and will enable underflight calibration of several orbital instruments, including SOHO/CDS and EIT, TRACE, Solar-B/EIS, and STEREO/EUVI. EUNIS is supported by NASA through the Low Cost Access to Space Program in Solar and Heliospheric Physics.
Payload Operations Integration Center Tour
2013-11-22
Step inside the International Space Station Payload Operations Integration Center at NASA's Marshall Space Flight Center in Huntsville, Ala. Listen to the people who work around-the-clock with scientists around the world and the crew in space to conduct experiments that improve life on Earth and enable deep space exploration. (NASA/MSFC)
STS-30 Magellan spacecraft processing at Kennedy Space Center (KSC) SAEF-2
NASA Technical Reports Server (NTRS)
1989-01-01
Magellan spacecraft is hoisted from the transport trailer of the Payload Environmental Transportation System (PETS) to the floor of the clean room in the Space Assembly and Encapsulation Facility 2 (SAEF-2) at Kennedy Space Center (KSC). Clean-suited technicians guide Magellan into place. The spacecraft, destined for unprecedented studies of Venusian topographic features, will be deployed by the crew of NASA's STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1084.
STS-30 Magellan spacecraft arrives at KSC after six-day journey from Colorado
NASA Technical Reports Server (NTRS)
1989-01-01
The Payload Environmental Transportation System (PETS) (semi-truck and trailer), which transported the Magellan spacecraft on its six-day journey from Martin Marietta in Denver, Colorado, to Kennedy Space Center (KSC), arrives safely at the Space Assembly and Encapsulation Facility 2 (SAEF-2) planetary checkout facility. The spacecraft, destined for unprecedented studies of Venusian topographic features, is to be deployed by the crew of NASA's STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1082.
2017-10-31
Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration beyond Earth’s orbit. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. Traveling to deep space requires a large vehicle that can carry huge payloads, and future evolutions of SLS with the exploration upper stage and advanced boosters will increase the rocket’s lift capability and flexibility for multiple types of mission needs.
Fernando, Lawrence P; Lewis, Jamal S; Evans, Brian C; Duvall, Craig L; Keselowsky, Benjamin G
2018-04-01
Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018. © 2017 Wiley Periodicals, Inc.
Technology Demonstration Missions
NASA Technical Reports Server (NTRS)
McDougal, John; French, Raymond; Adams-Fogle, Beth; Stephens, Karen
2015-01-01
Technology Demonstration Missions (TDM) is in its third year of execution, being initiated in 2010 and baselined in January of 2012. There are 11 projects that NASA Marshall Space Flight Center (MSFC) has contributed to or led: (1) Evolvable Cryogenics (eCryo): Cyrogenic Propellant Storage and Transfer Engineering Development Unit (EDU), a proof of manufacturability effort, used to enhance knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. (2) Composites for Exploration Upper Stage (CEUS): Design, build, test, and address flight certification of a large composite shell suitable for the second stage of the Space Launch System (SLS). (3) Deep Space Atomic Clock (DSAC): Spaceflight to demo small, low-mass atomic clock that can provide unprecedented stability for deep space navigation. (4) Green Propellant Infusion Mission (GPIM): Demo of high-performance, green propellant propulsion system suitable for Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA)-class spacecraft. (5) Human Exploration Telerobotics (HET): Demonstrating how telerobotics, remote control of a variety of robotic systems, can take routine, highly repetitive, dangerous or long-duration tasks out of human hands. (6) Laser Communication Relay Demo (LCRD): Demo to advance optical communications technology toward infusion into deep space and near Earth operational systems, while growing the capabilities of industry sources. (7) Low Density Supersonic Decelerator (LDSD): Demo new supersonic inflatable decelerator and parachute technologies to enable Mars landings of larger payloads with greater precision at a wider range of altitudes. (8) Mars Science Laboratory (MSL) Entry Descent & Landing Instrumentation (MEDLI): Demo of embedded sensors embedded in the MSL heat shield, designed to record the heat and atmospheric pressure experienced during the spacecraft's high-speed, hot entry in the Martian atmosphere. (9) Solar Electric Propulsion (SEP): 50-kW class spacecraft that uses flexible blanket solar arrays for power generation and an electric propulsion system that delivers payload from low-Earth orbit to higher orbits. (10) Solar Sail Demonstration (SSD): Demo to validate sail deployment techniques for solar sails that are propelled by the pressure of sunlight. (11) Terrestrial HIAD Orbit Reentry (THOR): Demo of a 3.7-m Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry vehicle to test second generation aerothermal performance and modeling.
2013-08-21
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician inspects a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
2013-08-21
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician repairs a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
2013-08-21
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician cleans a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
2013-08-21
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician inspects a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
2002-05-16
KENNEDY SPACE CENTER, FLA. - Suspended from the overhead crane, the SHI Research Double Module (SHI/RDM) travels across the Space Station Processing Facility to the payload canister waiting at right. The module will be placed in the canister for transport to the Orbiter Processing Facility where it will be installed in Columbia's payload bay for mission STS-107. SHI/RDM is the primary payload of the research mission, with experiments ranging from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. STS-107 is scheduled to launch July 19, 2002
2002-05-24
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-107 Payload Commander Michael Anderson (left) and 107 Payload Specialist Ilan Ramon, with the Israeli Space Agency, look at one of the main engines on Columbia. A research mission, STS-107 will carry as the primary payload the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. Another payload is FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) comprising Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. STS-107 is scheduled to launch July 11, 2002
Cost and Business Analysis Module (CABAM). Revision A
NASA Technical Reports Server (NTRS)
Lee, Michael Hosung
1997-01-01
In the recent couple of decades, due to international competition, the US launchers lost a considerable amount of market share in the international space launch industry'. Increased international competition has continuously affected the US dominance to eventually place great pressure on future US space launch programs. To compete for future payload and passenger delivery markets, new launch vehicles must first be capable of reliably reaching a number of desired orbital destinations with customer-desired payload capacities. However, the ultimate success of a new launch vehicle program will depend on the launch price it is capable of offering it's customers. Extremely aggressive pricing strategies will be required for a new domestic launch service to compete with low-price international launchers. Low launch prices, then, naturally require a tight budget for the launch program economy. Therefore, budget constraints established by low-pricing requirements eventually place pressure on new launch vehicles to have unprecedentedly low Life Cycle Costs (LCC's).
Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H
2018-06-11
Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.
Software for Remote Monitoring of Space-Station Payloads
NASA Technical Reports Server (NTRS)
Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Gillis, Robert; Sellers, Donna; Sims, Chris; Rice, James
2003-01-01
Telescience Resource Kit (TReK) is a suite of application programs that enable geographically dispersed users to monitor scientific payloads aboard the International Space Station (ISS). TReK provides local ground support services that can simultaneously receive, process, record, playback, and display data from multiple sources. TReK also provides interfaces to use the remote services provided by the Payload Operations Integration Center which manages all ISS payloads. An application programming interface (API) allows for payload users to gain access to all data processed by TReK and allows payload-specific tools and programs to be built or integrated with TReK. Used in conjunction with other ISS-provided tools, TReK provides the ability to integrate payloads with the operational ground system early in the lifecycle. This reduces the potential for operational problems and provides "cradle-to-grave" end-to-end operations. TReK contains user guides and self-paced tutorials along with training applications to allow the user to become familiar with the system.
2002-05-24
KENNEDY SPACE CENTER, FLA. -- Dressed in a bunny suit, STS-107 Payload Specialist Ilan Ramon, who is with the Israeli Space Agency, reviews data in Columbia's payload bay for Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) experiments for the mission. FREESTAR comprises Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. Another payload is the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. STS-107 is scheduled to launch July 11, 2002
2013-08-09
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare a thermal blanket for installation on the MAVEN spacecraft's parabolic high gain antenna. MAVEN stands for Mars Atmosphere and Volatile Evolution. The antenna will communicate vast amounts of data to Earth during the mission. MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
2013-08-09
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians install a thermal blanket on the parabolic high gain antenna of the Mars Atmosphere and Volatile Evolution, or MAVEN spacecraft. The antenna will communicate vast amounts of data to Earth during the mission. MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
2013-08-09
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians apply tape to the thermal blanket for the MAVEN spacecraft's parabolic high gain antenna. MAVEN stands for Mars Atmosphere and Volatile Evolution. The antenna will communicate vast amounts of data to Earth during the mission. MAVEN is being prepared inside the facility for its scheduled November launch aboard a United Launch Alliance Atlas V rocket to Mars. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. Photo credit: NASA/Jim Grossmann
A Low Cost Weather Balloon Borne Solar Cell Calibration Payload
NASA Technical Reports Server (NTRS)
Snyder, David B.; Wolford, David S.
2012-01-01
Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .
Ares V: Progress Toward Unprecedented Heavy Lift
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2010-01-01
Every major examination of America s spaceflight capability since the Apollo program has highlighted and reinforced the need for a heavy lift vehicle for human exploration, science, national security, and commercial development. The Ares V is NASA s most recent effort to address this gap and provide the needed heavy lift capability for NASA and the nation. An Ares V-class heavy lift capability is important to supporting beyond earth orbit (BEO) human exploration. Initially, that consists of exploration of the Moon vastly expanded from the narrow equatorial Apollo missions to a global capability that includes the interesting polar regions. It also enables a permanent human outpost. Under the current program of record, both the Ares V and the lunar exploration it enables serve as a significant part of the technology and experience base for exploration beyond the Moon, including Mars, asteroids, and other destinations. The Ares V is part of NASA s Constellation Program architecture. The Ares V remains in an early stage of concept development, while NASA focused on development of the Ares I crew launch vehicle to replace the Space Shuttle fleet. However, Ares V development has benefitted from its commonality with Ares I, the Shuttle, and contemporary programs on which its design is based. The Constellation program is currently slated for cancellation under the proposed 2011 federal budget, pending review by the legislative branch. However, White House guidance on its 2011 budget retains funding for heavy lift research. This paper will discuss progress to date on the Ares V and its potential utility to payload users.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.; Landon, David G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen; McIntire, William K.; Metz, John L.; Smith, Francis J.
2011-01-01
The paper presents the first ever research and experimental results regarding the combination of a software-defined multi-Gbps modem and a broadband high power space amplifier when tested with an extended form of the industry standard DVB-S2 and LDPC rate 9/10 FEC codec. The modem supports waveforms including QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK, and 128-QAM. The broadband high power amplifier is a space qualified traveling-wave tube (TWT), which has a passband greater than 3 GHz at 33 GHz, output power of 200 W and efficiency greater than 60 percent. The modem and the TWTA together enabled an unprecedented data rate at 20 Gbps with low BER of 10(exp -9). The presented results include a plot of the received waveform constellation, BER vs. E(sub b)/N(sub 0) and implementation loss for each of the modulation types tested. The above results when included in an RF link budget analysis show that NASA s payload data rate can be increased by at least an order of magnitude (greater than 10X) over current state-of-practice, limited only by the spacecraft EIRP, ground receiver G/T, range, and available spectrum or bandwidth.
Defense Science Board Task Force on The Future of the Global Positioning System
2005-10-01
interference. Incorporate a fully reprogrammable Navigation Payload aboard GPS satellites as soon as practicable to enable future flexibility in signal...its use increases in automobiles , it is becoming a significant factor in E-911-type situations, where emergency vehicles are dispatched to accident...mitigation for GPS against both intentional and unintentional interference. Incorporate a fully reprogrammable Navigation Payload aboard GPS
Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Benson, Scott W.; Englander, Jacob; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Kruk, Jeffery W.; Oleson, Steven R.; Thronson, Harley A.
2015-01-01
We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
This STS-98 Shuttle mission image shows an overall interior view of the newly attached U.S. Laboratory, Destiny. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-11
This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
CPP-Assisted Intracellular Drug Delivery, What Is Next?
Ye, Junxiao; Liu, Ergang; Yu, Zhili; Pei, Xing; Chen, Sunhui; Zhang, Pengwei; Shin, Meong-Cheol; Gong, Junbo; He, Huining; Yang, Victor C.
2016-01-01
For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs), the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology. PMID:27854260
CPP-Assisted Intracellular Drug Delivery, What Is Next?
Ye, Junxiao; Liu, Ergang; Yu, Zhili; Pei, Xing; Chen, Sunhui; Zhang, Pengwei; Shin, Meong-Cheol; Gong, Junbo; He, Huining; Yang, Victor C
2016-11-14
For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs), the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.
SMART-1/CLEMENTINE Study of Humorum and Procellarum Basins
NASA Astrophysics Data System (ADS)
Carey, William; Foing, Bernard H.; Koschny, Detlef; Pio Rossi, Angelo; Josset, Jean-Luc
A study undertaken by ESA to define a European Reference Architecture for Space Exploration is due to be completed in September 2008. The development of this architecture over the past twelve months has identified a number of key capabilities, among them a lunar lander system, which could form the basis for Europe's contribution to the future exploration of space in collaboration with International Partners. The focus of this paper will be on the lunar lander system, and will present the results of an analysis of possible payloads that could be accommodated by the lander. As the industrial study is at the Phase 0 or Pre-Phase A level, the design of such a lander system is at a very early stage in its development, but an estimation of the payload capacity allows a general assessment of the types of possible payloads that could be carried, currently this capacity is estimated at 1.1 tonnes of gross payload mass to the lunar surface (assuming an Ariane 5 ECA launch). An important characteristic of the lunar lander is that it provides a versatile and flexible system for utilisation in a broad range of lunar missions which include: - Independent lunar exploration missions for science, technology demonstration and research. - Delivery of logistics and cargo to support human surface sortie missions. - Delivery of logistics to a lunar base/outpost. - Deployment of individual infrastructure elements in support of a lunar base/outpost. Based on the above different types of missions, a number of configurations of "reference payload" sets are in the process of being defined that cover specific exploration objectives related primarily to capability demonstration, exploration enabling research and enabled science. Aspects covered include: ISRU, robotics, mobility, human preparation, life science and geology. This paper will present the current status of definition of the Reference Payload sets.
Deployable Mini-Payload Missions Enabled by Small Radioisotope Power Systems (RPSs)
NASA Technical Reports Server (NTRS)
Abelson, Robert D.; Satter, Celeste M.
2005-01-01
Deployable mini-payloads are envisioned as small, simple, standalone instruments that could be deployed from a mother vehicle such as a rover or the proposed Jupiter Icy Moons Orbiter to key points of interest within the solar system. Used in conjunction with a small radioisotope power system (RPS), these payloads could potentially be used for long-duration science missions or as positional beacons for rovers or other spacecraft. The RPS power source would be suitable for deployable mini-payload missions that would take place anywhere there is limited, intermittent, or no solar insolation. This paper introduces two such concepts: (1) a seismic monitoring station deployed by a rover or aerobot, and (2) a passive fields and particles station delivered by a mother spacecraft to Jupiter.
Ares V: Shifting the Payload Design Paradigm
NASA Technical Reports Server (NTRS)
Sumrall, Phil; Creech, Steve; Cockrell, Charles E.
2009-01-01
NASA is designing the Ares V heavy-lift cargo launch vehicle to send more crew and cargo to more places on the lunar surface than the 1960s-era Saturn V and to provide ongoing support for a permanent lunar outpost. This uncrewed cargo vehicle is designed to operate together with the Ares I crew vehicle (Figure 1). In addition to this role, however, its unmatched mass and volume capability represent a national asset for exploration, science, and commerce. The Ares V also enables or significantly enhances a large class of space missions not thought possible by scientists and engineers since the Saturn V program ended over 30 years ago. Compared to current systems, it will offer approximately five times the mass and volume to most orbits and locations. This should allow prospective mission planners to build robust payloads with margins that are three to five times the industry norm. The space inside the planned payload shroud has enough usable volume to launch the volumetric equivalent of approximately 10 Apollo Lunar Modules or approximately five equivalent Hubble Space Telescopes. This mass and volume capability to low-Earth orbit (LEO) enables a host of new scientific and observation platforms, such as telescopes, satellites, planetary and solar missions, as well as being able to provide the lift for future large in-space infrastructure missions, such as space based solar power and mining, Earth asteroid defense, propellant depots, etc. In addition, payload designers may also have the option of simplifying their designs or employing Ares V s payload as dumb mass to reduce technical and operational risk. The Ares V team is engaging the potential payload community now, two to three years before System Requirements Review (SRR), in order to better understand the additional requirements from the payload community that could be accommodated in the Ares V design in its conceptual phase. This paper will discuss the Ares V reference mission and capability, as well as its potential to perform other missions in the future.
A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.
2010-01-01
Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.
2013-08-27
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician cleans one of the cells of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Jim Grossmann
2013-08-27
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians test a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Jim Grossmann
2013-08-27
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician inspects a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Jim Grossmann
2013-08-27
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician tests a cell from one of the electricity-producing solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Jim Grossmann
STS-30 Magellan spacecraft is unpacked at Kennedy Space Center (KSC) SAEF-2
NASA Technical Reports Server (NTRS)
1989-01-01
At the Kennedy Space Center (KSC) inside the Space Assembly and Encapsulation Facility 2 (SAEF-2) (planetary checkout facility), the cover of the Payload Environmental Transportation System (PETS) is removed so that the Magellan spacecraft can be hoisted from the PETS trailer to the clean room floor. Clean-suited technicians guide the cover above plastic-wrapped spacecraft using rope. The spacecraft, destined for unprecedented studies of the Venusian topographic features, is to be deployed by the crew of NASA STS-30 mission in April 1989. View provided by KSC with alternate number KSC-88PC-1083.
Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares
NASA Technical Reports Server (NTRS)
Patrick, M. Clinton
2007-01-01
Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.
Mars Science Laboratory: Entry, Descent, and Landing System Performance
NASA Technical Reports Server (NTRS)
Way, David W.; Powell, Richard W.; Chen, Allen; SanMartin, A. Miguel; Burkhart, P. Daniel; Mendeck, Gavin F.
2007-01-01
In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of Mars. This paper describes the current MSL EDL system performance as predicted by end-to-end EDL simulations, highlights the sensitivity of this baseline performance to several key environmental assumptions, and discusses some of the challenges faced in delivering such an unprecedented rover payload to the surface of Mars.
Mars Science Laboratory: Entry, Descent, and Landing System Performance
NASA Technical Reports Server (NTRS)
Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.; San Martin, Alejandro M.; Burkhart, Paul D.; mendeck, Gavin F.
2006-01-01
In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of Mars. This paper describes the current MSL EDL system performance as predicted by end-to-end EDL simulations, highlights the sensitivity of this baseline performance to several key environmental assumptions, and discusses some of the challenges faced in delivering such an unprecedented rover payload to the surface of Mars.
NASA Astrophysics Data System (ADS)
Lankton, M.; Eastes, R.; McClintock, W. E.; Pang, R.; Caffrey, R.; Krywonos, A.
2013-12-01
The Global-Scale Observations of the Limb and Disk (GOLD) mission will perform unprecedented imaging of the Earth's thermosphere and ionosphere (TI) system from geostationary (GEO) orbit. Flying as a hosted payload on a commercial communications satellite, GOLD takes advantage of the resource margins available in the early years of the commercial mission's planned 15-year life. This hosted payload approach is a pathfinder for cost-effective NASA science missions. The affordable ride to GEO makes it possible for an Explorer-class Mission of Opportunity to perform Far UltraViolet (FUV) imaging of nearly a complete hemisphere on a 30-minute cadence. This global-scale, high cadence imaging will enable GOLD to distinguish between spatial and temporal variations in the TI system caused by geomagnetic storms, variations in solar EUV, and forcing from the lower atmosphere. The most significant difference between developing instrumentation for a NASA-owned mission and accomplishing the same task for a commercial satellite is that communications satellites are procured on a faster schedule - 24 to 36 months from satellite contract to launch - than the instrument development. GOLD has partnered with SES Government Solutions (SES-GS), the comsat mission owner-operator, to define instrument interfaces and requirements that will be included in the eventual Request for Proposal to candidate spacecraft vendors. SES-GS launches 3 to 4 missions per year, which allows the GOLD-SES-GS partnership to match the instrument's launch readiness date with a suitable mission. In addition to making geostationary orbit accessible to a science instrument at relatively low cost, commercial communications satellites provides a host platform with very high reliability and long life, easy access to continuous high-speed data downlink and near-real-time data delivery, and stable pointing. SES-GS operates their satellite from established Telemetry, Tracking and Control (TT&C) centers. The GOLD Science Operations Center at the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will produce instrument command loads for uplink by the TT&C, receive data from the ground station, monitor instrument state of health, and perform quick-look data processing. The GOLD Science Data Center at the University of Central Florida will produce, distribute and archive science data products.
Opportunities for Geoscience Research Onboard Virgin Galactic's SpaceShipTwo
NASA Astrophysics Data System (ADS)
Pomerantz, W.; Beerer, I.; Stephens, K.; Griffith, J.; Persall, W.; Tizard, J.
2012-12-01
Virgin Galactic has developed a reusable spaceplane, called SpaceShipTwo (SS2), designed to make routine voyages into suborbital space. SS2 is air-launched from a jet aircraft at an altitude of 50,000 ft. before igniting its rocket motor engine. The vehicle reaches a maximum apogee as high as 110 km before gliding to a conventional runway landing. With the ability to fly multiple times per week, SS2 will be capable of providing routine access to a rarely sampled and poorly understood region of the atmosphere and ionosphere, making it a valuable platform for geoscience research. With a payload capacity up to 1300 lbs., SS2 provides access to space and the upper atmosphere for substantially larger payloads than sounding rockets and at a dramatically lower cost than orbital satellites. The main cabin provides as much as 500 cubic ft. of useable volume in a shirt-sleeve environment and payload mounting interfaces that are compatible with standard architectures, such as Middeck Lockers, Cargo Transfer Bags, and server racks. A flight test engineer will be available on board to operate payloads during flight. In the future, SS2 will also offer a variety of external payload mounting locations, enabling researchers to make frequent in situ measurements in the mesosphere (50-90 km), lower thermosphere (above 80 km), and lower ionosphere (above 60 km). SS2 may also offer optical quality windows, allowing optical investigations from main cabin payloads. Researchers will have access to their payloads until just hours before flight and within three hours post-flight. While commercial operations will begin out of Spaceport America in New Mexico, SS2 may eventually be able to launch from a variety of geographic locations. Funding to develop and fly payloads for SS2 is currently available through many NASA programs including the Flight Opportunities Program and the Game Changing Development Program. Virgin Galactic expects the SS2 research platform to enable significant progress in atmospheric chemistry and dynamics, climate science, space weather, numerical weather predictions, and many other fields of geoscience.
NASA's Space Launch System: Progress Toward the Proving Ground
NASA Technical Reports Server (NTRS)
Jackman, Angie
2017-01-01
Space Launch System will be able to offer payload accommodations with five times more volume than any contemporary launch vehicle. center dot Payload fairings of up to 10-meter diameter are planned. Space Launch System will offer an initial capability of greater than 70 metric tons to low Earth orbit; current U.S. launch vehicle maximum is 28 t. center dot Evolved version of SLS will offer greatest-ever capability of greater than 130 t to LEO. SLS offers reduced transit times to the outer solar system by half or greater. center dot Higher characteristic energy (C3) also enables larger payloads to destination.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Hefner, Keith; Hitt, David
2015-01-01
Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of missions, from human exploration to robotic science.
Huang, Dazhen; Zou, Ye; Jiao, Fei; Zhang, Fengjiao; Zang, Yaping; Di, Chong-an; Xu, Wei; Zhu, Daoben
2015-05-06
Organic photothermoelectric (PTE) materials are promising candidates for various photodetection applications. Herein, we report on poly[Cux(Cu-ett)]:PVDF, which is an excellent polymeric thermoelectric composite, possesses unprecedented PTE properties. The NIR light irradiation on the poly[Cu(x)(Cu-ett)]:PVDF film could induce obvious enhancement in Seebeck coefficient from 52 ± 1.5 to 79 ± 5.0 μV/K. By taking advantage of prominent photothermoelectric effect of poly[Cu(x)(Cu-ett)]:PVDF, an unprecedented voltage of 12 mV was obtained. This excellent performance enables its promising applications in electricity generation from solar energy and NIR detection to a wide range of light intensities ranging from 1.7 mW/cm(2) to 17 W/cm(2).
STS-107 Payload Specialist Ilan Ramon at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
Status of the assessment phase of the ESA M3 mission candidate LOFT
NASA Astrophysics Data System (ADS)
Corral van Damme, Carlos; Ayre, Mark; Lumb, David; Short, Alexander D.; Rando, Nicola
2012-09-01
LOFT (Large Observatory For x-ray Timing) is one of four candidates for the M3 slot (launch in 2024, with the option of a launch in 2022) of ESAs Cosmic Vision 2015 - 2025 Plan, and as such it is currently undergoing an initial assessment phase lasting one year. The objective of the assessment phase is to provide the information required to enable the down selection process, in particular: the space segment definition for meeting the assigned science objectives; consideration of and initial definition of the implementation schedule; an estimate of the mission Cost at Completion (CaC); an evaluation of the technology readiness evaluation and risk assessment. The assessment phase is divided into two interleaved components: (i) A payload assessment study, performed by teams funded by member states, which is primarily intended for design, definition and programmatic/cost evaluation of the payload, and (ii) A system industrial study, which has essentially the same objectives for the space segment of the mission. This paper provides an overview of the status of the LOFT assessment phase, both for payload and platform. The initial focus is on the payload design status, providing the reader with an understanding of the main features of the design. Then the space segment assessment study status is presented, with an overview of the principal challenges presented by the LOFT payload and mission requirements, and a presentation of the expected solutions. Overall the mission is expected to enable cutting-edge science, is technically feasible, and should remain within the required CaC for an M3 candidate.
NEXT-Lunar Lander -an Opportunity for a Close Look at the Lunar South Pole
NASA Astrophysics Data System (ADS)
Homeister, Maren; Thaeter, Joachim; Scheper, Marc; Apeldoorn, Jeffrey; Koebel, David
The NEXT-Lunar Lander mission, as contracted by ESA and investigated by OHB-System and its industrial study team, has two main purposes. The first is technology demonstration for enabling technologies like propulsion-based soft precision landing for future planetary landing missions. This involves also enabling technology experiments, like fuel cell, life science and life support, which are embedded in the stationary payload of the lander. The second main and equally important aspect is the in-situ investigation of the surface of the Moon at the lunar South Pole by stationary payload inside the Lander, deployable payload to be placed in the vicinity of the lander and mobile payload carried by a rover. The currently assessed model payload includes 15 instruments on the lander and additional five on the rover. They are addressing the fields geophysics, geochemistry, geology and radio astronomy preparation. The mission is currently under investigation in frame of a phase A mission study contract awarded by ESA to two independent industrial teams, of which one is led by OHB-System. The phase A activities started in spring 2008 and were conducted until spring 2010. A phase B is expected shortly afterwards. The analysed mission architectures range from a Soyuz-based mission to a Shared-Ariane V class mission via different transfer trajectories. Depending on the scenario payload masses including servicing of 70 to 150 kg can be delivered to the lunar surface. The lander can offer different services to the payload. The stationary payload is powered and conditioned by the lander. Examples for embarked payloads are an optical camera system, a Radio Science Experiment and a radiation monitor. The lander surface payload is deployed to the lunar surface by a 5 DoF robotic arm and will be powered by the Lander. To this group of payloads belong seismometers, a magnetometer and an instrumented Mole. The mobile payload will be carried by a rover. The rover is equipped with its own 5 DoF robotic arm and can travel with an average speed of about 1 cm/s. The Rover is generally tele-operated but has the capability to execute autonomously pre-selected operation tasks, is aware of its current status and analyses potential hazards to avoid loss of its mission by operator failure. It is equipped with a model payload consisting of a camera system for multi-spectra including infra-red, a Raman-LIBS and a CLUPI. In addition its task is to position seismometers at a distance of about 1 km away from the lander. The baseline scenario includes a launch in the 2018 timeframe and one year of surface operations at the Shakleton crater rim. This presentation will focus on the following points: • Mission architecture and spacecraft layout as elaborated during the past study activities • Surface operations of lander and rover • Current mission capability to support scientific investigations at the lunar South Pole
Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Benson, Scott W.; Englander, Jacob; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Kruk, Jeffrey W.; Oleson, Steven R.; Thronson, Harley A.
2014-01-01
We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present a proof of concept case study in which SEP is used to enable a 700 kg Explorer-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. We also present flight dynamics analysis which illustrates that this concept can be extended beyond Explorers to substantially improve the sensitivity performance of heavier (7000 kg) flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope by using high power SEP that is being developed for the Asteroid Redirect Robotics Mission.
Ares V Launch Capability Enables Future Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2007-01-01
NASA's Ares V cargo launch vehicle offers the potential to completely change the paradigm of future space science mission architectures. A major finding of the NASA Advanced Telescope and Observatory Capability Roadmap Study was that current launch vehicle mass and volume constraints severely limit future space science missions. And thus, that significant technology development is required to package increasingly larger collecting apertures into existing launch shrouds. The Ares V greatly relaxes these constraints. For example, while a Delta IV has the ability to launch approximate a 4.5 meter diameter payload with a mass of 13,000 kg to L2, the Ares V is projected to have the ability to launch an 8 to 12 meter diameter payload with a mass of 60,000 kg to L2 and 130,000 kg to Low Earth Orbit. This paper summarizes the Ares V payload launch capability and introduces how it might enable new classes of future space telescopes such as 6 to 8 meter class monolithic primary mirror observatories, 15 meter class segmented telescopes, 6 to 8 meter class x-ray telescopes or high-energy particle calorimeters.
Near-Infrared-Induced Heating of Confined Water in Polymeric Particles for Efficient Payload Release
2015-01-01
Near-infrared (NIR) light-triggered release from polymeric capsules could make a major impact on biological research by enabling remote and spatiotemporal control over the release of encapsulated cargo. The few existing mechanisms for NIR-triggered release have not been widely applied because they require custom synthesis of designer polymers, high-powered lasers to drive inefficient two-photon processes, and/or coencapsulation of bulky inorganic particles. In search of a simpler mechanism, we found that exposure to laser light resonant with the vibrational absorption of water (980 nm) in the NIR region can induce release of payloads encapsulated in particles made from inherently non-photo-responsive polymers. We hypothesize that confined water pockets present in hydrated polymer particles absorb electromagnetic energy and transfer it to the polymer matrix, inducing a thermal phase change. In this study, we show that this simple and highly universal strategy enables instantaneous and controlled release of payloads in aqueous environments as well as in living cells using both pulsed and continuous wavelength lasers without significant heating of the surrounding aqueous solution. PMID:24717072
Viger, Mathieu L; Sheng, Wangzhong; Doré, Kim; Alhasan, Ali H; Carling, Carl-Johan; Lux, Jacques; de Gracia Lux, Caroline; Grossman, Madeleine; Malinow, Roberto; Almutairi, Adah
2014-05-27
Near-infrared (NIR) light-triggered release from polymeric capsules could make a major impact on biological research by enabling remote and spatiotemporal control over the release of encapsulated cargo. The few existing mechanisms for NIR-triggered release have not been widely applied because they require custom synthesis of designer polymers, high-powered lasers to drive inefficient two-photon processes, and/or coencapsulation of bulky inorganic particles. In search of a simpler mechanism, we found that exposure to laser light resonant with the vibrational absorption of water (980 nm) in the NIR region can induce release of payloads encapsulated in particles made from inherently non-photo-responsive polymers. We hypothesize that confined water pockets present in hydrated polymer particles absorb electromagnetic energy and transfer it to the polymer matrix, inducing a thermal phase change. In this study, we show that this simple and highly universal strategy enables instantaneous and controlled release of payloads in aqueous environments as well as in living cells using both pulsed and continuous wavelength lasers without significant heating of the surrounding aqueous solution.
Materials experiment carrier concepts definition study. Volume 3: Programmatics, part 2
NASA Technical Reports Server (NTRS)
1981-01-01
Project logic, schedule and funding information was derived to enable decisions to be made regarding implementation of MEC system development. A master schedule and cost and price estimates (ROM) were developed for a project that consists of development of an all-up MEC, its integration with payloads and its flight on one 90 day mission. In Part 2 of the study a simple initial MEC was defined to accommodate three MPS baseline payloads. The design of this initial MEC is illustrated. The project logic, detailed schedules, and ROM cost estimate relate to a project in which this initial MEC is developed, integrated with payloads and flown once for 180 days.
1999-11-24
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the STS-103 payload awaits closing of Discovery's payload bay doors. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor, a new enhanced computer to replace an older model, a solid-state digital recorder, a new spare transmitter, and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST
NASA Technical Reports Server (NTRS)
1986-01-01
The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.
