Science.gov

Sample records for encapsulated stable nanoporous

  1. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  2. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-21

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of polymer-SBA15 nanocomposites will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

  3. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2004-06-30

    The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

  4. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect

    Conrad Ingram

    2003-09-03

    The focus of this project is to improve the catalytic performance of zeolite Y for petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-25 nm) inside nanoporous silicate or aluminosilicate hosts. The encapsulated zeolite nanoparticles are expected to possess reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction and the blocking of the zeolite pores and active sites will be minimized. In this phase of the project, procedures for the synthesis of ordered nanoporous silica, such as SBA-15, using block copolymers and nonionic surfactant were successful reproduced. Expansion of the pores sizes of the nanoporous silica using trimethylbenzene is suggested based on shift in the major X-Ray Diffraction peak in the products to lower 2 angles compared with the parent SBA-15 material. The synthesis of ordered nanoporous materials with aluminum incorporated in the predominantly silicate framework was attempted but is not yet successful, and the procedures needs will be repeated and modified as necessary. Nanoparticles of zeolite Y of particle sizes in the range 40 nm to 120 nm were synthesized in the presence of TMAOH as the particle size controlling additive.

  5. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-31

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. New results indicated that good quality highly ordered nanoporous silica host can be synthesized in the presence of zeolite Y seed precursor depending on the amount of precursor added. Preliminary research on the catalytic performance of the materials is underway. Probe acid catalyzed reactions, such as the cracking of cumene is currently being conducted. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of ZeoliteY/Nanoporous host composite catalysts of improved structural and

  6. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2006-06-20

    Al-SBA-15 mesoporous catalysts with strong Broensted acid sites and Al stabilized in a totally tetrahedral coordination was synthesized from the addition of hydrothermally aged zeolite Y precursor to SBA-15 synthesis mixture under mildly acidic condition of pH 5.5. The materials possessed surface areas between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm and pore volumes up 1.03 cm{sup 3}, which were comparable to parent SBA-15 synthesized under similar conditions. Up to 2 wt. % Al was present in the most aluminated sample that was investigated, and the Al remained stable in totally tetrahedral coordination, even after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. The catalyst's activity was not affected by the aging time of the precursor for up to the 24 hr aging time investigated. This method of introducing Al and maintaining it in a total tetrahedral coordination is very effective, in comparison to other direct and post synthesis alumination methods reported. The catalytic performance of the zeolite Y/SBA-15 composite materials will be compared with that of pure SBA-15. The catalysts will then be evaluated for the conversion of heavy petroleum feedstocks.

  7. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  8. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  9. Highly active thermally stable nanoporous gold catalyst

    SciTech Connect

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  10. Efficient biocatalyst by encapsulating lipase into nanoporous gold

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyu; Liu, Xueying; Li, Yufei; Wu, Chao; Wang, Xia; Xu, Ping

    2013-04-01

    Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase immobilization. The pore size of NPG and adsorption time played key roles in the construction of lipase-NPG biocomposites. The morphology and composition of NPG before and after lipase loading are verified using a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer. The resulting lipase-NPG biocomposites exhibited excellent catalytic activity and remarkable reusability. The catalytic activity of the lipase-NPG biocomposite with a pore size of 35 nm had no decrease after ten recycles. Besides, the lipase-NPG biocomposite exhibited high catalytic activity in a broader pH range and higher temperature than that of free lipase. In addition, the leaching of lipase from NPG could be prevented by matching the protein's diameter and pore size. Thus, the encapsulation of enzymes within NPG is quite useful for establishing new functions and will have wide applications for different chemical processes.

  11. Polycaprolactone Thin-Film Micro- and Nanoporous Cell-Encapsulation Devices.

    PubMed

    Nyitray, Crystal E; Chang, Ryan; Faleo, Gaetano; Lance, Kevin D; Bernards, Daniel A; Tang, Qizhi; Desai, Tejal A

    2015-06-23

    Cell-encapsulating devices can play an important role in advancing the types of tissue available for transplantation and further improving transplant success rates. To have an effective device, encapsulated cells must remain viable, respond to external stimulus, and be protected from immune responses, and the device itself must elicit a minimal foreign body response. To address these challenges, we developed a micro- and a nanoporous thin-film cell encapsulation device from polycaprolactone (PCL), a material previously used in FDA-approved biomedical devices. The thin-film device construct allows long-term bioluminescent transfer imaging, which can be used for monitoring cell viability and device tracking. The ability to tune the microporous and nanoporous membrane allows selective protection from immune cell invasion and cytokine-mediated cell death in vitro, all while maintaining typical cell function, as demonstrated by encapsulated cells' insulin production in response to glucose stimulation. To demonstrate the ability to track, visualize, and monitor the viability of cells encapsulated in implanted thin-film devices, we encapsulated and implanted luciferase-positive MIN6 cells in allogeneic mouse models for up to 90 days. Lack of foreign body response in combination with rapid neovascularization around the device shows promise in using this technology for cell encapsulation. These devices can help elucidate the metrics required for cell encapsulation success and direct future immune-isolation therapies.

  12. Stable field emission from nanoporous silicon carbide.

    PubMed

    Kang, Myung-Gyu; Lezec, Henri J; Sharifi, Fred

    2013-02-15

    We report on a new type of stable field emitter capable of electron emission at levels comparable to thermal sources. Such an emitter potentially enables significant advances in several important technologies which currently use thermal electron sources. These include communications through microwave electronics, and more notably imaging for medicine and security where new modalities of detection may arise due to variable-geometry x-ray sources. Stable emission of 6 A cm(-2) is demonstrated in a macroscopic array, and lifetime measurements indicate these new emitters are sufficiently robust to be considered for realistic implementation. The emitter is a monolithic structure, and is made in a room-temperature process. It is fabricated from a silicon carbide wafer, which is formed into a highly porous structure resembling an aerogel, and further patterned into an array. The emission properties may be tuned both through control of the nanoscale morphology and the macroscopic shape of the emitter array.

  13. Encapsulated graphene field-effect transistors for air stable operation

    SciTech Connect

    Alexandrou, Konstantinos Kymissis, Ioannis; Petrone, Nicholas; Hone, James

    2015-03-16

    In this work, we report the fabrication of encapsulated graphene field effects transistors (GFETs) with excellent air stability operation in ambient environment. Graphene's 2D nature makes its electronics properties very sensitive to the surrounding environment, and thus, non-encapsulated graphene devices show extensive vulnerability due to unintentional hole doping from the presence of water molecules and oxygen limiting their performance and use in real world applications. Encapsulating GFETs with a thin layer of parylene-C and aluminum deposited on top of the exposed graphene channel area resulted in devices with excellent electrical performance stability for an extended period of time. Moisture penetration is reduced significantly and carrier mobility degraded substantially less when compared to non-encapsulated control devices. Our CMOS compatible encapsulation method minimizes the problems of environmental doping and lifetime performance degradation, enabling the operation of air stable devices for next generation graphene-based electronics.

  14. Oxidatively Stable Nanoporous Silicon Photocathodes for Photoelectrochemical Hydrogen Evolution

    SciTech Connect

    Neale, Nathan R.; Zhao, Yixin; Zhu, Kai; Oh, Jihun; van de Lagemaat, Jao; Yuan, Hao-Chih; Branz, Howard M.

    2014-06-02

    Stable and high-performance nanoporous 'black silicon' photoelectrodes with electrolessly deposited Pt nanoparticle (NP) catalysts are made with two metal-assisted etching steps. Doubly etched samples exhibit >20 mA/cm2 photocurrent density at +0.2 V vs. reversible hydrogen electrode (RHE) for photoelectrochemical hydrogen evolution under 1 sun illumination. We find that the photocurrent onset voltage of black Si photocathodes prepared from single-crystal planar Si wafers increases in oxidative environments (e.g., aqueous electrolyte) owing to a positive flat-band potential shift caused by surface oxidation. However, this beneficial oxide layer becomes a kinetic barrier to proton reduction that inhibits hydrogen production after just 24 h. To mitigate this problem, we developed a novel second Pt-assisted etch process that buries the Pt NPs deeper into the nanoporous Si surface. This second etch shifts the onset voltage positively, from +0.25 V to +0.4 V vs. RHE, and reduces the charge-transfer resistance with no performance decrease seen for at least two months.

  15. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    NASA Astrophysics Data System (ADS)

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-10-01

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  16. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport

    PubMed Central

    Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M; Desai, Tejal A; Tang, Qizhi; Roy, Shuvo

    2016-01-01

    Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host’s immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m2/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy. PMID:27009429

  17. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport

    NASA Astrophysics Data System (ADS)

    Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M.; Desai, Tejal A.; Tang, Qizhi; Roy, Shuvo

    2016-03-01

    Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host’s immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m2/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy.

  18. Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal

    NASA Astrophysics Data System (ADS)

    Siwy, Z.; Dobrev, D.; Neumann, R.; Trautmann, C.; Voss, K.

    For the preparation of a single asymmetrically shaped nanopore in a polyimide membrane, Kapton foils were irradiated with single heavy ions and subsequently etched from one side in sodium hypochlorite (NaOCl). The other side of the membrane was protected from etching by a stopping medium containing a reducing agent for hypochlorite ions (OCl-). The resulting conical nanopore rectified ion current and exhibited a stable ion-current flow.

  19. Biofriendly bonding processes for nanoporous implantable SU-8 microcapsules for encapsulated cell therapy

    PubMed Central

    Nemani, Krishnamurthy; Kwon, Joonbum; Trivedi, Krutarth; Hu, Walter; Lee, Jeong-Bong; Gimi, Barjor

    2013-01-01

    Mechanically robust, cell encapsulating microdevices fabricated using photolithographic methods can lead to more efficient immunoisolation in comparison to cell encapsulating hydrogels. There is a need to develop adhesive bonding methods which can seal such microdevices under physiologically friendly conditions. We report the bonding of SU-8 based substrates through (i) magnetic self assembly, (ii) using medical grade photocured adhesive and (iii) moisture and photochemical cured polymerization. Magnetic self-assembly, carried out in biofriendly aqueous buffers, provides weak bonding not suitable for long term applications. Moisture cured bonding of covalently modified SU-8 substrates, based on silanol condensation, resulted in weak and inconsistent bonding. Photocured bonding using a medical grade adhesive and of acrylate modified substrates provided stable bonding. Of the methods evaluated, photo-cured adhesion provided the strongest and most stable adhesion. PMID:21970658

  20. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of selected organic compounds

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Saleh

    Cyclodextrin metal organic frameworks (CDMOFs) with different types of cyclodextrins (CDs) (i.e., Alpha, Beta and Gamma-CD) and coordination potassium ion sources (KOH) CDMOF-a and (C7H5KO2) CDMOF-b were synthesized and fully characterized. The physical and thermal properties of the successfully produced CDMOFs were evaluated using N2 gas sorption, thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The N2 gas sorption isotherm revealed high uptake into the micropores (330 cm3.g -1 for Gamma-CDMOF-a) to macropore (125 cm3.g -1 for Gamma-CDMOF-b) structures with isotherm types I and II for Gamma-CDMOFs and Alpha-CDMOFs, respectively. The Langmuir specific surface area (SSA) of Gamma-CDMOF-a (1376 m2.g-1) was significantly higher than the SSA of Alpha-CDMOF-a (289 m2.g -1) and Beta-CDMOF-a (54 m2.g-1). The TGA of dehydrated CDMOF crystals showed the structures were thermally stable up to 300 °C. The XRD of the Gamma-CDMOFs and Alpha-CDMOFs showed a highly face-centered-cubic symmetrical structure. An Aldol condensation reaction occurred during the encapsulation of acetaldehyde, hexanal, trans-2-hexenal, and ethanol into Gamma-CDMOF-a, with a SSA of 1416 m2.g -1. However, Gamma-CDMOF-b with a SSA of 499 m2.g -1 was successfully used to encapsulate acetaldehyde. The maximum release of acetaldehyde from CDMOF-b was 53 mug of acetaldehyde per g of CDMOF, which is greater than previously reported acetaldehyde encapsulation on Beta-CD inclusion complexes.

  1. Tyrosine phenol-lyase and tryptophan indole-lyase encapsulated in wet nanoporous silica gels: Selective stabilization of tertiary conformations

    PubMed Central

    Pioselli, Barbara; Bettati, Stefano; Demidkina, Tatyana V.; Zakomirdina, Lyudmila N.; Phillips, Robert S.; Mozzarelli, Andrea

    2004-01-01

    The pyridoxal 5′-phosphate-dependent enzymes tyrosine phenol-lyase and tryptophan indole-lyase were encapsulated in wet nanoporous silica gels, a powerful method to selectively stabilize tertiary and quaternary protein conformations and to develop bioreactors and biosensors. A comparison of the enzyme reactivity in silica gels and in solution was carried out by determining equilibrium and kinetic parameters, exploiting the distinct spectral properties of catalytic intermediates and reaction products. The encapsulated enzymes exhibit altered distributions of ketoenamine and enolimine tautomers, increased values of inhibitors dissociation constants, slow attaining of steady-state in the presence of substrate and substrate analogs, modified steady-state distribution of catalytic intermediates, and a sixfold–eightfold decrease of specific activities. This behavior can be rationalized by a reduced conformational flexibility for the encapsulated enzymes and a selective stabilization of either the open (inactive) or the closed (active) form of the enzymes. Despite very similar structures and catalytic mechanisms, the influence of encapsulation is more pronounced for tyrosine phenol-lyase than tryptophan indole-lyase. This finding indicates that subtle structural and dynamic differences can lead to distinct interactions of the protein with the gel matrix. PMID:15044726

  2. Tyrosine phenol-lyase and tryptophan indole-lyase encapsulated in wet nanoporous silica gels: Selective stabilization of tertiary conformations.

    PubMed

    Pioselli, Barbara; Bettati, Stefano; Demidkina, Tatyana V; Zakomirdina, Lyudmila N; Phillips, Robert S; Mozzarelli, Andrea

    2004-04-01

    The pyridoxal 5'-phosphate-dependent enzymes tyrosine phenol-lyase and tryptophan indole-lyase were encapsulated in wet nanoporous silica gels, a powerful method to selectively stabilize tertiary and quaternary protein conformations and to develop bioreactors and biosensors. A comparison of the enzyme reactivity in silica gels and in solution was carried out by determining equilibrium and kinetic parameters, exploiting the distinct spectral properties of catalytic intermediates and reaction products. The encapsulated enzymes exhibit altered distributions of ketoenamine and enolimine tautomers, increased values of inhibitors dissociation constants, slow attaining of steady-state in the presence of substrate and substrate analogs, modified steady-state distribution of catalytic intermediates, and a sixfold-eightfold decrease of specific activities. This behavior can be rationalized by a reduced conformational flexibility for the encapsulated enzymes and a selective stabilization of either the open (inactive) or the closed (active) form of the enzymes. Despite very similar structures and catalytic mechanisms, the influence of encapsulation is more pronounced for tyrosine phenol-lyase than tryptophan indole-lyase. This finding indicates that subtle structural and dynamic differences can lead to distinct interactions of the protein with the gel matrix.

  3. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  4. Fabrication of multicomponent polymer nanostructures containing PMMA shells and encapsulated PS nanospheres in the nanopores of anodic aluminum oxide templates.

    PubMed

    Ko, Hao-Wen; Chi, Mu-Huan; Chang, Chun-Wei; Su, Chun-Hsien; Wei, Tzu-Hui; Tsai, Chia-Chan; Peng, Chi-How; Chen, Jiun-Tai

    2015-03-01

    Multi-component polymer nanomaterials have attracted great attention because of their applications in areas such as biomedicine, tissue engineering, and organic solar cells. The precise control over the morphologies of multi-component polymer nanomaterials, however, is still a great challenge. In this work, the fabrication of poly(methyl methacrylate)(PMMA)/poly-styrene (PS) nanostructures that contain PMMA shells and encapsulated PS nanospheres is studied. The nanostructures are prepared using a triple solution wetting method with anodic aluminum oxide (AAO) templates. The nanopores of the templates are wetted sequentially by PS solutions in dimethylformamide (DMF), PMMA solutions in acetic acid, and water. The compositions and morphologies of the nanostructures are controlled by the interactions between the polymers, solvents, and AAO walls. This work not only presents a feasible method to prepare multi-component polymer nanomaterials, but also leads to a better understanding of polymer-solvent interactions in confined geometries.

  5. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-01

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  6. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation.

    PubMed

    Feng, Dawei; Liu, Tian-Fu; Su, Jie; Bosch, Mathieu; Wei, Zhangwen; Wan, Wei; Yuan, Daqiang; Chen, Ying-Pin; Wang, Xuan; Wang, Kecheng; Lian, Xizhen; Gu, Zhi-Yuan; Park, Jihye; Zou, Xiaodong; Zhou, Hong-Cai

    2015-01-19

    Enzymatic catalytic processes possess great potential in chemical manufacturing, including pharmaceuticals, fuel production and food processing. However, the engineering of enzymes is severely hampered due to their low operational stability and difficulty of reuse. Here, we develop a series of stable metal-organic frameworks with rationally designed ultra-large mesoporous cages as single-molecule traps (SMTs) for enzyme encapsulation. With a high concentration of mesoporous cages as SMTs, PCN-333(Al) encapsulates three enzymes with record-high loadings and recyclability. Immobilized enzymes that most likely undergo single-enzyme encapsulation (SEE) show smaller Km than free enzymes while maintaining comparable catalytic efficiency. Under harsh conditions, the enzyme in SEE exhibits better performance than free enzyme, showing the effectiveness of SEE in preventing enzyme aggregation or denaturation. With extraordinarily large pore size and excellent chemical stability, PCN-333 may be of interest not only for enzyme encapsulation, but also for entrapment of other nanoscaled functional moieties.

  7. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Saleh; Kathuria, Ajay; Abiad, Mohamad; Auras, Rafael

    2016-10-01

    Gamma cyclodextrin (γ-CD) metal organic frameworks (CDMOFs) were synthesized by coordinating γ-CDs with potassium hydroxide (KOH), referred hereafter as CDMOF-a, and potassium benzoate (C7H5KO2), denoted as CDMOF-b. The obtained CDMOF structures were characterized using nitrogen sorption isotherm, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). High surface areas were achieved by the γ-CD based MOF structures where the Langmuir specific surface areas (SSA) of CDMOF-a and CDMOF-b were determined as 1376 m2 g-1 and 607 m2 g-1; respectively. The dehydrated CDMOF structures demonstrated good thermal stability up to 250 °C as observed by the TGA studies. XRD results for CDMOF-a and CDMOF-b reveal a body centered-cubic (BCC) and trigonal crystal system; respectively. Due to its accessible porous structure and high surface area, acetaldehyde was successfully encapsulated in CDMOF-b. During the release kinetic studies, we observed peak release of 53 μg of acetaldehyde per g of CDMOF-b, which was 100 times greater than previously reported encapsulation in β-CD. However, aldol condensation reaction occurred during encapsulation of acetaldehyde into CDMOF-a. This research work demonstrates the potential to encapsulate volatile organic compounds in CDMOF-b, and their associated release for applications including food, pharmaceuticals and packaging.

  8. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth

    SciTech Connect

    Wang, Haoran; Chew, Huck Beng; Wang, Xueju; Xia, Shuman

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of Li{sub x}Si electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si–Si bonds, while subsequent failure is still brittle-like with the breaking of Si–Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li–Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the Li{sub x}Si alloys leads to significant strain recovery.

  9. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-11-15

    Composite materials of SBA-15/zeolite Y were synthesized from zeolite Y precursor and a synthesis mixture of mesoporous silicate SBA-15 via a hydrothermal process in the presence of a slightly acidic media of pH 4-6 with 2M H{sub 2}SO{sub 4}. The SBA-15/ZY composites showed Type IV adsorption isotherms, narrow BJH average pore size distribution of 4.9 nm, surface areas up to 800 m{sup 2}2/g and pore volumes 1.03 cm{sup 3}, all comparable to pure SBA-15 synthesized under similar conditions. Chemical analysis revealed Si/Al ratio down to 8.5 in the most aluminated sample, and {sup 27}AlSS MAS NMR confirmed aluminum was in tetrahedral coordination. This method of introduction of Al in pure T{sub d} coordination is effective in comparison to other direct and post synthesis alumination methods. Bronsted acid sites were evident from a pyridinium peak at 1544 cm-1 in the FTIR spectrum after pyridine adsorption, and from NH{sub 3} -TPD experiments. SBA-15/ZY composites showed significant catalytic activities for the dealkylation of isopropylbenzene to benzene and propene, similar to those of commercial zeolite Y. It was observed that higher conversion for catalysts synthesized with high amount of ZY precursor mixture added to the SBA-15. Over all the composites has shown good catalytic activity. Further studies will be focused on gaining a better understand the nature of the precursor, and to characterize and to locate the acid sites in the composite material. The composite will also be evaluated for heavy oil conversion to naphtha and middle distillates.

  10. Uniform encapsulation of stable protein nanoparticles produced by spray freezing for the reduction of burst release.

    PubMed

    Leach, W Thomas; Simpson, Dale T; Val, Tibisay N; Anuta, Efemona C; Yu, Zhongshui; Williams, Robert O; Johnston, Keith P

    2005-01-01

    Stable protein nanostructured particles, produced by spray freezing into liquid (SFL) nitrogen, were encapsulated uniformly into microspheres to reduce the burst release over the first 24 h. The denaturation and aggregation of these bovine serum albumin (BSA) high-surface area particles were minimal due to ultra-rapid freezing and the absence of a liquid-air interface. Upon sonication, these friable highly porous, solid protein particle aggregates broke up into submicron particles. These particles were encapsulated into DL-lactide/glycolide copolymer (PLGA) and poly(lactic acid) (PLA) microspheres by anhydrous solid-in-oil-in-oil (s/o/o) techniques. For 5% loading of protein, the burst release after 24 h was only 2.5-4.1%, that is, values fivefold to tenfold lower than those observed for larger more conventional BSA particles. At a loading of 10%, the burst was only 6 and 13% for PLGA and PLA, respectively, and at 15% loading it was only 12% for PLGA. As shown with confocal and scanning electron microscopy (SEM), the low burst is consistent with a uniform distribution of protein nanoparticles, which were about 100 times smaller than the microspheres. Changes in aggregation and secondary structure, which were monitored by size exclusion chromatography and FTIR, respectively, indicated only slight monomer loss (3.9%) and high structural integrity (38% alpha-helix) in the encapsulated protein.

  11. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    SciTech Connect

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

  12. A nanoporous metallic mat showing excellent and stable surface enhanced Raman spectroscopy activities.

    PubMed

    Kim, Nam-Jung; Lin, Mengshi

    2010-08-01

    A novel nanoporous mat structure was made of gold nanoparticles through a simple, inexpensive self-assembly process as a bottom-up approach to produce an affordable and high-quality SERS substrate. This nanostructure mat shows an excellent SERS reproducibility, physical stability, and strong Raman enhancement, which may satisfy all the criteria as a universal-type SERS substrate. The limit of detection for crystal violet dye on the nanostructured substrates is estimated to reach ppb levels and the SERS enhancement factor is found to be two orders of magnitude higher than that from conventional de-alloy nanoporous films. Mechanical strength of the nano-cluster network can be increased by a post-assembly annealing process. The nanoparticle-based SERS substrate holds promise in practical sensing applications toward a rapid determination of harmful substances or contaminants in food and environment.

  13. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes.

    PubMed

    Takenobu, Taishi; Takano, Takumi; Shiraishi, Masashi; Murakami, Yousuke; Ata, Masafumi; Kataura, Hiromichi; Achiba, Yohji; Iwasa, Yoshihiro

    2003-10-01

    Single-walled carbon nanotubes (SWNTs) have strong potential for molecular electronics, owing to their unique structural and electronic properties. However, various outstanding issues still need to be resolved before SWNT-based devices can be made. In particular, large-scale, air-stable and controlled doping is highly desirable. Here we present a method for integrating organic molecules into SWNTs that promises to push the performance limit of these materials for molecular electronics. Reaction of SWNTs with molecules having large electron affinity and small ionization energy achieved p- and n-type doping, respectively. Optical characterization revealed that charge transfer between SWNTs and molecules starts at certain critical energies. X-ray diffraction experiments revealed that molecules are predominantly encapsulated inside SWNTs, resulting in an improved stability in air. The simplicity of the synthetic process offers a viable route for the large-scale production of SWNTs with controlled doping states.

  14. Stable configurations of C20 and C28 encapsulated in single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Pan, Z. Y.; Wang, Y. X.; Zhu, J.; Liu, T. J.; Jiang, X. M.

    2006-04-01

    The stable configurations of small fullerenes (C20 and C28) encapsulated inside single wall carbon nanotubes (SWNTs) of different diameters were investigated by molecular dynamics simulations. The interactions between carbon atoms were described by a combination of the many-body Brenner potential with the Lennard-Jones (LJ) potential. We observed that the filling of small fullerenes into nanotubes with diameters larger than 10.85 Å ((8, 8) SWNT) is an exothermic process. During the annealing process the fullerenes arrange themselves into complex phases, which may be one-(chain), two-(zigzag) or three-dimensional, depending on the tube diameter. This tube size dependence is very similar to that of C60, which has been experimentally observed. A comparison with the prediction of the hard-sphere model also finds a satisfactory level of consistency, indicating the dense packing nature of fullerene configurations in SWNTs.

  15. Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells.

    PubMed

    Scott, Daniel J; Plückthun, Andreas

    2013-02-08

    G protein-coupled receptors (GPCRs) are the largest class of pharmaceutical protein targets, yet drug development is encumbered by a lack of information about their molecular structure and conformational dynamics. Most mechanistic and structural studies as well as in vitro drug screening with purified receptors require detergent solubilization of the GPCR, but typically, these proteins exhibit only low stability in detergent micelles. We have developed the first directed evolution method that allows the direct selection of GPCRs stable in a chosen detergent from libraries containing over 100 million individual variants. The crucial concept was to encapsulate single Escherichia coli cells of a library, each expressing a different GPCR variant, to form detergent-resistant, semipermeable nano-containers. Unlike naked cells, these containers are not dissolved by detergents, allowing us to solubilize the GPCR proteins in situ while maintaining an association with the protein's genetic information, a prerequisite for directed evolution. The pore size was controlled to permit GPCR ligands to permeate but the solubilized receptor to remain within the nanocapsules. Fluorescently labeled ligands were used to bind to those GPCR variants inside the nano-containers that remained active in the detergent tested. With the use of fluorescence-activated cell sorting, detergent-stable mutants derived from two different family A GPCRs could be identified, some with the highest stability reported in short-chain detergents. In principle, this method (named cellular high-throughput encapsulation, solubilization and screening) is not limited to engineering stabilized GPCRs but could be used to stabilize other proteins for biochemical and structural studies.

  16. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    NASA Astrophysics Data System (ADS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  17. Final report submitted to the Department of Energy [Encapsulation of metal chelate and oxo catalysts in nanoporous hosts

    SciTech Connect

    Bein, Thomas

    2000-10-27

    The focus of this project is directed at the design of novel zeolite-based hybrid catalysts, based on encapsulated transition metal chelate complexes and metal oxo species. One goal is to achieve improved control over the active species in heterogeneous catalysis, as well as improved reactant and product selectivities. This is achieved by combining the catalytic activity of transition metal catalysts with the large surface area of microporous and mesoporous hosts. Furthermore, shape selectivity may be achieved through the well-defined pore structure of zeolites. Several families of complexes have been studied, including nitrogen chelate complexes, chiral salen complexes, and supported molybdenum-oxo species. In the group of nitrogen-containing metal chelate complexes, some are derived from triazacyclononane, while others are derived from tetradentate cyclam-type ligands. These complexes have been studied in solution, encapsulated in the cages of zeolites, and attached to the channel walls of the novel mesoporous MCM-41-type materials. The latter approach is based on covalent grafting of the ligand to the host, followed by metalation. These heterogenized complexes show good activity in highly selective olefin epoxidation reactions. Furthermore, we have investigated the encapsulation of chiral metal chelate complexes, including manganese salen complexes in the cages of EMT zeolite. This large-pore host allowed us to synthesize the entire complex in the zeolite in a multistep sequence. The epoxidation activity of these hybrid systems is truly encapsulated in the host cages: large substrate molecules such as cholesterol were not oxidized. Chiral epoxidation with enantiomeric excess of 80% was achieved. Zeolite-supported molybdenum-oxo species have also been synthesized and investigated. These systems are also very active and selective epoxidation catalysts. Comprehensive characterization with spectroscopic and structural techniques has been performed, including EXAFS

  18. Multiple ambient hydrolysis deposition of tin oxide into nanoporous carbon to give a stable anode for lithium-ion batteries.

    PubMed

    Raju, Vadivukarasi; Wang, Xingfeng; Luo, Wei; Ji, Xiulei

    2014-06-16

    A novel ambient hydrolysis deposition (AHD) methodology that employs sequential water adsorption followed by a hydrolysis reaction to infiltrate SnO2 nanoparticles into the nanopores of mesoporous carbon in a conformal and controllable manner is introduced. The empty space in the SnO2/C composites can be adjusted by varying the number of AHD cycles. An SnO2/C composite with an intermediate SnO2 loading exhibited an initial specific delithiation capacity of 1054 mAh g(-1) as an anode for Li-ion batteries. The capacity contribution from SnO2 in the composite electrode approaches the theoretical capacity of SnO2 (1494 mAh g(-1)) if both Sn alloying and SnO2 conversion reactions are considered to be reversible. The composite shows a specific capacity of 573 mAh g(-1) after 300 cycles, that is, one of the most stable cycling performances for SnO2/mesoporous carbon composites. The results demonstrated the importance of well-tuned empty space in nanostructured composites to accommodate expansion of the electrode active mass during alloying/dealloying and conversion reactions.

  19. H3PW12O40 Encapsulation by Nanoporous Metal Organic Framework HKUST-1: Synthesis, Characterization, Activity and Stability.

    PubMed

    Rafiee, Ezzat; Nobakht, Narges

    2016-01-01

    Hybrid composite material was obtained through encapsulation of H3PW12O40 (PW) into HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylic acid), in molar composition of 5 Cu(NO3)2 · 3H2O/2.8 BTC/0.3 PW/0.6 CTAB by adding solutions of PW and copper salts to mixture of BTC and surfactant. The catalyst was characterized by various techniques including powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), laser particle size analyzer, Brunauer Emmett-Teller (BET). The acidity of the catalyst was measured by a potentiometric titration with n-butylamine and PW/HKUST-1 presented very strong acidic sites with Ei > 100 mV. This nano catalyst was successfully used for the synthesis of various β-keto enol ethers at 45 °C with 51-98% yield after 5-75 min. The catalyst was easily recycled and reused at least four times without significant loss of its activity (94% yield after forth run). The presence of the PW in PW/HKUST-1 and reused PW/HKUST-1 structure, eliminating any doubt about collapse of the HKUST-1 after catalytic reaction and can be followed by FT-IR, XRD and SEM techniques. Brönsted and Lewis acidity of the PW/HKUST-1 catalyst was distinguished by studying the FT-IR and determined by chemisorption of pyridine. The strength and dispersion of the protons on PW/HKUST-1 was considerably high and active surface protons became more available for reactant.

  20. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors.

    PubMed

    Avsar, Ahmet; Vera-Marun, Ivan J; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2015-04-28

    The presence of direct bandgap and high mobility in semiconductor few-layer black phosphorus offers an attractive prospect for using this material in future two-dimensional electronic devices. However, creation of barrier-free contacts which is necessary to achieve high performance in black phosphorus-based devices is challenging and currently limits their potential for applications. Here, we characterize fully encapsulated ultrathin (down to bilayer) black phosphorus field effect transistors fabricated under inert gas conditions by utilizing graphene as source-drain electrodes and boron nitride as an encapsulation layer. The observation of a linear ISD-VSD behavior with negligible temperature dependence shows that graphene electrodes lead to barrier-free contacts, solving the issue of Schottky barrier limited transport in the technologically relevant two-terminal field-effect transistor geometry. Such one-atom-thick conformal source-drain electrodes also enable the black phosphorus surface to be sealed, to avoid rapid degradation, with the inert boron nitride encapsulating layer. This architecture, generally applicable for other sensitive two-dimensional crystals, results in air-stable, hysteresis-free transport characteristics.

  1. Self-healing encapsulation strategy for preparing highly stable, functionalized quantum-dot barcodes.

    PubMed

    Song, Tao; Liu, Junqing; Li, Wenbin; Li, Yunhong; Yang, Qiuhua; Gong, Xiaoqun; Xuan, Lixue; Chang, Jin

    2014-02-26

    Quantum dot (QD) barcodes are becoming an urgent requirement for researchers and clinicians to obtain high-density information in multiplexed suspension (bead-based) assay. However, how to improve the stability of quantum dot barcodes is a longstanding issue. Here, we present a new self-healing encapsulation strategy to generate functionalized uniform quantum dots barcodes with high physical and chemical stability. This efficient and facile strategy could make porous polymer microspheres self-heal to encapsulate QDs via the thermal motion and interaction of the molecular chains. Consequently, the new strategy solved especially the QDs leakage problem and improved the chemical stability under different pH physiological conditions as well as the longtime storage stability. In the meantime, the encoding capacity and the spatial distribution uniformity of quantum dots could be also improved. Furthermore, immunofluorescence assays for alpha fetoprotein (AFP) detections indicated that carboxyl groups on the surface of QD-encoded microspheres could facilitate efficient attachment of biomacromolecules.

  2. Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation.

    PubMed

    Rai, Amritesh; Valsaraj, Amithraj; Movva, Hema C P; Roy, Anupam; Ghosh, Rudresh; Sonde, Sushant; Kang, Sangwoo; Chang, Jiwon; Trivedi, Tanuj; Dey, Rik; Guchhait, Samaresh; Larentis, Stefano; Register, Leonard F; Tutuc, Emanuel; Banerjee, Sanjay K

    2015-07-08

    To reduce Schottky-barrier-induced contact and access resistance, and the impact of charged impurity and phonon scattering on mobility in devices based on 2D transition metal dichalcogenides (TMDs), considerable effort has been put into exploring various doping techniques and dielectric engineering using high-κ oxides, respectively. The goal of this work is to demonstrate a high-κ dielectric that serves as an effective n-type charge transfer dopant on monolayer (ML) molybdenum disulfide (MoS2). Utilizing amorphous titanium suboxide (ATO) as the "high-κ dopant", we achieved a contact resistance of ∼180 Ω·μm that is the lowest reported value for ML MoS2. An ON current as high as 240 μA/μm and field effect mobility as high as 83 cm(2)/V-s were realized using this doping technique. Moreover, intrinsic mobility as high as 102 cm(2)/V-s at 300 K and 501 cm(2)/V-s at 77 K were achieved after ATO encapsulation that are among the highest mobility values reported on ML MoS2. We also analyzed the doping effect of ATO films on ML MoS2, a phenomenon that is absent when stoichiometric TiO2 is used, using ab initio density functional theory (DFT) calculations that shows excellent agreement with our experimental findings. On the basis of the interfacial-oxygen-vacancy mediated doping as seen in the case of high-κ ATO-ML MoS2, we propose a mechanism for the mobility enhancement effect observed in TMD-based devices after encapsulation in a high-κ dielectric environment.

  3. Stable cycling of a scalable graphene-encapsulated nanocomposite for lithium-sulfur batteries.

    PubMed

    He, Guang; Hart, Connor J; Liang, Xiao; Garsuch, Arnd; Nazar, Linda F

    2014-07-23

    We report the synthesis of a low-cost carbon/sulfur nanocomposite using Ketjen black (KBC) as the carbon framework, encapsulated by thin graphene sheets using a simple process that relies on binding a functionalized KBC/S nanoparticle surface with graphene oxide (GO), which is reduced in situ. A slight excess of GO is employed to create a second layer of graphene wrapping around the KBC/S. This g-KBC/S sulfur cathode exhibits excellent cyclability over 200 cycles where the average stabilized fade rate is only 0.026% or 1.1 mAh g(-1) per cycle. This excellent performance is primarily attributed to the wrapped, internally porous architecture. The large pore volume, small pore diameter, and uniform nanoparticle size of the mesoporous KBC array provides an ideal frame for the fabrication of a homogeneous C/S composite, whereas the graphene/GO sheets serve as an external chemical and physical barrier that inhibits polysulfide diffusion.

  4. Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode.

    PubMed

    Cook, John B; Detsi, Eric; Liu, Yijin; Liang, Yu-Lun; Kim, Hyung-Seok; Petrissans, Xavier; Dunn, Bruce; Tolbert, Sarah H

    2017-01-11

    Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearly twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. Our findings are an important step for the development of high-performance Li-ion batteries.

  5. Immunological specificity of heat-stable opsonins in immune and nonimmune sera and their interaction with non-encapsulated and encapsulated strains of Staphylococcus aureus.

    PubMed Central

    Karakawa, W W; Young, D A

    1979-01-01

    The in vitro interactions between strains of Staphylococcus aureus and human polymorphonuclear leukocytes in the presence of immune and nonimmune sera were studied. Evidence indicated that phagocytosis of encapsulated strains occurred in the presence of specific homologous antiserum, whereas non-encapsulated strains were readily phagocytized by polymorphonuclear leukocytes in the presence of both normal and immune sera. Immunological analyses demonstrated that normal serum opsonins, which reacted with the non-encapsulated strains, were specifically directed against exposed mucopeptide moieties of the organisms. Sera rich in antimucopeptide antibodies were obtained from rabbits immunized with heterologous bacteria such as Escherichia coli and group A-variant streptococci and were shown to be effective in opsonizing the non-encapsulated strains of S. aureus. Fresh clinical isolates of S. aureus were noticeably more resistant to the opsonizing effects of the antimucopeptide antibodies. Results were presented which suggest that the surface structures of these clinical isolates are more diverse than laboratory-propagated strains and that these antiphagocytic surface antigens may be significant factors in masking the opsonizing effects of the mucopeptide opsonins which are present in most sera. PMID:478633

  6. Stable cycling and excess capacity of a nanostructured Sn electrode based on Sn(CH3COO)2 confined within a nanoporous carbon scaffold

    NASA Astrophysics Data System (ADS)

    Trevey, James E.; Gross, Adam F.; Wang, John; Liu, Ping; Vajo, John J.

    2013-10-01

    A high capacity, electrochemically stable, nanostructured Sn electrode for Li ion battery anodes is described. This electrode utilizes a rigid, electrically conductive, nanoporous carbon aerogel scaffold by incorporating tin acetate, Sn(CH3COO)2, into the scaffold pore volume through melt infusion. Incorporation of the Sn(CH3COO)2 by melt infusion ensures a chemically stable contact with the scaffold. The mechanical rigidity of the pore volume confines the Sn to nanometer dimensions without sintering, leading to stable cycling. Separation of the synthesis of the scaffold from the loading with Sn(CH3COO)2 permits optimized division of the scaffold pore volume for expansion and electrolyte access during reaction with Li. Using this design, an electrode based on an aerogel with a 5 nm mode pore size was cycled over 300 times without degradation. In addition, after subtracting the contribution from the carbon scaffold, the capacity exceeded the theoretical capacity for Sn, due to an oxidation reaction occurring at 1.2 V. This excess capacity may be related to the solid-solid or solid-electrolyte interfaces in the electrode, possibly representing a new reversible Li ion reaction.

  7. Nitrogen-doped carbon onions encapsulating metal alloys as efficient and stable catalysts for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Chongyang; Xu, Feng; Chen, Jing; Min, Huihua; Dong, Hui; Tong, Ling; Qasim, Khan; Li, Shengli; Sun, Litao

    2016-01-01

    Designing a new class of non-noble metal catalysts with triiodide reduction activity and stability comparable to those of conventional Pt is extremely significant for the application of dye-sensitized solar cells (DSSCs). Here, we demonstrate newly designed counter electrode (CE) materials of onion-like nitrogen-doped carbon encapsulating metal alloys (ONC@MAs) such as FeNi3 (ONC@FeNi3) or FeCo (ONC@FeCo), by a facile and scalable pyrolysis method. The resulting composite catalysts show superior catalytic activities towards the triiodide reduction and exhibit low charge transfer resistance between the electrode surfaces and electrolytes. As a result, the DSSCs based on ONC@FeCo and ONC@FeNi3 achieve outstanding power conversion efficiencies (PCEs) of 8.26% and 8.87%, respectively, which can rival the 8.28% of Pt-based DSSC. Moreover, the excellent electrochemical stabilities for both the two catalysts also have been corroborated by electrochemical impendence spectra and cyclic voltammetry (CV). Noticeably, TEM investigation further reveals that the N-doped graphitic carbon onions exhibit the high structural stability in iodine-containing medium even subject to hundreds of CV scanning. These results make ONC@MAs the promising candidates to supersede costly Pt as efficient and stable CEs for DSSCs.

  8. Ultraviolet light stable and transparent sol-gel methyl siloxane hybrid material for UV light-emitting diode (UV LED) encapsulant.

