Nemati, Sorour; Rezabakhsh, Aysa; Khoshfetrat, Ali Baradar; Nourazarian, Alireza; Biray Avci, Çığır; Goker Bagca, Bakiye; Alizadeh Sardroud, Hamed; Khaksar, Majid; Ahmadi, Mahdi; Delkhosh, Aref; Sokullu, Emel; Rahbarghazi, Reza
2017-12-01
Up to present, many advantages have been achieved in the field of cell-based therapies by applying sophisticated methodologies and delivery approaches. Microcapsules are capable to provide safe microenvironment for cells during transplantation in a simulated physiological 3D milieu. Here, we aimed to investigate the effect of alginate-gelatin encapsulation on angiogenic behavior of human endothelial cells over a period of 5 days. Human umbilical vein endothelial cells were encapsulated by alginate-gelatin substrate and incubated for 5 days. MTT and autophagy PCR array analysis were used to monitor cell survival rate. For in vitro angiogenesis analysis, cell distribution of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 were detected by ELISA. In addition to in vitro tubulogenesis assay, we monitored the expression of VE-cadherin by Western blotting. The migration capacity of encapsulated HUVECs was studied by measuring MMP-2 and MMP-9 via gelatin zymography. The in vivo angiogenic potential of encapsulated HUVECs was analyzed in immune-compromised mouse implant model during 7 days post-transplantation. We demonstrated that encapsulation promoted HUVECs cell survival and proliferation. Compared to control, no significant differences were observed in autophagic status of encapsulated cells (p > 0.05). The level of Tie-1, Tie-2, VEGFR-1, and VEGFR-2 were increased, but did not reach to significant levels. Encapsulation decreased MMP-2, -9 activity and increased the VE-cadherin level in enclosed cells (p < 0.05). Moreover, an enhanced in vivo angiogenic response of encapsulated HUVECs was evident as compared to non-capsulated cells (p < 0.05). These observations suggest that alginate-gelatin encapsulation can induce angiogenic response in in vivo and in vitro conditions. © 2017 Wiley Periodicals, Inc.
Yang, Na; Ding, Yanping; Zhang, Yinlong; Wang, Bin; Zhao, Xiao; Cheng, Keman; Huang, Yixin; Taleb, Mohammad; Zhao, Jing; Dong, Wen-Fei; Zhang, Lirong; Nie, Guangjun
2018-06-15
Multiple cell plasma membranes have been utilized for surface functionalization of synthetic nanomaterials and construction of biomimetic drug delivery systems for cancer treatment. The natural characters and facile isolation of original cells facilitate the biomedical applications of plasma membranes in functionalizing nanocarriers. Human umbilical cord-derived mesenchymal stem cells (MSC) have been identified to show tropism towards malignant lesions and have great advantages in ease of acquisition, low immunogenicity, and high proliferative ability. Here we developed a poly(lactic-co-glycolic acid) (PLGA) nanoparticle with a layer of plasma membrane from umbilical cord MSC coating on the surface for tumor-targeted delivery of chemotherapy. Functionalization of MSC plasma membrane significantly enhanced the cellular uptake efficiency of PLGA nanoparticles, the tumor cell killing efficacy of PLGA-encapsulated doxorubicin, and most importantly the tumor-targeting and accumulation of the nanoparticles. As a result, this MSC-mimicking nanoformulation led to remarkable tumor growth inhibition and induced obvious apoptosis within tumor lesions. This study for the first time demonstrated the great potential of umbilical cord MSC plasma membranes in functionalizing nanocarriers with inherent tumor-homing features, and the high feasibility of such biomimetic nanoformulations in cancer therapy.
Cell-Responsive Hydrogel for Encapsulation of Vascular Cells
Kraehenbuehl, Thomas P.; Ferreira, Lino S.; Zammaretti, Prisca; Hubbell, Jeffrey A.; Langer, Robert
2014-01-01
The in vitro potential of a synthetic matrix metalloproteinase (MMP)-responsive polyethylene glycol) (PEG)-based hydrogel as a bioactive co-encapsulation system for vascular cells and a small bioactive peptide, thymosin β4 (Tp4), was examined. We show that the physical incorporation of Tβ4 in this bioactive matrix creates a three-dimensional (3D) environment conducive for human umbilical vein endothelial cell (HUVEC) adhesion, survival, migration and organization. Gels with entrapped Tβ4 increased the survival of HUVEC compared to gels without Tp4, and significantly up-regulated the endothelial genes vascular endothelial-cadherin and angiopoietin-2, whereas von Willebrand factor was significantly down-regulated. Incorporation of Tβ4 significantly increased MMP-2 and MMP-9 secretion of encapsulated HUVEC. The gel acts as a controlled Tβ4-release system, as MMP-2 and MMP-9 enzymes trigger the release. In addition, Tβ4 facilitated HUVEC attachment and induced vascular-like network formation upon the PEG-hydrogels. These MMP-responsive PEG-hydrogels may thus serve as controlled co-encapsulation system of vascular cells and bioactive factors for in situ regeneration of ischemic tissues. PMID:19500842
2009-02-19
VANDENBERG AIR FORCE BASE, Calif. -- With the fairing door off, Orbital Sciences' Glenn Weigle and Brett Gladish take the GN2 flow reading on NASA's Orbiting Carbon Observatory, or OCO, spacecraft on Launch Complex 576-E at Vandenberg Air Force Base in California. The encapsulated OCO tops Orbital Sciences' Taurus XL rocket, which is scheduled to launch Feb. 24. The spacecraft sits atop Orbital Sciences' Taurus XL rocket. At right is a portion of the umbilical tower attached to the upper stack. The spacecraft sits atop Orbital Sciences' Taurus XL rocket. At right is a portion of the umbilical tower attached to the upper stack. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo courtesy of Jim Stowers, Orbital Sciences
Wang, Lin; Wang, Ping; Weir, Michael D.; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H. K.
2016-01-01
Human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord MSCs (hUCMSCs) are exciting cell sources for use in regenerative medicine. There has been no report on long hydrogel fibers encapsulating stem cells inside injectable calcium phosphate cement (CPC) scaffold for bone tissue engineering. The objectives of this study were to: (1) develop a novel injectable CPC construct containing hydrogel fibers encapsulating cells for bone engineering, and (2) investigate and compare cell viability, proliferation and osteogenic differentiation of hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable CPC. The stem cell-encapsulating pastes were fully injectable under a small injection force, and the injection did not harm the cells, compared to cells without injection (p > 0.1). Mechanical properties of stem cell-CPC construct were much higher than previous injectable polymers and hydrogels for cell delivery. hiPSC-MSCs, hESC-MSCs and hUCMSCs in hydrogel fibers in CPC had excellent proliferation and osteogenic differentiation. All three cells yielded high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin expressions (mean ± sd; n = 6). Cell-synthesized minerals increased substantially with time (p < 0.05), with no significant difference among the three types of cells (p > 0.1). Mineralization by hiPSC-MSCs, hESC-MSCs and hUCMSCs in CPC at 14 d was 13-fold that at 1 d. In conclusion, all three types of cells (hiPSC-MSCs, hESC-MSCs and hUCMSCs) in CPC scaffold showed high potential for bone tissue engineering, and the novel injectable CPC construct with cell-encapsulating hydrogel fibers is promising to enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27811389
NASA Astrophysics Data System (ADS)
Lakshmana, Shruthi M.
Craniofacial tissue loss due to traumatic injuries and congenital defects is a major clinical problem around the world. Cleft palate is the second most common congenital malformation in the United States occurring with an incidence of 1 in 700. Some of the problems associated with this defect are feeding difficulties, speech abnormalities and dentofacial anomalies. Current treatment protocol offers repeated surgeries with extended healing time. Our long-term goal is to regenerate bone in the palatal region using tissue-engineering approaches. Bone tissue engineering utilizes osteogenic cells, osteoconductive scaffolds and osteoinductive signals. Mesenchymal stem cells derived from human umbilical cord (HUMSCs) are highly proliferative with the ability to differentiate into osteogenic precursor cells. The primary objective of the study was to characterize HUMSCs and culture them in a 3D hydrogel scaffold and investigate their osteogenic potential. PuraMatrix(TM) is an injectable 3D nanofiber scaffold capable of self-assembly when exposed to physiologic conditions. Our second objective was to investigate the effect of Bone Morphogenic Protein 2 (BMP2) in enhancing the osteogenic differentiation of HUMSCs encapsulated in PuraMatrix(TM). We isolated cells isolated from Wharton's Jelly region of the umbilical cord obtained from NDRI (New York, NY). Isolated cells satisfied the minimal criteria for mesenchymal stem cells (MSCs) as defined by International Society of Cell Therapy in terms of plastic adherence, fibroblastic phenotype, surface marker expression and osteogenic differentiation. Flow Cytometry analysis showed that cells were positive for CD73, CD90 and CD105 while negative for hematopoietic marker CD34. Alkaline phosphatase activity (ALP) of HUMSCs showed peak activity at 2 weeks (p<0.05). Cells were encapsulated in 0.2% PuraMatrix(TM) at cell densities of 10x104, 20x104, 40x10 4 and 80x104. Cell viability with WST and proliferation with Live-Dead cell assays showed viable cells at all cell concentrations (p<0.05). A two- fold upregulation of ALP gene was seen for cells encapsulated in PuraMatrix(TM) with osteogenic medium compared to cells in culture medium (p<0.05). HUMSCs encapsulated in PuraMatrix(TM) were treated with BMP2 at doses of 50ng/ml, 100ng/ml and 200ng/ml. A significant upregulation of ALP gene in BMP2 treated cells was seen compared to HUMSCs treated in osteogenic medium (p<0.05). Peak osteogenic activity was noted at BMP2 dose of 100ng/ml (p<0.05). We have developed a composite system of HUMSCs, PuraMatrix(TM) and BMP2 for repair of bone defects that is injectable precluding additional surgeries.
Madl, Christopher M; Katz, Lily M; Heilshorn, Sarah C
2016-06-07
Covalently-crosslinked hydrogels are commonly used as 3D matrices for cell culture and transplantation. However, the crosslinking chemistries used to prepare these gels generally cross-react with functional groups present on the cell surface, potentially leading to cytotoxicity and other undesired effects. Bio-orthogonal chemistries have been developed that do not react with biologically relevant functional groups, thereby preventing these undesirable side reactions. However, previously developed biomaterials using these chemistries still possess less than ideal properties for cell encapsulation, such as slow gelation kinetics and limited tuning of matrix mechanics and biochemistry. Here, engineered elastin-like proteins (ELPs) are developed that cross-link via strain-promoted azide-alkyne cycloaddition (SPAAC) or Staudinger ligation. The SPAAC-crosslinked materials form gels within seconds and complete gelation within minutes. These hydrogels support the encapsulation and phenotypic maintenance of human mesenchymal stem cells, human umbilical vein endothelial cells, and murine neural progenitor cells. SPAAC-ELP gels exhibit independent tuning of stiffness and cell adhesion, with significantly improved cell viability and spreading observed in materials containing a fibronectin-derived arginine-glycine-aspartic acid (RGD) domain. The crosslinking chemistry used permits further material functionalization, even in the presence of cells and serum. These hydrogels are anticipated to be useful in a wide range of applications, including therapeutic cell delivery and bioprinting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca
Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDsmore » with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)« less
In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits.
Zhang, Yahui; Yu, Yin; Akkouch, Adil; Dababneh, Amer; Dolati, Farzaneh; Ozbolat, Ibrahim T
2015-01-01
The ability to create three dimensional (3D) thick tissues is still a major tissue engineering challenge. It requires the development of a suitable vascular supply for an efficient media exchange. An integrated vasculature network is particularly needed when building thick functional tissues and/or organs with high metabolic activities, such as the heart, liver and pancreas. In this work, human umbilical vein smooth muscle cells (HUVSMCs) were encapsulated in sodium alginate and printed in the form of vasculature conduits using a coaxial deposition system. Detailed investigations were performed to understand the dehydration, swelling and degradation characteristics of printed conduits. In addition, because perfusional, permeable and mechanical properties are unique characteristics of natural blood vessels, for printed conduits these properties were also explored in this work. The results show that cells encapsulated in conduits had good proliferation activities and that their viability increased during prolonged in vitro culture. Deposition of smooth muscle matrix and collagen was observed around the peripheral and luminal surface in long-term cultured cellular vascular conduit through histology studies.
Zuo, Yicong; Liu, Xiaolu; Wei, Dan; Sun, Jing; Xiao, Wenqian; Zhao, Huan; Guo, Likun; Wei, Qingrong; Fan, Hongsong; Zhang, Xingdong
2015-05-20
Modular tissue engineering holds great potential in regenerating natural complex tissues by engineering three-dimensional modular scaffolds with predefined geometry and biological characters. In modular tissue-like construction, a scaffold with an appropriate mechanical rigidity for assembling fabrication and high biocompatibility for cell survival is the key to the successful bioconstruction. In this work, a series of composite hydrogels (GH0, GH1, GH2, and GH3) based on a combination of methacrylated gelatin (GelMA) and hydroxyapatite (HA) was exploited to enhance hydrogel mechanical rigidity and promote cell functional expression for osteon biofabrication. These composite hydrogels presented a lower swelling ratio, higher mechanical moduli, and better biocompatibility when compared to the pure GelMA hydrogel. Furthermore, on the basis of the composite hydrogel and photolithograph technology, we successfully constructed an osteon-like concentric double-ring structure in which the inner ring encapsulating human umbilical vascular endothelial cells (HUVECs) was designed to imitate blood vessel tubule while the outer ring encapsulating human osteoblast-like cells (MG63s) acts as part of bone. During the coculture period, MG63s and HUVECs exhibited not only satisfying growth status but also the enhanced genic expression of osteogenesis-related and angiogenesis-related differentiations. These results demonstrate this GelMA-HA composite hydrogel system is promising for modular tissue engineering.
Köpf, Marius; Campos, Daniela F Duarte; Blaeser, Andreas; Sen, Kshama S; Fischer, Horst
2016-05-20
In recent years, novel biofabrication technologies have enabled the rapid manufacture of hydrogel-cell suspensions into tissue-imitating constructs. The development of novel materials for biofabrication still remains a challenge due to a gap between contradicting requirements such as three-dimensional printability and optimal cytocompatibility. We hypothesise that blending of different hydrogels could lead to a novel material with favourable biological and printing properties. In our work, we combined agarose and type I collagen in order to develop a hydrogel blend capable of long-term cell encapsulation of human umbilical artery smooth muscle cells (HUASMCs) and 3D drop-on-demand printing. Different blends were prepared with 0.25%, 0.5%, 0.75%, and 1.5% agarose and 0.2% type I collagen. The cell morphology of HUASMCs and the printing accuracy were assessed for each agarose-collagen combination, keeping the content of collagen constant. The hydrogel blend which displayed sufficient cell spreading and printing accuracy (0.5% agarose, 0.2% type I collagen, AGR0.5COLL0.2) was then characterised based on swelling and degradation over 21 days and mechanical stiffness. The cellular response regarding cell attachment of HUASMCs embedded in the hydrogel blend was further studied using SEM, TEM, and TPLSM. Printing trials were fabricated in a drop-on-demand printing process. The swelling and degradation evaluation showed an average of 20% mass loss and less than 10% swelling. AGR0.5COLL0.2 exhibited significant increase in stiffness compared to pure agarose and type I collagen. In addition, columns of AGR0.5COLL0.2 three centimeters in height were successfully printed submerged in cooled perfluorocarbon, proving the intrinsic printability of the hydrogel blend. Ultimately, a promising novel hydrogel blend showing cell spreading and attachment as well as suitability for bioprinting was identified and could, for example, serve in the manufacture of in vitro 3D models to capture more complex features of disease and drug discovery.
Zhao, Yinbo; Lin, Dayong; Wu, Fengbo; Guo, Li; He, Gu; Ouyang, Liang; Song, Xiangrong; Huang, Wei; Li, Xiang
2014-09-29
In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs) modified by Arg-Gly-Asp(RGD) peptide, loaded with curcumin (Cur), were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD-lpNPs) could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid))-mPEG (methoxyl poly(ethylene- glycol)), RGD-polyethylene glycol (PEG)-cholesterol (Chol) copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD-lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD-lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD-lpNPs was increased for human umbilical vein endothelial cells (HUVEC). Furthermore, Cur loaded RGD-lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD-lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD-lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD-lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.
Jun, Yi; Chunju, Yuan; Qi, Ai; Liuxia, Deng; Guolong, Yu
2014-04-01
The low frequency of survival of stem cells implanted in the myocardium after acute myocardial infarction may be caused by inflammation and oxidative stress in the myocardial microenvironment. We evaluated the effects of a traditional Chinese medicine, Compound Danshen Dripping Pills, on the cardiac microenvironment and cardiac function when used alone or in combination with human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. After surgically induced acute myocardial infarction, rabbits were treated with Compound Danshen Dripping Pills alone or in combination with human umbilical cord blood mononuclear cell transplant. Evaluation included histology, measurement of left ventricular ejection fraction and fractional shortening, leukocyte count, count of green fluorescent protein positive cells, superoxide dismutase activity, and malondialdehyde content. Combination treatment with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cell transplant significantly increased the survival of implanted cells, inhibited cardiac cell apoptosis, decreased oxidative stress, decreased the inflammatory response, and improved cardiac function. Rabbits treated with either Compound Danshen Dripping Pills or human umbilical cord blood mononuclear cells alone had improvement in these effects compared with untreated control rabbits. Combination therapy with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cells may improve cardiac function and morphology after acute myocardial infarction.
A Simplified Model of ARIS for Optimal Controller Design
NASA Technical Reports Server (NTRS)
Beech, Geoffrey S.; Hampton, R. David; Kross, Denny (Technical Monitor)
2001-01-01
Many space-science experiments require active vibration isolation. Boeing's Active Rack Isolation System (ARIS) isolates experiments at the rack (vs. experiment or sub-experiment) level, with multi e experiments per rack. An ARIS-isolated rack typically employs eight actuators and thirteen umbilicals; the umbilicals provide services such as power, data transmission, and cooling. Hampton, et al., used "Kane's method" to develop an analytical, nonlinear, rigid-body model of ARIS that includes full actuator dynamics (inertias). This model, less the umbilicals, was first implemented for simulation by Beech and Hampton; they developed and tested their model using two commercial-off-the-shelf (COTS) software packages. Rupert, et al., added umbilical-transmitted disturbances to this nonlinear model. Because the nonlinear model, even for the untethered system, is both exceedingly complex and "encapsulated" inside these COTS tools, it is largely inaccessible to ARIS controller designers. This paper shows that ISPR rattle-space constraints and small ARIS actuator masses permit considerable model simplification, without significant loss of fidelity. First, for various loading conditions, comparisons are made between the dynamic responses of the nonlinear model (untethered) and a truth model. Then comparisons are made among nonlinear, linearized, and linearized reduced-mass models. It is concluded that these three models all capture the significant system rigid-body dynamics, with the third being preferred due to its relative simplicity.
Bioresponsive cancer-targeted polysaccharide nanosystem to inhibit angiogenesis.
Yang, Fang; Fang, Xueyang; Jiang, Wenting; Chen, Tianfeng
2017-01-01
With many desirable features, such as being more effective and having multiple effects, antiangiogenesis has become one of the promising cancer treatments. The aim of this study was to design and synthesize a new targeted bioresponsive nanosystem with antiangiogenesis properties. The mUPR@Ru(POP) nanosystem was constructed by the polymerization of Ulva lactuca polysaccharide and N -isopropyl acrylamide, decorated with methoxy polyethylene glycol and Arg-Gly-Asp peptide, and encapsulated with anticancer complex [Ru(phen)2p-MOPIP](PF 6 ) 2 ·2H 2 O. The nanosystem was both pH responsive and targeted. Therefore, the cellular uptake of the drug was greatly improved. Moreover, the mUPR@Ru(POP) had strong suppressive effects against vascular endothelial growth factor (VEGF)-induced angiogenesis through apoptosis. The mUPR@Ru(POP) significantly inhibited VEGF-induced human umbilical vein endothelial cell migration, invasion, and tube formation. These findings have presented new insights into the development of antiangiogenesis drugs.