Doll, Joseph C.; Peng, Anthony W.; Ricci, Anthony J.; Pruitt, Beth L.
2012-01-01
Understanding the mechanisms responsible for our sense of hearing requires new tools for unprecedented stimulation and monitoring of sensory cell mechanotransduction at frequencies yet to be explored. We describe nanomechanical force probes designed to evoke mechanotransduction currents at up to 100kHz in living cells. High-speed force and displacement metrology is enabled by integrating piezoresistive sensors and piezoelectric actuators onto nanoscale cantilevers. The design, fabrication process, actuator performance and actuator-sensor crosstalk compensation results are presented. We demonstrate the measurement of mammalian cochlear hair cell mechanotransduction with simultaneous patch clamp recordings at unprecedented speeds. The probes can deliver mechanical stimuli with sub-10 μs rise times in water and are compatible with standard upright and inverted microscopes. PMID:23181721
GEP, A Geophysical and Environemental integrated payload for ExoMars
NASA Astrophysics Data System (ADS)
Spohn, T.; Lognonne, P.; Dehant, V.; Giardini, D.; Friis-Christensen, E.; Calcutt, S.; GEP Team
The goal of the GEP proposed onboard the ExoMars mission is to provide the first complete set of geophysical and environmental data of Mars. A full mass of 20 kg is envisaged, enabling a payload of about 5 kg serviced by common integrated subsystems. GEP will first monitor the present Martian climate and meteorology by providing a unique monitoring on potential hazards for future human exploration missions (radiations, atmospheric electricity, dust) and on atmospheric parameters (wind, pressure, temperature, humidity). Such a long term monitoring has never been performed since the Viking landers. GEP will then provide, for the first time, a complete geophysical monitoring of Mars. It will search for remote and regional seismic activity, will measure the heat flux of the planets, will monitor the rotation of Mars and will study the magnetic field at the surface and finally will constrain the subsurface in the vicinity of the ExoMars landing site and the deep interior. By providing these new geophysical data and associated constraints on the interior and on the actual geologic activity of the surface, GEP will provide a major step in our understanding of the geological evolution of the planet and the habitability conditions during the first billion years, enabling a full understanding of the surface and mineralogical observations performed by the Pasteur payload onboard the ExoMars rover and by the payload onboard the MSL NASA 2009 mission.
ERIC Educational Resources Information Center
Hutchings, Maggie; Quinney, Anne
2015-01-01
The adoption of enabling technologies by universities provides unprecedented opportunities for flipping the classroom to achieve student-centred learning. While higher education policies focus on placing students at the heart of the education process, the propensity for student identities to shift from partners in learning to consumers of…
MUSIC Successfully Launched from NASA Wallops
2017-12-08
The Multiple User Suborbital Instrument Carrier or MUSIC payload was successfully launched at 9:50 a.m. today on a Terrier-Improved Malemute suborbital sounding rocket from NASA’s Wallops Flight Facility. The payload flew to approximately 115 miles apogee and preliminary analysis shows good data was received. Payload recovery is in progress. The next launch from Wallops is between 7 and 10 a.m. EST, Monday, March 7. Three space technology payloads will be carried on a Terrier-Improved Orion suborbital sounding rocket. Credit: NASA/Wallops/Allison Stancil NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Technical challenges involved in supporting the Lambda Point Experiment
NASA Technical Reports Server (NTRS)
Petrac, D.; Israelsson, U.; Otth, D.; Simmons, L.; Staats, J.; Thompson, A.
1990-01-01
The Lambda Point Experiment (LPE) is one of the instruments included in the U.S. Microgravity Payload Mission 1 planned for one of the Space Shuttle flights in 1992. The objective of the experiment is to measure the heat capacity of liquid helium within a narrow interval around the transition between superfluid and normal helium (the lambda point) with an unprecedented temperature resolution of about 10 to the -10th. Multiple technical challenges are presented in the areas of structural support, safety analysis, and modal frequency tests. This paper describes the technical challenges of JPL's multidisciplinary involvement in support of these experiments in microgravity.
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.
2017-01-01
Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.
NASA'S Space Launch System: Opening Opportunities for Mission Design
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Hefner, Keith; Hitt, David
2015-01-01
Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will demonstrate, SLS is making strong progress toward first launch, and represents a unique new capability for spaceflight, and an opportunity to reinvent space by developing out-of-the-box missions and mission designs unlike any flown before.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Crumbly, Christopher M.; Creech, Stephen D.; Robinson,Kimberly F.
2016-01-01
Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will demonstrate, SLS represents a unique new capability for spaceflight, and an opportunity to reinvent space by developing out-of-the-box missions and mission designs unlike any flown before.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1998-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
U.S. Laboratory Module (Destiny) for the International Space Station
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
This closer image of the International Space Station (ISS) showing the newly installed U.S. Laboratory, Destiny (left), was taken from the departing Space Shuttle Atlantis. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
GOCE: Mission Overview and Early Results (Invited)
NASA Astrophysics Data System (ADS)
Rummel, R. F.; Muzi, D.; Drinkwater, M. R.; Floberghagen, R.; Fehringer, M.
2009-12-01
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission is the first Earth Explorer Core mission of the Living Planet Programme of the European Space Agency (ESA). The primary objective of the GOCE mission is to provide global and regional models of the Earth gravity field and the geoid, its reference equi-potential surface, with unprecedented spatial resolution and accuracy. GOCE was launched successfully on 17 March 2009 from the Plesetsk Cosmodrome in northern Russia onboard a Rockot launch vehicle. System commissioning and payload calibration have been completed and the satellite is decaying to its initial measurement operating altitude of 255 km, which is expected to be reached in mid-September 2009. After one week of final payload calibration, GOCE will enter its first 6 month duration phase of uninterrupted science measurements at that altitude. This presentation will recall GOCE's main goals and its major development milestones. In addition, a description of the data products generated and some highlights of the satellite performance will be outlined. Artist's impression of GOCE Satellite in flight (courtesy AOES-Medialab).
International Space Station (ISS)
1998-11-01
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-01-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-01
In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
International Space Station (ISS)
1997-11-26
This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.
FASTSAT a Mini-Satellite Mission...A Way Ahead
NASA Technical Reports Server (NTRS)
Boudreaux, Mark; Pearson, Steve; Casas, Joseph
2012-01-01
The Fast Affordable Science and Technology Spacecraft (FASTSAT) is a mini-satellite weighing less than 150 kg. FASTSAT was developed as government-industry collaborative research and development flight project targeting rapid access to space to provide an alternative, low cost platform for a variety of scientific, research, and technology payloads. The initial spacecraft was designed to carry six instruments and launch as a secondary rideshare payload. This design approach greatly reduced overall mission costs while maximizing the on-board payload accommodations. FASTSAT was designed from the ground up to meet a challenging short schedule using modular components with a flexible, configurable layout to enable a broad range of payloads at a lower cost and shorter timeline than scaling down a more complex spacecraft. The integrated spacecraft along with its payloads were readied for launch 15 months from authority to proceed. As an ESPA-class spacecraft, FASTSAT is compatible with many different launch vehicles, including Minotaur I, Minotaur IV, Delta IV, Atlas V, Pegasus, Falcon 1/1e, and Falcon 9. These vehicles offer an array of options for launch sites and provide for a variety of rideshare possibilities.
Going Boldly Beyond: Progress on NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Singer, Jody; Crumbly, Chris
2013-01-01
NASA's Space Launch System is implementing an evolvable configuration approach to system development in a resource-constrained era. Legacy systems enable non-traditional development funding and contribute to sustainability and affordability. Limited simultaneous developments reduce cost and schedule risk. Phased approach to advanced booster development enables innovation and competition, incrementally demonstrating affordability and performance enhancements. Advanced boosters will provide performance for the most capable heavy lift launcher in history, enabling unprecedented space exploration benefiting all of humanity.
Advanced APS impacts on vehicle payloads
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Reed, Brian D.
1989-01-01
Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethylhydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination of scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.
Advanced APS Impacts on Vehicle Payloads
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Reed, Brian D.
1989-01-01
Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethyl hydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination and scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.
NASA Technical Reports Server (NTRS)
Singer, Jody; Pelfrey, Joseph; Norris, George
2016-01-01
For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.
Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats
NASA Technical Reports Server (NTRS)
Peters, Eric; Dave, Pratik; Kingsbury, Ryan; Marinan, Anne; Wise, Evan; Pong, Chris; Prinkey, Meghan; Cahoy, Kerri; Miller, David W.; Sklair, Devon
2014-01-01
The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle.
1999-11-24
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, Discovery's payload bay doors close on the STS-103 payload. STS-103 is a Hubble Space Telescope servicing mission. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor; a new enhanced computer to replace an older model; a solid-state digital recorder; a new spare transmitter; and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST
Mars Mobile Lander Systems for 2005 and 2007 Launch Opportunities
NASA Technical Reports Server (NTRS)
Sabahi, D.; Graf, J. E.
2000-01-01
A series of Mars missions are proposed for the August 2005 launch opportunity on a medium class Evolved Expendable Launch Vehicle (EELV) with a injected mass capability of 2600 to 2750 kg. Known as the Ranger class, the primary objective of these Mars mission concepts are: (1) Deliver a mobile platform to Mars surface with large payload capability of 150 to 450 kg (depending on launch opportunity of 2005 or 2007); (2) Develop a robust, safe, and reliable workhorse entry, descent, and landing (EDL) capability for landed mass exceeding 750 kg; (3) Provide feed forward capability for the 2007 opportunity and beyond; and (4) Provide an option for a long life telecom relay orbiter. A number of future Mars mission concepts desire landers with large payload capability. Among these concepts are Mars sample return (MSR) which requires 300 to 450 kg landed payload capability to accommodate sampling, sample transfer equipment and a Mars ascent vehicle (MAV). In addition to MSR, large in situ payloads of 150 kg provide a significant step up from the Mars Pathfinder (MPF) and Mars Polar Lander (MPL) class payloads of 20 to 30 kg. This capability enables numerous and physically large science instruments as well as human exploration development payloads. The payload may consist of drills, scoops, rock corers, imagers, spectrometers, and in situ propellant production experiment, and dust and environmental monitoring.
Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials
NASA Astrophysics Data System (ADS)
Abou, Seraphin Chally; Saad, Maarouf
2013-09-01
In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.
Using Distributed Operations to Enable Science Research on the International Space Station
NASA Technical Reports Server (NTRS)
Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna
2011-01-01
In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload operations and discusses the benefits and drawbacks.
Game Changing: NASA's Space Launch System and Science Mission Design
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2013-01-01
NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.
Game changing: NASA's space launch system and science mission design
NASA Astrophysics Data System (ADS)
Creech, S. D.
NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher characteristic energy (C3) energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as “ monolithic” telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.
2008-08-15
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the sensors on the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS, after mating of the SCM to the Flight Support System, or FSS, carrier. The SCRS will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The FSS will join the Multi-Use Lightweight Equipment, or MULE, carrier, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier as payload on space shuttle Atlantis's STS-125 mission. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Troy Cryder
2008-08-15
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS, is being prepared for transfer to the Flight Support System, or FSS, carrier. The SCRS will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The FSS will join the Multi-Use Lightweight Equipment, or MULE, carrier, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier as payload on space shuttle Atlantis's STS-125 mission. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Troy Cryder
2008-08-15
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the connections on the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS, being mated to the Flight Support System, or FSS, carrier. The SCRS will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The FSS will join the Multi-Use Lightweight Equipment, or MULE, carrier, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier as payload on space shuttle Atlantis's STS-125 mission. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Troy Cryder
2008-08-15
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the sensors on the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS, after mating of the SCM to the Flight Support System, or FSS, carrier. The SCRS will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The FSS will join the Multi-Use Lightweight Equipment, or MULE, carrier, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier as payload on space shuttle Atlantis's STS-125 mission. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Troy Cryder
2008-08-15
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS, toward the Flight Support System, or FSS, carrier. The SCRS will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The FSS will join the Multi-Use Lightweight Equipment, or MULE, carrier, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier as payload on space shuttle Atlantis's STS-125 mission. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Troy Cryder
2008-08-15
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians prepare the Flight Support System, or FSS, carrier to receive the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS. The SCRS will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The FSS will join the Multi-Use Lightweight Equipment, or MULE, carrier, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier as payload on space shuttle Atlantis's STS-125 mission. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Troy Cryder
Communications platform payload definition study
NASA Technical Reports Server (NTRS)
Clopp, H. W.; Hawkes, T. A.; Bertles, C. R.; Pontano, B. A.; Kao, T.
1986-01-01
Large geostationary communications platforms were investigated in a number of studies since 1974 as a possible means to more effectively utilize the geostationary arc and electromagnetic spectrum and to reduce overall satellite communications system costs. The commercial feasibility of various communications platform payload concepts circa 1998 was addressed. Promising payload concepts were defined, recurring costs were estimated, and critical technologies needed to enable eventual commercialization were identified. Ten communications service aggregation scenarios describing potential groupings of service were developed for a range of conditions. Payload concepts were defined for four of these scenarios: (1) Land Mobile Satellite Service (LMSS) meets 100% of Contiguous United States (CONUS) plus Canada demand with a single platform; (2) Fixed Satellite Service (FSS) (trunking + Customer Premises Service (CPS)), meet 20% of CONUS demand;(3) FSS (trunking + CPS + video distribution), 10 to 13% of CONUS demand; and (4) FSS (20% of demand) + Inter Satellite Links (ISL) + Tracking and Data Relay Satellite System (TDRSS)/Tracking and Data Acquisition System (TDAS) Data Distribution.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2016-01-01
Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. The evolved configurations of SLS, including both the 105 t Block 1B and the 130 t Block 2, offer opportunities for launching co-manifested payloads and a new class of secondary payloads with the Orion crew vehicle, and also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle, delivering unmatched mass-lift capability, payload volume, and C3.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.
1999-11-24
KENNEDY SPACE CENTER, FLA. -- A worker at Launch Pad 39B watches as Discovery's payload bay doors close on the STS-103 payload. STS-103 is a Hubble Space Telescope servicing mission. The payload, which will enable the crew of seven to service the Hubble Space Telescope, consists of gyroscopes that allow the telescope to point at stars, galaxies and planets; a Fine Guidance Sensor; a new enhanced computer to replace an older model; a solid-state digital recorder; a new spare transmitter; and new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Launch of Space Shuttle Discovery on mission STS-103 is targeted for Dec. 9 at 1:10 a.m. EST
Mars Helicopter Technology Demonstration
2018-05-11
The Mars Helicopter is a technology demonstration that will fly as a secondary payload with the Mars 2020 mission. It will demonstrate the potential of aerial flight on Mars, which may enable more ambitious missions in the future.
Flight Hardware Fabricated for Combustion Science in Space
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2005-01-01
NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.
2003-01-16
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Commander Michael Anderson is happy to being suiting up for launch on mission STS-107. The mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.; Yu, Chi Yau
2011-01-01
As we have previously reported, it may be possible to launch payloads into low-Earth orbit (LEO) at a per-kilogram cost that is one to two orders of magnitude lower than current launch systems, using only a relatively small capital investment (comparable to a single large present-day launch). An attractive payload would be large quantities of high-performance chemical rocket propellant (e.g. Liquid Oxygen/Liquid Hydrogen (LO2/LH2)) that would greatly facilitate, if not enable, extensive exploration of the moon, Mars, and beyond.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Hefner, Keith; Hitt, David
2015-01-01
Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. The vehicle will be able to deliver greater mass to orbit than any contemporary launch vehicle. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads.
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians prepare to deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
2013-09-16
CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians prepare to deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett
The optical alignment of the two GAIA three mirror anastigmatic telescopes
NASA Astrophysics Data System (ADS)
Erdmann, Matthias; Pierot, Dominique
2017-11-01
Gaia is an ambitious ESA mission to chart a threedimensional map of our Galaxy, the Milky Way, in the process revealing the composition, formation and evolution of the Galaxy. Gaia will provide unprecedented positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and cinematic census of about one billion stars in our Galaxy. The payload consists of 2 Three Mirror Anastigmat (TMA) telescopes (aperture size 1.5 m x 0.5 m), 3 instruments (astrometer, photometer and spectrometer) and 106 butted CCDs assembled to a single 0.9 Giga-Pixel focal plane. In this paper we are describing the optical alignment of the two Gaia telescopes and the tooling that was used.
2014-06-17
NASA is investing in a number of technologies to extend Entry, Descent and Landing (EDL) capabilities to enable Human Missions to Mars. These technologies will also enable robotic Science missions. Human missions will require landing payloads of 10?s of metric tons, not possible with today's technology. Decelerating from entry speeds around 15,000 miles per hour to landing in a matter of minutes will require very large drag or deceleration. The one way to achieve required deceleration is to deploy a large surface that can be stowed during launch and deployed prior to entry. This talk will highlight a simple concept similar to an umbrella. Though the concept is simple, the size required for human Mars missions and the heating encountered during entry are significant challenges. The mechanically deployable system can also enable robotic science missions to Venus and is also equally applicable for bringing back cube-satellites and other small payloads. The scalable concept called Adaptive Deployable Entry and Placement Technology (ADEPT) is under development and is the focus of this talk.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-16
With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-01
In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
Developing the World's Most Powerful Solid Booster
NASA Technical Reports Server (NTRS)
Priskos, Alex S.; Frame, Kyle L.
2016-01-01
NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are underway with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing processes, and new inspection techniques. New materials and processes provide improved performance, safety, and affordability but also have led to challenges for the government/industry development team. The team completed its first full-size qualification motor test firing in early 2015. The second is scheduled for mid-2016. This paper will discuss booster accomplishments to date, as well as challenges and milestones ahead.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
NASA Astrophysics Data System (ADS)
Smith, H. T.
2013-12-01
Multiple companies are in the process of developing commercial suborbital reusable launch vehicles (sRLV's). While these companies originally targeted space tourism as the primary customer base, it is rapidly becoming apparent that this dramatic increase in low cost access to space could provide revolutionary opportunities for scientific research, engineering/instrument development and STEM education. These burgeoning capabilities will offer unprecedented opportunities regarding access to space with frequent low-cost access to the region of space from the ground to the boundary of near-Earth space at ~100 km. In situ research of this region is difficult because it is too high for aircraft and balloons and yet too low for orbital satellites and spacecraft. However, this region is very significant because it represents the tenuous boundary of Earth's Atmosphere and Space. It contains a critical portion of the atmosphere where the regime transitions from collisional to non-collisional physics and includes complex charged and neutral particle interactions. These new launch vehicles are currently designed for manned and unmanned flights that reach altitudes up to 110 km for 5K-500K per flight with payload capacity exceeding 600 kg. Considering the much higher cost per flight for a sounding rocket with similar capabilities, high flight cadence, and guaranteed return of payload, commercial spacecraft has the potential to revolutionize access to near space. This unprecedented access to space allows participation at all levels of research, engineering, education and the public at large. For example, one can envision a model where students can conduct complete end to end projects where they design, build, fly and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Our community is only beginning to grasp the opportunities and impactions of these new capabilities but with operational flights anticipated in 2014, it is important for our community to start exploring possible applications for these new spacecraft.
NASA Technical Reports Server (NTRS)
Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.
2012-01-01
Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.
Antares: A low cost modular launch vehicle for the future
NASA Technical Reports Server (NTRS)
1991-01-01
The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Antares: A low cost modular launch vehicle for the future
NASA Astrophysics Data System (ADS)
The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
The neutron star interior composition explorer (NICER): mission definition
NASA Astrophysics Data System (ADS)
Arzoumanian, Z.; Gendreau, K. C.; Baker, C. L.; Cazeau, T.; Hestnes, P.; Kellogg, J. W.; Kenyon, S. J.; Kozon, R. P.; Liu, K.-C.; Manthripragada, S. S.; Markwardt, C. B.; Mitchell, A. L.; Mitchell, J. W.; Monroe, C. A.; Okajima, T.; Pollard, S. E.; Powers, D. F.; Savadkin, B. J.; Winternitz, L. B.; Chen, P. T.; Wright, M. R.; Foster, R.; Prigozhin, G.; Remillard, R.; Doty, J.
2014-07-01
Over a 10-month period during 2013 and early 2014, development of the Neutron star Interior Composition Explorer (NICER) mission [1] proceeded through Phase B, Mission Definition. An external attached payload on the International Space Station (ISS), NICER is scheduled to launch in 2016 for an 18-month baseline mission. Its prime scientific focus is an in-depth investigation of neutron stars—objects that compress up to two Solar masses into a volume the size of a city—accomplished through observations in 0.2-12 keV X-rays, the electromagnetic band into which the stars radiate significant fractions of their thermal, magnetic, and rotational energy stores. Additionally, NICER enables the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) demonstration of spacecraft navigation using pulsars as beacons. During Phase B, substantive refinements were made to the mission-level requirements, concept of operations, and payload and instrument design. Fabrication and testing of engineering-model components improved the fidelity of the anticipated scientific performance of NICER's X-ray Timing Instrument (XTI), as well as of the payload's pointing system, which enables tracking of science targets from the ISS platform. We briefly summarize advances in the mission's formulation that, together with strong programmatic performance in project management, culminated in NICER's confirmation by NASA into Phase C, Design and Development, in March 2014.
SubTec-7 Gives New Technologies a Flight Test
2017-12-08
NASA successfully launched the SubTec-7 payload on a Black Brant IX suborbital sounding rocket at 5:45 a.m. EDT, May 16, from the NASA's Wallops Flight Facility. The payload flew to an altitude of about 154 miles before descending by parachute and landing in the Atlantic Ocean. SubTec-7 provided a flight test for more than 20 technologies to improve sounding rocket and spacecraft capabilities. Good data was received during the flight. The payload has been recovered. Credit: NASA/Wallops NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2002-01-10
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, trains on equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Myhre, Craig A.
2000-01-01
The Fluids and Combustion Facility (FCF) is a multi-rack payload planned for the International Space Station (ISS) that will enable the study of fluid physics and combustion science in a microgravity environment. The Combustion Integrated Rack (CIR) is one of two International Standard Payload Racks of the FCF and is being designed primarily to support combustion science experiments. The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user apparatus designed to accommodate four different droplet combustion science experiments and is the first payload for CIR. The CIR will function independently until the later launch of the Fluids Integrated Rack component of the FCF. This paper provides an overview of the capabilities and the development status of the CIR and MDCA.
Red Dragon-MSL Hybrid Landing Architecture for 2018
NASA Astrophysics Data System (ADS)
Grover, M. R.; Sklyanskiy, E.; Stelzner, A. D.; Sherwood, B.
2012-06-01
Hybridizing modern developments at SpaceX and JPL could enable landing 1 metric ton-class payloads on Mars for of order $250M, beginning in 2018. Near term, OCT could perform Earth-based flight demonstration of supersonic retropropulsion.
NASA Technical Reports Server (NTRS)
Singer, Jody; Pelfrey, Joseph; Norris, George
2016-01-01
For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). With this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. This first launch of SLS and the Orion Spacecraft is planned no later than November 2018 and will fly along a trans-lunar trajectory, testing the performance of the SLS and Orion systems for future missions. NASA is making investments to expand the science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1) will include thirteen 6U Cubesat small satellites to be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for the advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.
Application of superconducting technology to earth-to-orbit electromagnetic launch systems
NASA Technical Reports Server (NTRS)
Hull, J. R.; Carney, L. M.
1988-01-01
Benefits may occur by incorporating superconductors, both existing and those currently under development, in one or more parts of a large-scale electromagnetic launch (EML) system that is capable of delivering payloads from the surface of the Earth to space. The use of superconductors for many of the EML components results in lower system losses; consequently, reductions in the size and number of energy storage devices are possible. Applied high-temperature superconductivity may eventually enable novel design concepts for energy distribution and switching. All of these technical improvements have the potential to reduce system complexity and lower payload launch costs.
NASA Technical Reports Server (NTRS)
Malarik, Diane C.
2005-01-01
NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.
An Airborne Onboard Parallel Processing Testbed
NASA Technical Reports Server (NTRS)
Mandl, Daniel J.
2014-01-01
This presentation provides information on the progress the Intelligent Payload Module (IPM) development effort. In addition, a vision is presented on integration of the IPM architecture with the GeoSocial Application Program Interface (API) architecture to enable efficient distribution of satellite data products.
Network Payload Integration for the Scan-Eagle UAV
2007-12-01
With the increasing maturity of MESH network technology, it is inevitable that we exploit the synergistic capabilities in networking of autonomous ... vehicles . The interconnectivity enables the sharing or dissemination of information between various nodes and has the capability to enhance
Dual Mode Green Propulsion for Revolutionary Performance Gains with Minimal Recurring Investments
NASA Astrophysics Data System (ADS)
Dankanich, J. W.; Lozano, P. C.
2017-02-01
Dual mode green propulsion has potential to supplant state of the art alternatives. Mission potential includes doubling science payloads for reference missions, increasing targets for a Trojan tour, and enabling missions such as Ceres Sample Return.
Small Satellites and the DARPA/Air Force Falcon Program
NASA Technical Reports Server (NTRS)
Weeks, David J.; Walker, Steven H.; Sackheim, Robert L.
2004-01-01
The FALCON ((Force Application and Launch from CONUS) program is a technology demonstration effort with three major components: a Small Launch Vehicle (SLV), a Common Aero Vehicle (CAV), and a Hypersonic Cruise Vehicle (HCV). Sponsored by DARPA and executed jointly by the United States Air Force and DARPA with NASA participation, the objectives are to develop and demonstrate technologies that will enable both near-term and far-term capability to execute time-critical, global reach missions. The focus of this paper is on the SLV as it relates to small satellites and the implications of lower cost to orbit for small satellites. The target recurring cost for placing 1000 pounds payloads into a circular reference orbit of 28.5 degrees at 100 nautical miles is $5,000,000 per launch. This includes range costs but not the payload or payload integration costs. In addition to the nominal 1000 pounds to LEO, FALCON is seeking delivery of a range of orbital payloads from 220 pounds to 2200 pounds to the reference orbit. Once placed on alert status, the SLV must be capable of launch within 24 hours.
2008-08-15
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, a technician signals to begin lifting the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS. The SCM will be transferred to the stand holding the Flight Support System, or FSS, carrier where the SCM will be mated to the FSS. The SCRS will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The FSS will join the Multi-Use Lightweight Equipment, or MULE, carrier, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier as payload on space shuttle Atlantis's STS-125 mission. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Troy Cryder
2008-08-15
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS, moves above the floor toward the stand holding the Flight Support System, or FSS, carrier where the SCM will be mated to the FSS. The SCRS will enable the future rendezvous, capture and safe disposal of NASA's Hubble Space Telescope by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The FSS will join the Multi-Use Lightweight Equipment, or MULE, carrier, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier as payload on space shuttle Atlantis's STS-125 mission. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Troy Cryder
Simulating Vibrations in a Complex Loaded Structure
NASA Technical Reports Server (NTRS)
Cao, Tim T.
2005-01-01
The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.
Optical interconnection networks for high-performance computing systems
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr; Bergman, Keren
2012-04-01
Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.
Launching Payloads Into Orbit at Relatively Low Cost
NASA Technical Reports Server (NTRS)
Wilcox, Brian
2007-01-01
A report proposes the development of a system for launching payloads into orbit at about one-fifth the cost per unit payload weight of current systems. The PILOT system was a solid-fuel, aerodynamically spun and spin-stabilized, five-stage rocket with onboard controls including little more than an optoelectronic horizon sensor and a timer for triggering the second and fifth stages, respectively. The proposal calls for four improvements over the PILOT system to enable control of orbital parameters: (1) the aerodynamic tipover of the rocket at the top of the atmosphere could be modeled as a nonuniform gyroscopic precession and could be controlled by selection of the initial rocket configuration and launch conditions; (2) the attitude of the rocket at the top of the first-stage trajectory could be measured by use of radar tracking or differential Global Positioning System receivers to determine when to trigger the second stage; (3) the final-stage engines could be configured around the payload to enhance spin stabilization during a half-orbit coast up to apoapsis where the final stage would be triggered; and (4) the final payload stage could be equipped with a "beltline" of small thrusters for correcting small errors in the trajectory as measured by an off-board tracking subsystem.
NASA Technical Reports Server (NTRS)
Davis, G. R.; Furniss, I.; Patrick, T. J.; Sidey, R. C.; Towlson, W. A.
1991-01-01
The Infrared Space Observatory (ISO) is an ESA cornerstone mission for infrared astronomy. Schedules for launch in 1993, its four scientific instruments will provide unprecedented sensitivity and spectral resolution at wavelengths which are inaccessible using ground-based techniques. One of these, the Long Wavelength Spectrometer (LWS), will operate in the 45 to 180 micron region (Emery et. al., 1985) and features two Fabry-Perot interferometers mounted on an interchange mechanism. The entire payload module of the spacecraft, comprising the 60 cm telescope and the four focal plane instruments, is maintained at 2 to 4 K by an onboard supply of liquid helium. The mechanical design and testing of the cryogenic interferometer and interchange mechanisms are described.
International Space Station (ISS)
2001-05-14
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
NASA Technical Reports Server (NTRS)
Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.
1998-01-01
A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.
2017-12-08
NASA successfully launched the RockSat-X education payload on a Terrier-Improved Malemute suborbital sounding rocket at 7:33:30 a.m. EDT Aug. 17 from the Wallops Flight Facility in Virginia. Students from eight community colleges and universities from across the United States participated in the RockSat-X project.The payload carrying the experiments flew to an altitude of 95 miles. Data was received from most of the student experiments. However, the payload was not recovered as planned. NASA will investigate the anomaly. Credit: NASA/Wallops/A. Stancil NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2001-12-19
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, from Israel, pauses during an experiment at SPACEHAB, Cape Canaveral, Fla., to talk with Mission Specialist Laurel Clark. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002.
2001-12-19
KENNEDY SPACE CENTER, FLA. - - STS-107 Payload Specialist Ilan Ramon, from Israel, works on an experiment at SPACEHAB, Cape Canaveral, Fla. With him is Mission Specialist Laurel Clark. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
STS-35 Payload Specialist Parise sets up SAREX on OV-102's middeck
1990-12-10
STS-35 Payload Specialist Ronald A. Parise enters data into the payload and general support computer (PGSC) in preparation for Earth communication via the Shuttle Amateur Radio Experiment (SAREX) aboard Columbia, Orbiter Vehicle (OV) 102. The SAREX equipment is secured to the middeck starboard sleep station. SAREX provided radio transmissions between ground based amateur radio operators around the world and Parise, a licensed amateur radio operator. The experiment enabled students to communicate with an astronaut in space, as Parise (call-sign WA4SIR) devoted some of his off-duty time to that purpose. Displayed on the forward lockers beside Parise is a AMSAT (Amateur Radio Satellite Corporation) / ARRL (American Radio Relay League) banner. Food items and checklists are attached to the lockers. In locker position MF43G, the Development Test Objective (DTO) Trash Compaction and Retention System Demonstration extended duration orbiter (EDO) compactor is visible.
Astronaut James S. Voss Performs Tasks in the Destiny Laboratory
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
Technology Overview and Assessment for Small-Scale EDL Systems
NASA Technical Reports Server (NTRS)
Heidrich, Casey R.; Smith, Brandon P.; Braun, Robert D.
2016-01-01
Motivated by missions to land large rovers and humans at Mars and other bodies, high-mass EDL technologies are a prevalent trend in the research community. In contrast, EDL systems for low-mass payloads have attracted less attention. Significant potential in science and discovery exists in small-scale EDL systems. Payloads acting secondary to a flagship mission are a currently under-utilzed resource. Before taking advantage of these opportunities, further developed of scaled EDL technologies is required. The key limitations identified in this study are compact decelerators and deformable impact systems. Current technologies may enable rough landing of small payloads, with moderate restrictions in packaging volume. Utilization of passive descent and landing stages will greatly increase the applicability of small systems, allowing for vehicles robust to entry environment uncertainties. These architectures will provide an efficient means of achieving science and support objectives while reducing cost and risk margins of a parent mission.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- The STS-107 crew heads for the Astrovan and a ride to Launch Pad 39A for liftoff. From left to right are Payload Commander Michael Anderson, Mission Specialist David Brown, Payload Specialist Ilan Ramon, Mission Specialists Laurel Clark and Kalpana Chawla, Mission Commandaer Rick Husband and Pilot William "Willie" McCool. Ramon is the first astronaut from Israel to fly on a Shuttle. The 16-day mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST. [Photo courtesy of Scott Andrews
NASA Astrophysics Data System (ADS)
Hull, Anthony B.; Westerhoff, Thomas
2014-06-01
For competed missions, payload costs are often the discriminate of whether or not outstanding science can be selected to fly. Optical Telescope Assemblies (OTAs) encompass a significant fraction of the payload cost, and mirror aperture and stability are usually are key to the science merit. The selection of the primary mirror approach drives architecture decisions for the rest of the OTA and even payload. We look at the ways OTA architecture is affected by the PM selection, and specifically at the benefits of selecting a low expansion material. We will also review recent advances in ZERODUR® fabrication which make this low-expansion material relevant in situations where affordable, lightweight mirrors can enable the apertures needed for science merit. Extreme Lightweight ZERODUR® Mirrors (ELZM) are available in apertures from 0.3m to over 4m. SCHOTT has recently demonstrated a relevant 1.2m ELZM substrate.