    PubMed

    Bae, Jun-Young; Kim, YongHo; Kim, HweaYoon; Kim, YuBae; Jin, Jungho; Bae, Byeong-Soo

    2015-01-21

    An ultraviolet (UV) transparent and stable methyl-siloxane hybrid material was prepared by a facile sol-gel method. The transparency and stability of a UV-LED encapsulant is an important issue because it affects UV light extraction efficiency and long-term reliability. We introduced a novel concept for UV-LED encapsulation using a thermally curable oligosiloxane resin. The encapsulant was fabricated by a hydrosilylation of hydrogen-methyl oligosiloxane resin and vinyl-methyl siloxane resin, and showed a comparable transmittance to polydimethylsiloxane (PDMS) in the UVB (∼300 nm) region. Most remarkably, the methyl-siloxane hybrid materials exhibited long-term UV stability under light soaking in UVB (∼300 nm) for 1000 h.

  9. Batteries: encapsulated monoclinic sulfur for stable cycling of li-s rechargeable batteries (adv. Mater. 45/2013).

    PubMed

    Moon, San; Jung, Young Hwa; Jung, Wook Ki; Jung, Dae Soo; Choi, Jang Wook; Kim, Do Kyung

    2013-12-03

    On page 6547 Do Kyung Kim, Jang Wook Choi and co-workers describe a highly aligned and carbon-encapsulated sulfur cathode synthesized with an AAO template that exhibits a high and long cycle life, and the best rate capability based on the complete encapsulation of sulfur (physical) and implementation of the monoclinic sulfur phase (chemical).

  10. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    PubMed

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  11. Stabilization of graphene nanopore

    PubMed Central

    Lee, Jaekwang; Yang, Zhiqing; Zhou, Wu; Pennycook, Stephen J.; Pantelides, Sokrates T.; Chisholm, Matthew F.

    2014-01-01

    Graphene is an ultrathin, impervious membrane. The controlled introduction of nanoscale pores in graphene would lead to applications that involve water purification, chemical separation, and DNA sequencing. However, graphene nanopores are unstable against filling by carbon adatoms. Here, using aberration-corrected scanning transmission electron microscopy and density-functional calculations, we report that Si atoms stabilize graphene nanopores by bridging the dangling bonds around the perimeter of the hole. Si‐passivated pores remain intact even under intense electron beam irradiation, and they were observed several months after the sample fabrication, demonstrating that these structures are intrinsically robust and stable against carbon filling. Theoretical calculations reveal the underlying mechanism for this stabilization effect: Si atoms bond strongly to the graphene edge, and their preference for tetrahedral coordination forces C adatoms to form dendrites sticking out of the graphene plane, instead of filling the nanopore. Our results provide a novel way to develop stable nanopores, which is a major step toward reliable graphene-based molecular translocation devices. PMID:24821802

  12. Highly stable 2D material (2DM) field-effect transistors (FETs) with wafer-scale multidyad encapsulation.

    PubMed

    Kim, Choong-Ki; Jeong, Eun Gyo; Kim, Eungtaek; Song, Jeong-Gyu; Kim, Youngjun; Woo, Whang Je; Lee, Myung Keun; Bae, Hagyoul; Jeon, Seong-Bae; Kim, Hyungjun; Choi, Kyung Cheol; Choi, Yang-Kyu

    2017-02-03

    Field-effect transistors (FETs) composed of 2D materials (2DMs) such as transition-metal dichalcogenide (TMD) materials show unstable electrical characteristics in ambient air due to the high sensitivity of 2DMs to water adsorbates. In this work, in order to demonstrate the long-term retention of electrical characteristics of a TMD FET, a multidyad encapsulation method was applied to a MoS2 FET and thereby its durability was warranted for one month. It was well known that the multidyad encapsulation method was effective to mitigate high sensitivity to ambient air in light-emitting diodes (LEDs) composed of organic materials. However, there was no attempt to check the feasibility of such a multidyad encapsulation method for 2DM FETs. It is timely to investigate the water vapor transmission ratio (WVTR) required for long-term stability of 2DM FETs. The 2DM FETs were fabricated with MoS2 flakes by both an exfoliation method, that is desirable to attain high quality film, and a chemical vapor deposition (CVD) method, that is applicable to fabrication for a large-sized substrate. In order to eliminate other unwanted variables, the MoS2 FETs composed of exfoliated flakes were primarily investigated to assure the effectiveness of the encapsulation method. The encapsulation method uses multiple dyads comprised of a polymer layer by spin coating and an Al2O3 layer deposited by atomic layer deposition (ALD). The proposed method shows wafer-scale uniformity, high transparency, and protective barrier properties against adsorbates (WVTR of 8 × 10(-6) g m(-2) day(-1)) over one month.

  13. Highly stable 2D material (2DM) field-effect transistors (FETs) with wafer-scale multidyad encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Ki; Gyo Jeong, Eun; Kim, Eungtaek; Song, Jeong-Gyu; Kim, Youngjun; Woo, Whang Je; Lee, Myung Keun; Bae, Hagyoul; Jeon, Seong-Bae; Kim, Hyungjun; Choi, Kyung Cheol; Choi, Yang-Kyu

    2017-02-01

    Field-effect transistors (FETs) composed of 2D materials (2DMs) such as transition-metal dichalcogenide (TMD) materials show unstable electrical characteristics in ambient air due to the high sensitivity of 2DMs to water adsorbates. In this work, in order to demonstrate the long-term retention of electrical characteristics of a TMD FET, a multidyad encapsulation method was applied to a MoS2 FET and thereby its durability was warranted for one month. It was well known that the multidyad encapsulation method was effective to mitigate high sensitivity to ambient air in light-emitting diodes (LEDs) composed of organic materials. However, there was no attempt to check the feasibility of such a multidyad encapsulation method for 2DM FETs. It is timely to investigate the water vapor transmission ratio (WVTR) required for long-term stability of 2DM FETs. The 2DM FETs were fabricated with MoS2 flakes by both an exfoliation method, that is desirable to attain high quality film, and a chemical vapor deposition (CVD) method, that is applicable to fabrication for a large-sized substrate. In order to eliminate other unwanted variables, the MoS2 FETs composed of exfoliated flakes were primarily investigated to assure the effectiveness of the encapsulation method. The encapsulation method uses multiple dyads comprised of a polymer layer by spin coating and an Al2O3 layer deposited by atomic layer deposition (ALD). The proposed method shows wafer-scale uniformity, high transparency, and protective barrier properties against adsorbates (WVTR of 8 × 10-6 g m-2 day-1) over one month.

  14. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications.

    PubMed

    Zhao, Huaping; Wang, Chengliang; Vellacheri, Ranjith; Zhou, Min; Xu, Yang; Fu, Qun; Wu, Minghong; Grote, Fabian; Lei, Yong

    2014-12-03

    Self-supported metallic nanopore arrays with highly oriented nanoporous structures are fabricated and applied as ideally nanostructured electrodes for supercapacitor applications. Their large specific surface area can ensure a high capacitance, and their highly oriented and stable nanoporous structure can facilitate ion transport.

  15. Solid state nanopores for gene expression profiling

    NASA Astrophysics Data System (ADS)

    Mussi, V.; Fanzio, P.; Repetto, L.; Firpo, G.; Valbusa, U.; Scaruffi, P.; Stigliani, S.; Tonini, G. P.

    2009-07-01

    Recently, nanopore technology has been introduced for genome analysis. Here we show results related to the possibility of preparing "engineered solid state nanopores". The nanopores were fabricated on a suspended Si 3N 4 membrane by Focused Ion Beam (FIB) drilling and chemically functionalized in order to covalently bind oligonucleotides (probes) on their surface. Our data show the stable effect of DNA attachment on the ionic current measured through the nanopore, making it possible to conceive and develop a selective biosensor for gene expression profiling.

  16. Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold.

    PubMed

    Fujita, Takeshi; Tokunaga, Tomoharu; Zhang, Ling; Li, Dongwei; Chen, Luyang; Arai, Shigeo; Yamamoto, Yuta; Hirata, Akihiko; Tanaka, Nobuo; Ding, Yi; Chen, Mingwei

    2014-03-12

    Dealloyed nanoporous metals have attracted much attention because of their excellent catalytic activities toward various chemical reactions. Nevertheless, coarsening mechanisms in these catalysts have not been experimentally studied. Here, we report in situ atomic-scale observations of the structural evolution of nanoporous gold during catalytic CO oxidation. The catalysis-induced nanopore coarsening is associated with the rapid diffusion of gold atoms at chemically active surface steps and the surface segregation of residual Ag atoms, both of which are stimulated by the chemical reaction. Our observations provide the first direct evidence that planar defects hinder nanopore coarsening, suggesting a new strategy for developing structurally stable and highly active heterogeneous catalysts.

  17. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-12-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis‑β‑ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5‑3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP–1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  18. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics.

    PubMed

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V

    2016-12-09

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  19. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    PubMed Central

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-01-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis−β−ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5−3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP–1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies. PMID:27934916

  20. Ultrasonic encapsulation - A review.

    PubMed

    Leong, Thomas S H; Martin, Gregory J O; Ashokkumar, Muthupandian

    2017-03-01

    Encapsulation of materials in particles dispersed in water has many applications in nutritional foods, imaging, energy production and therapeutic/diagnostic medicine. Ultrasonic technology has been proven effective at creating encapsulating particles and droplets with specific physical and functional properties. Examples include highly stable emulsions, functional polymeric particles with environmental sensitivity, and microspheres for encapsulating drugs for targeted delivery. This article provides an overview of the primary mechanisms arising from ultrasonics responsible for the formation of these materials, highlighting examples that show promise particularly in the development of foods and bioproducts.

  1. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  2. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability.

    PubMed

    Huang, Renliang; Wu, Mengyun; Goldman, Mark J; Li, Zhi

    2015-06-01

    Enzyme encapsulation is a simple, gentle, and general method for immobilizing enzyme, but it often suffers from one or more problems regarding enzyme loading efficiency, enzyme leakage, mechanical stability, and recyclability. Here we report a novel, simple, and efficient method for enzyme encapsulation to overcome these problems by forming stable organic-inorganic hybrid capsules. A new, facile, one-step, and template-free synthesis of organic-inorganic capsules in aqueous phase were developed based on PEI-induced simultaneous interfacial self-assembly of Fmoc-FF and polycondensation of silicate. Addition of an aqueous solution of Fmoc-FF and sodium silicate into an aqueous solution of PEI gave a new class of organic-inorganic hybrid capsules (FPSi) with multi-layered structure in high yield. The capsules are mechanically stable due to the incorporation of inorganic silica. Direct encapsulation of enzyme such as epoxide hydrolase SpEH and BSA along with the formation of the organic-inorganic capsules gave high yield of enzyme-containing capsules (∼1.2 mm in diameter), >90% enzyme loading efficiency, high specific enzyme loading (158 mg protein g(-1) carrier), and low enzyme leakage (<3% after 48 h incubation). FPSi-SpEH capsules catalyzed the hydrolysis of cyclohexene oxide to give (1R, 2R)-cyclohexane-1,2-diol in high yield and concentration, with high specific activity (6.94 U mg(-1) protein) and the same high enantioselectivity as the free enzyme. The immobilized SpEH demonstrated also excellent operational stability and recyclability: retaining 87% productivity after 20 cycles with a total reaction time of 80 h. The new enzyme encapsulation method is efficient, practical, and also better than other reported encapsulation methods.

  3. Designing a hydrophobic barrier within biomimetic nanopores.

    PubMed

    Trick, Jemma L; Wallace, E Jayne; Bayley, Hagan; Sansom, Mark S P

    2014-11-25

    Nanopores in membranes have a range of potential applications. Biomimetic design of nanopores aims to mimic key functions of biological pores within a stable template structure. Molecular dynamics simulations have been used to test whether a simple β-barrel protein nanopore can be modified to incorporate a hydrophobic barrier to permeation. Simulations have been used to evaluate functional properties of such nanopores, using water flux as a proxy for ionic conductance. The behavior of these model pores has been characterized as a function of pore size and of the hydrophobicity of the amino acid side chains lining the narrow central constriction of the pore. Potential of mean force calculations have been used to calculate free energy landscapes for water and for ion permeation in selected models. These studies demonstrate that a hydrophobic barrier can indeed be designed into a β-barrel protein nanopore, and that the height of the barrier can be adjusted by modifying the number of consecutive rings of hydrophobic side chains. A hydrophobic barrier prevents both water and ion permeation even though the pore is sterically unoccluded. These results both provide insights into the nature of hydrophobic gating in biological pores and channels, and furthermore demonstrate that simple design features may be computationally transplanted into β-barrel membrane proteins to generate functionally complex nanopores.

  4. Adiabatic burst evaporation from bicontinuous nanoporous membranes.

    PubMed

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk; Steinhart, Martin; Xue, Longjian

    2015-05-28

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol-gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 10(7) μm(3) are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media.

  5. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor

    PubMed Central

    Liu, Lei; Yang, Chun; Zhao, Kai; Li, Jingyuan; Wu, Hai-Chen

    2013-01-01

    An important issue in nanopore sensing is to construct stable and versatile sensors that can discriminate analytes with minute differences. Here we report a means of creating nanopores that comprise ultrashort single-walled carbon nanotubes inserted into a lipid bilayer. We investigate the ion transport and DNA translocation through single-walled carbon nanotube nanopores and find that our results are fundamentally different from previous studies using much longer single-walled carbon nanotubes. Furthermore, we utilize the new single-walled carbon nanotube nanopores to selectively detect modified 5-hydroxymethylcytosine in single-stranded DNA, which may have implications in screening specific genomic DNA sequences. This new nanopore platform can be integrated with many unique properties of carbon nanotubes and might be useful in molecular sensing such as DNA-damage detection, nanopore DNA sequencing and other nanopore-based applications. PMID:24352224

  6. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yang, Chun; Zhao, Kai; Li, Jingyuan; Wu, Hai-Chen

    2013-12-01

    An important issue in nanopore sensing is to construct stable and versatile sensors that can discriminate analytes with minute differences. Here we report a means of creating nanopores that comprise ultrashort single-walled carbon nanotubes inserted into a lipid bilayer. We investigate the ion transport and DNA translocation through single-walled carbon nanotube nanopores and find that our results are fundamentally different from previous studies using much longer single-walled carbon nanotubes. Furthermore, we utilize the new single-walled carbon nanotube nanopores to selectively detect modified 5-hydroxymethylcytosine in single-stranded DNA, which may have implications in screening specific genomic DNA sequences. This new nanopore platform can be integrated with many unique properties of carbon nanotubes and might be useful in molecular sensing such as DNA-damage detection, nanopore DNA sequencing and other nanopore-based applications.

  7. Nanopores: Flossing with DNA

    NASA Astrophysics Data System (ADS)

    Kasianowicz, John J.

    2004-06-01

    Passing a DNA strand many times back-and-forth through a protein nanopore would enable the interaction between them to be studied more closely. This may now be possible, using a dumbbell-shaped DNA-polymer complex, which may lead to a more reliable analysis of DNA sequences using nanopores.

  8. Nanoporous polymer electrolyte

    SciTech Connect

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  9. Elastic Properties of Lysozyme Confined in Nanoporous Polymer Films

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Akcora, Pinar

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. It is known that confined media provide a protective environment to the encapsulated proteins and prevent diffusion of the denaturant. In this study, different types of proteins (streptavidin, lysozyme and fibrinogen) were chemically attached into the nanopores of poly(methyl methacrylate) thin films. Heterogeneous flat surfaces with varying cylinder pore sizes (10-50 nm) were used to confine proteins of different sizes and shapes. Stiffness of protein functionalized nanopores was measured in nanoindentation experiments. Our results showed that streptavidin behaved more stiffly when pore dimension changed from micron to nanosize. Further, it was found that lysozyme confined within nanopores showed higher specific bioactivity than proteins on flat surfaces. These results on surface elasticity and protein activity may help in understanding protein interactions with surfaces of different topologies and chemistry.

  10. Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries.

    PubMed

    Wan, Zhongming; Shao, Jie; Yun, Jiaojiao; Zheng, Huiyuan; Gao, Tian; Shen, Ming; Qu, Qunting; Zheng, Honghe

    2014-12-10

    Monodisperse sulfonated polystyrene (SPS) microspheres are employed as both the template and carbon source to prepare MoS2 quasi-hollow microspheres-encapsulated porous carbon. The synthesis procedure involves the hydrothermal growth of MoS2 ultrathin nanosheets on the surface of SPS microspheres and subsequent annealing to remove SPS core. Incomplete decomposition of SPS during annealing due to the confining effect of MoS2 shells leaves residual porous carbon in the interior. When being evaluated as the anode materials of Li-ion batteries, the as-prepared C@MoS2 microspheres exhibit excellent cycling stability (95% of capacity retained after 100 cycles) and high rate behavior (560 mAh g(-1) at 5 A g(-1)).

  11. Building a better nanopore

    NASA Astrophysics Data System (ADS)

    2016-02-01

    Sophisticated nanopores, which utilize electron tunnelling measurements, two-dimensional materials, or concepts from molecular self-assembly, could have applications in DNA and protein sequencing; the technical problems that must be solved to realize such technologies are considerable though.

  12. Nanoporous thin films with controllable nanopores processed from vertically aligned nanocomposites.

    PubMed

    Bi, Zhenxing; Anderoglu, Osman; Zhang, Xinghang; MacManus-Driscoll, Judith L; Yang, Hao; Jia, Quanxi; Wang, Haiyan

    2010-07-16

    Porous thin films with ordered nanopores have been processed by thermal treatment on vertically aligned nanocomposites (VAN), e.g., (BiFeO(3))(0.5):(Sm(2)O(3))(0.5) VAN thin films. Uniformly distributed nanopores with an average diameter of 60 nm and 150 nm were formed at the bottom and top of the nanoporous films, respectively. Controllable porosity can be achieved by adjusting the microstructure of VAN (BiFeO(3)):(Sm(2)O(3)) thin films and the annealing parameters. In situ heating experiments within a transmission electron microscope (TEM) column at temperatures from 25 to 850 degrees C, provides significant insights into the phase transformation, evaporation and structure reconstruction during the annealing. The in situ experiments also demonstrate the possibility of processing vertically aligned nanopores (VANP) with one phase stable in a columnar structure. These nanoporous thin films with controllable pore size and density could be promising candidates for thin film membranes and catalysis for fuel cell and gas sensor applications.

  13. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  14. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Long, Dan; Mao, Jingsong; Liu, Tianlong; Fu, Changhui; Tan, Longfei; Ren, Xiangling; Shi, Haitang; Su, Hongying; Ren, Jun; Meng, Xianwei

    2016-05-01

    In this study, Ti-mineral superfine powders (Ti-MSP) encapsulated in urea-formaldehyde resin microcapsules (Ti-MSP@UF-MC) were successfully prepared via a one-step microemulsion method for the first time. Because of the strong confinement effects, the Ti-MSP@UF-MC possessed perfect microwave heating effects. The temperature was 9.3 °C higher than that of the saline solution, superior to UF-MC (no significant microwave heating effect, 0 °C) and Ti-MSP (5.1 °C). The Ti-MSP@UF-MC showed low toxicity and good biocompatibility via a series of studies, including a hemolysis study and the MTT assay in vitro and in vivo. When the concentration was below 1000 μg mL-1, the hemolysis rate was lower than 5% (hemolysis study). When the concentration was below 400 μg mL-1, the cell activity was higher than 80% (MTT assay). Moreover, the Ti-MSP@UF-MC exhibited an ideal CT imaging effect in vivo owing to the large molecular weight of Ti-MSP. The Ti-MSP@UF-MC showed a favorable microwave therapy effect in vivo. Using mice bearing H22 tumor cells as an animal model, the tumor suppression rate could reach 100%.

  15. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy.

    PubMed

    Long, Dan; Mao, Jingsong; Liu, Tianlong; Fu, Changhui; Tan, Longfei; Ren, Xiangling; Shi, Haitang; Su, Hongying; Ren, Jun; Meng, Xianwei

    2016-06-07

    In this study, Ti-mineral superfine powders (Ti-MSP) encapsulated in urea-formaldehyde resin microcapsules (Ti-MSP@UF-MC) were successfully prepared via a one-step microemulsion method for the first time. Because of the strong confinement effects, the Ti-MSP@UF-MC possessed perfect microwave heating effects. The temperature was 9.3 °C higher than that of the saline solution, superior to UF-MC (no significant microwave heating effect, 0 °C) and Ti-MSP (5.1 °C). The Ti-MSP@UF-MC showed low toxicity and good biocompatibility via a series of studies, including a hemolysis study and the MTT assay in vitro and in vivo. When the concentration was below 1000 μg mL(-1), the hemolysis rate was lower than 5% (hemolysis study). When the concentration was below 400 μg mL(-1), the cell activity was higher than 80% (MTT assay). Moreover, the Ti-MSP@UF-MC exhibited an ideal CT imaging effect in vivo owing to the large molecular weight of Ti-MSP. The Ti-MSP@UF-MC showed a favorable microwave therapy effect in vivo. Using mice bearing H22 tumor cells as an animal model, the tumor suppression rate could reach 100%.

  16. Quantum dot-layer-encapsulated and phenyl-functionalized silica spheres for highly luminous, colour rendering, and stable white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yoo, Hyein; Jang, Ho Seong; Lee, Kwangyeol; Woo, Kyoungja

    2015-07-01

    Although the quantum efficiencies of quantum dots (QDs) are approaching unity through advances in the synthesis of QD materials, their luminescence efficiencies after mixing with resin and thermal curing for white light-emitting diodes (LEDs) are seriously lowered because of aggregation and oxidation of QDs and poor adhesion of QDs to the resin. To overcome these problems, QD-layer-encapsulated and phenyl-functionalized silica (SQSPh) spheres were synthesized and applied for white LEDs, whereby the QDs were homogeneously distributed at radial equidistance from the center and near the surface of approximately 100 nm-sized silica spheres and the surface was functionalized with phenylethyl groups. The inter-core distances of QDs were over ~14 nm, which is over the limit (<10 nm) for Förster resonance energy transfer (FRET) that leads to photoluminescence (PL) reduction. This hierarchical nanostructure excludes a chance of FRET between QDs and provides the QDs a gradually refractive index matching environment, which yields ~4-fold enhanced PL in SQSPh. More importantly, the SQSPh acquired a highly adhesive property to silicone resin due to their phenyl functional group matching, which resulted in remarkably improved light extraction in white LEDs. When incorporated along with a yellow-emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor and silicone resin on blue LED chips, the SQSPh spheres presented significantly improved performance [luminous efficiency (LE) = 58.2 lm W-1 colour rendering index Ra = 81.8; I/I0 = 0.98 after 60 h operation] than their original QDs (LE = 39.6 lm W-1 Ra = 78.1; I/I0 = 0.91 after 60 h operation) under a forward bias current of 60 mA.Although the quantum efficiencies of quantum dots (QDs) are approaching unity through advances in the synthesis of QD materials, their luminescence efficiencies after mixing with resin and thermal curing for white light-emitting diodes (LEDs) are seriously lowered because of aggregation and oxidation of QDs and poor

  17. Filled nanoporous surfaces: controlled formation and wettability.

    PubMed

    Bittoun, Eyal; Marmur, Abraham; Ostblom, Mattias; Ederth, Thomas; Liedberg, Bo

    2009-10-20

    The controlled filling of hydrophobic nanoporous surfaces with hydrophilic molecules and their wetting properties are described and demonstrated by using thiocholesterol (TC) self-assembled monolayers (SAMs) on gold and mercaptoundecanoic acid (MUA) as the filling agent. A novel procedure was developed for filling the nanopores in the TC SAMs by immersing them into a "cocktail" solution of TC and MUA, with TC in huge excess. This procedure results in an increasing coverage of MUA with increasing immersion time up to an area fraction of approximately 23%, while the amount of TC remains almost constant. Our findings strongly support earlier observations where linear omega-substituted alkanethiols selectively fill defects (nanopores) in the TC SAM (Yang et al. Langmuir 1997, 12, 1704-1707). They also support the formation of a homogeneously mixed SAM, given by the distribution of TC on the gold surface, rather than of a phase-segregated overlayer structure with domains of varying size, shape, and composition. The wetting properties of the filled SAMs were investigated by measuring the most stable contact angle as well as contact angle hysteresis. It is shown that the most stable contact angle is very well described by the Cassie equation, since the drops are much larger than the scale of chemical heterogeneity of the SAM surfaces. In addition, it is demonstrated that contact angle hysteresis is sensitive to the chemical heterogeneity of the surface, even at the nanometric scale.

  18. Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Lilit; Kley, E.-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2016-06-01

    A new route to prepare nanoporous SiO2 films by mixing atomic-layer-deposited alumina and silica in an Å-scale is presented. The selective removal of Al2O3 from the composites using wet chemical etching with phosphoric acid resulted in nanoporous thin SiO2 layers. A diffusion-controlled dissolution mechanism is identified whereby an interesting reorganization of the residual SiO2 is observed. The atomic scale oxide mixing is decisive in attaining and tailoring the film porosity. The porosity and the refractive index of nanoporous silica films were tailored from 9% to 69% and from 1.40 to 1.13, respectively. The nanoporous silica was successfully employed as antireflection coatings and as diffusion membranes to encapsulate nanostructures.

  19. Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching.

    PubMed

    Ghazaryan, Lilit; Kley, E-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2016-06-24

    A new route to prepare nanoporous SiO2 films by mixing atomic-layer-deposited alumina and silica in an Å-scale is presented. The selective removal of Al2O3 from the composites using wet chemical etching with phosphoric acid resulted in nanoporous thin SiO2 layers. A diffusion-controlled dissolution mechanism is identified whereby an interesting reorganization of the residual SiO2 is observed. The atomic scale oxide mixing is decisive in attaining and tailoring the film porosity. The porosity and the refractive index of nanoporous silica films were tailored from 9% to 69% and from 1.40 to 1.13, respectively. The nanoporous silica was successfully employed as antireflection coatings and as diffusion membranes to encapsulate nanostructures.

  20. Synthesis and characterization of responsive nanoporous materials

    NASA Astrophysics Data System (ADS)

    Abelow, Alexis Elizabeth

    This thesis describes the synthesis and properties of polymer or oligonucleotide-modified nanoporous membranes and nanopores which exhibit a response to external stimuli, synthesized with the intention of mimicking biological protein channels. The responsiveness of these systems arises as a function of the polymer or oligonucleotide modifier, which exhibit a change in conformation with exposure to temperature, pH, introduction of a small molecule, or electric potential. First, the transport of ions through supported silica colloidal films modified with poly(L-alanine) on platinum electrodes was studied using cyclic voltammetry. By monitoring the flux of a redox species through the polymer-modified colloidal film it is demonstrated that the polymer expands and contracts when the temperature was increased and decreased, respectively. We also observed an expansion and contraction as the pH was increased and decreased, respectively. Transport of a neutral dye molecule through free-standing silica colloidal films modified with poly(L-alanine) was also studied. As noted previously, the polymer expands and contracts as the pH is increased and decreased, respectively. Next, the transport was monitored through both silica colloidal film-modified Pt microelectrodes and Pt single nanopore electrodes as an oligonucleotide-based binder, or aptamer, was attached. The aptamer is responsive to a small molecule, cocaine where, in the absence of cocaine, only one "arm" of the aptamer is folded in on itself, leaving the rest of the chain partially unfolded, blocking the nanopores. However, when the cocaine molecule is introduced into solution, the aptamer folds completely in on itself, forming a three-armed structure with the small molecule encapsulated in the middle. This change in conformation is monitored by observing the change in transport of a redox species through the pores as cocaine is introduced into the system. We observed an increase rate of transport as the aptamer bound

  1. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  2. Recent advances in nanopore sequencing

    PubMed Central

    Maitra, Raj D.; Kim, Jungsuk; Dunbar, William B.

    2013-01-01

    The prospect of nanopores as a next-generation sequencing (NGS) platform has been a topic of growing interest and considerable government-sponsored research for more than a decade. Oxford Nanopore Technologies recently announced the first commercial nanopore sequencing devices, to be made available by the end of 2012, while other companies (Life, Roche, IBM) are also pursuing nanopore sequencing approaches. In this paper, the state of the art in nanopore sequencing is reviewed, focusing on the most recent contributions that have or promise to have NGS commercial potential. We consider also the scalability of the circuitry to support multichannel arrays of nanopores in future sequencing devices, which is critical to commercial viability. PMID:23138639

  3. Storage of nuclear materials by encapsulation in fullerenes

    DOEpatents

    Coppa, Nicholas V.

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  4. Optimized nanoporous materials.

    SciTech Connect

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J.; Pierson, Bonnie E.; Gittard, Shaun D.; Robinson, David B.; Ham, Sung-Kyoung; Chae, Weon-Sik; Gough, Dara V.; Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  5. Current oscillations in nanopores

    NASA Astrophysics Data System (ADS)

    Hyland, Brittany

    We develop a simple phenomenological model to describe current oscillations in single, conically shaped nanopores. The model utilizes aspects of reaction rate theory, electrochemical oscillators, and nonlinear dynamical systems. Time series of experimental data were analyzed and compared to time series simulated using the model equations. There is good qualitative agreement between experiment and simulation, though the model needs to be improved in order to obtain better quantitative agreement.

  6. High and stable photoelectrochemical activity of ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays: nanoporous surface with Cu(x)S as a hole mediator.

    PubMed

    Ouyang, Wei-Xin; Yu, Yu-Xiang; Zhang, Wei-De

    2015-06-14

    Advanced materials for electrocatalytic and photoelectrochemical water splitting are key for taking advantage of renewable energy. In this study, ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays with a nanoporous surface were fabricated via ion exchange and successive ionic layer adsorption and reaction (SILAR) processes. The ZnO/ZnSe/CdSe/Cu(x)S sample displays a high photocurrent density of 12.0 mA cm(-2) under AM 1.5G illumination, achieves the highest IPCE value of 89.5% at 500 nm at a bias potential of 0.2 V versus Ag/AgCl, and exhibits greatly improved photostability. The functions of the ZnSe, CdSe, and Cu(x)S layers in the ZnO/ZnSe/CdSe/Cu(x)S heterostructure were clarified. ZnSe is used as a passivation layer to reduce the trapping and recombination of charge carriers at the interfaces of the semiconductors. CdSe functions as a highly efficient visible light absorber and builds heterojunctions with the other components to improve the separation and transportation of the photoinduced electrons and holes. Cu(x)S serves as a passivation layer and an effective p-type hole mediator, which passivates the defects and surface states of the semiconductors and forms p-n junctions with CdSe to promote the hole transportation at the semiconductor-electrolyte interface. The nanoporous surface of the ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays, together with the tunnel transportation of the charge carriers in the thin films of ZnSe and CdSe, also facilitates the kinetics of photoelectrochemical reactions and improves the optical absorption as well.

  7. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for

  8. Molecule-hugging graphene nanopores

    PubMed Central

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A.; Branton, Daniel

    2013-01-01

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule’s outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤0.6 nm along the length of the molecule. PMID:23836648

  9. The evolution of nanopore sequencing

    PubMed Central

    Wang, Yue; Yang, Qiuping; Wang, Zhimin

    2014-01-01

    The “$1000 Genome” project has been drawing increasing attention since its launch a decade ago. Nanopore sequencing, the third-generation, is believed to be one of the most promising sequencing technologies to reach four gold standards set for the “$1000 Genome” while the second-generation sequencing technologies are bringing about a revolution in life sciences, particularly in genome sequencing-based personalized medicine. Both of protein and solid-state nanopores have been extensively investigated for a series of issues, from detection of ionic current blockage to field-effect-transistor (FET) sensors. A newly released protein nanopore sequencer has shown encouraging potential that nanopore sequencing will ultimately fulfill the gold standards. In this review, we address advances, challenges, and possible solutions of nanopore sequencing according to these standards. PMID:25610451

  10. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  11. Biomimetic design of a brush-like nanopore: simulation studies.

    PubMed

    Pongprayoon, Prapasiri; Beckstein, Oliver; Sansom, Mark S P

    2012-01-12

    Combining a high degree of selectivity and nanoscale dimensions, biological pores are attractive potential components for nanotechnology devices and applications. Biomimetic design will facilitate production of stable synthetic nanopores with defined functionality. Bacterial porins offer a good source of possible templates for such nanopores as they form stable, selective pores in lipid bilayers. Molecular dynamics simulations have been used to design simple model nanopores with permeation free energy profiles that can be made to mimic a template protein, the OprP porin, which forms pores selective for anions. In particular, we explored the effects of varying the nature of pore-lining groups on free energy profiles for phosphate and chloride ions along the pore axis and the total charge of the permeation pathway of the pore. Cationic side chains lining the model nanopore are required to model the local detail of the OprP permeation landscape, whereas the total charge contributes to its magnitude. These studies indicate that a locally accurate biomimetic design has captured the essentials of the structure/function relationship of the parent protein.

  12. Nanoporous plasmonic metamaterials

    SciTech Connect

    Biener, J; Nyce, G W; Hodge, A M; Biener, M M; Hamza, A V; Maier, S A

    2007-05-24

    We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications.

  13. Modeling Transport Through Synthetic Nanopores

    PubMed Central

    Aksimentiev, Aleksei; Brunner, Robert K.; Cruz-Chú, Eduardo; Comer, Jeffrey; Schulten, Klaus

    2011-01-01

    Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article. PMID:21909347

  14. Module encapsulation technology

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    The identification and development techniques for low-cost module encapsulation materials were reviewed. Test results were displayed for a variety of materials. The improved prospects for modeling encapsulation systems for life prediction were reported.

  15. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  16. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  17. Laminated Graphene Films for Flexible Transparent Thin Film Encapsulation.

    PubMed

    Seo, Hong-Kyu; Park, Min-Ho; Kim, Young-Hoon; Kwon, Sung-Joo; Jeong, Su-Hun; Lee, Tae-Woo

    2016-06-15

    We introduce a simple, inexpensive, and large-area flexible transparent lamination encapsulation method that uses graphene films with polydimethylsiloxane (PDMS) buffer on polyethylene terephthalate (PET) substrate. The number of stacked graphene layers (nG) was increased from 2 to 6, and 6-layered graphene-encapsulation showed high impermeability to moisture and air. The graphene-encapsulated polymer light emitting diodes (PLEDs) had stable operating characteristics, and the operational lifetime of encapsulated PLEDs increased as nG increased. Calcium oxidation test data confirmed the improved impermeability of graphene-encapsulation with increased nG. As a practical application, we demonstrated large-area flexible organic light emitting diodes (FOLEDs) and transparent FOLEDs that were encapsulated by our polymer/graphene encapsulant.

  18. Fabrication and simulation of nanopore optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.; Dias, N. L.; Reddy, U.; Garg, A.; Young, J. D.; Verma, V. B.; Elarde, V. C.

    2010-07-01

    Nanopores are a new class of low dimensional semiconductor nanostructures which have been recently proposed for use in lasers and other photonic applications. This paper provides an overview of patterned nanopore lattices with an emphasis on their electronic and optical properties. The ability to control nanopore properties by geometry and material composition are demonstrated. Two methods for controlled nanopore fabrication are presented and compared. Spectral characteristics of nanopore lasers are presented. Finite element numerical simulations are also performed to determine the band structure and emission properties of nanopores.

  19. Fabrication and simulation of nanopore optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Coleman, J. J.; Dias, N. L.; Reddy, U.; Garg, A.; Young, J. D.; Verma, V. B.; Elarde, V. C.

    2011-03-01

    Nanopores are a new class of low dimensional semiconductor nanostructures which have been recently proposed for use in lasers and other photonic applications. This paper provides an overview of patterned nanopore lattices with an emphasis on their electronic and optical properties. The ability to control nanopore properties by geometry and material composition are demonstrated. Two methods for controlled nanopore fabrication are presented and compared. Spectral characteristics of nanopore lasers are presented. Finite element numerical simulations are also performed to determine the band structure and emission properties of nanopores.

  20. Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer.

    PubMed

    Junesch, Juliane; Sannomiya, Takumi

    2014-05-14

    Suspended plasmonic nanopores in ultrathin film layers were fabricated through a simple and widely applicable method combining colloidal lithography and thin film transfer, which allows mass production of short-range ordered nanopore arrays on a large scale. By this combined method, mechanically stable and flexible free-standing nanopore membranes with a thickness down to 15-30 nm were produced. The plasmon resonances of the ultrathin plasmonic nanopores fabricated in AlN/Au/AlN trilayer and single layer Au membranes were tuned to lie in the vis-NIR wavelength range by properly designing their dimensions. The optical responses to the refractive index changes were tested and applied to adlayer sensing. The trilayer nanopore membrane showed a unique property to support water only on one side of the membrane, which was confirmed by the resonance shift and comparison with numerical simulation. Pore size reduction down to 10 nm can be achieved through additional material deposition. The filtering function of such pore-size-reduced conical shaped nanofunnels has also been demonstrated. The presented nanopore fabrication method offers new platforms for ultrathin nanopore sensing or filtering devices with controlled pore-size and optical properties. The film transfer technique employed in this work would enable the transformation of any substrate-based nanostructures to free-standing membrane based devices without complicated multiple etching processes.

  1. Noise Properties of Rectifying Nanopore

    SciTech Connect

    Vlassiouk, Ivan V

    2011-01-01

    Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier-Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.

  2. Noise Properties of Rectifying Nanopores

    SciTech Connect

    Powell, M R; Sa, N; Davenport, M; Healy, K; Vlassiouk, I; Letant, S E; Baker, L A; Siwy, Z S

    2011-02-18

    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.

  3. Applications of Nanoporous Materials in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanoporous materials possess organized pore distributions and increased surface areas. Advances in the systematic design of nanoporous materials enable incorporation of functionality for better sensitivity in detection methods, increased capacity of sorbents, and improved selectivity and yield in ca...

  4. Cell encapsulation via microtechnologies.

    PubMed

    Kang, AhRan; Park, JiSoo; Ju, Jongil; Jeong, Gi Seok; Lee, Sang-Hoon

    2014-03-01

    The encapsulation of living cells in a variety of soft polymers or hydrogels is important, particularly, for the rehabilitation of functional tissues capable of repairing or replacing damaged organs. Cellular encapsulation segregates cells from the surrounding tissue to protect the implanted cell from the recipient's immune system after transplantation. Diverse hydrogel membranes have been popularly used as encapsulating materials and permit the diffusion of gas, nutrients, wastes and therapeutic products smoothly. This review describes a variety of methods that have been developed to achieve cellular encapsulation using microscale platform. Microtechnologies have been adopted to precisely control the encapsulated cell number, size and shape of a cell-laden polymer structure. We provide a brief overview of recent microtechnology-based cell encapsulation methods, with a detailed description of the relevant processes. Finally, we discuss the current challenges and future directions likely to be taken by cell microencapsulation approaches toward tissue engineering and cell therapy applications.

  5. Multiplexed ionic current sensing with glass nanopores.

    PubMed

    Bell, Nicholas A W; Thacker, Vivek V; Hernández-Ainsa, Silvia; Fuentes-Perez, Maria E; Moreno-Herrero, Fernando; Liedl, Tim; Keyser, Ulrich F

    2013-05-21

    We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.

  6. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  7. Solar cell encapsulation

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  8. Thickness-dependent dielectric breakdown and nanopore creation on sub-10-nm-thick SiN membranes in solution

    NASA Astrophysics Data System (ADS)

    Yanagi, Itaru; Fujisaki, Koji; Hamamura, Hirotaka; Takeda, Ken-ichi

    2017-01-01

    Recently, dielectric breakdown of solid-state membranes in solution has come to be known as a powerful method for fabricating nanopore sensors. This method has enabled a stable fabrication of nanopores down to sub-2 nm in diameter, which can be used to detect the sizes and structures of small molecules. Until now, the behavior of dielectric breakdown for nanopore creation in SiN membranes with thicknesses of less than 10 nm has not been studied, while the thinner nanopore membranes are preferable for nanopore sensors in terms of spatial resolution. In the present study, the thickness dependence of the dielectric breakdown of sub-10-nm-thick SiN membranes in solution was investigated using gradually increased voltage pulses. The increment in leakage current through the membrane at the breakdown was found to become smaller with a decrease in the thickness of the membrane, which resulted in the creation of smaller nanopores. In addition, the electric field for dielectric breakdown drastically decreased when the thickness of the membrane was less than 5 nm. These breakdown behaviors are quite similar to those observed in gate insulators of metal-oxide-semiconductor devices. Finally, stable ionic-current blockades were observed when single-stranded DNA passed through the nanopores created on the membranes with thicknesses of 3-7 nm.

  9. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity.

    PubMed

    Small, Leo J; Wheeler, David R; Spoerke, Erik D

    2015-10-28

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.

  10. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  11. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence

  12. DNA nanowire translocation phenomena in nanopores.

    PubMed

    Chen, Lei; Conlisk, A T

    2010-04-01

    One recent application of nanopores is to use them as detectors and analyzers for fast DNA sequencing. To better understand the DNA electrokinetic transport through a nanopore, a hydrodynamic model is developed to investigate the flow field, the resistive forces acting on the DNA, the DNA velocity and the ionic current through the nanopore. The numerical results reveal the relation between the DNA velocity and various parameters such as nanopore surface charge and solution concentration. The model is validated by comparing the numerical results with the experimental data for both DNA velocity and ionic current through the nanopore.