High-throughput combinatorial cell co-culture using microfluidics.
Tumarkin, Ethan; Tzadu, Lsan; Csaszar, Elizabeth; Seo, Minseok; Zhang, Hong; Lee, Anna; Peerani, Raheem; Purpura, Kelly; Zandstra, Peter W; Kumacheva, Eugenia
2011-06-01
Co-culture strategies are foundational in cell biology. These systems, which serve as mimics of in vivo tissue niches, are typically poorly defined in terms of cell ratios, local cues and supportive cell-cell interactions. In the stem cell niche, the ability to screen cell-cell interactions and identify local supportive microenvironments has a broad range of applications in transplantation, tissue engineering and wound healing. We present a microfluidic platform for the high-throughput generation of hydrogel microbeads for cell co-culture. Encapsulation of different cell populations in microgels was achieved by introducing in a microfluidic device two streams of distinct cell suspensions, emulsifying the mixed suspension, and gelling the precursor droplets. The cellular composition in the microgels was controlled by varying the volumetric flow rates of the corresponding streams. We demonstrate one of the applications of the microfluidic method by co-encapsulating factor-dependent and responsive blood progenitor cell lines (MBA2 and M07e cells, respectively) at varying ratios, and show that in-bead paracrine secretion can modulate the viability of the factor dependent cells. Furthermore, we show the application of the method as a tool to screen the impact of specific growth factors on a primary human heterogeneous cell population. Co-encapsulation of IL-3 secreting MBA2 cells with umbilical cord blood cells revealed differential sub-population responsiveness to paracrine signals (CD14+ cells were particularly responsive to locally delivered IL-3). This microfluidic co-culture platform should enable high throughput screening of cell co-culture conditions, leading to new strategies to manipulate cell fate. This journal is © The Royal Society of Chemistry 2011
Zhou, Zhao-xiong; Zhang, Bai-gen; Zhang, Hao; Huang, Xiao-zhong; Hu, Ya-li; Sun, Li; Wang, Xiao-min; Zhang, Ji-wei
2009-01-01
Aim: To investigate the in vitro release profile of drugs encapsulated within perfluorocarbon (PFC) nanoparticles (NPs) and their ability to inhibit the activity of vascular smooth muscle cells (SMCs). Methods: Dexamethasone phosphate (DxP) or dexamethasone acetate (DxA) was encapsulated into PFC nanoparticles using a high-pressure homogenous method. The morphology and size of the NPs were examined using scanning electron microscopy (SEM) and a laser particle size analyzer. Drug loading and in vitro release were assessed by high-performance liquid chromatography (HPLC). The impact of NP capsules on SMC proliferation, migration and apoptosis in vitro was assessed using cell counting kit-8, transwell cell migration and flow cytometry assays. Results: The sizes of DxP-NPs and DxA-NPs were 224±6 nm and 236±9 nm, respectively. The encapsulation efficiency (EE) of DxP-NPs was 66.4%±1.0%, with an initial release rate of 77.2%, whereas the EE of DxA-NPs was 95.3%±1.3%, with an initial release rate of 23.6%. Both of the NP-coated drugs could be released over 7 d. Human umbilical artery SMCs were harvested and cultured for four to six passages. Compared to free DxP, SMCs treated with tissue factor (TF)-directed DxP-NPs showed significant differences in the inhibition of proliferation, migration and apoptosis (P<0.05). Conclusion: The results collectively suggest that PFC nanoparticles will be beneficial for targeted drug delivery because of the sustained drug release and effective inhibition of SMC proliferation and migration. PMID:19890365
Rahyussalim, Ahmad Jabir; Saleh, Ifran; Kurniawati, Tri; Lutfi, Andi Praja Wira Yudha
2017-11-30
Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating. Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.
Zou, Dan; Wang, Wei; Lei, Daoxi; Yin, Ying; Ren, Peng; Chen, Jinju; Yin, Tieying; Wang, Bochu; Wang, Guixue; Wang, Yazhou
2017-01-01
For the treatment of glioma and other central nervous system diseases, one of the biggest challenges is that most therapeutic drugs cannot be delivered to the brain tumor tissue due to the blood-brain barrier (BBB). The goal of this study was to construct a nanodelivery vehicle system with capabilities to overcome the BBB for central nervous system administration. Doxorubicin as a model drug encapsulated in ganglioside GM1 micelles was able to achieve up to 9.33% loading efficiency and 97.05% encapsulation efficiency by orthogonal experimental design. The in vitro study demonstrated a slow and sustainable drug release in physiological conditions. In the cellular uptake studies, mixed micelles could effectively transport into both human umbilical vein endothelial cells and C6 cells. Furthermore, biodistribution imaging of mice showed that the DiR/GM1 mixed micelles were accumulated sustainably and distributed centrally in the brain. Experiments on zebrafish confirmed that drug-loaded GM1 micelles can overcome the BBB and enter the brain. Among all the treatment groups, the median survival time of C6-bearing rats after administering DOX/GM1 micelles was significantly prolonged. In conclusion, the ganglioside nanomicelles developed in this work can not only penetrate BBB effectively but also repair nerves and kill tumor cells at the same time.
Curley, Gerard F; Jerkic, Mirjana; Dixon, Steve; Hogan, Grace; Masterson, Claire; O'Toole, Daniel; Devaney, James; Laffey, John G
2017-02-01
Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. Randomized animal study. University research laboratory. Male Sprague-Dawley rats. Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory cytokine concentrations, whereas increasing interleukin-10 concentrations. Umbilical cord-mesenchymal stem/stromal cell therapy decreased nicotinamide adenine dinucleotide phosphate-oxidase 2 and inducible nitric oxide synthase and enhanced lung concentrations of superoxide dismutase-2, thereby reducing lung tissue reactive oxidative species concentrations. Our results demonstrate that freshly thawed cryopreserved xeno-free human umbilical cord-mesenchymal stem/stromal cells reduce the severity of rodent E. coli-induced acute respiratory distress syndrome. Umbilical cord-mesenchymal stem/stromal cells, therefore, represent an attractive option for future clinical trials in acute respiratory distress syndrome.
Lee, Shin-Jeong; Sohn, Young-Doug; Andukuri, Adinarayana; Kim, Sangsung; Byun, Jaemin; Han, Ji Woong; Park, In-Hyun; Jun, Ho-Wook; Yoon, Young-Sup
2017-11-14
Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) have limited clinical utility because of undefined components in the differentiation system and poor cell survival in vivo. Here, we aimed to develop a fully defined and clinically compatible system to differentiate hPSCs into ECs. Furthermore, we aimed to enhance cell survival, vessel formation, and therapeutic potential by encapsulating hPSC-ECs with a peptide amphiphile (PA) nanomatrix gel. We induced differentiation of hPSCs into the mesodermal lineage by culturing on collagen-coated plates with a glycogen synthase kinase 3β inhibitor. Next, vascular endothelial growth factor, endothelial growth factor, and basic fibroblast growth factor were added for endothelial lineage differentiation, followed by sorting for CDH5 (VE-cadherin). We constructed an extracellular matrix-mimicking PA nanomatrix gel (PA-RGDS) by incorporating the cell adhesive ligand Arg-Gly-Asp-Ser (RGDS) and a matrix metalloproteinase-2-degradable sequence. We then evaluated whether the encapsulation of hPSC-CDH5 + cells in PA-RGDS could enhance long-term cell survival and vascular regenerative effects in a hind-limb ischemia model with laser Doppler perfusion imaging, bioluminescence imaging, real-time reverse transcription-polymerase chain reaction, and histological analysis. The resultant hPSC-derived CDH5 + cells (hPSC-ECs) showed highly enriched and genuine EC characteristics and proangiogenic activities. When injected into ischemic hind limbs, hPSC-ECs showed better perfusion recovery and higher vessel-forming capacity compared with media-, PA-RGDS-, or human umbilical vein EC-injected groups. However, the group receiving the PA-RGDS-encapsulated hPSC-ECs showed better perfusion recovery, more robust and longer cell survival (> 10 months), and higher and prolonged angiogenic and vascular incorporation capabilities than the bare hPSC-EC-injected group. Surprisingly, the engrafted hPSC-ECs demonstrated previously unknown sustained and dynamic vessel-forming behavior: initial perivascular concentration, a guiding role for new vessel formation, and progressive incorporation into the vessels over 10 months. We generated highly enriched hPSC-ECs via a clinically compatible system. Furthermore, this study demonstrated that a biocompatible PA-RGDS nanomatrix gel substantially improved long-term survival of hPSC-ECs in an ischemic environment and improved neovascularization effects of hPSC-ECs via prolonged and unique angiogenic and vessel-forming properties. This PA-RGDS-mediated transplantation of hPSC-ECs can serve as a novel platform for cell-based therapy and investigation of long-term behavior of hPSC-ECs. © 2017 American Heart Association, Inc.
Satué, María; Ramis, Joana M; Monjo, Marta
2016-01-01
Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. © The Author(s) 2015.
Kadam, Sachin; Govindasamy, Vijayendran; Bhonde, Ramesh
2012-01-01
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been used for allogeneic application in tissue engineering but have certain drawbacks. Therefore, mesenchymal stem cells (MSCs) derived from other adult tissue sources have been considered as an alternative. The human umbilical cord and placenta are easily available noncontroversial sources of human tissue, which are often discarded as biological waste, and their collection is noninvasive. These sources of MSCs are not subjected to ethical constraints, as in the case of embryonic stem cells. MSCs derived from umbilical cord and placenta are multipotent and have the ability to differentiate into various cell types crossing the lineage boundary towards endodermal lineage. The aim of this chapter is to provide a detailed reproducible cookbook protocol for the isolation, propagation, characterization, and differentiation of MSCs derived from human umbilical cord and placenta with special reference to harnessing their potential towards pancreatic/islet lineage for utilization as a cell therapy product. We show here that mesenchymal stromal cells can be extensively expanded from umbilical cord and placenta of human origin retaining their multilineage differentiation potential in vitro. Our report indicates that postnatal tissues obtained as delivery waste represent a rich source of mesenchymal stromal cells, which can be differentiated into functional islets employing three-stage protocol developed by our group. These islets could be used as novel in vitro model for screening hypoglycemics/insulin secretagogues, thus reducing animal experimentation for this purpose and for the future human islet transplantation programs to treat diabetes.
Kadam, Sachin S; Tiwari, Shubha; Bhonde, Ramesh R
2009-01-01
The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child's birth; however, its importance as a "store house" of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton's jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.
Human umbilical cord derived matrix: A scaffold suitable for tissue engineering application.
Dan, Pan; Velot, Émilie; Mesure, Benjamin; Groshenry, Guillaume; Bacharouche, Jalal; Decot, Véronique; Menu, Patrick
2017-01-01
Human tissue derived natural extracellular matrix (ECM) has great potential in tissue engineering. We sought to isolate extracellular matrix derived from human umbilical cord and test its potential in tissue engineering. An enzymatic method was applied to isolate and solubilized complete human umbilical cord derived matrix (hUCM). The obtained solution was analyzed for growth factors, collagen and residual DNA contents, then used to coat 2D and 3D surfaces for cell culture application. The hUCM was successfully isolated with trypsin digestion to acquire a solution containing various growth factors and collagen but no residual DNA. This hUCM solution can form a coating on 2D and 3D substrates suitable cell culture. We developed a new matrix derived from human source that can be further used in tissue engineering.
Applications of human umbilical cord blood cells in central nervous system regeneration.
Herranz, Antonio S; Gonzalo-Gobernado, Rafael; Reimers, Diana; Asensio, Maria J; Rodríguez-Serrano, Macarena; Bazán, Eulalia
2010-03-01
In recent decades, there has been considerable amount of information about embryonic stem cells (ES). The dilemma facing scientists interested in the development and use of human stem cells in replacement therapies is the source of these cells, i.e. the human embryo. There are many ethical and moral problems related to the use of these cells. Hematopoietic stem cells from umbilical cord blood have been proposed as an alternative source of embryonic stem cells. After exposure to different agents, these cells are able to express antigens of diverse cellular lineages, including the neural type. The In vitro manipulation of human umbilical cord blood (hUCB) cells has shown their stem capacity and plasticity. These cells are easily accessible, In vitro amplifiable, well tolerated by the host, and with more primitive molecular characteristics that give them great flexibility. Overall, these properties open a promising future for the use of hUCB in regenerative therapies for the Central Nervous System (CNS). This review will focus on the available literature concerning umbilical cord blood cells as a therapeutic tool for the treatment of neurodegenerative diseases.
Tajiri, Naoki; Lee, Jea Young; Acosta, Sandra; Sanberg, Paul R; Borlongan, Cesar V
2016-01-01
Blood-brain barrier (BBB) permeabilizers, such as mannitol, can facilitate peripherally delivered stem cells to exert therapeutic benefits on the stroke brain. Although this BBB permeation-aided stem cell therapy has been demonstrated in the acute stage of stroke, such BBB permeation in the chronic stage of the disease remains to be examined. Adult Sprague-Dawley rats initially received sham surgery or experimental stroke via the 1-h middle cerebral artery occlusion (MCAo) model. At 1 month after the MCAo surgery, stroke animals were randomly assigned to receive human umbilical cord stem cells only (2 million viable cells), mannitol only (1.1 mol/L mannitol at 4°C), combined human umbilical cord stem cells (200,000 viable cells) and mannitol (1.1 mol/L mannitol at 4°C), and vehicle (phosphate-buffered saline) only. Stroke animals that received human umbilical cord blood cells alone or combined human umbilical cord stem cells and mannitol exhibited significantly improved motor performance and significantly better brain cell survival in the peri-infarct area compared to stroke animals that received vehicle or mannitol alone, with mannitol treatment reducing the stem cell dose necessary to afford functional outcomes. Enhanced neurogenesis in the subventricular zone accompanied the combined treatment of human umbilical cord stem cells and mannitol. We showed that BBB permeation facilitates the therapeutic effects of a low dose of peripherally transplanted stem cells to effectively cause functional improvement and increase neurogenesis in chronic stroke.
Light induced cytosolic drug delivery from liposomes with gold nanoparticles.
Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto
2015-04-10
Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Shiedlin, Aviva; Bigelow, Russell; Christopher, William; Arbabi, Saman; Yang, Laura; Maier, Ronald V; Wainwright, Norman; Childs, Alice; Miller, Robert J
2004-01-01
Sodium hyaluronate (HA) is widely distributed in extracellular matrixes and can play a role in orchestrating cell function. Consequently, many investigators have looked at the effect of exogenous HA on cell behavior in vitro. HA can be isolated from several sources (e.g., bacterial, rooster comb, umbilical cord) and therefore can possess diverse impurities. This current study compares the measured impurities and the differences in biological activity between HA preparations from these sources. It was demonstrated that nucleic acid and protein content was highest in human umbilical cord and bovine vitreous HA and was low in bacterial and rooster comb HA. Macrophages exposed to human umbilical cord HA produced significantly higher amounts of TNF-alpha relative to control or bacterial-derived HA. These results indicate that the source of HA should be considered due to differences in the amounts and types of contaminants that could lead to widely different behaviors in vitro and in vivo.
Sategna-Guidetti, C; Grosso, S B; Bruno, M; Grosso, S
1997-07-01
Immunoglobulin A (IgA) anti-endomysium antibodies, the most reliable immunological marker for both the screening and follow-up of coeliac disease, need monkey oesophagus as antigenic substrate; this limits their use because of high costs and the exploitation of endangered species. (1) To compare the diagnostic accuracy of anti-endomysium antibodies detected by indirect immunofluorescence on monkey oesophagus and on human umbilical cord; (2) to evaluate their reliability during follow-up in detecting non-compliant patients. One hundred and four untreated adults with biopsy-proven coeliac disease and 94 controls were investigated. Endomysium antibodies were found in 99 patients (95%) on both substrates, with a specificity, respectively, of 100% and 99% on monkey oesophagus and umbilical cord. One year after gluten withdrawal, out of 47 patients who were investigated, only six presented with complete mucosal recovery: none of these subjects was positive on either substrates, while, among patients with persistent histological alterations, endomysium positivity persisted in only 10 on monkey oesophagus, but in 32 on umbilical cord. Histology (recovery or persistent involvement) was in agreement with endomysium (negative or positive) in 34% on monkey oesophagus, but in 81% on umbilical cord (P < 0.0001). Human umbilical cord, with its comparable diagnostic efficiency, could replace monkey tissues, with the advantages of saving both money and monkeys. Moreover, it seems the most suitable substrate in the follow-up, as it enables detection of non-compliant patients with persisting mucosal alterations.
2011-09-01
ORIGINAL ARTICLE Toxicity of Aluminum Silicates Used in Hemostatic Dressings Toward Human Umbilical Veins Endothelial Cells, HeLa Cells, and RAW267.4...not known. Clay minerals are generally considered nontoxic to humans and have been widely used in cosmetics and as excipient in drugs and foods...Bentonite, which has a long history in pharmaceutical formulations,7 along with kaolin are listed in the US Pharmacopeia.8 The sensitivity of some human
Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum
NASA Astrophysics Data System (ADS)
Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen
2017-10-01
This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.
Kohn, Donald B.; Weinberg, Kenneth I.; Nolta, Jan A.; Heiss, Linda N.; Lenarsky, Carl; Crooks, Gay M.; Hanley, Mary E.; Annett, Geralyn; Brooks, Judith S.; El-Khoureiy, Anthony; Lawrence, Kim; Wells, Susie; Moen, Robert C.; Bastian, John; Williams-Herman, Debora E.; Elder, Melissa; Wara, Diane; Bowen, Thomas; Hershfield, Michael S.; Mullen, Craig A.; Blaese, R. Michael; Parkman, Robertson
2010-01-01
Haematopoietic stem cells in umbilical cord blood are an attractive target for gene therapy of inborn errors of metabolism. Three neonates with severe combined immunodeficiency were treated by retroviral-mediated transduction of the CD34+ cells from their umbilical cord blood with a normal human adenosine deaminase complementary DNA followed by autologous transplantation. The continued presence and expression of the introduced gene in leukocytes from bone marrow and peripheral blood for 18 months demonstrates that umbilical cord blood cells may be genetically modified with retroviral vectors and engrafted in neonates for gene therapy. PMID:7489356
Peyter, A-C; Delhaes, F; Baud, D; Vial, Y; Diaceri, G; Menétrey, S; Hohlfeld, P; Tolsa, J-F
2014-11-01
Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela
2009-04-15
Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.
Wang, Xiaoming; Rytting, Erik; Abdelrahman, Doaa R.; Nanovskaya, Tatiana N.; Hankins, Gary D.V.; Ahmed, Mahmoud S.