Investigation of very high energy rockets for future SSTO vehicles
NASA Astrophysics Data System (ADS)
Froning, H. D., Jr.
1989-04-01
Several new propulsion possibilities are being explored in the U.S.A. which might significantly increase the amount of payload that can be propelled into orbit for a given launch vehicle weight. As such, they might enable significant reduction in the future cost of transportation between earth and space. One possibility is the combustion of matter that is in an excited atomic or molecular state. Another possibility is the annihilation of matter by means of anti-matter (by matter with identical mass and opposite electrical charge). And if an appreciable fraction of the energies released by either of these processes could be converted into the useful kinetic energy of a rocket's exhaust, a 2-6-fold increase in its specific impulse might be achieved. This paper shows that a 2-6-fold increase in rocket specific impulse might enable a 4-12-fold reduction in aerospace vehicle weight. It also shows that the specific impulse potential of excited matter or anti-matter fuels might enable transport of heavy payloads into earth orbit by means of single-stage-to-orbit vehicles that would be no heavier than current commercial airline jets.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
NASA's Space Launch System: Building a New Capability for Discovery
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2015-01-01
Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. The initial configuration will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for exploration.
NASA'S Space Launch System Mission Capabilities for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.
2015-01-01
Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.
NASA's Space Launch System Mission Capabilities for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.
2015-01-01
Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
NASA Astrophysics Data System (ADS)
Winglee, R. M.; Robinson, T.; Danner, M.; Koch, J.
2018-03-01
The icy moons of Jupiter and Saturn are important astrobiology targets. Access to the surface of these worlds is made difficult by the high ΔV requirements which is typically in the hypervelocity range. Passive braking systems cannot be used due to the lack of an atmosphere, and active braking by rockets significantly adds to the missions costs. This paper demonstrates that a two-stage landing system can overcome these problems and provide significant improvements in the payload fraction that can be landed The first stage involves a hypervelocity impactor which is designed to penetrate to a depth of a few tens of meters. This interaction is the cryo-breaking component and is examined through laboratory experiments, empirical relations and modeling. The resultant ice-particle cloud creates a transient artificial atmosphere that can be used to enable passive braking of the second stage payload dd, with a substantially higher mass payload fraction than possible with a rocket landing system. It is shown that a hollow cylinder design for the impactor can more efficiently eject the material upwards in a solid cone of ice particles relative to solid impactors such as spheres or spikes. The ejected mass is shown to be of the order of 103 to 104 times the mass of the impactor. The modeling indicates that a 10 kg payload with a braking system of 3 m2 (i.e. an areal density of 0.3 kg/m2) is sufficient to allow the landing of the payload with the deceleration limited to less than 2000 g's. Modern electronics can withstand this deceleration and as such the system provides an important alternative to landing payloads on icy solar system objects.
Project Antares: A low cost modular launch vehicle for the future
NASA Astrophysics Data System (ADS)
Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles
1991-06-01
The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Project Antares: A low cost modular launch vehicle for the future
NASA Technical Reports Server (NTRS)
Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles
1991-01-01
The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Plant-module for autonomous space-support (p-mass).
NASA Technical Reports Server (NTRS)
Luttges, M. W.; Stodieck, L.; Hoehn, A.
1994-01-01
A wide variety of technical and science questions arise when attempting to envision the long-term support of plants, algae and bacteria in space. Currently, spaceflight data remain elusive since there are no U.S. carriers for investigating either the germane technical or scientific issues. The first flight of the Commercial Experiment Transporter (COMET) will provide a nominal 30 day orbital opportunity to evlauate such issues. The P-Mass is a small payload that is designed to meet the mass (40 lbs), Volume (1.5cu. ft.), and power (120 W0 constraints of one of several COMET payloads while enabling flight evaluations of plants, algae and bacteria. Various biological sub-systems have been similarly evaluated. Through a variety of sensors coupled with color video, the P-Mass performance and the supported biological systems will be compared for terrestrial controls versus spaceflight materials. This small, low cost payload should return valuable regarding the requirements for hardware and biological systems needed to move toward biogenerative life support systems in space. In addition, it should be possible to accurately identify major unresolved difficulties that may arise in the long-term, this generic spaceflight capability should enable a variety of plant research programs focused on the use of microgravity to modulate and exploit plant products for commercial applications ranging from new agricultural products to pharmacological feedstocks and new controlled agricultural strategies.
Chiappini, Ciro; Martinez, Jonathan O.; De Rosa, Enrica; Almeida, Carina S.
2016-01-01
Nanoneedles display potential in mediating the delivery of drugs and biologicals, as well as intracellular sensing and single cell stimulation through direct access to the cell cytoplasm. Nanoneedles enable cytosolic delivery, negotiating the cell membrane and the endolysosomal system, thus overcoming these major obstacles to the efficacy of nanotherapeutics. The low toxicity and minimal invasiveness of nanoneedles has a potential for the sustained non-immunogenic delivery of payloads in vivo, provided that the development of biocompatible nanoneedles with a simple deployment strategy is achieved. Here we present a mesoporous silicon nanoneedle array that achieves a tight interface with the cell, rapidly negotiating local biological barriers to grant temporary access to the cytosol with minimal impact on cell viability. The tightness of this interfacing enables both delivery of cell-impermeant quantum dots in vivo and live intracellular sensing of pH. Dissecting the biointerface over time elucidated the dynamics of cell association and nanoneedle biodegradation, showing rapid interfacing leading to cytosolic payload delivery within less than 30 minutes in vitro. The rapid and simple application of nanoneedles in vivo to the surface of tissues with different architectures invariably resulted in the localized delivery of quantum dots to the superficial cells and their prolonged retention. This investigation provides an understanding of the dynamics of nanoneedles’ biointerface and delivery outlining a strategy for highly local intracellular delivery of nanoparticles and cell-impermeant payloads within live tissues. PMID:25858596
Managing Information in Law Firms: Changes and Challenges
ERIC Educational Resources Information Center
Evans, Nina; Price, James
2017-01-01
Introduction. Data, information and knowledge together constitute a vital business asset for every organization that enables every business activity, every business process and every business decision. The global legal industry is facing unprecedented change, which inevitably creates challenges for individual law firms. These global changes affect…
WEB - A Wireless Experiment Box for the Dextre Pointing Package ELC Payload
NASA Technical Reports Server (NTRS)
Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason William
2012-01-01
The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.
Web: A Wireless Experiment Box for the Dextre Pointing Package ELC Payload
NASA Technical Reports Server (NTRS)
Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason W.
2012-01-01
The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.
GSFC Systems Test and Operation Language (STOL) functional requirements and language description
NASA Technical Reports Server (NTRS)
Desjardins, R.; Hall, G.; Mcguire, J.; Merwarth, P.; Mocarsky, W.; Truszkowski, W.; Villasenor, A.; Brosi, F.; Burch, P.; Carey, D.
1978-01-01
The Systems Tests and Operation Language (STOL) provides the means for user communication with payloads, applications programs, and other ground system elements. It is a systems operation language that enables an operator or user to communicate a command to a computer system. The system interprets each high level language directive from the user and performs the indicated action, such as executing a program, printing out a snapshot, or sending a payload command. This document presents the following: (1) required language features and implementation considerations; (2) basic capabilities; (3) telemetry, command, and input/output directives; (4) procedure definition and control; (5) listing, extension, and STOL nucleus capabilities.
An Attached Payload Operations Center (APOC) at the Goddard Space Flight Center (GSFC), volume 2
NASA Technical Reports Server (NTRS)
1983-01-01
An overview of the APOC is given. For Spacelab payloads channel 2 and 3 data are input via a Statistical Multiplexer (SM) to the various SIPS functions. These include recording of the data on High Density Recorders (HDR), DQM and demultiplexing of the composite data stream by the High Rate Demultiplexer (HRDM). This system performs the inverse functions of the onboard Spacelab High Rate Multiplexer (HRM) enabling access to the data streams as multiplexed onboard the Spacelab. The contents and characteristics of channels one, two and three data as downlinked by the Tracking and Data Relay Satellite System (TDRSS) ku-band are given.
Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation
NASA Technical Reports Server (NTRS)
Jones, Jonathan; Kibbey, Tim; Lampton, Pat; Brown, Thomas
2014-01-01
A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, risk tolerant university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed. A launch vehicle at the scale and price point which allows developers to take reasonable risks with new propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial "valley of death" that lies between demonstration in laboratory and flight environments. This effort will provide the framework to mature both on-orbit and earth-to-orbit avionics and propulsion technologies while also providing dedicated, affordable access to LEO for cubesat class payloads.
Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Office of Energy Efficiency and Renewable Energy
2015-11-01
The U.S. Department of Energy’s Atmosphere to Electrons research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth’s atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind.
The expanding footprint of CRISPR/Cas9 in the plant sciences
USDA-ARS?s Scientific Manuscript database
CRISPR/Cas9 has evolved and transformed the field of biology at an unprecedented pace. From the initial purpose of introducing a site specific mutation within a genome of choice, this technology has morphed into enabling a wide array of molecular applications, including site-specific transgene inser...
Rhombohedral Super Hetero Epitaxy of Cubic SiGe on Trigonal c-plane Sapphire
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Duzik, Adam J.
2017-01-01
New rhombohedral super-hetero-epitaxy technology was developed at NASA. This epitaxy technology enables the growth of unprecedented cubic-trigonal hybrid single crystal structures with lattice match on sapphire (Al2O3) substrates, hence with little strain and very few defects at the interface.
STS-98 Onboard Photograph-U.S. Laboratory, Destiny
NASA Technical Reports Server (NTRS)
2001-01-01
The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
International Space Station (ISS)
2001-02-16
The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.
PEGASO: An ultra light long duration stratospheric payload for polar regions flights
NASA Astrophysics Data System (ADS)
Iarocci, A.; Benedetti, P.; Caprara, F.; Cardillo, A.; di Felice, F.; di Stefano, G.; Drakøy, P.; Ibba, R.; Mari, M.; Masi, S.; Musso, I.; Palangio, P.; Peterzen, S.; Romeo, G.; Spinelli, G.; Spoto, D.; Urbini, G.
2008-11-01
Stratospheric balloons are powerful and affordable tools for a wide spectrum of scientific investigations that are carried out at the stratosphere level. They are less expensive compared to satellite projects and have the capability to lift payloads from a few kilograms to a couple of tons or more, well above the troposphere, for more than a month. Another interesting feature of these balloons, which is not viable in satellites, is the short turnaround time, which enables frequent flights. We introduce the PEGASO (Polar Explorer for Geomagnetism And other Scientific Observations) project, a stratospheric payload designed and developed by the INGV (Istituto Nazionale di Geofisica e Vulcanologia), Rome and La Sapienza University, Rome. The project was sponsored by the PNRA (Progetto Nazionale di Ricerche in Antartide), Italy (Peterzen et al., 2003). This light payload (10 kg) was used by the Italian Space Agency (ASI) and Andoya Rocket Range (ARR) for five different scientific missions. PEGASO carries a 3-component flux-gate magnetometer, uses a solar cell array as the power source and has a GPS location system. The bi-directional telemetry system for data transfer and the remote control system were IRIDIUM based.
NASA Technical Reports Server (NTRS)
2002-01-01
The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the International Space Station (ISS). EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle. The Racks stay on orbit continually, while experiments are exchanged in and out of the EXPRESS Racks as needed, remaining on the ISS for three months to several years, depending on the experiment's time requirements. A refrigerator-sized Rack can be divided into segments, as large as half of an entire rack or as small as a bread box. Payloads within EXPRESS Racks can operate independently of each other, allowing for differences in temperature, power levels, and schedules. Experiments contained within EXPRESS Racks may be controlled by the ISS crew or remotely by the Payload Rack Officer at the Payload Operations Center at the Marshall Space Flight Center (MSFC). The EXPRESS Rack system was developed by MSFC and built by the Boeing Co. in Huntsville, Alabama. Eight EXPRESS Racks are being built for use on the ISS.
The VOrtex Ring Transit EXperiment (VORTEX) GAS project
NASA Technical Reports Server (NTRS)
Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.
1995-01-01
Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.
Environmental protection requirements for scout/shuttle auxiliary stages
NASA Technical Reports Server (NTRS)
Qualls, G. L.; Kress, S. S.; Storey, W. W.; Ransdell, P. N.
1980-01-01
The requirements for enabling the Scout upper stages to endure the expected temperature, mechanical shock, acoustical and mechanical vibration environments during a specified shuttle mission were determined. The study consisted of: determining a shuttle mission trajectory for a 545 kilogram (1200 pound) Scout payload; compilation of shuttle environmental conditions; determining of Scout upper stages environments in shuttle missions; compilation of Scout upper stages environmental qualification criteria and comparison to shuttle mission expected environments; and recommendations for enabling Scout upper stages to endure the exptected shuttle mission environments.
Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck
2009-01-01
NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.
Origins Space Telescope: Nearby Galaxies, the Milky Way, and the Interstellar Medium
NASA Astrophysics Data System (ADS)
Battersby, Cara; Sandstrom, Karin; Origins Space Telescope Science and Technology Definition Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.eduThis presentation will summarize the science case related to Nearby Galaxies, the Milky Way, and the Interstellar Medium (Interstellar Medium). The Origins Space Telescope will enable a wealth of unprecedented scientific advances in this area, both those we know to expect, and the discovery space that lies unexplored. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multiphase ISM; connecting these physics across scales of galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei, and their interplay, over cosmic time. Origins will unveil the abundance and availability of water for habitable planets by allowing us to trace the trail of water from interstellar clouds to protoplanetary disks, to Earth itself.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Podest, E.; Miller, C. E.; Dinardo, S. J.
2012-12-01
Fundamental aspects of the complex Arctic biological-climatologic-hydrologic system remain poorly quantified. As a result, significant uncertainties exist in the carbon budget of the Arctic ecosystem. NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a currently-operational Earth Venture 1 (EV-1) mission that is examining correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems. CARVE is conducted through a series of intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission timeframe. CARVE employs a C-23 Sherpa aircraft to fly an innovative airborne remote sensing payload. This payload includes an L-band radiometer/radar system and a nadir-viewing spectrometer to deliver simultaneous measurements of land surface state variables that control gas emissions (i.e., soil moisture and inundation, freeze/thaw state, surface temperature) and total atmospheric columns of carbon dioxide, methane, and carbon monoxide. The aircraft payload also includes a gas analyzer that links greenhouse gas measurements directly to World Meteorological Organization standards and provide vertical profile information. CARVE measurement campaigns are scheduled regularly throughout the growing season each year to capture the seasonal variability in Arctic system carbon fluxes associated with the spring thaw, the summer drawdown, and the fall refreeze. Continuous ground-based measurements provide temporal and regional context as well as calibration for CARVE airborne measurements. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. Ultimately, CARVE will provide an integrated set of data that will provide unprecedented experimental insights into Arctic carbon cycling. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration
Maximizing Launch Vehicle and Payload Design Via Early Communications
NASA Technical Reports Server (NTRS)
Morris, Bruce
2010-01-01
The United States? current fleet of launch vehicles is largely derived from decades-old designs originally made for payloads that no longer exist. They were built primarily for national security or human exploration missions. Today that fleet can be divided roughly into small-, medium-, and large-payload classes based on mass and volume capability. But no vehicle in the U.S. fleet is designed to accommodate modern payloads. It is usually the payloads that must accommodate the capabilities of the launch vehicles. This is perhaps most true of science payloads. It was this paradigm that the organizers of two weekend workshops in 2008 at NASA's Ames Research Center sought to alter. The workshops brought together designers of NASA's Ares V cargo launch vehicle (CLV) with scientists and payload designers in the astronomy and planetary sciences communities. Ares V was still in a pre-concept development phase as part of NASA?s Constellation Program for exploration beyond low Earth orbit (LEO). The space science community was early in a Decadal Survey that would determine future priorities for research areas, observations, and notional missions to make those observations. The primary purpose of the meetings in April and August of 2008, including the novel format, was to bring vehicle designers together with space scientists to discuss the feasibility of using a heavy lift capability to launch large observatories and explore the Solar System. A key question put to the science community was whether this heavy lift capability enabled or enhanced breakthrough science. The meetings also raised the question of whether some trade-off between mass/volume and technical complexity existed that could reduce technical and programmatic risk. By engaging the scientific community early in the vehicle design process, vehicle engineers sought to better understand potential limitations and requirements that could be added to the Ares V from the mission planning community. From the vehicle standpoint, while the human exploration mission could not be compromised to accommodate other payloads, the design might otherwise be tailored to not exclude other payload requirements. This paper summarizes the findings of the workshops and discusses the benefits of bringing together the vehicle design and science communities early in their concept phases
ISS External Payload Platform - a new opportunity for research in the space environment
NASA Astrophysics Data System (ADS)
Steimle, Christian; Pape, Uwe
The International Space Station (ISS) is a widely accepted platform for research activities in low Earth orbit. To a wide extent these activities are conducted in the pressurised laboratories of the station and less in the outside environment. Suitable locations outside the ISS are rare, existing facilities fully booked for the coming years. To overcome this limitation, an external payload platform accessible for small size payloads on a commercial basis will be launched to the ISS and installed on the Japanese Experiment Module External Facility (JEM-EF) in the third quarter of 2014 and will be ready to be used by the scientific community on a fully commercial basis. The new External Payload Platform (EPP) and its opportunities and constraints assessed regarding future research activities on-board the ISS. The small size platform is realised in a cooperation between the companies NanoRacks, Astrium North America in the United States, and Airbus Defence and Space in Germany. The hardware allows the fully robotic installation and operation of payloads. In the nominal mission scenario payload items are installed not later than one year after the signature of the contract, stay in operation for 15 weeks, and can be returned to the scientist thereafter. Payload items are transported among the pressurised cargo usually delivered to the station with various supply vehicles. Due to the high frequency of flights and the flexibility of the vehicle manifests the risk of a delay in the payload readiness can be mitigated by delaying to the next flight opportunity which on average is available not more than two months later. The mission is extra-ordinarily fast and of low cost in comparison to traditional research conducted on-board the ISS and can fit into short-term funding cycles available on national and multi-national levels. The size of the payload items is limited by handling constraints on-board the ISS. Therefore, the standard experiment payload size is a multiple of a 4U CubeSat, which demands miniaturised hardware solutions. But every payload can extensively use all ISS resources required: mass is not limited, power only limited by the payload heat radiation capability, the datalink is a USB 2.0 standard bus enabling a real-time and private data link. The new EPP transforms the station into a true laboratory in space with the capability to support research in various fields: exposure of biologic or material samples, experiments related to the radiation environment in low Earth orbit, and more.
Manned Orbital Transfer Vehicle (MOTV). Volume 4: Supporting analysis
NASA Technical Reports Server (NTRS)
Boyland, R. E.; Sherman, S. W.; Morfin, H. W.
1979-01-01
Generic missions were defined to enable potential users to determine the parameters for suggested user projects. Mission modes were identified for providing operation, interfaces, performance, and cost data for studying payloads. Safety requirements for emergencies during various phases of the mission are considered with emphasis on radiation hazards.
Targeted and Controlled Anticancer Drug Delivery and Release with Magnetoelectric Nanoparticles
NASA Astrophysics Data System (ADS)
Rodzinski, Alexandra
A major challenge of cancer treatment is successful discrimination of cancer cells from healthy cells. Nanotechnology offers multiple venues for efficient cancer targeting. Magnetoelectric nanoparticles (MENs) are a novel, multifaceted, physics-based cancer treatment platform that enables high specificity cancer targeting and externally controlled loaded drug release. The unique magnetoelectric coupling of MENs allows them to convert externally applied magnetic fields into intrinsic electric signals, which allows MENs to both be drawn magnetically towards the cancer site and to electrically interface with cancer cells. Once internalized, the MEN payload release can be externally triggered with a magnetic field. MENs uniquely allow for discrete manipulation of the drug delivery and drug release mechanisms to allow an unprecedented level of control in cancer targeting. In this study, we demonstrate the physics behind the MEN drug delivery platform, test the MEN drug delivery platform for the first time in a humanized mouse model of cancer, and characterize the biodistribution and clearance of MENs. We found that MENs were able to fully cure the model cancer, which in this case was human ovarian carcinoma treated with paclitaxel. When compared to conventional magnetic nanoparticles and FDA approved organic PLGA nanoparticles, MENs are the highest performing treatment, even in the absence of peripheral active targeting molecules. We also mapped the movement through peripheral organs and established clearance trends of the MENs. The MENs cancer treatment platform has immense potential for future medicine, as it is generalizable, personalizable, and readily traceable in the context of treating essentially any type of cancer.
Solar Sail Propulsion: Enabling New Capabilities for Heliophysics
NASA Technical Reports Server (NTRS)
Johnson, L.; Young, R.; Alhorn, D.; Heaton, A.; Vansant, T.; Campbell, B.; Pappa, R.; Keats, W.; Liewer, P. C.; Alexander, D.;
2010-01-01
Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions
NASA Scientific Balloon in Antarctica
2017-12-08
NASA image captured December 25, 2011 A NASA scientific balloon awaits launch in McMurdo, Antarctica. The balloon, carrying Indiana University's Cosmic Ray Electron Synchrotron Telescope (CREST), was launched on December 25. After a circum-navigational flight around the South Pole, the payload landed on January 5. The CREST payload is one of two scheduled as part of this seasons' annual NASA Antarctic balloon Campaign which is conducted in cooperation with the National Science Foundation's Office of Polar Programs. The campaign's second payload is the University of Arizona's Stratospheric Terahertz Observatory (STO). You can follow the flights at the Columbia Scientific Balloon Facility's web site at www.csbf.nasa.gov/antarctica/ice.htm Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload
NASA Astrophysics Data System (ADS)
Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun
2018-06-01
An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.
Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload
NASA Astrophysics Data System (ADS)
Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun
2018-03-01
An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.
NASA Astrophysics Data System (ADS)
Scott, D. K.; Neilsen, T. L.; Weston, C.; Frazier, C.; Smith, T.; Shumway, A.
2015-12-01
Global measurements of vertically-resolved atmospheric wind profiles offer the potential for improved weather forecasts and superior predictions of atmospheric wind patterns. A small-satellite constellation that uses a Fourier Transform Spectrometer (FTS) instrument onboard 12U CubeSats can provide measurements of global tropospheric wind profiles from space at a very low cost. These small satellites are called FTS CubeSats. This presentation will describe a spacecraft concept that provides a stable, robust platform to host the FTS payload. Of importance to the payload are power, data, station keeping, thermal, and accommodations that enable high spectral measurements to be made from a LEO orbit. The spacecraft concept draws on Space Dynamics Laboratory (SDL) heritage and the recent success of the Dynamic Ionosphere Cubesat Experiment (DICE) and HyperAngular Rainbow Polarimeter (HARP) missions. Working with team members, SDL built a prototype observatory (spacecraft and payload) for testing and proof of concept.
MSAT signalling and network management architectures
NASA Technical Reports Server (NTRS)
Garland, Peter; Keelty, J. Malcolm
1989-01-01
Spar Aerospace has been active in the design and definition of Mobile Satellite Systems since the mid 1970's. In work sponsored by the Canadian Department of Communications, various payload configurations have evolved. In addressing the payload configuration, the requirements of the mobile user, the service provider and the satellite operator have always been the most important consideration. The current Spar 11 beam satellite design is reviewed, and its capabilities to provide flexibility and potential for network growth within the WARC87 allocations are explored. To enable the full capabilities of the payload to be realized, a large amount of ground based Switching and Network Management infrastructure will be required, when space segment becomes available. Early indications were that a single custom designed Demand Assignment Multiple Access (DAMA) switch should be implemented to provide efficient use of the space segment. As MSAT has evolved into a multiple service concept, supporting many service providers, this architecture should be reviewed. Some possible signalling and Network Management solutions are explored.
Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Benson, Scott W.; Falck, Robert D.; Fixsen, Dale J.; Gardner, Joseph P.; Garvin, James B.; Kruk, Jeffrey W.; Oleson, Stephen R.; Thronson, Harley A.
2012-01-01
We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to 13X increased photometric sensitivity and 160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.
Knowledge Management for E?Learning
ERIC Educational Resources Information Center
Barker, Philip
2005-01-01
Compared to our ancestors, we live in an era of unprecedented change. This change brings with it opportunities both for success and for disaster. If individuals, organisations and nations are to court success and avoid disaster, it is imperative that we identify useful mechanisms that will enable us to amplify the possibility of one while…
Cadmium is a toxic metal causing sublethal and chronic effects in crustaceans. Omic technologies offer unprecedented opportunities to better understand modes of toxicity by providing a holistic view of the molecular changes underlying physiological disruption. We sought to use ge...
Space Launch System for Exploration and Science
NASA Astrophysics Data System (ADS)
Klaus, K.
2013-12-01
Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a low-risk, direct return of Martian material. For the Europa Clipper mission the SLS eliminates Venus and Earth flybys, providing a direct launch to the Jovian system, arriving four years earlier than missions utilizing existing launch vehicles. This architecture allows increased mass for radiation shielding, expansion of the science payload and provides a model for other outer planet missions. SLS provides a direct launch to the Uranus system, reducing travel time by two years when compared to existing launch capabilities. SLS can launch the Advanced Technology Large-Aperture Space Telescope (ATLAST 16 m) to SEL2, providing researchers 10 times the resolution of the James Webb Space Telescope and up to 300 times the sensitivity of the Hubble Space Telescope. SLS is the only vehicle capable of deploying telescopes of this mass and size in a single launch. It simplifies mission design and reduces risks by eliminating the need for multiple launches and in-space assembly. SLS greatly shortens interstellar travel time, delivering the Interstellar Explorer to 200 AU in about 15 years with a maximum speed of 63 km/sec--13.3 AU per year (Neptune orbits the sun at an approximate distance of 30 AU ).
Automatic maintenance payload on board of a Mexican LEO microsatellite
NASA Astrophysics Data System (ADS)
Vicente-Vivas, Esaú; García-Nocetti, Fabián; Mendieta-Jiménez, Francisco
2006-02-01
Few research institutions from Mexico work together to finalize the integration of a technological demonstration microsatellite called Satex, aiming the launching of the first ever fully designed and manufactured domestic space vehicle. The project is based on technical knowledge gained in previous space experiences, particularly in developing GASCAN automatic experiments for NASA's space shuttle, and in some support obtained from the local team which assembled the México-OSCAR-30 microsatellites. Satex includes three autonomous payloads and a power subsystem, each one with a local microcomputer to provide intelligent and dedicated control. It also contains a flight computer (FC) with a pair of full redundancies. This enables the remote maintenance of processing boards from the ground station. A fourth communications payload depends on the flight computer for control purposes. A fifth payload was decided to be developed for the satellite. It adds value to the available on-board computers and extends the opportunity for a developing country to learn and to generate domestic space technology. Its aim is to provide automatic maintenance capabilities for the most critical on-board computer in order to achieve continuous satellite operations. This paper presents the virtual computer architecture specially developed to provide maintenance capabilities to the flight computer. The architecture is periodically implemented by software with a small amount of physical processors (FC processors) and virtual redundancies (payload processors) to emulate a hybrid redundancy computer. Communications among processors are accomplished over a fault-tolerant LAN. This allows a versatile operating behavior in terms of data communication as well as in terms of distributed fault tolerance. Obtained results, payload validation and reliability results are also presented.
Citizen Science and Citizen Space Exploration: Potentials for Professional Collaboration
NASA Astrophysics Data System (ADS)
Wright, E.
2012-12-01
Citizens in Space is a project of the United States Rocket Academy, with the goal of promoting citizen science and citizen space exploration. This goal is enabled by the new reusable suborbital spacecraft now under development by multiple companies in the US. For the first phase of this project, we have acquired a contract for 10 flights on the Lynx suborbital spacecraft, which is under construction by XCOR Aerospace in Mojave, CA. This represents, to the best of our knowledge, the largest single bulk purchase of suborbital flights to date. Citizens in Space has published an open call for experiments to fly on these missions, which we expect will begin in late 2013 or early 2014. We will be selecting approx. 100 small experiments and 10 citizen astronauts to fly as payload operators. Although our primary goal is to encourage citizen science, these flight opportunities are also open to professional researchers who have payloads that meet our criteria. We believe that the best citizen-science projects are collaborations between professional and citizen scientists. We will discuss various ways in which professional scientists can collaborate with citizen scientists to take advantage of the flight opportunities provided by our program. We will discuss the capabilities of the Lynx vehicle, the 1u- and 2u-CubeSat form factor we are using for our payloads, and general considerations for payload integration. As an example of the payloads we can accommodate, we will discuss a NASA-inspired experiment to collect particles from the upper atmosphere.;
NASA's Space Launch System: Developing the World's Most Powerful Solid Booster
NASA Technical Reports Server (NTRS)
Priskos, Alex
2016-01-01
NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing processes, and new inspection techniques. New materials and processes provide improved performance, safety, and affordability but also have led to challenges for the government/industry development team. The team completed its first full-size qualification motor test firing in early 2015. The second is scheduled for mid-2016. This paper will discuss booster accomplishments to date, as well as challenges and milestones ahead.
Optical beamforming based on microwave photonic signal processing
NASA Astrophysics Data System (ADS)
Anzalchi, J.; Perrott, R.; Latunde-Dada, K.; Oldenbeuving, R. M.; Roeloffzen, C. G. H.; Van Dijk, P. W. L.; Hoekman, M.; Leeuwis, H.; Leinse, A.
2017-09-01
Over the past few years considerable attention has been focussed on the inclusion of flexibility in communication satellite payloads. The purpose of this flexibility is to enable a given satellite on command to support different frequency plans, re-configure coverage in response to changing traffic demands and re-configure interconnectivity between coverages.
Atlas Centaur Rocket With Reusable Booster Engines
NASA Technical Reports Server (NTRS)
Martin, James A.
1993-01-01
Proposed modification of Atlas Centaur enables reuse of booster engines. Includes replacement of current booster engines with engine of new design in which hydrogen used for both cooling and generation of power. Use of hydrogen in new engine eliminates coking and clogging and improves performance significantly. Primary advantages: reduction of cost; increased reliability; and increased payload.
ARM Aerial Facility ArcticShark Unmanned Aerial System
NASA Astrophysics Data System (ADS)
Schmid, B.; Hubbell, M.; Mei, F.; Carroll, P.; Mendoza, A.; Ireland, C.; Lewko, K.
2017-12-01
The TigerShark Block 3 XP-AR "ArcticShark" Unmanned Aerial System (UAS), developed and manufactured by Navmar Applied Sciences Corporation (NASC), is a single-prop, 60 hp rotary-engine platform with a wingspan of 6.5 m and Maximum Gross Takeoff Weight of 295 Kg. The ArcticShark is owned by the U.S. Department of Energy (DOE) and has been operated by Pacific Northwest National Laboratory (PNNL) since March 2017. The UAS will serve as an airborne atmospheric research observatory for DOE ARM, and, once fully operational, can be requested through ARM's annual call for proposals. The Arctic Shark is anticipated to measure a wide range of radiative, aerosol, and cloud properties using a variable instrument payload weighing up to 46 Kg. SATCOM-equipped, it is capable of taking measurements up to altitudes of 5.5 Km over ranges of up to 500 Km. The ArcticShark operates at airspeeds of 30 to 40 m/s, making it capable of slow sampling. With a full fuel load, its endurance exceeds 8 hours. The aircraft and its Mobile Operations Center (MOC) have been hardened specifically for operations in colder temperatures.ArcticShark's design facilitates rapid integration of various types of payloads. 2500 W of its 4000 W electrical systems is dedicated to payload servicing. It has an interior payload volume of almost 85 L and four wing-mounted pylons capable of carrying external probes. Its payload bay volume, electrical power, payload capacity, and flight characteristics enable the ArcticShark to accommodate multiple combinations of payloads in numerous configurations. Many instruments will be provided by the ARM Aerial Facility (AAF), but other organizations may eventually propose instrumentation for specific campaigns. AAF-provided measurement capabilities will include the following atmospheric state and thermodynamics: temperature, pressure, winds; gases: H2O and CO2; up- and down-welling broadband infrared and visible radiation; surface temperature; aerosol number concentration, size distribution, absorption composition (filter samples), and cloud-droplet size distribution.