  13. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  14. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers

    PubMed Central

    Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong

    2017-01-01

    Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I–V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later. PMID:28252106

  15. Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers

    NASA Astrophysics Data System (ADS)

    Xing, Zhuo; Ren, Feng; Wu, Hengyi; Wu, Liang; Wang, Xuening; Wang, Jingli; Wan, Da; Zhang, Guozhen; Jiang, Changzhong

    2017-03-01

    Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I–V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later.

  16. Nanoporous silicon oxide memory.

    PubMed

    Wang, Gunuk; Yang, Yang; Lee, Jae-Hwang; Abramova, Vera; Fei, Huilong; Ruan, Gedeng; Thomas, Edwin L; Tour, James M

    2014-08-13

    Oxide-based two-terminal resistive random access memory (RRAM) is considered one of the most promising candidates for next-generation nonvolatile memory. We introduce here a new RRAM memory structure employing a nanoporous (NP) silicon oxide (SiOx) material which enables unipolar switching through its internal vertical nanogap. Through the control of the stochastic filament formation at low voltage, the NP SiOx memory exhibited an extremely low electroforming voltage (∼ 1.6 V) and outstanding performance metrics. These include multibit storage ability (up to 9-bits), a high ON-OFF ratio (up to 10(7) A), a long high-temperature lifetime (≥ 10(4) s at 100 °C), excellent cycling endurance (≥ 10(5)), sub-50 ns switching speeds, and low power consumption (∼ 6 × 10(-5) W/bit). Also provided is the room temperature processability for versatile fabrication without any compliance current being needed during electroforming or switching operations. Taken together, these metrics in NP SiOx RRAM provide a route toward easily accessed nonvolatile memory applications.

  17. Nanoporous microscale microbial incubators.

    PubMed

    Ge, Zhifei; Girguis, Peter R; Buie, Cullen R

    2016-02-07

    Reconstruction of phylogenetic trees based on 16S rRNA gene sequencing reveals abundant microbial diversity that has not been cultured in the laboratory. Many attribute this so-called 'great plate count anomaly' to traditional microbial cultivation techniques, which largely facilitate the growth of a single species. Yet, it is widely recognized that bacteria in nature exist in complex communities. One technique to increase the pool of cultivated bacterial species is to co-culture multiple species in a simulated natural environment. Here, we present nanoporous microscale microbial incubators (NMMI) that enable high-throughput screening and real-time observation of multi-species co-culture. The key innovation in NMMI is that they facilitate inter-species communication while maintaining physical isolation between species, which is ideal for genomic analysis. Co-culture of a quorum sensing pair demonstrates that the NMMI can be used to culture multiple species in chemical communication while monitoring the growth dynamics of individual species.

  18. Adsorption hysteresis in nanopores

    PubMed

    Neimark; Ravikovitch; Vishnyakov

    2000-08-01

    Capillary condensation hysteresis in nanopores is studied by Monte Carlo simulations and the nonlocal density functional theory. Comparing the theoretical results with the experimental data on low temperature sorption of nitrogen and argon in cylindrical channels of mesoporous siliceous molecular sieves of MCM-41 type, we have revealed four qualitatively different sorption regimes depending on the temperature and pore size. As the pore size increases at a given temperature, or as the temperature decreases at a given pore size, the following regimes are consequently observed: volume filling without phase separation, reversible stepwise capillary condensation, irreversible capillary condensation with developing hysteresis, and capillary condensation with developed hysteresis. We show that, in the regime of developed hysteresis (pores wider than 5 nm in the case of nitrogen sorption at 77 K), condensation occurs spontaneously at the vaporlike spinodal while desorption takes place at the equilibrium. A quantitative agreement is found between the modeling results and the experimental hysteresis loops formed by the adsorption-desorption isotherms. The results obtained provide a better understanding of the general behavior of confined fluids and the specifics of sorption and phase transitions in nanomaterials.

  19. Ion Beam Nanosculpting and Materials Science with Single Nanopores

    SciTech Connect

    Golovchenko, J A; Branton, D

    2009-10-03

    Work is reported in these areas: Nanopore studies; Ion sculpting of metals; High energy ion sculpting; Metrology of nanopores with single wall carbon nanotube probes; Capturing molecules in a nanopore; Strand separation in a nanopore; and DNA molecules and configurations in solid-state nanopores.

  20. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells.

    PubMed

    Bayoumi, Mariam; Bayley, Hagan; Maglia, Giovanni; Sapra, K Tanuj

    2017-04-03

    Constructing a cell mimic is a major challenge posed by synthetic biologists. Efforts to this end have been primarily focused on lipid- and polymer-encapsulated containers, liposomes and polymersomes, respectively. Here, we introduce a multi-compartment, nested system comprising aqueous droplets stabilized in an oil/lipid mixture, all encapsulated in hydrogel. Functional capabilities (electrical and chemical communication) were imparted by protein nanopores spanning the lipid bilayer formed at the interface of the encapsulated aqueous droplets and the encasing hydrogel. Crucially, the compartmentalization enabled the formation of two adjoining lipid bilayers in a controlled manner, a requirement for the realization of a functional protocell or prototissue.

  1. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells

    PubMed Central

    Bayoumi, Mariam; Bayley, Hagan; Maglia, Giovanni; Sapra, K. Tanuj

    2017-01-01

    Constructing a cell mimic is a major challenge posed by synthetic biologists. Efforts to this end have been primarily focused on lipid- and polymer-encapsulated containers, liposomes and polymersomes, respectively. Here, we introduce a multi-compartment, nested system comprising aqueous droplets stabilized in an oil/lipid mixture, all encapsulated in hydrogel. Functional capabilities (electrical and chemical communication) were imparted by protein nanopores spanning the lipid bilayer formed at the interface of the encapsulated aqueous droplets and the encasing hydrogel. Crucially, the compartmentalization enabled the formation of two adjoining lipid bilayers in a controlled manner, a requirement for the realization of a functional protocell or prototissue. PMID:28367984

  2. Fabrication of nanopores with ultrashort single-walled carbon nanotubes inserted in a lipid bilayer.

    PubMed

    Liu, Lei; Xie, Jiani; Li, Ting; Wu, Hai-Chen

    2015-11-01

    We describe a protocol for the insertion of ultrashort single-walled carbon nanotubes (SWCNTs) to form nanopores in a Montal-Mueller lipid bilayer. The SWCNTs are designed to bind to a specific analyte of interest; binding will result in the reduction of current in single-channel recording experiments. The first stage of the PROCEDURE is to cut and separate the SWCNTs. We cut long, purified SWCNTs with sonication in concentrated sulfuric acid/nitric acid (3/1). Isolation of ultrashort SWCNTs is carried out by size-exclusion HPLC separation. The second stage is to insert these short SWCNTs into the lipid bilayer. This step requires a microinjection probe made from a glass capillary. The setup for protein nanopore research can be adopted for the single-channel recording experiments without any special treatment. The obtained current traces are of very high quality, showing stable baselines and little background noise. Example procedures are shown for investigating ion transport and DNA translocation through these SWCNT nanopores. This nanopore has potential applications in molecular sensing, nanopore DNA sequencing and early disease diagnosis. For example, we have selectively detected modified 5-hydroxymethylcytosine in single-stranded DNA (ssDNA), which may have implications in screening specific genomic DNA sequences. The protocol takes ∼15 d, including SWCNT purification, cutting and separation, as well as the formation of SWCNT nanopores for DNA analyses.

  3. Current oscillations generated by precipitate formation in the mixing zone between two solutions inside a nanopore.

    PubMed

    Yusko, Erik C; Billeh, Yazan N; Mayer, Michael

    2010-11-17

    Unlike biological protein pores in lipid membranes, nanopores fabricated in synthetic materials can withstand a wide range of environmental conditions including the presence of organic solvents. This capability expands the potential of synthetic nanopores to monitor chemical reactions occurring at the interface between solutions of organic and aqueous character. In this work, nanopores fabricated in borosilicate glass or silicon nitride connected a predominantly organic solvent to an aqueous solvent, thereby generating a mixing zone between these solutions inside the pore. This configuration was exploited to precipitate small organic molecules with low aqueous solubility inside the nanopores, and concomitantly, to monitor this precipitation by the decrease of the ionic conductance through the nanopores over time. Hence, this method provides a means to induce and investigate the formation of nanoprecipitates or nanoparticles. Interestingly, precipitates with a slight electric charge were cleared from the pore, causing the conductance of the pore to return to its original value. This process repeated, resulting in stable oscillations of the ionic current. Although such oscillations might be useful in fluidic logic circuits, few conditions capable of generating oscillations in ionic currents have been reported. The frequency and amplitude of oscillations could be tuned by changing the concentration of the precipitating molecule, the pH of the electrolyte, and the applied potential bias. In addition to generating oscillations, nanopores that separate two different solutions may be useful for monitoring and mediating chemical reactions in the mixing zone between two solutions.

  4. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  5. Superdiffusive gas recovery from nanopores

    NASA Astrophysics Data System (ADS)

    Wu, Haiyi; He, Yadong; Qiao, Rui

    2016-11-01

    Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as R ˜t1 /2 ) but follows a superdiffusive scaling law R ˜tn (n >0.5 ), which is similar to that observed in some field experiments. For the system studied here, the superdiffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.

  6. Encapsulant selection and durability testing experience

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1985-01-01

    The Flat Plate Solar Array Project (FSA) has established technically challenging cost and service life goals for photovoltaic modules. These goals are a cost of $70 sq m and an expected 30 years of service life in an outdoor weathering environment. out of the cost goal, $14 sq m is allocated for encapsulation materials, which includes the cost of a structural panel. At FSA's inception in 1975, the cumulative cost of encapsulation materials in popular use, such as room temperature vulcanized (RTV) silicones, aluminum panels, etc., greatly exceeded $14/sq m. Accordingly, it became necessary to identify and/or develop new materials and new material technologies to achieve the goals. Many of these new materials are low cost polymers that satisfy module engineering and encapsulation processing requirements but unfortunately are not intrinsically weather stable. This necessitates identifying lifetime and/or weathering deficiencies inherent in these low cost materials and developing specific approaches to enhancing weather stability.

  7. Single Enzyme Nanoparticles in Nanoporous Silica: A Heirachical Approach to Enzyme Stabilization and Immobilization

    SciTech Connect

    Kim, Jungbae; Jia, Hongfei; Lee, Chang-Won; Chung, Seung-wook; Kwak, Ja Hun; Shin, Yongsoon; Dohnalkova, Alice; Kim, Byung-Gee; Wang, Ping; Grate, Jay W.

    2006-07-03

    Single enzyme nanoparticles of alpha-chymotrypsin (SEN-CT), in which each CT molecule is surrounded by a thin polymeric organic/inorganic network, stabilized the CT activity in a shaking condition as well as in a non-shaking condition. Since SEN-CT is soluble in a buffer solution and less than 10 nm in size, SEN-CT could be immobilized in nanoporous silica with an average pore size of 29 nm. Free CT and SEN-CT were immobilized in nanoporous silica (NPS), and nanoporous silica that was first silanized with aminopropyltriethoxysilane (amino-NPS) to generate a positive surface charge. The SEN-CT adsorbed in amino-NPS was more stable than CT immobilized by either adsorption in NPS or covalent bonding to amino-NPS. In shaking conditions, nanoporous silica provided an additional stabilization by protecting SEN-CT from shear stresses. At 22oC with harsh shaking, free, NPS- adsorbed and NPS-covalently-attached CT showed half lives of 1, 62, and 80 h, respectively; whereas SEN-CT adsorbed in amino-NPS showed no activity loss within 12 days. The combination of SENs and nanoporous silica, which makes an active and stable immobilized enzyme system, represents a new structure for biocatalytic applications.

  8. Encapsulation with structured triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  9. Understanding Energy Absorption Behaviors of Nanoporous Materials

    DTIC Science & Technology

    2008-05-23

    nanopore surface transfers from wettable to non- wettable . Under this condition, water molecules cannot enter the nanopores spontaneously. A...2 and the molecular weight of 106.17. Under ambient condition, the nanoporous carbon was non- wettable to p-Xylene, and thus the liquid cannot be...for nominally wettable nanochannel walls, would be dominant. F. Developing Solid-Like Energy Absorption Systems If the molecular size of the

  10. Threading DNA through nanopores for biosensing applications

    NASA Astrophysics Data System (ADS)

    Fyta, Maria

    2015-07-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing.

  11. How Stable Is Stable?

    ERIC Educational Resources Information Center

    Baehr, Marie

    1994-01-01

    Provides a problem where students are asked to find the point at which a soda can floating in some liquid changes its equilibrium between stable and unstable as the soda is removed from the can. Requires use of Newton's first law, center of mass, Archimedes' principle, stable and unstable equilibrium, and buoyant force position. (MVL)

  12. Consideration of encapsulants for photovoltaic arrays in terrestrial applications

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Carroll, W. F.

    1977-01-01

    Long-term survivability of photovoltaic arrays and components in terrestrial environments will require development of adequate protective systems. Highly considered are polymeric encapsulants, a method which was successfully employed in space and aerospace applications to protect critical electrical circuitry. To be employable, however, the polymer encapsulants must themselves be chemically and mechanically resistant to failure in terrestrial service. Chemical resistance includes stability to the degrading actions of ultraviolet light, oxygen, moisture and elevated temperatures in sun rich areas. Programs are underway to identify and develop chemically stable encapsulant candidates. Chemical considerations aside, mechanical failures of the encapsulants must also be avoided in array designs. This paper discusses design considerations for avoiding mechanical failures of polymeric encapsulants, with emphasis on biaxial properties, thermal fatigue, and anisotropy and nonhomogeneity of material properties. The general principles to be presented evolved from actual failures of polymeric materials in engineering applications. Also included are brief remarks on the permeability of polymer materials to atmospheric gases.

  13. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing

    NASA Astrophysics Data System (ADS)

    Ayub, Mariam; Ivanov, Aleksandar; Hong, Jongin; Kuhn, Phillip; Instuli, Emanuele; Edel, Joshua B.; Albrecht, Tim

    2010-11-01

    It has recently been shown that solid-state nanometer-scale pores ('nanopores') can be used as highly sensitive single-molecule sensors. For example, electrophoretic translocation of DNA, RNA and proteins through such nanopores has enabled both detection and structural analysis of these complex biomolecules. Control over the nanopore size is critical as the pore must be comparable in size to the analyte molecule in question. The most widely used fabrication methods are based on focused electron or ion beams and thus require (scanning) transmission electron microscopy and focused ion beam (FIB) instrumentation. Even though very small pores have been made using these approaches, several issues remain. These include the requirement of being restricted to rather thin, mechanically less stable membranes, particularly for pore diameters in the single-digit nanometer range, lack of control of the surface properties at and inside the nanopore, and finally, the fabrication cost. In the proof-of-concept study, we report on a novel and simple route for fabricating metal nanopores with apparent diameters below 20 nm using electrodeposition and real-time ionic current feedback in solution. This fabrication approach inserts considerable flexibility into the kinds of platforms that can be used and the nanopore membrane material. Starting from much larger pores, which are straightforward to make using FIB or other semiconductor fabrication methods, we electrodeposit Pt at the nanopore interface while monitoring its ionic conductance at the same time in a bi-potentiostatic setup. Due to the deposition of Pt, the nanopore decreases in size, resulting in a decrease of the pore conductance. Once a desired pore conductance has been reached, the electrodeposition process is stopped by switching the potential of the membrane electrode and the fabrication process is complete. Furthermore, we demonstrate that these pores can be used for single-biomolecule analysis, such as that of

  14. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.

    PubMed

    Ayub, Mariam; Ivanov, Aleksandar; Hong, Jongin; Kuhn, Phillip; Instuli, Emanuele; Edel, Joshua B; Albrecht, Tim

    2010-11-17

    It has recently been shown that solid-state nanometer-scale pores ('nanopores') can be used as highly sensitive single-molecule sensors. For example, electrophoretic translocation of DNA, RNA and proteins through such nanopores has enabled both detection and structural analysis of these complex biomolecules. Control over the nanopore size is critical as the pore must be comparable in size to the analyte molecule in question. The most widely used fabrication methods are based on focused electron or ion beams and thus require (scanning) transmission electron microscopy and focused ion beam (FIB) instrumentation. Even though very small pores have been made using these approaches, several issues remain. These include the requirement of being restricted to rather thin, mechanically less stable membranes, particularly for pore diameters in the single-digit nanometer range, lack of control of the surface properties at and inside the nanopore, and finally, the fabrication cost. In the proof-of-concept study, we report on a novel and simple route for fabricating metal nanopores with apparent diameters below 20 nm using electrodeposition and real-time ionic current feedback in solution. This fabrication approach inserts considerable flexibility into the kinds of platforms that can be used and the nanopore membrane material. Starting from much larger pores, which are straightforward to make using FIB or other semiconductor fabrication methods, we electrodeposit Pt at the nanopore interface while monitoring its ionic conductance at the same time in a bi-potentiostatic setup. Due to the deposition of Pt, the nanopore decreases in size, resulting in a decrease of the pore conductance. Once a desired pore conductance has been reached, the electrodeposition process is stopped by switching the potential of the membrane electrode and the fabrication process is complete. Furthermore, we demonstrate that these pores can be used for single-biomolecule analysis, such as that of

  15. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect

  16. Nanofluidic Pathways for Single Molecule Translocation and Sequencing -- Nanotubes and Nanopores

    NASA Astrophysics Data System (ADS)

    Song, Weisi

    Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis focuses on the study of first and crucial compartment of the third generation sequencing technique, the capture and translocation of biopolymers, and discuss the advantages and obstacles of two different nanofluidic pathways, nanotubes and nanopores for single molecule capturing and translocation. Carbon nanotubes with its constrained structure, the frictionless inner wall and strong electroosmotic flow, are promising materials for linearly threading DNA and other biopolymers for sequencing. Solid state nanopore on the other hand, is a robust chemical, thermal and mechanical stable nanofluidic device, which has a high capturing rate and, to some extent, good controllable threading ability for DNA and other biomolecules. These two different but similar nanofluidic pathways both provide a good preparation of analyte molecules for the sequencing purpose. In addition, more and more research interests have move onto peptide chains and protein sensing. For proteome is better and more direct indicators for human health, peptide chains and protein sensing have a much wider range of applications on bio-medicine, disease early diagnoses, and etc. A universal peptide chain nanopore sensing technique with universal chemical modification of peptides is discussed in this thesis as well, which unifies the nanopore capturing process for vast varieties of peptides. Obstacles of these nanofluidic pathways are also discussed. In the end of this thesis, a proposal of integration of solid state nanopore and fixed-gap recognition tunneling sequencing technique for a more accurate DNA and peptide readout is discussed, together with some early study work, which gives a new direction for nanopore based sequencing.

  17. Switchable imbibition in nanoporous gold

    PubMed Central

    Xue, Yahui; Markmann, Jürgen; Duan, Huiling; Weissmüller, Jörg; Huber, Patrick

    2014-01-01

    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static host geometry, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid–liquid interfacial tension, that is, we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge transport in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for fluid/ionic transport render nanoporous gold a versatile, accurately controllable electrocapillary pump and flow sensor for minute amounts of liquids with exceptionally low operating voltages. PMID:24980062

  18. Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates

    SciTech Connect

    Li Yanbao; Tjandra, Wiliana; Tam, Kam C.

    2008-08-04

    Nanoporous hydroxyapatite was synthesized utilizing cationic surfactants as templates. The effects of cetyltrimethylammonium bromide and reaction temperatures on the phase and morphology of HA were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The thermal stability of nanoporous structures was studied by XRD and thermal analyzers (TGA/DTA), while the pore structure of HA was observed using high resolution TEM. It was found that the pore size was about 1 nm, and the pore structure of HA was thermally stable up to 700 deg. C and the pore size did not change with reaction temperature and CTAB:PO{sub 4}{sup 3-} ratio. The possible formation mechanism of nanoporous structure was proposed.

  19. Solution-growth kinetics and thermodynamics of nanoporous self-assembled molecular monolayers

    NASA Astrophysics Data System (ADS)

    Bellec, Amandine; Arrigoni, Claire; Schull, Guillaume; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2011-03-01

    The temperature and concentration dependences of the self-assembly onto graphite from solution of a series of molecular building blocks able to form nanoporous structures are analyzed experimentally by in situ scanning tunneling microscopy. It is shown that the commonly observed coexistence of dense and nanoporous domains results from kinetic blockades rather than a thermodynamic equilibrium. The ripening can be favored by high densities of domain boundaries, which can be obtained by cooling the substrate before the nucleation and growth. Then ripening at higher-temperature yields large defect-free domains of a single structure. This thermodynamically stable structure can be either the dense or the nanoporous one, depending on the tecton concentration in the supernatant solution. A sharp phase transition from dense to honeycomb structures is observed at a critical concentration. This collective phenomenon is explained by introducing interactions between adsorbed molecules in the thermodynamic description of the whole system.

  20. Review of encapsulation technologies

    SciTech Connect

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms.

  1. Method to fabricate functionalized conical nanopores

    DOEpatents

    Small, Leo J.; Spoerke, Erik David; Wheeler, David R.

    2016-07-12

    A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.

  2. Nanoporous membranes for medical and biological applications

    PubMed Central

    Adiga, Shashishekar P; Jin, Chunmin; Curtiss, Larry A; Monteiro-Riviere, Nancy A.; Narayan, Roger J

    2013-01-01

    Synthetic nanoporous materials have numerous potential biological and medical applications that involve sorting, sensing, isolating and releasing biological molecules. Nanoporous systems engineered to mimic natural filtration systems are actively being developed for use in smart implantable drug delivery systems, bioartificial organs, and other novel nano-enabled medical devices. Recent advances in nanoscience have made it possible to precisely control the morphology as well as physical and chemical properties of the pores in nanoporous materials that make them increasingly attractive for regulating and sensing transport at the molecular level. In this work, an overview of nanoporous membranes for biomedical applications is given. Various in vivo and in vitro membrane applications, including biosensing, biosorting, immunoisolation and drug delivery, are presented. Different types of nanoporous materials and their fabrication techniques are discussed with an emphasis on membranes with ordered pores. Desirable properties of membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are discussed. The use of surface modification techniques to improve the function of nanoporous membranes is reviewed. Despite the extensive research carried out in fabrication, characterization, and modeling of nanoporous materials, there are still several challenges that must be overcome in order to create synthetic nanoporous systems that behave similarly to their biological counterparts. PMID:20049818

  3. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  4. Stretchability of encapsulated electronics

    NASA Astrophysics Data System (ADS)

    Wu, J.; Liu, Z. J.; Song, J.; Huang, Y.; Hwang, K.-C.; Zhang, Y. W.; Rogers, J. A.

    2011-08-01

    Stretchable and flexible electronics offer the performance of conventional wafer-based systems but can be stretched like a rubber band, twisted like a rope, and bent over a pencil. Such a technology offers new application opportunities, in areas of surgical and diagnostic implements that naturally integrate with the human body to provide advanced capabilities, to curvilinear devices such as hemispherical "eyeball" cameras. In practice, stretchable and flexible electronic systems require encapsulation layers to provide mechanical and environmental protection. This paper establishes a simple, analytical model for the optimal design of encapsulation.

  5. Reconstructing solid state nanopore shape from electrical measurements

    NASA Astrophysics Data System (ADS)

    Liebes, Yael; Drozdov, Maria; Avital, Yotam Y.; Kauffmann, Yaron; Rapaport, Hanna; Kaplan, Wayne D.; Ashkenasy, Nurit

    2010-11-01

    The dependence of nanopore biosensor conductance signal on the nanopore shape makes it important to decipher the latter with high precision. We show here that the three dimensional shape of a nanopore, extracted from electron microscopy analysis, allows for modeling the conductance of the nanopore over a wide range of ionic strengths. Furthermore, we demonstrate that the dependence of the nanopore conductance on ionic strength can be used to accurately extract the nanopore shape, eliminating the need for lengthy electron microscopy analysis. The suggested methodology can be used to monitor changes in the nanopore shape and evaluate them during electrical characterization.

  6. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  7. Nanopore DNA sequencing using kinetic proofreading

    NASA Astrophysics Data System (ADS)

    Ling, Xinsheng

    We propose a method of DNA sequencing by combining the physical method of nanopore electrical measurements and Southern's sequencing-by-hybridization. The new key ingredient, essential to both lowering the costs and increasing the precision, is an asymmetric nanopore sandwich device capable of measuring the DNA hybridization probe twice separated by a designed waiting time. Those incorrect probes appearing only once in nanopore ionic current traces are discriminated from the correct ones that appear twice. This method of discrimination is similar to the principle of kinetic proofreading proposed by Hopfield and Ninio in gene transcription and translation processes. An error analysis is of this nanopore kinetic proofreading (nKP) technique for DNA sequencing is carried out in comparison with the most precise 3' dideoxy termination method developed by Sanger. Nanopore DNA sequencing using kinetic proofreading.

  8. Graphene nanopore devices for DNA sensing.

    PubMed

    Merchant, Chris A; Drndić, Marija

    2012-01-01

    We describe here a method for detecting the translocation of individual DNA molecules through nanopores created in graphene membranes. The devices consist of 1-5-nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, and the reduced electrical resistance, we observe larger blocked currents than for traditional solid-state nanopores. We also show how ionic current noise levels can be reduced with the atomic-layer deposition of a few nanometers of titanium dioxide over the graphene surface. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor, and its use opens the door to a new future class of nanopore devices in which electronic sensing and control is performed directly at the pore.

  9. Rayleigh instability in polymer thin films coated in the nanopores of anodic aluminum oxide templates.

    PubMed

    Tsai, Chia-Chan; Chen, Jiun-Tai

    2014-01-14

    We study the Rayleigh instability of polystyrene (PS) thin films coated in the nanopores of anodic aluminum oxide (AAO) templates. After thermal annealing, the surface of the PS thin films undulates and the nanostructures transform from nanotubes to Rayleigh-instability-induced nanostructures (short nanorods with encapsulated air bubbles). With longer annealing times, the nanostructures further transform to nanorods with longer lengths. PS samples with two different molecular weights (24 and 100 kg/mol) are used, and their instability transformation processes are compared. The morphology diagrams of the nanostructures at different stages are also constructed to elucidate the mechanism of the morphology transformation.

  10. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    The successful use of outdoor mounting racks as an accelerated aging technique (these devices are called optal reactors); a beginning list of candidate pottant materials for thin-film encapsulation, which process at temperatures well below 100 C; and description of a preliminary flame retardant formulation for ethylene vinyl acetate which could function to increase module flammability ratings are presented.

  11. Wet Winding Improves Coil Encapsulation

    NASA Technical Reports Server (NTRS)

    Hill, A. J.

    1987-01-01

    Wet-winding process encapsulates electrical coils more uniformily than conventional processes. Process requires no vacuum pump and adapts easily to existing winding machines. Encapsulant applied to each layer of wire as soon as added to coil. Wet-winding process eliminates voids, giving more uniformly encapsulated coil.

  12. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  13. Stability analysis of an encapsulated microbubble against gas diffusion.

    PubMed

    Katiyar, Amit; Sarkar, Kausik

    2010-03-01

    Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although bubbles, containing gases other than air, are considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support a net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided.

  14. Nano-encapsulated PCM via Pickering Emulsification

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Zhang, Lecheng; Yu, Yi-Hsien; Jia, Lisi; Sam Mannan, M.; Chen, Ying; Cheng, Zhengdong

    2015-08-01

    We designed a two-step Pickering emulsification procedure to create nano-encapsulated phase changing materials (NEPCMs) using a method whose simplicity and low energy consumption suggest promise for scale-up and mass production. Surface-modified amphiphilic zirconium phosphate (ZrP) platelets were fabricated as the Pickering emulsifiers, nonadecane was chosen as the core phase change material (PCM), and polystyrene, the shell material. The resultant capsules were submicron in size with remarkable uniformity in size distribution, which has rarely been reported. Differential scanning calorimetry (DSC) characterization showed that the capsulation efficiency of NEPCMs, and they were found to be thermal stable, as characterized by the DSC data for the sample after 200 thermal cycles. NEPCMs exhibit superior mechanical stability and mobility when compared with the well-developed micro-encapsulated phase change materials (MEPCMs). NEPCMs find useful applications in thermal management, including micro-channel coolants; solar energy storage media; building temperature regulators; and thermal transfer fabrics.

  15. Design documentation: Krypton encapsulation preconceptual design

    SciTech Connect

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  16. The breakage of nanopore in AAO template

    NASA Astrophysics Data System (ADS)

    Jia, X. R.; Wang, H.; Zhen, Y.

    2016-07-01

    In the present work, AAO template is fabricated in oxalic acid solution under a constant voltage by several steps. By the Bernoulli principle, the pressure on the wall of hole increases which lead to the breakage of nanopore as a result of the reducing effective migration rate of Al3+. The quantity of the breakage of nanopore rises with the increase of the concentration of Al3+. Further, nanopore is closed by oxide due to the decrease of effective migration rate of Al3+. Finally, a “nanoflower-like” shape can be observed in experiments.

  17. Photovoltaic encapsulation materials

    NASA Technical Reports Server (NTRS)

    Baum, B.; Willis, P. W.; Cuddihy, E. C.

    1981-01-01

    Candidate materials for the construction of cost-effective solar cell flat array modules are reviewed. Fabrication goals include electricity production at $.70/W with a lifetime of 20 yr. Research is currently directed toward low cost encapsulants and substrates for the cells, and outer covers which resist weathering. Ethylene/vinyl acetate copolymer (EVA) at $.09/sq ft has displayed the most promising results as the encapsulant laminate when subjected to peroxide cross-linking to prevent melting. EVA accepts the addition of antioxidants, quenchers, absorbers, and stabilizers. Wood is favored as the rigid substrate due to cost, while top covers in substrate modules comprise candidate acrylic and polyvinyl fluoride films and a copolymer. Finally, fiberglass mat is placed between the substrate and the EVA pottant as a mechanical support and for electrical insulation.

  18. Use of nanoporous columnar thin film in the wafer-level packaging of MEMS devices

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Kee; Choi, Dong-Hoon; Yoon, Jun-Bo

    2010-04-01

    This paper presents a new packaging technology that uses a nanoporous columnar thin film to seal microelectromechanical system (MEMS) devices at the wafer level. In the proposed packaging process, the processing temperature is 350 °C. The process is relatively inexpensive compared to wafer level packaging processes, because the wafer-bonding step is eliminated and the die size is shrunk. In the suggested approach, a sputtered columnar thin film at room temperature forms vertical nanopores as etch holes, and an air cavity is formed by the removal of a sacrificial layer through the nanopores in the columnar membrane. Subsequent hermetic vacuum packaging of the cavity is achieved by depositing thin films over the membrane under low pressure. The hermeticity of the packaging was verified by using an optical surface morphology microscope to measure the deflection change of the sealing membrane before and after breaking of the vacuum through an interconnected membrane. The long-term hermeticity was monitored by measuring the maximum central deflection of the PECVD sealing layer over a period of 170 days. The precise pressure (0.7 Torr) and short-term (30 days) pressure change inside the cavity were measured by encapsulated Ni Pirani gauges, representing packaged freestanding MEMS devices.

  19. DNA nanopore translocation in glutamate solutions

    NASA Astrophysics Data System (ADS)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  20. DNA nanopore translocation in glutamate solutions.

    PubMed

    Plesa, C; van Loo, N; Dekker, C

    2015-08-28

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  1. DNA sequencing by nanopores: advances and challenges

    NASA Astrophysics Data System (ADS)

    Agah, Shaghayegh; Zheng, Ming; Pasquali, Matteo; Kolomeisky, Anatoly B.

    2016-10-01

    Developing inexpensive and simple DNA sequencing methods capable of detecting entire genomes in short periods of time could revolutionize the world of medicine and technology. It will also lead to major advances in our understanding of fundamental biological processes. It has been shown that nanopores have the ability of single-molecule sensing of various biological molecules rapidly and at a low cost. This has stimulated significant experimental efforts in developing DNA sequencing techniques by utilizing biological and artificial nanopores. In this review, we discuss recent progress in the nanopore sequencing field with a focus on the nature of nanopores and on sensing mechanisms during the translocation. Current challenges and alternative methods are also discussed.

  2. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  3. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  4. Plasmonic devices and sensors built from ordered nanoporous materials.

    SciTech Connect

    Jacobs, Benjamin W.; Kobayashi, Yoji; Houk, Ronald J. T.; Allendorf, Mark D.; Long, Jeffrey R.; Robertson, Ian M.; House, Stephen D.; Graham, Dennis D.; Talin, Albert Alec; Chang, Noel N.; El Gabaly Marquez, Farid

    2009-09-01

    The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

  5. Nanopore Back Titration Analysis of Dipicolinic Acid

    PubMed Central

    Han, Yujing; Zhou, Shuo; Wang, Liang; Guan, Xiyun

    2015-01-01

    Here we report a novel label-free nanopore back titration method for the detection of dipicolinic acid, a marker molecule for bacterial spores. By competitive binding of the target analyte and a large ligand probe to metal ions, dipicolinic acid could be sensitively and selectively detected. This nanopore back titration approach should find useful applications in the detection of other species of medical, biological, or environmental importance if their direct detection is difficult to achieve. PMID:25074707

  6. Experimental Investigation on Liquid Behaviors in Nanopores

    NASA Astrophysics Data System (ADS)

    Lu, Weiyi

    Nanoporous materials are involved in many industrial processes such as catalysis, filtration, chromatography, etc. Recently, they are applied to absorb or capture the energy associated with blast, collision, and impact attacks. In such applications, the nanoporous materials are immersed in liquids or gels. The inner surfaces of nanopores are usually modified to increase the degree of hydrophobicity. When an external pressure is applied on the system, the liquid phase can be compressed into the nanoporous space. The liquid infiltration behavior in the nanopores becomes significantly different from that of untreated material. The effective interfacial tension and viscosity of the confined liquid are investigated. While the simple superposition principle can be employed for the analysis of interfacial tension, in a nanopore the effective liquid viscosity is no longer a material constant. It is highly dependent on the pore size and the loading rate, much smaller than its bulk counterpart. In addition, the influence of electrolyte concentration as well as its dependence on temperature are analyzed in detail. As the electrolyte concentration varies, the effective interfacial tension changes rapidly. The testing data show that, the pressure-induced infiltration behavior is not only determined by the cations, but also highly dependent on the anion species. The transport behaviors of solvated ions in nanopores can be field responsive, providing a novel method to develop interactive protection systems. As an external electric field is applied, the observed change in effective solid-liquid interfacial tension is contradictory to the prediction of classic electrochemistry theory. To simplify the materials handling, a polypropylene-matrix composite material is produced. When the temperature is relatively low, the matrix dominates the system behavior. When the temperature is relatively high, with a sufficiently large external pressure the polymer phase can be intruded into the

  7. Selective encapsulation by Janus particles

    SciTech Connect

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  8. Encapsulation of graphene in Parylene

    NASA Astrophysics Data System (ADS)

    Skoblin, Grigory; Sun, Jie; Yurgens, August

    2017-01-01

    Graphene encapsulated between flakes of hexagonal boron nitride (hBN) demonstrates the highest known mobility of charge carriers. However, the technology is not scalable to allow for arrays of devices. We are testing a potentially scalable technology for encapsulating graphene where we replace hBN with Parylene while still being able to make low-ohmic edge contacts. The resulting encapsulated devices show low parasitic doping and a robust Quantum Hall effect in relatively low magnetic fields <5 T.

  9. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.

    PubMed

    Yanagi, Itaru; Ishida, Takeshi; Fujisaki, Koji; Takeda, Ken-Ichi

    2015-10-01

    To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution. In the present study, to fabricate thinner Si3N4 membranes with a thickness of less than 5 nm in a wafer, a new fabrication process that employs a polycrystalline-Si (poly-Si) sacrificial layer was developed. This process enables the stable fabrication of Si3N4 membranes with thicknesses of 3 nm. Nanopores were fabricated in the membrane using a transmission electron microscope (TEM) beam. Based on the relationship between the ionic current through the nanopores and their diameter, the effective thickness of the nanopores was estimated to range from 0.6 to 2.2 nm. Moreover, DNA translocation through the nanopores was observed.

  10. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process

    PubMed Central

    Yanagi, Itaru; Ishida, Takeshi; Fujisaki, Koji; Takeda, Ken-ichi

    2015-01-01

    To improve the spatial resolution of solid-state nanopores, thinning the membrane is a very important issue. The most commonly used membrane material for solid-state nanopores is silicon nitride (Si3N4). However, until now, stable wafer-scale fabrication of Si3N4 membranes with a thickness of less than 5 nm has not been reported, although a further reduction in thickness is desired to improve spatial resolution. In the present study, to fabricate thinner Si3N4 membranes with a thickness of less than 5 nm in a wafer, a new fabrication process that employs a polycrystalline-Si (poly-Si) sacrificial layer was developed. This process enables the stable fabrication of Si3N4 membranes with thicknesses of 3 nm. Nanopores were fabricated in the membrane using a transmission electron microscope (TEM) beam. Based on the relationship between the ionic current through the nanopores and their diameter, the effective thickness of the nanopores was estimated to range from 0.6 to 2.2 nm. Moreover, DNA translocation through the nanopores was observed. PMID:26424588

  11. Film Growth on Nanoporous Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James; Zhao, Chenwei; Xu, J. M.; Valles, James

    Self-ordered nanoporous anodic aluminum oxide (AAO) provides an easy way to fabricate nano structured material, such as nano wires and nano particles. We employ AAO as substrates and focus on the thermally evaporated film growth on the surface of the substrate. With various materials deposited onto the substrate, we find the films show different structures, e,g. ordered array of nano particles for Lead and nanohoneycomb structure for Silver. We relate the differing behaviors to the difference of surface energy and diffusion constant. To verify this, the effect of substrate temperature on the film growth has been explored and the structure of the film has been successfully changed through the process. We are grateful for the support of NSF Grants No. DMR-1307290.

  12. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  13. Ion selectivity of graphene nanopores

    DOE PAGES

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl- anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations.more » Furthermore, the observed K+/Cl- selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.« less

  14. Ion selectivity of graphene nanopores

    SciTech Connect

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl- anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Furthermore, the observed K+/Cl- selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

  15. Ion selectivity of graphene nanopores.

    PubMed

    Rollings, Ryan C; Kuan, Aaron T; Golovchenko, Jene A

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K(+) cations over Cl(-) anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K(+)/Cl(-) selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

  16. Nanoporous ionic organic networks: stablizing and supporting gold nanoparticles for catalysis

    DOE PAGES

    Zhang, Pengfei; Qiao, Zhen-An; Jiang, Xueguang; ...

    2015-01-27

    In this article, nanoporous ionic organic networks (PIONs) with a high ionic density (three cation–anion pairs per unit) have been synthesized by a facile SN2 nucleophilic substitution reaction. Owing to the electrostatic and steric effect, those ionic networks with porous channels can stabilize and support gold (Au) nanoparticles (NPs) in 1–2 nm. We find the Au@PION hybrid materials used as a heterogeneous catalyst are highly active, selective, and stable in the aerobic oxidation of saturated alcohols.

  17. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    PubMed Central

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications. PMID:28045044

  18. The influence of nanopore dimensions on the electrochemical properties of nanopore arrays studied by impedance spectroscopy.

    PubMed

    Kant, Krishna; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-11-11

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores.

  19. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    NASA Astrophysics Data System (ADS)

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.

  20. Nanopore density effect of polyacrylamide gel plug on electrokinetic ion enrichment in a micro-nanofluidic chip

    NASA Astrophysics Data System (ADS)

    Wang, Jun-yao; Xu, Zheng; Li, Yong-kui; Liu, Chong; Liu, Jun-shan; Chen, Li; Du, Li-qun; Wang, Li-ding

    2013-07-01

    In this paper, the nanopore density effect on ion enrichment is quantitatively described with the ratio between electrophoresis flux and electroosmotic flow flux based on the Poisson-Nernst-Planck equations. A polyacrylamide gel plug is integrated into a microchannel to form a micro-nanofluidic chip. With the chip, electrokinetic ion enrichment is relatively stable and enrichment ratio of fluorescein isothiocyanate can increase to 600-fold within 120 s at the electric voltage of 300 V. Both theoretical research and experiments show that enrichment ratio can be improved through increasing nanopore density. The result will be beneficial to the design of micro-nanofluidic chips.