2013-01-01
The liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53% to 64% and 72% to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi™ Hydro-RP™ column with a gradient elution of acetonitrile and 10 mM ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass Spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon-13-labeled famotidine was used as internal standard. The calibration curves were linear (r2> 0.99) in the concentration ranges of 0.631-252 ng/mL for umbilical and maternal plasma samples, and of 0.075-30.0 μg/mL for urine samples. The relative deviation of method was less than 14% for intra- and inter-day assays, and the accuracy ranged between 93% and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma is less than 17%. PMID:23401067
Chan-Chan, L H; Vargas-Coronado, R F; Cervantes-Uc, J M; Cauich-Rodríguez, J V; Rath, R; Phelps, E A; García, A J; San Román Del Barrio, J; Parra, J; Merhi, Y; Tabrizian, M
2013-08-01
Biodegradable segmented polyurethanes were prepared with poly(caprolactone) diol as a soft segment, 4,4'-methylene bis(cyclohexyl isocyanate) (HMDI) and either butanediol or dithioerythritol as chain extenders. Platelet adhesion was similar in all segmented polyurethanes studied and not different from Tecoflex® although an early stage of activation was observed on biodegradable segmented polyurethane prepared with dithioerythritol. Relative viability was higher than 80% on human umbilical vein endothelial cells in contact with biodegradable segmented polyurethane extracts after 1, 2 and 7 days. Furthermore, both biodegradable segmented polyurethane materials supported human umbilical vein endothelial cell adhesion, spreading, and viability similar to Tecoflex® medical-grade polyurethane. These biodegradable segmented polyurethanes represent promising materials for cardiovascular applications.
Reichardt, Anne; Polchow, Bianca; Shakibaei, Mehdi; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora
2013-01-01
Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 108 cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions. PMID:23847691
Human umbilical cord mesenchymal stromal cells in regenerative medicine.
Detamore, Michael S
2013-11-25
Cells of the human umbilical cord offer tremendous potential for improving human health. Cells from the Wharton’s jelly (umbilical cord stroma) in particular, referred to as human umbilical cord mesenchymal stromal cells (HUCMSCs), hold several advantages that make them appealing for translational research. In the previous issue of Stem Cell Research & Therapy, Chon and colleagues made an important contribution to the HUCMSC literature not only by presenting HUCMSCs as an emerging cell source for intervertebral disc regeneration in general and the nucleus pulposus in particular, but also by demonstrating that an extracellular matrix-based strategy might be preferred over the use of growth factors. By culturing HUCMSCs under hypoxia in serum-free conditions in the presence of Matrigel with laminin-111, they were able to achieve intense collagen II staining by 21 days without the addition of exogenous growth factors. There is tremendous translational significance here in that such raw materials may alleviate the need for the use of growth factors in some instances, and this may have important ramifications in reducing product cost and streamlining regulatory approval. Chon and colleagues provide a promising example of the potential of HUCMSCs, demonstrating the ability to guide HUCMSC differentiation even in the absence of serum and growth factors and supporting the use of HUCMSCs as a viable alternative in intervertebral disc regeneration.
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y.; Geron, Ifat; Strongin, Alex Y.; Itkin-Ansari, Pamela
2009-01-01
Background Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human β-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human β-cells and their progenitors and (2) the engraftment of encapsulated murine β-cells in allo- and autoimmune settings. Methods Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Results Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary β-cells ameliorated diabetes without stimulating a detectable T-cell response. Conclusions We demonstrate for the first time that human β-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of β-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells. PMID:19352116
Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis
2011-06-01
To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.
NASA Technical Reports Server (NTRS)
Edwards, Paul; Terseck, Alex; Trout, Dawn
2016-01-01
Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.
Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.
Kuss, Mitchell A; Wu, Shaohua; Wang, Ying; Untrauer, Jason B; Li, Wenlong; Lim, Jung Yul; Duan, Bin
2017-09-13
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.
Ghanbarzadeh, Saeed; Khorrami, Arash; Pourmoazzen, Zhaleh; Arami, Sanam
2015-05-01
The purpose of the present investigation was to prepare a plasma stable, pH-sensitive niosomal formulation to enhance Sirolimus efficacy and selectivity. pH-sensitive niosomal formulations bearing PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymers and cholesteryl hemisuccinate (CHEMS) were prepared by a modified ethanol injection method and characterized with regard to pH-responsiveness and stability in human serum. The ability of pH-sensitive niosomes to enhance the Sirolimus cytotoxicity was evaluated in vitro using human erythromyeloblastoid leukemia cell line (K562) and compared with cytotoxicity effect on human umbilical vein endothelial cells (HUVEC). This study showed that both formulations can be rendered pH-sensitive property and were found to rapidly release their contents under mildly acidic conditions. However, the CHEMS-based niosomes lost their pH-sensitivity after incubation in plasma, whereas, PEG-PMMI-CholC6 niosomes preserved their ability to respond to pH change. Sirolimus encapsulated in pH-sensitive niosomes exhibited a higher cytotoxicity than the control conventional formulation on K562 cell line. On the other hand, both pH-sensitive niosomes showed lower antiproliferative effect on HUVEC cells. Plasma stable, pH-sensitive PEG-PMMI-CholC6-based niosomes can improve the in vitro efficiency and also reduce the side effects of Sirolimus.
Robots Would Couple And Uncouple Fluid And Electrical Lines
NASA Technical Reports Server (NTRS)
Del Castillo, Eduardo Lopez; Davis, Virgil; Ferguson, Bob; Reichle, Garland
1992-01-01
Robots make and break connections between umbilical plates and mating connectors on rockets about to be launched. Sensing and control systems include vision, force, and torque subsystems. Enhances safety by making it possible to couple and uncouple umbilical plates quickly, without exposing human technicians to hazards of leaking fuels and oxidizers. Significantly reduces time spent to manually connect umbilicals. Robots based on similar principles used in refueling of National AeroSpace Plane (NASP) and satellites and orbital transfer vehicles in space.
Bryant, A E; Stevens, D L
1996-01-01
Clostridium perfringens phospholipase C (PLC) and perfringolysin O (PFO) differentially induced human umbilical vein endothelial cell expression and synthesis of endothelial cell-leukocyte adherence molecule-1 (ELAM-1), intracellular leukocyte adherence molecule-1 (ICAM-1), and interleukin-8 (IL-8). PLC strongly induced expression of ELAM-1, ICAM-1, and IL-8, while PFO stimulated early ICAM-1 expression but did not promote ELAM-1 expression or IL-8 synthesis. PLC caused human umbilical vein endothelial cells to assume a fibroblastoid morphology, whereas PFO, in high concentrations or after prolonged low-dose toxin exposure, caused cell death. The toxin-induced expression of proadhesive and activational proteins and direct cytopathic effects may contribute to the leukostasis, vascular compromise, and capillary leak characteristics of C. perfringens gas gangrene. PMID:8557365
Umbilical cord blood transplants: treatment for selected hematologic and oncologic diseases.
Stevens, K
1997-12-01
Umbilical cord blood transplantation is a rapidly growing form of treatment for many types of cancer and hematologic disorders. The concepts behind the use of umbilical cord blood transplantation are based on information gained from experience in bone marrow transplantation. Previously discarded as human waste, the blood in the umbilical cord remnant and the placenta has been observed to be rich in hematopoietic stem cells. Techniques for collecting these stem cells from the placenta may vary among the institutions, physicians, and other health care providers, including midwives and nurse practitioners, involved with this procedure. This source of hematopoietic stem cells in transplantation has many advantages, disadvantages, and controversies associated with its use.
Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko
2016-12-20
The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic d...
Folic acid inhibits homocysteine-induced cell apoptosis in human umbilical vein endothelial cells.
Cui, Shanshan; Li, Wen; Wang, Pengyan; Lv, Xin; Gao, Yuxia; Huang, Guowei
2017-12-18
Homocysteine may be responsible for vascular endothelial cell injury, which occurs early in the pathology of cardiovascular disease. Homocysteine metabolism requires enzymatic interaction with vitamins such as folic acid, vitamin B12, and vitamin B6. We hypothesized that folic acid alleviated homocysteine-induced vascular injury by regulating the metabolic pathway of apoptosis. Human umbilical vein endothelial cells were incubated for 48 h with folic acid at the concentrations of 0-1000 nmol/L, in combination with either 1000 μmol/L homocysteine or vehicle for the first 24 h. We then assessed cell viability and apoptosis by methyl thiazolyl tetrazolium assay and flow cytometry, respectively. To further investigate how folic acid influenced cell apoptosis, we also analyzed the activities of caspase-3/7 and the mRNA and protein expressions of BCL2, BAX, TP53, CASP3, and CASP8 in human umbilical vein endothelial cells. We showed that folic acid increased cell viability and decreased apoptosis in a dose-dependent manner, and that this effect was mediated by decreased caspase-3/7 activity, upregulated BCL2/BAX ratio, and downregulated TP53, CASP3, and CASP8 expressions. Thus, we conclude that folic acid inhibits cell apoptosis and ameliorates homocysteine toxicity by regulating the expression of apoptosis-related genes in human umbilical vein endothelial cells.
Polchow, Bianca; Kebbel, Kati; Schmiedeknecht, Gerno; Reichardt, Anne; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora
2012-05-16
In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student's t-test. Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC. Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority.
Kim, Yong-Man; Jung, Min-Hyung; Song, Ha-Young; Yang, Hyun Ok; Lee, Sung-Tae; Kim, Jong-Hyeok; Kim, Young-Tak; Nam, Joo-Hyun; Mok, Jung-Eun
2005-02-01
This study was designed to establish a more effective and safe culture system for adoptive immunotherapy by investigating the use of homologous cord blood plasma (HCBP) instead of fetal bovine serum (FBS), which has various limitations including ethical problems for the ex vivo expansion of human umbilical T lymphocytes. Fresh human umbilical mononuclear cell fractions were isolated by Ficoll-Hypaque density centrifugation. Nonadherent mononuclear cell fractions were cultured with anti-CD3 antibody (5 microg/ml), IL-2 (175 U/ml), and either 10% FBS or 10% HCBP. On day 8, the cellular proliferation rate and cell surface markers were assessed. There was no significant difference in proliferation when human umbilical cord blood T lymphocytes were grown in medium supplemented with FBS or HCBP (p > 0.05). In medium containing FBS, the proportion of CD3(+)CD4(+) (markers for helper T cell), CD3(+)CD8(+) (cytotoxic T cell), CD3(+)CD25(+) (activated T cell), CD3(+)CD38(+) (immature T cell), and CD3(+)CD45RO(+) (memory T cell) cells was significantly increased (p < 0.05), whereas proportion of CD3(+)CD45RA(+) (naive T cell) and CD16(+)CD56(+) (NK cell) cells was significantly decreased (p < 0.05). In HCBP supplemented medium, the proportion of CD3(+)CD8(+), CD3(+)CD25(+), CD3(+)CD45RA(+), and CD3(+)CD45RO(+) cells was significantly increased (p < 0.05). The proportion of CD3(+)CD4(+), CD3(+)CD45RO(+) and CD3(+)CD38(+) cells was significantly higher, but proportion of CD3(+)CD45RA(+) and CD3(+)CD8(+) cells was significantly lower in FBS compared with HCBP supplemented medium (p < 0.05). Our results support the feasibility of ex vivo expansion of human umbilical cord blood T lymphocytes in medium supplemented with HCBP for future adoptive cellular immunotherapy.
Stewart, Cameron; Kerridge, Ian
2012-03-01
The transformation of umbilical cord blood from being a waste product to being a valuable source of stem cells has led to the emergence of significant legal, ethical and social issues. This editorial proposes an agenda for research into the regulation of umbilical cord blood banking which focuses on issues of characterisation, consent, the interplay of public and private services, and the importance of applying property concepts. It concludes by stressing the need for reform to be based on well-informed public debate.
Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis
2011-01-01
OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851
Gryshkov, Oleksandr; Pogozhykh, Denys; Hofmann, Nicola; Pogozhykh, Olena; Mueller, Thomas; Glasmacher, Birgit
2014-01-01
Alginate cell-based therapy requires further development focused on clinical application. To assess engraftment, risk of mutations and therapeutic benefit studies should be performed in an appropriate non-human primate model, such as the common marmoset (Callithrix jacchus). In this work we encapsulated amnion derived multipotent stromal cells (MSCs) from Callithrix jacchus in defined size alginate beads using a high voltage technique. Our results indicate that i) alginate-cell mixing procedure and cell concentration do not affect the diameter of alginate beads, ii) encapsulation of high cell numbers (up to 10×106 cells/ml) can be performed in alginate beads utilizing high voltage and iii) high voltage (15–30 kV) does not alter the viability, proliferation and differentiation capacity of MSCs post-encapsulation compared with alginate encapsulated cells produced by the traditional air-flow method. The consistent results were obtained over the period of 7 days of encapsulated MSCs culture and after cryopreservation utilizing a slow cooling procedure (1 K/min). The results of this work show that high voltage encapsulation can further be maximized to develop cell-based therapies with alginate beads in a non-human primate model towards human application. PMID:25259731
Liu, Shuyun; Yuan, Yujia; Zhou, Yijie; Zhao, Meng; Chen, Younan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping
2017-10-01
Hyperuricemia is an important risk factor for cardiovascular and renal diseases. Phloretin had shown antioxidant and anti-inflammatory properties, but its role in endothelial injury is rarely reported. In this study, we aimed to investigate the protective effect of phloretin on UA-induced injury in human umbilical vein endothelial cells. The effects of UA and phloretin on cell viability, inflammation, THP-1 monocyte adhesion, endothelial cell tube formation, GLUT9 expression and UA uptake in human umbilical vein endothelial cells were evaluated. The changes of nuclear factor-kappa B/extracellular regulated protein kinases signalling were also analysed. Our results showed that UA reduced cell viability and tube formation, and increased inflammation and monocytes adhesion in human umbilical vein endothelial cells in a dose-dependent manner. In contrast, phloretin significantly attenuated pro-inflammatory factors expression and endothelial injury induced by UA. Phloretin inhibited the activation of extracellular regulated protein kinases/nuclear factor-kappa B pathway, and reduced GLUT9 and it mediated UA uptake in human umbilical vein endothelial cells. These results indicated that phloretin attenuated UA-induced endothelial injury via a synergic mechanism including direct anti-inflammatory effect and lowering cellular UA uptake. Our study suggested that phloretin might be a promising therapy for hyperuricemia-related cardiovascular diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Chen, Yan; Li, Dong; Zhang, Zhe; Takushige, Natsuko; Kong, Bei-Hua; Wang, Guo-Yun
2015-01-01
Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs) have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal and multipotentiality of differentiation. We investigated how human umbilical cord-MSCs (hUC-MSCs) could affect nerve fibers density in endometriosis. In this experimental study, hUC-MSCs were isolated from fresh human umbilical cord, characterized by flow cytometry, and then transplanted into surgically induced endometriosis in a rat model. Ectopic endometrial implants were collected four weeks later. The specimens were sectioned and stained immunohistochemically with antibodies against neurofilament (NF), nerve growth factor (NGF), NGF receptor p75 (NGFRp75), tyrosine kinase receptor-A (Trk-A), calcitonin gene-related peptide (CGRP) and substance P (SP) to compare the presence of different types of nerve fibers between the treatment group with the transplantation of hUC-MSCs and the control group without the transplantation of hUC-MSCs. There were significantly less nerve fibers stained with specific markers we used in the treatment group than in the control group (p<0.05). MSC from human umbilical cord reduced nerve fiber density in the treatment group with the transplantation of hUC-MSCs.
Kirk, Kaitlyn; Hao, Ergeng; Lahmy, Reyhaneh; Itkin-Ansari, Pamela
2014-05-01
There are several challenges to successful implementation of a cell therapy for insulin dependent diabetes derived from human embryonic stem cells (hESC). Among these are development of functional insulin producing cells, a clinical delivery method that eliminates the need for chronic immunosuppression, and assurance that hESC derived tumors do not form in the patient. We and others have shown that encapsulation of cells in a bilaminar device (TheraCyte) provides immunoprotection in rodents and primates. Here we monitored human insulin secretion and employed bioluminescent imaging (BLI) to evaluate the maturation, growth, and containment of encapsulated islet progenitors derived from CyT49 hESC, transplanted into mice. Human insulin was detectable by 7 weeks post-transplant and increased 17-fold over the course of 8 weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Further, bioluminescent imaging revealed for the first time that hESCs remained fully contained in encapsulation devices for up to 150 days, the longest period tested. Collectively, the data suggest that encapsulated hESC derived islet progenitors hold great promise as an effective and safe cell replacement therapy for insulin dependent diabetes. Copyright © 2014. Published by Elsevier B.V.
Chan, L L; Lin, H P
1999-08-01
A 25-month-old boy with beta-thalassaemia major was presented with an opportunity for umbilical cord blood transplantation when his unborn sibling was diagnosed in utero to be a beta-thalassaemia carrier and also human leucocyte antigen compatible. A barely adequate amount of cord blood was collected at the birth of his sibling and infused into the patient after appropriate chemo-conditioning. Engraftment occurred without major complications. The subject is now alive and well 9 months post-transplant, thus marking our first success in umbilical cord blood transplantation.
Kakudo, Natsuko; Morimoto, Naoki; Ogawa, Takeshi; Hihara, Masakatsu; Notodihardjo, Priscilla Valentin; Matsui, Makoto; Tabata, Yasuhiko; Kusumoto, Kenji
2017-07-01
Platelet-rich plasma (PRP), which contains highly concentrated platelets, is produced by centrifuging whole blood. It is a safe and readily available source of a wide range of growth factors necessary for angiogenesis. Gelatin hydrogel granules have been designed and prepared for the controlled release of many growth factors. The angiogenic effect of human PRP was examined in vitro, and the effect of its subcutaneous injection with gelatin hydrogel granules into murine subcutis was evaluated. Human PRP was prepared using a double-spin method. The concentration of growth factors and the platelet count were examined in PRP and in vitro, and the angiogenic activity of human umbilical vein endothelial cells (HUVECs) in co-culture with human dermal fibroblast cells (NHDFs) in the presence and absence of PRP was evaluated. Then, in vivo, PRP, either free or with gelatin hydrogel granules, was injected subcutaneously into tiebacks on mice. Using a microscope and Kurabo angiogenesis image analyser software, the area containing newly formed capillaries was evaluated histologically and the microvascular network score was calculated. PRP was shown to contain high concentrations of PDGF, VEGF and TGFβ and had an angiogenic effect on the co-culture system. PRP with gelatin hydrogel granules significantly enlarged the area containing newly formed capillaries and promoted the microvascular network in murine subcutaneous tissue. PRP encapsulated in gelatin hydrogel microspheres shows promise for enhancing angiogenic effects in murine subcutis and could represent a potential therapeutic combination for the treatment of ischaemic disorders. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Hur, Sun-Jin; Kim, Young-Chan; Choi, Inwook; Lee, Si-Kyung
2013-01-01
The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract. PMID:23965957
Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong
2016-08-31
Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer.
Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong
2016-01-01
Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer. PMID:27576898
de Castro, Ana; Concheiro, Marta; Shakleya, Diaa M.; Huestis, Marilyn A.