Ares V: New Opportunities for Scientific Payloads
NASA Technical Reports Server (NTRS)
Creech, Steve
2009-01-01
What if scientists and payload planners had access to three to five times the volume and five to nine times the mass provided by today's launch vehicles? This simple question can lead to numerous exciting possibilities, all involving NASA's new Ares V cargo launch vehicle now on the drawing board. Multiple scientific fields and payload designers have that opportunity with the Ares V cargo launch vehicle, being developed at NASA as the heavy-lift component of the U.S. Space Exploration Policy. When the Ares V begins flying late next decade, its capabilities will significantly exceed the 1960s-era Saturn V or the current Space Shuttle, while it benefits from their engineering, manufacturing, and infrastructure heritage. It will send more crew and cargo to more places on the lunar surface than Apollo and provide ongoing support to a permanent lunar outpost. Moreover, it will restore a strategic heavy-lift U.S. asset, which can support human and robotic exploration and scientific ventures for decades to come. Assessment of astronomy payload requirements since Spring 2008 has indicated that Ares V has the potential to support a range of payloads and missions. Some of these missions were impossible in the absence of Ares V's capabilities. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. A 2008 study by a National Research Council (NRC) panel, as well as analyses presented by astronomers and planetary scientists at two weekend conferences in 2008, support the position that Ares V has benefit to a broad range of planetary and astronomy missions. This early dialogue with Ares V engineers is permitting the greatest opportunity for payload/transportation/mission synergy and the least financial impact to Ares V development. In addition, independent analyses suggest that Ares V has the opportunity to enable more cost-effective mission design.
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol.
Pavlik, Benjamin J; Hruska, Elizabeth J; Van Cott, Kevin E; Blum, Paul H
2016-03-30
Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.
Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol
Pavlik, Benjamin J.; Hruska, Elizabeth J.; Van Cott, Kevin E.; Blum, Paul H.
2016-01-01
Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology. PMID:27025362
Technology and human purpose: the problem of solids transport on the earth's surface
NASA Astrophysics Data System (ADS)
Haff, P. K.
2012-05-01
Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope independent transport across the land surface of materials like coal, containerized fluids, and minerals. Pre-technology nature was able to sustain large-scale, long-distance solids advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a generalized mechanism for advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, enabling a simulated continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property enables the transport of an onboard power supply and delivery of persistent-memory, high-information-content payload, such as technological artifacts ("parts").
Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond
NASA Astrophysics Data System (ADS)
Vasavada, A. R.; Grotzinger, J. P.; Arvidson, R. E.; Calef, F. J.; Crisp, J. A.; Gupta, S.; Hurowitz, J.; Mangold, N.; Maurice, S.; Schmidt, M. E.; Wiens, R. C.; Williams, R. M. E.; Yingst, R. A.
2014-06-01
The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater. Curiosity traversed eastward toward Glenelg, investigating a boulder with a highly alkaline basaltic composition, encountering numerous exposures of outcropping pebble conglomerate, and sampling aeolian sediment at Rocknest and lacustrine mudstones at Yellowknife Bay. On sol 324, the mission turned its focus southwest, beginning a year-long journey to the lower reaches of Mt. Sharp, with brief stops at the Darwin and Cooperstown waypoints. The unprecedented complexity of the rover and payload systems posed challenges to science operations, as did a number of anomalies. Operational processes were revised to include additional opportunities for advance planning by the science and engineering teams.
Space Station program status and research capabilities
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1995-01-01
Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.
Human Capital: The Issues, Enablers and Blocks in Institutional Change.
ERIC Educational Resources Information Center
Hobbs, Daryl
In the last decade, unprecedented rates of job growth and improvements in adult education were accompanied by increased numbers of children living below the poverty line and a decline in real income for most families. There are several possible explanations: (1) a kind of job growth that produces disincentives for a significant number of people to…
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Commander Michael Anderson gets help with his launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Behind him is Pilot William "Willie" McCool. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew; Benson, S.; Falck, R.; Fixsen, D.; Gardner, J.; Garvin, J.; Kruk, J.; Oleson, S.; Thronson, H.
2011-01-01
We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. Over the above wavelength range, observatory performance is limited by zodiacal light. This new capability enables up to 10X increased photometric sensitivity and 160X increased observing speed relative to a Sun-Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRl-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the Science performance of much larger long development time systems; thuS, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions and is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.
Deep space 1 mission and observation of comet Borrellly
Lee, M.; Weidner, R.J.; Soderblom, L.A.
2002-01-01
The NASA's new millennium program (NMP) focuses on testing high-risk, advanced technologies in space with low-cost flights. The objective of the NMP technology validation missions is to enable future science missions. The NMP missions are technology-driven, with the principal requirements coming from the needs of the advanced technologies that form the 'payload'.
Common aperture multispectral spotter camera: Spectro XR
NASA Astrophysics Data System (ADS)
Petrushevsky, Vladimir; Freiman, Dov; Diamant, Idan; Giladi, Shira; Leibovich, Maor
2017-10-01
The Spectro XRTM is an advanced color/NIR/SWIR/MWIR 16'' payload recently developed by Elbit Systems / ELOP. The payload's primary sensor is a spotter camera with common 7'' aperture. The sensor suite includes also MWIR zoom, EO zoom, laser designator or rangefinder, laser pointer / illuminator and laser spot tracker. Rigid structure, vibration damping and 4-axes gimbals enable high level of line-of-sight stabilization. The payload's list of features include multi-target video tracker, precise boresight, strap-on IMU, embedded moving map, geodetic calculations suite, and image fusion. The paper describes main technical characteristics of the spotter camera. Visible-quality, all-metal front catadioptric telescope maintains optical performance in wide range of environmental conditions. High-efficiency coatings separate the incoming light into EO, SWIR and MWIR band channels. Both EO and SWIR bands have dual FOV and 3 spectral filters each. Several variants of focal plane array formats are supported. The common aperture design facilitates superior DRI performance in EO and SWIR, in comparison to the conventionally configured payloads. Special spectral calibration and color correction extend the effective range of color imaging. An advanced CMOS FPA and low F-number of the optics facilitate low light performance. SWIR band provides further atmospheric penetration, as well as see-spot capability at especially long ranges, due to asynchronous pulse detection. MWIR band has good sharpness in the entire field-of-view and (with full HD FPA) delivers amount of detail far exceeding one of VGA-equipped FLIRs. The Spectro XR offers level of performance typically associated with larger and heavier payloads.
Bioinstrumentation for evaluation of workload in payload specialists: results of ASSESS II
NASA Astrophysics Data System (ADS)
Wegmann, Hans M.; Herrmann, Reinhold; Winget, Charles M.
1980-11-01
ASSESS II‡Acronym for Airborne Science/Spacelab Experiments System Simulation. was a cooperative NASA-ESA project which consisted of a detailed simulation of Spacelab operations using the NASA Ames Research Center CV-990 aircraft laboratory. The Medical Experiment reported on in this paper was part of the complex payload consisting of 11 different experiments. Its general purpose was to develop a technology, possibly flown on board of Spacelab, and enabling the assessment of workload through evaluating changes of circadian rhythmicity, sleep disturbances and episodical or cumulative stress. As parameters the following variables were measured: Rectal temperature, ECG, sleep-EEG and -EOG, the urinary excretion of hormones and electrolytes. The results revealed evidence that a Spacelab environment, as simulated in ASSESS II, will lead to internal dissociation of circadian rhythms, to sleep disturbances and to highly stressful working conditions. Altogether these effects will impose considerable workload upon Payload Specialists. It is suggested that an intensive pre-mission system simulation will reduce these impairments to a reasonable degree. The bioinstrumentation applied in this experiment proved to be a practical and reliable tool in assessing the objectives of the study.
1998-10-21
The Glenn Research Center (GRC) Telescience Support Center (TSC) is a NASA telescience ground facility that provides the capability to execute ground support operations of on-orbit International Space Station (ISS) and Space Shuttle payloads. This capability is provided with the coordination with the Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC), the Johnson Space Center (JSC) Mission Control Center in Houston (MCC-H) and other remote ground control facilities. The concept of telescience is a result of NASA's vision to provide worldwide distributed ISS ground operations that will enable payload developers and scientists to control and monitor their on-board payloads from any location -- not necessarily a NASA site. This concept enhances the quality of scientific and technological data while decreasing operation costs of long-term support activities by providing ground operation services to a Principal Investigator and Engineering Team at their home site. The TSC acts as a hub in which users can either locate their operations staff within the walls of the TSC or request the TSC operation capabilities be extended to a location more convenient such as a university.
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Tevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is "SCAN Testbed," and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
LOLA: The lunar operations landing assembly
NASA Technical Reports Server (NTRS)
Abreu, Mike; Argeles, Fernando; Stewart, Chris; Turner, Charles; Rivas, Gavino
1992-01-01
Because the President of the United States has begun the Space Exploration Initiative (SEI), which entails a manned mission to Mars by the year 2016, it is necessary to use the Moon as a stepping stone to this objective. In support of this mission, unmanned scientific exploration of the Moon will help re-establish man's presence there and will serve as a basis for possible lunar colonization, setting the stage for a manned Mars mission. The lunar landing platform must provide support to its payload in the form of power, communications, and thermal control. The design must be such that cost is held to a minimum, and so that a wide variety of payloads may be used with the lander. The objectives of this mission are (1) to further the SEI by returning to the moon with unmanned scientific experiments, (2) to demonstrate to the public that experimental payload missions are feasible, (3) to provide a common lunar lander platform so select scientific packages could be targeted to specific lunar locales, (4) to enable the lander to be built from off-the-shelf hardware, and (5) to provide first mission launch by 1996.
Resource Prospector: A Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2015-01-01
A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes a NASA developed rover and payload, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RP payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form. extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations
Classification of ASKAP Vast Radio Light Curves
NASA Technical Reports Server (NTRS)
Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.
2012-01-01
The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.
Torkamani, Ali; Andersen, Kristian G; Steinhubl, Steven R; Topol, Eric J
2017-08-24
The foundation for a new era of data-driven medicine has been set by recent technological advances that enable the assessment and management of human health at an unprecedented level of resolution-what we refer to as high-definition medicine. Our ability to assess human health in high definition is enabled, in part, by advances in DNA sequencing, physiological and environmental monitoring, advanced imaging, and behavioral tracking. Our ability to understand and act upon these observations at equally high precision is driven by advances in genome editing, cellular reprogramming, tissue engineering, and information technologies, especially artificial intelligence. In this review, we will examine the core disciplines that enable high-definition medicine and project how these technologies will alter the future of medicine. Copyright © 2017 Elsevier Inc. All rights reserved.
Linear Ion Trap for the Mars Organic Molecule Analyzer
NASA Astrophysics Data System (ADS)
Brinckerhoff, William; Arevalo, Ricardo; Danell, Ryan; van Amerom, Friso; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Mahaffy, Paul; Goesmann, Fred; Steininger, Harald
2014-05-01
The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes a linear, or 2D, ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This "dual source" approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.
Diamond Scattering Detectors for Compton Telescopes
NASA Astrophysics Data System (ADS)
Bloser, Peter
The objective of the proposed work is to demonstrate the suitability of artificial singlecrystal diamond detectors (SCDDs) for use as the scattering medium in Compton telescopes for medium-energy gamma-ray astronomy. SCDDs offer the possibility of position and energy resolution comparable to those of silicon solid-state detectors (SSDs), combined with efficiency and timing resolution so-far only achievable using fast scintillators. When integrated with a calorimeter composed of fast inorganic scintillator, such as CeBr3, read out by silicon photomultipliers (SiPMs), SCDDs will enable a compact and efficient Compton telescope using time-of-flight (ToF) discrimination to achieve low background and high sensitivity. This detector development project will be a collaboration between the University of New Hampshire (UNH) and Southwest Research Institute (SwRI). The proposed work represents an innovative combination of detector technologies originally conceived separately for high-energy astronomy (fast scintillators read out by SiPMs; UNH) and space plasma/particle physics (SCDDs; SwRI). Recently SwRI has demonstrated that SCDDs fabricated using chemical vapor deposition (CVD) show good energy resolution ( 7 keV FWHM), comparable to silicon SSDs, with much faster time response ( ns rise time) due to higher electron/hole mobilities. They are also temperature- and lightinsensitive, and radiation hard. In addition, diamond is low-Z, composed entirely of carbon, but relatively high-density (3.5 g cm-3) compared to silicon or organic scintillator. SCDDs are therefore an intriguing possibility for a new Compton scattering element: if patterned with mm-sized readout electrodes and combined with a fast inorganic scintillator calorimeter, SCDDs could enable a compact but efficient Compton telescope with superior angular and energy resolution, while maintaining ToF background rejection. Such an instrument offers the exciting potential for unprecedented sensitivity, especially at energies < 1 - 2 MeV, on a small-scale mission utilizing recently available SmallSat buses (payload mass <100 kg). We propose to demonstrate this by constructing and testing a small proof-of-concept prototype and, based on its performance, using Monte Carlo simulations to explore the possibilities of furthering MeV science using relatively small-scale space missions.
Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles
Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian
2012-01-01
Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847
New Suborbital Flight Opportunities and Funding
NASA Astrophysics Data System (ADS)
Saltman, Alexander
2013-07-01
New opportunities for suborbital research are on the horizon. Reusable suborbital vehicles will offer immediate and routine space access for scientific payloads, provide access to altitudes around 100 kilometers, create opportunities for low-cost monitoring of upper atmospheric phenomena, as well as small scale solar observation. Reduced operational cost and quick turn-around will enable equipment to be flown opportunistically, in response to specific solar activity, or in continuous test and improvement cycles. Suborbital test flights will also provide opportunities to test prospective satellite instruments in an extended microgravity environment before being launched to orbit, raising the technology readiness level (TRL) of flight hardware and reducing the risk of anomalies during missions. I discuss the capabilities of emerging suborbital vehicles, payload and integration requirements, and funding opportunities for suborbital flights at NASA.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla trains on a glove box experiment. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
Wang, Cynthia X; Utech, Stefanie; Gopez, Jeffrey D; Mabesoone, Mathijs F J; Hawker, Craig J; Klinger, Daniel
2016-07-06
Well-defined microgel particles were prepared by combining coacervate-driven cross-linking of ionic triblock copolymers with the ability to control particle size and encapsulate functional cargos inherent in microfluidic devices. In this approach, the efficient assembly of PEO-based triblock copolymers with oppositely charged end-blocks allows for bioinspired cross-linking under mild conditions in dispersed aqueous droplets. This strategy enables the integration of charged cargos into the coacervate domains (e.g., the loading of anionic model compounds through electrostatic association with cationic end-blocks). Distinct release profiles can be realized by systematically varying the chemical nature of the payload and the microgel dimensions. This mild and noncovalent assembly method represents a promising new approach to tunable microgels as scaffolds for colloidal biomaterials in therapeutics and regenerative medicine.
2003-01-16
KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.
2008-08-12
CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians monitor the lifting of the Soft Capture Mechanism (SCM), part of the Soft Capture and Rendezvous System, or SCRS, from its shipping container. The SCRS will enable the future rendezvous, capture and safe disposal of Hubble by either a crewed or robotic mission. The ring-like device attaches to Hubble’s aft bulkhead. The SCRS greatly increases the current shuttle capture interfaces on Hubble, therefore significantly reducing the rendezvous and capture design complexities associated with the disposal mission. The SCRS comprises the Soft Capture Mechanism system and the Relative Navigation System and is part of the payload on the fifth and final Hubble servicing mission, STS-125, targeted for launch Oct. 8. Photo credit: NASA/Jack Pfaller
2001-06-11
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
Commercial Research and Development: Power to Explore, Opportunities from Discovery
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Nall, Mark; Powers, C. Blake; Henderson, Robin N. (Technical Monitor)
2002-01-01
The technical and economic goals of commercial use of space are laudable, and are addressed as a high priority by almost every national space program and most major aerospace companies the world over. Yet, the focus of most organizational agendas and discussions tends to focus on one or two very narrow enabling aspects of this potentially large technological and economic opportunity. While government sponsored commercial launch activities and private space platforms are an integral part of efforts to leverage the commercial use of space, these activities are possibly one of the smallest parts of creating, a viable and sustainable market for the commercial use of space. Most of the current programs usually do not appropriately address some of the critical issues of the current, already interested, potential space user communities. Current programs place the focus of the majority of the user requirements on the vehicle payload weight and mass performance considerations as the primary payload economical factor in providing a commercial market with a stimulating price for gaining access to the space environment. The larger user challenges of transformation from Earth-based research and development approaches to space environment approaches are not addressed early enough in programs to impact the new business considerations of potential users. Currently, space-based research and development user activities require a large user investment in time, in development of new areas of support expertise, in development of new systems, in risk of schedule to completion, and in long term capital positioning. The larger opportunities for stimulating a strong market driven interest in commercial use of space that could result from the development of vehicle payload "leap ahead technologies" for users are being missed, and there is a real risk of limiting the potentially broader market base to support a more technologically advanced and economically lucrative outcome. A major driving force for strengthening the commercial space activities is not only the technological advances in launch vehicle, or newer satellites, but the myriad of enabling payloads technologies that could, as a goal, result in an almost transparent facilitation to regular CD a, -n access to space and microgravity environments by the future users from the existing Earth-based research and development organizations market segments. Rather than focusing only on developing high lift performance launch vehicles and then developing payloads to fit them, the real focus from a business model perspective should to be on the customer payloads requirements, and on designing launch vehicles and platforms systems for a space transportation and facility infrastructure to support all aspects of the business model for the user market. To harness the full potential of space commercialization, new efforts need to be made to comprehensively examine all the critical business model areas for commercial research, development, and manufacturing in space so as to identify specific products and efforts; to determine how such operations must be both similar to and different from current Earth-based activities; to evaluate the enabling technological devices, processes and efforts so that like efforts can be addressed in a synergistic fashion for maximum user cost effectiveness; to delineate the services that are both needed and can be provided by such activities; and to use this information to drive design and development of space commercialization efforts and policy.
2002-06-14
KENNEDY SPACE CENTER, FLA. - -- Columbia's payload bay doors are ready to be closed for mission STS-107. Installed inside are the Hitchhiker Bridge, a carrier for the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments, plus the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. STS-107 is scheduled for launch July 19, 2001
Urey onboard Exomars: Searching for life on Mars
NASA Astrophysics Data System (ADS)
Bada, J.; Ehrenfreund, P.; Grunthaner, F.; Sephton, M.; Urey Team
2009-04-01
Exomars is currently under development as the flagship mission of ESA's exploration program Aurora. A fundamental challenge ahead for the Exomars mission is to search for extinct and extant life. The Urey instrument (Mars Organic and Oxidant Detector) has been selected for the Pasteur payload and is considered a key instrument to achieve the mission's scientific objectives. Urey can detect organic compounds at unprecedented sensitivity of part-per-trillions in the Martian regolith. The instrument will target several key classes of organic molecules such as amino acids, nucleobases, amines and amino sugars and polycyclic aromatic hydrocrabon (PAHs) using state-of-the-art analytical methods. Chemoresistor oxidant sensors will provide complementary measurements by simultaneously evaluating the survival potential of organic compounds in the environment. The Urey instrument concept has tremendous future applications in Mars and Moon exploration in the framework of life detection and planetary protection.
Data-Driven Software Framework for Web-Based ISS Telescience
NASA Technical Reports Server (NTRS)
Tso, Kam S.
2005-01-01
Software that enables authorized users to monitor and control scientific payloads aboard the International Space Station (ISS) from diverse terrestrial locations equipped with Internet connections is undergoing development. This software reflects a data-driven approach to distributed operations. A Web-based software framework leverages prior developments in Java and Extensible Markup Language (XML) to create portable code and portable data, to which one can gain access via Web-browser software on almost any common computer. Open-source software is used extensively to minimize cost; the framework also accommodates enterprise-class server software to satisfy needs for high performance and security. To accommodate the diversity of ISS experiments and users, the framework emphasizes openness and extensibility. Users can take advantage of available viewer software to create their own client programs according to their particular preferences, and can upload these programs for custom processing of data, generation of views, and planning of experiments. The same software system, possibly augmented with a subset of data and additional software tools, could be used for public outreach by enabling public users to replay telescience experiments, conduct their experiments with simulated payloads, and create their own client programs and other custom software.
NH11B-1726: FrankenRaven: A New Platform for Remote Sensing
NASA Technical Reports Server (NTRS)
Dahlgren, Robert; Fladeland, Matthew M.; Pinsker, Ethan A.; Jasionowicz, John P.; Jones, Lowell L.; Pscheid, Matthew J.
2016-01-01
Small, modular aircraft are an emerging technology with a goal to maximize flexibility and enable multi-mission support. This reports the progress of an unmanned aerial system (UAS) project conducted at the NASA Ames Research Center (ARC) in 2016. This interdisciplinary effort builds upon the success of the 2014 FrankenEye project to apply rapid prototyping techniques to UAS, to develop a variety of platforms to host remote sensing instruments. In 2016, ARC received AeroVironment RQ-11A and RQ-11B Raven UAS from the US Department of the Interior, Office of Aviation Services. These aircraft have electric propulsion, a wingspan of roughly 1.3m, and have demonstrated reliability in challenging environments. The Raven airframe is an ideal foundation to construct more complex aircraft, and student interns using 3D printing were able to graft multiple Raven wings and fuselages into FrankenRaven aircraft. Aeronautical analysis shows that the new configuration has enhanced flight time, payload capacity, and distance compared to the original Raven. The FrankenRaven avionics architecture replaces the mil-spec avionics with COTS technology based upon the 3DR Pixhawk PX4 autopilot with a safety multiplexer for failsafe handoff to 2.4 GHz RC control and 915 MHz telemetry. This project demonstrates how design reuse, rapid prototyping, and modular subcomponents can be leveraged into flexible airborne platforms that can host a variety of remote sensing payloads and even multiple payloads. Modularity advances a new paradigm: mass-customization of aircraft around given payload(s). Multi-fuselage designs are currently under development to host a wide variety of payloads including a zenith-pointing spectrometer, a magnetometer, a multi-spectral camera, and a RGB camera. After airworthiness certification, flight readiness review, and test flights are performed at Crows Landing airfield in central California, field data will be taken at Kilauea volcano in Hawaii and other locations.
FrankenRaven: A New Platform for Remote Sensing
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Fladeland, M. M.; Pinsker, E. A.; Jasionowicz, J. P.; Jones, L. L.; Mosser, C. D.; Pscheid, M. J.; Weidow, N. L.; Kelly, P. J.; Kern, C.; Werner, C. A.; Johnson, M. S.
2016-12-01
Small, modular aircraft are an emerging technology with a goal to maximize flexibility and enable multi-mission support. This reports the progress of an unmanned aerial system (UAS) project conducted at the NASA Ames Research Center (ARC) in 2016. This interdisciplinary effort builds upon the success of the 2014 FrankenEye project to apply rapid prototyping techniques to UAS, to develop a variety of platforms to host remote sensing instruments. In 2016, ARC received AeroVironment RQ-11A and RQ-11B Raven UAS from the US Department of the Interior, Office of Aviation Services. These aircraft have electric propulsion, a wingspan of roughly 1.3m, and have demonstrated reliability in challenging environments. The Raven airframe is an ideal foundation to construct more complex aircraft, and student interns using 3D printing were able to graft multiple Raven wings and fuselages into "FrankenRaven" aircraft. Aeronautical analysis shows that the new configuration has enhanced flight time, payload capacity, and distance compared to the original Raven. The FrankenRaven avionics architecture replaces the mil-spec avionics with COTS technology based upon the 3DR Pixhawk PX4 autopilot with a safety multiplexer for failsafe handoff to 2.4 GHz RC control and 915 MHz telemetry. This project demonstrates how design reuse, rapid prototyping, and modular subcomponents can be leveraged into flexible airborne platforms that can host a variety of remote sensing payloads and even multiple payloads. Modularity advances a new paradigm: mass-customization of aircraft around given payload(s). Multi-fuselage designs are currently under development to host a wide variety of payloads including a zenith-pointing spectrometer, a magnetometer, a multi-spectral camera, and a RGB camera. After airworthiness certification, flight readiness review, and test flights are performed at Crows Landing airfield in central California, field data will be taken at Kilauea volcano in Hawaii and other locations.
Scheduling of network access for feedback-based embedded systems
NASA Astrophysics Data System (ADS)
Liberatore, Vincenzo
2002-07-01
nd communication capabilities. Examples range from smart dust embedded in building materials to networks of appliances in the home. Embedded devices will be deployed in unprecedented numbers, will enable pervasive distributed computing, and will radically change the way people interact with the surrounding environment [EGH00a]. The paper targets embedded systems and their real-time (RT) communication requirements. RT requirements arise from the
Fabrication of Highly Ordered Anodic Aluminium Oxide Templates on Silicon Substrates
2007-01-01
highly ordered anodic aluminium oxide ( AAO ) templates of unprecedented pore uniformity directly on Si, enabled by new advances on two fronts – direct...field emitter, sensors, oscillators and photodetectors. 15. SUBJECT TERMS Anodic aluminum oxide , template-assisted nanofabrication, carbon nanotube...Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer’, Synth. Met
ERIC Educational Resources Information Center
Brabant, Michael Ian
2015-01-01
As the world is experiencing unprecedented changes and challenges, it is essential to develop educational approaches that enable current and future leaders to be effective in meeting them. To do so, education must foster transformation of the learner to achieve an inclusive, dynamic, and flexible approach to life. This dissertation involved a case…
NASA Technical Reports Server (NTRS)
Stodieck, Louis S.; Robinson, M. C.; Luttges, M. W.
1994-01-01
The Generic Bioprocessing Apparatus (BPA) payload was developed by BioServe to support the commercial flight development needs of our specialized consortia comprised of business, academic, and government entities. The consortia have commitments to explore commercial opportunities in bioprocessing, biomedical models, and closed agricultural systems. In addition, some members of BioServe have interests in the development and/or qualification of enabling flight hardware used in life sciences space flight testing. Some business and academic entities have interests in more than one of these consortia. To aid in payload development, flight, and analysis, each consortium member contributes resources ranging from proprietary expertise and materials, to hardware and cash. Professionals from business, academia, and government often interact with each other via graduate research assistants who do much of the 'hands-on' payload preparation and subsequent data analyses. The GBA supported research, testing, and development activities for each different BioServe consortium. It produced an environment in which professionals from diverse backgrounds came together with a single focus. And, it provided a truly novel learning environment for a youthful new cadre of space professionals committed to the exploration of commercial opportunities presented by space. Since the GBA supported a large number of different experiments, this paper briefly describes the payload characteristics and the essential operations of the payload. A summary of the experiments is presented. Finally, a few of the experiments are described in detail highlighting some novel effects of space flight on life science systems. Portions of the reported work have or will appear in appropriate archival journals as cited in the bibliography. In several instances, data collected from USML-1 have been supplemented with related data collected on more recent STS missions.
NASA Astrophysics Data System (ADS)
Crawford, Ian A.
2016-06-01
In this paper we outline the range of probes and scientific instruments that will be required in order for Icarus to fulfill its scientific mission of exploring a nearby star, its attendant planetary system, and the intervening interstellar medium. Based on this preliminary analysis, we estimate that the minimum total Icarus scientific payload mass (i.e. the mass of probes and instruments which must be decelerated to rest in the target system to enable a meaningful programme of scientific investigation) will be in the region of 100 tonnes. Of this, approximately 10 tonnes would be allocated for cruise-phase science instruments, and about 35 tonnes (i.e. the average of estimated lower and upper limits of 28 and 41 tonnes) would be contributed by the intra-system science payload itself (i.e. the dry mass of the stellar and planetary probes and their instruments). The remaining ~55 tonnes is allocated for the sub-probe intra-system propulsion requirements (crudely estimated from current Solar System missions; detailed modelling of sub-probe propulsion systems will be needed to refine this figure). The overall mass contributed by the science payload to the total that must be decelerated from the interstellar cruise velocity will be considerably more than 100 tonnes, however, as allowance must be made for the payload structural and infrastructural elements required to support, deploy, and communicate with the science probes and instruments. Based on the earlier Daedalus study, we estimate another factor of two to allow for these components. Pending the outcome of more detailed studies, it therefore appears that an overall science-related payload mass of ~200 tonnes will be required. This paper is a submission of the Project Icarus Study Group.
Sounding Rocket Launches Successfully from Alaska
2015-01-28
Caption: Time lapse photo of the NASA Oriole IV sounding rocket with Aural Spatial Structures Probe as an aurora dances over Alaska. All four stages of the rocket are visible in this image. Credit: NASA/Jamie Adkins More info: On count day number 15, the Aural Spatial Structures Probe, or ASSP, was successfully launched on a NASA Oriole IV sounding rocket at 5:41 a.m. EST on Jan. 28, 2015, from the Poker Flat Research Range in Alaska. Preliminary data show that all aspects of the payload worked as designed and the principal investigator Charles Swenson at Utah State University described the mission as a “raging success.” “This is likely the most complicated mission the sounding rocket program has ever undertaken and it was not easy by any stretch," said John Hickman, operations manager of the NASA sounding rocket program office at the Wallops Flight Facility, Virginia. "It was technically challenging every step of the way.” “The payload deployed all six sub-payloads in formation as planned and all appeared to function as planned. Quite an amazing feat to maneuver and align the main payload, maintain the proper attitude while deploying all six 7.3-pound sub payloads at about 40 meters per second," said Hickman. Read more: www.nasa.gov/content/assp-sounding-rocket-launches-succes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Sounding Rocket Launches Successfully from Alaska
2015-01-28
A NASA Oriole IV sounding rocket with the Aural Spatial Structures Probe leaves the launch pad on Jan. 28, 2015, from the Poker Flat Research Range in Alaska. Credit: NASA/Lee Wingfield More info: On count day number 15, the Aural Spatial Structures Probe, or ASSP, was successfully launched on a NASA Oriole IV sounding rocket at 5:41 a.m. EST on Jan. 28, 2015, from the Poker Flat Research Range in Alaska. Preliminary data show that all aspects of the payload worked as designed and the principal investigator Charles Swenson at Utah State University described the mission as a “raging success.” “This is likely the most complicated mission the sounding rocket program has ever undertaken and it was not easy by any stretch," said John Hickman, operations manager of the NASA sounding rocket program office at the Wallops Flight Facility, Virginia. "It was technically challenging every step of the way.” “The payload deployed all six sub-payloads in formation as planned and all appeared to function as planned. Quite an amazing feat to maneuver and align the main payload, maintain the proper attitude while deploying all six 7.3-pound sub payloads at about 40 meters per second," said Hickman. Read more: www.nasa.gov/content/assp-sounding-rocket-launches-succes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Exomars 2018 Rover Pasteur Payload
NASA Astrophysics Data System (ADS)
Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Lindner, R.; Pacros, A.; Trautner, R.; Vag, J.
ars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA carrying an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. While the ExoMars 2016 mission will accomplish a technological objective (Entry, Descent and Landing of a payload on the surface) and a Scientific objective (investigation of Martian atmospheric trace gases and their sources, focussing particularly on methane), the ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover includes a drill for accessing underground materials, and a Sample Preparation and Distribution System. The Rover will travel several kilometres looking for sites warranting further investigation, where it will collect and analyse samples from within outcrops and from the subsurface for traces of complex organic molecules. In addition to further details on this Exomars 2018 rover mission, this presentation will focus on the scientific objectives and the instruments needed to achieve them, including details of how the Pasteur Payload as a whole addresses Mars research objectives.
ASTERIA: Arcsecond Space Telescope Enabling Research in Astrophysics
NASA Astrophysics Data System (ADS)
Knapp, M.; Seager, S.; Smith, M. W.; Pong, C. M.