  1. Micellar Polymer Encapsulation of Enzymes.

    PubMed

    Besic, Sabina; Minteer, Shelley D

    2017-01-01

    Although enzymes are highly efficient and selective catalysts, there have been problems incorporating them into fuel cells. Early enzyme-based fuel cells contained enzymes in solution rather than immobilized on the electrode surface. One problem utilizing an enzyme in solution is an issue of transport associated with long diffusion lengths between the site of bioelectrocatalysis and the electrode. This issue drastically decreases the theoretical overall power output due to the poor electron conductivity. On the other hand, enzymes immobilized at the electrode surface have eliminated the issue of poor electron conduction due to close proximity of electron transfer between electrode and the biocatalyst. Another problem is inefficient and short term stability of catalytic activity within the enzyme that is suspended in free flowing solution. Enzymes in solutions are only stable for hours to days, whereas immobilized enzymes can be stable for weeks to months and now even years. Over the last decade, there has been substantial research on immobilizing enzymes at electrode surfaces for biofuel cell and sensor applications. The most commonly used techniques are sandwich or wired. Sandwich techniques are powerful and successful for enzyme immobilization; however, the enzymes optimal activity is not retained due to the physical distress applied by the polymer limiting its applications as well as the non-uniform distribution of the enzyme and the diffusion of analyte through the polymer is slowed significantly. Wired techniques have shown to extend the lifetime of an enzyme at the electrode surface; however, this technique is very hard to master due to specific covalent bonding of enzyme and polymer which changes the three-dimensional configuration of enzyme and with that decreases the optimal catalytic activity. This chapter details encapsulation techniques where an enzyme will be immobilized within the pores/pockets of the hydrophobically modified micellar polymers such as

  2. JPL encapsulation task

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    A detailed summary of the diverse encapsulation materials and techniques that evolved to meet the cost goals of the Flat-plate Solar Array (FSA) Project is presented. A typical solar cell now consists of low iron glass, two layers of ethylene vinyl acetate (EVA) polymers, a porous space, primers/adhesives, a back cover of Tedlar, and a gasket/seal for a volume cost of $1.30/sq ft. This compares well with the project goal of $1.40/sq ft.

  3. Foam encapsulated targets

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.; Dahlbacka, Glen H.

    1983-01-01

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  4. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOEpatents

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  5. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  6. Segmented helical structures formed by ABC star copolymers in nanopores

    NASA Astrophysics Data System (ADS)

    Liu, Meijiao; Li, Weihua; Qiu, Feng

    2013-03-01

    Self-assembly of ABC star triblock copolymers confined in cylindrical nanopores is studied using self-consistent mean-field theory. With an ABC terpolymer forming hexagonally-arranged cylinders, segmented into alternative B and C domains, in the bulk, we observe the formation in the nanopore of a segmented single circular and non-circular cylinder, a segmented single-helix, and a segmented double-helix as stable phases, and a metastable stacked-disk phase with fourfold symmetry. The phase sequence from single-cylinder, to single-helix, and then to double-helix, is similar as that in the cylindrically-confined diblock copolymers except for the absence of an equilibrium stacked-disk phase. It is revealed that the arrangement of the three-arm junctions plays a critical role for the structure formation. One of the most interesting features in the helical structures is that there are two periods: the period of the B/C domains in the helix and the helical period. We demonstrate that the period numbers of the B/C domains contained in each helical period can be tuned by varying the pore diameter. In addition, it is predicted that the period number of B/C domains can be any rational in real helical structures whose helical period can be tuned freely.

  7. Nanoporous Polymeric Grating-Based Optical Biosensors (Preprint)

    DTIC Science & Technology

    2007-03-01

    biomolecules (biotin, steptavidin, biotinylated anti-rabbit IgG, and rabbit-IgG) onto the nanoporous regions and monitoring the changes in diffraction and...rabbit IgG, and rabbit-IgG) onto the nanoporous regions and monitoring the changes in diffraction and transmission intensity. We have observed that...line pattern of the nanoporous regions (air voids) alternating with polymer regions . The size of the nanopores ranges from 20 nm to 100 nm. The

  8. Scanning probe and nanopore DNA sequencing: core techniques and possibilities.

    PubMed

    Lund, John; Parviz, Babak A

    2009-01-01

    We provide an overview of the current state of research towards DNA sequencing using nanopore and scanning probe techniques. Additionally, we provide methods for the creation of two key experimental platforms for studies relating to nanopore and scanning probe DNA studies: a synthetic nanopore apparatus and an atomically flat conductive substrate with stretched DNA molecules.

  9. Hydrophobic encapsulation of hydrocarbon gases.

    PubMed

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  10. Micro-Encapsulation of Probiotics

    NASA Astrophysics Data System (ADS)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  11. Luminescence of Nanoporous Si and ALD-Deposited ZnO on Nanoporous Si Substrate

    NASA Astrophysics Data System (ADS)

    Pham, Vuong-Hung; Tam, Phuong Dinh; Dung, Nguyen Huu; Nguyen, Duy-Hung; Huy, Pham Thanh

    2017-03-01

    This paper reports the attempt at synthesizing nanoporous silicon (Si) with a dendritic-like structure and atomic layer deposition (ALD) of ZnO on nanoporous Si to control light emission intensity and emission center by applying an optimum voltage, etching time and thickness of ZnO layer. The dendritic-like structure of nanoporous Si was formed with low etching voltages of 5-10 V. Fourier transform infrared absorption spectra of the nanoporous Si reveals that the intensities of hydride stretching, SiH2 scissor mode and Si-O-Si vibration peak increase with the increasing of etching time. The formation of a thick dendritic-like structure with an increasing SiH2 bond resulted in significant enhancement of luminescence. In addition, the ALD-deposited ZnO layer on nanoporous Si resulted in light emission from both ZnO and nanoporous Si under a single excitation source. These results suggest the potential application of an ALD-deposited ZnO layer on nanoporous Si in designing materials for advanced optoelectronics.

  12. Novel Metal Encapsulated Silicon Cage Clusters

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshiyuki

    2002-03-01

    The discovery of novel nano-forms of carbon such as fullerenes and nanotubes created much interest in the search for similar novel structures of silicon for applications in nano-devices. However, these cage structures are not stable for silicon. Small silicon clusters having upto about 20 atoms are found to have prolate structures in which a 10-atom unit plays an important role. Here we report results of new findings(Vijay Kumar and Yoshiyuki Kawazoe, ``Metal-Encapsulated Fullerenelike and Cubic Caged Clusters of Silicon", Phys. Rev. Lett., 87[4] (2001), 045503-1-045503-4.) on a rich variety of caged silicon clusters that are realized by encapsulating a metal atom. The shape and size of these new clusters depend upon the metal atom which also determines their properties. As silicon is the most important material for devices, these findings offer new opportunities to design novel nano-silicon based devices. The results have been obtained by performing computer experiments using ab initio calculations in an effort to stabilize a silicon cage of 20 atoms. We have tried several metal atoms and used a cage shrinking approach. These led to the findings of fullerene and cubic type stable symmetric clusters in the range of 14 to 16 silicon atoms, depending on the encapsulated metal atom. A Frank-Kasper polyhedron, M@Si16 is found to be of lowest energy for M = Ti and Hf with exceptionally large gaps of about 2.35 eV that lie in the optical region. Further studies have been done to stabilize the smallest fullerene shape of 20 silicon atoms and to develop assemblies of clusters to form more interesting nano-scale structures like wires, which might be useful industrially to realize conducting atomic lines covered by semiconductor tubes.

  13. Molecular transport through large-diameter DNA nanopores

    PubMed Central

    Krishnan, Swati; Ziegler, Daniela; Arnaut, Vera; Martin, Thomas G.; Kapsner, Korbinian; Henneberg, Katharina; Bausch, Andreas R.; Dietz, Hendrik; Simmel, Friedrich C.

    2016-01-01

    DNA-based nanopores are synthetic biomolecular membrane pores, whose geometry and chemical functionality can be tuned using the tools of DNA nanotechnology, making them promising molecular devices for applications in single-molecule biosensing and synthetic biology. Here we introduce a large DNA membrane channel with an ≈4 nm diameter pore, which has stable electrical properties and spontaneously inserts into flat lipid bilayer membranes. Membrane incorporation is facilitated by a large number of hydrophobic functionalizations or, alternatively, streptavidin linkages between biotinylated channels and lipids. The channel displays an Ohmic conductance of ≈3 nS, consistent with its size, and allows electrically driven translocation of single-stranded and double-stranded DNA analytes. Using confocal microscopy and a dye influx assay, we demonstrate the spontaneous formation of membrane pores in giant unilamellar vesicles. Pores can be created both in an outside-in and an inside-out configuration. PMID:27658960

  14. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes.

    PubMed

    Rachiy, Bogdan I; Budzulyak, Ivan M; Vashchynsky, Vitalii M; Ivanichok, Nataliia Ya; Nykoliuk, Marian O

    2016-12-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the К(+)-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte.

  15. Molecular transport through large-diameter DNA nanopores.

    PubMed

    Krishnan, Swati; Ziegler, Daniela; Arnaut, Vera; Martin, Thomas G; Kapsner, Korbinian; Henneberg, Katharina; Bausch, Andreas R; Dietz, Hendrik; Simmel, Friedrich C

    2016-09-23

    DNA-based nanopores are synthetic biomolecular membrane pores, whose geometry and chemical functionality can be tuned using the tools of DNA nanotechnology, making them promising molecular devices for applications in single-molecule biosensing and synthetic biology. Here we introduce a large DNA membrane channel with an ≈4 nm diameter pore, which has stable electrical properties and spontaneously inserts into flat lipid bilayer membranes. Membrane incorporation is facilitated by a large number of hydrophobic functionalizations or, alternatively, streptavidin linkages between biotinylated channels and lipids. The channel displays an Ohmic conductance of ≈3 nS, consistent with its size, and allows electrically driven translocation of single-stranded and double-stranded DNA analytes. Using confocal microscopy and a dye influx assay, we demonstrate the spontaneous formation of membrane pores in giant unilamellar vesicles. Pores can be created both in an outside-in and an inside-out configuration.

  16. Molecular transport through large-diameter DNA nanopores

    NASA Astrophysics Data System (ADS)

    Krishnan, Swati; Ziegler, Daniela; Arnaut, Vera; Martin, Thomas G.; Kapsner, Korbinian; Henneberg, Katharina; Bausch, Andreas R.; Dietz, Hendrik; Simmel, Friedrich C.

    2016-09-01

    DNA-based nanopores are synthetic biomolecular membrane pores, whose geometry and chemical functionality can be tuned using the tools of DNA nanotechnology, making them promising molecular devices for applications in single-molecule biosensing and synthetic biology. Here we introduce a large DNA membrane channel with an ~4 nm diameter pore, which has stable electrical properties and spontaneously inserts into flat lipid bilayer membranes. Membrane incorporation is facilitated by a large number of hydrophobic functionalizations or, alternatively, streptavidin linkages between biotinylated channels and lipids. The channel displays an Ohmic conductance of ~3 nS, consistent with its size, and allows electrically driven translocation of single-stranded and double-stranded DNA analytes. Using confocal microscopy and a dye influx assay, we demonstrate the spontaneous formation of membrane pores in giant unilamellar vesicles. Pores can be created both in an outside-in and an inside-out configuration.

  17. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes

    NASA Astrophysics Data System (ADS)

    Rachiy, Bogdan I.; Budzulyak, Ivan M.; Vashchynsky, Vitalii M.; Ivanichok, Nataliia Ya.; Nykoliuk, Marian O.

    2016-01-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the K+-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte.

  18. Encapsulation of Aroma

    NASA Astrophysics Data System (ADS)

    Zuidam, Nicolaas Jan; Heinrich, Emmanuel

    Flavor is one of the most important characteristics of a food product, since people prefer to eat only food products with an attractive flavor (Voilley and Etiévant 2006). Flavor can be defined as a combination of taste, smell and/or trigeminal stimuli. Taste is divided into five basic ones, i.e. sour, salty, sweet, bitter and umami. Components that trigger the so-called gustatory receptors for these tastes are in general not volatile, in contrast to aroma. Aroma molecules are those that interact with the olfactory receptors in the nose cavity (Firestein 2001). Confusingly, aroma is often referred to as flavor. Trigeminal stimuli cause sensations like cold, touch, and prickling. The current chapter only focuses on the encapsulation of the aroma molecules.

  19. Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization.

    PubMed

    Minagar, Sepideh; Berndt, Christopher C; Wen, Cuie

    2015-03-31

    Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5), niobia (Nb2O5), zirconia (ZrO2) and titania (TiO2) in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD) analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants.

  20. Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization

    PubMed Central

    Minagar, Sepideh; Berndt, Christopher C.; Wen, Cuie

    2015-01-01

    Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5), niobia (Nb2O5), zirconia (ZrO2) and titania (TiO2) in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD) analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants. PMID:25837724

  1. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    SciTech Connect

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  2. Single-Molecule Studies of Nucleic Acid Interactions Using Nanopores

    NASA Astrophysics Data System (ADS)

    Wanunu, Meni; Soni, Gautam V.; Meller, Amit

    This chapter presents biophysical studies of single biopolymers using nanopores. Starting from the fundamental process of voltage-driven biopolymer translocation, the understanding of which is a prerequisite for virtually all nanopore applications, the chapter describes recent experiments that resolve nucleic acid structure and its interaction with enzymes, such as exonucleases and polymerases. It then outlines progress made with solid-state nanopores fabricated in ultrathin membranes and discusses experiments describing biopolymer dynamics in synthetic pores. The chapter concludes with a discussion on some of the main challenges facing nanopore technology, as well as on some of the future prospects associated with nanopore-based tools.

  3. Vibrational spectra of molecular fluids in nanopores

    NASA Astrophysics Data System (ADS)

    Arakcheev, V. G.; Morozov, V. B.

    2012-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is applied for quantitative analysis of carbon dioxide phase composition in pores of nanoporous glass samples at nearcritical temperatures. Measurements of the 1388 1/cm Q-branch were made in a wide pressure range corresponding to coexistence of gas (gas-like), adsorbed and condensed phases within pores. At temperatures several degrees below the critical value, CARS spectra behavior is easy to interpret in terms of thermodynamic model of surface adsorption and capillary condensation. It allows estimating mass fractions of different phase components. Moreover, spectra measured at near critical temperatures 30.5 and 33°C have pronounced inhomogeneous shapes and indicate the presence of condensed phase in the volume of pores. The effect obviously reflects the fluid behaviour near the critical point in nanopores. Pores with smaller radii are filled with condensed phase at lower pressures. The analysis of the CARS spectra is informative for quantitative evaluation of phase composition in nanopores.

  4. Tailored nanoporous gold for ultrahigh fluorescence enhancement.

    PubMed

    Lang, X Y; Guan, P F; Fujita, T; Chen, M W

    2011-03-07

    We report molecular fluorescence enhancement of free-standing nanoporous gold in which the nanoporosity can be arbitrarily tailored by the combination of dealloying and electroless gold plating. The nanoporous gold fabricated by this facile method possesses unique porous structures with large gold ligaments and very small pores, and exhibits significant improvements in surface enhanced fluorescence as well as structure rigidity. It demonstrates that the confluence effect of improved quantum yield and excitation of fluorophores is responsible for the large fluorescence enhancement due to the near-field enhancement of nanoporous gold, which arises from the strong electromagnetic coupling between neighboring ligaments and the weakening of plasmon damping of the large ligaments because of the small pore size and large ligament size, respectively.

  5. Dynamic crack propagation through nanoporous media

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  6. Nanoporous polymers for hydrogen storage.

    PubMed

    Germain, Jonathan; Fréchet, Jean M J; Svec, Frantisek

    2009-05-01

    The design of hydrogen storage materials is one of the principal challenges that must be met before the development of a hydrogen economy. While hydrogen has a large specific energy, its volumetric energy density is so low as to require development of materials that can store and release it when needed. While much of the research on hydrogen storage focuses on metal hydrides, these materials are currently limited by slow kinetics and energy inefficiency. Nanostructured materials with high surface areas are actively being developed as another option. These materials avoid some of the kinetic and thermodynamic drawbacks of metal hydrides and other reactive methods of storing hydrogen. In this work, progress towards hydrogen storage with nanoporous materials in general and porous organic polymers in particular is critically reviewed. Mechanisms of formation for crosslinked polymers, hypercrosslinked polymers, polymers of intrinsic microporosity, and covalent organic frameworks are discussed. Strategies for controlling hydrogen storage capacity and adsorption enthalpy via manipulation of surface area, pore size, and pore volume are discussed in detail.

  7. DNA translocations through solid-state plasmonic nanopores.

    PubMed

    Nicoli, Francesca; Verschueren, Daniel; Klein, Misha; Dekker, Cees; Jonsson, Magnus P

    2014-12-10

    Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and the process that captures DNA into the nanopore, without affecting the duration time of the translocations. Most striking is a strong plasmon-induced enhancement of the rate of DNA translocation events in lithium chloride (LiCl, already 10-fold enhancement at a few mW of laser power). This provides a means to utilize the excellent spatiotemporal resolution of DNA interrogations with nanopores in LiCl buffers, which is known to suffer from low event rates. We propose a mechanism based on plasmon-induced local heating and thermophoresis as explanation of our observations.

  8. Nanopore sequencing detects structural variants in cancer.

    PubMed

    Norris, Alexis L; Workman, Rachael E; Fan, Yunfan; Eshleman, James R; Timp, Winston

    2016-01-01

    Despite advances in sequencing, structural variants (SVs) remain difficult to reliably detect due to the short read length (<300 bp) of 2nd generation sequencing. Not only do the reads (or paired-end reads) need to straddle a breakpoint, but repetitive elements often lead to ambiguities in the alignment of short reads. We propose to use the long-reads (up to 20 kb) possible with 3rd generation sequencing, specifically nanopore sequencing on the MinION. Nanopore sequencing relies on a similar concept to a Coulter counter, reading the DNA sequence from the change in electrical current resulting from a DNA strand being forced through a nanometer-sized pore embedded in a membrane. Though nanopore sequencing currently has a relatively high mismatch rate that precludes base substitution and small frameshift mutation detection, its accuracy is sufficient for SV detection because of its long reads. In fact, long reads in some cases may improve SV detection efficiency. We have tested nanopore sequencing to detect a series of well-characterized SVs, including large deletions, inversions, and translocations that inactivate the CDKN2A/p16 and SMAD4/DPC4 tumor suppressor genes in pancreatic cancer. Using PCR amplicon mixes, we have demonstrated that nanopore sequencing can detect large deletions, translocations and inversions at dilutions as low as 1:100, with as few as 500 reads per sample. Given the speed, small footprint, and low capital cost, nanopore sequencing could become the ideal tool for the low-level detection of cancer-associated SVs needed for molecular relapse, early detection, or therapeutic monitoring.

  9. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  10. Scalable synthesis of nanoporous palladium powders.

    SciTech Connect

    Robinson, David B.; Tran, Kim L.; Clift, W. Miles; Arslan Ilke; Langham, Mary Elizabeth; Ong, Markus D.; Fares, Stephen James

    2009-03-01

    Nanoporous palladium powders are synthesized on milligram to gram scales by chemical reduction of tetrachloro complexes by ascorbate in a concentrated aqueous surfactant at temperatures between -20 and 30 C. Particle diameters are approximately 50 nm, and each particle is perforated by 3 nm pores, as determined by electron tomography. These materials are of potential value for storage of hydrogen isotopes and electrical charge; producing them at large scales in a safe and efficient manner will help realize this. A slightly modified procedure also results in nanoporous platinum.

  11. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  12. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  13. Expanding the functionality and applications of nanopore sensors

    NASA Astrophysics Data System (ADS)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  14. Sclerosing Encapsulating Peritonitis

    PubMed Central

    Machado, Norman O.

    2016-01-01

    Sclerosing encapsulating peritonitis (SEP) is a rare chronic inflammatory condition of the peritoneum with an unknown aetiology. Also known as abdominal cocoon, the condition occurs when loops of the bowel are encased within the peritoneal cavity by a membrane, leading to intestinal obstruction. Due to its rarity and non-specific clinical features, it is often misdiagnosed. The condition presents with recurrent episodes of small bowel obstruction and can be idiopathic or secondary; the latter is associated with predisposing factors such as peritoneal dialysis or abdominal tuberculosis. In the early stages, patients can be managed conservatively; however, surgical intervention is necessary for those with advanced stage intestinal obstruction. A literature review revealed 118 cases of SEP; the mean age of these patients was 39 years and 68.0% were male. The predominant presentation was abdominal pain (72.0%), distension (44.9%) or a mass (30.5%). Almost all of the patients underwent surgical excision (99.2%) without postoperative complications (88.1%). PMID:27226904

  15. Gravity Probe B Encapsulated

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  16. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  17. Technology of mammalian cell encapsulation.

    PubMed

    Uludag, H; De Vos, P; Tresco, P A

    2000-08-20

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates a cell mass from an outside environment and aims to maintain normal cellular physiology within a desired permeability barrier. Numerous encapsulation techniques have been developed over the years. These techniques are generally classified as microencapsulation (involving small spherical vehicles and conformally coated tissues) and macroencapsulation (involving larger flat-sheet and hollow-fiber membranes). This review is intended to summarize techniques of cell encapsulation as well as methods for evaluating the performance of encapsulated cells. The techniques reviewed include microencapsulation with polyelectrolyte complexation emphasizing alginate-polylysine capsules, thermoreversible gelation with agarose as a prototype system, interfacial precipitation and interfacial polymerization, as well as the technology of flat sheet and hollow fiber-based macroencapsulation. Four aspects of encapsulated cells that are critical for the success of the technology, namely the capsule permeability, mechanical properties, immune protection and biocompatibility, have been singled out and methods to evaluate these properties were summarized. Finally, speculations regarding future directions of cell encapsulation research and device development are included from the authors' perspective.

  18. Ordered phases of encapsulated diamondoids into carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Legoas, S. B.; dos Santos, R. P. B.; Troche, K. S.; Coluci, V. R.; Galvão, D. S.

    2011-08-01

    Diamondoids are hydrogen-terminated nanosized diamond fragments that are present in petroleum crude oil at low concentrations. These fragments are found as oligomers of the smallest diamondoid, adamantane (C10H16). Due to their small size, diamondoids can be encapsulated into carbon nanotubes to form linear arrangements. We have investigated the encapsulation of diamondoids into single walled carbon nanotubes with diameters between 1.0 and 2.2 nm using fully atomistic simulations. We performed classical molecular dynamics and energy minimizations calculations to determine the most stable configurations. We observed molecular ordered phases (e.g. double, triple, 4- and 5-stranded helices) for the encapsulation of adamantane, diamantane, and dihydroxy diamantane. Our results also indicate that the functionalization of diamantane with hydroxyl groups can lead to an improvement on the molecular packing factor when compared to non-functionalized compounds. Comparisons to hard-sphere models revealed differences, especially when more asymmetrical diamondoids were considered. For larger diamondoids (i.e., adamantane tetramers), we have not observed long-range ordering but only a tendency to form incomplete helical structures. Our calculations predict that thermally stable (at least up to room temperature) complex ordered phases of diamondoids can be formed through encapsulation into carbon nanotubes.

  19. Computational modeling of ion transport through nanopores.

    PubMed

    Modi, Niraj; Winterhalter, Mathias; Kleinekathöfer, Ulrich

    2012-10-21

    Nanoscale pores are ubiquitous in biological systems while artificial nanopores are being fabricated for an increasing number of applications. Biological pores are responsible for the transport of various ions and substrates between the different compartments of biological systems separated by membranes while artificial pores are aimed at emulating such transport properties. As an experimental method, electrophysiology has proven to be an important nano-analytical tool for the study of substrate transport through nanopores utilizing ion current measurements as a probe for the detection. Independent of the pore type, i.e., biological or synthetic, and objective of the study, i.e., to model cellular processes of ion transport or electrophysiological experiments, it has become increasingly important to understand the dynamics of ions in nanoscale confinements. To this end, numerical simulations have established themselves as an indispensable tool to decipher ion transport processes through biological as well as artificial nanopores. This article provides an overview of different theoretical and computational methods to study ion transport in general and to calculate ion conductance in particular. Potential new improvements in the existing methods and their applications are highlighted wherever applicable. Moreover, representative examples are given describing the ion transport through biological and synthetic nanopores as well as the high selectivity of ion channels. Special emphasis is placed on the usage of molecular dynamics simulations which already have demonstrated their potential to unravel ion transport properties at an atomic level.

  20. 1/f noise in graphene nanopores

    NASA Astrophysics Data System (ADS)

    Heerema, S. J.; Schneider, G. F.; Rozemuller, M.; Vicarelli, L.; Zandbergen, H. W.; Dekker, C.

    2015-02-01

    Graphene nanopores are receiving great attention due to their atomically thin membranes and intrinsic electrical properties that appear greatly beneficial for biosensing and DNA sequencing. Here, we present an extensive study of the low-frequency 1/f noise in the ionic current through graphene nanopores and compare it to noise levels in silicon nitride pore currents. We find that the 1/f noise magnitude is very high for graphene nanopores: typically two orders of magnitude higher than for silicon nitride pores. This is a drawback as it significantly lowers the signal-to-noise ratio in DNA translocation experiments. We evaluate possible explanations for these exceptionally high noise levels in graphene pores. From examining the noise for pores of different diameters and at various salt concentrations, we find that in contrast to silicon nitride pores, the 1/f noise in graphene pores does not follow Hooge’s relation. In addition, from studying the dependence on the buffer pH, we show that the increased noise cannot be explained by charge fluctuations of chemical groups on the pore rim. Finally, we compare single and bilayer graphene to few-layer and multi-layer graphene and boron nitride (h-BN), and we find that the noise reduces with layer thickness for both materials, which suggests that mechanical fluctuations may be the underlying cause of the high 1/f noise levels in monolayer graphene nanopore devices.

  1. Nanopores: A journey towards DNA sequencing

    PubMed Central

    Wanunu, Meni

    2013-01-01

    Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field. PMID:22658507

  2. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  3. Ion transport through a graphene nanopore

    PubMed Central

    Hu, Guohui; Mao, Mao; Ghosal, Sandip

    2012-01-01

    Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The nonuniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations. The relative importance of hydrodynamic transport and thermal fluctuations in determining the pore conductivity is investigated. A second important effect that is observed is the mass transport of water through the nanopore, with an average velocity proportional to the applied voltage and independent of the pore diameter. The flux arises as a consequence of the asymmetry in the ion distribution which can be attributed to differing mobilities of the sodium and chlorine ions, and, to the polarity of water molecules. The accumulation of liquid molecules in the vicinity of the nanopore due to reorientation of the water dipoles by the local electric field is seen to result in a local increase in the liquid density. Results confirm that the electric conductance is proportional to the nanopore diameter for the parameter regimes that we simulated. The occurrence of fluid vortices is found to result in an increase in the effective electrical conductance. PMID:22962262

  4. Nano-encapsulated PCM via Pickering Emulsification

    PubMed Central

    Wang, Xuezhen; Zhang, Lecheng; Yu, Yi-Hsien; Jia, Lisi; Sam Mannan, M.; Chen, Ying; Cheng, Zhengdong

    2015-01-01

    We designed a two-step Pickering emulsification procedure to create nano-encapsulated phase changing materials (NEPCMs) using a method whose simplicity and low energy consumption suggest promise for scale-up and mass production. Surface-modified amphiphilic zirconium phosphate (ZrP) platelets were fabricated as the Pickering emulsifiers, nonadecane was chosen as the core phase change material (PCM), and polystyrene, the shell material. The resultant capsules were submicron in size with remarkable uniformity in size distribution, which has rarely been reported. Differential scanning calorimetry (DSC) characterization showed that the capsulation efficiency of NEPCMs, and they were found to be thermal stable, as characterized by the DSC data for the sample after 200 thermal cycles. NEPCMs exhibit superior mechanical stability and mobility when compared with the well-developed micro-encapsulated phase change materials (MEPCMs). NEPCMs find useful applications in thermal management, including micro-channel coolants; solar energy storage media; building temperature regulators; and thermal transfer fabrics. PMID:26278332

  5. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity

    NASA Astrophysics Data System (ADS)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P.; Peinemann, Klaus-Viktor

    2014-06-01

    The design of micro- or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances.

  6. Recent patents of nanopore DNA sequencing technology: progress and challenges.

    PubMed

    Zhou, Jianfeng; Xu, Bingqian

    2010-11-01

    DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.

  7. Electron beam-assisted healing of nanopores in magnesium alloys

    PubMed Central

    Zheng, He; Liu, Yu; Cao, Fan; Wu, Shujing; Jia, Shuangfeng; Cao, Ajing; Zhao, Dongshan; Wang, Jianbo

    2013-01-01

    Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning. PMID:23719630

  8. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    SciTech Connect

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-11-15

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol.

  9. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers.

    PubMed

    Ashley, Carlee E; Carnes, Eric C; Phillips, Genevieve K; Padilla, David; Durfee, Paul N; Brown, Page A; Hanna, Tracey N; Liu, Juewen; Phillips, Brandy; Carter, Mark B; Carroll, Nick J; Jiang, Xingmao; Dunphy, Darren R; Willman, Cheryl L; Petsev, Dimiter N; Evans, Deborah G; Parikh, Atul N; Chackerian, Bryce; Wharton, Walker; Peabody, David S; Brinker, C Jeffrey

    2011-05-01

    Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 10(6)-fold improvement over comparable liposomes.

  10. Bioencapsulation of apomyoglobin in nanoporous organosilica sol-gel glasses: influence of the siloxane network on the conformation and stability of a model protein.

    PubMed

    Menaa, Bouzid; Miyagawa, Yuya; Takahashi, Masahide; Herrero, Mar; Rives, Vicente; Menaa, Farid; Eggers, Daryl K

    2009-11-01

    Nanoporous sol-gel glasses were used as host materials for the encapsulation of apomyoglobin, a model protein employed to probe in a rational manner the important factors that influence the protein conformation and stability in silica-based materials. The transparent glasses were prepared from tetramethoxysilane (TMOS) and modified with a series of mono-, di- and tri-substituted alkoxysilanes, R(n)Si(OCH(3))(4-n) (R = methyl-, n = 1; 2; 3) of different molar content (5, 10, 15%) to obtain the decrease of the siloxane linkage (-Si-O-Si-). The conformation and thermal stability of apomyoglobin characterized by circular dichroism spectroscopy (CD) was related to the structure of the silica host matrix characterized by (29)Si MAS NMR and N(2) adsorption. We observed that the protein transits from an unfolded state in unmodified glass (TMOS) to a native-like helical state in the organically modified glasses, but also that the secondary structure of the protein was enhanced by the decrease of the siloxane network with the methyl modification (n = 0 < n = 1 < n = 2 < n = 3; 0 < 5 < 10 < 15 mol %). In 15% trimethyl-modified glass, the protein even reached a maximum molar helicity (-24,000 deg. cm(2) mol(-1)) comparable to the stable folded heme-bound holoprotein in solution. The protein conformation and stability induced by the change of its microlocal environment (surface hydration, crowding effects, microstructure of the host matrix) were discussed owing to this trend dependency. These results can have an important impact for the design of new efficient biomaterials (sensors or implanted devices) in which properly folded protein is necessary.

  11. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  12. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A; Li, Jiali; Stein, Derek; Gershow, Marc H

    2015-03-03

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  13. Laser Hybrid Fabrication of Nanoporous Structures on Metallic Material Surface

    DTIC Science & Technology

    2009-06-01

    catalysis properties. The Cu-Ni composite coatings with 20 minute Ni plating demonstrates the best catalysis properties,with oxidation peak current density...up to about 60 mA/cm2. Keywords: Nanoporous structure, laser deposition, electrochemical catalysis properties 1. Introduction Nanoporous metals...electrochemical catalysis , detecting, sensing and so on[1, 2]. Dealloying is considered an effective method to yield nanoporous metals, by which

  14. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2013-03-12

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  15. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  16. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    SciTech Connect

    Kuan, Aaron T.; Szalay, Tamas; Lu, Bo; Xie, Ping; Golovchenko, Jene A.

    2015-05-18

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

  17. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  18. Giant enhancement of terahertz emission from nanoporous GaP

    SciTech Connect

    Atrashchenko, A. Korotchenkov, A.; Evtikhiev, V. P.; Arlauskas, A.; Adomavičius, R.; Krotkus, A.; Ulin, V. P.; Belov, P.

    2014-11-10

    In this paper, we have studied the emission of terahertz radiation from nanoporous semiconductor matrices of GaP excited by the femtosecond laser pulses. We observe 3–4 orders of magnitude increase of terahertz radiation emission from the nanoporous matrix compared to bulk material. The effect is mainly related to drastic increase of the sample surface and pinning of conducting electrons to surface states. This result opens up a promising way to create powerful sources of terahertz radiation using nanoporous semiconductors.

  19. Encapsulation of bioactive compound from extracted jasmine flower using β-Cyclodextrin via electrospray

    NASA Astrophysics Data System (ADS)

    Rahmam., S.; Naim., M. N.; Ng., E.; Mokhtar, M. Nn; Abu Bakar, N. F.

    2016-06-01

    The ability of electrospray to encapsulate the bioactive compound extracted from Jasmine flower with β-Cyclodextrion (β-CD) without any thermal-assisted processing was demonstrated in this study. The extraction of Jasmine compound were conducted using sonicator at 70 000 Hz, for 10 minutes and followed by mixing of the filtered compound with β-CD. Then, the mixture was electrosprayed under a stable Taylor cone jet mode at the voltage of 4 - 5 kV, with flow rate of 0.2 ml/hour. The aluminum substrate that used for collecting the deposit was placed at 30 cm from the needle's tip to allow the occurrence of evaporation and droplet fission until the droplet transform to solid particles. Characteristics of solidified bioactive compound from Jasmine flower (non-encapsulated compound) and solidified bioactive compound with β-CD (encapsulated compound) were studied in this work. From SEM images, it can be observed that the particles size distribution of encapsulated compound deposits have better deposition array and did not aggregate with each other compared to the non-encapsulated compound. FE-SEM images of encapsulated compound deposits indicate more solid crystal looks while non-encapsulated compound was obtained in the porous form. The electrospray process in this work has successfully encapsulated the Jasmine compound with β-CD without any thermal-assisted process. The encapsulation occurrence was determined using FTIR analysis. Identical peaks that referred to the β-CD were found on the encapsulated compound demonstrated that most deposits were encapsulated with β-CD.

  20. Nanopore-based fourth-generation DNA sequencing technology.

    PubMed

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-02-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications.

  1. Sulfonated nanoporous colloidal films and membranes

    NASA Astrophysics Data System (ADS)

    Smith, Joanna Jane

    The objective of this thesis is to describe the preparation and investigation of a new class of proton-conducting membrane materials, namely, nanoporous colloidal membranes whose proton conductivity results from the nanopore surface modification with organic molecules carrying acid functionalities. Both the proton transport and ion transport were studied in nanoporous silica colloidal crystals that were surface modified with sulfonic groups. First, the transport of ions was studied through sulfonated silica colloidal films that were supported on platinum electrodes using cyclic voltammetry. The surface of self-assembled nanoporous silica colloidal crystalline films was sulfonated using 1,3-propanesultone. We found that the flux of anions through the sulfonated colloidal films is reduced, while the flux of cations is increased, compared to the unmodified colloidal films. Second, the proton transport in free-standing assemblies of surface-sulfonated silica nanospheres, either randomly packed or self-assembled into a close-packed arrangement, were studied. It was demonstrated that colloidal assemblies prepared using surface-sulfonated silica nanospheres posses proton conductivity that depends on the ordering of the material, temperature and relative humidity. Based on the comparison between the close-packed and disordered assemblies made of the same spheres, we conclude that the increase in structural organization of the self-assembled colloidal materials leads to increased proton conductivity and better water retention. Next free-standing colloidal membranes with a relatively large area and no mechanical defects were prepared by sintering silica colloidal films. The sintered membranes were then surface rehydroxylated, which restores the surface silanol groups, and then can be chemically modified. Finally, sintered self-assembled nanoporous silica colloidal crystals were modified with poly(sulfopropyl-methacrylate) (pSPM) and poly(stryrenesulfonic acid) (pSSA) brushes

  2. Photoelectrochemical Carbon Dioxide Reduction Using a Nanoporous Ag Cathode.

    PubMed

    Zhang, Yan; Luc, Wesley; Hutchings, Gregory S; Jiao, Feng

    2016-09-21

    Solar fuel production from abundant sources using photoelectrochemical (PEC) systems is an attractive approach to address the challenges associated with the intermittence of solar energy. In comparison to electrochemical systems, PEC cells directly utilize solar energy as the energy input, and if necessary, then an additional external bias can be applied to drive the desired reaction. In this work, a PEC cell composing of a Ni-coated Si photoanode and a nanoporous Ag cathode was developed for CO2 conversion to CO. The thin Ni layer not only protected the Si wafer from photocorrosion but also served as the oxygen evolution catalyst. At an external bias of 2.0 V, the PEC cell delivered a current density of 10 mA cm(-2) with a CO Faradaic efficiency of ∼70%. More importantly, a stable performance up to 3 h was achieved under photoelectrolysis conditions, which is among the best literature-reported performances for PEC CO2 reduction cells. The photovoltage of the PEC cell was estimated to be ∼0.4 V, which corresponded to a 17% energy saving by solar energy utilization. Postreaction structural analysis showed the corrosion of the Ni layer at the Si photoanode/catalyst interface, which caused performance degradation under prolonged operations. A stable oxygen evolution catalyst with a robust interface is crucial to the long-term stability of PEC CO2 reduction cells.

  3. Tensile properties of epoxy encapsulants

    SciTech Connect

    Guess, T.R.; Wischmann, K.B.; Stavig, M.E.

    1993-02-01

    Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson's ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson's ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.

  4. Tensile properties of epoxy encapsulants

    SciTech Connect

    Guess, T.R.; Wischmann, K.B.; Stavig, M.E.

    1993-02-01

    Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson`s ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson`s ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.

  5. Encapsulation of amylase in colloidosomes.

    PubMed

    Keen, Polly H R; Slater, Nigel K H; Routh, Alexander F

    2014-03-04

    Aqueous core colloidosomes encapsulating the enzyme amylase were manufactured with a shell comprising polymer latex particles of diameter 153 nm. The colloidosomes were sealed with calcium carbonate by precipitation between an inner phase of Na2CO3 and an outer phase of CaCl2. This seal allowed the retention of small molecules, such as dyes, as well as larger enzyme molecules, for several months. The encapsulated material could be released by dissolution of the CaCO3 with acid, upon a large dilution in water, or by applying a sufficient shear. The degree of release could be controlled since the greater the mass of CaCO3 precipitated onto the colloidosome shell, the greater the dilution or shear required to achieve release. The calcium carbonate seal protected encapsulated amylase from the detrimental effects of components in a liquid laundry detergent for several months so that, on triggered release, the enzyme retained its high activity.

  6. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    NASA Technical Reports Server (NTRS)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  7. Surface chemistry driven actuation in nanoporous gold

    SciTech Connect

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  8. Multilayer hexagonal silicon forming in slit nanopore.

    PubMed

    He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying

    2015-10-05

    The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties.

  9. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  10. Quantum Dots Confined in Nanoporous Alumina Membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2007-03-01

    Precise control over the dispersion and lateral distribution of quantum dots (QDs) within nanoscopic porous media provides a unique route to manipulate the optical and/or electronic properties of QDs in a very simple and controllable manner for applications related to light emitting, optoelectronic, and sensor devices. Here we filled nanoporous alumina membranes (PAMs) with CdSe/ZnS core/shell QDs by dip coating. The deposition of QDs induced changes in the refractive index of PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of PAMs.

  11. Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ji, Ran; Du, Song; Albrecht, Arne; Schaaf, Peter

    2013-01-01

    The fabrication of ordered arrays of nanoporous Si nanopillars with and without nanoporous base and ordered arrays of Si nanopillars with nanoporous shells are presented. The fabrication route is using a combination of substrate conformal imprint lithography and metal-assisted chemical etching. The metal-assisted chemical etching is performed in solutions with different [HF]/[H2O2 + HF] ratios. Both pore formation and polishing (marked by the vertical etching of the nanopillars) are observed in highly doped and lightly doped Si during metal-assisted chemical etching. Pore formation is more active in the highly doped Si, while the transition from polishing to pore formation is more obvious in the lightly doped Si. The etching rate is clearly higher in the highly doped Si. Oxidation occurs on the sidewalls of the pillars by etching in solutions with small [HF]/[H2O2 + HF] ratios, leading to thinning, bending, and bonding of pillars.