2011-01-01
A liquid chromatography mass spectrometric selected reaction monitoring mode (SRM) method for methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), cocaine, benzoylecgonine (BE), 6-acetylmorphine, morphine and codeine quantification in human umbilical cord was developed and fully validated. Analytes were extracted from homogenized tissue (1 g) by solid phase extraction. Linearity was 2.5–500 ng/g, except for methadone (10–2000 ng/g). Method imprecision was <12.7%CV with analytical recovery 85.9–112.7%, extraction efficiency >59.2%, matrix effect 4.5–39.5%, process efficiency 48.6–92.6% and stability >84.6%. Analysis of an umbilical cord following controlled methadone administration and illicit drug use contained in ng/g, 40.3 morphine, 3.6 codeine, 442 BE, 186 methadone and 45.9 EDDP. PMID:19656745
2012-01-01
Background In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. Materials and methods A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student’s t-test. Results Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC. Conclusion Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority. PMID:22591741
NASA Astrophysics Data System (ADS)
Tan, Fei; Mo, Xiao-hui; Zhao, Jian; Liang, Hui; Chen, Zhong-jian; Wang, Xiu-li
2017-02-01
Antiangiogenesis has been widely accepted as an attractive strategy to combat tumor growth, invasion, and metastasis. An actively targeting nanoparticle-based drug delivery system (nano-DDS) would provide an alternative method to achieve antiangiogenic antitumor therapy. In the present study, our group fabricated novel nano-DDS, TLTYTWS (TS) peptide-modified poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (TS-NPs) encapsulating a drug with antiangiogenic potential, paclitaxel (Ptx) (TS-Ptx-NPs). The nanoparticles were uniformly spherical and had a unimodal particle size distribution and slightly negative zeta potential. TS-NPs accumulated significantly in human umbilical vein endothelial cells (HUVECs) via energy-dependent and caveolae- and lipid raft-mediated endocytosis and improved the antiproliferative, antimigratory, and antitube-forming abilities of paclitaxel in vitro. Following intravenous administration, TS-Ptx-NPs presented favorable pharmacokinetic profiles. Melanoma distribution assays confirmed that TS-NPs achieved higher accumulation and penetration at melanoma sites. These results collectively indicated that TLTYTWS-decorated nanoparticles can be considered to be a promising nano-DDS for chemotherapies targeting tumor angiogenesis and have great potential to improve the efficacy of antiangiogenic therapy in melanoma tumor-bearing nude mice.
Leukotriene B4-loaded microspheres: a new therapeutic strategy to modulate cell activation
Nicolete, Roberto; Rius, Cristina; Piqueras, Laura; Jose, Peter J; Sorgi, Carlos A; Soares, Edson G; Sanz, Maria J; Faccioli, Lúcia H
2008-01-01
Background Leukotriene B4 (LTB4) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB4 released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB4-loaded MS. Results In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB4-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB4-loaded MS also increase peroxisome proliferator-activated receptor-α (PPARα) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-1 (MCP-1) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB4-loaded MS. Conclusion LTB4-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response. PMID:18627613
Laser-assisted fibrinogen bonding of umbilical vein grafts.
Oz, M C; Williams, M R; Souza, J E; Dardik, H; Treat, M R; Bass, L S; Nowygrod, R
1993-06-01
Despite success with autologous tissue welding, laser welding of synthetic vascular prostheses has not been possible. The graft material appears inert and fails to allow the collagen breakdown and electrostatic bonding that results in tissue welding. To develop a laser welding system for graft material, we repaired glutaraldehyde-tanned human umbilical cord vein graft incisions using laser-assisted fibrinogen bonding (LAFB) technology. Modified umbilical vein graft was incised transversely (1.2 cm). Incisions were repaired using sutures, laser energy alone, or LAFB. For LAFB, indocyanine green dye was mixed with human fibrinogen and the compound applied with forceps onto the weld site prior to exposure to 808 nm diode laser energy (power density 4.8 W/cm 2). Bursting pressures for sutured repairs (126.6 +/- 23.4 mm Hg) were similar to LAFB anastomoses (111.6 +/- 55.0 mm Hg). No evidence of collateral thermal injury to the graft material was noted. In vivo evaluation of umbilical graft bonding with canine arteries demonstrates that LAFB can reliably reinforce sutured anastomoses. The described system for bonding graft material with laser exposed fibrinogen may allow creation or reinforcement of vascular anastomoses in procedures where use of autologous tissue is not feasible.
He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan
2011-12-01
Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.
NASA Astrophysics Data System (ADS)
Wattanakull, Porntida; Killingsworth, Murray C.; Pissuwan, Dakrong
2017-11-01
Currently, human T cell therapy is of considerable scientific interest. In addition, cell encapsulation has become an attractive approach in biomedical applications. Here, we propose an innovative technique of single-cell encapsulation of human T cells using polyelectrolytes combined with gold nanorods. We have demonstrated encapsulation of human Jurkat T cells with poly(sodium 4-styrenesulfonate) (PSS)-coated gold nanorods (PSS-GNRs). Other forms of encapsulation, using polyelectrolytes without GNRs, were also performed. After Jurkat T cells were encapsulated with poly(allylamine hydrochloride) (PAH) and/or PSS-GNRs or PSS, most cells survived and could proliferate. Jurkat T cells encapsulated with a double layer of PSS-GNR/PAH (PSS-GNR/PAH@Jurkat) showed the highest rate of cell proliferation when compared to 24-h encapsulated cells. With the exception of IL-6, no significant induction of inflammatory cytokines (IL-2, IL-1β, and TNF-α) was observed. Interestingly, when encapsulated cells were co-cultured with THP-1 macrophages, co-cultures exhibited TNF-α production enhancement. However, the co-culture of THP-1 macrophage and PSS-GNR/PAH@Jurkat or PSS/PAH@Jurkat did not enhance TNF-α production. No significant inductions of IL-2, IL-1β, and IL-6 were detected. These data provide promising results, demonstrating the potential use of encapsulated PSS-GNR/PAH@Jurkat to provide a more inert T cell population for immunotherapy application and other biomedical applications.
Dulugiac, Magda; Moldovan, Lucia; Zarnescu, Otilia
2015-10-01
We have identified some critical aspects concerning umbilical cord tissue mesenchymal stem cells: the lack of standards for cell isolation, expansion and cryopreservation, the lack of unanimous opinions upon their multilineage differentiation potential and the existence of very few results related to the functional characterization of the cells isolated from cryopreserved umbilical cord tissue. Umbilical cord tissue cryopreservation appears to be the optimal solution for umbilical cord tissue mesenchymal stem cells storage for future clinical use. Umbilical cord tissue cryopreservation allows mesenchymal stem cells isolation before expected use, according with the specific clinical applications, by different customized isolation and expansion protocols agreed by cell therapy institutions. Using an optimized protocol for umbilical cord tissue cryopreservation in autologous cord blood plasma, isolation explant method and growth media supplemented with FBS or human serum, we performed comparative studies with respect to the characteristics of mesenchymal stem cells (MSC) isolated from different compartments of the same umbilical cord tissue such as Wharton's jelly, vein, arteries, before cryopreservation (pre freeze) and after cryopreservation (post thaw). Expression of histochemical and immunohistochemical markers as well as electron microscopy observations revealed similar adipogenic, chondrogenic and osteogenic differentiation capacity for cells isolated from pre freeze and corresponding post thaw tissue fragments of Wharton's jelly, vein or arteries of the same umbilical cord tissue, regardless growth media used for cells isolation and expansion. Our efficient umbilical cord tissue cryopreservation protocol is reliable for clinical applicability of mesenchymal stem cells that could next be isolated and expanded in compliance with future accepted standards. Copyright © 2015 Elsevier Ltd. All rights reserved.
Islet Transplantation and Encapsulation: An Update on Recent Developments
Vaithilingam, Vijayaganapathy; Tuch, Bernard E.
2011-01-01
Human islet transplantation can provide good glycemic control in diabetic recipients without exogenous insulin. However, a major factor limiting its application is the recipient's need to adhere to life-long immunosuppression, something that has serious side effects. Microencapsulating human islets is a strategy that should prevent rejection of the grafted tissue without the need for anti-rejection drugs. Despite promising studies in various animal models, the encapsulated human islets so far have not made an impact in the clinical setting. Many non-immunological and immunological factors such as biocompatibility, reduced immunoprotection, hypoxia, pericapsular fibrotic overgrowth, effects of the encapsulation process and post-transplant inflammation hamper the successful application of this promising technology. In this review, strategies are discussed to overcome the above-mentioned factors and to enhance the survival and function of encapsulated insulin-producing cells, whether in islets or surrogate β-cells. Studies at our center show that barium alginate microcapsules are biocompatible in rodents, but not in humans, raising concerns over the use of rodents to predict outcomes. Studies at our center also show that the encapsulation process had little or no effect on the cellular transcriptome of human islets and on their ability to function either in vitro or in vivo. New approaches incorporating further modifications to the microcapsule surface to prevent fibrotic overgrowth are vital, if encapsulated human islets or β-cell surrogates are to become a viable therapy option for type 1 diabetes in humans. PMID:21720673
Hou, Siyuan; Riley, Christopher B; Mitchell, Cynthia A; Shaw, R Anthony; Bryanton, Janet; Bigsby, Kathryn; McClure, J Trenton
2015-09-01
Immunoglobulin G (IgG) is crucial for the protection of the host from invasive pathogens. Due to its importance for human health, tools that enable the monitoring of IgG levels are highly desired. Consequently there is a need for methods to determine the IgG concentration that are simple, rapid, and inexpensive. This work explored the potential of attenuated total reflectance (ATR) infrared spectroscopy as a method to determine IgG concentrations in human serum samples. Venous blood samples were collected from adults and children, and from the umbilical cord of newborns. The serum was harvested and tested using ATR infrared spectroscopy. Partial least squares (PLS) regression provided the basis to develop the new analytical methods. Three PLS calibrations were determined: one for the combined set of the venous and umbilical cord serum samples, the second for only the umbilical cord samples, and the third for only the venous samples. The number of PLS factors was chosen by critical evaluation of Monte Carlo-based cross validation results. The predictive performance for each PLS calibration was evaluated using the Pearson correlation coefficient, scatter plot and Bland-Altman plot, and percent deviations for independent prediction sets. The repeatability was evaluated by standard deviation and relative standard deviation. The results showed that ATR infrared spectroscopy is potentially a simple, quick, and inexpensive method to measure IgG concentrations in human serum samples. The results also showed that it is possible to build a united calibration curve for the umbilical cord and the venous samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Kermani, Abbas Jafari; Fathi, Fardin; Mowla, Seyed Javad
2008-04-01
Stem cells are defined by two main characteristics: self-renewal capacity and commitment to multi-lineage differentiation. The cells have a great therapeutic potential in repopulating damaged tissues as well as being genetically manipulated and used in cell-based gene therapy. Umbilical cord vein is a readily available and inexpensive source of stem cells that are capable of generating various cell types. Despite the recent isolation of human umbilical cord vein mesenchymal stem cells (UVMSC), the self-renewal capacity and the potential clinical application of the cells are not well known. In the present study, we have successfully isolated and cultured human UVMSCs. Our data further revealed that the isolated cells express the self-renewal genes Oct-4, Nanog, ZFX, Bmi-1, and Nucleostemin; but not Zic-3, Hoxb-4, TCL-1, Tbx-3 and Esrrb. In addition, our immunocytochemistry results revealed the expression of SSEA-4, but not SSEA-3, TRA-1-60, and TRA-1-81 embryonic stem cell surface markers in the cells. Also, we were able to transfect the cells with a reporter, enhanced green fluorescent protein (EGFP), and a therapeutic human brain-derived neurotrophic factor (hBDNF) gene by means of electroporation and obtained a stable cell line, which could constantly express both transgenes. The latter data provide further evidence on the usefulness of umbilical cord vein mesenchymal stem cells as a readily available source of stem cells, which could be genetically manipulated and used in cell-based gene therapy applications.
Cheong, Clara Y; Chng, Keefe; Lim, Mei Kee; Amrithraj, Ajith I; Joseph, Roy; Sukarieh, Rami; Chee Tan, Yong; Chan, Louiza; Tan, Jun Hao; Chen, Li; Pan, Hong; Holbrook, Joanna D; Meaney, Michael J; Seng Chong, Yap; Gluckman, Peter D; Stünkel, Walter
2014-09-01
CXCL14 is a chemokine that has previously been implicated in insulin resistance in mice. In humans, the role of CXCL14 in metabolic processes is not well established, and we sought to determine whether CXCL14 is a risk susceptibility gene important in fetal programming of metabolic disease. For this purpose, we investigated whether CXCL14 is differentially regulated in human umbilical cords of infants with varying birth weights. We found an elevated expression of CXCL14 in human low birth weight (LBW) cords, as well as in cords from nutritionally restricted Macaca fascicularis macaques. To further analyze the regulatory mechanisms underlying the expression of CXCL14, we examined CXCL14 in umbilical cord-derived mesenchymal stem cells (MSCs) that provide an in vitro cell-based system amenable to experimental manipulation. Using both whole frozen cords and MSCs, we determined that site-specific CpG methylation in the CXCL14 promoter is associated with altered expression, and that changes in methylation are evident in LBW infant-derived umbilical cords that may indicate future metabolic compromise through CXCL14.
Wajid, Nadia; Naseem, Rashida; Anwar, Sanam Saiqa; Awan, Sana Javaid; Ali, Muhammad; Javed, Sara; Ali, Fatima
2015-09-01
Stomal cells derived from Wharton's jelly of human umbilical cord (WJMSCs) are considered as the potential therapeutic agents for regeneration and are getting famous for stem cell banking. Our study aims to evaluate the effects of gestational diabetes on proliferation capacity and viability of WJMSCs. Mesenchymal stromal cells were isolated from Wharton's jelly of human umbilical cords from normal and gestational diabetic (DWJMSCs) mothers. Growth patterns of both types of cells were analyzed through MTT assay and population doubling time. Cell survival, cell death and glucose utilization were estimated through trypan blue exclusion assay, LDH assay and glucose detection assay respectively. Angiogenic ability was evaluated by immunocytochemistry and ELISA for VEGF A. Anti-cancerous potential was analyzed on HeLa cells. DWJMSCs exhibited low proliferative rate, increased population doubling time, reduced cell viability and increased cell death. Interestingly, DWJMSCs were found to have a reduced glucose utilization and anti-cancerous ability while enhanced angiogenic ability. Gestational diabetes induces adverse effects on growth, angiogenic and anti-cancerous potential of WJMSCs.
Ethical issues relating the the banking of umbilical cord blood in Mexico.
Serrano-Delgado, V Moises; Novello-Garza, Barbara; Valdez-Martinez, Edith
2009-08-14
Umbilical cord banks are a central component, as umbilical cord tissue providers, in both medical treatment and scientific research with stem cells. But, whereas the creation of umbilical cord banks is seen as successful practice, it is perceived as a risky style of play by others. This article examines and discusses the ethical, medical and legal considerations that arise from the operation of umbilical cord banks in Mexico. A number of experts have stated that the use of umbilical cord goes beyond the mere utilization of human tissues for the purpose of treatment. This tissue is also used in research studies: genetic studies, studies to evaluate the effectiveness of new antibiotics, studies to identify new proteins, etc. Meanwhile, others claim that the law and other norms for the functioning of cord banks are not consistent and are poorly defined. Some of these critics point out that the confidentiality of donor information is handled differently in different places. The fact that private cord banks offer their services as "biological insurance" in order to obtain informed consent by promising the parents that the tissue that will be stored insures the health of their child in the future raises the issue of whether the consent is freely given or given under coercion. Another consideration that must be made in relation to privately owned cord banks has to do with the ownership of the stored umbilical cord. Conflicts between moral principles and economic interests (non-moral principles) cause dilemmas in the clinical practice of umbilical cord blood storage and use especially in privately owned banks. This article presents a reflection and some of the guidelines that must be followed by umbilical cord banks in order to deal with these conflicts. This reflection is based on the fundamental notions of ethics and public health and seeks to be a contribution towards the improvement of umbilical cord banks' performance.
Ethical issues relating to the banking of umbilical cord blood in Mexico
2009-01-01
Background Umbilical cord banks are a central component, as umbilical cord tissue providers, in both medical treatment and scientific research with stem cells. But, whereas the creation of umbilical cord banks is seen as successful practice, it is perceived as a risky style of play by others. This article examines and discusses the ethical, medical and legal considerations that arise from the operation of umbilical cord banks in Mexico. Discussion A number of experts have stated that the use of umbilical cord goes beyond the mere utilization of human tissues for the purpose of treatment. This tissue is also used in research studies: genetic studies, studies to evaluate the effectiveness of new antibiotics, studies to identify new proteins, etc. Meanwhile, others claim that the law and other norms for the functioning of cord banks are not consistent and are poorly defined. Some of these critics point out that the confidentiality of donor information is handled differently in different places. The fact that private cord banks offer their services as "biological insurance" in order to obtain informed consent by promising the parents that the tissue that will be stored insures the health of their child in the future raises the issue of whether the consent is freely given or given under coercion. Another consideration that must be made in relation to privately owned cord banks has to do with the ownership of the stored umbilical cord. Summary Conflicts between moral principles and economic interests (non-moral principles) cause dilemmas in the clinical practice of umbilical cord blood storage and use especially in privately owned banks. This article presents a reflection and some of the guidelines that must be followed by umbilical cord banks in order to deal with these conflicts. This reflection is based on the fundamental notions of ethics and public health and seeks to be a contribution towards the improvement of umbilical cord banks' performance. PMID:19678958
Qiu, Ying; Yun, Mark M; Han, Xia; Zhao, Ruidong; Zhou, Erxia; Yun, Sheng
2014-01-01
Background: Human umbilical cord mesenchymal stromal cells (UC-MSCs) have low immunogenicity and immune regulation. To investigate immunomodulatory effects of human UC-MSCs on MHC class II expression and allograft, we transplanted heart of transgenic rats with MHC class II expression on vascular endothelium. Methods: UC-MSCs were obtained from human umbilical cords and confirmed with flow cytometry analysis. Transgenic rat line was established using the construct of human MHC class II transactivator gene (CIITA) under mouse ICAM-2 promoter control. The induced MHC class II expression on transgenic rat vascular endothelial cells (VECs) was assessed with immunohistological staining. And the survival time of cardiac allograft was compared between the recipients with and without UC-MSC transfusion. Results: Flow cytometry confirmed that the human UC-MSCs were positive for CD29, CD44, CD73, CD90, CD105, CD271, and negative for CD34 and HLA-DR. Repeated infusion of human UC-MSCs reduced MHC class II expression on vascular endothelia of transplanted hearts, and increased survival time of allograft. The UC-MSCs increased regulatory cytokines IL10, transforming growth factor (TGF)-β1 and suppressed proinflammatory cytokines IL2 and IFN-γ in vivo. The UC-MSC culture supernatant had similar effects on cytokine expression, and decreased lymphocyte proliferation in vitro. Conclusions: Repeated transfusion of the human UC-MSCs reduced MHC class II expression on vascular endothelia and prolonged the survival time of rat cardiac allograft. PMID:25126177
Nguyen, Minh-Hiep; Pham, Ngoc-Duy; Dong, Bingxue; Nguyen, Thi-Huynh-Nga; Bui, Chi-Bao; Hadinoto, Kunn
2017-11-01
While the radioprotective activity of curcumin against genotoxicity has been well established, its poor oral bioavailability has limited its successful clinical applications. Nanoscale formulations, including liposomes, have been demonstrated to improve curcumin bioavailability. The objective of the present work was (1) to prepare and characterize curcumin-encapsulated liposomes (i.e. size, colloidal stability, encapsulation efficiency, and payload), and (2) subsequently to evaluate their radioprotective activity against genotoxicity in human blood cells caused by Gamma Cobalt-60 irradiation. The curcumin-encapsulated liposomes were prepared by lipid-film hydration method using commercial phosphatidylcholine (i.e. Phospholipon ® 90G). The blood cells were obtained from healthy male donors (n = 3) under an approved ethics protocol. The cell uptake and the radioprotective activity of the curcumin-encapsulated liposomes were characterized by fluorescence microscopy and micronucleus assay, respectively. Nanoscale curcumin-encapsulated liposomes exhibiting good physical characteristics and successful uptake by the human blood cells were successfully prepared. The radioprotective activity of the curcumin-encapsulated liposomes was found to be dependent on the curcumin concentration, where an optimal concentration existed (i.e. 30 μg/mL) independent of the irradiation dose, above which the radioprotective activity had become stagnant (i.e. no more reduction in the micronuclei frequency). The present results established for the first time the radioprotective activity of curcumin-encapsulated liposomes in human blood cells, which coupled by its well-established bioavailability, boded well for its potential application as a nanoscale delivery system of other radioprotective phytochemicals.