2017-12-01
ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics) is a technology demonstration and opportunistic science mission to advance the state of the art in CubeSat capabilities for astrophysical measurements. The goal of ASTERIA is to achieve arcsecond-level line of sight pointing error and highly stable focal plane temperature control. These technologies will enable precision photometry, i.e. the careful measurement of stellar brightness over time. This in turn provides a way to study stellar activity, transiting exoplanets, and other astrophysical phenomena, both during the ASTERIA mission and in future CubeSat constellations. ASTERIA is a 6U CubeSat (roughly 10 x 20 x 30 cm, 12 kg) that will operate in low-Earth orbit. The payload consists of a lens and baffle assembly, a CMOS imager, and a two-axis piezoelectric positioning stage on which the focal plane is mounted. A set of commercial reaction wheels provides coarse attitude control. Fine pointing control is achieved by tracking a set of guide stars on the CMOS sensor and moving the piezoelectric stage to compensate for residual pointing errors. Precision thermal control is achieved by isolating the payload from the spacecraft bus, passively cooling the detector, and using trim heaters to perform small temperature corrections over the course of an observation. The ASTERIA project is a collaboration with MIT and is funded at JPL through the Phaeton Program for training early career employees. Flight hardware was delivered in June 2017, with launch expected in August 2017 and deployment targeted for October 2017.
The Aerosonde Robotic Aircraft: A New Paradigm for Environmental Observations.
NASA Astrophysics Data System (ADS)
Holland, G. J.; Webster, P. J.; Curry, J. A.; Tyrell, G.; Gauntlett, D.; Brett, G.; Becker, J.; Hoag, R.; Vaglienti, W.
2001-05-01
The Aerosonde is a small robotic aircraft designed for highly flexible and inexpensive operations. Missions are conducted in a completely robotic mode, with the aircraft under the command of a ground controller who monitors the mission. Here we provide an update on the Aerosonde development and operations and expand on the vision for the future, including instrument payloads, observational strategies, and platform capabilities. The aircraft was conceived in 1992 and developed to operational status in 1995-98, after a period of early prototyping. Continuing field operations and development since 1998 have led to the Aerosonde Mark 3, with ~2000 flight hours completed. A defined development path through to 2002 will enable the aircraft to become increasingly more robust with increased flexibility in the range and type of operations that can be achieved. An Aerosonde global reconnaissance facility is being developed that consists of launch and recovery sites dispersed around the globe. The use of satellite communications and internet technology enables an operation in which all aircraft around the globe are under the command of a single center. During operation, users will receive data at their home institution in near-real time via the virtual field environment, allowing the user to update the mission through interaction with the global command center. Sophisticated applications of the Aerosonde will be enabled by the development of a variety of interchangeable instrument payloads and the operation of Smart Aerosonde Clusters that allow a cluster of Aerosondes to interact intelligently in response to the data being collected.
Design and qualification of the STREEGO multispectral payload
NASA Astrophysics Data System (ADS)
Rossi, Massimiliano; Arcangeli, Luigina; Bianucci, Giovanni; Capuano, Giuseppe; Formicola, Giuseppe; Longobardi, Pasquale; Maresi, Luca; Mazzoleni, Ruben; Spinelli, Sebastiano M.; Taccola, Matteo; Terraneo, Marco; Zocchi, Fabio E.
2017-09-01
The increasing number of Earth Observation missions launched over the last decade has stimulated the development of a large number of satellite instruments able to acquire and deliver rich imageries suitable to support many different applications. Recent advances in electronics, optical manufacturing and remote sensing are now enabling the conception of smaller instruments that could enable new mission concepts at lower costs such as the adoption of satellite constellations for improved temporal resolution. In this paper we present the development of an innovative optical payload named STREEGO suitable for Earth Observation from Low Earth Orbit (LEO) microsatellites. STREEGO is an athermal, fully reflective telescope based on a three mirror anastigmat (TMA) design which features a 200 mm aperture, a focal length of 1.2 m and an across-track Field of View (FoV) of about 2°. Leveraging on a large format two-dimensional CMOS sensor with a pixel size of 5.5 μm, it delivers a nominal modulation transfer function (MTF) of 64% at Nyquist frequency and a ground sampling distance of 2.75 m from an altitude of 600 km. In the design of the instrument detailed stray-light and tolerance analyses were performed and a worst-case thermal model was also developed to ensure that optimal image quality is achieved under operational conditions. After preliminary tests on a Demonstrator Model (DM), an Engineering Model (EM) of the payload with a mass of 20 kg including its electronics and mounting interfaces has been integrated and tested in laboratory and it is now ready to start an environmental test campaign to increase its Technology Readiness Level (TRL). The qualification of the instrument and the results achieved are presented in detail.
Polymer-coated albumin microspheres as carriers for intravascular tumour targeting of cisplatin.
Verrijk, R; Smolders, I J; McVie, J G; Begg, A C
1991-01-01
We used a poly-lactide-co-glycolide polymer (PLAGA 50:50) to formulate cisplatin (cDDP) into microspheres designed for intravascular administration. Two systems were developed. PLAGA-coated albumin microspheres and microspheres consisting of PLAGA only. PLAGA-coated microspheres displayed a mean diameter of 31.8 +/- 0.9 microns and a payload of 7.5% cDDP (w/w). Solid PLAGA microspheres exhibited a mean diameter of 19.4 +/- 0.6 microns and a payload of 20% cDDP. Release characteristics and in vitro effects on L1210 leukemia and B16 melanoma cell lines were investigated. Both types of microsphere overcame the initial rapid release of cDDP (burst effect), and PLAGA-coated albumin microspheres also showed a lag phase of approximately 30 min before cDDP release began. PLAGA-coated albumin microspheres released most of their payload through diffusion, and the coating eventually cracked after 7 days' incubation in saline supplemented with 0.1% Tween at 37 degrees C, enabling the release of any cDDP remaining. Effects of platinum, pre-released from PLAGA-coated albumin microspheres on the in vitro growth of L1210 cells were comparable with those of standard formulations (dissolved) of cDDP. Material released from non-drug-loaded PLAGA microspheres had no effect on L1210 cell growth, suggesting the absence of cytotoxic compounds in the matrix. The colony-forming ability of B16 cells was also equally inhibited by standard cDDP and pre-released drug. These studies show that formulation of cDDP in PLAGA-based microspheres prevents the rapid burst effect of cDDP seen in previous preparations and offers an improved system of administration for hepatic artery infusion or adjuvant therapy, enabling better clinical handling and the promise of a higher ratio of tumour tissue to normal tissue.
Affordable Launch Services using the Sport Orbit Transfer System
NASA Astrophysics Data System (ADS)
Goldstein, D. J.
2002-01-01
Despite many advances in small satellite technology, a low-cost, reliable method is needed to place spacecraft in their de- sired orbits. AeroAstro has developed the Small Payload ORbit Transfer (SPORTTM) system to provide a flexible low-cost orbit transfer capability, enabling small payloads to use low-cost secondary launch opportunities and still reach their desired final orbits. This capability allows small payloads to effectively use a wider variety of launch opportunities, including nu- merous under-utilized GTO slots. Its use, in conjunction with growing opportunities for secondary launches, enable in- creased access to space using proven technologies and highly reliable launch vehicles such as the Ariane family and the Starsem launcher. SPORT uses a suite of innovative technologies that are packaged in a simple, reliable, modular system. The command, control and data handling of SPORT is provided by the AeroAstro BitsyTM core electronics module. The Bitsy module also provides power regulation for the batteries and optional solar arrays. The primary orbital maneuvering capability is provided by a nitrous oxide monopropellant propulsion system. This system exploits the unique features of nitrous oxide, which in- clude self-pressurization, good performance, and safe handling, to provide a light-weight, low-cost and reliable propulsion capability. When transferring from a higher energy orbit to a lower energy orbit (i.e. GTO to LEO), SPORT uses aerobraking technol- ogy. After using the propulsion system to lower the orbit perigee, the aerobrake gradually slows SPORT via atmospheric drag. After the orbit apogee is reduced to the target level, an apogee burn raises the perigee and ends the aerobraking. At the conclusion of the orbit transfer maneuver, either the aerobrake or SPORT can be shed, as desired by the payload. SPORT uses a simple design for high reliability and a modular architecture for maximum mission flexibility. This paper will discuss the launch system and its application to small satellite launch without increasing risk. It will also discuss relevant issues such as aerobraking operations and radiation issues, as well as existing partnerships and patents for the system.
Genome Engineering and Agriculture: Opportunities and Challenges.
Baltes, Nicholas J; Gil-Humanes, Javier; Voytas, Daniel F
2017-01-01
In recent years, plant biotechnology has witnessed unprecedented technological change. Advances in high-throughput sequencing technologies have provided insight into the location and structure of functional elements within plant DNA. At the same time, improvements in genome engineering tools have enabled unprecedented control over genetic material. These technologies, combined with a growing understanding of plant systems biology, will irrevocably alter the way we create new crop varieties. As the first wave of genome-edited products emerge, we are just getting a glimpse of the immense opportunities the technology provides. We are also seeing its challenges and limitations. It is clear that genome editing will play an increased role in crop improvement and will help us to achieve food security in the coming decades; however, certain challenges and limitations must be overcome to realize the technology's full potential. © 2017 Elsevier Inc. All rights reserved.
Visual representation of scientific information.
Wong, Bang
2011-02-15
Great technological advances have enabled researchers to generate an enormous amount of data. Data analysis is replacing data generation as the rate-limiting step in scientific research. With this wealth of information, we have an opportunity to understand the molecular causes of human diseases. However, the unprecedented scale, resolution, and variety of data pose new analytical challenges. Visual representation of data offers insights that can lead to new understanding, whether the purpose is analysis or communication. This presentation shows how art, design, and traditional illustration can enable scientific discovery. Examples will be drawn from the Broad Institute's Data Visualization Initiative, aimed at establishing processes for creating informative visualization models.
Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors
Gao, Jian; Kim, Young Duck; Liang, Liangbo; ...
2016-09-20
Semiconductor impurity doping has enabled an entire generation of technology. The emergence of alternative semiconductor material systems, such as transition metal dichalcogenides (TMDCs), requires the development of scalable doping strategies. We report an unprecedented one-pot synthesis for transition-metal substitution in large-area, synthetic monolayer TMDCs. Electron microscopy, optical and electronic transport characterization and ab initio calculations indicate that our doping strategy preserves the attractive qualities of TMDC monolayers, including semiconducting transport and strong direct-gap luminescence. These results are expected to encourage exploration of transition-metal substitution in two-dimensional systems, potentially enabling next-generation optoelectronic technology in the atomically-thin regime.
The Transient High Energy Sky and Early Universe Surveyor
NASA Astrophysics Data System (ADS)
O'Brien, P. T.
2016-04-01
The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next-generation facilities.(c) Provide IR survey capabilities in space and strong guest observer possibilities, thus allowing a strong community involvement. All transient alerts will be public.
Pixel detectors for x-ray imaging spectroscopy in space
NASA Astrophysics Data System (ADS)
Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.
2009-03-01
Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.
On the capabilities and limitations of high altitude pseudo-satellites
NASA Astrophysics Data System (ADS)
Gonzalo, Jesús; López, Deibi; Domínguez, Diego; García, Adrián; Escapa, Alberto
2018-04-01
The idea of self-sustaining air vehicles that excited engineers in the seventies has nowadays become a reality as proved by several initiatives worldwide. High altitude platforms, or Pseudo-satellites (HAPS), are unmanned vehicles that take advantage of weak stratospheric winds and solar energy to operate without interfering with current commercial aviation and with enough endurance to provide long-term services as satellites do. Target applications are communications, Earth observation, positioning and science among others. This paper reviews the major characteristics of stratospheric flight, where airplanes and airships will compete for best performance. The careful analysis of involved technologies and their trends allow budget models to shed light on the capabilities and limitations of each solution. Aerodynamics and aerostatics, structures and materials, propulsion, energy management, thermal control, flight management and ground infrastructures are the critical elements revisited to assess current status and expected short-term evolutions. Stratospheric airplanes require very light wing loading, which has been demonstrated to be feasible but currently limits their payload mass to few tenths of kilograms. On the other hand, airships need to be large and operationally complex but their potential to hover carrying hundreds of kilograms with reasonable power supply make them true pseudo-satellites with enormous commercial interest. This paper provides useful information on the relative importance of the technology evolutions, as well as on the selection of the proper platform for each application or set of payload requirements. The authors envisage prompt availability of both types of HAPS, aerodynamic and aerostatic, providing unprecedented services.
EELV Secondary Payload Adapter (ESPA) Ring: Overcoming Challenges to Enable Responsive Space
2011-09-01
must also comply with the Air Force Space Command Manual ( AFSPCMAN ) 91 – 710 , Volumes 1, 3 , and 6 and will rely upon a sponsoring agency to...ONLY (Leave blank) 2. REPORT DATE September 2011 3 . REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Robert M. Atkins 5...Strategy ...................................14 3 . EELV—Application and Intent ........................................................16 C. SPACE
NASA Astrophysics Data System (ADS)
Beegle, L. W.; Bhartia, R.; DeFlores, L. P.; Abbey, W.; Asher, S. A.; Burton, A. S.; Fries, M.; Conrad, P. G.; Clegg, S. M.; Wiens, R. C.; Edgett, K. S.; Ehlmann, B. L.; Nealson, K. H.; Minitti, M. E.; Popp, J.; Langenhorst, F.; Sobron, P.; Steele, A.; Williford, K. H.; Yingst, R. A.
2017-12-01
The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) investigation is part of the Mars 2020 integrated payload. SHERLOC enables non-contact, spatially resolved, and highly sensitivity detection and characterization of organics and minerals in the Martian surface and near subsurface. SHERLOC is an arm-mounted, Deep UV (DUV) resonance Raman and fluorescence spectrometer utilizing a 248.6-nm DUV laser. Deep UV induced native fluorescence is very sensitive to condensed carbon and aromatic organics, enabling detection at or below 10-6 w/w (1 ppm) at <100 µm spatial scales. SHERLOC's deep UV resonance Raman enables detection and classification of aromatic and aliphatic organics with sensitivities of 10-2 to below 10-4 w/w. In addition to organics, the deep UV Raman enables detection and classification of minerals relevant to aqueous chemistry with grain sizes below 20 µm. SHERLOC will be able to map the distribution of organic material with respect to visible features and minerals that are identifiable with the Raman spectrometer. These maps will enable analysis of the distribution of organics with minerals.
A Study of the Economic Benefit Potential of Intermodal Transports
NASA Technical Reports Server (NTRS)
Nelson, J. M.; Kawai, R. T.; Gregg, R. D.; McKinley, Robert E., Jr. (Technical Monitor)
2001-01-01
A conceptual study was conducted to determine the benefit potential of an Intermodal Transport in which quick change payload modules are used to reduce the cost of air travel by increasing daily utilization. Three basic concepts varying the degree of modularity were investigated for a 122,000 pounds payload 3,000 NM range regional wide body transport. The profit potential for operating as a passenger transport during the day and as a freighter at night was assessed. Assuming current levels of profitability, Intermodal operations could offer an operating cost reduction potential up to 20%. Enabling technology needs are identified as very quiet aircraft for expanded night operations, distributed load carrying quick disconnect latching, and configuration dependent safety issues. Recommendations are made to explore if additional benefits are possible from alternative mission and usage modules.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Commander Michael Anderson trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Anderson and other crew members Commander Rick D. Husband, Pilot William C. McCool, Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. . As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla looks over equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Mission Specialist David M. Brown trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Brown and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on a glove box experiment inside the training module. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, trains on equipment in the training module at SPACEHAB, Cape Canaveral. Ramon and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla looks over equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2001-12-19
KENNEDY SPACE CENTER, FLA. -- STS-107 Commander Rick Husband and Mission Specialist Laurel Clark learn to work with mission-related equipment at SPACEHAB, Cape Canaveral, Fla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2001-12-19
KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, Cape Canaveral, Fla., Commander Rick Husband works with an experiment that will be part of the mission. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2002-01-10
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
2001-06-11
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
NASA Technical Reports Server (NTRS)
Miernik, Janie
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.
Mission Implementation Constraints on Planetary Muon Radiography
NASA Technical Reports Server (NTRS)
Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank
2011-01-01
Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)
Wireless Command-and-Control of UAV-Based Imaging LANs
NASA Technical Reports Server (NTRS)
Herwitz, Stanley; Dunagan, S. E.; Sullivan, D. V.; Slye, R. E.; Leung, J. G.; Johnson, L. F.
2006-01-01
Dual airborne imaging system networks were operated using a wireless line-of-sight telemetry system developed as part of a 2002 unmanned aerial vehicle (UAV) imaging mission over the USA s largest coffee plantation on the Hawaiian island of Kauai. A primary mission objective was the evaluation of commercial-off-the-shelf (COTS) 802.11b wireless technology for reduction of payload telemetry costs associated with UAV remote sensing missions. Predeployment tests with a conventional aircraft demonstrated successful wireless broadband connectivity between a rapidly moving airborne imaging local area network (LAN) and a fixed ground station LAN. Subsequently, two separate LANs with imaging payloads, packaged in exterior-mounted pressure pods attached to the underwing of NASA's Pathfinder-Plus UAV, were operated wirelessly by ground-based LANs over independent Ethernet bridges. Digital images were downlinked from the solar-powered aircraft at data rates of 2-6 megabits per second (Mbps) over a range of 6.5 9.5 km. An integrated wide area network enabled payload monitoring and control through the Internet from a range of ca. 4000 km during parts of the mission. The recent advent of 802.11g technology is expected to boost the system data rate by about a factor of five.
A Unique Power System For The ISS Fluids And Combustion Facility
NASA Technical Reports Server (NTRS)
Fox, David A.; Poljak, Mark D.
2001-01-01
Unique power control technology has been incorporated into an electrical power control unit (EPCU) for the Fluids and Combustion Facility (FCF). The objective is to maximize science throughput by providing a flexible power system that is easily reconfigured by the science payload. Electrical power is at a premium on the International Space Station (ISS). The EPCU utilizes advanced power management techniques to maximize the power available to the FCF experiments. The EPCU architecture enables dynamic allocation of power from two ISS power channels for experiments. Because of the unique flexible remote power controller (FRPC) design, power channels can be paralleled while maintaining balanced load sharing between the channels. With an integrated and redundant architecture, the EPCU can tolerate multiple faults and still maintain FCF operation. It is important to take full advantage of the EPCU functionality. The EPCU acts as a buffer between the experimenter and the ISS power system with all its complex requirements. However, FCF science payload developers will still need to follow guidelines when designing the FCF payload power system. This is necessary to ensure power system stability, fault coordination, electromagnetic compatibility, and maximum use of available power for gathering scientific data.
Virtual reality applied to teletesting
NASA Astrophysics Data System (ADS)
van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon
2003-05-01
The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.
NASA Successfully Conducts Wallops Rocket Launch with Technology Experiments
2015-07-07
NASA successfully launched a NASA Black Brant IX suborbital sounding rocket carrying two space technology demonstration projects at 6:15 a.m. today. The rocket carried the SOAREX-8 Exo-Brake Flight Test from NASA’s Ames Research Center in California and the Radial Core Heat Spreader from NASA’s Glenn Research Center in Ohio. Preliminary analysis shows that data was received on both projects. The payload flew to an altitude of 206 miles and impacted in the Atlantic Ocean approximately 10 minutes after launch. The payload will not be recovered. The flight was conducted through NASA’s Space Technology Mission Directorate. The next launch from NASA’s Wallops Flight Facility is a Terrier-Improved Malemute suborbital sounding rocket early in the morning on August 11 carrying the RockSat-X university student payload. For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Puthenveetil, Sujiet; He, Haiyin; Loganzo, Frank; Musto, Sylvia; Teske, Jesse; Green, Michael; Tan, Xingzhi; Hosselet, Christine; Lucas, Judy; Tumey, L Nathan; Sapra, Puja; Subramanyam, Chakrapani; O'Donnell, Christopher J; Graziani, Edmund I
2017-01-01
Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.
Autonomous Acqisition of Science Grade Spectra From UAS's
NASA Astrophysics Data System (ADS)
Mandl, D.; Campbell, P. K. E.; Sohlberg, R. A.; Ong, L.; Cappelaere, P. G.
2017-12-01
We assembled a payload box which contains a QE Pro and a Flame hyperspectral instruments. The payload was mounted on a DJI Matrice 600 drone. The total weight of the drone and the payload was 38 lbs. It was flown over a United States Department of Agricultural (USDA) research field where corn and soybeans were grown. The fields were subdivided into areas that had a variety of treatments such as low nitrogen and high nitrogen. The research is centered on correlating the treatments with the year-end crop yields. Our effort was to monitor spectral data to recognize photosynthetic activity via proxies such as solar induced fluorescence (SIF). To detect SIF requires optimized spectra which is normalized into reflectance. We perform the optimization routine onboard. The intent is to demonstrate a viable measurement campaign that would enable a researcher to measure the fields diurnally over a growing season. What we found out is that there was more complexity to trying to make this happen then we originally thought. For one thing, we had limited battery life, limited payload capacity and sometimes the cloud cover did not cooperate. So the question was how to intelligently apply the resources using some onboard processing and software. Our long term vision is to have multiple drones act as an intelligent cluster and self-manage their own deployment at multiple locations and multiple altitudes, auto-adjustments and intelligent management of errors. This presentation will go over lessons learned, achievements and future directions.
High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4
NASA Astrophysics Data System (ADS)
Manni, Jeffrey; Harris, Dennis; Fan, Tso Yee
2018-06-01
A simple implementation of a multipass amplifier along with the use of a cryogenic Yb:LiYF4 (YLF) gain medium has enabled the demonstration of a bulk amplifier with an unprecedented combination of large-signal gain (43 dB), efficiency (>50% optical), average output power (40 W) and a near-diffraction-limited output beam.
Adaptive optical fluorescence microscopy.
Ji, Na
2017-03-31
The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.
Adams, Bernhard W.; Kim, Kwang -Je
2016-08-09
Here, x-ray free-electron-laser oscillators with nuclear-resonant cavity stabilization (NRS-XFELO) hold the promise for providing x-rays with unprecedented coherence properties that will enable interesting quantum-optical and metrological applications. Among these are atom optics with x-ray-based optical elements providing high momentum transfer, or a frequency standard far surpassing the best state-of the-art atomic clocks.
Design and Analysis of a Hyperspectral Microwave Receiver Subsystem
NASA Technical Reports Server (NTRS)
Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.
2012-01-01
Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.
Leveraging advances in biology to design biomaterials
NASA Astrophysics Data System (ADS)
Darnell, Max; Mooney, David J.
2017-12-01
Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.
Cell diversity and network dynamics in photosensitive human brain organoids
Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z.; Sherwood, John L.; Yang, Sung Min; Berger, Daniel; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin; Boyden, Edward S.; Lichtman, Jeff; Williams, Ziv M.; McCarroll, Steven A.; Arlotta, Paola
2017-01-01
In vitro models of the developing brain such as 3D brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, it remains undefined what cells are generated within organoids and to what extent they recapitulate the regional complexity, cellular diversity, and circuit functionality of the brain. Here, we analyzed gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (over 9 months) enabling unprecedented levels of maturity including the formation of dendritic spines and of spontaneously-active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photoreceptor-like cells, which may offer ways to probe the functionality of human neuronal circuits using physiological sensory stimuli. PMID:28445462
Electrical power technology for robotic planetary rovers
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.
1993-01-01
Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.
Edison Demonstration of Smallsat Networks
NASA Technical Reports Server (NTRS)
Westley, Deborah; Martinez, Andres; Petro, Andrew
2015-01-01
The goal of NASA's Edison Demonstration of Smallsat Networks (EDSN) mission is to demonstrate interactive satellite swarms capable of collecting, exchanging and transmitting multi-point scientific measurements. Satellite swarms enable a wide array of scientific, commercial and academic research not achievable with a single satellite. The EDSN satellites are scheduled to be launched into space as secondary payloads on the first flight of the Super Strypi launch vehicle no earlier than Oct. 29, 2015.
2015-04-24
for designing blast-resistant structures [16]. The failure mechanisms in unidirectional fiber -reinforced composites of delamination, fiber -matrix...Batra, R.C., and Hassan, N.M., “Blast resistance of unidirectional fiber reinforced composites ,” Composites Part B: Engineering, 2008 18. Liu, X...feature a lighter weight structure, because this enables faster transport, higher mobility, greater fuel conservation, higher payload capacity, and
ELITE S2 - A Facility for Quantitative Human Movement Analysis on Board the ISS
NASA Astrophysics Data System (ADS)
Neri, Gianluca; Mascetti, Gabriele; Zolesi, Valfredo
2014-11-01
This paper describes the activities for utilization and control of ELITE S2 on board the International Space Station (ISS). ELITE S2 is a payload of the Italian Space Agency (ASI) for quantitative human movement analysis in weightlessness. Within the frame of a bilateral agreement with NASA, ASI has funded a number of facilities, enabling different scientific experiments on board the ISS. ELITE S2 has been developed by the ASI contractor Kayser Italia, delivered to the Kennedy Space Center in 2006 for pre-flight processing, launched in 2007 by the Space Shuttle Endeavour (STS-118), integrated in the U.S. lab and used during the Increments 16/17 (2008) and 33/34 (2012/2013). The ELITE S2 flight segment comprises equipment mounted into an Express Rack and a number of stowed items to be deployed for experiment performance (video cameras and accessories). The ground segment consists in a User Support Operations Center (based at Kayser Italia) enabling real-time payload control and a number of User Home Bases (located at the ASI and PIs premises), for the scientific assessment of the experiment performance. Two scientific protocols on reaching and cognitive processing have been successfully performed in eight sessions involving three ISS crewmembers: IMAGINE 2 and MOVE.
NASA Astrophysics Data System (ADS)
Rhodes, Russel E.; Byrd, Raymond J.
1998-01-01
This paper presents a ``back of the envelope'' technique for fast, timely, on-the-spot, assessment of affordability (profitability) of commercial space transportation architectural concepts. The tool presented here is not intended to replace conventional, detailed costing methodology. The process described enables ``quick look'' estimations and assumptions to effectively determine whether an initial concept (with its attendant cost estimating line items) provides focus for major leapfrog improvement. The Cost Charts Users Guide provides a generic sample tutorial, building an approximate understanding of the basic launch system cost factors and their representative magnitudes. This process will enable the user to develop a net ``cost (and price) per payload-mass unit to orbit'' incorporating a variety of significant cost drivers, supplemental to basic vehicle cost estimates. If acquisition cost and recurring cost factors (as a function of cost per payload-mass unit to orbit) do not meet the predetermined system-profitability goal, the concept in question will be clearly seen as non-competitive. Multiple analytical approaches, and applications of a variety of interrelated assumptions, can be examined in a quick, (on-the-spot) cost approximation analysis as this tool has inherent flexibility. The technique will allow determination of concept conformance to system objectives.
Open cyberGIS software for geospatial research and education in the big data era
NASA Astrophysics Data System (ADS)
Wang, Shaowen; Liu, Yan; Padmanabhan, Anand
CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.
Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.
Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.
Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung
2016-02-24
Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immersive virtual reality platform for medical training: a "killer-application".
2000-01-01
The Medical Readiness Trainer (MRT) integrates fully immersive Virtual Reality (VR), highly advanced medical simulation technologies, and medical data to enable unprecedented medical education and training. The flexibility offered by the MRT environment serves as a practical teaching tool today and in the near future the will serve as an ideal vehicle for facilitating the transition to the next level of medical practice, i.e., telepresence and next generation Internet-based collaborative learning.
Measuring temperature and field profiles in heat assisted magnetic recording
NASA Astrophysics Data System (ADS)
Hohlfeld, J.; Zheng, X.; Benakli, M.
2015-08-01
We introduce a theoretical and experimental framework that enables quantitative measurements of the temperature and magnetic field profiles governing the thermo-magnetic write process in heat assisted magnetic recording. Since our approach allows the identification of the correct temperature dependence of the magneto-crystalline anisotropy field in the vicinity of the Curie point as well, it provides an unprecedented experimental foundation to assess our understanding of heat assisted magnetic recording.
Remote Sensing from Geostationary Orbit: GEO TROPSAT, A New Concept for Atmospheric Remote Sensing
NASA Technical Reports Server (NTRS)
Little, Alan D.; Neil, Doreen O.; Sachse, Glen W.; Fishman, Jack; Krueger, Arlin J.
1997-01-01
The Geostationary Tropospheric Pollution Satellite (GEO TROPSAT) mission is a new approach to measuring the critical constituents of tropospheric ozone chemistry: ozone, carbon monoxide, nitrogen dioxide, and aerosols. The GEO TROPSAT mission comprises a constellation of three instruments flying as secondary payloads on geostationary communications satellites around the world. This proposed approach can significantly reduce the cost of getting a science payload to geostationary orbit and also generates revenue for the satellite owners. The geostationary vantage point enables simultaneous high temporal and spatial resolution measurement of tropospheric trace gases, leading to greatly improved atmospheric ozone chemistry knowledge. The science data processing, conducted as a research (not operational) activity, will provide atmospheric trace gas data many times per day over the same region at better than 25 km ground footprint. The high temporal resolution identifies short time scale processes, diurnal variations, seasonal trends, and interannual variation.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Commander Rick D. Husband (left) and Pilot William C. McCool train in the SPACHEAB Double Module that will fly on their mission. Husband, McCool and other crew members Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB, Cape Canaveral, Fla., to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., the STS-107 crew takes part in Crew Equipment Interface Test (CEIT) activities. From left are Mission Specialist Laurel Blair Salton Clark, Commander Rick Douglas Husband, Payload Specialist Ilan Ramon, of Israel, and Payload Commander Michael P. Anderson. A trainer is at far right. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool and Mission Specialists Kalpana Chawla and David M. Brown. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Payload Specialist Ilan Ramon (foreground), of Israel, and Mission Specialist Kalpana Chawla (background) check out experiments inside the Spacehab module. They and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. . Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Concept document
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) concept document describes and establishes requirements for the functional performance of the SCS system, including interface, logistic, and qualification requirements. The SCS is the computational communications and display segment of the Marshall Space Flight Center (MSFC) Payload Training Complex (PTC). The PTC is the MSFC facility that will train onboard and ground operations personnel to operate the payloads and experiments on board the international Space Station Freedom. The requirements to be satisfied by the system implementation are identified here. The SCS concept document defines the requirements to be satisfied through the implementation of the system capability. The information provides the operational basis for defining the requirements to be allocated to the system components and enables the system organization to assess whether or not the completed system complies with the requirements of the system.
Customized altitude-azimuth mount for a raster-scanning Fourier transform spectrometer
NASA Astrophysics Data System (ADS)
Durrenberger, Jed E.; Gutman, William M.; Gammill, Troy D.; Grover, Dennis H.
1996-10-01
Applications of the Army Research Laboratory Mobile Atmospheric Spectrometer Remote Sensing Rover required development of a customized computer-controlled mount to satisfy a variety of requirements within a limited budget. The payload was designed to operate atop a military electronics shelter mounted on a 4-wheel drive truck to be above most atmospheric ground turbulence. Pointing orientation in altitude is limited by constraints imposed by use of a liquid nitrogen detector Dewar in the spectrometer. Stepper motor drives and control system are compatible with existing custom software used with other instrumentation for controlled incremental raster stepping. The altitude axis passes close to the center of gravity of the complete payload to minimize load eccentricity and drive torque requirements. Dovetail fixture mounting enables quick service and fine adjustment of balance to minimize stepper/gearbox drive backlash through the limited orientation range in altitude. Initial applications to characterization of remote gas plumes have been successful.
STS-107 Mission Specialist Kalpana Chawla at SPACEHAB during training
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Kalpana Chawla scans paperwork for equipment at SPACEHAB, Cape Canaveral, Fla., during crew training. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
A general framework for solving the dynamic load distribution when two manipulators hold a rigid object is proposed. The underspecified problem of solving for the contact forces and torques based on the object`s equations of motion is transformed into a well specified problem. This is accomplished by augmenting the object`s equations of motion with additional equations which relate a new vector variable quantifying the internal contact force and torque degrees of freedom (DOF) as a linear function of the contact forces and torques. The resulting augmented system yields a well specified solution for the contact forces and torques in whichmore » they are separated into their motion inducing and internal components. A particular solution is suggested which enables the designer to conveniently specify what portion of the payload`s mass each manipulator is to bear. It is also shown that the results of the previous work are just a special case of the general load distribution framework described here.« less
Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy
NASA Technical Reports Server (NTRS)
Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel
2011-01-01
The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.