  12. Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells

    PubMed Central

    2013-01-01

    The fabrication of ordered arrays of nanoporous Si nanopillars with and without nanoporous base and ordered arrays of Si nanopillars with nanoporous shells are presented. The fabrication route is using a combination of substrate conformal imprint lithography and metal-assisted chemical etching. The metal-assisted chemical etching is performed in solutions with different [HF]/[H2O2 + HF] ratios. Both pore formation and polishing (marked by the vertical etching of the nanopillars) are observed in highly doped and lightly doped Si during metal-assisted chemical etching. Pore formation is more active in the highly doped Si, while the transition from polishing to pore formation is more obvious in the lightly doped Si. The etching rate is clearly higher in the highly doped Si. Oxidation occurs on the sidewalls of the pillars by etching in solutions with small [HF]/[H2O2 + HF] ratios, leading to thinning, bending, and bonding of pillars. PMID:23336430

  13. Nanoporous Silicon Ignition of JA2 Propellant

    DTIC Science & Technology

    2014-06-01

    2 Figure 2. Photograph of the activated nanoporous silicon chip in the PVC container showing attached firing leads; JA2 propellant disk rests...chips, and each chip was placed singly in a transparent, flexible polyvinyl chloride ( PVC ) container. The PVC container (see figure 2) contained...room. The electrical leads on the outside of the PVC container were connected to the firing circuitry (an impressed voltage of 3 V across the chip

  14. Nanoporous ionic organic networks: stablizing and supporting gold nanoparticles for catalysis

    SciTech Connect

    Zhang, Pengfei; Qiao, Zhen-An; Jiang, Xueguang; Veith, Gabriel M.; Dai, Sheng

    2015-01-27

    In this article, nanoporous ionic organic networks (PIONs) with a high ionic density (three cation–anion pairs per unit) have been synthesized by a facile SN2 nucleophilic substitution reaction. Owing to the electrostatic and steric effect, those ionic networks with porous channels can stabilize and support gold (Au) nanoparticles (NPs) in 1–2 nm. We find the Au@PION hybrid materials used as a heterogeneous catalyst are highly active, selective, and stable in the aerobic oxidation of saturated alcohols.

  15. Tuneable graphene nanopores for single biomolecule detection

    NASA Astrophysics Data System (ADS)

    Al-Dirini, Feras; Mohammed, Mahmood A.; Hossain, Md Sharafat; Hossain, Faruque M.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-01

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  16. Solvated calcium ions in charged silica nanopores

    NASA Astrophysics Data System (ADS)

    Bonnaud, Patrick A.; Coasne, Benoît; Pellenq, Roland J.-M.

    2012-08-01

    Hydroxyl surface density in porous silica drops down to nearly zero when the pH of the confined aqueous solution is greater than 10.5. To study such extreme conditions, we developed a model of slit silica nanopores where all the hydrogen atoms of the hydroxylated surface are removed and the negative charge of the resulting oxygen dangling bonds is compensated by Ca2+ counterions. We employed grand canonical Monte Carlo and molecular dynamics simulations to address how the Ca2+ counterions affect the thermodynamics, structure, and dynamics of confined water. While most of the Ca2+ counterions arrange themselves according to the so-called "Stern layer," no diffuse layer is observed. The presence of Ca2+ counterions affects the pore filling for strong confinement where the surface effects are large. At full loading, no significant changes are observed in the layering of the first two adsorbed water layers compared to nanopores with fully hydroxylated surfaces. However, the water structure and water orientational ordering with respect to the surface is much more disturbed. Due to the super hydrophilicity of the Ca2+-silica nanopores, water dynamics is slowed down and vicinal water molecules stick to the pore surface over longer times than in the case of hydroxylated silica surfaces. These findings, which suggest the breakdown of the linear Poisson-Boltzmann theory, provide important information about the properties of nanoconfined electrolytes upon extreme conditions where the surface charge and ion concentration are large.

  17. Versatile ultrathin nanoporous silicon nitride membranes

    SciTech Connect

    Vlassiouk, Ivan V

    2009-01-01

    Single- and multiple-nanopore membranes are both highly interesting for biosensing and separation processes, as well as their ability to mimic biological membranes. The density of pores, their shape, and their surface chemistry are the key factors that determine membrane transport and separation capabilities. Here, we report silicon nitride (SiN) membranes with fully controlled porosity, pore geometry, and pore surface chemistry. An ultrathin freestanding SiN platform is described with conical or double-conical nanopores of diameters as small as several nanometers, prepared by the track-etching technique. This technique allows the membrane porosity to be tuned from one to billions of pores per square centimeter. We demonstrate the separation capabilities of these membranes by discrimination of dye and protein molecules based on their charge and size. This separation process is based on an electrostatic mechanism and operates in physiological electrolyte conditions. As we have also shown, the separation capabilities can be tuned by chemically modifying the pore walls. Compared with typical membranes with cylindrical pores, the conical and double-conical pores reported here allow for higher fluxes, a critical advantage in separation applications. In addition, the conical pore shape results in a shorter effective length, which gives advantages for single biomolecule detection applications such as nanopore-based DNA analysis.

  18. Molecular Sensing by Nanoporous Crystalline Polymers

    PubMed Central

    Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano

    2009-01-01

    Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150

  19. The Potential and Challenges of Nanopore Sequencing

    SciTech Connect

    Branton, Daniel; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, Thomas; Di Ventra, Massimiliano; Garaj, S.; Hibbs, Andrew; Huang, Xiaohua; Jovanovich, Stevan B.; Krstic, Predrag S; Lindsay, Stuart; Ling, Xinsheng Sean; Mastrangelo, Carlos H.; Meller, Amit; Oliver, John S.; Pershin, Yuriy V.; Ramsey, Dr. John Michael; Riehn, Robert; Soni, Gautam; Tabard-Cossa, Vincent; Wanuunu, Meni; Wiggin, Matthew; Schloss, Jeffrey A

    2008-10-01

    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nan-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.

  20. Tuneable graphene nanopores for single biomolecule detection.

    PubMed

    Al-Dirini, Feras; Mohammed, Mahmood A; Hossain, Md Sharafat; Hossain, Faruque M; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-21

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  1. Versatile on-demand droplet generation for controlled encapsulation

    PubMed Central

    Rhee, Minsoung; Liu, Peng; Meagher, Robert J.; Light, Yooli K.; Singh, Anup K.

    2014-01-01

    We present a droplet-based microfluidic system for performing bioassays requiring controlled analyte encapsulation by employing highly flexible on-demand droplet generation. On-demand droplet generation and encapsulation are achieved pneumatically using a microdispensing pump connected to a constant pressure source. The system generates single droplets to the collection route only when the pump is actuated with a designated pressure level and produces two-phase parallel flow to the waste route during the stand-by state. We analyzed the effect of actuation pressure on the stability and size of droplets and optimized conditions for generation of stable droplets over a wide pressure range. By increasing the duration of pump actuation, we could either trigger a short train of identical size droplets or generate a single larger droplet. We also investigated the methodology to control droplet contents by fine-tuning flow rates or implementing a resistance bridge between the pump and main channels. We demonstrated the integrated chip for on-demand mixing between two aqueous phases in droplets and on-demand encapsulation of Escherichia coli cells. Our unique on-demand feature for selective encapsulation is particularly appropriate for bioassays with extremely dilute samples, such as pathogens in a clinical sample, since it can significantly reduce the number of empty droplets that impede droplet collection and subsequent data analysis. PMID:25379072

  2. Tests of Solar-Array Encapsulants

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.

    1986-01-01

    Materials tested for degradation by heat and light. Report presents early results of continuing series of photothermal aging tests of some candidate encapsulating materials for solar photovoltaic modules. Objectives of testing program: contribute to development of durable, low-cost encapsulants and predict lifetimes of encapsulated photovoltaic modules placed outdoors. Toward these ends, tests designed to reveal physical and chemical degradation mechanisms that affect encapsulants.

  3. Asbestos: The Case for Encapsulation.

    ERIC Educational Resources Information Center

    Russek, William F.

    1980-01-01

    Encapsulation has proven to be the safest, surest, and most permanent method of treating sprayed asbestos on ceilings and walls. Federal aid is available to help pay for inspection of school buildings for asbestos and for asbestos removal. (Author/MLF)

  4. Microbes encapsulated within crosslinkable polymers

    DOEpatents

    Chidambaram, Devicharan; Liu, Ying; Rafailovich, Miriam H

    2013-02-05

    The invention relates to porous films comprising crosslinked electrospun hydrogel fibers. Viable microbes are encapsulated within the crosslinked electrospun hydrogel fibers. The crosslinked electrospun hydrogel fibers are water insoluble and permeable. The invention also relates to methods of making and using such porous films.

  5. Efficiencies in alginate encapsulation of vegetative explants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to improve a non-mechanized bulk encapsulation technique to standardize encapsulation procedures and reduce the labor time compared to encapsulating individual nodes. Four mm-long nodal segments from Stage II cultures of Hibiscus moscheutos L. ‘Lord Baltimore’ were encapsu...

  6. Recommended practices for encapsulating high voltage assemblies

    NASA Technical Reports Server (NTRS)

    Tankisley, E. W.

    1974-01-01

    Preparation and encapsulation of high voltage assemblies are considered. Related problems in encapsulating are brought out in these instructions. A test sampling of four frequently used encapsulating compounds is shown in table form. The purpose of this table is to give a general idea of the working time available and the size of the container required for mixing and de-aerating.

  7. Nanopore DNA sequencing and epigenetic detection with a MspA nanopore

    NASA Astrophysics Data System (ADS)

    Laszlo, Andrew H.

    DNA forms the molecular basis for all known life. Widespread DNA sequencing has the potential to revolutionize healthcare and our understanding of the life sciences. Sequencing has already had a profound effect on our understanding of the molecular basis of life and underpinnings of disease. Current DNA sequencing technologies require costly reagents, can sequence only short DNA strands, and take too long to complete entire genomes. Furthermore, the required DNA sample size limits the types of experiments that can be run. For instance sequencing single cells is extremely difficult. New technologies are key to making DNA sequencing as cheap and accessible as possible and for making new experiments possible. One such new technology is nanopore sequencing. In nanopore sequencing, a thin membrane is used to divide a salt solution into two wells: cis and trans. This membrane contains a single nanometer sized hole that forms the only electrical connection between the two wells. When a voltage is applied across the membrane, ion current flows through the nanopore. This ion current is the primary signal for nanopore sequencing. DNA is negatively charged and can be pulled into the pore. When DNA is pulled into the pore, it occludes the pore and reduces the ion current that can pass through the pore. Individual DNA nucleotides along the DNA strand block the pore to varying degrees. One can measure the degree to which the pore is blocked as DNA passes through the pore and use the ion current signal to read off the DNA sequence. This thesis chronicles recent advances in the Gundlach laboratory in which I have played a leading role. It describes our work testing the biological nanopore Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. The thesis consists of five chapters and three appendices which contain supplemental information for Chapters 2, 3, and 4. Chapter 1 begins with some motivation and defines the current challenges in DNA sequencing. I also introduce

  8. Active current gating in electrically biased conical nanopores

    NASA Astrophysics Data System (ADS)

    Bearden, Samuel; Simpanen, Erik; Zhang, Guigen

    2015-05-01

    We observed that the ionic current through a gold/silicon nitride (Si3N4) nanopore could be modulated and gated by electrically biasing the gold layer. Rather than employing chemical modification to alter device behavior, we achieved control of conductance directly by electrically biasing the gold portion of the nanopore. By stepping through a range of bias potentials under a constant trans-pore electric field, we observed a gating phenomenon in the trans-pore current response in a variety of solutions including potassium chloride (KCl), sodium chloride (NaCl), and potassium iodide (KI). A computational model with a conical nanopore was developed to examine the effect of the Gouy-Chapman-Stern electrical double layer along with nanopore geometry, work function potentials, and applied electrical bias on the ionic current. The numerical results indicated that the observed modulation and gating behavior was due to dynamic reorganization of the electrical double layer in response to changes in the electrical bias. Specifically, in the conducting state, the nanopore conductance (both numerical and experimental) is linearly proportional to the applied bias due to accumulation of charge in the diffuse layer. The gating effect occurs due to the asymmetric charge distribution in the fluid induced by the distribution of potentials at the nanopore surface. Time dependent changes in current due to restructuring of the electrical double layer occur when the electrostatic bias is instantaneously changed. The nanopore device demonstrates direct external control over nanopore behavior via modulation of the electrical double layer by electrostatic biasing.

  9. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  10. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing

    NASA Astrophysics Data System (ADS)

    Darvish, Armin; Goyal, Gaurav; Aneja, Rachna; Sundaram, Ramalingam V. K.; Lee, Kidan; Ahn, Chi Won; Kim, Ki-Bum; Vlahovska, Petia M.; Kim, Min Jun

    2016-07-01

    Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various

  11. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  12. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  13. Pulsed Laser Deposition of Nanoporous Cobalt Thin Films

    PubMed Central

    Jin, Chunming; Nori, Sudhakar; Wei, Wei; Aggarwal, Ravi; Kumar, Dhananjay; Narayan, Roger J.

    2013-01-01

    Nanoporous cobalt thin films were deposited on anodized aluminum oxide (AAO) membranes at room temperature using pulsed laser deposition. Scanning electron microscopy demonstrated that the nanoporous cobalt thin films retained the monodisperse pore size and high porosity of the anodized aluminum oxide substrates. Temperature- and field-dependent magnetic data obtained between 10 K and 350 K showed large hysteresis behavior in these materials. The increase of coercivity values was larger for nanoporous cobalt thin films than for multilayered cobalt/alumina thin films. The average diameter of the cobalt nanograins in the nanoporous cobalt thin films was estimated to be ~5 nm for blocking temperatures near room temperature. These results suggest that pulsed laser deposition may be used to fabricate nanoporous magnetic materials with unusual properties for biosensing, drug delivery, data storage, and other technological applications. PMID:19198344

  14. Hydrophilic and size-controlled graphene nanopores for protein detection.

    PubMed

    Goyal, Gaurav; Lee, Yong Bok; Darvish, Armin; Ahn, Chi Won; Kim, Min Jun

    2016-12-09

    This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.

  15. Hydrophilic and size-controlled graphene nanopores for protein detection

    NASA Astrophysics Data System (ADS)

    Goyal, Gaurav; Bok Lee, Yong; Darvish, Armin; Ahn, Chi Won; Kim, Min Jun

    2016-12-01

    This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.

  16. Trapping DNA near a Solid-State Nanopore

    PubMed Central

    Vlassarev, Dimitar M.; Golovchenko, Jene A.

    2012-01-01

    We demonstrate that voltage-biased solid-state nanopores can transiently localize DNA in an electrolyte solution. A double-stranded DNA (dsDNA) molecule is trapped when the electric field near the nanopore attracts and immobilizes a nonend segment of the molecule across the nanopore orifice without inducing a folded molecule translocation. In this demonstration of the phenomenon, the ionic current through the nanopore decreases when the dsDNA molecule is trapped by the nanopore. By contrast, a translocating dsDNA molecule under the same conditions causes an ionic current increase. We also present finite-element modeling results that predict this behavior for the conditions of the experiment. PMID:22853913

  17. A Protein Nanopore-Based Approach for Bacteria Sensing

    NASA Astrophysics Data System (ADS)

    Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2016-11-01

    We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.

  18. Cellular Silica Encapsulation for Development of Robust Cell Based Biosensors

    NASA Astrophysics Data System (ADS)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason; Tartis, Michaelann

    2014-03-01

    In order to detect chemical and biological threats both on the battlefield and in civilian life, development of portable, robust detection systems capable of real-time identification of the chemical and biological agents are needed. Living cell-based sensors have proven effective as sensitive, specific, near real-time detectors; however, living cell-based sensors require frequent cell replenishment due to cell sensitivity to the ex-vivo environment, which limits sensor stability. Incorporation of living cells within a biocompatible matrix that provides mechanical protection and maintains access to the external environment may facilitate the development of long-term stable cell-based biosensors. We are exploring the use of a novel Chemical Vapor into Liquid (CViL) deposition process for whole cell encapsulation in silica. In CViL, the high vapor pressure of common silica alkoxides is utilized to deliver silica into an aqueous medium, creating a silica sol. Mixing of cells with the resulting silica sol facilitates encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions. Using fluorescence microscopy analysis with multiple silica specific markers, encapsulation of multiple eukaryotic cell types (Saccharomyces cerevisiae, Jurkat, HeLa, and U87 cells) with CViL generated silica is shown, providing a foundation for development of long -term stable cell-based biosensors with diverse sensing capabilities.

  19. Molecular Sensing with Protein and Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Niedzwiecki, David J.

    In the past 15 years nanopore sensing has proven to be a successful method for probing a variety of molecules of biological interest, such as DNA, RNA and proteins. Of particular appeal is this technique's ability to probe these molecules without the need for chemical modification or labeling, to do so at physiological conditions, and to probe single molecules at a time, allowing the possibility for results masked in bulk measurements to come to light. In this thesis these advantageous properties will be used in work on both a synthetic (solid-state) nanopore system and an engineered biological nanopore. I will describe the techniques for producing solid-state nanopores in thin membranes of silicon nitride and how these nanopores can be integrated into a fully functioning nanopore sensor system. I will then explore two applications of this system. First, a study of adsorption of bovine serum albumin (BSA), a protein found in blood serum, to the inorganic surface of nitride at the single molecule level. A simple physical model describing the behavior of this protein in the nanopore will be shown. Second, a study of the binding of the nucleocapsid protein of HIV-1 (NCp7) to three aptamers of different affinity, specifically three sequence 20mer mimics of the stem-loop 3 (SL3) RNA---the packaging domain of genomic RNA. Additionally, N-ethylmaleimide, which is known to inhibit the binding of NCp7 to a high-affinity SL3 RNA aptamer, will be used to demonstrate that the inhibition of the binding can be monitored in real time. Following these applications of the solid-state nanopore system, I will explore the geometry of a newly engineered biological nanopore, FhuA DeltaC/Delta4L, by using inert polymers to probe the nanopore interior.

  20. Method of making thermally removable polymeric encapsulants

    DOEpatents

    Small, James H.; Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.

    2001-01-01

    A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90.degree. C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.

  1. Encapsulation of Homogeneous Catalysts in Porous Polymer Nanocapsules Produces Fast-Acting Selective Nanoreactors.

    PubMed

    Dergunov, Sergey A; Khabiyev, Alibek T; Shmakov, Sergey N; Kim, Mariya D; Ehterami, Nasim; Weiss, Mary Clare; Birman, Vladimir B; Pinkhassik, Eugene

    2016-12-27

    Nanoreactors were created by entrapping homogeneous catalysts in hollow nanocapsules with 200 nm diameter and semipermeable nanometer-thin shells. The capsules were produced by the polymerization of hydrophobic monomers in the hydrophobic interior of the bilayers of self-assembled surfactant vesicles. Controlled nanopores in the shells of nanocapsules ensured long-term retention of the catalysts coupled with the rapid flow of substrates and products in and out of nanocapsules. The study evaluated the effect of encapsulation on the catalytic activity and stability of five different catalysts. Comparison of kinetics of five diverse reactions performed in five different solvents revealed the same reaction rates for free and encapsulated catalysts. Identical reaction kinetics confirmed that placement of catalysts in the homogeneous interior of polymer nanocapsules did not compromise catalytic efficiency. Encapsulated organometallic catalysts showed no loss of metal ions from nanocapsules suggesting stabilization of the complexes was provided by nanocapsules. Controlled permeability of the shells of nanocapsules enabled size-selective catalytic reactions.

  2. Encapsulation and Enhanced Retention of Fragrance in Polymer Microcapsules.

    PubMed

    Lee, Hyomin; Choi, Chang-Hyung; Abbaspourrad, Alireza; Wesner, Chris; Caggioni, Marco; Zhu, Taotao; Weitz, David A

    2016-02-17

    Fragrances are amphiphilic and highly volatile, all of which makes them a challenging cargo to efficiently encapsulate and retain in microcapsules using traditional approaches. We address these limitations by introducing a new strategy that combines bulk and microfluidic emulsification: a stable fragrance-in-water (F/W) emulsion that is primarily prepared from bulk emulsification is incorporated within a polymer microcapsule via microfluidic emulsification. On the basis of the in-depth study of physicochemical properties of the microcapsules on fragrance leakage, we demonstrate that enhanced retention of fragrance can be achieved by using a polar polymeric shell and forming a hydrogel network within the microcapsule. We further extend the utility of these microcapsules by demonstrating the enhanced retention of encapsulated fragrance in powder state.

  3. Ceramic encapsulation with polymer via co-axial electrohydrodynamic jetting.

    PubMed

    Nangrejo, M; Ahmad, Z; Edirisinghe, M

    2010-01-01

    Co-flowing media of a polymeric solution (30 wt% polymethylsilsesquioxane in ethanol) and a ceramic suspension (10 wt% alumina in glycerol) were subjected to an electric field. The flow rates of the media (10-30 microL min(-1)) and the applied voltage (0-11 kV) were varied systematically during the experimentation by making gradual increments to each variable, which enabled the construction of a mode selection map. Under co-flowing conditions, with the flow rate of polymer solution (outer needle) twice that of the ceramic suspension (inner needle), encapsulated droplets of polymer-coated alumina were produced within stable cone-jet mode. These were collected in a thin film of water and the resultant particle size varied between 1 and 38 microm. Encapsulation was confirmed with scanning electron microscopy and element analysis.

  4. Encapsulation of new active ingredients.

    PubMed

    Onwulata, C I

    2012-01-01

    The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.

  5. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  6. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  7. Encapsulant materials and associated devices

    DOEpatents

    Kempe, Michael D; Thapa, Prem

    2011-03-08

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  8. Encapsulant materials and associated devices

    SciTech Connect

    Kempe, Michael D; Thapa, Prem

    2012-05-22

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  9. Hydrophobin-Encapsulated Quantum Dots.

    PubMed

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  10. Quantum dots confined in nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2006-09-01

    CdSe /ZnS core/shell quantum dots (QDs) were filled into porous alumina membranes (PAMs) by dip coating. The deposition of QDs induced changes in the refractive index of the PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of the PAMs.

  11. Nanoscale heat flux between nanoporous materials.

    PubMed

    Biehs, S-A; Ben-Abdallah, P; Rosa, F S S; Joulain, K; Greffet, J-J

    2011-09-12

    By combining stochastic electrodynamics and the Maxwell-Garnett description for effective media we study the radiative heat transfer between two nanoporous materials. We show that the heat flux can be significantly enhanced by air inclusions, which we explain by: (a) the presence of additional surface waves that give rise to supplementary channels for heat transfer throughout the gap, (b) an increase in the contribution given by the ordinary surface waves at resonance, (c) and the appearance of frustrated modes over a broad spectral range. We generalize the known expression for the nanoscale heat flux for anisotropic metamaterials.

  12. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  13. Inorganic cage molecules encapsulating Kr: A computational study

    NASA Astrophysics Data System (ADS)

    Chang, Ch.; Patzer, A. B. C.; Sedlmayr, E.; Sülzle, D.

    2005-12-01

    Structural and energetic properties of a series of neutral and charged inorganic cage molecules Kr@Y12@Z20q ( Y=Ni,Pd ; Z=As,Sb,Bi ; q=0,-1,-3 ) where a central krypton atom is encapsulated by two outer cages Y12 and Z20 have been investigated by theoretical density functional techniques (DFT) employing the Becke-Perdew-86 (BP86) gradient corrected exchange correlation functional. The structures are closed shell species representing highly stable local minima of icosahedral point group symmetry Ih . We report energies, equilibrium geometric parameters, selected harmonic vibrational frequencies, and discuss static electric dipole polarizabilities. The overall charge q of these cages seems to be controllable by the nature of the central atom leading to stable configurations when Kr is replaced by Br or As. In this context, we report a stable system where a krypton atom is enclosed by a fullerenelike inorganic double cage.

  14. Nanoporous and Nanostructured Materials for Energy Storage and Sensor Applications

    NASA Astrophysics Data System (ADS)

    Vu, Anh D.

    The major objective of this work is to design nanostructured and nanoporous materials targeting the special needs of the energy storage and sensing fields. Nanostructured and nanoporous materials are increasingly finding applications in many fields, including electrical energy storage and explosive sensing. The advancement of energy storage devices is important to the development of three fields that have strong effects on human society: renewable energy, transportation, and portable devices. More sensitive explosive sensors will help to prevent terrorism activities and boost national security. Hierarchically porous LiFePO4 (LFP)/C composites were prepared using a surfactant and colloidal crystals as dual templates. The surfactant serves as the template for mesopores and polymeric colloidal spheres serve as the template for macropores. The confinement of the surfactant-LFP-carbon precursor in the colloidal templates is crucial to suppress the fast crystallization of LFP and helps to maintain the ordered structure. The obtained composites with high surface areas and ordered porous structure showed excellent rate performance when used as cathode materials for LIBs, which will allow them to be used as a power source for EVs and HEVs. The synthesis of LiFePO 4 in three dimensionally confined spaces within the colloidal template resulted in the formation of spherical particles. Densely packed LiFePO 4 spheres in a carbon matrix were obtained by spin-casting the LFP-carbon precursor on a quartz substrate and then pyrolyzing it. The product showed high capacity and could be charged /discharged with very little capacity fading over many cycles. Three-dimensionally ordered mesoporous carbons were prepared from nano-sized silica sphere colloidal crystal templates. These materials with very high surface areas and ordered porous structure showed high capacitance and excellent rate capability when used as electrodes for supercapacitors. Mesoporous silica thin films of different

  15. Facilitated Translocation of Polypeptides Through A Single Nanopore

    PubMed Central

    Bikwemu, Robert; Wolfe, Aaron J.; Xing, Xiangjun; Movileanu, Liviu

    2011-01-01

    The transport of polypeptides through nanopores is a key process in biology and medical biotechnology. Despite its critical importance, the underlying kinetics of polypeptide translocation through protein nanopores is not yet comprehensively understood. Here, we present a simple two-barrier, one-well kinetic model for the translocation of short positively charged polypeptides through a single transmembrane protein nanopore that is equiped with negatively charged rings, simply called traps. We demonstrate that the presence of these traps within the interior of the nanopore dramatically alters the free energy landscape for the partitioning of the polypeptide into the nanopore interior, as revealed by significant modifications in the activation free energies required for the transitions of the polypeptide from one state to other. Our kinetic model permits the calculation of the relative and absolute exit frequencies of the short cationic polypeptides through either opening of the nanopore. Moreover, this approach enabled quantitative assessment of the kinetics of translocation of the polypeptides through a protein nanopore, which is strongly dependent on several factors, including the nature of the translocating polypeptide, the position of the traps, the strength of the polypeptide-attractive trap interactions and the applied transmembrane voltage. PMID:21339604

  16. Nanoparticle size and shape characterization with Solid State Nanopores

    NASA Astrophysics Data System (ADS)

    Nandivada, Santoshi; Benamara, Mourad; Li, Jiali

    2015-03-01

    Solid State Nanopores are widely used in a variety of single molecule studies including DNA and biomolecule detection based on the principle of Resistive Pulse technique. This technique is based on electrophoretically driving charged particles through 35-60 nm solid state nanopores. The translocation of these particles produces current blockage events that provide an insight to the properties of the translocation particles and the nanopore. In this work we study the current blockage events produced by ~ 30nm negatively charged PS nanoparticles through Silicon Nitride solid state nanopores. We show how the current blockage amplitudes and durations are related to the ratio of the volume of the particle to the volume of the pore, the shape of the particle, charge of the particle and the nanopore surface, salt concentration, solution pH, and applied voltage. The solid-state nanopores are fabricated by a combination of Focus Ion Beam and low energy Ion beams in silicon nitride membranes. High resolution TEM is used to measure the 3D geometry of the nanopores and a finite element analysis program (COMSOL) is used to simulate the experimental results.

  17. Process for Encapsulating Protein Crystals

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Mosier, Benjamin

    2003-01-01

    A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise

  18. Thermal modeling of an epoxy encapsulation process

    SciTech Connect

    Baca, R.G.; Schutt, J.A.

    1991-01-01

    The encapsulation of components is a widely used process at Sandia National Laboratories for packaging components to withstand structural loads. Epoxy encapsulants are also used for their outstanding dielectric strength characteristics. The production of high voltage assemblies requires the encapsulation of ceramic and electrical components (such as transformers). Separation of the encapsulant from internal contact surfaces or voids within the encapsulant itself in regions near the mold base have caused high voltage breakdown failures during production testing. In order to understand the failure mechanisms, a methodology was developed to predict both the thermal response and gel front progression of the epoxy the encapsulation process. A thermal model constructed with PATRAN Plus (1) and solved with the P/THERMAL (2) analysis system was used to predict the thermal response of the encapsulant. This paper discusses the incorporation of an Arrhenius kinetics model into Q/TRAN (2) to model the complex volumetric heat generation of the epoxy during the encapsulation process. As the epoxy begins to cure, it generates heat and shrinks. The total cure time of the encapsulant (transformation from a viscous liquid to solid) is dependent on both the initial temperature and the entire temperature history. Because the rate of cure is temperature dependent, the cure rate accelerates with a temperature increase and, likewise, the cure rate is quenched if the temperature is reduced. The temperature and conversion predictions compared well against experimental data. The thermal simulation results were used to modify the temperature cure process of the encapsulant and improve production yields.

  19. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  20. Nanoporous carbon actuator and methods of use thereof

    DOEpatents

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  1. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.

    PubMed

    Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S

    2016-11-15

    Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically

  2. Real-time selective sequencing using nanopore technology

    PubMed Central

    Loose, Matthew; Malla, Sunir; Stout, Michael

    2016-01-01

    The Oxford Nanopore MinION sequences DNA by sensing changes in electrical current flow in real-time as molecules traverse nanopores. Optionally, the voltage across specific nanopores can be reversed, ejecting the DNA molecule. This enables “Read Until”, the selection of specific DNA molecules for sequencing. We use dynamic time warping to match reads to reference, selecting regions of small genomes, individual amplicons, or normalization of the amplicon set. This first demonstration of direct selection of specific DNA molecules in real-time enables many novel future applications. PMID:27454285

  3. Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

    PubMed Central

    Bell, David C.; Cohen-Karni, Tzahi; Rosenstein, Jacob K.; Wanunu, Meni

    2016-01-01

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2–7 nm thick) free-standing hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore. PMID:24083444

  4. Coating of nanoporous membranes: atomic layer deposition versus sputtering.

    PubMed

    Grigoras, K; Airaksinen, V M; Franssila, S

    2009-06-01

    Nanoporous anodic alumina membranes and silicon samples with plasma etched nanopores have been coated with zinc oxide or gold layer using atomic layer deposition (ALD) or sputtering, respectively. In the case of ALD process, the precursor pulses were extended, compared with planar substrate coating. Thick (60 microm) anodic alumina membranes have been conformally coated with zinc oxide ALD layer. Metal sputtering technique was used just for opposite purpose--to minimize the penetration of gold into the pores during gold-coating of the top and bottom surfaces of the membrane. Scanning electron microscopy (SEM) has been used to investigate the layer thickness, uniformity and conformality inside the nanopores.

  5. Nanopore in metal-dielectric sandwich for DNA position control

    NASA Astrophysics Data System (ADS)

    Polonsky, Stas; Rossnagel, Steve; Stolovitzky, Gustavo

    2007-10-01

    We present the concept of a nanoelectromechanical device capable of controlling the position of DNA inside a nanopore with a single nucleotide accuracy. The device utilizes the interaction of discrete charges along the backbone of a DNA molecule with the electric field inside the nanopore. In analogy to solid state transistors in which a small voltage controls the current between two electrodes, a voltage strategically located inside the nanopore can control the translocation of a single DNA molecule between a cis and a trans reservoirs. We propose an immediate application of the device as a replacement of capillary electrophoresis in DNA sequencing.

  6. Peroxidase-encapsulated cyclodextrin nanosponge immunoconjugates as a signal enhancement tool in optical and electrochemical assays.

    PubMed

    Wajs, Ewelina; Caldera, Fabrizio; Trotta, Francesco; Fragoso, Alex

    2014-01-21

    Cyclodextrin nanosponges bearing carboxylate groups have been prepared by crosslinking β-cyclodextrin with pyromellitic dianhydride to form a carboxylic acid terminated nanoporous material. The surface of the particles was covalently modified with an anti-IgG antibody and then loaded with horseradish peroxidase. The structures of unmodified and protein modified nanosponge particles were investigated by Raman spectroscopy and imaging methods. Confocal microscopy indicates that the antibody is located in the outside of the particle while HRP is encapsulated in the inner part. The possibility to use these modified nanosponges as a signal enhancement tool in enzyme-linked colorimetric and electrochemical assays was evaluated using a sandwich format comprising immobilised gliadin as an antigen, a target anti-gliadin antibody and an anti-IgG antibody conjugated to the enzyme-loaded nanosponge immunoconjugates.

  7. Polymer translocation through nanopore into active bath

    NASA Astrophysics Data System (ADS)

    Pu, Mingfeng; Jiang, Huijun; Hou, Zhonghuai

    2016-11-01

    Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time <" separators=" τ > can show a bell-shape dependence on the particle activity Fa at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that <" separators=" τ > can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.

  8. Capturing CO2 via reactions in nanopores.

    SciTech Connect

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team members expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  9. Irradiation response and stability of nanoporous materials

    SciTech Connect

    Fu, Engang; Wang, Yongqiang; Serrano De Caro, Magdalena; Caro, Jose A.; Zepeda-Ruiz, L; Bringa, E.; Nastasi, Mike; Baldwin, Jon K.

    2012-08-28

    Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not under the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.

  10. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGES

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; ...

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  11. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  12. Gate manipulation of DNA capture into nanopores.

    PubMed

    He, Yuhui; Tsutsui, Makusu; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji

    2011-10-25

    Understanding biophysics governing DNA capture into a nanopore and establishing a manipulation system for the capture process are essential for nanopore-based genome sequencing. In this work, the functionality of extended electric field and electroosmotic flow (EOF) during the capture stage and their dependence on gate voltage, U(G), are investigated. We demonstrate that while both the electric field and EOF within a cis chamber make long-distance contributions to DNA capture around the pore mouth, the former effect is always capturing, while the latter causes trapping or blocking of the molecule depending on the magnitude of the gate voltage, U(G): an anionic EOF induced by high U(G) is capable of doubling the DNA trapping speed and thus the absorption radius in the cis chamber, whereas a cationic EOF by low U(G) would substantially offset the trapping effort by the electric field and even totally block DNA entrance into the pore. Based on the analysis, a gate regulation is proposed with the objective of achieving a high DNA capture rate while maintaining a low error rate.

  13. Water confinement in nanoporous silica materials

    SciTech Connect

    Renou, Richard; Szymczyk, Anthony; Ghoufi, Aziz

    2014-01-28

    The influence of the surface polarity of cylindrical silica nanopores and the presence of Na{sup +} ions as compensating charges on the structure and dynamics of confined water has been investigated by molecular dynamics simulations. A comparison between three different matrixes has been included: a protonated nanopore (PP, with SiOH groups), a deprotonated material (DP, with negatively charged surface groups), and a compensated-charge framework (CC, with sodium cations compensating the negative surface charge). The structure of water inside the different pores shows significant differences in terms of layer organization and hydrogen bonding network. Inside the CC pore the innermost layer is lost to be replaced by a quasi bulk phase. The electrostatic field generated by the DP pore is felt from the surface to the centre of pore leading to a strong orientation of water molecules even in the central part of the pore. Water dynamics inside both the PP and DP pores shows significant differences with respect to the CC pore in which the sub-diffusive regime of water is lost for a superdiffusive regime.

  14. Cavitation and pore blocking in nanoporous glasses.

    PubMed

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided.

  15. Nanoporous carbon films for gas microsensors.

    PubMed

    Siegal, M P; Yelton, W G; Overmyer, D L; Provencio, P P

    2004-02-17

    We study nanoporous carbon (NPC) as an adsorbent coating on surface acoustic wave (SAW) chemical microsensors for a wide range of analyte gases. By use of pulsed-laser deposition in a controlled inert gas ambient, NPC grows at room temperature with negligible residual stress and, hence, can coat most surfaces to any desired thickness. Acetone adsorption isotherms for NPC-coated SAW devices with mass density ranging from 0.18 to 1.08 g/cm3 indicate that the device frequency response relates to NPC density. Data analysis suggests the possibility of detecting acetone below parts-per-billion concentrations. We find NPC to be highly sensitive to a variety of other volatile organic and toxic industrial compounds. Transmission electron microscopy reveals that lower-density NPC has both larger and greater numbers of nanopores than higher-density NPC and that decreasing NPC density also increases the interplanar spacing between graphene sheet fragments within the ultrathin carbon wall structures. These physical differences effectively increase the available surface area for analyte gas adsorption with decreasing NPC density, with only the structural integrity of the internal NPC wall structures a limiting factor in determining the lowest useful density NPC coating.

  16. Nanopore-Based Target Sequence Detection

    PubMed Central

    Morin, Trevor J.; Shropshire, Tyler; Liu, Xu; Briggs, Kyle; Huynh, Cindy; Tabard-Cossa, Vincent; Wang, Hongyun; Dunbar, William B.

    2016-01-01

    The promise of portable diagnostic devices relies on three basic requirements: comparable sensitivity to established platforms, inexpensive manufacturing and cost of operations, and the ability to survive rugged field conditions. Solid state nanopores can meet all these requirements, but to achieve high manufacturing yields at low costs, assays must be tolerant to fabrication imperfections and to nanopore enlargement during operation. This paper presents a model for molecular engineering techniques that meets these goals with the aim of detecting target sequences within DNA. In contrast to methods that require precise geometries, we demonstrate detection using a range of pore geometries. As a result, our assay model tolerates any pore-forming method and in-situ pore enlargement. Using peptide nucleic acid (PNA) probes modified for conjugation with synthetic bulk-adding molecules, pores ranging 15-50 nm in diameter are shown to detect individual PNA-bound DNA. Detection of the CFTRΔF508 gene mutation, a codon deletion responsible for ∼66% of all cystic fibrosis chromosomes, is demonstrated with a 26-36 nm pore size range by using a size-enhanced PNA probe. A mathematical framework for assessing the statistical significance of detection is also presented. PMID:27149679

  17. Chain-like molecules confined in nanopores

    NASA Astrophysics Data System (ADS)

    Huber, Patrick; Soprunyuk, Viktor; Hofmann, Tommy; Knorr, Klaus

    2004-03-01

    We present an x-ray diffraction study on chain-like molecules, i.e. a selection of n-alkane molecules, embedded in the pores of nanoporous silica matrices. The lengths of the hydrocarbon chains are comparable to the mean diameter ( 7nm) of the tubular like nanopores which leads to drastic geometric restrictions. Diffraction patterns, recorded on heating and cooling between 200 K and 310 K, elucidate how the structure and phase behavior of the molecules is affected by the random substrate disorder and the confinement. The confined n-alkanes form close-packed structures by aligning parallel to the pore axis. In the case of the medium-length hydrocarbon chains one basic ordering principle known from the bulk crystalline state, i.e. the lamellar ordering of the molecules, is quenched[1], whereas for shorter n-alkanes this ordering principle survives[2]. The confined solids mimic the orientational order-disorder transitions known from the 3D unconfined crystals albeit in a modified fashion. 1. P. Huber, D. Wallacher, J. Albers, K. Knorr, Europhysics Letters, in press; 2. P. Huber, D. Wallacher, J. Albers, K. Knorr, Journal of Physics: Condensed Matter 15, 309 (2003).

  18. Thermal characterization of nanoporous 'black silicon' surfaces

    NASA Astrophysics Data System (ADS)

    Nichols, Logan; Duan, Wenqi; Toor, Fatima

    2016-09-01

    In this work we characterize the thermal conductivity properties of nanoprous `black silicon' (bSi). We fabricate the nanoporous bSi using the metal assisted chemical etching (MACE) process utilizing silver (Ag) metal as the etch catalyst. The MACE process steps include (i) electroless deposition of Ag nanoparticles on the Si surface using silver nitrate (AgNO3) and hydrofluoric acid (HF), and (ii) a wet etch in a solution of HF and hydrogen peroxide (H2O2). The resulting porosity of bSi is dependent on the ratio of the concentration of HF to (HF + H2O2); the ratio is denoted as rho (ρ). We find that as etch time of bSi increases the thermal conductivity of Si increases as well. We also analyze the absorption of the bSi samples by measuring the transmission and reflection using IR spectroscopy. This study enables improved understanding of nanoporous bSi surfaces and how they affect the solar cell performance due to the porous structures' thermal properties.

  19. Encapsulation methods for organic electrical devices

    DOEpatents

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  20. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Amgoth, Chander; Dharmapuri, Gangappa; Kalle, Arunasree M.; Paik, Pradip

    2016-03-01

    Herein, new nanoporous capsules of the block co-polymers of MeO-PEG-NH-(L-GluA)10 and polycaprolactone (PCL) have been synthesized through a surfactant-free cost-effective self-assembled soft-templating approach for the controlled release of drugs and for therapeutic applications. The nanoporous polymer capsules are designed to be biocompatible and are capable of encapsulating anticancer drugs (e.g., doxorubicin hydrochloride (DOX) and imatinib mesylate (ITM)) with a high extent (˜279 and ˜480 ng μg-1, respectively). We have developed a nanoformulation of porous MeO-PEG-NH-(L-GluA)10-PCL capsules with DOX and ITM. The porous polymer nanoformulations have been programmed in terms of the release of anticancer drugs with a desired dose to treat the leukemia (K562) and human carcinoma cells (HepG2) in vitro and show promising IC50 values with a very high mortality of cancer cells (up to ˜96.6%). Our nanoformulation arrests the cell divisions due to ‘cellular scenescence’ and kills the cancer cells specifically. The present findings could enrich the effectiveness of idiosyncratic nanoporous polymer capsules for use in various other nanomedicinal and biomedical applications, such as for killing cancer cells, immune therapy, and gene delivery.