NASA Astrophysics Data System (ADS)
Makhadmeh, Ghaseb N.; Aziz, Azlan Abdul; Razak, Khairunisak Abdul; Al-Akhras, M.-Ali H.
2018-02-01
This study involves the synthesis of Protoporphyrin IX (PpIX) encapsulated with Silica Nanoparticles (SiNPs) as an application for Photodynamic therapy. Semi-rigid artificial tissues with optical features similar to human tissue were used as sample materials to ascertain the efficacy of PpIX encapsulated with SiNPs. The disparity in optical characteristics (transmittance, reflectance, scattering, and absorption) of tissues treated with encapsulated PpIX and naked PpIX under light exposure (Intensity at 408 nm ~1.19 mW/cm2) was explored. The optimal exposure times required for naked PpIX and SiNPs encapsulated PpIX to engulf Red Blood Cells (RBCs) in the artificial tissue were subsequently measured. Comparative analysis showed that the encapsulated PpIX has a 91.5 % higher efficacy than naked PpIX. The results prove the applicability of PpIX encapsulated with SiNP on artificial tissue and possible use on human tissue.
Effects of umbilical cord blood stem cells on healing factors for diabetic foot injuries.
Çil, N; Oğuz, E O; Mete, E; Çetinkaya, A; Mete, G A
2017-01-01
The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.
Schmidt, Dörthe; Asmis, Lars M; Odermatt, Bernhard; Kelm, Jens; Breymann, Christian; Gössi, Matthias; Genoni, Michele; Zund, Gregor; Hoerstrup, Simon P
2006-10-01
Tissue-engineered living blood vessels (TEBV) with growth capacity represent a promising new option for the repair of congenital malformations. We investigate the functionality of TEBV with endothelia generated from human umbilical cord blood-derived endothelial progenitor cells. Tissue-engineered living blood vessels were generated from human umbilical cord-derived myofibroblasts seeded on biodegradable vascular scaffolds, followed by endothelialization with differentiated cord blood-derived endothelial progenitor cells. During in vitro maturation the TEBV were exposed to physiologic conditioning in a flow bioreactor. For functional assessment, a subgroup of TEBV was stimulated with tumor necrosis factor-alpha. Control vessels endothelialized with standard vascular endothelial cells were treated in parallel. Analysis of the TEBV included histology, immunohistochemistry, biochemistry (extracellular matrix analysis, DNA), and biomechanical testing. Endothelia were analyzed by flow cytometry and immunohistochemistry (CD31, von Willebrand factor, thrombomodulin, tissue factor, endothelial nitric oxide synthase). Histologically, a three-layered tissue organization of the TEBV analogous to native vessels was observed, and biochemistry revealed the major matrix constituents (collagen, proteoglycans) of blood vessels. Biomechanical properties (Young's modulus, 2.03 +/- 0.65 MPa) showed profiles resembling those of native tissue. Endothelial progenitor cells expressed typical endothelial cell markers CD31, von Willebrand factor, and endothelial nitric oxide synthase comparable to standard vascular endothelial cells. Stimulation with tumor necrosis factor-alpha resulted in physiologic upregulation of tissue factor and downregulation of thrombomodulin expression. These results indicate that TEBV with tissue architecture and functional endothelia similar to native blood vessels can be successfully generated from human umbilical cord progenitor cells. Thus, blood-derived progenitor cells obtained before or at birth may enable the clinical realization of tissue engineering constructs for pediatric applications.
Rius, Cristina; Piqueras, Laura; González-Navarro, Herminia; Albertos, Fernando; Company, Chantal; López-Ginés, Concha; Ludwig, Andreas; Blanes, Jose-Ignacio; Morcillo, Esteban J; Sanz, Maria-Jesus
2013-01-01
Angiotensin-II (Ang-II) promotes the interaction of mononuclear cells with arterioles and neutrophils with postcapillary venules. To investigate the mechanisms underlying this dissimilar response, the involvement of fractalkine (CX(3)CL1) was explored. Enhanced CX(3)CL1 expression was detected in both cremasteric arterioles and postcapillary venules 24 hours after Ang-II intrascrotal injection. Arteriolar leukocyte adhesion was the unique parameter significantly reduced (83%) in animals lacking CX(3)CL1 receptor (CX(3)CR1). Human umbilical arterial and venous endothelial cell stimulation with 1 μmol/L Ang-II increased CX(3)CL1 expression, yet neutralization of CX(3)CL1 activity only significantly inhibited Ang-II-induced mononuclear cell-human umbilical arterial endothelial cell interactions (73%) but not with human umbilical venous endothelial cells. The use of small interfering RNA revealed the involvement of tumor necrosis factor-α in Ang-II-induced CX(3)CL1 upregulation and mononuclear cell arrest. Nox5 knockdown with small interfering RNA or pharmacological inhibition of extracellular signal-regulated kinases1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB also abolished these responses. Finally, when human umbilical arterial endothelial cells were costimulated with Ang-II, tumor necrosis factor-α, and interferon-γ, CX(3)CL1 expression and mononuclear cell adhesiveness were more pronounced than when each stimulus was provided alone. These results suggest that Ang-II induces functional CX(3)CL1 expression in arterial but not in venous endothelia. Thus, targeting endothelial CX(3)CL1-mononuclear leukocyte CX(3)CR1 interactions may constitute a new therapeutic strategy in the treatment of Ang-II-associated cardiovascular diseases.
Cardoso, A A; Li, M L; Batard, P; Hatzfeld, A; Brown, E L; Levesque, J P; Sookdeo, H; Panterne, B; Sansilvestri, P; Clark, S C
1993-01-01
Using optimal culture conditions in which the transforming growth factor beta 1 (TGF-beta 1) inhibitory loop has been interrupted by antisense TGF-beta 1 oligonucleotides or anti-TGF-beta serum, we have compared the proliferative capacities and the abilities of the CD34+ CD38- cell populations from bone marrow and umbilical cord blood to generate early progenitors in long-term cultures. The CD34+ CD38- fraction of umbilical cord blood accounts for 4% of the CD34+ fraction compared to only 1% in bone marrow, indicating that umbilical cord blood may be relatively enriched in stem cells. We estimate that the CD34+ CD38- cells from a typical umbilical cord blood sample produce equivalent numbers of colony-forming units (CFU)-granulocyte/erythrocyte/macrophage/megakaryocyte, twice as many CFU-granulocyte/macrophage (GM) and 3 times as many burst-forming units-erythroid as the same population from an average bone marrow sample used in adult transplantation. In addition, the colonies resulting from the umbilical cord blood samples were significantly larger than those from bone marrow, indicating a greater growth potential. However, the content of later progenitors, which may be important for short-term reconstitution, was less in umbilical cord blood-derived than in bone marrow-derived cell preparations, as estimated by a 4-fold lower production of CFU-GM in long-term cultures of CD34+ CD38+ cells. This deficit is partially compensated by the higher growth capacity of the resulting CFU-GM. These studies suggest that umbilical cord blood is a suitable source of cells for adult transplantation. PMID:7690969
Jang, Gun-Hyuk; Jeong, Yeun-Ik; Hwang, In-Sung; Jeong, Yeon-woo; Kim, Yu-Kyung; Shin, Taeyoung; Kim, Nam-Hyung; Hyun, Sang-Hwan; Jeung, Eui-Bae; Hwang, Woo-Suk
2013-01-01
The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT) using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR) when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT) and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC) were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC) compared with the human umbilical vein endothelial cells (HUVEC). Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative for the generation of transgenic large animals with multiple genetic modifications. PMID:23704897
Han, Yanfu; Tao, Ran; Han, Yanqing; Sun, Tianjun; Chai, Jiake; Xu, Guang; Liu, Jing
2014-02-01
Tissue-engineered dermis (TED) is thought to be the best treatment for skin defect wounds; however, lack of vascular structures in these products can cause slow vascularization or even transplant failure. We assessed the therapeutic potential of microencapsulated human umbilical cord mesenchymal stromal cells (hUCMSCs) expressing vascular endothelial growth factor (VEGF) in vascularization of TED. hUCMSCs were isolated by means of enzymatic digestion and identified by means of testing biological characteristics. hUCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. Collagen-chitosan laser drilling acellular dermal matrix (ADM) composite scaffold was prepared by means of the freeze dehydration and dehydrothermal cross-linking method. hUCMSC-derived fibroblasts were implanted on composite scaffolds to construct TED. TED with microencapsulated VEGF gene-modified hUCMSCs was then transplanted into skin defect wounds in pigs. The angiogenesis of TED at 1 week and status of wound healing at 3 weeks were observed. The collagen-chitosan laser ADM composite has a uniform microporous structure. This composite has been used to grow hUCMSC-derived fibroblasts in vitro and to successfully construct stem cell-derived TED. Microencapsulated VEGF gene-modified hUCMSCs were prepared with the use of a sodium alginate-barium chloride one-step encapsulation technology. Seven days after the transplantation of the stem cell-derived TED and microencapsulated VEGF gene-modified hUCMSCs into the skin defect wounds on the backs of miniature pigs, the VEGF expression increased and the TED had a higher degree of vascularization. Re-epithelialization of the wound was completed after 3 weeks. Microencapsulated VEGF gene-modified hUCMSCs can effectively improve the vascularization of TED and consequently the quality of wound healing. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar
2013-12-01
Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.
Mueller, Dolores; Jung, Kathrin; Winter, Manuel; Rogoll, Dorothee; Melcher, Ralph; Kulozik, Ulrich; Schwarz, Karin; Richling, Elke
2018-05-15
Anthocyanins are flavonoids that have been suggested to provide beneficial health effects. The biological activity of anthocyanins is influenced by their pharmacokinetic properties, but anthocyanins are associated with limited bioavailability in humans. In the presented study, we investigated how the encapsulation of bilberry extract (BE), a source of anthocyanins, with either whey protein or citrus pectin influences the bioavailability and intestinal accessibility of anthocyanins in humans. We performed an intervention study that analyzed anthocyanins and their degradation products in the urine, plasma, and ileal effluent of healthy volunteers and ileostomists (subjects without an intact colon). We were able to show, that whey protein encapsulation modulated short-term bioavailability and that citrus pectin encapsulation increased intestinal accessibility during passage through the small intestine and modulated the formation of the degradation product phloroglucinol aldehyde (PGAL) in human plasma. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LIU, GUOHUI; CHEN, XI; ZHOU, WU; YANG, SHUHUA; YE, SHUNAN; CAO, FAQI; LIU, YI; XIONG, YUAN
2016-01-01
Aqueous human placenta extract (HPE) has been previously used to treat chronic soft tissue ulcer; however, the optimal dosage of HPE has yet to be elucidated. The present study investigated a novel nanofiber gel composed through layer-by-layer (LbL) self-assembly, in which HPE was encapsulated. IKVAV, RGD, RAD16 and FGL-PA were screened and combined to produce an optimal vehicle nanofiber gel through LbL assembly. Subsequently, the aqueous HPE was encapsulated into this nanofiber at the appropriate concentration, and the morphology, particle size, drug loading efficacy, encapsulation rate, release efficiency and structure validation were detected. The encapsulation efficiency of all three HPE samples was >90%, the nanofiber gel exhibited a slow releasing profile, and the structure of HPE encapsulated in the nanofiber gel was unvaried. In conclusion, this type of novel composite nanocapsules may offer a promising delivery system for HPE. PMID:27073463
Terai, Masanori; Uyama, Taro; Sugiki, Tadashi; Li, Xiao-Kang; Umezawa, Akihiro; Kiyono, Tohru
2005-01-01
Human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) are expected to serve as an excellent alternative to bone marrow-derived human mesenchymal stem cells. However, it is difficult to study them because of their limited life span. To overcome this problem, we attempted to produce a strain of UCBMSCs with a long life span and to investigate whether the strain could maintain phenotypes in vitro. UCBMSCs were infected with retrovirus carrying the human telomerase reverse transcriptase (hTERT) to prolong their life span. The UCBMSCs underwent 30 population doublings (PDs) and stopped dividing at PD 37. The UCBMSCs newly established with hTERT (UCBTERTs) proliferated for >120 PDs. The p16INK4a/RB braking pathway leading to senescence can be inhibited by introduction of Bmi-1, a polycomb-group gene, and human papillomavirus type 16 E7, but the extension of the life span of the UCBMSCs with hTERT did not require inhibition of the p16INK4a/RB pathway. The characteristics of the UCBTERTs remained unchanged during the prolongation of life span. UCBTERTs provide a powerful model for further study of cellular senescence and for future application to cell-based therapy by using umbilical cord blood cells. PMID:15647378
Aghamohammadi, Azar; Zafari, Mandana; Moslemi, Leila
2012-06-01
Comparing the effect of topical human milk application and dry cord care on cord separation time. This research was a randomized clinical trial study on 130 singleton and mature newborns. Newborns were placed randomly in groups of topical application of human milk and dry cord care. The umbilical separation time was compared in the two groups. Data was analyzed by SPSS software. Independent Samples t-Test, χ(2), Fisher were used in this study. Median time of cord separation in human milk application group (150.95±28.68 hours) was significantly shorter than dry cord care group (180.93±37.42 hours) (P<0.001). Topical application of human milk on the remaining part of the cord reduces the cord separation time and it can be used as an easy, cheap and non invasive way for cord care.
Chaikham, Pittaya; Apichartsrangkoon, Arunee
2014-01-01
The effect of encapsulated Lactobacillus acidophilus LA5 along with pasteurized longan juice on the colon microbiota was investigated by applying a dynamic model of the human gastrointestinal tract. Encapsulated L. acidophilus LA5 in pasteurized longan juice or sole encapsulated L. acidophilus LA5 exhibited the efficiency of colonizing the colon and enabling the growth of colon lactobacilli as well as beneficial bifidobacteria but inhibited the growth of fecal coliforms and clostridia. Moreover, these treatments gave rise to a significant increase of lactic acid and short-chain fatty acids such as acetate, propionate, and butyrate. Although acetate displayed the highest quantity, it was likely that after incorporating encapsulated L. acidophilus LA5 plus pasteurized longan juice, quantity of butyrate exceed propionate, and acetate in comparison with their controls. Denaturant gradient gel electrophoresis patterns confirmed that various treatments affected the alteration of microbial community within the simulator of the human intestinal microbial ecosystem.
Yusoff, Z; Maqbool, M; George, E; Hassan, R; Ramasamy, R
2016-06-01
Mesenchymal stem cells (MSCs) derived from human umbilical cord (UC) have been considered as an important tool for treating various malignancies, tissue repair and organ regeneration. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are better alternative to MSCs that derived from bone marrow (BM-MSCs) as they are regarded as medical waste with little ethical concern for research and easily culture-expanded. In this present study, the foetal distal end of human UC was utilised to generate MSC by explant method. Upon in vitro culture, adherent cells with fibroblastic morphology were generated with rapid growth kinetics. Under the respective inductive conditions, these cells were capable of differentiating into adipocytes and osteocytes; express an array of standard MSC's surface markers CD29, CD73, CD90, CD106 and MHC-class I. Further assessment of immunosuppression activity revealed that MSCs generated from UC had profoundly inhibited the proliferation of mitogen-activated T lymphocytes in a dosedependent manner. The current laboratory findings have reinforced the application of explant method to generate UCMSCs thus, exploring an ideal platform to fulfil the increasing demand of MSCs for research and potential clinical use.
Zhao, Jing; Zhao, Le; Chen, Wei; He, Langchong; Li, Xu
2008-01-01
Taspine is an active component isolated from Radix et Rhizoma Leonticis with inhibiting tumor angiogenic properties. The molecular mechanism(s) of taspine on tumor angiogenic inhibition have not been well documented. The aim of this study was to elucidate in detail the effects of taspine on genetic expressions of VEGF in human umbilical vein endothelial cells, and on VEGFR2-mediated intracellular signaling of human umbilical vein endothelial cells. The genetic expression of vascular endothelial growth factor (VEGF) in the human umbilical vein endothelial cells (HUVECs) treated with taspine in vitro was measured by the ELISA and RT-PCR methods. The effects of taspine on cell proliferation of HUVECs and HUVECs induced by VEGF165 were considered by using MTT assay. And also, a western blot was used to detect Akt and Erk1/2 expressions and their phosphorylation levels in HUVECs treated with taspine. Our results show that VEGF protein and mRNA expressions in the cells treated with taspine were significantly decreased. Taspine also significantly inhibited cell proliferation of HUVECs induced by VEGF165. HUVECs treated with taspine showed decreased Akt and Erk1/2 activities.
Concentrations of pentosidine, an advanced glycation end-product, in umbilical cord blood.
Tsukahara, Hirokazu; Ohta, Naoko; Sato, Shuko; Hiraoka, Masahiro; Shukunami, Ken-Ichi; Uchiyama, Mayumi; Kawakami, Hisako; Sekine, Kyouichi; Mayumi, Mitsufumi
2004-07-01
Advanced glycation end-products (AGEs) are formed over several weeks to months by non-enzymatic glycation and oxidation ("glycoxidation") reactions between carbohydrate-derived carbonyl groups and protein amino groups, known as the Maillard reaction. Pentosidine is one of the best-characterized AGEs and is accepted as a satisfactory marker for glycoxidation in vivo. The present study was intended to measure pentosidine concentrations in umbilical cord blood from newborns with various gestational ages using our recently established high-performance liquid chromatography method [Tsukahara, H. et al. (2003) Pediatr. Res. 54, 419-424]. Our study demonstrates, for the first time, that pentosidine is detected in most of the umbilical blood samples. This study also shows that the umbilical blood concentrations of pentosidine are considerably lower than normal adult values, but that they increase with gestation progression and fetal growth. Umbilical pentosidine concentrations were significantly elevated in newborns of mothers with preeclampsia compared to those of mothers without preeclampsia. We conclude that accumulation of AGEs and oxidative stress occurs in fetal tissues and organs in utero at the early stage of human life and that their accumulation is augmented in the maternal preeclampsic condition.
Experimental studies on the tensile properties of human umbilical cords.
Tantius, Britta; Rothschild, Markus A; Valter, Markus; Michael, Joern; Banaschak, Sibylle
2014-03-01
When tried in court, mothers accused of neonaticide may claim that the umbilical cord just broke during birth and the newborn child bled to death accordingly. To evaluate the possibility of a breakage of the umbilical cord is the goal of this work. Therefore 25 umbilical cords from neonates of both sexes born at term were stretched using an electrically operated material testing machine and the energy necessary to break them was measured. This experimental set-up equals a static strain, not a dynamic one. The maximum force endured (F max) ranged from 37.24 N to 150.04 N. The average force endured was 79.87 N with a standard deviation of 27.39. The elongation at break varied from 13.24% to a maximum of 119.93%. We found no relationship between the force endured and any of the following parameters: birth weight, pH of the venous umbilical blood, diameter of cord, free length under testing, duration of pregnancy or the mother's age. We performed a literature research and tried to define the circumstances in which a break is more likely to occur, these being malformations, entanglement or disease, e.g. inflammation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Uptake and release of amino acids in the fetal-placental unit in human pregnancies.