2001-12-19
KENNEDY SPACE CENTER, FLA. - At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew familiarize themselves with experiments and equipment for the mission. Pointing at a piece of equipment (center) is Mission Specialist Laurel Clark . At right is Mission Specialist Kalpana Chawla. STS-107 is a research mission. The primary payload is the first flight of the SHI Research Double Module (SHI/RDM). The experiments range from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments: Mediterranean Israeli Dust Experiment (MEIDEX), Shuttle Ozone Limb Sounding Experiment (SOLSE-2), Student Tracked Atmospheric Research Satellite for Heuristic International Networking Experiment (STARSHINE), Critical Viscosity of Xenon-2 (CVX-2), Solar Constant Experiment-3 (SOLOCON-3), Prototype Synchrotron Radiation Detector (PSRD), Low Power Transceiver (LPT), and Collisions Into Dust Experiment -2 (COLLIDE-2). STS-107 is scheduled to launch in July 2002
Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion
NASA Technical Reports Server (NTRS)
Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.
2005-01-01
A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.
Pegasus XL CYGNSS Payload Adapter Installation to Deployment Mod
2016-10-17
Technicians with Orbital ATK install the payload adapter to the deployment module that contains the micro satellites for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.
Aerocapture Inflatable Decelerator for Planetary Entry
NASA Technical Reports Server (NTRS)
Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen
2007-01-01
Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.
NASA's Space Launch System: Deep-Space Delivery for SmallSats
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Norris, George
2017-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, an uncrewed test of the Orion spacecraft into distant retrograde orbit around the moon, accompanying Orion on SLS will be 13 small-satellite secondary payloads, which will deploy in cislunar space. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. The Space Launch System Program is working actively with the developers of the payloads toward vehicle integration. Following its first flight and potentially as early as its second, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO, and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from those on the first launch, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for small satellites. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.
LUVOIR and HabEx mission concepts enabled by NASA's Space Launch System
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; MSFC Advanced Concept Office
2016-01-01
NASA Marshall Space Flight Center has developed candidate concepts for the 'decadal' LUVOIR and HabEx missions. ATLAST-12 is a 12.7 meter diameter on-axis telescope designed to meet the science objectives of the AURA Cosmic Earth to Living Earth report. HabEx-4 is a 4.0 meter diameter off-axis telescope designed to both search for habitable planets and perform general astrophysics observations. These mission concepts take advantage of the payload mass and volume capacity enabled by NASA Space Launch System to make the design architectures as simple as possible. Simplicity is important because complexity is a significant contributor to mission risk and cost. This poster summarizes the two mission concepts.
High Temperature Composite Heat Exchangers
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Jaskowiak, Martha H.
2002-01-01
High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.
Enabling Exploration Missions Now: Applications of On-orbit Staging
NASA Technical Reports Server (NTRS)
Folta, David C.; Vaughn, Frank; Westmeyer, Paul; Rawitscher, Gary; Bordi, Francesco
2005-01-01
Future NASA Exploration goals are difficult to meet using current launch vehicle implementations and techniques. We introduce a concept of On-Orbit Staging (OOS) using multiple launches into a Low Earth orbit (LEO) staging area to increase payload mass and reduce overall cost for exploration initiative missions. This concept is a forward-looking implementation of ideas put forth by Oberth and Von Braun to address the total mission design. Applying staging throughout the mission and utilizing technological advances in propulsion efficiency and architecture enable us to show that exploration goals can be met in the next decade. As part of this architecture, we assume the readiness of automated rendezvous, docking, and assembly technology.
Athena Mars rover science investigation
NASA Astrophysics Data System (ADS)
Squyres, Steven W.; Arvidson, Raymond E.; Baumgartner, Eric T.; Bell, James F.; Christensen, Philip R.; Gorevan, Stephen; Herkenhoff, Kenneth E.; Klingelhöfer, Göstar; Madsen, Morten Bo; Morris, Richard V.; Rieder, Rudolf; Romero, Raul A.
2003-12-01
Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini-TES). Pancam provides high-resolution, color, stereo imaging, while Mini-TES provides spectral cubes at mid-infrared wavelengths. For in-situ study, a five degree-of-freedom arm called the Instrument Deployment Device (IDD) carries four more tools: a Microscopic Imager (MI) for close-up imaging, an Alpha Particle X-Ray Spectrometer (APXS) for elemental chemistry, a Mössbauer Spectrometer (MB) for the mineralogy of Fe-bearing materials, and a Rock Abrasion Tool (RAT) for removing dusty and weathered surfaces and exposing fresh rock underneath. The payload also includes magnets that allow the instruments to study the composition of magnetic Martian materials. All of the Athena instruments have undergone extensive calibration, both individually and using a set of geologic reference materials that are being measured with all the instruments. Using a MER-like rover and payload in a number of field settings, we have devised operations processes that will enable us to use the MER rovers to formulate and test scientific hypotheses concerning past environmental conditions and habitability at the landing sites.
The SALSA Project - High-End Aerial 3d Camera
NASA Astrophysics Data System (ADS)
Rüther-Kindel, W.; Brauchle, J.
2013-08-01
The ATISS measurement drone, developed at the University of Applied Sciences Wildau, is an electrical powered motor glider with a maximum take-off weight of 25 kg including a payload capacity of 10 kg. Two 2.5 kW engines enable ultra short take-off procedures and the motor glider design results in a 1 h endurance. The concept of ATISS is based on the idea to strictly separate between aircraft and payload functions, which makes ATISS a very flexible research platform for miscellaneous payloads. ATISS is equipped with an autopilot for autonomous flight patterns but under permanent pilot control from the ground. On the basis of ATISS the project SALSA was undertaken. The aim was to integrate a system for digital terrain modelling. Instead of a laser scanner a new design concept was chosen based on two synchronized high resolution digital cameras, one in a fixed nadir orientation and the other in a oblique orientation. Thus from every object on the ground images from different view angles are taken. This new measurement camera system MACS-TumbleCam was developed at the German Aerospace Center DLR Berlin-Adlershof especially for the ATISS payload concept. Special advantage in comparison to laser scanning is the fact, that instead of a cloud of points a surface including texture is generated and a high-end inertial orientation system can be omitted. The first test flights show a ground resolution of 2 cm and height resolution of 3 cm, which underline the extraordinary capabilities of ATISS and the MACS measurement camera system.
M-TeX and MIST Experiments Launched from Alaska
2017-12-08
Caption: Composite shot of all four rockets for the M-TeX and MIST experiments is made up of 30 second exposures. The rocket salvo began at 4:13 a.m. EST, Jan. 26, 2015, from the Poker Flat Research Range, Alaska. Credit: NASA/Jamie Adkins More info: The Mesosphere-Lower Thermosphere Turbulence Experiment, or M-TeX, and the Mesospheric Inversion-layer Stratified Turbulence, or MIST, experiment were successfully conducted the morning of Jan. 26, 2015, from the Poker Flat Research Range, Alaska. The first M-Tex rocket, a NASA Terrier-Improved Malemute sounding rocket, was launched at 4:13 a.m. EST and was followed one-minute later by the first MIST experiment payload on a NASA Terrier-Improved Orion. The second M-TeX payload was launched at 4:46 a.m. EST and also was followed one minute later by the second MIST payload. Preliminary data show that all four payloads worked as planned and the trimethyl aluminum, or TMA, vapor trails were seen at the various land-based observation sites in Alaska. A fifth rocket carrying the Auroral Spatial Structures Probe remains ready on the launch pad. The launch window for this experiment runs through Jan. 27. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Athena Mars rover science investigation
Squyres, S. W.; Arvidson, R. E.; Baumgartner, E.T.; Bell, J.F.; Christensen, P.R.; Gorevan, S.; Herkenhoff, K. E.; Klingelhofer, G.; Madsen, M.B.; Morris, R.V.; Rieder, R.; Romero, R.A.
2003-01-01
Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini-TES). Pancam provides high-resolution, color, stereo imaging, while Mini-TES provides spectral cubes at mid-infrared wavelengths. For in-situ study, a five degree-of-freedom arm called the Instrument Deployment Device (IDD) carries four more tools: a Microscopic Imager (MI) for close-up imaging, an Alpha Particle X-Ray Spectrometer (APXS) for elemental chemistry, a Mo??ssbauer Spectrometer (MB) for the mineralogy of Fe-bearing materials, and a Rock Abrasion Tool (RAT) for removing dusty and weathered surfaces and exposing fresh rock underneath. The payload also includes magnets that allow the instruments to study the composition of magnetic Martian materials. All of the Athena instruments have undergone extensive calibration, both individually and using a set of geologic reference materials that are being measured with all the instruments. Using a MER-like rover and payload in a number of field settings, we have devised operations processes that will enable us to use the MER rovers to formulate and test scientific hypotheses concerning past environmental conditions and habitability at the landing sites. Copyright 2003 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
1975-01-01
Transportation mass requirements are developed for various mission and transportation modes based on vehicle systems sized to fit the exact needs of each mission. The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data are described.
Aero-Structural Assessment of an Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Venugopalan, Vinod; Tan, X. G.; Liever, Peter A.; Habchi, Sami D.
2010-01-01
NASA is conducting an Entry, Descent and Landing Systems Analysis (EDL-SA) Study to determine the key technology development projects that should be undertaken for enabling the landing of large payloads on Mars for both human and robotic missions. Inflatable Aerodynamic Decelerators (IADs) are one of the candidate technologies. A variety of EDL architectures are under consideration. The current effort is conducted for development and simulations of computational framework for inflatable structures.
Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments
NASA Technical Reports Server (NTRS)
Simmons, Rainee N.; Wintucky, Edwin G.
2012-01-01
In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.
Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.
Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis
NASA Astrophysics Data System (ADS)
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Robotic planetary science missions enabled with small NTR engine/stage technologies
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.
1995-10-01
The high specific impulse (Isp) and engine thrust-to-weight ratio of liquid hydrogen (LH2)-cooled nuclear thermal rocket (NTR) engines makes them ideal for upper stage applications to difficult robotic planetary science missions. A small 15 thousand pound force (klbf) NTR engine using a uranium-zirconium-niobium 'ternary carbide' fuel (Isp approximately 960 seconds at approximately 3025K) developed in the Commonwealth of Independent States (CIS) is examined and its use on an expendable injection stage is shown to provide major increases in payload delivered to the outer planets (Saturn, Uranus, Neptune and Pluto). Using a single 'Titan IV-class' launch vehicle, with a lift capability to low Earth orbit (LEO) of approximately 20 metric tons (t), an expendable NTR upper stage can inject two Pluto 'Fast Flyby' spacecraft (PFF/SC) plus support equipment-combined mass of approximately 508 kg--on high energy, '6.5-9.2 year' direct trajectory missions to Pluto. A conventional chemical propulsion mission would use a liquid oxygen (LOX)/LH2 'Centaur' upper stage and two solid rocket 'kick motors' to inject a single PFF/SC on the same Titan IV launch vehicle. For follow on Pluto missions, the NTR injection stage would utilize a Jupiter 'gravity assist' (JGA) maneuver to launch a LOX/liquid methane (CH4) capture stage (Isp approximately 375 seconds) and a Pluto 'orbiter' spacecraft weighing between approximately 167-312 kg. With chemical propulsion, a Pluto orbiter mission is not a viable option because c inadequate delivered mass. Using a 'standardized' NTR injection stage and the same single Titan IV launch scenario, 'direct flight' (no gravity assist) orbiter missions to Saturn, Uranus and Neptune are also enabled with transit times of 2.3, 6.6, and 12.6 years, respectively. Injected mass includes a storable, nitrogen tetroxide/monomethyl hydrazine (N2O4/MMH) capture stage (Isp approximately 330 seconds) and orbiter payloads 340 to 820% larger than that achievable using a LOX/LH2-fueled injection stage. The paper discusses NTR technology and mission characteristics, shows NTR stage and payload accommodations within the 26.2 m long Titan IV payload fairing, and discusses NTR stage performance as a function of assumed cryogenic tank technology.
Robotic Planetary Science Missions Enabled with Small NTR Engine/Stage Technologies
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1995-01-01
The high specific impulse (Isp) and engine thrust-to-weight ratio of liquid hydrogen (LH2)-cooled nuclear thermal rocket (NTR) engines makes them ideal for upper stage applications to difficult robotic planetary science missions. A small 15 thousand pound force (klbf) NTR engine using a uranium-zirconium-niobium 'ternary carbide' fuel (Isp approximately 960 seconds at approximately 3025K) developed in the Commonwealth of Independent States (CIS) is examined and its use on an expendable injection stage is shown to provide major increases in payload delivered to the outer planets (Saturn, Uranus, Neptune and Pluto). Using a single 'Titan IV-class' launch vehicle, with a lift capability to low Earth orbit (LEO) of approximately 20 metric tons (t), an expendable NTR upper stage can inject two Pluto 'Fast Flyby' spacecraft (PFF/SC) plus support equipment-combined mass of approximately 508 kg--on high energy, '6.5-9.2 year' direct trajectory missions to Pluto. A conventional chemical propulsion mission would use a liquid oxygen (LOX)/LH2 'Centaur' upper stage and two solid rocket 'kick motors' to inject a single PFF/SC on the same Titan IV launch vehicle. For follow on Pluto missions, the NTR injection stage would utilize a Jupiter 'gravity assist' (JGA) maneuver to launch a LOX/liquid methane (CH4) capture stage (Isp approximately 375 seconds) and a Pluto 'orbiter' spacecraft weighing between approximately 167-312 kg. With chemical propulsion, a Pluto orbiter mission is not a viable option because c inadequate delivered mass. Using a 'standardized' NTR injection stage and the same single Titan IV launch scenario, 'direct flight' (no gravity assist) orbiter missions to Saturn, Uranus and Neptune are also enabled with transit times of 2.3, 6.6, and 12.6 years, respectively. Injected mass includes a storable, nitrogen tetroxide/monomethyl hydrazine (N2O4/MMH) capture stage (Isp approximately 330 seconds) and orbiter payloads 340 to 820% larger than that achievable using a LOX/LH2-fueled injection stage. The paper discusses NTR technology and mission characteristics, shows NTR stage and payload accommodations within the 26.2 m long Titan IV payload fairing, and discusses NTR stage performance as a function of assumed cryogenic tank technology.
Response to MRO's end-to-end data accountability challenges
NASA Technical Reports Server (NTRS)
Lee, Young H.
2005-01-01
(MRO) on August 12, 2005. It carries six science instruments and three engineering payloads. Because MRO will produce an unprecedented number of science products, it will transmit a much higher data volume via high data rate than any other deep space mission to date. Keeping track of MRO products as well as relay products would be a daunting, expensive task without a well-planned data-product tracking strategy. To respond to this challenge, the MRO project developed the End-to- End Data Accountability System by utilizing existing information available from both ground and flight elements. Therefore, a capability to perform first-order problem diagnosis is essential in order for MRO to answer the questions, where is my data? and when will my data be available? This paper details the approaches taken, design and implementation of the tools, procedures and teams that track data products from the time they are predicted until they arrive in the hands of the end users.
A 1.3 giga pixels focal plane for GAIA
NASA Astrophysics Data System (ADS)
Laborie, Anouk; Pouny, Pierre; Vetel, Cyril; Collados, Emmanuel; Rougier, Gilles; Davancens, Robert; Zayer, Igor; Perryman, Michael; Pace, Oscar
2004-06-01
The astrometric mission GAIA is a cornerstone mission of the European Space Agency, due for launch in the 2010 time frame. Requiring extremely demanding performance GAIA calls for the development of an unprecedented large focal plane featuring innovative technologies. For securing the very challenging GAIA development, a significant number of technology activities have been initiated by ESA through a competitive selection process. In this context, an industrial consortium led by EADS-Astrium (France) with e2v technologies (UK) as major subcontractor was selected for the GAIA CCD and Focal Plane Technology Demonstrators programme, which is by far the most significant and the most critical GAIA pre-development for all aspects: science performance, development schedule and cost. This programme has started since August 2002 and will end early 2005 prior to commencement of the GAIA Phase B. While the GAIA payload will host three instruments and related focal planes, the major mission objectives are assigned to the Astrometric (ASTRO) Focal Plane, which is the subject of this presentation.
Monitoring solar irradiance from L2 with Gaia
NASA Astrophysics Data System (ADS)
Serpell, E.
2017-09-01
Gaia is the European Space Agency's cornerstone astrometry mission to measure the positions of a billion stars in the Milky Way with unprecedented accuracy. Since early 2014 Gaia has been operating in a halo orbit around the second Sun-Earth Lagrange point that provides the stable thermal environment, without Earth eclipses, needed for the payload to function accurately. The spacecraft is equipped with a number of thermally isolated, sun-facing thermistors that provide a continuous measurement of the local equilibrium temperature. As a consequence of the spacecraft design and operational conditions these temperature measurements have been used to infer the solar output over a broad wavelength range. In this paper we present an analysis of temperature measurements made of the Gaia solar panels at frequencies of up to 1 Hz for the first 35 months of routine operations. We show that the Gaia solar panel temperature measurements are capable of precisely determining short term changes to the solar output at a level of better than 0.04% with time constants of a few minutes.
Using remotely piloted aircraft and onboard processing to optimize and expand data collection
NASA Astrophysics Data System (ADS)
Fladeland, M. M.; Sullivan, D. V.; Chirayath, V.; Instrella, R.; Phelps, G. A.
2016-12-01
Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASA's Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.
Castellví, Jordi; Camps, Adriano; Corbera, Jordi; Alamús, Ramon
2018-01-06
The ³Cat-3/MOTS (3: Cube, Cat: Catalunya, 3: 3rd CubeSat mission/Missió Observació Terra Satèl·lit) mission is a joint initiative between the Institut Cartogràfic i Geològic de Catalunya (ICGC) and the Universitat Politècnica de Catalunya-BarcelonaTech (UPC) to foster innovative Earth Observation (EO) techniques based on data fusion of Global Navigation Satellite Systems Reflectometry (GNSS-R) and optical payloads. It is based on a 6U CubeSat platform, roughly a 10 cm × 20 cm × 30 cm parallelepiped. Since 2012, there has been a fast growing trend to use small satellites, especially nanosatellites, and in particular those following the CubeSat form factor. Small satellites possess intrinsic advantages over larger platforms in terms of cost, flexibility, and scalability, and may also enable constellations, trains, federations, or fractionated satellites or payloads based on a large number of individual satellites at an affordable cost. This work summarizes the mission analysis of ³Cat-3/MOTS, including its payload results, power budget (PB), thermal budget (TB), and data budget (DB). This mission analysis is addressed to transform EO data into territorial climate variables (soil moisture and land cover change) at the best possible achievable spatio-temporal resolution.
Weathering the Storm: Unmanned Aircraft Systems in the Maritime, Atmospheric and Polar Environments
NASA Technical Reports Server (NTRS)
Fladeland, Matthew M.; Sullivan, Donald V.; Chirayath, Ved; Instrella, Ron; Phelps, Geoffrey
2017-01-01
Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASAs Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.
High-content screening in microfluidic devices.
Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre
2010-08-01
Miniaturization is the key to advancing the state of the art in high-content screening (HCS) in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. The advantages of this technology are discussed, including cost savings, high-throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration and scaling. The reader will understand the capabilities of anew microfluidics-based platform for HCS and the advantages it provides over conventional plate-based HCS. Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery.
Simulation Based Exploration of Critical Zone Dynamics in Intensively Managed Landscapes
NASA Astrophysics Data System (ADS)
Kumar, P.
2017-12-01
The advent of high-resolution measurements of topographic and (vertical) vegetation features using areal LiDAR are enabling us to resolve micro-scale ( 1m) landscape structural characteristics over large areas. Availability of hyperspectral measurements is further augmenting these LiDAR data by enabling the biogeochemical characterization of vegetation and soils at unprecedented spatial resolutions ( 1-10m). Such data have opened up novel opportunities for modeling Critical Zone processes and exploring questions that were not possible before. We show how an integrated 3-D model at 1m grid resolution can enable us to resolve micro-topographic and ecological dynamics and their control on hydrologic and biogeochemical processes over large areas. We address the computational challenge of such detailed modeling by exploiting hybrid CPU and GPU computing technologies. We show results of moisture, biogeochemical, and vegetation dynamics from studies in the Critical Zone Observatory for Intensively managed Landscapes (IMLCZO) in the Midwestern United States.
Understanding Ebola Virus Transmission
Judson, Seth; Prescott, Joseph; Munster, Vincent
2015-01-01
An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus. PMID:25654239
Unprecedented long-term frequency stability with a microwave resonator oscillator.
Grop, Serge; Schafer, Wolfgang; Bourgeois, Pierre-Yves; Kersale, Yann; Oxborrow, Mark; Rubiola, Enrico; Giordano, Vincent
2011-08-01
This article reports on the long-term frequency stability characterization of a new type of cryogenic sapphire oscillator using an autonomous pulse-tube cryocooler as its cold source. This new design enables a relative frequency stability of better than 4.5 x 10(-15) over one day of integration. To the best of our knowledge, this represents the best long-term frequency stability ever obtained with a signal source based on a macroscopic resonator.
Tang, Wan Si; Matsuo, Motoaki; Wu, Hui; ...
2016-02-05
Both LiCB 9H 10 and NaCB 9H 10 exhibit liquid-like cationic conductivities (≥0.03 S cm –1) in their disordered hexagonal phases near or at room temperature. Furthermore, these unprecedented conductivities and favorable stabilities enabled by the large pseudoaromatic polyhedral anions render these materials in their pristine or further modified forms as promising solid electrolytes in next-generation, power devices.
Damodaran, Anoop R; Breckenfeld, Eric; Chen, Zuhuang; Lee, Sungki; Martin, Lane W
2014-09-01
The combination of epitaxial strain and defect engineering facilitates the tuning of the transition temperature of BaTiO3 to >800 °C. Advances in thin-film deposition enable the utilization of both the electric and elastic dipoles of defects to extend the epitaxial strain to new levels, inducing unprecedented functionality and temperature stability in ferroelectrics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.
NASA Space Launch System: A Cornerstone Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2014-01-01
Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 14 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.
NASA's Space Launch System: A Cornerstone Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2014-01-01
Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 12 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.
Next Generation UAS Based Spectral Systems for Environmental Monitoring
NASA Technical Reports Server (NTRS)
Campbell, P.; Townsend, P.; Mandl, D.; Kingdon, C.; Ly, V.; Sohlberg, R.; Corp, L.; Cappelaere, P.; Frye, S.; Handy, M.;
2015-01-01
This presentation provides information on the development of a small Unmanned Aerial System(UAS) with a low power, high performance Intelligent Payload Module (IPM) and a hyperspectral imager to enable intelligent gathering of science grade vegetation data over agricultural fields at about 150 ft. The IPM performs real time data processing over the image data and then enables the navigation system to move the UAS to locations where measurements are optimal for science. This is important because the small UAS typically has about 30 minutes of battery power and therefore over large agricultural fields, resource utilization efficiency is important. The key innovation is the shrinking of the IPM and the cross communication with the navigation software to allow the data processing to interact with desired way points while using Field Programmable Gate Arrays to enable high performance on large data volumes produced by the hyperspectral imager.
NASA Technical Reports Server (NTRS)
Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry
2015-01-01
NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities.
Technology and human purpose: the problem of solids transport on the Earth's surface
NASA Astrophysics Data System (ADS)
Haff, P. K.
2012-11-01
Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property enables the transport of an onboard power supply and delivery of persistent-memory, high-information-content payload, such as technological artifacts ("parts").
NASA Astrophysics Data System (ADS)
Grasso, C.
2015-10-01
Blue Sun Enterprises, Inc. is creating a common deep space bus capable of a wide variety of Mars, asteroid, and comet science missions, observational missions in and near GEO, and interplanetary delivery missions. The spacecraft are modular and highly autonomous, featuring a common core and optional expansion for variable-sized science or commercial payloads. Initial spacecraft designs are targeted for Mars atmospheric science, a Phobos sample return mission, geosynchronous reconnaissance, and en-masse delivery of payloads using packetized propulsion modules. By combining design, build, and operations processes for these missions, the cost and effort for creating the bus is shared across a variety of initial missions, reducing overall costs. A CLIpSAT can be delivered to different orbits and still be able to reach interplanetary targets like Mars due to up to 14.5 km/sec of delta-V provided by its high-ISP Xenon ion thruster(s). A 6U version of the spacecraft form fits PPOD-standard deployment systems, with up to 9 km/s of delta-V. A larger 12-U (with the addition of an expansion module) enables higher overall delta-V, and has the ability to jettison the expansion module and return to the Earth-Moon system from Mars orbit with the main spacecraft. CLIpSAT utilizes radiation-hardened electronics and RF equipment, 140+ We of power at earth (60 We at Mars), a compact navigation camera that doubles as a science imager, and communications of 2000 bps from Mars to the DSN via X-band. This bus could form the cornerstone of a large number asteroid survey projects, comet intercept missions, and planetary observation missions. The TugBot architecture uses groups of CLIpSATs attached to payloads lacking innate high-delta-V propulsion. The TugBots use coordinated trajectory following by each individual spacecraft to move the payload to the desired orbit - for example, a defense asset might be moved from GEO to lunar transfer orbit in order to protect and hide it, then returned to a useful GEO orbit as a replacement for a failed GEO asset. Interplanetary payload delivery can be undertaken by arraying these spacecraft buses, then staging each one. This approach is implemented by using CLIpSATs as propulsion "packets", delivered independently to low earth orbit and directed to rendezvous individually with a structure. Once all packets have attached themselves, the ensemble burns to follow a trajectory, delivering the payload to the desired planetary or heliocentric orbit. Autonomy technologies in CLIpSAT software include Virtual Machine Language 3 (VML 3) sequencing, JPL AutoNav software, optical navigation, ephemeris tracking, trajectory replanning, maneuver execution, advanced state-driven sequencing, expert systems, and fail-operational strategies. These technologies enable small teams to operate large numbers of spacecraft and lessen the need for the deep knowledge normally required. The consortium building CLIpSAT includes Blue Sun Enterprises, the Jet Propulsion Laboratory, Millennium Space Systems, the Laboratory for Atmospheric and Space Physics, and the Southwest Research Institute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard; Allcock, William; Beggio, Chris
2014-10-17
U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at themore » DOE national laboratories. The report contains findings from that review.« less
The Transforming Mobility Ecosystem: Enabling in Energy-Efficient Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Over the next decade, the transportation sector is poised for rapid change, propelled toward a new mobility future by strong technology currents and the confluence of prevailing megatrends. These major forces hold the promise of shaping a new mobility future – one that unlocks tremendous economic value, provides unprecedented gains in safety, offers affordable and equal accessibility, and enables the transition to energy-efficient transport of people and goods. They come, however, with cautionary viewpoints on energy consumption of the entire sector, necessitating the need to carefully guide the emergent future. This report examines four possible mobility futures that could existmore » in 2050 and the positive and negative impacts of these futures on energy consumption and the broader economy.« less
Laboratory Astrophysics: Enabling Scientific Discovery and Understanding
NASA Technical Reports Server (NTRS)
Kirby, K.
2006-01-01
NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.
NASA's Space Launch System: Deep-Space Opportunities for SmallSats
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Schorr, Andrew A.
2017-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed cubesats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the cubesats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage will fly past the moon at a perigee of approximately 100km, and this closest approach will occur about 5 days after launch. The limiting factor for the latest deployment time is the available power in the sequencer system. Several NASA Mission Directorates were involved in the development of programs for the competition, selection, and development of EM-1 payloads that support directorate priorities. CubeSat payloads on EM-1 will include both NASA research experiments and spacecraft developed by industry, international and potentially academia partners. The Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) Division was allocated five payload opportunities on the EM-1 mission. Near Earth Asteroid (NEA) Scout is designed to rendezvous with and characterize a candidate NEA. A solar sail, an innovation the spacecraft will demonstrated for the CubeSat class, will provide propulsion. Lunar Flashlight will use a green propellant system and will search for potential ice deposits in the moon's permanently shadowed craters. BioSentinel is a yeast radiation biosensor, planned to measure the effects of space radiation on deoxyribonucleic acid (DNA). Lunar Icecube, a collaboration with Morehead State University, will prospect for water in ice, liquid, and vapor forms as well as other lunar volatiles from a low-perigee, highly inclined lunar orbit using a compact Infrared spectrometer. Skyfire, a partnership with Lockheed Martin, is a technology demonstration mission that will perform a lunar flyby, collecting spectroscopy, and thermography data to address questions related to surface characterization, remote sensing, and site selection. NASA's Space Technology Mission Directorate (STMD) was allocated three payload opportunities on the EM-1 mission. These slots will be filled via the 2 Centennial Challenges Program, NASA's flagship program for technology prize competitions, which directly engages the public, academia, and industry in open prize competitions to stimulate innovation. The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. The CubeSat Mission to Study Solar Particles (CuSP) payload will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict geomagnetic storms. The LunaH-Map payload will help scientists understand the quantity of H-bearing materials in lunar cold traps (10 km), determine the concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. The final three payload opportunities for the EM-1 mission were allocated for NASA's international space agency counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as further the collective space exploration goals. ArgoMoon is sponsored by ESA/ASI and will fly along with the ICPS on its disposal trajectory to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and historical significance, and perform an optical communications demonstration. EQUULEUS, sponsored by JAXA, will fly to a libration orbit around the Earth-Moon L2 point and demonstrate trajectory control techniques within the Sun-Earth-Moon region for the first time by a nano spacecraft. The mission will also contribute to the future human exploration scenario by understanding the radiation environment in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and demonstrating the future deep space exploration scenario using the "deep space port" at Lagrange points. OMOTENASHI, also sponsored by JAXA, will land the smallest lunar lander to date on the lunar surface to demonstrate the feasibility of the hardware for distributed cooperative exploration system. Small landers will enable multi-point exploration, which is complimentary with large-scale human exploration. Once on the lunar surface, the OMOTENASHI spacecraft will observe the radiation and soil environments of the lunar surface by active radiation measurements and soil shear measurements. Following EM-1, Space Launch System will evolve to the more-powerful Block 1B configuration, which uses a new Exploration Upper Stage to increase the vehicle's LEO payload capability from 70 t to 105 t. With that transition, the Orion Stage Adapter, which will carry the secondary payloads on EM-1, will be phased out, and a new Universal Stage Adapter will be introduced, creating opportunities for flying larger secondary payloads. This paper will provide a brief status of SLS progress toward first launch; an overview of smallsat accommodations, integration, and operations on EM-1; information about the specific payloads flying on that launch; and a discussion of future accommodations and opportunities for secondary payloads on SLS for Exploration Mission-2 and beyond.
NASA's Space Launch System: Deep-Space Delivery for Smallsats
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Norris, George
2017-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed CubeSats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the CubeSats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage will fly past the moon at a perigee of approximately 100km, and this closest approach will occur about 5 days after launch. The limiting factor for the latest deployment time is the available power in the sequencer system. Several NASA Mission Directorates were involved in the development of programs for the competition, selection, and development of EM-1 payloads that support directorate priorities. CubeSat payloads on EM-1 will include both NASA research experiments and spacecraft developed by industry, international and potentially academia partners. The Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) Division was allocated five payload opportunities on the EM-1 mission. Near Earth Asteroid (NEA) Scout is designed to rendezvous with and characterize a candidate NEA. A solar sail, an innovation the spacecraft will demonstrated for the CubeSat class, will provide propulsion. Lunar Flashlight will use a green propellant system and will search for potential ice deposits in the moon's permanently shadowed craters. BioSentinel is a yeast radiation biosensor, planned to measure the effects of space radiation on deoxyribonucleic acid (DNA). Lunar Icecube, a collaboration with Morehead State University, will prospect for water in ice, liquid, and vapor forms as well as other lunar volatiles from a low-perigee, highly inclined lunar orbit using a compact Infrared spectrometer. Skyfire, a partnership with Lockheed Martin, is a technology demonstration mission that will perform a lunar flyby, collecting spectroscopy, and thermography data to address questions related to surface characterization, remote sensing, and site selection. NASA's Space Technology Mission Directorate (STMD) was allocated three payload opportunities on the EM-1 mission. These slots will be filled via the Centennial Challenges Program, NASA's flagship program for technology prize competitions, which directly engages the public, academia, and industry in open prize competitions to stimulate innovation. The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. The CubeSat Mission to Study Solar Particles (CuSP) payload will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict geomagnetic storms. The LunaH-Map payload will help scientists understand the quantity of H-bearing materials in lunar cold traps (10 km), determine the concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. The final three payload opportunities for the EM-1 mission were allocated for NASA's international space agency counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as further the collective space exploration goals. ArgoMoon is sponsored by ESA/ASI and will fly along with the ICPS on its disposal trajectory to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and historical significance, and perform an optical communications demonstration. EQUULEUS, sponsored by JAXA, will fly to a libration orbit around the Earth-Moon L2 point and demonstrate trajectory control techniques within the Sun-Earth- Moon region for the first time by a nano spacecraft. The mission will also contribute to the future human exploration scenario by understanding the radiation environment in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and demonstrating the future deep space exploration scenario using the "deep space port" at Lagrange points. OMOTENASHI, also sponsored by JAXA, will land the smallest lunar lander to date on the lunar surface to demonstrate the feasibility of the hardware for distributed cooperative exploration system. Small landers will enable multi-point exploration, which is complimentary with large-scale human exploration. Once on the lunar surface, the OMOTENASHI spacecraft will observe the radiation and soil environments of the lunar surface by active radiation measurements and soil shear measurements. Following EM-1, Space Launch System will evolve to the more-powerful Block 1B configuration, which uses a new Exploration Upper Stage to increase the vehicle's LEO payload capability from 70 t to 105 t. With that transition, the Orion Stage Adapter, which will carry the secondary payloads on EM-1, will be phased out, and a new Universal Stage Adapter will be introduced, creating opportunities for flying larger secondary payloads. This paper will provide a brief status of SLS progress toward first launch; an overview of smallsat accommodations, integration, and operations on EM-1; information about the specific payloads flying on that launch; and a discussion of future accommodations and opportunities for secondary payloads on SLS for Exploration Mission-2 and beyond.