  1. Liposome-encapsulated actinomycin for cancer chemotherapy

    DOEpatents

    Rahman, Yueh-Erh; Cerny, Elizabeth A.

    1976-01-01

    An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.

  2. Laboratory evaluation of PCBs encapsulation method ...

    EPA Pesticide Factsheets

    Effectiveness and limitations of the encapsulation method for reducing polychlorinated biphenyls (PCBs) concentrations in indoor air and contaminated surface have been evaluated in the laboratory study. Ten coating materials such as epoxy and polyurethane coatings, latex paint, and petroleum-based paint were tested in small environmental chambers to rank the encapsulants by their resistance to PCB sorption and estimate the key parameters required by a barrier model. Wipe samples were collected from PCB contaminated surface encapsulated with the coating materials to rank the encapsulants by their resistance to PCB migration from the source. A barrier model was used to calculate the PCB concentrations in the sources and the encapsulant layers, and at the exposed surfaces of the encapsulant and in the room air at different times. The performance of the encapsulants was ranked by those concentrations and PCB percent reductions. Overall, the three epoxy coatings performed better than the other coatings. Both the experimental results and the mathematical modeling showed that selecting proper encapsulants can effectively reduce the PCB concentrations at the exposed surfaces. The encapsulation method is most effective for contaminated surfaces that contain low levels of PCBs. This study answers some of these questions by using a combination of laboratory testing and mathematical modeling. The results should be useful to mitigation engineers, building owners and managers

  3. Encapsulating darunavir nanocrystals within Eudragit L100 using coaxial electrospraying.

    PubMed

    Nguyen, Duong Nhat; Clasen, Christian; Van den Mooter, Guy

    2017-04-01

    Electrospraying is renowned for its simplicity and versatility, and which can effectively produce particles with well-controlled size, size distribution, particle shape, morphology and microstructure at the nano/microscale. In this study, coaxial electrospraying was used to investigate its feasibility for preparing nanoparticles made up of nanocrystals encapsulated within a polymer shell. Firstly, aqueous nanosuspensions of darunavir were prepared by wet media milling. Then the nanosuspension and solutions of an enteric polymer, Eudragit L100, were used as the inner/core liquid and outer/shell liquid in a coaxial electrospraying setup, respectively. As long as a sufficiently high voltage was applied, a stable Taylor cone-jet mode was obtained to produce very fine core-shell structure nanoparticles with high darunavir encapsulation efficiency of approximately 90%. The influence of the starting nanosuspension and the flow rates on the characteristics of the final electrosprayed particles was also evaluated. Using an optimized nanosuspension with reasonable size, size distribution and flow rates, the enteric coating layer reduced the percentage of DRV release in acidic medium in the in vitro dissolution test to ca. 20%. This study indicates that coaxial electrospraying is a potential and unique technique for encapsulating drug nanocrystals within a polymeric shell.

  4. Focused ion beam lithography and anodization combined nanopore patterning.

    PubMed

    Lu, Kathy; Zhao, Jingzhong

    2010-10-01

    In this study, focused ion beam lithography and anodization are combined to create different nanopore patterns. Uniform-, alternating-, and gradient-sized shallow nanopore arrays are first made on high purity aluminum by focused ion beam lithography. These shallow pore arrays are then used as pore initiation sites during anodization by different electrolytes. Depending on the nature of the anodization electrolyte, the nanopore patterns by focused ion beam lithography play different roles in further pore development during anodization. The pore-to-pore distance by focused ion beam lithography should match with that by anodization for guided pore development to be effective. Ordered and heterogeneous nanopore arrays are obtained by the focused ion beam lithography and anodization combined approach.

  5. Growth of Zircone on Nanoporous Alumina Using Molecular Layer Deposition

    NASA Astrophysics Data System (ADS)

    Hall, Robert A.; George, Steven M.; Kim, Yeongae; Hwang, Woonbong; Samberg, Meghan E.; Monteiro-Riviere, Nancy A.; Narayan, Roger J.

    2014-04-01

    Molecular layer deposition (MLD) is a sequential and self-limiting process that may be used to create hybrid organic/inorganic thin films from organometallic precursors and organic alcohol precursors. In this study, films of a zirconium-containing hybrid organic/inorganic polymer known as zircone were grown on nanoporous alumina using MLD. Scanning electron microscopy data showed obliteration of the pores in zircone-coated nanoporous alumina. An in vitro cell viability study indicated that the growth of human epidermal keratinocytes was the greatest on zircone-coated nanoporous alumina than on uncoated nanoporous alumina. Our results suggest that MLD may be used to create biocompatible coatings for use in many types of medical devices.

  6. Nanoporous CuS with excellent photocatalytic property

    NASA Astrophysics Data System (ADS)

    Xu, Wence; Zhu, Shengli; Liang, Yanqin; Li, Zhaoyang; Cui, Zhenduo; Yang, Xianjin; Inoue, Akihisa

    2015-12-01

    We present the rational synthesis of nanoporous CuS for the first time by chemical dealloying method. The morphologies of the CuS catalysts are controlled by the composition of the original amorphous alloys. Nanoporous Cu2S is firstly formed during the chemical dealloying process, and then the Cu2S transforms into CuS. The nanoporous CuS exhibits excellent photocatalytic activity for the degradation of the methylene blue (MB), methyl orange (MO) and rhodamine B (RhB). The excellent photocatalytic activity of the nanoporous CuS is mainly attributed to the large specific surface area, high adsorbing capacity of dyes and low recombination of the photo generated electrons and holes. In the photo degradation process, both chemical and photo generated hydroxyl radicals are generated. The hydroxyl radicals are favor in the oxidation of the dye molecules. The present modified dealloying method may be extended for the preparation of other porous metal sulfide nanostructures.

  7. Nanopores in suspended WS2 membranes for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Danda, Gopinath; Masih Das, Paul; Chou, Yung-Chien; Mlack, Jerome; Naylor, Carl; Perea-Lopez, Nestor; Lin, Zhong; Fulton, Laura Beth; Terrones, Mauricio; Johnson, A. T. Charlie; Drndic, Marija

    Recent advances in solid-state nanopore sensor systems for DNA detection and analysis have been supported by using increasingly thinner materials to the point of utilizing atomically thin two-dimensional materials such as graphene and MoS2. However, these materials still have issues with pore wettability and signal-to-noise ratios displayed in DNA translocation measurements. Recently, the fabrication and operation of nanopores in MoS2 have been demonstrated, but the wetting properties and signal-to-noise ratios of transition metal dichalcogenides are yet to be understood and further improved. Here we fabricate suspended WS2 nanopore devices with sub-10 nm pore diameters using a novel nanomaterial transfer method and TEM nanosculpting to study and better understand nanopore wetting properties and performance in DNA translocation measurements.

  8. Temperature dependence of DNA translocations through solid-state nanopores.

    PubMed

    Verschueren, Daniel V; Jonsson, Magnus P; Dekker, Cees

    2015-06-12

    In order to gain a better physical understanding of DNA translocations through solid-state nanopores, we study the temperature dependence of λ-DNA translocations through 10 nm diameter silicon nitride nanopores, both experimentally and theoretically. The measured ionic conductance G, the DNA-induced ionic-conductance blockades [Formula: see text] and the event frequency Γ all increase with increasing temperature while the DNA translocation time τ decreases. G and [Formula: see text] are accurately described when bulk and surface conductances of the nanopore are considered and access resistance is incorporated appropriately. Viscous drag on the untranslocated part of the DNA coil is found to dominate the temperature dependence of the translocation times and the event rate is well described by a balance between diffusion and electrophoretic motion. The good fit between modeled and measured properties of DNA translocations through solid-state nanopores in this first comprehensive temperature study, suggest that our model captures the relevant physics of the process.

  9. Bivalent ion transport through graphene/PET nanopore

    NASA Astrophysics Data System (ADS)

    Yao, Huijun; Cheng, Yaxiong; Zeng, Jian; Mo, Dan; Duan, Jinglai; Liu, Jiande; Zhai, Pengfei; Sun, Youmei; Liu, Jie

    2016-05-01

    The PET suspended single graphene nanopore (G/PET) was produced by heavy ion irradiation and asymmetric chemical etching. The solutions of NiSO4, NiCl2, CuSO4 and CuCl2 with different concentration were adopted to study the transport properties of bivalent ion in single G/PET nanopore by measuring the I-V curves. The perfect "diode effect" and excellent rectification effect of G/PET nanopore were observed, and the huge rectification ratio up to 43.3 was obtained in NiSO4 solution. The great solution selectivity and ion current magnification effect of graphene/PET nanopore were also confirmed in our study.

  10. Shrinking of Solid-state Nanopores by Direct Thermal Heating.

    PubMed

    Asghar, Waseem; Ilyas, Azhar; Billo, Joseph Anthony; Iqbal, Samir Muzaffar

    2011-05-04

    Solid-state nanopores have emerged as useful single-molecule sensors for DNA and proteins. A novel and simple technique for solid-state nanopore fabrication is reported here. The process involves direct thermal heating of 100 to 300 nm nanopores, made by focused ion beam (FIB) milling in free-standing membranes. Direct heating results in shrinking of the silicon dioxide nanopores. The free-standing silicon dioxide membrane is softened and adatoms diffuse to a lower surface free energy. The model predicts the dynamics of the shrinking process as validated by experiments. The method described herein, can process many samples at one time. The inbuilt stress in the oxide film is also reduced due to annealing. The surface composition of the pore walls remains the same during the shrinking process. The linear shrinkage rate gives a reproducible way to control the diameter of a pore with nanometer precision.

  11. Molecular dynamics study of DNA translocation through graphene nanopores

    NASA Astrophysics Data System (ADS)

    Li, Jiapeng; Zhang, Yan; Yang, Juekuan; Bi, Kedong; Ni, Zhonghua; Li, Deyu; Chen, Yunfei

    2013-06-01

    A molecular dynamics simulation method is used to study the translocation of a single strand DNA through nanopores opened on graphene membranes. Simulation results uncover that the translocation time for four DNA strands (20G, 20A, 20T, and 20C) is proportional to the size of the four DNA bases. However, the change of the ionic current is caused not only by the physical blockade of the DNA, but also induced by the change of the ion distribution once the negatively charged DNA enters the nanopore. An electric double layer will be formed and causes higher cation and lower anion concentration near the DNA strand surface, which makes the ionic current blockade not sensitive to the base size for a single-layer graphene nanopore. Increasing the graphene membrane thickness can enhance the DNA physical blockage effect on ionic current and improve the nanopore sensitivity to the four DNA bases.

  12. Salinity gradient power: influences of temperature and nanopore size

    NASA Astrophysics Data System (ADS)

    Tseng, Shiojenn; Li, Yu-Ming; Lin, Chih-Yuan; Hsu, Jyh-Ping

    2016-01-01

    Salinity gradient power is a promising, challenging, and readily available renewable energy. Among various methods for harvesting this clean energy, nanofluidic reverse electrodialysis (NRED) is of great potential. Since ionic transport depends highly on the temperature, so is the efficiency of the associated power generated. Here, we conduct a theoretical analysis on the influences of temperature and nanopore size on NRED, focusing on the temperature and nanopore size. The results gathered reveal that the maximum power increases with increasing temperature, but the conversion efficiency depends weakly on temperature. In general, the smaller the nanopore radius or the longer the nanopore, the better the ion selectivity. These results provide desirable and necessary information for improving the performance of NRED as well as designing relevant units in renewable energy plants.

  13. Graphene nanopore with a self-integrated optical antenna.

    PubMed

    Nam, SungWoo; Choi, Inhee; Fu, Chi-cheng; Kim, Kwanpyo; Hong, SoonGweon; Choi, Yeonho; Zettl, Alex; Lee, Luke P

    2014-10-08

    We report graphene nanopores with integrated optical antennae. We demonstrate that a nanometer-sized heated spot created by photon-to-heat conversion of a gold nanorod resting on a graphene membrane forms a nanoscale pore with a self-integrated optical antenna in a single step. The distinct plasmonic traits of metal nanoparticles, which have a unique capability to concentrate light into nanoscale regions, yield the significant advantage of parallel nanopore fabrication compared to the conventional sequential process using an electron beam. Tunability of both the nanopore dimensions and the optical characteristics of plasmonic nanoantennae are further achieved. Finally, the key optical function of our self-integrated optical antenna on the vicinity of graphene nanopore is manifested by multifold fluorescent signal enhancement during DNA translocation.

  14. Forensic SNP Genotyping using Nanopore MinION Sequencing

    PubMed Central

    Cornelis, Senne; Gansemans, Yannick; Deleye, Lieselot; Deforce, Dieter; Van Nieuwerburgh, Filip

    2017-01-01

    One of the latest developments in next generation sequencing is the Oxford Nanopore Technologies’ (ONT) MinION nanopore sequencer. We studied the applicability of this system to perform forensic genotyping of the forensic female DNA standard 9947 A using the 52 SNP-plex assay developed by the SNPforID consortium. All but one of the loci were correctly genotyped. Several SNP loci were identified as problematic for correct and robust genotyping using nanopore sequencing. All these loci contained homopolymers in the sequence flanking the forensic SNP and most of them were already reported as problematic in studies using other sequencing technologies. When these problematic loci are avoided, correct forensic genotyping using nanopore sequencing is technically feasible. PMID:28155888

  15. Developing scaling relations for the yield strength of nanoporous gold

    NASA Astrophysics Data System (ADS)

    Briot, Nicolas J.; Balk, T. John

    2015-09-01

    In this work, the applicability of Gibson and Ashby's porous scaling relations to nanoporous metals is discussed, and an updated equation is proposed for relating the yield strength of nanoporous gold to the yield strength of individual gold ligaments that form the porous structure. This new relation is derived from experimental measurements obtained by small-scale tensile testing and by nanoindentation, and incorporates the average ligament diameter. Nanoindentation data, obtained experimentally by the authors as well as reported by others in the literature, are reconciled with tensile test measurements previously reported by the present authors. The values of ligament yield strength calculated with the new scaling relation are found to agree with data reported from mechanical testing of nanowires, and the scaling relation thus represents a bridge between nanowire and nanoporous metal behaviour. In addition, calculations of yield strength for nanoporous gold samples with various ligament size and relative density are consistent with the experimentally determined values.

  16. Forensic SNP Genotyping using Nanopore MinION Sequencing.

    PubMed

    Cornelis, Senne; Gansemans, Yannick; Deleye, Lieselot; Deforce, Dieter; Van Nieuwerburgh, Filip

    2017-02-03

    One of the latest developments in next generation sequencing is the Oxford Nanopore Technologies' (ONT) MinION nanopore sequencer. We studied the applicability of this system to perform forensic genotyping of the forensic female DNA standard 9947 A using the 52 SNP-plex assay developed by the SNPforID consortium. All but one of the loci were correctly genotyped. Several SNP loci were identified as problematic for correct and robust genotyping using nanopore sequencing. All these loci contained homopolymers in the sequence flanking the forensic SNP and most of them were already reported as problematic in studies using other sequencing technologies. When these problematic loci are avoided, correct forensic genotyping using nanopore sequencing is technically feasible.

  17. Formation and photopatterning of nanoporous titania thin films

    SciTech Connect

    Park, Oun-Ho; Cheng, Joy Y.; Kim, Hyun Suk; Rice, Philip M.; Topuria, Teya; Miller, Robert D.; Kim, Ho-Cheol

    2007-06-04

    Photopatternable nanoporous titania thin films were generated from mixtures of an organic diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric titanate (OT) prepared from a chelated titanium isopropoxide. The PS-b-PEO templates well-defined microdomains in thin films of the mixtures, which upon thermal treatment at 450 deg. C, become nanopores in titania. Average pore size and porosity are controlled by the molecular weight and loading level of the PS-b-PEO, respectively. Patterns of nanoporous titania were created by selectively exposing UV light on the mixture films. The UV irradiation destroys the chelating bond and induces the cross-linking reaction of the OT. Subsequent wet development followed by thermal treatment gives patterned nanoporous films of anatase phase titania.

  18. Nanopore formation by controlled electrical breakdown: Efficient molecular-sensors

    NASA Astrophysics Data System (ADS)

    Abdalla, S.; Al-Marzouki, F. M.; Abdel-Daiem, A. M.

    2016-08-01

    A controlled electrical breakdown is used to produce efficient nanopore (NP) sensors. This phenomenon can be used to precisely fabricate these nanopore (NP) sensors through the membranes of the polydimethylsiloxane microarrays. This can be carried out, when localizing the electrical potential through a suitable microfluidic channel. Organic molecules, and other different protein-molecules, can be easily and precisely detected using this procedure referred to as controlled electrical breakdown technique.

  19. Nanoporous titania films produced by pulsed interference lithography

    SciTech Connect

    Verevkin, Yu K; Petryakov, V N; Burenina, V N; Filatov, D O; Vorontsov, D A

    2010-12-09

    We describe a simple, inexpensive technique for producing deep nanopores on the surface of titania films using laser exposure in a four-beam interference configuration. In addition to producing nanopores, laser pulses convert amorphous titania films to a polycrystalline state. The effect of laser exposure on the TiO{sub 2} surface can be used to improve its biophotocatalytic properties, optimise solar cells, etc. (nanostructures)

  20. Highly magnetic nanoporous carbon/iron-oxide hybrid materials.

    PubMed

    Alam, Sher; Anand, Chokkalingam; Lakhi, Kripal Singh; Choy, Jin-Ho; Cha, Wang Soo; Elzhatry, Ahmed; Al-Deyab, Salem S; Ohya, Yutaka; Vinu, Ajayan

    2014-11-10

    The preparation of size-controllable Fe2O3 nanoparticles grown in nanoporous carbon with tuneable pore diameters is reported. These hybrid materials exhibit strong non-linear magnetic properties and a magnetic moment of approximately 229 emu g(-1), which is the highest value ever reported for nanoporous hybrids, and can be attributed to the nanosieve effect and the strong interaction between the nanoparticles and the carbon walls.

  1. Surface functionalization of carbon nanotubes by direct encapsulation with varying dosages of amphiphilic block copolymers

    NASA Astrophysics Data System (ADS)

    Yao, Xueping; Li, Jie; Kong, Liang; Wang, Yong

    2015-08-01

    Encapsulation of carbon nanotubes (CNTs) by amphiphilic block copolymers is an efficient way to stabilize CNTs in solvents. However, the appropriate dosages of copolymers and the assembled structures are difficult to predict and control because of the insufficient understanding on the encapsulation process. We encapsulate multiwalled CNTs with polystyrene-block-poly (4-vinyl pyridine) (PS-b-P4VP) by directly mixing them in acetic acid under sonication. The copolymer forms a lamellar structure along the surface of CNTs with the PS blocks anchoring on the tube wall and the P4VP blocks exposed to the outside. The encapsulated CNTs achieve good dispersibility in polar solvents over long periods. To increase our understanding of the encapsulation process we investigate the assembled structures and stability of copolymer/CNTs mixtures with changing mass ratios. Stable dispersions are obtained at high mass ratios between the copolymer and CNTs, i.e. 2 or 3, with the presence of free spherical micelles. Transmission electron microscopy and thermal gravimetric analysis determine that the threshold for the complete coverage of CNTs by the copolymer occurs at the mass ratio of 1.5. The coated copolymer layer activates the surface of CNTs, enabling further functionalization of CNTs. For instance, atomic layer deposition of TiO2 produces conformal thin layers on the encapsulated CNTs while isolated TiO2 bumps are produced on the pristine, inert CNTs.

  2. Biomolecular conjugation inside synthetic polymer nanopores viaglycoprotein-lectin interactions

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Ramirez, Patricio; Tahir, Muhammad Nawaz; Mafe, Salvador; Siwy, Zuzanna; Neumann, Reinhard; Tremel, Wolfgang; Ensinger, Wolfgang

    2011-04-01

    We demonstrate the supramolecular bioconjugation of concanavalin A (Con A) protein with glycoenzymehorseradish peroxidase (HRP) inside single nanopores, fabricated in heavy ion tracked polymermembranes. Firstly, the HRP-enzyme was covalently immobilized on the inner wall of the pores using carbodiimide coupling chemistry. The immobilized HRP-enzyme molecules bear sugar (mannose) groups available for the binding of Con A protein. Secondly, the bioconjugation of Con A on the pore wall was achieved through its biospecific interactions with the mannose residues of the HRP enzyme. The immobilization of biomolecules inside the nanopore leads to the reduction of the available area for ionic transport, and this blocking effect can be exploited to tune the conductance and selectivity of the nanopore in aqueous solution. Both cylindrical and conical nanopores were used in the experiments. The possibility of obtaining two or more conductance states (output), dictated by the degree of nanopore blocking resulted from the different biomolecules in solution (input), as well as the current rectification properties obtained with the conical nanopore, could also allow implementing information processing at the nanometre scale. Model simulations based on the transport equations further verify the feasibility of the sensing procedure that involves concepts from supramolecular chemistry, molecular imprinting, recognition, and nanotechnology.

  3. Effects of adsorption and confinement on nanoporous electrochemistry.

    PubMed

    Bae, Je Hyun; Han, Ji-Hyung; Han, Donghyeop; Chung, Taek Dong

    2013-01-01

    Characteristic molecular dynamics of reactant molecules confined in the space of the nanometer scale augments the frequency of collisions with the electrified surface so that a given faradaic reaction can be enhanced at nanoporous electrodes, the so-called nano-confinement effect. Since this effect is grounded on diffusion inside nanopores, it is predicted that adsorption onto the surface will seriously affect the enhancement by nano-confinement. We experimentally explored the correlation between adsorption and the confinement effect by examining the oxidation of butanol isomers at platinum and gold nanoporous electrodes. The results showed that electrooxidation of 2-butanol, which is a non-adsorption reaction, was enhanced more than that of 1-butanol, which is an adsorption reaction, at nanoporous platinum in acidic media. In contrast, the nanoporous gold electrode, on which 1-butanol is less adsorptive than it is on platinum, enhanced the electrooxidation of 1-butanol greatly. Furthermore, the electrocatalytic activity of nanoporous gold for oxygen reduction reaction was improved so much as to be comparable with that of flat Pt. These findings show that the nano-confinement effect can be appreciable for electrocatalytic oxygen reduction as well as alcohol oxidation unless the adsorption is extensive, and suggests a new strategy in terms of material design for innovative non-noble metal electrocatalysts.

  4. Deciphering ionic current signatures of DNA transport through a nanopore

    PubMed Central

    Aksimentiev, Aleksei

    2010-01-01

    Within just a decade from the pioneering work demonstrating the utility of nanopores for molecular sensing, nanopores have emerged as versatile systems for single molecule manipulation and analysis. In a typical setup, a gradient of the electrostatic potential captures charged solutes from the solution and forces them to move through a single nanopore, across otherwise impermeable membrane. The ionic current blockades resulting from the presence of a solute in a nanopore can reveal the type of the solute, for example, the nucleotide makeup of a DNA strand. Despite great successes, the microscopic mechanisms underlying the functionality of such stochastic sensors remain largely unknown, as it is not currently possible to characterize the microscopic conformations of single biomolecules directly in a nanopore and thereby unequivocally establish the causal relationship between the observables and the microscopic events. Such a relationship can be determined using molecular dynamics—a computational method that can accurately predicts the time evolution of a molecular system starting from a given microscopic state. This article describes recent applications of this method to the process of DNA transport through biological and synthetic nanopores. PMID:20644747

  5. DNA Sequencing by Hexagonal Boron Nitride Nanopore: A Computational Study

    PubMed Central

    Zhang, Liuyang; Wang, Xianqiao

    2016-01-01

    The single molecule detection associated with DNA sequencing has motivated intensive efforts to identify single DNA bases. However, little research has been reported utilizing single-layer hexagonal boron nitride (hBN) for DNA sequencing. Here we employ molecular dynamics simulations to explore pathways for single-strand DNA (ssDNA) sequencing by nanopore on the hBN sheet. We first investigate the adhesive strength between nucleobases and the hBN sheet, which provides the foundation for the hBN-base interaction and nanopore sequencing mechanism. Simulation results show that the purine base has a more remarkable energy profile and affinity than the pyrimidine base on the hBN sheet. The threading of ssDNA through the hBN nanopore can be clearly identified due to their different energy profiles and conformations with circular nanopores on the hBN sheet. The sequencing process is orientation dependent when the shape of the hBN nanopore deviates from the circle. Our results open up a promising avenue to explore the capability of DNA sequencing by hBN nanopore.

  6. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    PubMed

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  7. Streaming current magnetic fields in a charged nanopore

    PubMed Central

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  8. Streaming current magnetic fields in a charged nanopore

    NASA Astrophysics Data System (ADS)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-11-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  9. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    PubMed

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  10. Streaming current magnetic fields in a charged nanopore.

    PubMed

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W

    2016-11-11

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  11. Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement.

    PubMed

    Gwak, Eun-Ji; Kim, Ju-Young

    2016-04-13

    High density of grain boundaries in solid materials generally leads to high strength because grain boundaries act as strong obstacles to dislocation activity. We find that the flexural strength of nanoporous gold of grain size 206 nm is 33.6% lower than that of grain size 238 μm. We prepared three gold-silver precursor alloys, well-annealed, prestrained, and high-energy ball-milled, from which nanoporous gold samples were obtained by the same free-corrosion dealloying process. Ligaments of the same size are formed regardless of precursor alloys, and microstructural aspects of precursor alloys such as crystallographic orientation and grain size is preserved in the dealloying process. While the nanoindentation hardness of three nanoporous golds is independent of microstructural variation, flexural strength of nanocrystalline nanoporous gold is significantly lower than that of nanoporous golds with much larger grain size. We investigate weakening mechanisms of grain boundaries in nanocrystalline nanoporous gold, leading to weakening of flexural strength.

  12. Polymorph control of luminescence properties in molecular crystals of a platinum and organoarsenic complex and formation of stable one-dimensional nanochannel.

    PubMed

    Unesaki, Hikaru; Kato, Takuji; Watase, Seiji; Matsukawa, Kimihiro; Naka, Kensuke

    2014-08-18

    The mononuclear diiodoplatinum(II) complex (trans-PtI2(cis-DHDAMe)2), where cis-DHDAMe = cis-1,4-dihydro-1,4-dimethyl-2,3,5,6-tetrakis(methoxycarbonyl)-1,4-diarsinine, forms three different crystalline polymorphs that can be either concomitantly or separately obtained on varying the recrystallization conditions. Cubic red crystals (α-phase) and red-orange needles (β-phase) exhibit solid-state red emissions at room temperature. Cubic red crystals of the γ-phase show no solid-state emission at room temperature. All crystalline structures were confirmed by X-ray crystallography. Room-temperature strongly luminescent crystals (α-phase) (λem = 657 nm, Φ = 0.52) have a triclinic P1 (No. 2) structure and no voids in the crystal structure. Red-orange needle-shaped crystals of the β-phase exhibit moderate red luminescence (λem = 695 nm, Φ = 0.09) at room temperature and have a trigonal, R3 (No. 148), structure. In the needlelike crystals of the β-phase, stable hexagonal arrays of nanoporous channels, 5.0 Å in diameter, are formed. Room-temperature nonluminescent crystals (γ-phase) have an orthorhombic, Pbca (No. 61), structure with a void volume that is 4.9% of the total crystal volume. After heating the α-phase crystals at 150 °C for 2 min, a powder XRD pattern different from the original crystal is obtained, and its solid-state emission at room temperature decreased. After heating the β-phase crystals at 150 °C for 2 min, the emission wavelength and the quantum yield of the solid-state emission at room temperature and the powder XRD pattern are the same as those of the α-phase after heating at 150 °C. A crystal-to-crystal transition triggered by the thermal stimulus produces a different stable polymorph of the mononuclear diiodoplatinum(II) complex. The one-dimensional nanoporous crystals encapsulated iodine without distorting the crystal packing.

  13. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  14. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    SciTech Connect

    Siuti, Piro; Retterer, Scott T; Choi, Chang Kyoung; Doktycz, Mitchel John

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  15. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  16. Nanoporous-carbon films for microsensor preconcentrators

    NASA Astrophysics Data System (ADS)

    Siegal, M. P.; Overmyer, D. L.; Kottenstette, R. J.; Tallant, D. R.; Yelton, W. G.

    2002-05-01

    Nanoporous-carbon (NPC) films are grown using physical processes such as low-power pulsed-laser deposition with attenuation of the ablated carbon species kinetic energy attained by using an inert background gas. With room-temperature growth and negligible residual stress, NPC can coat nearly any substrate to any desired thickness. Control of the deposition energetics yields precise morphology, density, and hence, porosity, with no discernable variation in chemical bonding. We produce NPC films 8 μm thick with density <0.2 g/cm3. The well-controlled porosity, i.e., available surface area, is demonstrated by using films with different thicknesses as a preconcentrator for a nerve-gas simulant.

  17. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed Central

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar

    2015-01-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  18. Simplified procedure for encapsulating cytochrome c in silica aerogel nanoarchitectures while retaining gas-phase bioactivity.

    PubMed

    Harper-Leatherman, Amanda S; Iftikhar, Mariam; Ndoi, Adela; Scappaticci, Steven J; Lisi, George P; Buzard, Kaitlyn L; Garvey, Elizabeth M

    2012-10-16

    Cytochrome c (cyt. c) has been encapsulated in silica sol-gels and processed to form bioaerogels with gas-phase activity for nitric oxide through a simplified synthetic procedure. Previous reports demonstrated a need to adsorb cyt. c to metal nanoparticles prior to silica sol-gel encapsulation and processing to form aerogels. We report that cyt. c can be encapsulated in aerogels without added nanoparticles and retain structural stability and gas-phase activity for nitric oxide. While the UV-visible Soret absorbance and nitric oxide response indicate that cyt. c encapsulated with nanoparticles in aerogels remains slightly more stable and functional than cyt. c encapsulated alone, these properties are not very different in the two types of aerogels. From UV-visible and Soret circular dichroism results, we infer that cyt. c encapsulated alone self-organizes to reduce contact with the silica gel in a way that may bear at least some resemblance to the way cyt. c self-organizes into superstructures of protein within aerogels when nanoparticles are present. Both the buffer concentration and the cyt. c concentration of solutions used to synthesize the bioaerogels affect the structural integrity of the protein encapsulated alone within the dried aerogels. Optimized bioaerogels are formed when cyt. c is encapsulated from 40 mM phosphate buffered solutions, and when the loaded cyt. c concentration in the aerogel is in the range of 5 to 15 μM. Increased viability of cyt. c in aerogels is also observed when supercritical fluid used to produce aerogels is vented over relatively long times.

  19. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat

    2015-07-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals.

  20. Shale nanopore reconstruction with compressive sensing

    NASA Astrophysics Data System (ADS)

    Guo, Long; Xiao, Lizhi

    2017-03-01

    With increasing global demand for energy resources, shale gas has been paid considerable attention in recent years. Nanopore geometry is the basis for all microscopic rock physics and petrophysical numerical experiments for shale. At present, nano digital cores can be acquired via thin section reconstruction, nanometer-scale x-ray computed tomography (nano-CT), and focused ion beam and scanning electron microscopy (FIB-SEM). FIB-SEM detects nanoscale pores in the xy-plane with a resolution of up to 0.8 nm voxel‑1, and it is usually provides higher resolution than nano-CT. The main workload associated with FIB-SEM is the need to recut the sample many times and scan every section, with these then being overlaid to create a three-dimensional (3D) pore model. Each cutting distance can be ascertained, but this cannot be controlled precisely because of the fundamental limits of focused ion beams. Many interpolation methods can be used to fit the anisotropy resolution. However, these methods can also alter the geometry of the pores. Nanopores that are close to the limiting resolution are particularly susceptible to stretching. Linear interpolation is likely to lengthen the pores in the low-resolution direction. The subsequent calculation of sensitive physical attributes will be affected by geometric alterations. Through foundational work in the compressive sensing (CS) method, we present a reconstruction workflow for maintaining the pore shape using prior knowledge and reliable information. The images are reassembled with equal distance, so the nanoscale structures can have a resolution of unity in three dimensions.

  1. Snapshot in surgery: intraperitoneal encapsulated fat necrosis

    PubMed Central

    Oh, Han Boon; Arab, Nahlah; Teo, Lynette; Lieske, Bettina

    2015-01-01

    Key Clinical Message A 66-year-old man with rectal cancer was found to have an incidental ring-like lesion in the left rectovesical pouch. Histology revealed an encapsulated fat necrosis. Intraperitoneal encapsulated fat necroses are postulated to be a result of infarcted epiploic appendages resulting in a free-floating lesion. PMID:25767714

  2. The α-Hemolysin nanopore transduction detector – single-molecule binding studies and immunological screening of antibodies and aptamers

    PubMed Central

    Winters-Hilt, Stephen

    2007-01-01

    Background Nanopore detection is based on observations of the ionic current threading a single, highly stable, nanometer-scale channel. The dimensions are such that small biomolecules and biopolymers (like DNA and peptides) can translocate or be captured in the channel. The identities of translocating or captured molecules can often be discerned, one from another, based on their channel blockade "signatures". There is a self-limiting aspect to a translocation-based detection mechanism: as the channel fits tighter around the translocating molecule the dynamic range of the ionic current signal is reduced. In this study, a lengthy, highly structure, high dynamic-range, molecular capture is sought as a key component of a transduction-based nanopore detection platform. Results A specialized role, or device augmentation, involving bifunctional molecules has been explored. The bifunctional molecule has one function to enter and blockade the channel in an information-rich self-modulating manner, while the other function is for binding (usually), located on a non-channel-captured portion of the molecule. Part of the bifunctional molecule is, thus, external to the channel and is free to bind or rigidly link to a larger molecule of interest. What results is an event transduction detector: molecular events are directly transduced into discernible changes in the stationary statistics of the bifunctional molecule's channel blockade. Several results are presented of nanopore-based event-transduction detection. Conclusion It may be possible to directly track the bound versus unbound state of a huge variety of molecules using nanopore transduction detection. PMID:18047732

  3. Encapsulation of probiotic bacteria in biopolymeric system.

    PubMed

    Huq, Tanzina; Khan, Avik; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique

    2013-01-01

    Encapsulation of probiotic bacteria is generally used to enhance the viability during processing, and also for the target delivery in gastrointestinal tract. Probiotics are used with the fermented dairy products, pharmaceutical products, and health supplements. They play a great role in maintaining human health. The survival of these bacteria in the human gastrointestinal system is questionable. In order to protect the viability of the probiotic bacteria, several types of biopolymers such as alginate, chitosan, gelatin, whey protein isolate, cellulose derivatives are used for encapsulation and several methods of encapsulation such as spray drying, extrusion, emulsion have been reported. This review focuses on the method of encapsulation and the use of different biopolymeric system for encapsulation of probiotics.

  4. Limonene encapsulation in freeze dried gellan systems.

    PubMed

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results.

  5. Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide.

    PubMed

    Rho, Sangchul; Jahng, Deokjin; Lim, Jae Hoon; Choi, Jinsub; Chang, Jeong Ho; Lee, Sang Cheon; Kim, Kyung Ja

    2008-01-18

    Electrochemical DNA biosensors based on a thin gold film sputtered on anodic porous niobium oxide (Au@Nb(2)O(5)) are studied in detail here. We found that the novel DNA biosensor based on Au@Nb(2)O(5) is superior to those based on the bulk gold electrode or niobium oxide electrode. For example, the novel method does not require any time-consuming cleaning step in order to obtain reproducible results. The adhesion of gold films on the substrate is very stable during electrochemical biosensing, when the thin gold films are deposited on anodically prepared nanoporous niobium oxide. In particular, the novel biosensor shows enhanced biosensing performance with a 2.4 times higher resolution and a three times higher sensitivity. The signal enhancement is in part attributed to capacitive interface between gold films and nanoporous niobium oxide, where charges are accumulated during the anodic and cathodic scanning, and is in part ascribed to the structural stability of DNA immobilized at the sputtered gold films. The method allows for the detection of single-base mismatch DNA as well as for the discrimination of mismatch positions.

  6. Self-similar processes and flicker noise from a fluctuating nanopore in a lipid membrane

    NASA Astrophysics Data System (ADS)

    Kotulska, Malgorzata; Koronkiewicz, Stanislawa; Kalinowski, Slawomir

    2004-03-01

    Stochastic properties of a fluctuating nanopore generated and sustained by an electric field in a lipid bilayer membrane are studied. It is shown that the process of voltage fluctuations, in the current clamp experiment, is a stochastic fractal with long memory, which is the main reason for its nonstationarity. The aging process contributes to the nonstationarity if molecular interactions in the membrane are weak. An attempt to classify the process reveals a non-Gaussian distribution with long tails, which contradicts the hypothesis of fractional Brownian motion, showing that stable motion may be possible. The self-similarity index, estimated by three different methods, depends on current value and membrane sensitivity to electric field in a well defined and explicable manner. The stochastic analysis provided for calculated conductance of nanopore revealed the process close to 1/f noise, the result observed only for the pores not exceeding 1 nm in diameter, induced in membranes with strong molecular interactions. Our results show that such a pore is the simplest biological system needed for flicker noise to occur, and the complexity of highly regulated protein channel is not a necessary factor. A case of noise 1/f2, observed for a pore with impeded dynamics, suggests a process without memory in such a situation. A physical interpretation is presented for some of the results.

  7. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    NASA Astrophysics Data System (ADS)

    Lee, W.; Nielsch, K.; Gösele, U.

    2007-11-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H4C3O4) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ~100 mA cm-2. Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (Dint) for a given anodization potential (U) during malonic acid anodization.

  8. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation

    SciTech Connect

    Gutruf, Philipp; Walia, Sumeet; Nur Ali, Md; Sriram, Sharath E-mail: madhu.bhaskaran@gmail.com; Bhaskaran, Madhu E-mail: madhu.bhaskaran@gmail.com

    2014-01-13

    The functionality of flexible electronics relies on stable performance of thin film micro-electrodes. This letter investigates the behavior of gold thin films on polyimide, a prevalent combination in flexible devices. The dynamic behavior of gold micro-electrodes has been studied by subjecting them to stress while monitoring their resistance in situ. The shape of the electrodes was systematically varied to examine resistive strain sensitivity, while an additional encapsulation was applied to characterize multilayer behavior. The realized designs show remarkable tolerance to repetitive strain, demonstrating that curvature and encapsulation are excellent approaches for minimizing resistive strain sensitivity to enable durable flexible electronics.

  9. Feasibility of metallurgical waste encapsulation in a clay formed matrix

    NASA Astrophysics Data System (ADS)

    Juhnevica, I.; Kucinska, J.; Sardiko, A.; Mezinskis, G.

    2011-12-01

    As a result of Joint Stock Company "Liepajas Metalurgs" production process there are produced certain quantity of substances that are harmful for environment and have to be encapsulated into stable structures. Company's target is modification of these substances into products that form stable compounds in order to avoid metal release in environment. Geopolymers can be synthesized from many materials with a high concentration of aluminosilicates such as metakaolin or fly ash. Heavy metal immobilization in geopolymeric structures is not thought to be caused by physical encapsulation alone, but also through adsorption of the metal ions into the geopolymer structure and possibly even bonding of the metal ions into the structure. All samples have been analyzed with X-Ray, FTIR spectroscopy; chemical analysis and compressive strength tests have been performed. Chemical analysis of geopolymeric samples shows that the main component leached from samples during the boiling in water is Na2O that can be explained by more alkaline components nature - Na2SiO3, NaOH, and SO3. Fe2O3 and ZnO are not detected in water extracts at all samples.

  10. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III; Kallis, J. M.; Trucker, D. C.

    1983-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.

  11. Pressure-controlled motion of single polymers through solid-state nanopores

    PubMed Central

    Lu, Bo; Hoogerheide, David P.; Zhao, Qing; Zhang, Hengbin; Tang, Zhipeng; Yu, Dapeng; Golovchenko, Jene A.

    2013-01-01

    Voltage-biased solid-state nanopores are well established in their ability to detect and characterize single polymers, such as DNA, in electrolytes. The addition of a pressure gradient across the nanopore yields a second molecular driving force that provides new freedom for studying molecules in nanopores. In this work, we show that opposing pressure and voltage bias enables nanopores to detect and resolve very short DNA molecules, as well as to detect near-neutral polymers. PMID:23802688

  12. Point contacts in encapsulated graphene

    SciTech Connect

    Handschin, Clevin; Fülöp, Bálint; Csonka, Szabolcs; Makk, Péter; Blanter, Sofya; Weiss, Markus; Schönenberger, Christian; Watanabe, Kenji; Taniguchi, Takashi

    2015-11-02

    We present a method to establish inner point contacts with dimensions as small as 100 nm on hexagonal boron nitride (hBN) encapsulated graphene heterostructures by pre-patterning the top-hBN in a separate step prior to dry-stacking. 2- and 4-terminal field effect measurements between different lead combinations are in qualitative agreement with an electrostatic model assuming point-like contacts. The measured contact resistances are 0.5–1.5 kΩ per contact, which is quite low for such small contacts. By applying a perpendicular magnetic field, an insulating behaviour in the quantum Hall regime was observed, as expected for inner contacts. The fabricated contacts are compatible with high mobility graphene structures and open up the field for the realization of several electron optical proposals.