Holm, Maia Blomhoff; Bastani, Nasser Ezzatkhah; Holme, Ane Moe; Zucknick, Manuela; Jansson, Thomas; Refsum, Helga; Mørkrid, Lars; Blomhoff, Rune; Henriksen, Tore; Michelsen, Trond Melbye
2017-01-01
The current concepts of human fetal-placental amino acid exchange and metabolism are mainly based on animal-, in vitro- and ex vivo models. We aimed to determine and assess the paired relationships between concentrations and arteriovenous differences of 19 amino acids on the maternal and fetal sides of the human placenta in a large study sample. This cross-sectional in vivo study included 179 healthy women with uncomplicated term pregnancies. During planned cesarean section, we sampled blood from incoming and outgoing vessels on the maternal (radial artery and uterine vein) and fetal (umbilical vein and artery) sides of the placenta. Amino acid concentrations were measured by liquid chromatography-tandem mass spectrometry. We calculated paired arteriovenous differences and performed Wilcoxon signed-rank tests and Spearman's correlations. In the umbilical circulation, we observed a positive venoarterial difference (fetal uptake) for 14 amino acids and a negative venoarterial difference (fetal release) for glutamic acid (p<0.001). In the maternal circulation, we observed a positive arteriovenous difference (uteroplacental uptake) for leucine (p = 0.005), isoleucine (p = 0.01), glutamic acid (p<0.001) and arginine (p = 0.04) and a negative arteriovenous difference (uteroplacental release) for tyrosine (p = 0.002), glycine (p = 0.01) and glutamine (p = 0.02). The concentrations in the maternal artery and umbilical vein were correlated for all amino acids except tryptophan, but we observed no correlations between the uteroplacental uptake and the fetal uptake or the umbilical vein concentration. Two amino acids showed a correlation between the maternal artery concentration and the fetal uptake. Our human in vivo study expands the current insight into fetal-placental amino acid exchange, and discloses some differences from what has been previously described in animals. Our findings are consistent with the concept that the fetal supply of amino acids in the human is the result of a dynamic interplay between fetal and placental amino acid metabolism and interconversions.
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower will undergo tests to confirm that they are operating correctly. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower will undergo tests to confirm that they are operating correctly. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
Anderson, Sean M.; Shergill, Bhupinder; Barry, Zachary T.; Manousiouthakis, Eleana; Chen, Tom T.; Botvinick, Elliot; Platt, Manu O.; Iruela-Arispe, M. Luisa; Segura, Tatiana
2011-01-01
Vascular endothelial growth factor (VEGF) is known to activate proliferation, migration, and survival pathways in endothelial cells through phosphorylation of VEGF receptor-2 (VEGFR-2). VEGF has been incorporated into biomaterials through encapsulation, electrostatic sequestration, and covalent attachment, but the effect of these immobilization strategies on VEGF signaling has not been thoroughly investigated. Further, although growth factor internalization along with the receptor generally occurs in a physiological setting, whether this internalization is needed for receptor phosphorylation is not entirely clear. Here we show that VEGF covalently bound through a modified heparin molecule elicits an extended response of pVEGFR-2 in human umbilical vein endothelial cells (HUVECs) and that the covalent linkage reduces internalization of the growth factor during receptor endocytosis. Optical tweezer measurements show that the rupture force required to disrupt the heparin-VEGF-VEGFR-2 interaction increases from 3–8 pN to 6–12 pN when a covalent bond is introduced between VEGF and heparin. Importantly, by covalently binding VEGF to a heparin substrate, the stability (half-life) of VEGF is extended over three-fold. Here, mathematical models support the biological conclusions, further suggesting that VEGF internalization is significantly reduced when covalently bound, and indicating that VEGF is available for repeated phosphorylation events. PMID:21826315
Yakhnenko, Ilya; Wong, Wallace K; Katkov, Igor I; Itkin-Ansari, Pamela
2012-01-01
Encapsulating insulin producing cells (INPCs) in an immunoisolation device have been shown to cure diabetes in rodents without the need for immunosuppression. However, micro-encapsulation in semi-solid gels raises longevity and safety concerns for future use of stem cell derived INPCs. We have focused on a durable and retrievable macro-encapsulation (> 10(6) cells) device (TheraCyte). Cryopreservation (CP) of cells preloaded into the device is highly desirable but may require prolonged exposure to cryoprotectants during loading and post-thaw manipulations. Here, we are reporting survival and function of a human islet cell line frozen as single cells or as islet-like cell clusters. The non-clusterized cells exhibited high cryosurvival after prolonged pre-freeze or post-thaw exposure to 10 percent DMSO. However, both clusterization and especially loading INPCs into the device reduced viable yield even without CP. The survived cryopreserved macro-encapsulated INPCs remained fully functional suggesting that CP of macro-encapsulated cells is a promising tool for cell based therapies.
Hur, Sun Jin; Lee, Seung Yuan; Lee, Seung-Jae
2015-01-01
In this study, beef patties were encapsulated with 3% chitosan, pectin, onion powder, or green tea powder and the beef patties were then passed through an in vitro human digestion model. The total lipid digestibility was lowest (p<0.05) in beef patties encapsulated with chitosan and pectin after digestion in the small intestine. Thiobarbituric acid reactive substance (TBARS) values were significantly lower (p<0.05) for beef patties encapsulated with chitosan and pectin, when compared with the control, after digestion in the small intestine. In contrast, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity was highest (p<0.05) in beef patties encapsulated with onion powder and green tea powder after digestion in the small intestine. The total cholesterol oxidation product (COP) content was significantly lower (p<0.05) in beef patties encapsulated with biopolymers than in the control after digestion in the small intestine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Virt, G
2010-01-01
The regulation of the European Council and Parliament on advanced therapy medicinal products also includes therapies with human embryonic stem cells. The use of these stem cells is controversially and heavily discussed. Contrary to the use of adult stem cells, medical and ethical problems concerning the use of human embryonic stem cells persists, because this use is based on the destruction of human life at the very beginning. The regulation foresees, therefore, subsidiarity within the European Member States. Although there are no ethical problems in principle with the use of stem cells from the umbilical cord blood, there are social ethical doubts with the banking of these stem cells for autologous use without any currently foreseeable medical advantage by commercial blood banks. Also in this case subsidiarity is valid.
Hu, Yae; Yan, Ruhong; Zhang, Ce; Zhou, Zhichao; Liu, Meng; Wang, Can; Zhang, Hong; Dong, Liang; Zhou, Tiantian; Wu, Yi; Dong, Ningzheng; Wu, Qingyu
2018-04-12
Thrombophilia is a major complication in preeclampsia, a disease associated with placental hypoxia and trophoblast inflammation. Preeclampsia women are known to have increased circulating microparticles that are procoagulant, but the underlying mechanisms remain unclear. In this study, we sought to understand the mechanism connecting placental hypoxia, circulating microparticles, and thrombophilia. We analyzed protein markers on plasma microparticles from preeclampsia women and found that the increased circulating microparticles were mostly from endothelial cells. In proteomic studies, we identified HMGB1 (high-mobility group box 1), a proinflammatory protein, as a key factor from hypoxic trophoblasts in stimulating microparticle production in human umbilical vein endothelial cells. Immunodepletion or inhibition of HMGB1 in the conditioned medium from hypoxic human trophoblasts abolished the endothelial microparticle-stimulating activity. Conversely, recombinant HMGB1 stimulated microparticle production in cultured human umbilical vein endothelial cells. The microparticles from recombinant HMGB1-stimulated human umbilical vein endothelial cells promoted blood coagulation and neutrophil activation in vitro. Injection of recombinant HMGB1 in pregnant mice increased plasma endothelial microparticles and promoted blood coagulation. In preeclampsia women, elevated placental HMGB1 expression was detected and high levels of plasma HMGB1 correlated with increased plasma endothelial microparticles. Our results indicate that placental hypoxia-induced HMGB1 expression and release from trophoblasts are important mechanism underlying increased circulating endothelial microparticles and thrombophilia in preeclampsia. © 2018 American Heart Association, Inc.
Zhang, X; Liu, X; Liu, L
2001-12-01
To explore the effects of HOXB2 anti-sense oligodeoxynucleotides (asodn) on the proliferation and the expression of human umbilical vein endothelial cells (HUVECs). Various concentrations of HOXB2 ASODN modified by thiophosphate were transfected into HUVECs by liposome mediation. MTT and RT-PCR methods were employed to determine the influence of different concentrations of ASODN on endothelial proliferation and the expression level of HOXB2 mRNA. After the transfection of HOXB2 ASODN, the endothelial proliferation was inhibited in dose-dependent manner. Simultaneously, the expression level of HOXB2 mRNA decreased significantly. HOXB2 might play important roles in the proliferation of endothelial cells.
Zheng, Lian; Fang, Chi-hua
2007-06-01
To investigate the effect of Leonurus Heterophyllus Sweet, (LHS) on tissue factor (TF) transcription and expression induced by thrombin in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with different concentrations of LHS and the TF mRNA expression was detected by reverse transcript-polymerase chain reaction (RT-PCR). LHS treatment of HUVECs at different concentrations and for different times resulted in significant differences in TF expression (Plt;0.01). The transcription of TF in LHS-treated cells was significantly different from that of the blank control group (Plt;0.01). LHS can decrease the expression of TF and intervene with TF transcription in HUVECs in vitro.
Cimino, F; Balestra, C; Germonpré, P; De Bels, D; Tillmans, F; Saija, A; Speciale, A; Virgili, F
2012-12-01
It has been proposed that relative changes of oxygen availability, rather than steady-state hypoxic or hyperoxic conditions, play an important role in hypoxia-inducible factor (HIF) transcriptional effects. According to this hypothesis describing the "normobaric oxygen paradox", normoxia following a hyperoxic event is sensed by tissues as an oxygen shortage, upregulating HIF-1 activity. With the aim of confirming, at cellular and at functional level, that normoxia following a hyperoxic event is "interpreted" as a hypoxic event, we report a combination of experiments addressing the effects of an intermittent increase of oxygen concentration on HIF-1 levels and the activity level of specific oxygen-modulated proteins in cultured human umbilical vein endothelial cells and the effects of hemoglobin levels after intermittent breathing of normobaric high (100%) and low (15%) oxygen in vivo in humans. Our experiments confirm that, during recovery after hyperoxia, an increase of HIF expression occurs in human umbilical vein endothelial cells, associated with an increase of matrix metalloproteinases activity. These data suggest that endothelial cells "interpret" the return to normoxia after hyperoxia as a hypoxic stimulus. At functional level, our data show that breathing both 15 and 100% oxygen 30 min every other day for a period of 10 days induces an increase of hemoglobin levels in humans. This effect was enhanced after the cessation of the oxygen breathing. These results indicate that a sudden decrease in tissue oxygen tension after hyperoxia may act as a trigger for erythropoietin synthesis, thus corroborating the hypothesis that "relative" hypoxia is a potent stimulator of HIF-mediated gene expressions.
Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord.
Wang, Hwai-Shi; Hung, Shih-Chieh; Peng, Shu-Tine; Huang, Chun-Chieh; Wei, Hung-Mu; Guo, Yi-Jhih; Fu, Yu-Show; Lai, Mei-Chun; Chen, Chin-Chang
2004-01-01
The Wharton's jelly of the umbilical cord contains mucoid connective tissue and fibroblast-like cells. Using flow cytometric analysis, we found that mesenchymal cells isolated from the umbilical cord express matrix receptors (CD44, CD105) and integrin markers (CD29, CD51) but not hematopoietic lineage markers (CD34, CD45). Interestingly, these cells also express significant amounts of mesenchymal stem cell markers (SH2, SH3). We therefore investigated the potential of these cells to differentiate into cardiomyocytes by treating them with 5-azacytidine or by culturing them in cardiomyocyte-conditioned medium and found that both sets of conditions resulted in the expression of cardiomyocyte markers, namely N-cadherin and cardiac troponin I. We also showed that these cells have multilineage potential and that, under suitable culture conditions, are able to differentiate into cells of the adipogenic and osteogenic lineages. These findings may have a significant impact on studies of early human cardiac differentiation, functional genomics, pharmacological testing, cell therapy, and tissue engineering by helping to eliminate worrying ethical and technical issues.
Reinisch, Andreas; Strunk, Dirk
2009-10-08
The umbilical cord is a rich source for progenitor cells with high proliferative potential including mesenchymal stromal cells (also termed mesenchymal stem cells, MSCs) and endothelial colony forming progenitor cells (ECFCs). Both cell types are key players in maintaining the integrity of tissue and are probably also involved in regenerative processes and tumor formation. To study their biology and function in a comparative manner it is important to have both cells types available from the same donor. It may also be beneficial for regenerative purposes to derive MSCs and ECFCs from the same tissue. Because cellular therapeutics should eventually find their way from bench to bedside we established a new method to isolate and further expand progenitor cells without the use of animal protein. Pooled human platelet lysate (pHPL) replaced fetal bovine serum in all steps of our protocol to completely avoid contact of the cells to xenogeneic proteins. This video demonstrates a methodology for the isolation and expansion of progenitor cells from one umbilical cord. All materials and procedures will be described.
PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses
Ma, Wenxue; Chen, Mingshui; Kaushal, Sharmeela; McElroy, Michele; Zhang, Yu; Ozkan, Cengiz; Bouvet, Michael; Kruse, Carol; Grotjahn, Douglas; Ichim, Thomas; Minev, Boris
2012-01-01
The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund’s adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of −15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund’s adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor CTL responses in vivo. PMID:22619507
PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses.
Ma, Wenxue; Chen, Mingshui; Kaushal, Sharmeela; McElroy, Michele; Zhang, Yu; Ozkan, Cengiz; Bouvet, Michael; Kruse, Carol; Grotjahn, Douglas; Ichim, Thomas; Minev, Boris
2012-01-01
The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96(®) Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund's adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of -15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund's adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor CTL responses in vivo.
Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes.
Yurinskaya, M M; Kochetkova, O Yu; Shabarchina, L I; Antonova, O Yu; Suslikov, A V; Evgen'ev, M B; Vinokurov, M G
2017-01-01
Human heat shock protein Hsp70 was experimentally inserted into polyelectrolyte microcapsules. Encapsulated recombinant Hsp70 was studied in terms of its effects on neutrophil apoptosis, the production of reactive oxygen species, and the secretion of tumor necrosis factor alpha by promonocytic THP-1 cells. It was found that encapsulated Hsp70 effectively inhibits neutrophil apoptosis, unlike free exogenous protein used in solution. In THP-1 cells, encapsulated and free Hsp70 reduced LPS-induced tumor necrosis factor alpha production with a similar efficiency. Encapsulated Hsp70 reduces LPS-induced reactive oxygen species production by neutrophils in the course of its release from the microcapsules but not as much as free Hsp70. Thus, the polyelectrolyte microcapsules can be used as containers for the effective delivery of Hsp70 to neutrophils and monocytes to significantly improve the functioning of the innate immune system.
Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells
Chen, Song; Zhang, Wei; Wang, Ji-Ming; Duan, Hong-Tao; Kong, Jia-Hui; Wang, Yue-Xin; Dong, Meng; Bi, Xue; Song, Jian
2016-01-01
AIM To investigate whether umbilical cord human mesenchymal stem cell (UC-MSC) was able to differentiate into neural stem cell and neuron in vitro. METHODS The umbilical cords were obtained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee. UC-MSC were isolated by adherent culture in the medium contains 20% fetal bovine serum (FBS), then they were maintained in the medium contain 10% FBS and induced to neural cells in neural differentiation medium. We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron in vitro by using flow cytometry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence (IF) analyzes. RESULTS A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk. Flow cytometric study revealed that these cells expressed common markers of MSCs, such as CD105 (SH2), CD73 (SH3) and CD90. After induction of differentiation of neural stem cells, the cells began to form clusters; RT-PCR and IF showed that the neuron specific enolase (NSE) and neurogenic differentiation 1-positive cells reached 87.3%±14.7% and 72.6%±11.8%, respectively. Cells showed neuronal cell differentiation after induced, including neuron-like protrusions, plump cell body, obviously and stronger refraction. RT-PCR and IF analysis showed that microtubule-associated protein 2 (MAP2) and nuclear factor-M-positive cells reached 43.1%±10.3% and 69.4%±19.5%, respectively. CONCLUSION Human umbilical cord derived MSCs can be cultured and proliferated in vitro and differentiate into neural stem cells, which may be a valuable source for cell therapy of neurodegenerative eye diseases. PMID:26949608
Harnik, Branko; Miron, Richard J; Buser, Daniel; Gruber, Reinhard
2017-03-01
Angiogenesis is essential for the consolidation of bone allografts. The underlying molecular mechanism, however, remains unclear. Soluble factors released from demineralized freeze-dried bone target mesenchymal cells; however, their effect on endothelial cells has not been investigated so far. The aim of the present study was therefore to examine the effect of conditioned medium from demineralized freeze-dried bone on human umbilical endothelial cells in vitro. Conditioned medium was first prepared from demineralized freeze-dried bone following 24 hours incubation at room temperature to produce demineralized bone conditioned media. Thereafter, conditioned medium was used to stimulate human umbilical vein endothelial cells in vitro by determining the cell response based on viability, proliferation, expression of apoptotic genes, a Boyden chamber to determine cell migration, and the formation of branches. The authors report here that conditioned medium decreased viability and proliferation of endothelial cells. Neither of the apoptotic marker genes was significantly altered when endothelial cells were exposed to conditioned medium. The Boyden chamber revealed that endothelial cells migrate toward conditioned medium. Moreover, conditioned medium moderately stimulated the formation of branches. These findings support the concept that conditioned medium from demineralized freeze-dried bone targets endothelial cells by decreasing their proliferation and enhancing their motility under these in vitro conditions.
Zeng, Hailong; Huang, Zhiqiu; Zhang, Yineng; Sun, Huilin
2016-01-01
To investigate the role of p38MAPK signaling pathway in the mechanism by which glucagon-like peptide-1 (GLP-1) inhibits endothelial cell damage induced by AGEs. Human umbilical vein endothelial cells were divided into control group, AGEs group, GLP-1 group, AGEs+GLP-1 group, AGEs+inhibitor group, and AGEs+GLP-1+inhibitor group. The expressions of p-p38MAPK/p38MAPK and p-eNOS/eNOS protein were examined by Western blotting, and the cell apoptosis rates were tested by flow cytometry. Compared with the control group, AGEs significantly enhanced the expression of p-p38 MAPK protein (P=0.001) while GLP-1 significantly inhibited its expression (P<0.001). AGEs significantly inhibited the expression of p-eNOS protein (P=0.007), which was enhanced by GLP-1 and p38 MAPK inhibitor (SB203580) (P=0.004). Both SB203580 and GLP-1 treatment decreased the apoptosis rate of AGEs-treated cells (P<0.001). GLP-1 can protect human umbilical vein endothelial cells against AGEs-induced apoptosis partially by inhibiting the phosphorylation of p38MAPK protein and promoting the expression of p-eNOS protein.
Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd
2010-07-01
Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.
Weise, Gesa; Lorenz, Marlene; Pösel, Claudia; Maria Riegelsberger, Ute; Störbeck, Veronika; Kamprad, Manja; Kranz, Alexander; Wagner, Daniel-Christoph; Boltze, Johannes
2014-01-01
Previous studies have highlighted the enormous potential of cell-based therapies for stroke not only to prevent ischemic brain damage, but also to amplify endogenous repair processes. Considering its widespread availability and low immunogenicity human umbilical cord blood (HUCB) is a particularly attractive stem cell source. Our goal was to investigate the neurorestorative potential of cryopreserved HUCB mononuclear cells (MNC) after permanent middle cerebral artery occlusion (MCAO) in spontaneously hypertensive rats (SHR). Human umbilical cord blood MNC or vehicle solution was administered intravenously 24 hours after MCAO. Experimental groups were as follows: (1) quantitative polymerase chain reaction (PCR) of host-derived growth factors up to 48 hours after stroke; (2) immunohistochemical analysis of astroglial scarring; (3) magnetic resonance imaging (MRI) and weekly behavioral tests for 2 months after stroke. Long-term functional outcome and lesion development on MRI were not beneficially influenced by HUCB MNC therapy. Furthermore, HUCB MNC treatment did not change local growth factor levels and glial scarring extent. In summary, we could not demonstrate neurorestorative properties of HUCB MNC after stroke in SHR. Our results advise caution regarding a prompt translation of cord blood therapy into clinical stroke trials as long as deepened knowledge about its precise modes of action is missing. PMID:24169850
Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline
2017-06-01
Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.