Telescience - Optimizing aerospace science return through geographically distributed operations
NASA Technical Reports Server (NTRS)
Rasmussen, Daryl N.; Mian, Arshad M.
1990-01-01
The paper examines the objectives and requirements of teleoperations, defined as the means and process for scientists, NASA operations personnel, and astronauts to conduct payload operations as if these were colocated. This process is described in terms of Space Station era platforms. Some of the enabling technologies are discussed, including open architecture workstations, distributed computing, transaction management, expert systems, and high-speed networks. Recent testbedding experiments are surveyed to highlight some of the human factors requirements.
NASA Astrophysics Data System (ADS)
Sanders, Gerald B.
2015-05-01
Finding, extracting, and using resources at the site of robotic and human exploration activities holds the promise of enabling sustainable and affordable exploration of the Moon, Mars, and asteroids, and eventually allow humans to expand their economy and habitation beyond the surface of the Earth. Commonly referred to as in situ Resource Utilization (ISRU), mineral and volatile resources found in space can be converted into oxygen, water, metals, fuels, and manufacturing and construction materials (such as plastics and concrete) for transportation, power, life support, habitation construction, and part/logistics manufacturing applications. For every kilogram of payload landed on the surface of the Moon or Mars, 7.5-11 kg of payload (mostly propellant) needs to be launched into low Earth orbit. Therefore, besides promising long-term self-sufficiency and infrastructure growth, ISRU can provide significant reductions in launch costs and the number of launches required. Key to being able to use space resources is knowing where they are located, how much is there, and how the resources are distributed. While ISRU holds great promise, it has also never been demonstrated in an actual space mission. Therefore, operations and hardware associated with each ISRU prospecting, excavation, transportation, and processing step must be examined, tested, and finally integrated to enable the end goal of using space resources in future human space missions.
Technologies Enabling Scientific Exploration of Asteroids and Moons
NASA Astrophysics Data System (ADS)
Shaw, A.; Fulford, P.; Chappell, L.
2016-12-01
Scientific exploration of moons and asteroids is enabled by several key technologies that yield topographic information, allow excavation of subsurface materials, and allow delivery of higher-mass scientific payloads to moons and asteroids. These key technologies include lidar systems, robotics, and solar-electric propulsion spacecraft buses. Many of these technologies have applications for a variety of planetary targets. Lidar systems yield high-resolution shape models of asteroids and moons. These shape models can then be combined with radio science information to yield insight into density and internal structure. Further, lidar systems allow investigation of topographic surface features, large and small, which yields information on regolith properties. Robotic arms can be used for a variety of purposes, especially to support excavation, revealing subsurface material and acquiring material from depth for either in situ analysis or sample return. Robotic arms with built-in force sensors can also be used to gauge the strength of materials as a function of depth, yielding insight into regolith physical properties. Mobility systems allow scientific exploration of multiple sites, and also yield insight into regolith physical properties due to the interaction of wheels with regolith. High-power solar electric propulsion (SEP) spacecraft bus systems allow more science instruments to be included on missions given their ability to support greater payload mass. In addition, leveraging a cost-effective commercially-built SEP spacecraft bus can significantly reduce mission cost.
A Reflight of the Explorer-1 Science Mission: The Montana EaRth Orbiting Pico Explorer (MEROPE)
NASA Astrophysics Data System (ADS)
Klumpar, D. M.; Obland, M.; Hunyadi, G.; Jepsen, S.; Larsen, B.; Kankelborg, C.; Hiscock, W.
2001-05-01
Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) under support from the Montana NASA Space Grant Consortium is engaged in an earth orbiting satellite student design and flight project. The Montana EaRth Orbiting Pico Explorer (MEROPE) will carry a modern-day reproduction of the scientific payload carried on Explorer-1. On February 1, 1958 the United States launched its first earth orbiting satellite carrying a 14 kg scientific experiment built by Professor James Van Allen's group at the State University of Iowa (now The University of Iowa). The MEROPE student satellite will carry a reproduction, using current-day technology, of the scientific payload flown on Explorer-1. The CubeSat-class satellite will use currently available, low cost technologies to produce a payload-carrying satellite with a total orbital mass of 1 kg in a volume of 1 cubic liter. The satellite is to be launched in late 2001 into a 600 km, 65° inclination orbit. MEROPE will utilize passive magnetic orientation for 2-axis attitude control. A central microprocessor provides timing, controls on-board operations and switching, and enables data storage. Body mounted GaAs solar arrays are expected to provide in excess of 1.5 W. to maintain battery charge and operate the bus and payload. The Geiger counter will be operated at approximately 50% duty cycle, primarily during transits of the earth's radiation belts. Data will be stored on board and transmitted approximately twice per day to a ground station located on the Bozeman campus of the Montana State University. Owing to the 65° inclination, the instrument will also detect the higher energy portion of the electron spectrum responsible for the production of the Aurora Borealis. This paper describes both the technical implementation and design of the satellite and its payload as well as the not inconsiderable task of large team organization and management. As of March 2001, the student team consists of four graduate students and approximately 45 undergraduates in fields including Physics, Engineering, Computer Sciences, Business, and Liberal Arts. Satellites of this class have the potential to lead to low-cost constellations of sciencecraft making coordinated measurements of the highly dynamic and spatially structured space environment. While key tradeoffs between resource needs and resource availability (e.g. power, telemetry, mass, volume, and cost) constrain payload sophistication, the tremendous advantages of having even simple dispersed multipoint measurements of the Geospace environment far outweigh the loss of payload sophistication in many instances.
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Miley, George H.; Santarius, John F.
1991-01-01
The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.
NASA Astrophysics Data System (ADS)
Brinckerhoff, W. B.; van Amerom, F.; Danell, R.; Pinnick, V. T.; Arevalo, R. D.; Li, X.; Hovmand, L.; Siljestrom, S.; Mahaffy, P. R.; Goetz, W.; Goesmann, F.; Steininger, H.
2013-12-01
The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from radiative and oxidative degradation. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. MOMA includes an ion trap mass spectrometer (ITMS) that is designed to analyze molecular composition of (i) gas evolved from pyrolyzed powder samples and separated on a gas chromatograph and (ii) ions directly desorbed from solid samples at Mars ambient pressure using a pulsed laser and a fast-valve capillary ion inlet system. This 'dual source' approach gives MOMA unprecedented breadth of detection over a wide range of molecular weights and volatilities. Analysis of nonvolatile, higher-molecular weight organics such as carboxylic acids and peptides even in the presence of significant perchlorate concentrations is enabled by the extremely short (~1 ns) pulses of the desorption laser. Use of the ion trap's tandem mass spectrometry mode permits selective focus on key species for isolation and controlled fragmentation, providing structural analysis capabilities. The flight-like engineering test unit (ETU) of the ITMS, now under construction, will be used to verify breadboard performance with high fidelity, while simultaneously supporting the development of analytical scripts and spectral libraries using synthetic and natural Mars analog samples guided by current results from MSL. ETU campaign data will strongly advise the specifics of the calibration applied to the MOMA flight model as well as the science operational procedures during the mission.
New perspectives for studying organics and the composition of Mars’ atmosphere with ExoMars / NOMAD
NASA Astrophysics Data System (ADS)
Liuzzi, Giuliano; Villanueva, Geronimo Luis; Mumma, Michael J.; Carine Vandaele, Ann; Thomas, Ian; Smith, Michael D.; Daerden, Frank; Ristic, Bojan; Patel, Manish; Bellucci, Giancarlo; Lopez-Moreno, Jose; NOMAD Team
2017-10-01
The ESA/Roscosmos Exomars Trace Gas Orbiter (TGO) mission carries a series of instruments, whose operativity is aimed to achieve unprecedented accuracy in the detection and characterization of spatial distribution and temporal cycles of a broad set of trace species, organics and key isotopologues on Mars. Besides this, the mission is designed for some other specific objectives, such as the mapping of CH4 and D/H isotopologic ratio.In this work, we essentially focus on one of the key payloads of ExoMars, the Nadir and Occultation for Mars Discovery (NOMAD) instrument. This is a grating spectrometer whose design is based on that of the SPICAV/SOIR instrument, already flown on board of Venus Express, and can operate both at the infrared (IR) and visible/UV wavelengths. In addition, the IR channel can be operated both in Solar Occultation (SO) mode, and in Limb Nadir Occultation (LNO), enabling the possibility of a characterization of both the vertical structure of the atmosphere and the mapping of the above cited atmospheric compounds on a global scale.To be prepared to exploit the outstanding possibilities and the high feasibility of the instrument to these science objectives, we have worked on the calibration of the instrument both in SO and LNO modes. Using a large subset of the calibration measurements acquired during the Mars Capture Orbit-1 phase (MCO-1), we have reckoned both the wavenumber calibration across all the spectral interval of the instrument, and characterized the response function of the Acousto-Optical Tunable Filter (AOTF) which selects diffraction orders. The results have been also used to elaborate a model of the instrumental response, and a quantitative model of the observed signal. Based on this, we also present some actual retrieval results on SO and LNO datasets acquired in November 2016 and March 2017, which will serve as a proxy for the forthcoming science operations (starting early 2018).Acknowledgments NASA’s Mars Exploration Program supported this work.
Engineering planetary lasers for interstellar communication
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Mumma, Michael J.; Donaldson, Bruce K.
1992-01-01
Spacefaring skills evolved in the twenty-first century will enable missions of unprecedented complexity. One such elaborate project might be to develop tools for efficient interstellar data transfer. Informational links to other star systems would facilitate eventual human expansion beyond our solar system, as well as intercourse with potential extraterrestrial intelligence. This paper reports the major findings of a 600-page, 3-year, NASA-funded study examining in quantitative detail the requirements, some seemingly feasible methods, and implications of achieving reliable extrasolar communications.
Manganese-Catalyzed Carbonylative Annulations for Redox-Neutral Late-Stage Diversification.
Liang, Yu-Feng; Steinbock, Ralf; Münch, Annika; Stalke, Dietmar; Ackermann, Lutz
2018-05-04
An inexpensive, nontoxic manganese catalyst enabled unprecedented redox-neutral carbonylative annulations under ambient pressure. The manganese catalyst outperformed all other typically used base and precious-metal catalysts. The outstanding versatility of the manganese catalysis manifold was reflected by ample substrate scope, setting the stage for effective late-stage manipulations under racemization-free conditions of a wealth of marketed drugs and natural products, including alkaloids, amino acids, steroids, and carbohydrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Micromachining technology for thermal ink-jet products
NASA Astrophysics Data System (ADS)
Verdonckt-Vandebroek, Sophie
1997-09-01
This paper reviews recent trends and evolutions in the low- end color printing market which is currently dominated by thermal inkjet (TIJ) based products. Micro electromechanical systems technology has been an enabler for the unprecedented cost/performance ratio of these printing products. The generic TIJ operating principles are based on an intimate blend of thermodynamics, fluid dynamics and LSI electronics. The key principles and design issues are outlined and the fabrication of TIJ printheads illustrated with an implementation by the Xerox Corporation.
Interfacing Neural Network Components and Nucleic Acids
Lissek, Thomas
2017-01-01
Translating neural activity into nucleic acid modifications in a controlled manner harbors unique advantages for basic neurobiology and bioengineering. It would allow for a new generation of biological computers that store output in ultra-compact and long-lived DNA and enable the investigation of animal nervous systems at unprecedented scales. Furthermore, by exploiting the ability of DNA to precisely influence neuronal activity and structure, it could be possible to more effectively create cellular therapy approaches for psychiatric diseases that are currently difficult to treat. PMID:29255707
Periodic gaits for the CMU ambler
NASA Technical Reports Server (NTRS)
Mahalingam, Swaminathan; Dwivedi, Suren N.
1989-01-01
The configuration of the Carnegie Mellon University Ambler, a six legged autonomous walking vehicle for exploring Mars, enables the recovery of a trailing leg past the leading leg to reduce the energy expenditure in terrain interactions. Gaits developed for this unprecedented configuration are described. A stability criterion was developed which ensures stability of the vehicle in the event of failure of any one of the supporting legs. Periodic gaits developed for the Ambler utilize the Ambler's unique abilities, and continuously satisfy the stability criterion.
Periodic gaits for the CMU Ambler
NASA Astrophysics Data System (ADS)
Dwivedi, Suren N.; Mahalingam, Swaminathan
1992-02-01
The configuration of the Carnegie-Mellon University Ambler, a six-legged autonomous walking vehicle for exploring Mars, enables the recovery of a trailing leg past the leading leg to reduce the energy expenditure in terrain interactions. In this article, gaits developed for this unprecedented configuration are described. A stability criterion has been developed that ensures stability of the vehicle in the event of failure of any one of the supporting legs. Periodic gaits developed for the Ambler utilize the Ambler's unique abilities and continuously satisfy the stability criterion.
Mata, Sergio; González, María J; González, Jesús; López, Luis A; Vicente, Rubén
2017-01-23
Zinc-catalyzed selective cross-coupling of two carbene sources, such as vinyl diazo compounds and enynones, enabled the synthesis of conjugated dienoate derivatives. This reaction involved the unprecedented coupling of a zinc furyl carbene with vinyl diazo compounds through the γ-carbon. Alternatively, dienoates were also prepared by a commutative cross-coupling of zinc vinyl carbenes generated from cyclopropenes and simple diazo compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetic turbulence simulations at extreme scale on leadership-class systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bei; Ethier, Stephane; Tang, William
2013-01-01
Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCFmore » and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).« less
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; ...
2017-09-26
Here, we have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e - rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime.more » Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.« less
Challenging nickel-catalysed amine arylations enabled by tailored ancillary ligand design
Lavoie, Christopher M.; MacQueen, Preston M.; Rotta-Loria, Nicolas L.; Sawatzky, Ryan S.; Borzenko, Andrey; Chisholm, Alicia J.; Hargreaves, Breanna K. V.; McDonald, Robert; Ferguson, Michael J.; Stradiotto, Mark
2016-01-01
Palladium-catalysed C(sp2)–N cross-coupling (that is, Buchwald–Hartwig amination) is employed widely in synthetic chemistry, including in the pharmaceutical industry, for the synthesis of (hetero)aniline derivatives. However, the cost and relative scarcity of palladium provides motivation for the development of alternative, more Earth-abundant catalysts for such transformations. Here we disclose an operationally simple and air-stable ligand/nickel(II) pre-catalyst that accommodates the broadest combination of C(sp2)–N coupling partners reported to date for any single nickel catalyst, without the need for a precious-metal co-catalyst. Key to the unprecedented performance of this pre-catalyst is the application of the new, sterically demanding yet electron-poor bisphosphine PAd-DalPhos. Featured are the first reports of nickel-catalysed room temperature reactions involving challenging primary alkylamine and ammonia reaction partners employing an unprecedented scope of electrophiles, including transformations involving sought-after (hetero)aryl mesylates for which no capable catalyst system is known. PMID:27004442
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD
NASA Astrophysics Data System (ADS)
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien
2017-09-01
We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.
Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD.
Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien
2017-09-29
We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e^{-} rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perahia, Dvora; Grest, Gary S.
Neutron experiments coupled with computational components have resulted in unprecedented understanding of the factors that impact the behavior of ionic structured polymers. Additionally, new computational tools to study macromolecules, were developed. In parallel, this DOE funding have enabled the education of the next generation of material researchers who are able to take the advantage neutron tools offer to the understanding and design of advanced materials. Our research has provided unprecedented insight into one of the major factors that limits the use of ionizable polymers, combining the macroscopic view obtained from the experimental techniques with molecular insight extracted from computational studiesmore » leading to transformative knowledge that will impact the design of nano-structured, materials. With the focus on model systems, of broad interest to the scientific community and to industry, the research addressed challenges that cut across a large number of polymers, independent of the specific chemical structure or the transported species.« less
Semiconductor nanowires: A platform for nanoscience and nanotechnology
Lieber, Charles M.
2012-01-01
Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems. PMID:22707850
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
Electrodynamics of the stratosphere using 5000 m3 superpressure balloons
NASA Astrophysics Data System (ADS)
Holzworth, R. H.
Recently the U. S. National Science Foundation and NASA have begun support of a long duration balloon-borne experiment to study electrical properties of the upper atmosphere. This research project titled EMA (Electrodynamics of the Middle Atmopshere) involves the design of a microprocessor controlled payload and the launch of up to eight small superpressure balloons during 1982 through early 1984. The primary payload instrument will measure the vector electric field from DC to 10 kHz and the payloads will include instruments to measure local ionization, electrical conductivity, magnetic field, pressure and temperature fluctuations and to record optical lightning. Measurement of these parameters in the stratosphere from a few balloons simultaneously for periods extending over a few solar rotations will enable us to study (1) electrical coupling between the atmosphere and magnetosphere, (2) global current systems, (3) global response to solar flares and magnetospheric storms and many other outstanding problems. In order to obtain long duration flights, it is necessary to fly in the southern hemisphere where the balloons are expected to circle the globe dozens of times in their lifetimes. Thus the balloons will be out of direct communication with any one ground station most of the time so the telemetry will be relayed via satellite. This severely limits the data rates resulting in the need for on-board data processing. This is accomplished through the use of dual microcomputers for data analysis and for telemetry formatting. This talk will concentrate on a description of our payload design as driven by the scientific requirements. Examples of the types of electric field signatures we expect to be able to distinguish will also be presented.
Adaptive glide slope control for parafoil and payload aircraft
NASA Astrophysics Data System (ADS)
Ward, Michael
Airdrop systems provide a unique capability of delivering large payloads to undeveloped and inaccessible locations. Traditionally, these systems have been unguided, requiring large landing zones and drops from low altitude. The invention of the steerable, gliding, ram-air parafoil enabled the possibility of precision aerial payload delivery. In practice, the gliding ability of the ram-air parafoil can actually create major problems for airdrop systems by making them more susceptible to winds and allowing them to achieve far greater miss distances than were previously possible. Research and development work on guided airdrop systems has focused primarily on evolutionary improvements to the guidance algorithm, while the navigation and control algorithms have changed little since the initial autnomous systems were developed. Furthermore, the control mechanisms have not changed since the invention of the ram-air canopy in the 1960’s. The primary contributions of this dissertation are: (1) the development of a reliable and robust method to identify a flight dynamic model for a parafoil and payload aircraft using minimal sensor data; (2) the first demonstration in flight test of the ability to achieve large changes in glide slope over ground using coupled incidence angle variation and trailing edge brake deflection; (3) the first development of a control law to implement glide slope control on an autonomous system; (4) the first flight tests of autonomous landing with a glide slope control mechanism demonstrating an improvement in landing accuracy by a factor of 2 or more in especially windy conditions, and (5) the first demonstrations in both simulation and flight test of the ability to perform in-flight system identification to adapt the internal control mappings to flight data and provide dramatic improvements in landing accuracy when there is a significant discrepancy between the assumed and actual flight characteristics.
NASA Astrophysics Data System (ADS)
Ravanbakhsh, Ali; Franchini, Sebastián
2012-10-01
In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In this paper, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. Finally, a Genetic Algorithm (GA) multiobjective optimization is applied to the design space. The result is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget, which gives a useful insight to the design team at the early phases of the design.
Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Kibbey, Timothy P.; Cobb, C. Brent; Harris, Lawanna L.
2014-01-01
A launch vehicle at the scale and price point which allows developers to take reasonable risks with high payoff propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial technology "valley of death" that lies between demonstration in laboratory and flight environments. NASA's NanoLaunch effort will provide the framework to mature both earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low earth orbit for cubesat class payloads.
Microsensors and Microinstruments for Space Science and Exploration
NASA Technical Reports Server (NTRS)
Kukkonen, C. A.; Venneri, S.
1997-01-01
Most future NASA spacecraft will be small, low cost, highly integrated vehicles using advanced technology. This will also be true of planetary rovers. In order to maintain a high scientific value to these missions, the instruments, sensors and subsystems must be dramatically miniaturized without compromising their measurement capabilities. A rover must be designed to deliver its science package. In fact, the rover should be considered as the arms, legs and/or wheels that are needed to enable a mobile integrated scientific payload.
2002-11-20
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia is being moved to the Vehicle Assembly Building where processing will continue for the flight of mission STS-107. Launch is now targeted for no earlier than Jan. 16, 2003. The STS-107 mission will be dedicated to microgravity research. The payloads include the Hitchhiker Bridge, a carrier for the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) incorporating eight high priority secondary attached Shuttle experiments, and the SHI Research Double Module (SHI/RDM), also known as SPACEHAB.
2002-08-19
KENNEDY SPACE CENTER, FLA. -- Only the nose and tail of Columbia are visible as it sits inside an protective tent used to keep out moisture. The orbiter is next scheduled to fly on mission STS-107 no earlier than Nov. 29. STS-107 is a research mission. The payload includes the Hitchhiker Bridge, a carrier for the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments, plus the SHI Research Double Module (SHI/RDM), also known as SPACEHAB.
Aerocapture Inflatable Decelerator (AID)
NASA Technical Reports Server (NTRS)
Reza, Sajjad
2007-01-01
Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.
Mandracchia, Delia; Trapani, Adriana; Perteghella, Sara; Sorrenti, Milena; Catenacci, Laura; Torre, Maria Luisa; Trapani, Giuseppe; Tripodo, Giuseppe
2018-02-01
Aiming at a site-specific drug release in the lower intestinal tract, this paper deals with the synthesis and physicochemical/biological characterization of pH-sensitive nanomicelles from an inulin (INU) amphiphilic derivative. To allow an intestinal site specific release of the payload, INU-Vitamin E (INVITE) bioconjugates were functionalized with succinic anhydride to provide the system with pH-sensitive groups preventing a premature release of the payload into the stomach. The obtained INVITESA micelles resulted nanosized, with a low critical aggregation concentration and the release studies showed a marked pH-dependent release. The drug loading stabilized the micelles against the acidic hydrolysis. From transport studies on Caco-2 cells, resulted that INVITESA nanomicelles cross the cellular monolayer but are actively re-transported in the secretory (basolateral-apical) direction when loaded in apical side. It suggests that the entrapped drug could not be absorbed before the release from the micelles, enabling so a local release of the active. Copyright © 2017 Elsevier Ltd. All rights reserved.
STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla checks out items stored in the Spacehab module. Behind her, left, is Payload Specialist Ilan Ramon, of Israel, looking over a piece of equipment. At right is a trainer. The crew is taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Port Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002
Peptide-Drug Conjugate: A Novel Drug Design Approach.
Ma, Liang; Wang, Chao; He, Zihao; Cheng, Biao; Zheng, Ling; Huang, Kun
2017-01-01
More than 100 years ago, German physician Paul Ehrlich first proposed the concept of selectively delivering "magic bullets" to tumors through targeting agents. The targeting therapy with antibody-drug conjugates (ADCs) and peptide-drug conjugate (PDCs), which are usually composed of monoclonal antibodies or peptides, toxic payloads and cleavage/ noncleavage linkers, has been extensively studied for decades. The conjugates enable selective delivery of cytotoxic payloads to target cells, which results in improved efficacy, reduced systemic toxicity and improved pharmacokinetics (PK)/pharmacodynamics (PD) compared with traditional chemotherapy. PDC and ADC share similar concept, but with vastly different structures and properties. Humanized antibodies introduce high specificity and prolonged half-life, while small molecule weight peptides exhibit higher drug loading and enhanced tissue penetration capacity, and the flexible linear or cyclic peptides are also modified more easily. In this review, the principles of design, synthesis approaches and the latest advances of PDCs are summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Balloons on Ice: NASA Launches Antarctica Scientific Balloon Campaign
2017-12-08
Cosmic rays and the chemicals and atoms that make up the interstellar space between stars are the focus of this year’s NASA Antarctica Long Duration Balloon Flight Campaign, which kicked into high gear with the launch of the Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload Nov. 28. The University of Maryland’s BACCUS mission is the first of three payloads taking flight from a balloon launch site on Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Read more: go.nasa.gov/2gCMtyP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Explosive vapor detection payload for small robots
NASA Astrophysics Data System (ADS)
Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.
2013-05-01
Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).
NASA 60 GHz intersatellite communication link definition study. Baseline document
NASA Technical Reports Server (NTRS)
1986-01-01
The overall system and component concepts for a 60 GHz intersatellite communications link system (ICLS) are described. The ICLS was designed to augment the capabilities of the current Tracking and Data Relay Satellite System (TDRSS), providing a data rate capacity large enough to accommodate the expected rates for user satellites (USAT's) in the post-1995 timeframe. The use of 60 GHz for the anticipated successor to TDRSS, the Tracking and Data Acquisition System (TDAS), was selected because of current technology development that will enable multigigibit data rates. Additionally, the attenuation of the earth's atmosphere at 60 GHz means that there is virtually no possibility of terrestrially generated interference (intentional or accidental) or terrestrially based intercept. The ICLS includes the following functional areas: (1) the ICLS payload package on the GEO TDAS satellite that communicates simultaneously with up to five LEO USAT's; (2) the payload package on the USAT that communicates with the TDAS satellite; and (3) the crosslink payload package on the TDAS satellite that communicates with another TDAS satellite. Two methods of data relay on-board the TDAS spacecraft were addressed. One is a complete baseband system (demod and remod) with a bi-directional 2 Gbps data stream; the other is a channelized system wherein some of the channels are baseband and others are merely frequency translated before re-transmission. Descriptions of the TDAS antenna, transmitter, receiver, and mechanical designs are presented.
Castellví, Jordi; Corbera, Jordi; Alamús, Ramon
2018-01-01
The 3Cat-3/MOTS (3: Cube, Cat: Catalunya, 3: 3rd CubeSat mission/Missió Observació Terra Satèl·lit) mission is a joint initiative between the Institut Cartogràfic i Geològic de Catalunya (ICGC) and the Universitat Politècnica de Catalunya-BarcelonaTech (UPC) to foster innovative Earth Observation (EO) techniques based on data fusion of Global Navigation Satellite Systems Reflectometry (GNSS-R) and optical payloads. It is based on a 6U CubeSat platform, roughly a 10 cm × 20 cm × 30 cm parallelepiped. Since 2012, there has been a fast growing trend to use small satellites, especially nanosatellites, and in particular those following the CubeSat form factor. Small satellites possess intrinsic advantages over larger platforms in terms of cost, flexibility, and scalability, and may also enable constellations, trains, federations, or fractionated satellites or payloads based on a large number of individual satellites at an affordable cost. This work summarizes the mission analysis of 3Cat-3/MOTS, including its payload results, power budget (PB), thermal budget (TB), and data budget (DB). This mission analysis is addressed to transform EO data into territorial climate variables (soil moisture and land cover change) at the best possible achievable spatio-temporal resolution. PMID:29316649
Social Media, Power, and the Future of VBAC.
Romano, Amy M; Gerber, Hilary; Andrews, Desirre
2010-01-01
The Internet has been called a disruptive technology because it has shifted power and altered the economics of doing business, whether that business is selling books or providing health care. Social media have accelerated the pace of disruption by enabling interactive information sharing and blurring the lines between the "producers" and "consumers" of knowledge, goods, and services. In the wake of the National Institutes of Health Consensus Development Conference on Vaginal Birth After Cesarean (VBAC) and major national recommendations for maternity care reform, activated, engaged consumers face an unprecedented opportunity to drive meaningful changes in VBAC access and safety. This article examines the role of social networks in informing women about VBAC, producing low-cost, accessible decision aids, and enabling multi-stakeholder collaborations toward workable solutions that remove barriers women face in accessing VBAC.
Development and application of bond cleavage reactions in bioorthogonal chemistry.
Li, Jie; Chen, Peng R
2016-03-01
Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.
Internet-enabled solutions for health care business problems.
Kennedy, R; Geisler, M
1997-01-01
Many health care delivery organizations have built, installed, or made use of Nets. As single entities merge with others, and independent institutions become part of much larger delivery networks, the need for collaboration is critical. With the formation of such partnerships, existing platforms will become increasingly available from which it will be possible to build disparate technologies that must somehow be part of a single working "system." Nets can enable this leveraging, allowing access from multiple technological platforms. The collaboration, distribution, application integration, and messaging possibilities with the Nets are unprecedented. We believe that meeting a health care delivery organization's needs without these benefits will soon be unthinkable. While Nets are not the answer to the challenges facing health care delivery today, they certainly are a large contributor to the solution.
Optical Design of the MOSES Sounding Rocket Experiment
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Kankelborg, Charles C.; Fisher, Richard R. (Technical Monitor)
2001-01-01
The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket payload now being developed by Montana State University in collaboration with the Goddard Space Flight Center, Lockheed Martin Advanced Technology Center, and Mullard Space Science Laboratory. The instrument utilizes a unique optical design to provide solar EUV measurements with true 2-pixel resolutions of 1.0 arcsec and 60 mA over a full two-dimensional field of view of 1056 x 528 arcsec, all at a time cadence of 10 s. This unprecedented capability is achieved by means of an objective spherical grating 100 mm in diameter, ruled at 833 gr/mm. The concave grating focuses spectrally dispersed solar radiation onto three separate detectors, simultaneously recording the zero-order as well as the plus and minus first-spectral-order images. Data analysis procedures, similar to those used in X-ray tomography reconstructions, can then disentangle the mixed spatial and spectral information recorded by the multiple detectors. A flat folding mirror permits an imaging focal length of 4.74 m to be packaged within the payload's physical length of 2.82 m. Both the objective grating and folding flat have specialized, closely matched, multilayer coatings that strongly enhance their EUV reflectance while also suppressing off-band radiation that would otherwise complicate data inversion. Although the spectral bandpass is rather narrow, several candidate wavelength intervals are available to carry out truly unique scientific studies of the outer solar atmosphere. Initial flights of MOSES, scheduled to begin in 2004, will observe a 10 Angstrom band that covers very strong emission lines characteristic of both the sun's corona (Si XI 303 Angstroms) and transition-region (He II 304 Angstroms). The MOSES program is supported by a grant from NASA's Office of Space Science.
Science Priorities of the RadioAstron Space VLBI Mission
NASA Astrophysics Data System (ADS)
Langston, Glen; Kardashev, N.; International Space VLBI Collaboration
2006-12-01
The main scientific goal of the RadioAstron Space VLBI mission is study of Active Galactic Nuclei (AGN), Masers and other astronomical objects with unprecedented angular resolution, up to few millionths of an arc-second. The resolution achieved with RadioAstron will allow study the following phenomena and problems: * Central engine of AGN and physical processes near super massive black holes providing an acceleration of cosmic rays size, velocity and shape of emitting region in the core, spectrum, polarization and variability of emitting components; * Cosmological models, dark matter and dark energy by studying dependence of above mentioned AGN's parameters with redshift, and by observing gravitational lensing; * Structure and dynamics of star and planets forming regions in our Galaxy and in AGN by studying maser and Mega maser radio emission; * Neutron (quark?) stars and black holes in our Galaxy, their structure and dynamics by VLBI and measurements of visibility scintillations, proper motions and parallaxes; * Structure and distribution of interstellar and interplanetary plasma by fringe visibility scintillations of pulsars; The RadioAstron mission uses the satellite SPECTR (astrophysical module), developed by Lavochkin Association of Russian Aviation and Space Agency (RASA). This module will be used in several other scientific missions. The total mass of the scientific payload is about 2500 kg, of which the unfolding parabolic 10-m radio astronomy antenna's mass is about 1500 kg, and scientific package holding the receivers, power supply, synthesizers, control units, frequency standards and data transmission radio system. The mass of the whole system (satellite and scientific payload) to be carried into orbit by the powerful "Zenit-2SB"-"Fregat-2CB" launcher is about 5000 kg. The RadioAstron project is an international collaboration between RASA and ground radio telescope facilities around the world.
NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable, Exploration
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Robinson, Kimberly F.
2014-01-01
Development of NASA's Space Launch System (SLS) exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated December 2017. SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. For the United States current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. This version will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. SLS is designed to evolve to a 130 t lift capability that can reduce mission costs, simplify payload design, reduce trip times, and lower overall risk. Each vehicle element completed its respective Preliminary Design Reviews, followed by the SLS Program. The Program also completed the Key Decision Point-C milestone to move from formulation to implementation in 2014. NASA hasthorized the program to proceed to Critical Design Review, scheduled for 2015. Accomplihments to date include: manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. This paper will discuss SLS Program successes over the past year and examine milestones and challenges ahead. The SLS Program and its elements are managed at NASA's Marshall Space Flight Center (MSFC).
The Space Shuttle orbiter payload retention systems
NASA Technical Reports Server (NTRS)
Hardee, J. H.
1982-01-01
Payloads are secured in the orbiter payload bay by the payload retention system or are equipped with their own unique retention systems. The orbiter payload retention mechanisms provide structural attachments for each payload by using four or five attachment points to secure the payload within the orbiter payload bay during all phases of the orbiter mission. The payload retention system (PRS) is an electromechanical system that provides standarized payload carrier attachment fittings to accommodate up to five payloads for each orbiter flight. The mechanisms are able to function under either l-g or zero-g conditions. Payload berthing or deberthing on orbit is accomplished by utilizing the remote manipulator system (RMS). The retention mechanisms provide the capability for either vertical or horizontal payload installation or removal. The payload support points are selected to minimize point torsional, bending, and radial loads imparted to the payloads. In addition to the remotely controlled latching system, the passive system used for nondeployable payloads performs the same function as the RMS except it provides fixed attachments to the orbiter.
Flat Panel Space Based Space Surveillance Sensor
NASA Astrophysics Data System (ADS)
Kendrick, R.; Duncan, A.; Wilm, J.; Thurman, S. T.; Stubbs, D. M.; Ogden, C.
2013-09-01
Traditional electro-optical (EO) imaging payloads consist of an optical telescope to collect the light from the object scene and map the photons to an image plane to be digitized by a focal plane detector array. The size, weight, and power (SWaP) for the traditional EO imager is dominated by the optical telescope, driven primarily by the large optics, large stiff structures, and the thermal control needed to maintain precision free-space optical alignments. We propose a non-traditional Segmented Planar Imaging Detector for EO Reconnaissance (SPIDER) imager concept that is designed to substantially reduce SWaP, by at least an order of magnitude. SPIDER maximizes performance by providing a larger effective diameter (resolution) while minimizing mass and cost. SPIDER replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies. Lenslets couple light from the object into a set of waveguides on a PIC. Light from each lenslet is distributed among different waveguides by both field angle and optical frequency, and the lenslets are paired up to form unique interferometer baselines by combining light from different waveguides. The complex spatial coherence of the object (for each field angle, frequency, and baseline) is measured with a balanced four quadrature detection scheme. By the Van-Cittert Zernike Theorem, each measurement corresponds to a unique Fourier component of the incoherent object intensity distribution. Finally, an image reconstruction algorithm is used to invert all the data and form an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., CMOS fabrication). The standard EO payload integration and test process which involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication that substantially reduces associated schedule and cost. The low profile and low SWaP of a SPIDER system enables high resolution imaging with a payload that is similar in size and aspect ratio to a solar panel. This allows high resolution low cost options for space based space surveillance telescopes. The low SWaP design enables hosted payloads, cubesat designs as well as traditional bus options that are lower cost. We present a description of the concept and preliminary simulation and experimental data that demonstrate the imaging capabilities of the SPIDER technique.
High content screening in microfluidic devices
Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre
2011-01-01
Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997
Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.
Lebar, Tina; Jerala, Roman
2018-01-01
Transcriptional regulation lies at the center of many cellular processes and is the result of cellular response to different external and internal signals. Control of transcription of selected genes enables an unprecedented access to shape the cellular response. While orthogonal transcription factors from bacteria, yeast, plants, or other cells have been used to introduce new cellular logic into mammalian cells, the discovery of designable modular DNA binding domains, such as Transcription Activator-Like Effectors (TALEs) and the CRISPR system, enable targeting of almost any selected DNA sequence. Fusion or conditional association of DNA targeting domain with transcriptional effector domains enables controlled regulation of almost any endogenous or ectopic gene. Moreover, the designed regulators can be linked into genetic circuits to implement complex responses, such as different types of Boolean functions and switches. In this chapter, we describe the protocols for achieving efficient transcriptional regulation with TALE- and CRISPR-based designed transcription factors in mammalian cells.
Athermally photoreduced graphene oxides for three-dimensional holographic images
Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min
2015-01-01
The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light. PMID:25901676
Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.
Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano
2016-09-16
Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.
PRIMA Platform capability for satellite missions in LEO and MEO (SAR, Optical, GNSS, TLC, etc.)
NASA Astrophysics Data System (ADS)
Logue, T.; L'Abbate, M.
2016-12-01
PRIMA (Piattaforma Riconfigurabile Italiana Multi Applicativa) is a multi-mission 3-axis stabilized Platform developed by Thales Alenia Space Italia under ASI contract.PRIMA is designed to operate for a wide variety of applications from LEO, MEO up to GEO and for different classes of satellites Platform Family. It has an extensive heritage in flight heritage (LEO and MEO Satellites already fully operational) in which it has successfully demonstrated the flexibility of use, low management costs and the ability to adapt to changing operational conditions.The flexibility and modularity of PRIMA provides unique capability to satisfy different Payload design and mission requirements, thanks to the utilization of recurrent adaptable modules (Service Module-SVM, Propulsion Module-PPM, Payload Module-PLM) to obtain mission dependent configuration. PRIMA product line development is continuously progressing, and is based on state of art technology, modular architecture and an Integrated Avionics. The aim is to maintain and extent multi-mission capabilities to operate in different environments (LEO to GEO) with different payloads (SAR, Optical, GNSS, TLC, etc.). The design is compatible with a wide range of European and US equipment suppliers, thus maximising cooperation opportunity. Evolution activities are mainly focused on the following areas: Structure: to enable Spacecraft configurations for multiple launch; Thermal Control: to guarantee thermal limits for new missions, more demanding in terms of environment and payload; Electrical: to cope with higher power demand (e.g. electrical propulsion, wide range of payloads, etc.) considering orbital environment (e.g. lighting condition); Avionics : AOCS solutions optimized on mission (LEO observation driven by agility and pointing, agility not a driver for GEO). Use of sensors and actuators tailored for specific mission and related environments. Optimised Propulsion control. Data Handling, SW and FDIR mission customization, ensuring robust storage and downlink capability, long lasting autonomy and flexible operations in all mission phases, nominal and non-nominal conditions. This paper starting from PRIMA flight achievements will then outline PRIMA family multi-purpose features addressed to meet multi mission requirements.
Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System
NASA Astrophysics Data System (ADS)
Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.
2013-08-01
In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (DiSO), and features the advantage of not requiring the massive image processing load for the generation of tie points, although it does require some Ground Control Points (GCPs). This technique is further supported by the availability of a high quality INS/GNSS trajectory, motivated by single-pass and repeat-pass SAR interferometry requirements.
Cost-Effective NEO Characterization Using Solar Electric Propulsion (SEP)
NASA Astrophysics Data System (ADS)
Dissly, R. W.; Reinert, R.; Mitchell, S.
2003-05-01
We present a cost-effective multiple NEO rendezvous mission design optimized around the capabilities of Ball's 200-kg NEOX Solar Electric Propelled microsatellite. The NEOX spacecraft is 3-axis stabilized with better-than 1 milliradian pointing accuracy to serve as an excellent imaging platform; its DSN compatible telecommunications subsystem can support a 6.4-kbps downlink rate at 3 AU earth range. The spacecraft mass is <200kg at launch to allow launch as a cost-effective secondary payload. It uses proven SEP technology to provide 12km/s of Delta-V, which enables multiple rendezvous' in a single mission. Cost-effectiveness is optimized by launch as a secondary payload (e.g., Ariane-5 ASAP) or as a multiple manifest on a single dedicated launch vehicle (e.g., 4 on a Delta-II 2925). Following separation from the LV, we describe a candidate mission profile that minimizes cost by using the spacecraft's 12km/s of SEP Delta-V to allow orbiting up to 4 separate NEO's. Orbiting as opposed to flying by augments the mission's science return by providing the NEO mass and by allowing multiple phase angle imaging. The NEOX Spacecraft has the capability to support a 20kg payload drawing 100W average during SEP cruise, with >1kW available during the NEO orbital phase when the SEP thrusters are not powered. We will present a candidate payload suite that includes a visible/NIR imager, a laser altimeter, and a set of small, self-righting surface probes that can be used to assess the geophysical state of the object surface and near-surface environments. The surface probe payload notionally includes a set of cameras for imaging the body surface at mm-scale resolution, an accelerometer package to measure surface mechanical properties upon probe impact, a Langmuir probe to measure the electrostatic gradient immediately above the object surface, and an explosive charge that can be remotely detonated at the end of the surface mission to excavate an artificial crater that can be remotely observed from the orbiting spacecraft.
The Pluto fast flyby mission: Completing the reconnaissance of the solar system
NASA Technical Reports Server (NTRS)
Henry, Paul K.
1993-01-01
The concept of a fast flyby mission to Pluto has been advanced as a means to complete the reconnaissance of the known solar system. In order to acquire data on the Pluto system at the earliest possible time, and within the professional lifetime of investigators now active in the field, concepts are being developed for relatively small spacecraft in the mass range of 70 Kg to 350 Kg with flight times to Pluto of 7 to 13 years. Necessarily, the science complement on such a mission will be very mass and power limited. The challenge will be to define a spacecraft and an instrument package that will maximize the scientific return within these limitations. Cost, of course, will be a major consideration, and funds for new technology development specific to this mission will not be extensive. Consequently, innovative ways to incorporate elegant simplicity into the designs must be found. In order to facilitate exploration of the Pluto-Charon system, fully integrated science payloads must be developed. Two proposed mission designs involving limited mass and power science payloads have been presented to the Outer Planets Science Working Group (OPSWG). These payload mass allocations range from 5 to 30 kilograms with power allocations as low as 5 watts. The drivers behind these low mass and power allocations are that they enable developing missions to fit within the moderate mission cost profile and allow fast flight times to Pluto (7 to 13 years). The OPSWG has prioritized science goals for this class of reconnaissance mission. Three specific science objectives were identified as the highest priority required for the first Pluto mission. These goals were: (1) study of the neutral atmosphere, (2) geology and morphology, and (3) surface compositional mapping. In order to achieve these science goals within the constraints of low mass, power and cost, it may be necessary to combine the functions of 3 conventional instruments (CCD camera, Ultra-Violet Spectrometer, and Infrared Spectrometer) into one fully integrated payload. Where possible, this payload would share optics, mechanisms, electronics and packaging.
Space Station accommodation of attached payloads
NASA Technical Reports Server (NTRS)
Browning, Ronald K.; Gervin, Janette C.
1987-01-01
The Attached Payload Accommodation Equipment (APAE), which provides the structure to attach payloads to the Space Station truss assembly, to access Space Station resources, and to orient payloads relative to specified targets, is described. The main subelements of the APAE include a station interface adapter, payload interface adapter, subsystem support module, contamination monitoring system, payload pointing system, and attitude determination system. These components can be combined to provide accommodations for small single payloads, small multiple payloads, large self-supported payloads, carrier-mounted payloads, and articulated payloads. The discussion also covers the power, thermal, and data/communications subsystems and operations.
Integrated operations/payloads/fleet analysis. Volume 2: Payloads
NASA Technical Reports Server (NTRS)
1971-01-01
The payloads for NASA and non-NASA missions of the integrated fleet are analyzed to generate payload data for the capture and cost analyses for the period 1979 to 1990. Most of the effort is on earth satellites, probes, and planetary missions because of the space shuttle's ability to retrieve payloads for repair, overhaul, and maintenance. Four types of payloads are considered: current expendable payload; current reusable payload; low cost expendable payload, (satellite to be used with expendable launch vehicles); and low cost reusable payload (satellite to be used with the space shuttle/space tug system). Payload weight analysis, structural sizing analysis, and the influence of mean mission duration on program cost are also discussed. The payload data were computerized, and printouts of the data for payloads for each program or mission are included.
Z-Pinch fusion-based nuclear propulsion
NASA Astrophysics Data System (ADS)
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.
2013-02-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.
Silicon photonics for high-performance interconnection networks
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr
2011-12-01
We assert in the course of this work that silicon photonics has the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems, and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. This work showcases that chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, enable unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of this work, we demonstrate such feasibility of waveguides, modulators, switches, and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. Furthermore, we leverage the unique properties of available silicon photonic materials to create novel silicon photonic devices, subsystems, network topologies, and architectures to enable unprecedented performance of these photonic interconnection networks and computing systems. We show that the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. Furthermore, we explore the immense potential of all-optical functionalities implemented using parametric processing in the silicon platform, demonstrating unique methods that have the ability to revolutionize computation and communication. Silicon photonics enables new sets of opportunities that we can leverage for performance gains, as well as new sets of challenges that we must solve. Leveraging its inherent compatibility with standard fabrication techniques of the semiconductor industry, combined with its capability of dense integration with advanced microelectronics, silicon photonics also offers a clear path toward commercialization through low-cost mass-volume production. Combining empirical validations of feasibility, demonstrations of massive performance gains in large-scale systems, and the potential for commercial penetration of silicon photonics, the impact of this work will become evident in the many decades that follow.
Microfluidics: a transformational tool for nanomedicine development and production.
Garg, Shyam; Heuck, Gesine; Ip, Shell; Ramsay, Euan
2016-11-01
Microfluidic devices are mircoscale fluidic circuits used to manipulate liquids at the nanoliter scale. The ability to control the mixing of fluids and the continuous nature of the process make it apt for solvent/antisolvent precipitation of drug-delivery nanoparticles. This review describes the use of numerous microfluidic designs for the formulation and production of lipid nanoparticles, liposomes and polymer nanoparticles to encapsulate and deliver small molecule or genetic payloads. The advantages of microfluidics are illustrated through examples from literature comparing conventional processes such as beaker and T-tube mixing to microfluidic approaches. Particular emphasis is placed on examples of microfluidic nanoparticle formulations that have been tested in vitro and in vivo. Fine control of process parameters afforded by microfluidics, allows unprecedented optimization of nanoparticle quality and encapsulation efficiency. Automation improves the reproducibility and optimization of formulations. Furthermore, the continuous nature of the microfluidic process is inherently scalable, allowing optimization at low volumes, which is advantageous with scarce or costly materials, as well as scale-up through process parallelization. Given these advantages, microfluidics is poised to become the new paradigm for nanomedicine formulation and production.
Calibrating the IXPE observatory from ground to space
NASA Astrophysics Data System (ADS)
Muleri, Fabio; Baldini, Luca; Baumgartner, Wayne; Evangelista, Yuri; Fabiani, Sergio; Kolodziejczak, Jeffery; Latronico, Luca; Lefevre, Carlo; O'Dell, Stephen L.; Ramsey, Brian; Sgrò, Carmelo; Soffitta, Paolo; Tennant, Allyn; Weisskopf, Martin C.
2017-08-01
The Imaging X-ray Polarimetry Explorer (IXPE) will be the next SMEX mission launched by NASA in 2021 in collaboration with the Italian Space Agency (ASI). IXPE will perform groundbreaking measurements of imaging polarization in X-rays for a number of different classes of sources with three identical telescopes, finally (re)opening a window in the high energy Universe after more than 40 years since the first pioneering results. The unprecedented sensitivity of IXPE to polarization poses peculiar requirements on the payload calibration, e.g. the use of polarized and completely unpolarized radiation, both on ground and in orbit, and can not rely on a systematic comparison with results obtained by previous observatories. In this paper, we will present the IXPE calibration plan, describing both calibrations which will be performed on the detectors at INAF-IAPS in Rome (Italy) and the calibration on the mirror and detector assemblies which will be carried out at Marshall Space Flight Center in Huntsville, Alabama. On orbit calibrations, performed with calibrations sources mounted on a filter wheel and placed in front of each detector when necessary, will be presented as well.
Calibrating the IXPE Observatory from Ground to Space
NASA Technical Reports Server (NTRS)
Muleri, Fabio; Baldini, Luca; Baumgartner, Wayne; Evangelista, Yuri; Fabiani, Sergio; Kolodziejczak, Jeffery; Latronico, Luca; Lefevre, Carlo; O'Dell, Stephen L.; Ramsey, Brian;
2017-01-01
The Imaging X-ray Polarimetry Explorer (IXPE) will be the next SMEX mission launched by NASA in 2021 in collaboration with the Italian Space Agency (ASI). IXPE will perform groundbreaking measurements of imaging polarization in X-rays for a number of different classes of sources with three identical telescopes, finally (re)opening a window in the high energy Universe after more than 40 years since the first pioneering results. The unprecedented sensitivity of IXPE to polarization poses peculiar requirements on the payload calibration, e.g. the use of polarized and completely unpolarized radiation, both on ground and in orbit, and can not rely on a systematic comparison with results obtained by previous observatories. In this paper, we will present the IXPE calibration plan, describing both calibrations which will be performed on the detectors at INAF-IAPS in Rome (Italy) and the calibration on the mirror and detector assemblies which will be carried out at Marshall Space Flight Center in Huntsville, Alabama. On orbit calibrations, performed with calibrations sources mounted on a filter wheel and placed in front of each detector when necessary, will be presented as well.
International Space Station (ISS)
2000-09-08
This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew delivered the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the Station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the Station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the Space Shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the Shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the Shuttle and Station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth.
CXBN: a blueprint for an improved measurement of the cosmological x-ray background
NASA Astrophysics Data System (ADS)
Simms, Lance M.; Jernigan, J. G.; Malphrus, Benjamin K.; McNeil, Roger; Brown, Kevin Z.; Rose, Tyler G.; Lim, Hyoung S.; Anderson, Steven; Kruth, Jeffrey A.; Doty, John P.; Wampler-Doty, Matthew; Cominsky, Lynn R.; Prasad, Kamal S.; Thomas, Eric T.; Combs, Michael S.; Kroll, Robert T.; Cahall, Benjamin J.; Turba, Tyler T.; Molton, Brandon L.; Powell, Margaret M.; Fitzpatrick, Jonathan F.; Graves, Daniel C.; Gaalema, Stephen D.; Sun, Shunming
2012-10-01
A precise measurement of the Cosmic X-ray Background (CXB) is crucial for constraining models of the evolution and composition of the universe. While several large, expensive satellites have measured the CXB as a secondary mission, there is still disagreement about normalization of its spectrum. The Cosmic X-ray Background NanoSat (CXBN) is a small, low-cost satellite whose primary goal is to measure the CXB over its two-year lifetime. Benefiting from a low instrument-induced background due to its small mass and size, CXBN will use a novel, pixelated Cadmium Zinc Telluride (CZT) detector with energy resolution < 1 keV over the range 1-60 keV to measure the CXBN with unprecedented accuracy. This paper describes CXBN and its science payload, including the GEANT4 model that has been used to predict overall performance and the backgrounds from secondary particles in Low Earth Orbit. It also addresses the strategy for scanning the sky and calibrating the data, and presents the expected results over the two-year mission lifetime.
The Smart Drug Delivery System and Its Clinical Potential
Liu, Dong; Yang, Fang; Xiong, Fei; Gu, Ning
2016-01-01
With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications. PMID:27375781
The Multi-Needle Langmuir Probe System on Board NorSat-1
NASA Astrophysics Data System (ADS)
Hoang, H.; Clausen, L. B. N.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Lybekk, B.; Strøm, H.; Bang-Hauge, D. M.; Pedersen, A.; Spicher, A.; Moen, J. I.
2018-06-01
On July 14th, 2017, the first Norwegian scientific satellite NorSat-1 was launched into a high-inclination (98∘), low-Earth orbit (600 km altitude) from Baikonur, Kazakhstan. As part of the payload package, NorSat-1 carries the multi-needle Langmuir probe (m-NLP) instrument which is capable of sampling the electron density at a rate up to 1 kHz, thus offering an unprecedented opportunity to continuously resolve ionospheric plasma density structures down to a few meters. Over the coming years, NorSat-1 will cross the equatorial and polar regions twice every 90 minutes, providing a wealth of data that will help to better understand the mechanisms that dissipate energy input from larger spatial scales by creating small-scale plasma density structures within the ionosphere. In this paper we describe the m-NLP system on board NorSat-1 and present some first results from the instrument commissioning phase. We show that the m-NLP instrument performs as expected and highlight its unique capabilities at resolving small-scale ionospheric plasma density structures.
1999-06-18
Inside the Vertical Processing Facility, the Chandra X-ray Observatory sits inside the payload canister, ready to be moved to Launch Pad 39B. Liftoff will take place no earlier than July 20 at 12:36 a.m. EDT aboard Space Shuttle Columbia, on mission STS-93. Chandra will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe, map the location of dark matter and help to identify it, and probe the faintest of active galaxies, allowing scientists to study not only how their energy output changes with time, but also how these objects produce their intense energy emissions in the first place. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe
1999-06-18
Inside the Vertical Processing Facility, doors on the payload canister begin to close on the Chandra X-ray Observatory inside before being moved to Launch Pad 39B. Liftoff will take place no earlier than July 20 at 12:36 a.m. EDT aboard Space Shuttle Columbia, on mission STS-93. Chandra will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe, map the location of dark matter and help to identify it, and probe the faintest of active galaxies, allowing scientists to study not only how their energy output changes with time, but also how these objects produce their intense energy emissions in the first place. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe
NASA Technical Reports Server (NTRS)
Calvert, John; Freas, George, II
2017-01-01
The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD 1553B, Ethernet and TAXI) and is designed to facilitate rapid testing and deployment of payload experiments to the ISS. The ISS Program's goal is to reduce the amount of time it takes a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface. Additionally, the Analog and Discrete (A&D) signals of the following payload types may be tested with RAPTR: (1) EXPRESS Sub Rack Payloads; (2) ELC payloads; (3) External Columbus payloads; (4) External Japanese Experiment Module (JEM) payloads. The automated payload configuration setup and payload data inspection infrastructure is found nowhere else in ISS payload test systems. Testing can be done with minimal human intervention and setup, as the RAPTR automatically monitors parameters in the data headers that are sent to, and come from the experiment under test.
Cryo-electron tomography of bacterial viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R., E-mail: erwrigh@emory.edu
2013-01-05
Bacteriophage particles contain both simple and complex macromolecular assemblages and machines that enable them to regulate the infection process under diverse environmental conditions with a broad range of bacterial hosts. Recent developments in cryo-electron tomography (cryo-ET) make it possible to observe the interactions of bacteriophages with their host cells under native-state conditions at unprecedented resolution and in three-dimensions. This review describes the application of cryo-ET to studies of bacteriophage attachment, genome ejection, assembly and egress. Current topics of investigation and future directions in the field are also discussed.
DNA nanotechnology and fluorescence applications.
Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf
2016-06-01
Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Additive manufacturing: Toward holistic design
Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.; ...
2017-03-18
Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.
Volunteers: A Critical Element in the New AGU
NASA Astrophysics Data System (ADS)
McPhaden, Michael
2010-02-01
We are in the midst of unprecedented change at the American Geophysical Union. Members have recently approved new bylaws to create a governance structure that better reflects the Union's diverse range of scientific interests and enables more efficient and transparent functioning of the organization. We have also embarked on a new strategic planning process to develop far-reaching organizational goals that will ensure continued global leadership in the Earth and space sciences. Finally, we are in the midst of hiring a new permanent executive director to lead our organization in the years ahead.
Space Launch System—New Exterior Markings (2017 Animation)
2017-06-13
Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration in deep space. Black-and-white checkerboard targets on the exterior of the SLS heavy-lift rocket will enable photogrammetrists to measure critical distances during spaceflight, including booster separation from the core stage. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. For more information on SLS, visit https://www.nasa.gov/exploration/systems/sls
Amphoteric Borylketenimines: Versatile Intermediates in the Synthesis of Borylated Heterocycles.
Kaldas, Sherif J; O'Keefe, Kowan T V; Mendoza-Sanchez, Rodrigo; Yudin, Andrei K
2017-07-21
We report the first synthesis of amphoteric borylketenimines from ethynyl N-methyliminodiacetic acid (MIDA) boronate and sulfonyl azides via copper catalysis. In situ trapping of these intermediates with various nucleophiles provided access to novel borylated azetidimines, iminocoumarins, amides, iminooxetanes, and amidines. The described strategy based on borylketenimines offers high levels of chemo- and regioselectivity, enabling the synthesis of unprecedented borylated molecules. This work highlights the unexplored utility of borylketenimines in the synthesis of potentially bioactive molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Writing and erasing hidden optical information on covalently modified cellulose paper.
d'Halluin, M; Rull-Barrull, J; Le Grognec, E; Jacquemin, D; Felpin, F-X
2016-06-08
An unprecedented strategy for preparing photoresponsive cellulose paper enabling the storage of short-lived optical data by covalent photopatterning is disclosed. An ab initio design hinting that the covalent grafting of coumarins on the paper could yield valuable photoresponsive units was first performed. Second, light sensitive paper that can be reversibly altered upon irradiation at a specific wavelength was prepared by covalent surface functionalization with coumarins. Third, the validity of this strategy is demonstrated using the photolithography of several gripping patterns such as a dynamic QR code.
Identification of Phosphorylated Proteins on a Global Scale.
Iliuk, Anton
2018-05-31
Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) has enabled researchers to analyze complex biological samples with unprecedented depth. It facilitates the identification and quantification of modifications within thousands of proteins in a single large-scale proteomic experiment. Analysis of phosphorylation, one of the most common and important post-translational modifications, has particularly benefited from such progress in the field. Here, detailed protocols are provided for a few well-regarded, common sample preparation methods for an effective phosphoproteomic experiment. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2016-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.
Micromechanics of root development in soil.
Dupuy, L X; Mimault, M; Patko, D; Ladmiral, V; Ameduri, B; MacDonald, M P; Ptashnyk, M
2018-04-16
Our understanding of how roots develop in soil may be at the eve of significant transformations. The formidable expansion of imaging technologies enables live observations of the rhizosphere micro-pore architecture at unprecedented resolution. Granular matter physics provides ways to understand the microscopic fluctuations of forces in soils, and the increasing knowledge of plant mechanobiology may shed new lights on how roots perceive soil heterogeneity. This opinion paper exposes how recent scientific achievements may contribute to refresh our views on root growth in heterogeneous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Origin and Future of Plasmonic Optical Tweezers
Huang, Jer-Shing; Yang, Ya-Tang
2015-01-01
Plasmonic optical tweezers can overcome the diffraction limits of conventional optical tweezers and enable the trapping of nanoscale objects. Extension of the trapping and manipulation of nanoscale objects with nanometer position precision opens up unprecedented opportunities for applications in the fields of biology, chemistry and statistical and atomic physics. Potential applications include direct molecular manipulation, lab-on-a-chip applications for viruses and vesicles and the study of nanoscale transport. This paper reviews the recent research progress and development bottlenecks and provides an overview of possible future directions in this field. PMID:28347051
Origin and Future of Plasmonic Optical Tweezers.
Huang, Jer-Shing; Yang, Ya-Tang
2015-06-12
Plasmonic optical tweezers can overcome the diffraction limits of conventional optical tweezers and enable the trapping of nanoscale objects. Extension of the trapping and manipulation of nanoscale objects with nanometer position precision opens up unprecedented opportunities for applications in the fields of biology, chemistry and statistical and atomic physics. Potential applications include direct molecular manipulation, lab-on-a-chip applications for viruses and vesicles and the study of nanoscale transport. This paper reviews the recent research progress and development bottlenecks and provides an overview of possible future directions in this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.
Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2017-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.
Spaceflight Operations Services Grid (SOSG) Prototype Implementation and Feasibility Study
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Thigpen, William W.; Lisotta, Anthony J.; Redman, Sandra
2004-01-01
Science Operations Services Grid is focusing on building a prototype grid-based environment that incorporates existing and new spaceflight services to enable current and future NASA programs with cost savings and new and evolvable methods to conduct science in a distributed environment. The Science Operations Services Grid (SOSG) will provide a distributed environment for widely disparate organizations to conduct their systems and processes in a more efficient and cost effective manner. These organizations include those that: 1) engage in space-based science and operations, 2) develop space-based systems and processes, and 3) conduct scientific research, bringing together disparate scientific disciplines like geology and oceanography to create new information. In addition educational outreach will be significantly enhanced by providing to schools the same tools used by NASA with the ability of the schools to actively participate on many levels in the science generated by NASA from space and on the ground. The services range from voice, video and telemetry processing and display to data mining, high level processing and visualization tools all accessible from a single portal. In this environment, users would not require high end systems or processes at their home locations to use these services. Also, the user would need to know minimal details about the applications in order to utilize the services. In addition, security at all levels is an underlying goal of the project. The Science Operations Services Grid will focus on four tools that are currently used by the ISS Payload community along with nine more that are new to the community. Under the prototype four Grid virtual organizations PO) will be developed to represent four types of users. They are a Payload (experimenters) VO, a Flight Controllers VO, an Engineering and Science Collaborators VO and an Education and Public Outreach VO. The User-based services will be implemented to replicate the operational voice, video, telemetry and commanding systems. Once the User-based services are in place, they will be analyzed to establish feasibility for Grid enabling. If feasible then each User-based service will be Grid enabled. The remaining non-Grid services if not already Web enabled will be so enabled. In the end, four portals will be developed one for each VO. Each portal will contain the appropriate User-based services required for that VO to operate.
NASA Technical Reports Server (NTRS)
1976-01-01
The preliminary analysis of strawman earth-viewing shuttle sortie payloads begun with the partial spacelab payload was analyzed. The payloads analyzed represent the two extremes of shuttle sortie application payloads: a full shuttle sortie payload dedicated to earth-viewing applications, and a small structure payload which can fly on a space available basis with another primary shuttle payload such as a free flying satellite. The intent of the dedicated mission analysis was to configure an ambitious, but feasible, payload; which, while rich in scientific return, would also stress the system and reveal any deficiences or problem areas in mission planning, support equipment, and operations. Conversely, the intent of the small structure payload was to demonstrate the ease with which a small, simple, flexible payload can be accommodated on shuttle flights.
Social Media, Power, and the Future of VBAC
Romano, Amy M.; Gerber, Hilary; Andrews, Desirre
2010-01-01
The Internet has been called a disruptive technology because it has shifted power and altered the economics of doing business, whether that business is selling books or providing health care. Social media have accelerated the pace of disruption by enabling interactive information sharing and blurring the lines between the “producers” and “consumers” of knowledge, goods, and services. In the wake of the National Institutes of Health Consensus Development Conference on Vaginal Birth After Cesarean (VBAC) and major national recommendations for maternity care reform, activated, engaged consumers face an unprecedented opportunity to drive meaningful changes in VBAC access and safety. This article examines the role of social networks in informing women about VBAC, producing low-cost, accessible decision aids, and enabling multi-stakeholder collaborations toward workable solutions that remove barriers women face in accessing VBAC. PMID:21170180
NASA Astrophysics Data System (ADS)
Heine, F.; Zech, H.; Motzigemba, M.
2017-12-01
Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.
Dynamic plasmonic colour display
NASA Astrophysics Data System (ADS)
Duan, Xiaoyang; Kamin, Simon; Liu, Na
2017-02-01
Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.
NASA Astrophysics Data System (ADS)
Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas
2016-04-01
Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis.
Dynamic plasmonic colour display.
Duan, Xiaoyang; Kamin, Simon; Liu, Na
2017-02-24
Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.
Dynamic plasmonic colour display
Duan, Xiaoyang; Kamin, Simon; Liu, Na
2017-01-01
Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications. PMID:28232722
Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...
2016-03-30
Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less