  13. Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

    PubMed Central

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328

  14. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    NASA Astrophysics Data System (ADS)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  15. Ion current rectification, limiting and overlimiting conductances in nanopores.

    PubMed

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  16. Polypyrrole self-organized nanopore arrays formed by controlled electropolymerization in TiO2 nanotube template.

    PubMed

    Kowalski, Damian; Schmuki, Patrik

    2010-12-07

    A new concept for formation of nanostructured intrinsically conducting polymers (ICP) is demonstrated. Polypyrrole can be electropolymerized from an ionic-surfactant-solution in TiO(2) nanotube framework to form a geometrical structure of self-organized nanopore arrays. Polymerization is initialized selectively in the space between nanotube walls forming a mechanically stable polymer network with controlled wall thickness from 40 to 10 nm. Such robust polymer nanostructures are very promising for application in electrochemical systems of limited charge carrier diffusion length.

  17. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  18. Fabrication and Modification of Nanoporous Silicon Particles

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion

  19. Integral Glass Encapsulation for Solar Arrays

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Tobin, R. G.; Kreisman, W. S.

    1979-01-01

    Work reported was performed during the period from August 1977 to December 1978. The program objective was to continue the development of electrostatic bonding (ESB) as an encapsulation technique for terrestrial cells. Economic analyses shows that this process can be a cost-effective method of producing reliable, long lifetime solar modules. When considered in sufficient volume, both material and equipment costs are competitive with conventional encapsulation systems. In addition, the possibility of integrating cell fabrication into the encapsulation process, as in the case of the preformed cell contacts discussed in this report, offers the potential of significant overall systems cost reduction.

  20. Hermetic encapsulation technique for solar arrays

    NASA Technical Reports Server (NTRS)

    Deminet, C.; Horne, W. E.

    1980-01-01

    A concept is presented for encapsulating solar cells between two layers of glass either individually, in panels, or in a continuous process. The concept yields an integral unit that is hermetically sealed and that is tolerant to high temperature thermal cycling and to particulate radiation. Data are presented on both high temperature solar cells and special glasses that soften at low temperatures for use with the concept. The results of encapsulating experiments are presented which show the successful application of the concept to the special high temperature cells. The mechanical feasibility of encapsulating 2 mil cells between two layers of 2 mil glass is also demonstrated.

  1. Nanoporous Pirani sensor based on anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  2. DNA Translocation through Hydrophilic Nanopore in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Wang, Hao; Xu, Zhi; Wang, Wenlong; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua

    2013-11-01

    Ultra-thin solid-state nanopore with good wetting property is strongly desired to achieve high spatial resolution for DNA sequencing applications. Atomic thick hexagonal boron nitride (h-BN) layer provides a promising two-dimensional material for fabricating solid-state nanopores. Due to its good oxidation resistance, the hydrophilicity of h-BN nanopore device can be significantly improved by UV-Ozone treatment. The contact angle of a KCl-TE droplet on h-BN layer can be reduced from 57° to 26° after the treatment. Abundant DNA translocation events have been observed in such devices, and strong DNA-nanopore interaction has been revealed in pores smaller than 10 nm in diameter. The 1/f noise level is closely related to the area of suspended h-BN layer, and it is significantly reduced in smaller supporting window. The demonstrated performance in h-BN nanopore paves the way towards base discrimination in a single DNA molecule.

  3. Silicon deposition in nanopores using a liquid precursor

    NASA Astrophysics Data System (ADS)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  4. Proximal Capture Dynamics for a Single Biological Nanopore Sensor.

    PubMed

    Pederson, Emmanuel D; Barbalas, Jonathan; Drown, Bryon S; Culbertson, Michael J; Keranen Burden, Lisa M; Kasianowicz, John J; Burden, Daniel L

    2015-08-20

    Single nanopore sensors enable capture and analysis of molecules that are driven to the pore entry from bulk solution. However, the distance between an analyte and the nanopore opening limits the detection efficiency. A theoretical basis for predicting particle capture rate is important for designing modified nanopore sensors, especially for those with covalently tethered reaction sites. Using the finite element method, we develop a soft-walled electrostatic block (SWEB) model for the alpha-hemolysin channel that produces a vector map of drift-producing forces on particles diffusing near the pore entrance. The maps are then coupled to a single-particle diffusion simulation to probe capture statistics and to track the trajectories of individual particles on the μs to ms time scales. The investigation enables evaluation of the interplay among the electrophoretic, electroosmotic, and thermal driving forces as a function of applied potential. The findings demonstrate how the complex drift-producing forces compete with diffusion over the nanoscale dimensions of the pore. The results also demonstrate the spatial and temporal limitations associated with nanopore detection and offer a basic theoretical framework to guide both the placement and kinetics of reaction sites located on, or near, the nanopore cap.

  5. Fabricating Nanodots using Lift-Off of a Nanopore Template

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Ramsey, Christopher R.; Bae, Youngsam; Choi, Daniel S.

    2008-01-01

    A process for fabricating a planar array of dots having characteristic dimensions of the order of several nanometers to several hundred nanometers involves the formation and use of a thin alumina nanopore template on a semiconductor substrate. The dot material is deposited in the nanopores, then the template is lifted off the substrate after the dots have been formed. This process is expected to be a basis for development of other, similar nanofabrication processes for relatively inexpensive mass production of nanometerscale optical, optoelectronic, electronic, and magnetic devices. Alumina nanopore templates are self-organized structures that result from anodization of aluminum under appropriate conditions. Alumina nanopore templates have been regarded as attractive for use in fabricating the devices mentioned above, but prior efforts to use alumina nanopore templates for this purpose have not been successful. One reason for the lack of success is that the aspect ratios (ratios between depth and diameter) of the pores have been too large: large aspect ratios can result in blockage of deposition and/or can prevent successful lift-off. The development of the present process was motivated partly by a requirement to reduce aspect ratios to values (of the order of 10) for which there is little or no blockage of deposition and attempts at lift-off are more likely to be successful. The fabrication process is outlined.

  6. Single molecule transistor based nanopore for the detection of nicotine

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  7. Single molecule transistor based nanopore for the detection of nicotine

    SciTech Connect

    Ray, S. J.

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  8. Silicon deposition in nanopores using a liquid precursor

    PubMed Central

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-01-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices. PMID:27874085

  9. Electrostatic correlations on the ionic selectivity of cylindrical membrane nanopores

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2014-02-01

    We characterize the role of electrostatic fluctuations on the charge selectivity of cylindrical nanopores confining electrolyte mixtures. To this end, we develop an extended one-loop theory that can account for correlation effects induced by the surface charge, nanoconfinement of the electrolyte, and interfacial polarization charges associated with the low permittivity membrane. We validate the quantitative accuracy of the theory by comparisons with previously obtained Monte-Carlo simulation data from the literature, and scrutinize in detail the underlying forces driving the ionic selectivity of the nanopore. In the biologically relevant case of electrolytes with divalent cations such as CaCl2 in negatively charged nanopores, electrostatic correlations associated with the dense counterion layer in the channel result in an increase of the pore coion density with the surface charge. This peculiarity analogous to the charge inversion phenomenon remains intact for dielectrically inhomogeneous pores, which indicates that the effect should be observable in nanofiltration membranes or DNA-blocked nanopores characterized by a low membrane permittivity. Our results show that a quantitatively accurate consideration of correlation effects is necessary to determine the ionic selectivity of nanopores in the presence of electrolytes with multivalent counterions.

  10. Atomistic simulation of Voronoi-based coated nanoporous metals

    NASA Astrophysics Data System (ADS)

    Onur Yildiz, Yunus; Kirca, Mesut

    2017-02-01

    In this study, a new method developed for the generation of periodic atomistic models of coated and uncoated nanoporous metals (NPMs) is presented by examining the thermodynamic stability of coated nanoporous structures. The proposed method is mainly based on the Voronoi tessellation technique, which provides the ability to control cross-sectional dimension and slenderness of ligaments as well as the thickness of coating. By the utilization of the method, molecular dynamic (MD) simulations of randomly structured NPMs with coating can be performed efficiently in order to investigate their physical characteristics. In this context, for the purpose of demonstrating the functionality of the method, sample atomistic models of Au/Pt NPMs are generated and the effects of coating and porosity on the thermodynamic stability are investigated by using MD simulations. In addition to that, uniaxial tensile loading simulations are performed via MD technique to validate the nanoporous models by comparing the effective Young’s modulus values with the results from literature. Based on the results, while it is demonstrated that coating the nanoporous structures slightly decreases the structural stability causing atomistic configurational changes, it is also shown that the stability of the atomistic models is higher at lower porosities. Furthermore, adaptive common neighbour analysis is also performed to identify the stabilized atomistic structure after the coating process, which provides direct foresights for the mechanical behaviour of coated nanoporous structures.

  11. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    DOE PAGES

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao; ...

    2015-01-19

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less

  12. Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination

    NASA Astrophysics Data System (ADS)

    Sun, Huihui; Liu, Zhuang; Wu, Chao; Xu, Ping; Wang, Xia

    2016-08-01

    As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1–40 μM in sulfide detection with a high sensitivity of 1720 μA mM‑1 cm‑2 and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported.

  13. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    SciTech Connect

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao; Brinker, C. Jeffrey

    2015-01-19

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interior structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.

  14. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    NASA Astrophysics Data System (ADS)

    Lumdee, Chatdanai; Kik, Pieter G.

    2016-06-01

    The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  15. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    PubMed Central

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-01-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively. PMID:27063987

  16. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    NASA Astrophysics Data System (ADS)

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-04-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively.

  17. Synthesis of ordered large-scale ZnO nanopore arrays

    NASA Astrophysics Data System (ADS)

    Ding, G. Q.; Shen, W. Z.; Zheng, M. J.; Fan, D. H.

    2006-03-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates.

  18. Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    da Silva Malheiros, Patrícia; Sant'Anna, Voltaire; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; Brandelli, Adriano

    2011-08-01

    Antimicrobial peptide P34, a substance showing antibacterial activity against pathogenic and food spoilage bacteria, was encapsulated in liposomes prepared from partially purified soybean phosphatidylcholine, and their physicochemical characteristics were evaluated. The antimicrobial activity was estimated by agar diffusion assay using Listeria monocytogenes ATCC 7644 as indicator strain. A concentration of 3,200 AU/mL of P34 was encapsulated in nanovesicles and stocked at 4 °C. No significant difference ( p > 0.05) in the biological activity of free and encapsulated P34 was observed through 24 days. Size and PDI of liposomes, investigated by light scattering analysis, were on average 150 nm and 0.22 respectively. Zeta potential was -27.42 mV. There was no significant change ( p > 0.05) in the physicochemical properties of liposomes during the time of evaluation. The liposomes presented closed spherical morphology as visualized by transmission electron microscopy (TEM). The mode of action of liposome-encapsulated P34 under L. monocytogenes cells was investigated by TEM. Liposomes appeared to adhere but not fuse with the bacterial cell wall, suggesting that the antimicrobial is released from nanovesicles to act against the microorganism. The effect of free and encapsulated P34 was tested against L. monocytogenes, showing that free bacteriocin inhibited the pathogen more quickly than the encapsulated P34. Liposomes prepared with low-cost lipid showed high encapsulation efficiency for a new antimicrobial peptide and were stable during storage. The mode of action against the pathogen L. monocytogenes was characterized.

  19. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    PubMed Central

    Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681

  20. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles.

    PubMed

    Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167-250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25-400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24-72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted.

  1. Laboratory evaluation of PCBs encapsulation method

    EPA Science Inventory

    Effectiveness and limitations of the encapsulation method for reducing polychlorinated biphenyls (PCBs) concentrations in indoor air and contaminated surface have been evaluated in the laboratory study. Ten coating materials such as epoxy and polyurethane coatings, latex paint, a...

  2. Lipid encapsulated phenolic compounds by fluidization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds exhibit antioxidant and antimicrobial activities with applications as functional food and feed additives. Ferulic acid, a phenolic compound present in grain crops and lignocellulose biomass, was encapsulated with saturated triglycerides using a laboratory fluidizer. Stability of t...

  3. Statistical modeling of single target cell encapsulation.

    PubMed

    Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.

  4. Controlled Fabrication of Nanoporous Oxide Layers on Zircaloy by Anodization.

    PubMed

    Park, Yang Jeong; Ha, Jun Mok; Ali, Ghafar; Kim, Hyun Jin; Addad, Yacine; Cho, Sung Oh

    2015-12-01

    We have presented a mechanism to explain why the resulting oxide morphology becomes a porous or a tubular nanostructure when a zircaloy is electrochemically anodized. A porous zirconium oxide nanostructure is always formed at an initial anodization stage, but the degree of interpore dissolution determines whether the final morphology is nanoporous or nanotubular. The interpore dissolution rate can be tuned by changing the anodization parameters such as anodization time and water content in an electrolyte. Consequently, porous or tubular oxide nanostructures can be selectively fabricated on a zircaloy surface by controlling the parameters. Based on this mechanism, zirconium oxide layers with completely nanoporous, completely nanotubular, and intermediate morphologies between a nanoporous and a nanotubular structure were controllably fabricated.

  5. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGES

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  6. Fabrication of solid-state nanopores and its perspectives.

    PubMed

    Kudr, Jiri; Skalickova, Sylvie; Nejdl, Lukas; Moulick, Amitava; Ruttkay-Nedecky, Branislav; Adam, Vojtech; Kizek, Rene

    2015-10-01

    Nanofluidics is becoming an extensively developing technique in the field of bioanalytical chemistry. Nanoscale hole embed in an insulating membrane is employed in a vast variety of sensing platforms and applications. Although, biological nanopores have several attractive characteristics, in this paper, we focused on the solid-state nanopores due to their advantages as high stability, possibility of diameter control, and ease of surface functionalizing. A detection method, based on the translocation of analyzed molecules through nanochannels under applied voltage bias and resistive pulse sensing, is well established. Nevertheless, it seems that the new detection methods like measuring of transverse electron tunneling using nanogap electrodes or optical detection can offer significant additional advantages. The aim of this review is not to cite all related articles, but highlight the steps, which in our opinion, meant important progresses in solid-state nanopore analysis.

  7. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  8. Production of organic nanoparticles by using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Tuz, A. A.; Şimşek, A. K.; Kazanci, M.

    2017-02-01

    In this research, organic nanoparticles are produced by using different nanoporous membranes with different diameters in different solutions. In production; two liquids, a feed solution and a receiver solution, are seperated by a nanoporous polycarbonate tracketched (PCTE) membrane. The feed solution is pumped through the membrane into the receiver solution. The feed solution contained biopolymers dissolved in HCl and the receiver solution contained NaOH. pH change is used as precipitation method. Chitosan, collagen and alginic acid sodium salt from brown algae are used as biomaterials in order to obtain nanoparticles. Different sized nanoporous membranes are used to find the ideal pore and particle sizes. Nanoparticles are illustrated by SEM and sphere-shaped nanoparticles with different diameters and needle shaped structures are observed.

  9. Noise and its reduction in graphene based nanopore devices.

    PubMed

    Kumar, Ashvani; Park, Kyeong-Beom; Kim, Hyun-Mi; Kim, Ki-Bum

    2013-12-13

    Ionic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiNx membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer. Comprehensive noise study reveals that the few layer graphene transferred onto the quartz substrate possesses low noise level and higher signal to noise ratio as compared to single layer graphene, without deteriorating the spatial resolution. The findings here point to improvement of graphene based nanopore devices for exciting opportunities in future single-molecule genomic screening devices.

  10. Elastic properties of protein functionalized nanoporous polymer films

    SciTech Connect

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that protein functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.

  11. Deformation mechanism of nanoporous materials upon water freezing and melting

    NASA Astrophysics Data System (ADS)

    Erko, Maxim; Wallacher, Dirk; Paris, Oskar

    2012-10-01

    Temperature-induced non-monotonous reversible deformation of water-filled nanoporous silica materials is investigated experimentally using in-situ small-angle x-ray scattering. The influence of freezing and melting in the nanopores on this deformation is treated quantitatively by introducing a simple model based on the Gibbs-Thomson equation and a generalized Laplace-pressure. The physical origin of the melting/freezing induced pore lattice deformation is found to be exactly the same as for capillary condensation/evaporation, namely the curved phase boundary due to the preferred wetting of the pore walls by the liquid phase. As a practical implication, elastic properties of the nanoporous framework can be determined from the temperature-deformation curves.

  12. Nanoporous Gold as a Platform for a Building Block Catalyst

    SciTech Connect

    Wittstock, Arne; Wichmann, Andre; Baeumer, Marcus

    2012-09-25

    The porous bulk materials are of great interest in catalysis because they can be employed in heterogeneous gas and liquid phase catalysis, electrocatalysis, and in electrocatalytic sensing. Nanoporous gold gained considerable attraction in this context because it is the prime example of a corrosion-derived nanoporous bulk metal. Moreover, the material was shown to be a very active and selective Au type catalyst for a variety of oxidation reactions. In leveraging the functionalization of the surface of the material with various additives, its catalytic applications can be extended and tuned. In this review, we will summarize recent developments in using nanoporous gold as the platform for the development of high performance catalytic materials by adding metals, metal oxides, and molecular functionalities as building blocks.

  13. Nanoporous Carbon Monoliths with Tunable Thermal Insulation and Mechanical Properties.

    PubMed

    Wang, Xiaopeng; Chen, Fenghua; Luo, Zhenhua; Li, Hao; Zhao, Tong

    2016-01-01

    In this work, nanoscale porous carbon monoliths, with excellent compressive strength and thermal insulation, were obtained with a simple method of carbonizing cured phenol-formaldehyde resin/poly(methyl methacrylate) blends. Apparent density, pore size and morphology of the carbon monoliths were tailored by changing the composition, curing process and carbonization temperature. The continuous nanopores played a key role in enhancing mechanical and thermal performance of the carbon materials. When PMMA concentration was 25%, apparent density and thermal conductivity of the nanoporous carbonaceous monoliths were obtained as low as 1.07 g · cm⁻³ and 0.42 W/(m · K), decreasing by 29.4% and 35.4% than that of carbonaceous monoliths obtained from pure PF; while compressive strength of the nanoporous carbonaceous monoliths was as high as 34 MPa, which was improved over five times than that of pure PF carbon monoliths.

  14. Method of fabricating a scalable nanoporous membrane filter

    DOEpatents

    Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem

    2013-08-20

    A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter of the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.

  15. Encapsulation of isohexenylnaphthazarins in cyclodextrins.

    PubMed

    Assimopoulou, A N; Papageorgiou, V P

    2004-05-01

    Naturally occurring isohexenylnaphthazarins (IHN), such as Alkannin, Shikonin (A/S) and their derivatives, are potent pharmaceutical substances with a wide spectrum of biological activity. In the present study, inclusion complexes of alkannin and shikonin commercial samples and IHN derivatives in the form of an oily extract of Alkanna tinctoria roots were formed with beta-cyclodextrin (CD) and beta-HPCD. These complexes were investigated to evaluate the effect of complexation on their aqueous solubility, decoloration, and also the percentage of polymeric A/S and IHN derivatives enclosed in the CDs cavity, since these decrease the active monomeric IHN. Both beta-CD and beta-HPCD increased the aqueous solubility of A/S and IHN derivatives and thus inclusion complexes can be used as drug delivery systems for A/S in both internal (capsules, tablets) and external hydrophilic pharmaceutical and cosmetic preparations (creams, gels, sprays) with enhanced bioavailability. The inclusion complexes formed had a pale purple colour, contributing to the partial decoloration of the A/S and thus of the fi nal pharmaceutical preparations. Finally, CDs selectively included more monomeric and less polymeric IHN, compared with the initial each time sample that is encapsulated; thus inclusion complexes may present enhanced biological activity.

  16. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    NASA Astrophysics Data System (ADS)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  17. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862

  18. Tailoring nanoporous materials by atomic layer deposition.

    PubMed

    Detavernier, Christophe; Dendooven, Jolien; Sree, Sreeprasanth Pulinthanathu; Ludwig, Karl F; Martens, Johan A

    2011-11-01

    Atomic layer deposition (ALD) is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. The self-limiting nature of the chemical reactions ensures precise film thickness control and excellent step coverage, even on 3D structures with large aspect ratios. At present, ALD is mainly used in the microelectronics industry, e.g. for growing gate oxides. The excellent conformality that can be achieved with ALD also renders it a promising candidate for coating porous structures, e.g. for functionalization of large surface area substrates for catalysis, fuel cells, batteries, supercapacitors, filtration devices, sensors, membranes etc. This tutorial review focuses on the application of ALD for catalyst design. Examples are discussed where ALD of TiO(2) is used for tailoring the interior surface of nanoporous films with pore sizes of 4-6 nm, resulting in photocatalytic activity. In still narrower pores, the ability to deposit chemical elements can be exploited to generate catalytic sites. In zeolites, ALD of aluminium species enables the generation of acid catalytic activity.

  19. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair.

  20. Rapid, Simultaneous Multianalyte Detection with a Nanopore

    NASA Astrophysics Data System (ADS)

    Kasianowicz, John; Henrickson, Sarah; Robertson, Baldwin; Weetall, Howard

    2000-03-01

    The ability to rapidly and simultaneously quantitate many analytes represents the next frontier in sensing. This capability would have a great impact on the cost and feasibility of analyzing blood, detecting pathogens and toxins in drinking water as well as chemical and biological warfare agents. In addition to performing transport and defense functions in cells and organelles, pore-forming proteins (ionic channels) act as sensors by converting the concentration of an analyte into a change in the pore’s conductance. Recently, several groups, including ours, suggested that channels placed in artificial membranes might prove useful for detecting analytes. Unfortunately, molecules that alter native channel conductance are limited to a small number of highly specific classes (e.g. neurotransmitters, anesthetics, protons or deuterium ions). Thus, steps towards adapting channels for more generalized analyte detection have placed recognition sites inside a channel, adjacent to the pore’s mouth or well outside the pore. We demonstrated that a wide variety of analytes could be simultaneously detected by a simpler system. Instead of attaching the recognition element inside a narrow channel, it is covalently linked to a polymer that threads completely through a nanopore.

  1. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

    PubMed Central

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  2. Optimizing nanoporous materials for gas storage.

    PubMed

    Simon, Cory M; Kim, Jihan; Lin, Li-Chiang; Martin, Richard L; Haranczyk, Maciej; Smit, Berend

    2014-03-28

    In this work, we address the question of which thermodynamic factors determine the deliverable capacity of methane in nanoporous materials. The deliverable capacity is one of the key factors that determines the performance of a material for methane storage in automotive fuel tanks. To obtain insights into how the molecular characteristics of a material are related to the deliverable capacity, we developed several statistical thermodynamic models. The predictions of these models are compared with the classical thermodynamics approach of Bhatia and Myers [Bhatia and Myers, Langmuir, 2005, 22, 1688] and with the results of molecular simulations in which we screen the International Zeolite Association (IZA) structure database and a hypothetical zeolite database of over 100,000 structures. Both the simulations and our models do not support the rule of thumb that, for methane storage, one should aim for an optimal heat of adsorption of 18.8 kJ mol(-1). Instead, our models show that one can identify an optimal heat of adsorption, but that this optimal heat of adsorption depends on the structure of the material and can range from 8 to 23 kJ mol(-1). The different models we have developed are aimed to determine how this optimal heat of adsorption is related to the molecular structure of the material.

  3. Nanoporous hard carbon membranes for medical applications.

    PubMed

    Narayan, Roger J; Jin, Chunming; Menegazzo, Nicola; Mizaikoff, Boris; Gerhardt, Rosario A; Andara, Melanie; Agarwal, Arvind; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang

    2007-01-01

    Current blood glucose sensors have proven to be inadequate for long term in vivo applications; membrane biofouling and inflammation play significant roles in sensor instability. An ideal biosensor membrane material must prevent protein adsorption and promote integration of the sensor with the surrounding tissue. Furthermore, biosensor membranes must be sufficiently thin and porous in order to allow the sensor to rapidly respond to fluctuations in analyte concentration. In this study, the use of diamondlike carbon-coated anodized aluminum oxide as a potential biosensor membrane is discussed. Diamondlike carbon films and diamondlike carbon-coated anodized aluminum oxide nanoporous membranes were examined using scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and platelet rich plasma testing. The diamondlike carbon-coated anodized aluminum oxide membranes remained free from protein adsorption during in vitro platelet rich plasma testing. We anticipate that this novel membrane could find use in immunoisolation devices, pacemakers, kidney dialysis membranes, microdialysis systems, and other devices facing biocompatibility issues that limit in vivo function.

  4. Palisaded Encapsulated Neuroma of the Trunk: A Case Report and Review of Palisaded Encapsulated Neuroma

    PubMed Central

    Cohen, Philip R

    2016-01-01

    Palisaded encapsulated neuroma is a rare, benign cutaneous tumor. It most commonly presents as a solitary, flesh-colored, dome-shaped nodule affecting the face. However, albeit rarely, palisaded encapsulated neuroma may also appear on the trunk, genitals, or extremities. We describe the clinical and pathologic findings of a male patient who presented with a palisaded encapsulated neuroma on his left flank. In addition, we review the characteristics of patients with truncal palisaded encapsulated neuromas and summarize the clinical and histologic differential diagnosis of this tumor. PMID:27630799

  5. A tip-attached tuning fork sensor for the control of DNA translocation through a nanopore

    NASA Astrophysics Data System (ADS)

    Hyun, Changbae; Kaur, Harpreet; Huang, Tao; Li, Jiali

    2017-02-01

    In this work, we demonstrate that a tuning fork can be used as a force detecting sensor for manipulating DNA molecules and for controlling the DNA translocation rate through a nanopore. One prong of a tuning fork is glued with a probe tip which DNA molecules can be attached to. To control the motion and position of the tip, the tuning fork is fixed to a nanopositioning system which has sub-nanometer position control. A fluidic chamber is designed to fulfill many requirements for the experiment: for the access of a DNA-attached tip approaching to a nanopore, for housing a nanopore chip, and for measuring ionic current through a solid-state nanopore with a pair of electrodes. The location of a nanopore is first observed by transmission electron microscopy, and then is determined inside the liquid chambers with an optical microscope combined with local scanning the probe tip on the nanopore surface. When a DNA-immobilized tip approaches a membrane surface near a nanopore, free ends of the immobilized DNA strings can be pulled and trapped into the pore by an applied voltage across the nanopore chip, resulting in an ionic current reduction through the nanopore. The trapped DNA molecules can be lifted up from the nanopore at a user controlled speed. This integrated apparatus allows manipulation of biomolecules (DNA, RNA, and proteins) attached to a probe tip with sub-nanometer precision, and simultaneously allows measurement of the biomolecules by a nanopore device.

  6. Encapsulated Thermoelectric Modules for Advanced Thermoelectric Systems

    NASA Astrophysics Data System (ADS)

    Kambe, Mitsuru; Jinushi, Takahiro; Ishijima, Zenzo

    2014-06-01

    An encapsulated thermoelectric (TE) module consists of a vacuum-tight stainless-steel container in which an SiGe or BiTe TE module is encapsulated. This construction enables maximum performance and durability because: the thermal expansion mismatch between the hot and cold sides of the container can be accommodated by a sliding sheet in the container; the TE module inside is always kept in a vacuum environment, therefore no oxidation can occur; and the pressure difference between the inside and outside of the container reduces thermal contact resistance inside the container. Our encapsulated SiGe module features higher operating temperature—up to 650°C for both hot and cold sides. Other high-temperature modules and conventional BiTe modules, including both-sides and one-side skeleton types, have been encapsulated. Several variants of the encapsulated module are available. Encapsulated thermoelectric modules with integrated coolers contain cooling panels through which water can pass. If the module hot side is heated by a radiating heat source (radiation coupling) or convection of a hot gas or fluid (convection coupling), no pressing force on the module is necessary. It therefore features minimum contact resistance with the cooling duct, because no pressure is applied, maximum TE power, and minimum installation cost. Another, larger, variant is a quadruple flexible container in which four modules (each of maximum size 40 mm × 40 mm) are encapsulated. These encapsulated modules were used in a powder metallurgy furnace and were in use for more than 3000 h. Application to cryogenic temperatures simulating the liquid nitrogen gas vaporizer has been also attempted.

  7. Electro-Induced Dewetting and Concomitant Ionic Current Avalanche in Nanopores

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Qiao, Rui; Jiang, Xikai

    2013-01-01

    Electrically driven ionic transport of room-temperature ionic liquids (RTILs) through nanopores is studied using atomistic simulations. The results show that in nanopores wetted by RTILs a gradual dewetting transition occurs upon increasing the applied voltage, which is accompanied by a sharp increase in ionic current. These phenomena originate from the solvent-free nature of RTILs and are in stark contrast with the transport of conventional electrolytes through nanopores. Amplification is possible by controlling the properties of the nanopore and RTILs, and we show that it is especially pronounced in charged nanopores. The results highlight the unique physics of nonequilibrium transport of RTILs in confined geometries and point to potential experimental approaches for manipulating ionic transport in nanopores, which can benefit diverse techniques including nanofluidic circuitry and nanopore analytics.

  8. Sensing, capturing, and interrogation of single virus particles with solid state nanopores

    NASA Astrophysics Data System (ADS)

    Darvish, Armin; Goyal, Gaurav; Kim, Minjun

    2015-05-01

    Solid-state nanopores have gained much attention as a bioanalytical platform. By virtue of their tunable nanoscale dimensions, nanopore sensors can a spatial resolution that spans a wide range of biological species from a single-molecule to a single virus or microorganism. Several groups have already used solid-state nanopores for tag-free detection of viruses. However, no one has reported use of nanopores to capture a single virus for further interrogation by the electric field inside nanopores. In this paper we will report detection of single HIV-1 particle with solid-state nanopores and demonstrate the ability to trap a single HIV-1 particle on top of a nanopore and force it to squeeze through the pore using an electric field.

  9. An all-in-one nanopore battery array.

    PubMed

    Liu, Chanyuan; Gillette, Eleanor I; Chen, Xinyi; Pearse, Alexander J; Kozen, Alexander C; Schroeder, Marshall A; Gregorczyk, Keith E; Lee, Sang Bok; Rubloff, Gary W

    2014-12-01

    A single nanopore structure that embeds all components of an electrochemical storage device could bring about the ultimate miniaturization in energy storage. Self-alignment of electrodes within each nanopore may enable closer and more controlled spacing between electrodes than in state-of-art batteries. Such an 'all-in-one' nanopore battery array would also present an alternative to interdigitated electrode structures that employ complex three-dimensional geometries with greater spatial heterogeneity. Here, we report a battery composed of an array of nanobatteries connected in parallel, each composed of an anode, a cathode and a liquid electrolyte confined within the nanopores of anodic aluminium oxide, as an all-in-one nanosize device. Each nanoelectrode includes an outer Ru nanotube current collector and an inner nanotube of V₂O₅ storage material, forming a symmetric full nanopore storage cell with anode and cathode separated by an electrolyte region. The V₂O₅ is prelithiated at one end to serve as the anode, with pristine V₂O₅ at the other end serving as the cathode, forming a battery that is asymmetrically cycled between 0.2 V and 1.8 V. The capacity retention of this full cell (relative to 1 C values) is 95% at 5 C and 46% at 150 C, with a 1,000-cycle life. From a fundamental point of view, our all-in-one nanopore battery array unveils an electrochemical regime in which ion insertion and surface charge mechanisms for energy storage become indistinguishable, and offers a testbed for studying ion transport limits in dense nanostructured electrode arrays.

  10. Ion and water transport in charge-modified graphene nanopores

    NASA Astrophysics Data System (ADS)

    Qiu, Ying-Hua; Li, Kun; Chen, Wei-Yu; Si, Wei; Tan, Qi-Yan; Chen, Yun-Fei

    2015-10-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly influence fluid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5% and 90.2% when the nanopores are negatively and positively charged, respectively. The Cl- ion current increases and reaches a plateau, and the Na+ current decreases as the charge amount increases in systems in which Na+ ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707601 and 2011CB707605), the National Natural Science Foundation of China (Grant No. 50925519), the Fundamental Research Funds for the Central Universities, Funding of Jiangsu Provincial Innovation Program for Graduate Education, China (Grant No. CXZZ13_0087), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ 1322).

  11. Boosting infrared energy transfer in 3D nanoporous gold antennas.

    PubMed

    Garoli, D; Calandrini, E; Bozzola, A; Ortolani, M; Cattarin, S; Barison, S; Toma, A; De Angelis, F

    2017-01-05

    The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm(-1) through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.

  12. Effect of Graphene with Nanopores on Metal Clusters

    SciTech Connect

    Zhou, Hu; Chen, Xianlang; Wang, Lei; Zhong, Xing; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jianguo

    2015-10-07

    Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies, d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational

  13. Wax encapsulation of water-soluble compounds for application in foods.

    PubMed

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  14. Raman fingerprinting of single dielectric nanoparticles in plasmonic nanopores

    NASA Astrophysics Data System (ADS)

    Kerman, Sarp; Chen, Chang; Li, Yi; van Roy, Wim; Lagae, Liesbet; van Dorpe, Pol

    2015-11-01

    Plasmonic nano-apertures are commonly used for the detection of small particles such as nanoparticles and proteins by exploiting electrical and optical techniques. Plasmonic nanopores are metallic nano-apertures sitting on a thin membrane with a tiny hole. It has been shown that plasmonic nanopores with a given geometry identify internal molecules using Surface Enhanced Raman Spectroscopy (SERS). However, label-free identification of a single dielectric nanoparticle requires a highly localized field comparable to the size of the particle. Additionally, the particle's Brownian motion can jeopardize the amount of photons collected from a single particle. Here, we demonstrate that the combination of optical trapping and SERS can be used for the detection and identification of 20 nm polystyrene nanoparticles in plasmonic nanopores. This work is anticipated to contribute to the detection of small bioparticles, optical trapping and nanotribology studies.Plasmonic nano-apertures are commonly used for the detection of small particles such as nanoparticles and proteins by exploiting electrical and optical techniques. Plasmonic nanopores are metallic nano-apertures sitting on a thin membrane with a tiny hole. It has been shown that plasmonic nanopores with a given geometry identify internal molecules using Surface Enhanced Raman Spectroscopy (SERS). However, label-free identification of a single dielectric nanoparticle requires a highly localized field comparable to the size of the particle. Additionally, the particle's Brownian motion can jeopardize the amount of photons collected from a single particle. Here, we demonstrate that the combination of optical trapping and SERS can be used for the detection and identification of 20 nm polystyrene nanoparticles in plasmonic nanopores. This work is anticipated to contribute to the detection of small bioparticles, optical trapping and nanotribology studies. Electronic supplementary information (ESI) available: Fig. S1: The

  15. Electrochemical Protection of Thin Film Electrodes in Solid State Nanopores

    PubMed Central

    Harrer, Stefan; Waggoner, Philip S.; Luan, Binquan; Afzali-Ardakani, Ali; Goldfarb, Dario L.; Peng, Hongbo; Martyna, Glenn; Rossnagel, Stephen M.; Stolovitzky, Gustavo A.

    2011-01-01

    We have eliminated electrochemical surface oxidation and reduction as well as water decomposition inside sub-5-nm wide nanopores in conducting TiN membranes using a surface passivation technique. Nanopore ionic conductances, and therefore pore diameters, were unchanged in passivated pores after applying potentials of ±4.5 V for as long as 24 h. Water decomposition was eliminated by using aqueous 90% glycerol solvent. The use of a protective self-assembled monolayer of hexadecylphosphonic acid was also investigated. PMID:21597142

  16. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  17. Multilayered semiconductor membranes for nanopore ionic conductance modulation.

    PubMed

    Gracheva, Maria E; Melnikov, Dmitriy V; Leburton, Jean-Pierre

    2008-11-25

    We explore the possibility of using thin layered semiconductor membranes for electrical control of the ion current flow through a nanopore, thereby operating like tunable ionic transistors. While single layer semiconductor membranes can be voltage tuned to operate as ionic filters or "switches", double layered membranes can rectify the ion current flowing through the nanopore in addition to ion filtering. Triple layer membranes exhibit enhanced functionality with characteristics similar to those of the single and double layer membranes in addition to bidirectional current blocking and switching, thereby operating similar to tunable ionic transistors.

  18. Optical response of alkali metal atoms confined in nanoporous glass

    SciTech Connect

    Burchianti, A; Marinelli, C; Mariotti, E; Bogi, A; Marmugi, L; Giomi, S; Maccari, M; Veronesi, S; Moi, L

    2014-03-28

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  19. Elastic characterization of nanoporous gold foams using laser based ultrasonics.

    PubMed

    Ahn, Phillip; Balogun, Oluwaseyi

    2014-03-01

    A resonance based laser ultrasonics technique is explored for the characterization of low density nanoporous gold foams. Laser generated zero group velocity (ZGV) lamb waves are measured in the foams using a Michelson interferometer. The amplitude spectra obtained from the processed time-domain data are analyzed using a theoretical model from which the foam Young's modulus and Poisson's ratio are obtained. The technique is non-contact and nondestructive, and the ZGV resonance modes are spatially localized, allowing for spatial mapping of the bulk sample properties. The technique may be suitable for process control monitoring and mechanical characterization of low density nanoporous structures.

  20. Mesomorphic structures of protonated surfactant-encapsulated polyoxometalate complexes.

    PubMed

    Yin, Shengyan; Li, Wen; Wang, Jinfeng; Wu, Lixin

    2008-04-03

    Keggin-type heteropolyanions, H(3)PW(12)O(40) (HPW), Na(3)PW(12)O(40) (NaPW), H(4)SiW(12)O(40) (HSiW) and K(4)SiW(12)O(40) (KSiW), were encapsulated by a cationic surfactant, di[12-(4'-octyloxy-4-azophenyl)dodecyloxy]dimethylam monium bromide (L), through the replacement of counterions. The resulting surfactant-encapsulated polyoxometalate complexes were characterized by UV-vis, Raman, and NMR spectra in detail. The measurement results indicated that some azobenzene groups of the surfactant were protonated in the complexes HL/HPW (HL is the abbreviation of the protonated surfactant), HL/NaPW, and HL/HSiW during the process of encapsulation, whereas the protonation was not observed in L/KSiW. The thermotropic liquid crystal properties of these complexes were investigated by differential scanning calorimetry, polarized optical microscopy and variable-temperature X-ray diffraction. Interestingly, different smectic mesophases were observed between the protonated HL/HSiW and the non-protonated L/KSiW, which suggests that the protonation of azobenzene groups in HL/HSiW plays a key role in the liquid crystalline organization. However, protonated HL/HPW and HL/NaPW exhibit a similar smectic B phase to that of the de-protonated one, L/HPW. A competitive balance between the phase separation and the volume minimization of surfactants was proposed to explain the self-organized liquid crystal structures of these protonated and non-protonated complexes. To the best of our knowledge, the present investigation provides a specific example for protonated hybrid materials with stable liquid crystal properties.

  1. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.