Li, Ran; Zhang, Yufeng; Polk, D. Brent; Tomasula, Peggy M.; Yan, Fang; Liu, LinShu
2016-01-01
Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG’s beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics. PMID:27063422
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The swing arm is undergoing a test to confirm that it is operating correcting. During the test, the arm was swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
2014-08-25
CAPE CANAVERAL, Fla. – The umbilical swing arm for Orion's Exploration Flight Test 1, or EFT-1, has been attached to the uppermost location on the fixed umbilical tower at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. All three swing arms on the tower are undergoing tests to confirm that they are operating correctly. They are being swung out and closer to the Vertical Integration Facility at the pad. The uppermost swing arm will carry umbilicals that will be mated to Orion's launch abort system and environmental control system. During launch, all three umbilicals will pull away from Orion and the United Launch Alliance Delta IV Heavy rocket at T-0. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on its first flight test is planned for fall 2014. Photo credit: NASA/Daniel Casper
Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells
Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S
2011-01-01
Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290
Lipidomics of human umbilical cord serum: identification of unique sterol sulfates.
Wood, Paul L; Siljander, Heli; Knip, Mikael
2017-08-01
There are currently limited lipidomics data for human umbilical cord blood. Therefore, the lipidomes of cord sera from six newborns and sera from six nonpregnant females were compared. Sera lipidomics analyses were conducted using a high-resolution mass spectrometry analytical platform. Cord serum contained a diverse array of glycerophospholipids, albeit generally at lower concentrations than monitored in adult serum. The unexpected observations were that cord serum contained several neurosteroid sulfates and bile acid sulfates that were not detectable in adult serum. Our data are the first to demonstrate that cord serum contains bile acid sulfates that are synthesized early in the hydroxylase, neutral and acidic pathways of primary bile acid biosynthesis and support previous publications of cord blood perfluoralkyl toxins in newborns.
Liu, Xusheng; Zhang, Xiaoqi
2002-02-01
To explore the effect of homeobox B2 (HOXB2) anti sense oligodeoxynucleotides (asodn) on the proliferation and expression of primary human umbilical vein endothelial cells (HUVECs). Various concentrations of HOXB2 asodn modified by thiophosphate transfected the induction of liposome into HUVECs. MTT a nd RT-PCR methods were employed to determine the effect of different conc ent rations of asodn on the endothelial proliferation and the expression level of HOXB2 mRNA. After the transfection of HOXB2 asodn, the endothelial proliferation was inhibited in a dose-dependent fashion. Simultaneously, the expression of HOXB2 mRNA decreased significantly. HOXB2 plays an important role in the proliferation of endothelia.
Wang, Xin; Athayde, Neil; Trudinger, Brian
2002-07-01
To test the hypothesis that local production with spill into the fetal circulation of factor(s) injurious to endothelium is responsible for the vascular pathology present when the umbilical artery Doppler study is abnormal. Expression of adhesion molecules is a feature of endothelial cell activation. Case-control study. University teaching hospital. Fetal plasma was collected from 27 normal pregnancies, 39 pregnancies with umbilical placental vascular disease defined by abnormal umbilical artery Doppler and 11 pregnancies with pre-eclampsia and normal umbilical artery Doppler. Isolated and cultured human umbilical vein endothelial cells from normal pregnancies were incubated with fetal plasma from three study groups. mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were assessed by reverse transcription-polymerase chain reaction. To confirm the occurrence of this in vivo, we measured the levels of soluble fractions of sICAM-1, sVCAM-1 and sPECAM-1 in the fetal circulation in the fetal plasma used for endothelial cell incubation. The mRNA expression of ICAM-1 [median 1.1 (interquartile range 0.5-1.9) vs 0.7 (0.3-1.2), P < 0.05] and PECAM-1 [2.1 (1.2-3.0) vs 1.5 (0.7-2.1), P < 0.05] was significantly higher following incubation with fetal plasma from umbilical placental vascular disease compared with the normal group. There was no difference in the expression of VCAM-1 [1.2 (0.9-1.8) vs 1.1 (0.8-1.6), ns]. The group with maternal pre-eclampsia and normal umbilical artery Doppler did not differ from the normal group. In the umbilical placental vascular disease group, the results were similar in the presence or absence of pre-eclampsia. For soluble fractions of the adhesion molecules released into the fetal circulation, we found the levels (ng/mL) of sICAM- I [median 248.5 (interquartile range 197.3-315.7) vs 174.2 (144.5-212.9), P < 0.05] and sPECAM-1 [9.3 (6.2-11.1) vs 6.1 (5.4-7.7), P < 0.05] in fetal plasma to be significantly increased in the presence of umbilical placental vascular disease compared with the normal. Vascular disease in the fetal umbilical placental circulation is associated with an elevation in mRNA expression by endothelial cells of ICAM-1 and PECAM-1. Our study provides evidence for endothelial cell activation and dysfunction in umbilical placental vascular disease. We speculate that the plasma factor(s) affecting the vessels of the umbilical villous tree is locally released by the trophoblast. The occurrence of the maternal syndrome of pre-eclampsia appears to be independent of this.
NASA Astrophysics Data System (ADS)
Chiu, Brian; Z-M Wan, Jim; Abley, Doris; Akabutu, John
2005-05-01
Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity ( μg) may modulate the proliferation and differentiation. We investigated the application of μg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated μg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow-cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated μg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.
Yousefi, Behnam; Sanooghi, Davood; Faghihi, Faezeh; Joghataei, Mohammad Taghi; Latifi, Nourahmad
2017-04-01
Many people suffer from spinal cord injuries annually. These deficits usually threaten the quality of life of patients. As a postpartum medically waste product, human Umbilical Cord Blood (UCB) is a rich source of stem cells with self- renewal properties and neural differentiation capacity which made it useful in regenerative medicine. Since there is no report on potential of human umbilical cord blood-derived mesenchymal stem cells into motor neurons, we set out to evaluate the differentiation properties of these cells into motor neuron-like cells through administration of Retinoic Acid(RA), Sonic Hedgehog(Shh) and BDNF using a three- step in vitro procedure. The results were evaluated using Real-time PCR, Flowcytometry and Immunocytochemistry for two weeks. Our data showed that the cells changed into bipolar morphology and could express markers related to motor neuron; including Hb-9, Pax-6, Islet-1, NF-H, ChAT at the level of mRNA and protein. We could also quantitatively evaluate the expression of Islet-1, ChAT and NF-H at 7 and 14days post- induction using flowcytometry. It is concluded that human UCB-MSCs is potent to express motor neuron- related markers in the presence of RA, Shh and BDNF through a three- step protocol; thus it could be a suitable cell candidate for regeneration of motor neurons in spinal cord injuries. Copyright © 2017. Published by Elsevier B.V.
Li, Minghui; Huo, Xia; Pan, Yukui; Cai, Haoxing; Dai, Yifeng; Xu, Xijin
2018-02-01
Parental exposure to polybrominated diphenyl ethers (PBDEs) is associated with adverse birth outcomes. This study aims to examine differentially-expressed protein profiles in umbilical cord tissue, derived from mothers exposed to PBDEs, and investigate candidate biomarkers to reveal the underlying molecular mechanisms. Umbilical cord samples were obtained from women residing in an electronic waste (e-waste) recycling area (Guiyu) and reference area (Haojiang) in China. The concentration of PBDEs in umbilical cord tissue was determined by gas chromatography and mass spectrometry (GC/MS). Isobaric tagging for relative and absolute quantification (iTRAQ)-based proteomic technology was conducted to analyze differentially-expressed protein profiles. The total PBDE concentration was approximately five-fold higher in umbilical cords from Guiyu than from Haojiang (median 71.92ng/g vs. 15.52ng/g lipid, P<0.01). Neonatal head circumference, body-mass index (BMI) and Apgar1 score were lower in Guiyu and negatively correlated with PBDE concentration (P<0.01). Proteomic analysis showed 697 proteins were differentially expressed in the e-waste-exposed group compared with the reference group. The differentially-expressed proteins were principally involved in antioxidant defense, apoptosis, cell structure and metabolism. Among them, catalase and glutathione S-transferase omega-1, were down-regulated, and cytochrome c was found to be up-regulated, changes which were further verified by enzyme-linked immunosorbent assays. These results suggest that an antioxidant imbalance and cell apoptosis in the umbilical cord following PBDE exposure is associated with neonatal birth outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Issues deserve attention in encapsulating probiotics: Critical review of existing literature.
Chen, Jun; Wang, Qi; Liu, Cheng-Mei; Gong, Joshua
2017-04-13
Probiotic bacteria are being increasingly added to food for developing products with health-promoting properties. However, the efficacy of probiotics in commercial products is often questioned due to the loss of their viability during shelf storage and in human gastrointestinal tracts. Encapsulation of probiotics has been expected to provide protection to probiotics, but not many commercial products contain encapsulated and viable probiotic cells owing to various reasons. To promote the development and application of encapsulation technologies, this paper has critically reviewed previous publications with a focus on the areas where studies have fallen short, including insufficient consideration of structural effects of encapsulating material, general defects in encapsulating methods and issues in evaluation methodologies and risk assessments for application. Corresponding key issues that require further studies are highlighted. Some emerging trends in the field, such as current treads in encapsulating material and recently advanced encapsulation techniques, have also been discussed.
Zhang, Qinghao; Gerlach, Jörg C; Schmelzer, Eva; Nettleship, Ian
2017-01-01
Foamed hydroxyapatite offers a three-dimensional scaffold for the development of bone constructs, mimicking perfectly the in vivo bone structure. In vivo, calcium release at the surface is assumed to provide a locally increased gradient supporting the maintenance of the hematopoietic stem cells niche. We fabricated hydroxyapatite scaffolds with high surface calcium concentration by infiltration, and used human umbilical vein endothelial cells (HUVECs) as a model to study the effects on hematopoietic lineage direction. HUVECs are umbilical vein-derived and thus possess progenitor characteristics, with a prospective potential to give rise to hematopoietic lineages. HUVECs were cultured for long term on three-dimensional porous hydroxyapatite scaffolds, which were either infiltrated biphasic foams or untreated. Controls were cultured in two-dimensional dishes. The release of calcium into culture medium was determined, and cells were analyzed for typical hematopoietic and endothelial gene expressions, surface markers by flow cytometry, and hematopoietic potential using colony-forming unit assays. Our results indicate that the biphasic foams promoted a hematopoietic lineage direction of HUVECs, suggesting an improved in vivo-like scaffold for hematopoietic bone tissue engineering. © 2017 S. Karger AG, Basel.
Li, Tian Xia; Yuan, Jie; Chen, Yan; Pan, Li Jie; Song, Chun; Bi, Liang Jia; Jiao, Xiao Hui
2013-01-01
The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels (P < 0.001), an enhanced ability to proliferate (P < 0.05), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research. PMID:23762828
Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Lin, Amy; Sweterlitsch, Jeffrey; Cox, Marlon
2009-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated human metabolic loads. Another paper at this year s conference discusses similar testing with real human metabolic loads, including some closed-loop testing with emergency breathing masks. The Orion ARS is designed to also support extravehicular activity operations from a depressurized cabin. The next step in developmental testing at JSC was, therefore, to test this ARS technology in a typical closed space suit loop environment with low-pressure pure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure oxygen loop testing of a new Orion ARS technology, and was conducted with simulated human metabolic loads in December 2008. The test investigated pressure drops through two different styles of prototype suit umbilical connectors and general swing-bed performance with both umbilical configurations as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable atmospheric CO2 and moisture levels.
Chen, Lingli; Bai, Guangling; Yang, Rui; Zang, Jiachen; Zhou, Ting; Zhao, Guanghua
2014-04-15
Carotenoids may play a number of potential health benefits for human. However, their use in food industry is limited mostly because of their poor water-solubility and low thermal stability. Ferritins are widely distributed in nature with a shell-like structure which offers a great opportunity to improve the water-solubility and thermal stability of the carotenoids by encapsulation. In this work, recombinant human H-chain ferritin (rHuHF) was prepared and used to encapsulate β-carotene, a typical compound among carotenoids, by taking advantage of the reversible dissociation and reassembly characteristic of apoferritin in different pH environments. Results from high-performance liquid chromatography (HPLC), UV/Vis spectroscopy and transmission electron microscope (TEM) indicated that β-carotene molecules were successfully encapsulated within protein cages with a β-carotene/protein molar ratio of 12.4-1. Upon such encapsulation, these β-carotene-containing apoferritin nanocomposites were water-soluble. Interestingly, the thermal stability of the β-carotene encapsulated within apoferritin nanocages was markedly improved as compared to free β-carotene. These new properties might be favourable to the utilisation of β-carotene in food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of Over 10-Year Cryopreserved Encapsulated Pancreatic Islets Of Langerhans.
Kinasiewicz, Joanna; Antosiak-Iwanska, Magdalena; Godlewska, Ewa; Sitarek, Elzbieta; Sabat, Marek; Fiedor, Piotr; Granicka, Ludomira
2017-08-28
Immunoisolation of pancreatic islets of Langerhans performed by the encapsulation process may be a method to avoid immunosuppressive therapy after transplant. The main problem related to islet transplant is shortage of human pancreata. Resolution of this obstacle may be cryopreservation of encapsulated islets, which enables collection of sufficient numbers of isolated islets required for transplant and long-term storage. Here, we assessed the ability of encapsulated islets to function after long-term banking at low temperature. Islets of Langerhans isolated from rat, pig, and human pancreata were encapsulated within alginate-poly-L-lysine-alginate microcapsules. Cryopreservation was carried out using a controlled method of freezing (Kriomedpol freezer; Kriomedpol, Warsaw, Poland), and samples were stored in liquid nitrogen. After 10 years, the samples were thawed with the rapid method (with 0.75 M of sucrose) and then cultured. We observed that microcapsules containing islets maintained their shape and integrity after thawing. During culture, free islets were defragmented into single cells, whereas encapsulated islets were still round in shape and compact. After 1, 4, and 7 days of culture of encapsulated islets, the use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests showed increased mitochondrial activity. After they were thawed, the insulin secretion capacity was comparable with that obtained with fresh islets. Cryopreservation and storage of free and microencapsulated islets were possible for about 10 years, although only encapsulated islets retained viability and secretory properties.
Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells.
François, Alison; Laroche, Audrey; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Robert, Jacques; Astruc, Didier
2011-11-04
Encapsulation of docetaxel and its solubilization in water was carried out in PEGylated gold nanoparticles (AuNPs) as shown by 1H NMR (600 MHz) and UV/Vis spectroscopy and dynamic light scattering. Vectorization of PEGylated AuNP-encapsulated docetaxel was probed in vitro toward human colon carcinoma (HCT15) and human breast cancer (MCF7) cells. AuNPs alone presented no cytotoxicity toward either MCF7 or HCT15 adenocarcinoma cells. AuNP-docetaxel was found to be 2.5-fold more efficient than docetaxel alone against MCF7 cells, and the IC50 value of AuNP-docetaxel against HCT15 cells was lower than that of free docetaxel; the increased efficiency brought about by AuNP drug encapsulation was ∼1.5-fold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swioklo, Stephen; Constantinescu, Andrei; Connon, Che J
2016-03-01
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. ©AlphaMed Press.
Araújo, Anelise Bergmann; Salton, Gabrielle Dias; Furlan, Juliana Monteiro; Schneider, Natália; Angeli, Melissa Helena; Laureano, Álvaro Macedo; Silla, Lúcia; Passos, Eduardo Pandolfi; Paz, Ana Helena
2017-05-01
Mesenchymal stromal cells (MSCs) are being investigated as a potential alternative for cellular therapy. This study was designed to compare the biological characteristics of MSCs isolated from amniotic membrane (A-MSCs), chorionic membrane (C-MSCs), placental decidua (D-MSCs) and umbilical cord (UC-MSCs) to ascertain whether any one of these sources is superior to the others for cellular therapy purposes. MSCs were isolated from amniotic membrane, chorionic membrane, umbilical cord and placental decidua. Immunophenotype, differentiation ability, cell size, cell complexity, polarity index and growth kinetics of MSCs isolated from these four sources were analyzed. MSCs were successfully isolated from all four sources. Surface marker profile and differentiation ability were consistent with human MSCs. C-MSCs in suspension were the smallest cells, whereas UC-MSCs presented the greatest length and least width. A-MSCs had the lowest polarity index and UC-MSCs, as more elongated cells, the highest. C-MSCs, D-MSCs and UC-MSCs exhibited similar growth capacity until passage 8 (P8); C-MSCs presented better lifespan, whereas insignificant proliferation was observed in A-MSCs. Neonatal and maternal tissues can serve as sources of multipotent stem cells. Some characteristics of MSCs obtained from four neonatal tissues were compared and differences were observed. Amniotic membrane was the least useful source of MSCs, whereas chorionic membrane and umbilical cord were considered good options for future use in cell therapy because of the known advantages of immature cells. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Li, Ran; Zhang, Yufeng; Polk, D Brent; Tomasula, Peggy M; Yan, Fang; Liu, LinShu
2016-05-28
Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG's beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics. Copyright © 2016 Elsevier B.V. All rights reserved.
The timing of umbilical cord clamping at birth: physiological considerations.
Hooper, Stuart B; Binder-Heschl, Corinna; Polglase, Graeme R; Gill, Andrew W; Kluckow, Martin; Wallace, Euan M; Blank, Douglas; Te Pas, Arjan B
2016-01-01
While it is now recognized that umbilical cord clamping (UCC) at birth is not necessarily an innocuous act, there is still much confusion concerning the potential benefits and harms of this common procedure. It is most commonly assumed that delaying UCC will automatically result in a time-dependent net placental-to-infant blood transfusion, irrespective of the infant's physiological state. Whether or not this occurs, will likely depend on the infant's physiological state and not on the amount of time that has elapsed between birth and umbilical cord clamping (UCC). However, we believe that this is an overly simplistic view of what can occur during delayed UCC and ignores the benefits associated with maintaining the infant's venous return and cardiac output during transition. Recent experimental evidence and observations in humans have provided compelling evidence to demonstrate that time is not a major factor influencing placental-to-infant blood transfusion after birth. Indeed, there are many factors that influence blood flow in the umbilical vessels after birth, which depending on the dominating factors could potentially result in infant-to-placental blood transfusion. The most dominant factors that influence umbilical artery and venous blood flows after birth are lung aeration, spontaneous inspirations, crying and uterine contractions. It is still not entirely clear whether gravity differentially alters umbilical artery and venous flows, although the available data suggests that its influence, if present, is minimal. While there is much support for delaying UCC at birth, much of the debate has focused on a time-based approach, which we believe is misguided. While a time-based approach is much easier and convenient for the caregiver, ignoring the infant's physiology during delayed UCC can potentially be counter-productive for the infant.