    PubMed

    Kim, Shin-Hyun; Jeon, Seog-Jin; Yang, Seung-Man

    2008-05-07

    Double emulsion droplets encapsulating crystalline colloidal arrays (CCAs) with a narrow size distribution were produced using an optofluidic device. The shell phase of the double emulsion was a photocurable resin that was photopolymerized downstream of the fluidic channel within 1 s after drop generation. The present optofluidic synthesis scheme was very effective for fabricating highly monodisperse spherical CCAs that were made structurally stable by in situ photopolymerization of the encapsulating shells. The shell thickness and the number of core emulsion drops could be controlled by varying the flow rates of the three coflowing streams in the dripping regime. The spherical CCAs confined in the shell exhibited distinct diffraction patterns in the visible range, in contrast to conventional film-type CCAs. As a result of their structure, the spherical CCAs exhibited photonic band gaps for normal incident light independent of the position on the spherical surface. This property was induced by heterogeneous nucleation at the smooth wall of the spherical emulsion drop during crystallization into a face-centered cubic (fcc) structure. On the other hand, the solidified shells did not permit the penetration of ionic species, enabling the CCAs to maintain their structure in a continuous aqueous phase of high ionic strength for at least 1 month. In addition, the evaporation of water molecules inside the shell was slowed considerably when the core-shell microparticles were exposed to air: It took approximately 6 h for a suspension encapsulated in a thick shell to evaporate completely, which is approximately 1000 times longer than the evaporation time for water droplets with the same volume. Finally, the spherical CCAs additionally exhibited enhanced stability against external electric fields. The spherical geometry and high dielectric constant of the suspension contributed to reducing the electric field inside the shell, thereby inhibiting the electrophoretic movement of

  2. One-Step to Prepare Self-Organized Nanoporous NiO/TiO2 Layers and its Use in Non-Enzymatic Glucose Sensing

    PubMed Central

    Gao, Zhi-Da; Han, Yuyao; Wang, Yongmei; Xu, Jingwen; Song, Yan-Yan

    2013-01-01

    A highly ordered nanoporous NiTi oxide layers were fabricated on Ti alloys with high Ni contents (50.6 at.%) by a combination of self-organizing anodization at 0°C and subsequent selective etching in H2O2. The key for successful formation of such layers is to sufficiently suppress the dissolve of NiO by applying lower temperature during anodization. The resulting nanoporous structure is connected and well-adhered, which exhibits a much higher electrochemical cycling stability in 0.1 M NaOH. Without further surface modification or the use of polymer binders, the layers can be behave as a low-cost, stable and sensitive platform in non-enzymatic glucose sensing. PMID:24270125

  3. Multilayer Polymeric Encapsulation of Flexible Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Madakasira, Pallavi

    2005-03-01

    Flexible solar cells, based on conjugated polymeric D-A systems have stimulated considerable interest recently. We obtained efficiencies ˜4% in heat-treated PHT/PCBM based solar cells [1]. These have the advantage of being mounted easily on either a flat or curved surface. One of the major problems is their protection from degradation due to exposure to air and moisture under intense light irradiation.These necessitate use of flexible encapsulation. Parylene has been used to encapsulate various devices,like OLEDs [2,3]. It is stable when deposited on devices in vacuum. First results on conformal deposition on solar cells is reported here, and effects of protection depending on the thickness of parylene film. It provides pin-hole free coating for dielectric protection. [1] K. Inoue, R. Ulbricht, P. C. Madakasira, W.M. Sampson, S. Lee, J. Gutierrez, J. Ferraris and A. A. Zakhidov,Proc. of SPIE -- Org. Photovoltaics V, 5520, p.256-262 (2004). [2]Z.Zhang, G.Xiao, J.Liu and C.P. Grover, Fiber and Integrated Optics,22:343-355-2003 [3] Y.S. Jeong, B.Ratier, A. Moliton and L.Guyard, Synthetic Materials 127 (2002) 189-193

  4. Stability and loading properties of curcumin encapsulated in Chlorella vulgaris.

    PubMed

    Jafari, Yaser; Sabahi, Hossein; Rahaie, Mahdi

    2016-11-15

    Curcumin (Cur), a polyphenols with pharmacological function, was successfully encapsulated in algae (Alg) cell (Chlorella vulgaris) as confirmed by fluorescence microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform-infrared spectroscopy (FT-IR). Fluorescence micrographs, TGA, DSC and FTIR spectra suggested the hypothesis inclusion Cur in Nano-empty spaces inside cell wall of Alg. The TGA analysis showed that the thermal stability of Alg and Cur at algae/curcumin complex was 3.8% and 33% higher than their free forms at 0-300°C and 300-600°C ranges, respectively. After encapsulation in Alg cells, the photostability of Cur was enhanced by about 2.5-fold. Adsorption isotherm of Cur into Alg was fitted with the Freundlich isotherm. The microcapsules were loaded with Cur up to about 55% w/w which is much higher than other reported bio-carriers. In conclusion, the data proved that Chlorella vulgaris cell can be used as a new stable carrier for Cur.

  5. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization

    PubMed Central

    Bumb, Ambika; Sarkar, Susanta K.; Billington, Neil; Brechbiel, Martin W.; Neuman, Keir C.

    2013-01-01

    Fluorescent nanodiamonds (FNDs) emit in the near infrared and do not photo-bleach or photoblink. These properties make FNDs better suited for numerous imaging applications in comparison to commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here, we present a method to encapsulate nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution. PMID:23581827

  6. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization.

    PubMed

    Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C

    2013-05-29

    Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.

  7. Encapsulation in the food industry: a review.

    PubMed

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  8. Analysis of electrolyte transport through charged nanopores

    NASA Astrophysics Data System (ADS)

    Peters, P. B.; van Roij, R.; Bazant, M. Z.; Biesheuvel, P. M.

    2016-05-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration gradient. The 3 ×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968), 10.1063/1.1669814]. The capillary pore model is well suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis, using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for macroscopic transport properties using a reduced model, where the potential and concentration are assumed to be invariant with radial coordinate ("uniform potential" or "fine capillary pore" model), are close to results of the full model.

  9. Silica Encapsulated Heterostructure Catalyst of Pt Nanoclusters on Hematite Nanocubes: Synthesis and Reactivity

    SciTech Connect

    Zhang, Peng; McFarland, Eric; Chi, Miaofang

    2010-01-01

    A three-step method was employed to synthesize monodispersed silica encapsulated composite nanostructures with Pt nanoclusters (<1 nm) densely deposited on the surface of core hematite nanocubes by photoreduction of platinum salt, Pt/{alpha}-Fe{sub 2}O{sub 3}{at}SiO{sub 2}. The nanostructured composite is an active catalyst for the reverse water-gas shift reaction and stable up to 600 C.

  10. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  11. Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom.

    PubMed

    Feng, J; Liu, K; Graf, M; Lihter, M; Bulushev, R D; Dumcenco, D; Alexander, D T L; Krasnozhon, D; Vuletic, T; Kis, A; Radenovic, A

    2015-05-13

    Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulfide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable, and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS2 and developed a convenient and scalable method to controllably make nanopores in single-layer MoS2 with subnanometer precision using electrochemical reaction (ECR). The electrochemical reaction on the surface of single-layer MoS2 is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single-layer MoS2 lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs pore size model. Furthermore, DNA translocations can be detected in situ when as-fabricated MoS2 nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing.

  12. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    PubMed

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  13. Directly observing the motion of DNA molecules near solid-state nanopores.

    PubMed

    Ando, Genki; Hyun, Changbae; Li, Jiali; Mitsui, Toshiyuki

    2012-11-27

    We investigate the diffusion and the drift motion of λ DNA molecules near solid-state nanopores prior to their translocation through the nanopores using fluorescence microscopy. The radial dependence of the electric field near a nanopore generated by an applied voltage in ionic solution can be estimated quantitatively in 3D by analyzing the motion of negatively charged DNA molecules. We find that the electric field is approximately spherically symmetric around the nanopore under the conditions investigated. In addition, DNA clogging at the nanopore was directly observed. Surprisingly, the probability of the clogging event increases with increasing external bias voltage. We also find that DNA molecules clogging the nanopore reduce the electric field amplitude at the nanopore membrane surface. To better understand these experimental results, analytical method with Ohm's law and computer simulation with Poisson and Nernst-Planck (PNP) equations are used to calculate the electric field near the nanopore. These results are of great interest in both experimental and theoretical considerations of the motion of DNA molecules near voltage-biased nanopores. These findings will also contribute to the development of solid-state nanopore-based DNA sensing devices.

  14. Fabrication and properties of nanoporous GaN films

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Chua, S. J.; Sander, M. S.; Chen, P.; Tripathy, S.; Fonstad, C. G.

    2004-08-01

    Nanopore arrays with pore diameters of approximately 75nm were fabricated in GaN films by inductively coupled plasma etching using anodic aluminum oxide (AAO) films as etch masks. Nanoporous AAO films were formed on the GaN surface by evaporating an Al film onto a GaN epilayer and subsequently anodizing the aluminum. To minimize plasma-induced damage, the template was exposed to CF4-based plasma conditions. Scanning electron microscopy analysis shows that the diameter and the periodicity of the nanopores in the GaN were directly transferred from the original anodic alumina template. The pore diameter in the AAO film can be easily controlled by tuning the anodization conditions. Atomic force microscopy, photoluminescence, and micro-Raman techniques were employed to assess the etched GaN nanopore surface. This cost-effective, nonlithographic method to produce nano-patterned GaN templates is expected to be useful for growth and fabrication of nitride-based nanostructures and photonic band gap materials.

  15. Identification of single nucleotides in MoS2 nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Bulushev, Roman D.; Khlybov, Sergey; Dumcenco, Dumitru; Kis, Andras; Radenovic, Aleksandra

    2015-12-01

    The size of the sensing region in solid-state nanopores is determined by the size of the pore and the thickness of the pore membrane, so ultrathin membranes such as graphene and single-layer molybdenum disulphide could potentially offer the necessary spatial resolution for nanopore DNA sequencing. However, the fast translocation speeds (3,000-50,000 nt ms-1) of DNA molecules moving across such membranes limit their usability. Here, we show that a viscosity gradient system based on room-temperature ionic liquids can be used to control the dynamics of DNA translocation through MoS2 nanopores. The approach can be used to statistically detect all four types of nucleotide, which are identified according to current signatures recorded during their transient residence in the narrow orifice of the atomically thin MoS2 nanopore. Our technique, which exploits the high viscosity of room-temperature ionic liquids, provides optimal single nucleotide translocation speeds for DNA sequencing, while maintaining a signal-to-noise ratio higher than 10.

  16. Anisotropic diffusion of water molecules in hydroxyapatite nanopores

    NASA Astrophysics Data System (ADS)

    Prakash, Muthuramalingam; Lemaire, Thibault; Caruel, Matthieu; Lewerenz, Marius; de Leeuw, Nora H.; Di Tommaso, Devis; Naili, Salah

    2017-03-01

    New insights into the dynamical properties of water in hydroxyapatite (HAP) nanopores, a model system for the fluid flow within nanosize spaces inside the collagen-apatite structure of bone, were obtained from molecular dynamics simulations of liquid water confined between two parallel HAP surfaces of different sizes (20 Å ≤ H ≤ 240 Å). Calculations were conducted using a core-shell interatomic potential for HAP together with the extended simple point charge model for water. This force field gives an activation energy for water diffusion within HAP nanopores that is in excellent agreement with available experimental data. The dynamical properties of water within the HAP nanopores were quantified in terms of the second-order water diffusion tensor. Results indicate that water diffuses anisotropically within the HAP nanopores, with the solvent molecules moving parallel to the surface twice as fast as the perpendicular direction. This unusual dynamic behaviour is linked to the strong polarizing effect of calcium ions, and the synergic interactions between the water molecules in the first hydration layer of HAP with the calcium, hydroxyl, and phosphate ions, which facilitates the flow of water molecules in the directions parallel to the HAP surface.

  17. Nanofluidic control by nanoporous materials using electrocapillary effects

    NASA Astrophysics Data System (ADS)

    Xue, Yahui; Duan, Huiling; Markmann, Juergen; Huber, Patrick; Weissmueller, Joerg

    2014-11-01

    Electrocapillary techniques exhibit great advantages in nonmechanical electrofluidic manipulation, e.g., flow actuation in micro-/nano-channels. One issue of interest is the spontaneous imbibition of fluids in bodies with a nanoscale pores size. Contrary to previous studies we here use a metallic nanoporous body. This allows us to control the electrode potential at the solid-fluid interface. Nanoporous gold (NPG) with uniform pore- and ligament size of 45 nm was fabricated by dealloying an Ag75Au25 alloy. Spontaneous imbibition of aqueous electrolytes obeys the Lucas-Washburn law. Interestingly, the estimated tortuosity has the low value of 3.2 (3 is expected for an isotropic sponge). Electrocapillary effects were then used to manipulate the imbibition dynamics. As a result of the enhanced wetting by the electrocapillary effects, we observed an acceleration of the imbibition by 30%. When air as the pore fluid is replaced with cyclohexane, we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid-liquid interfacial tension. Our findings demonstrate that the high electric conductivity along with the pathways for fluid/ionic transport render nanoporous gold a versatile, accurately controllable electrocapillary pump and flow sensor for minute amounts of liquids with exceptionally low operating voltages.

  18. Nanoporous noninvasive cellular electrical activity-based analysis devices.

    PubMed

    Prasad, Shalini; Quijano, Jorge

    2007-03-01

    In recent years, rapid advancements have been made in the biomedical applications of microtechnology and nanotechnology. While the focus of such technologies have been primarily on in vitro analytical and diagnostic tools, more recently in vivo therapeutic and sensing applications have gained attention. The long-term integration of cells with inorganic materials provides the basis for novel sensing platforms. The work presented here focuses on the ability to maintain cells long-term in nanoporous silicon-based microenvironments. This article describes the creation of nanoporous, biocompatible, alumina membranes as a platform for incorporation into a cell-based device targeted for in situ recording of cellular electrical activity variations due to the changes associated with the surrounding microenvironments. Studies described herein focus on the interaction of nanoporous alumina substrates embedded in silicon patterned with cells of interest. The fidelity of such a system is demonstrated in terms of viability, proliferation, and functionality. The capability of such microfabricated nanoporous membranes, as in vitro for cell-based assays for sensing and drug delivery applications, is also demonstrated. It has potential in vivo application for therapeutic immunoisolation.

  19. Decoding long nanopore sequencing reads of natural DNA.

    PubMed

    Laszlo, Andrew H; Derrington, Ian M; Ross, Brian C; Brinkerhoff, Henry; Adey, Andrew; Nova, Ian C; Craig, Jonathan M; Langford, Kyle W; Samson, Jenny Mae; Daza, Riza; Doering, Kenji; Shendure, Jay; Gundlach, Jens H

    2014-08-01

    Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore MspA. As approximately four nucleotides affect the ion current of each level, we measured the ion current corresponding to all 256 four-nucleotide combinations (quadromers). This quadromer map is highly predictive of ion current levels of previously unmeasured sequences derived from the bacteriophage phi X 174 genome. Furthermore, we show nanopore sequencing reads of phi X 174 up to 4,500 bases in length, which can be unambiguously aligned to the phi X 174 reference genome, and demonstrate proof-of-concept utility with respect to hybrid genome assembly and polymorphism detection. This work provides a foundation for nanopore sequencing of long, natural DNA strands.

  20. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores.

    PubMed

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan

    2017-01-16

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.

  1. Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool.

    PubMed

    Hoenen, Thomas; Groseth, Allison; Rosenke, Kyle; Fischer, Robert J; Hoenen, Andreas; Judson, Seth D; Martellaro, Cynthia; Falzarano, Darryl; Marzi, Andrea; Squires, R Burke; Wollenberg, Kurt R; de Wit, Emmie; Prescott, Joseph; Safronetz, David; van Doremalen, Neeltje; Bushmaker, Trenton; Feldmann, Friederike; McNally, Kristin; Bolay, Fatorma K; Fields, Barry; Sealy, Tara; Rayfield, Mark; Nichol, Stuart T; Zoon, Kathryn C; Massaquoi, Moses; Munster, Vincent J; Feldmann, Heinz

    2016-02-01

    Rapid sequencing of RNA/DNA from pathogen samples obtained during disease outbreaks provides critical scientific and public health information. However, challenges exist for exporting samples to laboratories or establishing conventional sequencers in remote outbreak regions. We successfully used a novel, pocket-sized nanopore sequencer at a field diagnostic laboratory in Liberia during the current Ebola virus outbreak.

  2. Electrochromic artificial muscles based on nanoporous metal-polymer composites

    NASA Astrophysics Data System (ADS)

    Detsi, E.; Onck, P. R.; De Hosson, J. T. M.

    2013-11-01

    This work shows that a nano-coating of electrochromic polymer grown onto the ligaments of nanoporous gold causes reversible dimensional and color changes during electrochemical actuation. This combination of electromechanical and optical properties opens additional avenues for the applications of artificial muscles, i.e., a metallic muscle exhibits its progress during work by changing color that can be detected by optical means.

  3. Nanopore sensing of individual transcription factors bound to DNA

    NASA Astrophysics Data System (ADS)

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-06-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.

  4. Antibacterial hemostatic dressings with nanoporous bioglass containing silver.

    PubMed

    Hu, Gangfeng; Xiao, Luwei; Tong, Peijian; Bi, Dawei; Wang, Hui; Ma, Haitao; Zhu, Gang; Liu, Hui

    2012-01-01

    Nanoporous bioglass containing silver (n-BGS) was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m(2)/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag) had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS's clotting ability significantly decreased prothrombin time (PT) and activated partial thromboplastin time (APTT), indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time) compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage.

  5. Improved oil recovery in nanopores: NanoIOR

    PubMed Central

    de Almeida, James Moraes; Miranda, Caetano Rodrigues

    2016-01-01

    Fluid flow through minerals pores occurs in underground aquifers, oil and shale gas reservoirs. In this work, we explore water and oil flow through silica nanopores. Our objective is to model the displacement of water and oil through a nanopore to mimic the fluid infiltration on geological nanoporous media and the displacement of oil with and without previous contact with water by water flooding to emulate an improved oil recovery process at nanoscale (NanoIOR). We have observed a barrier-less infiltration of water and oil on the empty (vacuum) simulated 4 nm diameter nanopores. For the water displacement with oil, we have obtained a critical pressure of 600 atm for the oil infiltration, and after the flow was steady, a water layer was still adsorbed to the surface, thus, hindering the direct contact of the oil with the surface. In addition, oil displacement with water was assessed, with and without an adsorbed water layer (AWL). Without the AWL, the pressure needed for oil infiltration was 5000 atm, whereas, with the AWL the infiltration was observed for pressures as low as 10 atm. Hence, the infiltration is greatly affected by the AWL, significantly lowering the critical pressure for oil displacement. PMID:27319357

  6. Lensless imaging of nanoporous glass with soft X-rays

    DOE PAGES

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; ...

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  7. Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    PubMed Central

    2010-01-01

    Anodization of Al foil under low voltages of 1–10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6–10 nm were realized in four different electrolytes under 0–30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2–60 s. It is discovered for the first time that the regular nanoparticles come into being under 1–10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs. PMID:20676199

  8. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    PubMed Central

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599

  9. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.

  10. High-density nanopore array for selective biomolecule transport.

    SciTech Connect

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  11. Single molecule thermodynamics and nanopore-based thermometry

    NASA Astrophysics Data System (ADS)

    Reiner, Joseph E.; Robertson, Joseph W. F.; Burden, Lisa K.; Burden, Daniel L.; Kasianowicz, John J.

    2012-02-01

    The nanopore-based resistive pulse method measures the reduction in ionic current caused by the interaction of single molecules with the pore. It has great promise in addressing problems across a range of fields that include biomedicine and genomics. The technique requires the residence time of the molecules in the pore to exceed the inverse bandwidth of the detection system (˜ 10 μs). Efforts are underway to improve this by molecular modification of the pore wall, but little effort has focused on modifying the solution conditions in and around the pore. We address this issue by precisely controlling the solution temperature around a protein ion channel (alpha hemolysin) via laser-induced heating of gold nanoparticles. In this technique, the nanopore serves dual roles as both a highly local thermometer and single molecule sensor. Preliminary data suggests that the solution temperature can be controlled over a wide range, the nanopore conductance can be used to directly measure rapid changes in temperature, and the temperature change can dramatically alter the interaction kinetics of single molecules with the nanopore. The method will improve the development of biochip sensors and lead to a new platform for single molecule thermodynamic studies.

  12. Fabrication of Porous Anodic Alumina with Ultrasmall Nanopores

    NASA Astrophysics Data System (ADS)

    Ding, Gu Qiao; Yang, Rong; Ding, Jian Ning; Yuan, Ning Yi; Zhu, Yuan Yuan

    2010-08-01

    Anodization of Al foil under low voltages of 1-10 V was conducted to obtain porous anodic aluminas (PAAs) with ultrasmall nanopores. Regular nanopore arrays with pore diameter 6-10 nm were realized in four different electrolytes under 0-30°C according to the AFM, FESEM, TEM images and current evolution curves. It is found that the pore diameter and interpore distance, as well as the barrier layer thickness, are not sensitive to the applied potentials and electrolytes, which is totally different from the rules of general PAA fabrication. The brand-new formation mechanism has been revealed by the AFM study on the samples anodized for very short durations of 2-60 s. It is discovered for the first time that the regular nanoparticles come into being under 1-10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultrasmall nanopores. Under higher potentials from 10 to 40 V, the surface nanoparticles will be less and less and nanopores transform into general PAAs.

  13. Polarization of gold in nanopores leads to ion current rectification

    SciTech Connect

    Yang, Crystal; Hinkle, Preston; Menestrina, Justin; Vlassiouk, Ivan V.; Siwy, Zuzanna S.

    2016-10-03

    Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied by two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.

  14. Polarization of gold in nanopores leads to ion current rectification

    DOE PAGES

    Yang, Crystal; Hinkle, Preston; Menestrina, Justin; ...

    2016-10-03

    Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied bymore » two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.« less

  15. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  16. Nanoporous CuS with excellent photocatalytic property

    PubMed Central

    Xu, Wence; Zhu, Shengli; Liang, Yanqin; Li, Zhaoyang; Cui, Zhenduo; Yang, Xianjin; Inoue, Akihisa

    2015-01-01

    We present the rational synthesis of nanoporous CuS for the first time by chemical dealloying method. The morphologies of the CuS catalysts are controlled by the composition of the original amorphous alloys. Nanoporous Cu2S is firstly formed during the chemical dealloying process, and then the Cu2S transforms into CuS. The nanoporous CuS exhibits excellent photocatalytic activity for the degradation of the methylene blue (MB), methyl orange (MO) and rhodamine B (RhB). The excellent photocatalytic activity of the nanoporous CuS is mainly attributed to the large specific surface area, high adsorbing capacity of dyes and low recombination of the photo generated electrons and holes. In the photo degradation process, both chemical and photo generated hydroxyl radicals are generated. The hydroxyl radicals are favor in the oxidation of the dye molecules. The present modified dealloying method may be extended for the preparation of other porous metal sulfide nanostructures. PMID:26648397

  17. Restricted dynamics of molecular hydrogen confined in activated carbon nanopores

    SciTech Connect

    Contescu, Cristian I; Saha, Dipendu; Gallego, Nidia C; Mamontov, Eugene; Kolesnikov, Alexander I; Bhat, Vinay V

    2012-01-01

    Quasi-elastic neutron scattering was used for characterization of dynamics of molecular hydrogen confined in narrow nanopores of two activated carbon materials: PFAC (derived from polyfurfuryl alcohol) and UMC (ultramicroporous carbon). Fast, but incomplete ortho-para conversion was observed at 10 K, suggesting that scattering originates from the fraction of unconverted ortho isomer which is rotation-hindered because of confinement in nanopores. Hydrogen molecules entrapped in narrow nanopores (<7 ) were immobile below 22-25 K. Mobility increased rapidly with temperature above this threshold, which is 8 K higher than the melting point of bulk hydrogen. Diffusion obeyed fixed-jump length mechanism, indistinguishable between 2D and 3D processes. Thermal activation of diffusion was characterized between ~22 and 37 K, and structure-dependent differences were found between the two carbons. Activation energy of diffusion was higher than that of bulk solid hydrogen. Classical notions of liquid and solid do not longer apply for H2 confined in narrow nanopores.

  18. Improved oil recovery in nanopores: NanoIOR

    NASA Astrophysics Data System (ADS)

    de Almeida, James Moraes; Miranda, Caetano Rodrigues

    2016-06-01

    Fluid flow through minerals pores occurs in underground aquifers, oil and shale gas reservoirs. In this work, we explore water and oil flow through silica nanopores. Our objective is to model the displacement of water and oil through a nanopore to mimic the fluid infiltration on geological nanoporous media and the displacement of oil with and without previous contact with water by water flooding to emulate an improved oil recovery process at nanoscale (NanoIOR). We have observed a barrier-less infiltration of water and oil on the empty (vacuum) simulated 4 nm diameter nanopores. For the water displacement with oil, we have obtained a critical pressure of 600 atm for the oil infiltration, and after the flow was steady, a water layer was still adsorbed to the surface, thus, hindering the direct contact of the oil with the surface. In addition, oil displacement with water was assessed, with and without an adsorbed water layer (AWL). Without the AWL, the pressure needed for oil infiltration was 5000 atm, whereas, with the AWL the infiltration was observed for pressures as low as 10 atm. Hence, the infiltration is greatly affected by the AWL, significantly lowering the critical pressure for oil displacement.

  19. Encapsulation layer design and scalability in encapsulated vertical 3D RRAM

    NASA Astrophysics Data System (ADS)

    Yu, Muxi; Fang, Yichen; Wang, Zongwei; Chen, Gong; Pan, Yue; Yang, Xue; Yin, Minghui; Yang, Yuchao; Li, Ming; Cai, Yimao; Huang, Ru

    2016-05-01

    Here we propose a novel encapsulated vertical 3D RRAM structure with each resistive switching cell encapsulated by dielectric layers, contributing to both the reliability improvement of individual cells and thermal disturbance reduction of adjacent cells due to the effective suppression of unwanted oxygen vacancy diffusion. In contrast to the traditional vertical 3D RRAM, encapsulated bar-electrodes are adopted in the proposed structure substituting the previous plane-electrodes, thus encapsulated resistive switching cells can be naturally formed by simply oxidizing the tip of the metal bar-electrodes. In this work, TaO x -based 3D RRAM devices with SiO2 and Si3N4 as encapsulation layers are demonstrated, both showing significant advantages over traditional unencapsulated vertical 3D RRAM. Furthermore, it was found thermal conductivity and oxygen blocking ability are two key parameters of the encapsulation layer design influencing the scalability of vertical 3D RRAM. Experimental and simulation data show that oxygen blocking ability is more critical for encapsulation layers in the relatively large scale, while thermal conductivity becomes dominant as the stacking layers scale to the sub-10 nm regime. Finally, based on the notable impacts of the encapsulation layer on 3D RRAM scaling, an encapsulation material with both excellent oxygen blocking ability and high thermal conductivity such as AlN is suggested to be highly desirable to maximize the advantages of the proposed encapsulated structure. The findings in this work could pave the way for reliable ultrahigh-density storage applications in the big data era.

  20. HEPES-stabilized encapsulation of Salmonella typhimurium.

    PubMed

    Suo, Zhiyong; Yang, Xinghong; Avci, Recep; Kellerman, Laura; Pascual, David W; Fries, Marc; Steele, Andrew

    2007-01-30

    Most bacteria, planktonic and sessile, are encapsulated inside loosely bound extracellular polymeric substance (EPS) in their physiological environment. Imaging a bacterium with its capsule requires lengthy sample preparation to enhance the capsular contrast. In this study, Salmonella typhimurium was investigated using atomic force microscopy for a practical means of imaging an encapsulated bacterium in air. The investigation further aimed to determine the relation between the buffers used for preparing the bacterium and the preservation of the capsular material surrounding it. It was observed that rinsing bacteria with HEPES buffer could stabilize and promote capsule formation, while rinsing with PBS, Tris, or glycine removes most of the capsular EPS. For bacteria rinsed with HEPES and air-dried, the height images showed only the contour of the capsular material, while the phase and amplitude images presented the detailed structures of the bacterial surface, including the flagella encapsulated inside the capsular EPS. The encapsulation was attributed to the cross-linking of the acidic exopolysaccharides mediated by the piperazine moiety of HEPES through electrostatic attraction. This explanation is supported by encapsulated bacteria observed for samples rinsed with N,N'-bis(2-hydroxyethyl)-piperazine solution and by the presence of entrapped HEPES within the dry capsular EPS suggested by micro-Raman spectroscopy.

  1. The demise of plastic encapsulated microcircuit myths

    NASA Astrophysics Data System (ADS)

    Hakim, E. B.; Agarwal, R. K.; Pecht, M.

    1994-10-01

    Production of microelectronic devices encapsulated in solid, molded plastic packages has rapidly increased since the early 1980's. Today, millions of plastic-encapsulated devices are produced daily. On the other hand, only a few million hermetic (cavity) packages are produced per year. Reasons for the increased use of plastic-encapsulated packages include cost, availability, size, weight, quality, and reliability. Markets taking advantage of this technology range from computers and telecommunications to automotive uses. Yet, several industries, the military in particular, will not accept such devices. One reason for this reluctance to use the best available commercial parts is a perceived risk of poor reliability, derived from antiquated military specifications, standards, and handbooks; other common justifications cite differing environments; inadequate screens; inadequate test data, and required government audits of suppliers' processes. This paper describes failure mechanisms associated with plastic encapsulation and their elimination. It provides data indicating the relative reliability of cavity and solid-encapsulated packaging, and presents possible approaches to assuring quality and reliability in the procuring and applying this successful commercial technology.

  2. Sol-gel method for encapsulating molecules

    DOEpatents

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  3. Encapsulation of Natural Polyphenolic Compounds; a Review

    PubMed Central

    Munin, Aude; Edwards-Lévy, Florence

    2011-01-01

    Natural polyphenols are valuable compounds possessing scavenging properties towards radical oxygen species, and complexing properties towards proteins. These abilities make polyphenols interesting for the treatment of various diseases like inflammation or cancer, but also for anti-ageing purposes in cosmetic formulations, or for nutraceutical applications. Unfortunately, these properties are also responsible for a lack in long-term stability, making these natural compounds very sensitive to light and heat. Moreover, polyphenols often present a poor biodisponibility mainly due to low water solubility. Lastly, many of these molecules possess a very astringent and bitter taste, which limits their use in food or in oral medications. To circumvent these drawbacks, delivery systems have been developed, and among them, encapsulation would appear to be a promising approach. Many encapsulation methods are described in the literature, among which some have been successfully applied to plant polyphenols. In this review, after a general presentation of the large chemical family of plant polyphenols and of their main chemical and biological properties, encapsulation processes applied to polyphenols are classified into physical, physico-chemical, chemical methods, and other connected stabilization methods. After a brief description of each encapsulation process, their applications to polyphenol encapsulation for pharmaceutical, food or cosmetological purposes are presented. PMID:24309309

  4. Approaches to encapsulation of flexible CIGS cells

    NASA Astrophysics Data System (ADS)

    Olsen, L. C.; Gross, M. E.; Graff, G. L.; Kundu, S. N.; Chu, Xi; Lin, Steve

    2008-08-01

    Thin-film solar cells based on CIGS are being considered for large scale power plants as well as building integrated photovoltaic (BIPV) applications. Past studies indicate that CIGS cells degrade rapidly when exposed to moisture. As a result, an effective approach to encapsulation is required for CIGS cells to satisfy the international standard IEC 61646. CIGS modules fabricated for use in large power plants can be encapsulated with glass sheets on the top and bottom surfaces and can be effectively sealed around the edges. In the case of BIPV applications, however, it is desirable to utilize CIGS cells grown on flexible substrates, both for purposes of achieving reduced weight and for cases involving non-flat surfaces. For these cases, approaches to encapsulation must be compatible with the flexible substrate requirement. Even in the case of large power plants, the glass-to-glass approach to encapsulation may eventually be considered too costly. We are investigating encapsulation of flexible CIGS cells by lamination. Sheets of PET or PEN coated with multilayer barrier coatings are used to laminate the flexible cells. Results are discussed for laminated cells from two CIGS manufacturers. In both cases, the cell efficiency decreases less than 10% after 1000 hours of exposure to an environment of 85°C/85%RH. This paper discusses these two approaches, and reviews results for uncoated cells and mini-modules fabricated by the former Shell Solar Industries (SSI).

  5. Highly sensitive detection using microring resonator and nanopores

    NASA Astrophysics Data System (ADS)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  6. Supercritical CO2 interpolymer complex encapsulation improves heat stability of probiotic bifidobacteria.

    PubMed

    Thantsha, M S; Labuschagne, P W; Mamvura, C I

    2014-02-01

    The probiotic industry faces the challenge of retention of probiotic culture viability as numbers of these cells within their products inevitably decrease over time. In order to retain probiotic viability levels above the therapeutic minimum over the duration of the product's shelf life, various methods have been employed, among which encapsulation has received much interest. In line with exploitation of encapsulation for protection of probiotics against adverse conditions, we have previously encapsulated bifidobacteria in poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex microparticles under supercritical conditions. The microparticles produced had suitable characteristics for food applications and also protected the bacteria in simulated gastrointestinal fluids. The current study reports on accelerated shelf life studies of PVP:PVAc-CA encapsulated Bifidobacterium lactis Bb12 and Bifidobacterium longum Bb46. Samples were stored as free powders in glass vials at 30 °C for 12 weeks and then analysed for viable counts and water activity levels weekly or fortnightly. Water activities of the samples were within the range of 0.25-0.43, with an average a(w) = 0.34, throughout the storage period. PVP:PVAc-CA interpolymer complex encapsulation retained viable levels above the recommended minimum for 10 and 12 weeks, for B. longum Bb46 and B. lactis Bb12, respectively, thereby extending their shelf lives under high storage temperature by between 4 and 7 weeks. These results reveal the possibility for manufacture of encapsulated probiotic powders with increased stability at ambient temperatures. This would potentially allow the supply of a stable probiotic formulation to impoverished communities without proper storage facilities recommended for most of the currently available commercial probiotic products.

  7. Stable Fly Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult stable flies feed on the blood of humans, pets and livestock, inflicting painful bites. Stable flies need one and sometimes two bloodmeals each day to develop their eggs. Unlike mosquitoes where only the females bloodfeed, both male and female stable flies require blood to reproduce. Stable fl...

  8. Degradation of Silicone Encapsulants in CPV Optics

    SciTech Connect

    Cai, Can; Miller, David C.; Tappan, Ian A.; Dauskardt, Reinhold H.

    2016-11-21

    High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We used fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.

  9. Evaluation of Encapsulant Materials for PV Applications

    SciTech Connect

    Kempe, M.

    2010-01-01

    Encapsulant materials used in PV modules serve multiple purposes. They physically hold components in place, provide electrical insulation, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Encapsulant materials by themselves do not completely prevent water vapour ingress [1-3], but if they are well adhered, they will prevent the accumulation of liquid water providing protection against corrosion as well as electrical shock. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

  10. Nonlinear response to ultrasound of encapsulated microbubbles.

    PubMed

    Jiménez-Fernández, J

    2012-08-01

    The acoustic backscatter of encapsulated gas-filled microbubbles immersed in a weak compressible liquid and irradiated by ultrasound fields of moderate to high pressure amplitudes is investigated theoretically. The problem is formulated by considering, for the viscoelastic shell of finite thickness, an isotropic hyperelastic neo-Hookean model for the elastic contribution in addition to a Newtonian viscous component. First and second harmonic scattering cross-sections have been evaluated and the quantitative influence of the driving pressure amplitude on the harmonic resonance frequencies for different initial equilibrium bubble sizes and for different encapsulating physical properties has been determined. Conditions for optimal second harmonic imaging have been also investigated and some regions in the parameters space where the second harmonic intensity is dominant over the fundamental have been identified. Results have been obtained for albumin, lipid and polymer encapsulating shells, respectively.

  11. Nondestructive Assay Options for Spent Fuel Encapsulation

    SciTech Connect

    Tobin, Stephen J.; Jansson, Peter

    2014-10-02

    This report describes the role that nondestructive assay (NDA) techniques and systems of NDA techniques may have in the context of an encapsulation and deep geological repository. The potential NDA needs of an encapsulation and repository facility include safeguards, heat content, and criticality. Some discussion of the facility needs is given, with the majority of the report concentrating on the capability and characteristics of individual NDA instruments and techniques currently available or under development. Particular emphasis is given to how the NDA techniques can be used to determine the heat production of an assembly, as well as meet the dual safeguards needs of 1) determining the declared parameters of initial enrichment, burn-up, and cooling time and 2) detecting defects (total, partial, and bias). The report concludes with the recommendation of three integrated systems that might meet the combined NDA needs of the encapsulation/repository facility.

  12. Composition and method for encapsulating photovoltaic devices

    DOEpatents

    Pern, Fu-Jann

    2000-01-01

    A composition and method for encapsulating a photovoltaic device which minimizes discoloration of the encapsulant. The composition includes an ethylene-vinyl acetate encapsulant, a curing agent, an optional ultraviolet light stabilizer, and/or an optional antioxidant. The curing agent is preferably 1,1-di-(t-butylperoxy)-3,3,5-trimethylcyclohexane; the ultraviolet light stabilizer is bis-(N-octyloxy-tetramethyl) piperidinyl sebacate and the antioxidant is selected from the group consisting of tris (2,4-di-tert-butylphenyl) phosphite, tetrakis methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) methane, octadecyl 3,5-di-tert-butyl-4-hydroxyhydrocinnamate, and 2,2'-ethylidene bis(4,6-di-t-butylphenyl) fluorophosponite. The composition is applied to a solar cell then cured. The cured product contains a minimal concentration of curing-generated chromophores and resists UV-induced degradation.

  13. Nanocellulose-alginate hydrogel for cell encapsulation.

    PubMed

    Park, Minsung; Lee, Dajung; Hyun, Jinho

    2015-02-13

    TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering.

  14. Cells as factories for humanized encapsulation.

    PubMed

    Mao, Zhengwei; Cartier, Regis; Hohl, Anja; Farinacci, Maura; Dorhoi, Anca; Nguyen, Tich-Lam; Mulvaney, Paul; Ralston, John; Kaufmann, Stefan H E; Möhwald, Helmuth; Wang, Dayang

    2011-05-11

    Biocompatibility is of paramount importance for drug delivery, tumor labeling, and in vivo application of nanoscale bioprobes. Until now, biocompatible surface processing has typically relied on PEGylation and other surface coatings, which, however, cannot minimize clearance by macrophages or the renal system but may also increase the risk of chemical side effects. Cell membranes provide a generic and far more natural approach to the challenges of encapsulation and delivery in vivo. Here we harness for the first time living cells as "factories" to manufacture cell membrane capsules for encapsulation and delivery of drugs, nanoparticles, and other biolabels. Furthermore, we demonstrate that the built-in protein channels of the new capsules can be utilized for controlled release of encapsulated reagents.

  15. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    PubMed

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field.

  16. Approaches to Encapsulation of Flexible CIGS Cells

    SciTech Connect

    Olsen, Larry C.; Gross, Mark E.; Graff, Gordon L.; Kundu, Sambhu N.; Chu, Xi; Lin, Steve

    2008-07-16

    Thin-film solar cells based on CIGS are being considered for large scale power plants as well as building integrated photovoltaic (BIPV) applications. Past studies indicate that CIGS cells degrade rapidly when exposed to moisture. As a result, an effective approach to encapsulation is required for CIGS cells to satisfy the international standard IEC 61646. CIGS modules fabricated for use in large power plants can be encapsulated with glass sheets on the top and bottom surfaces and can be effectively sealed around the edges. In the case of BIPV applications, however, it is desirable to utilize CIGS cells grown on flexible substrates, both for purposes of achieving reduced weight and for cases involving non-flat surfaces. For these cases, approaches to encapsulation must be compatible with the flexible substrate requirement. Even in the case of large power plants, the glass-to-glass approach to encapsulation may eventually be considered too costly. We are investigating encapsulation of flexible CIGS cells by lamination. Sheets of PET or PEN coated with multilayer barrier coatings are used to laminate the flexible cells. Results are discussed for laminated cells from two CIGS manufacturers. In both cases, the cell efficiency decreases less than 10% after 1000 hours of exposure to an environment of 85C/85%RH. This paper discusses these two approaches, reviews results achieved with cells and mini-modules fabricated by the former Shell Solar, Industries (SSI) stressed at 60C/90%RH (60/90), and recent studies of encapsulated IEC cells subjected to an environment of 85ºC/85%RH (85/85).

  17. Assessment of bioburden encapsulated in bulk materials

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond

    2016-05-01

    The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms

  18. Nanoporous-carbon adsorbers for chemical microsensors.

    SciTech Connect

    Overmyer, Donald L.; Siegal, Michael P.; Staton, Alan W.; Provencio, Paula Polyak; Yelton, William Graham

    2004-11-01

    Chemical microsensors rely on partitioning of airborne chemicals into films to collect and measure trace quantities of hazardous vapors. Polymer sensor coatings used today are typically slow to respond and difficult to apply reproducibly. The objective of this project was to produce a durable sensor coating material based on graphitic nanoporous-carbon (NPC), a new material first studied at Sandia, for collection and detection of volatile organic compounds (VOC), toxic industrial chemicals (TIC), chemical warfare agents (CWA) and nuclear processing precursors (NPP). Preliminary studies using NPC films on exploratory surface-acoustic-wave (SAW) devices and as a {micro}ChemLab membrane preconcentrator suggested that NPC may outperform existing, irreproducible coatings for SAW sensor and {micro}ChemLab preconcentrator applications. Success of this project will provide a strategic advantage to the development of a robust, manufacturable, highly-sensitive chemical microsensor for public health, industrial, and national security needs. We use pulsed-laser deposition to grow NPC films at room-temperature with negligible residual stress, and hence, can be deposited onto nearly any substrate material to any thickness. Controlled deposition yields reproducible NPC density, morphology, and porosity, without any discernable variation in surface chemistry. NPC coatings > 20 {micro}m thick with density < 5% that of graphite have been demonstrated. NPC can be 'doped' with nearly any metal during growth to provide further enhancements in analyte detection and selectivity. Optimized NPC-coated SAW devices were compared directly to commonly-used polymer coated SAWs for sensitivity to a variety of VOC, TIC, CWA and NPP. In every analyte, NPC outperforms each polymer coating by multiple orders-of-magnitude in detection sensitivity, with improvements ranging from 103 to 108 times greater detection sensitivity! NPC-coated SAW sensors appear capable of detecting most analytes tested to

  19. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    SciTech Connect

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  20. Temperature responsive hydroxypropyl cellulose for encapsulation

    SciTech Connect

    Heitfeld, Kevin A.; Guo, Tingtai; Yang, George; Schaefer, Dale W.

    2009-08-26

    This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. We have successfully synthesized a cellulose gel that exhibits this volume change and have encapsulated an oil phase inside the gel. The flavor-loaded encapsulated oil exhibited an increased release time when compared to similar gelatin capsules.