Crossan, Claire; Mourad, Nizar I; Smith, Karen; Gianello, Pierre; Scobie, Linda
2018-05-21
Subcutaneous implantation of a macroencapsulated patch containing human allogenic islets has been successfully used to alleviate type 1 diabetes mellitus (T1DM) in a human recipient without the need for immunosuppression. The use of encapsulated porcine islets to treat T1DM has also been reported. Although no evidence of pathogen transfer using this technology has been reported to date, we deemed it appropriate to determine if the encapsulation technology would prevent the release of virus, in particular, the porcine endogenous retrovirus (PERV). HEK293 (human epithelial kidney) and swine testis (ST) cells were co-cultured with macroencapsulated pig islets embedded in an alginate patch, macroencapsulated PK15 (swine kidney epithelial) cells embedded in an alginate patch and free PK15 cells. Cells and supernatant were harvested at weekly time points from the cultures for up to 60 days and screened for evidence of PERV release using qRT-PCR to detect PERV RNA and SG-PERT to detect reverse transcriptase (RT). No PERV virus, or evidence of PERV replication, was detected in the culture medium of HEK293 or pig cells cultured with encapsulated porcine islets. Increased PERV activity relative to the background was not detected in ST cells cultured with encapsulated PK15 cells. However, PERV was detected in 1 of the 3 experimental replicates of HEK293 cells cultured with encapsulated PK15 cells. Both HEK293 and ST cells cultured with free PK15 cells showed an increase in RT detection. With the exception of 1 replicate, there does not appear to be evidence of transmission of replication competent PERV from the encapsulated islet cells or the positive control PK15 cells across the alginate barrier. The detection of PERV would suggest the alginate barrier of this replicate may have become compromised, emphasizing the importance of quality control when producing encapsulated islet patches. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Acquired umbilical hernias in four captive polar bears (Ursus maritimus).
Velguth, Karen E; Rochat, Mark C; Langan, Jennifer N; Backues, Kay
2009-12-01
Umbilical hernias are a common occurrence in domestic animals and humans but have not been well documented in polar bears. Surgical reduction and herniorrhaphies were performed to correct acquired hernias in the region of the umbilicus in four adult captive polar bears (Ursus maritimus) housed in North American zoos. Two of the four bears were clinically unaffected by their hernias prior to surgery. One bear showed signs of severe discomfort following acute enlargement of the hernia. In another bear, re-herniation led to acute abdominal pain due to gastric entrapment and strangulation. The hernias in three bears were surgically repaired by debridement of the hernia ring and direct apposition of the abdominal wall, while the large defect in the most severely affected bear was closed using polypropylene mesh to prevent excessive tension. The cases in this series demonstrate that while small hernias may remain clinically inconsequential for long periods of time, enlargement or recurrence of the defect can lead to incarceration and acute abdominal crisis. Umbilical herniation has not been reported in free-ranging polar bears, and it is suspected that factors such as body condition, limited exercise, or enclosure design potentially contribute to the development of umbilical hernias in captive polar bears.
NASA Astrophysics Data System (ADS)
Hasan Rhaif Al-Sahlanee, Mayyadah; Maizan Ramli, Ramzun; Abdul Hassan Ali, Miami; Fadhil Tawfiq, Nada; Zahirah Noor Azman, Nurul; Abdul Rahman, Azhar; Shahrim Mustafa, Iskandar; Noor Ashikin Nik Abdul Razak, Nik; Zakiah Yahaya, Nor; Mohammed Al-Marri, Hana; Syuhada Ayob, Nur; Zakaria, Nabela
2017-10-01
Trace elements are essential nutritional components in humans and inconvenient tissue content that have a significant influence on infant size. The aim of this study is to evaluate the effects of concentration of elements (uranium (U), lead (Pb) and iron (Fe)) and absorption of Pb and Fe on maternal and umbilical cord blood samples. The concentration and absorption of Pb and Fe in blood samples were determined by using atomic absorption spectrophotometry device, while the uranium concentration was determined by using CR-39 detector. Fifty women of age 16-44 years are involved in this study. Results show that the maximum and minimum values of both concentration and absorption in the maternal samples were for Pb and Fe, respectively. In addition, for umbilical cord, the maximum values of concentration and absorption were for Fe and the minimum concentration and absorption were for U and Pb, respectively. A significant correlation between maternal and umbilical cord blood samples was found. This indicates that the Pb, U and Fe elements can easily transfer from maternal to the fetal body which impacts the growth of fetus.
Interleukin-33 in the Human Placenta
Topping, Vanessa; Romero, Roberto; Than, Nandor Gabor; Tarca, Adi L.; Xu, Zhonghui; Kim, Sun Young; Wang, Bing; Yeo, Lami; Kim, Chong Jai; Hassan, Sonia S.; Kim, Jung-Sun
2012-01-01
Objective Interleukin-33 (IL-33) is the newest member of the IL-1 cytokine family, a group of key regulators of inflammation. The purpose of this study was to determine whether IL-33 is expressed in the human placenta and to investigate its expression in the context of acute and chronic chorioamnionitis. Methods Placental tissues were obtained from five groups of patients: (1) normal pregnancy at term without labor (n=10); (2) normal pregnancy at term in labor (n=10); (3) preterm labor without inflammation (n=10); (4) preterm labor with acute chorioamnionitis (n=10); and (5) preterm labor with chronic chorioamnionitis (n=10). Immunostaining was performed to determine IL-33 protein expression patterns in the placental disk, chorioamniotic membranes, and umbilical cord. mRNA expression of IL-33 and its receptor IL1RL1 (ST2) was measured in primary amnion epithelial and mesenchymal cells (AECs and AMCs, n=4) and human umbilical vein endothelial cells (HUVECs, n=4) treated with IL-1β (1ng/ml and 10ng/ml) and CXCL10 (0.5ng/ml and 1ng/ml or 5ng/ml). Results 1) Nuclear IL-33 expression was found in endothelial and smooth muscle cells in the placenta, chorioamniotic membranes, and umbilical cord; 2) IL-33 was detected in the nucleus of CD14+ macrophages in the chorioamniotic membranes, chorionic plate, and umbilical cord, and in the cytoplasm of myofibroblasts in the Wharton’s jelly; 3) acute (but not chronic) chorioamnionitis was associated with the presence of IL-33+ macrophages in the chorioamniotic membranes and umbilical cord; 4) expression of IL-33 or IL1RL1 (ST2) mRNA in AECs was undetectable; 5) IL-33 mRNA expression increased in AMCs and HUVECs after IL-1β treatment but did not change with CXCL10 treatment; and 6) IL1RL1 (ST2) expression decreased in AMCs and increased in HUVECs after IL-1β but not CXCL10 treatment. Conclusions IL-33 is expressed in the nucleus of placental endothelial cells, CD14+ macrophages, and myofibroblasts in the Wharton’s jelly. IL-1β can induce the expression of IL-33 and its receptor. Protein expression of IL-33 is detectable in macrophages of the chorioamniotic membranes in acute (but not chronic) chorioamnionitis. PMID:23039129
Salsoso, R; Guzmán-Gutiérrez, E; Sáez, T; Bugueño, K; Ramírez, M A; Farías, M; Pardo, F; Leiva, A; Sanhueza, C; Mate, A; Vázquez, C; Sobrevia, L
2015-03-01
Preeclampsia is associated with impaired placental vasodilation and reduced endothelial nitric oxide synthase (eNOS) activity in the foetoplacental circulation. Adenosine and insulin stimulate vasodilation in endothelial cells, and this activity is mediated by adenosine receptor activation in uncomplicated pregnancies; however, this activity has yet to be examined in preeclampsia. Early onset preeclampsia is associated with severe placental vasculature alterations that lead to altered foetus growth and development, but whether late-onset preeclampsia (LOPE) alters foetoplacental vascular function is unknown. Vascular reactivity to insulin (0.1-1000 nmol/L, 5 min) and adenosine (1 mmol/L, 5 min) was measured in KCl-preconstricted human umbilical vein rings from normal and LOPE pregnancies using a wire myograph. The protein levels of human cationic amino acid transporter 1 (hCAT-1), adenosine receptor subtypes, total and Ser¹¹⁷⁷- or Thr⁴⁹⁵-phosphorylated eNOS were detected via Western blot, and L-arginine transport (0-1000 μmol/L L-arginine, 3 μCi/mL L-[³H]arginine, 20 s, 37 °C) was measured in the presence or absence of insulin and adenosine receptor agonists or antagonists in human umbilical vein endothelial cells (HUVECs) from normal and LOPE pregnancies. LOPE increased the maximal L-arginine transport capacity and hCAT-1 and eNOS expression and activity compared with normal conditions. The A(2A) adenosine receptor (A(2A)AR) antagonist ZM-241385 blocked these effects of LOPE. Insulin-mediated umbilical vein ring relaxation was lower in LOPE pregnancies than in normal pregnancies and was restored using the A(2A)AR antagonist. The reduced foetoplacental vascular response to insulin may result from A(2A)AR activation in LOPE pregnancies. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Introduction Among the plethora of cells under investigation to restore a functional myocardium, mesenchymal stromal cells (MSCs) have been granted considerable interest. However, whereas the beneficial effects of bone marrow MSCs (BM-MSCs) in the context of the diseased heart are widely reported, data are still scarce on MSCs from the umbilical cord matrix (UCM-MSCs). Herein we report on the effect of UCM-MSC transplantation to the infarcted murine heart, seconded by the dissection of the molecular mechanisms at play. Methods Human umbilical cord tissue-derived MSCs (UCX®), obtained by using a proprietary technology developed by ECBio, were delivered via intramyocardial injection to C57BL/6 females subjected to permanent ligation of the left descending coronary artery. Moreover, medium produced by cultured UCX® preconditioned under normoxia (CM) or hypoxia (CMH) was collected for subsequent in vitro assays. Results Evaluation of the effects upon intramyocardial transplantation shows that UCX® preserved cardiac function and attenuated cardiac remodeling subsequent to myocardial infarction (MI). UCX® further led to increased capillary density and decreased apoptosis in the injured tissue. In vitro, UCX®-conditioned medium displayed (a) proangiogenic activity by promoting the formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs), and (b) antiapoptotic activity in HL-1 cardiomyocytes subjected to hypoxia. Moreover, in adult murine cardiac Sca-1+ progenitor cells (CPCs), conditioned medium enhanced mitogenic activity while activating a gene program characteristic of cardiomyogenic differentiation. Conclusions UCX® preserve cardiac function after intramyocardial transplantation in a MI murine model. The cardioprotective effects of UCX® were attributed to paracrine mechanisms that appear to enhance angiogenesis, limit the extent of the apoptosis, augment proliferation, and activate a pool of resident CPCs. Overall, these results suggest that UCX® should be considered an alternative cell source when designing new therapeutic approaches to treat MI. PMID:24411922
Gunduz, Ergun; Arun, Oguzhan; Bagci, Sengal Taylan; Oc, Bahar; Salman, Alper; Yilmaz, Setenay Arzu; Celik, Cetin; Duman, Ates
2015-05-01
To assess the effects of propofol and sevoflurane on the contraction elicited by dopamine, adrenaline and noradrenaline on isolated human umbilical arteries. Umbilical arteries were cut into endothelium-denuded spiral strips and suspended in organ baths containing Krebs-Henseleit solution bubbled with O2 +CO2 mixture. Control contraction to phenylephrine (10(-5) M) was recorded. Response curves were obtained to 10(-5) M dopamine, 10(-5) M adrenaline or 10(-5) M noradrenaline. Afterwards, either cumulative propofol (10(-6) M, 10(-5) M and 10(-4) M) or cumulative sevoflurane (1.2%, 2.4% and 3.6%) was added to the organ bath, and the responses were recorded. Responses are expressed percentage of phenylephrine-induced contraction (mean ± standard deviation) (P < 0.05 = significance). Propofol and sevoflurane elicited concentration-dependent relaxations in strips pre-contracted with dopamine, adrenaline and noradrenaline (P < 0.05). Highest (10(-4) M) concentration of propofol caused significantly higher relaxation compared with the highest (3.6%) concentration of sevoflurane in the contraction elicited by dopamine. High (10(-5) M) and highest concentrations of propofol caused significantly higher relaxation compared with the high (2.4%) and highest concentrations of sevoflurane on the contraction elicited by adrenaline. High and highest concentrations of sevoflurane caused significantly higher relaxation compared with the high and highest concentrations of propofol on the contraction elicited by noradrenaline. Dopamine, adrenaline and noradrenaline elicit contractions in human umbilical arteries, and noradrenaline causes the highest contraction. Both propofol and sevoflurane inhibit these contractions in a dose-dependent manner. Propofol caused greater relaxation in the contractions elicited by dopamine and adrenaline while sevoflurane caused greater relaxation in the contraction elicited by noradrenaline. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
Silk ionomers for encapsulation and differentiation of human MSCs
Calabrese, Rossella; Kaplan, David L.
2012-01-01
The response of human bone marrow derived human mesenchymal stem cells (hMSCs) encapsulated in silk ionomer hydrogels was studied. Silk aqueous solutions with silk-poly-L-lysine or silk-poly-L-glutamate were formed into hydrogels via ultrasonication in situ with different net charges. hMSCs were encapsulated within the hydrogels and the impact of matrix charge was assessed over weeks in osteogenic, adipogenic and maintenance growth media. These modified silk charged polymers supported cell viability and proliferative potential, and the hMSCs were able to differentiate toward osteogenic or adipogenic lineages in the corresponding differentiation media. The silk/silk-poly-L-lysine hydrogels exhibited a positive effect on selective osteogenesis of hMSCs, inducing differentiation toward an osteogenic lineage even in the absence of osteogenic supplements, while also inhibiting adipogenesis. In contrast, silk/silk fibroin-poly-L-glutamate hydrogels supported both osteogenic and adipogenic differentiation of hMSCs when cultured under induction conditions. The results demonstrate the potential utility of silk-based ionomers in gel formats for hMSCs encapsulation and for directing hMSCs long term functional differentiation toward specific lineages. PMID:22824008
NASA Astrophysics Data System (ADS)
Pujiastuti, A.; Cahyono, E.; Sumarni, W.
2017-04-01
Mosquito (Aedes aegypti) is a threat to human health due to its capability to spread dengue fever. Citronellal in citronella oil is one ofnatural active compound that has repellent activity. Essential oil is a sensitive material whichiseasy to degrade. Encapsulation is coating technology use to avoid essential oil from degradation problems. β-Cyclodextrin is frequently used as acoating material in encapsulation. The aims of this study wereto prepare the citronellal encapsulation and to evaluate its control-released and repellency. In this study, encapsulated citronellal was prepared using 83.65% citronellal and encapsulation were prepared with the theemulsion-based method and dried using freeze-dryer. The best-controlled release was performed in citronellal encapsulate with a weight ratio of 1:1 (citronellal : β-Cyclodextrin). The morphology of encapsulated citronellal was analyzed using SEM. SEM result showed it has three dimensions random shape and agglomerate in some part with thebrighter spot. Citronellal encapsulate showed the highest repellent effect at 84,67% for 5 minutes in mosquito repellency test although it has lower result compared with citronellal inliquid form.
2011-02-15
VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, Orbital Sciences workers prepare NASA's Glory upper stack for attachment to the Taurus XL rocket's Stage 0. The upper stack consists of Stages 1, 2 and 3 of the Taurus as well as the encapsulated Glory spacecraft. Workers put the non-flight environmental shield over the fairing prior to assembly. A portion of the umbilical tower is attached to the upper stack which falls away from the spacecraft during liftoff. The Orbital Sciences Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB
Ortakci, F; Sert, S
2012-12-01
The objective of this study was to determine the effect of encapsulation on survival of probiotic Lactobacillus acidophilus ATCC 4356 (ATCC 4356) in yogurt and during artificial gastric digestion. Strain ATCC 4356 was added to yogurt either encapsulated in calcium alginate or in free form (unencapsulated) at levels of 8.26 and 9.47 log cfu/g, respectively, and the influence of alginate capsules (1.5 to 2.5mm) on the sensorial characteristics of yogurts was investigated. The ATCC 4356 strain was introduced into an artificial gastric solution consisting of 0.08 N HCl (pH 1.5) containing 0.2% NaCl or into artificial bile juice consisting of 1.2% bile salts in de Man, Rogosa, and Sharpe broth to determine the stability of the probiotic bacteria. When incubated for 2h in artificial gastric juice, the free ATCC 4356 did not survive (reduction of >7 log cfu/g). We observed, however, greater survival of encapsulated ATCC 4356, with a reduction of only 3 log cfu/g. Incubation in artificial bile juice (6 h) did not significantly affect the viability of free or encapsulated ATCC 4356. Moreover, statistically significant reductions (~1 log cfu/g) of both free and encapsulated ATCC 4356 were observed during 4-wk refrigerated storage of yogurts. The addition of probiotic cultures in free or alginate-encapsulated form did not significantly affect appearance/color or flavor/odor of the yogurts. However, significant deficiencies were found in body/texture of yogurts containing encapsulated ATCC 4356. We concluded that incorporation of free and encapsulated probiotic bacteria did not substantially change the overall sensory properties of yogurts, and encapsulation in alginate using the extrusion method greatly enhanced the survival of probiotic bacteria against an artificial human gastric digestive system. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Umbilical endometriosis associated with large umbilical hernia. Case report.
Stojanovic, M; Radojkovic, M; Jeremic, L; Zlatic, A; Stanojevic, G; Janjic, D; Mihajlovic, S; Dimov, I; Kostov, M; Zdravkovic, M; Stojanovic, M
2014-01-01
Umbilical endometriosis is a rare condition, usually following laparoscopic and surgical procedures involving the umbilicus.Spontaneous umbilical endometriosis occurring without any previous abdominal or uterine surgery is extremely rare. The maximal depth of penetration of the umbilical endometriosis described is up to fascial level. There have been only two cases of endometriosis reported arising within umbilical hernia. The authors report a case of a patient with spontaneous umbilical endometriosis associated with a large umbilical hernia, treated by surgical excision and mesh repair of the abdominal wall. To the best of our knowledge, this is the first described case of the association of umbilical endometriosis with a large umbilical hernia that requires prosthetic mesh repair of the abdominal wall defect. Celsius.
The intra-umbilical approach in umbilical hernia.
Arslan, Sukru; Korkut, Ercan
2014-02-01
To investigate the "intra-umbilical incision", a smaller incision compared to classic incisions, in cases of umbilical hernia, and which we believe will contribute to patient satisfaction in aesthetic terms, and also the practicability of such operations. The umbilical margins of eight patients with an umbilical hernia were marked between the levels of 6 and 12 o'clock, and a median intra-umbilical skin incision was performed between these two points. In some cases, where exploration could not be performed sufficiently, the incision was extended horizontally from 6 or 12 o'clock. Hernia repair and mesh placement was then performed using an intra-umbilical approach. Patients were investigated according to the defect size and requirement for intra-umbilical incision extension. No requirement for intra-umbilical incision was encountered in six patients with a facial defect diameter smaller than 4 cm, while the incision had to be extended in two patients with defects greater than 4 cm. The intra-umbilical approach in umbilical hernia surgery is aesthetically superior to classical approaches and is a practicable technique.
Yin, Shanshan; Tang, Mengling; Chen, Fangfang; Li, Tianle; Liu, Weiping
2017-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a type of ubiquitous pollutant with the potential ability to cause endocrine disruption that would have an adverse health impact on the general population. To assess the maternal exposure to PAHs in neonates and evaluate the possible impact of PAHs on reproductive hormone levels, the concentration of PAHs and reproductive hormone levels in the umbilical cord serum of 98 mother-infant pairs in the Shengsi Islands were investigated. The median concentration of total PAHs was determined to be 164 (Inter-Quartile Range, IQR 93.6-267) ng g -1 lipid, and 68% of the PAHs were lower-molecule congeners. The highest level was found for pyrene (PYR) and naphthalene (NAP), which contributed 54.6% of all the PAHs present in the samples. The exposure to PAHs negatively affected estradiol (E2) and Anti-Mullerian hormones (AMH) and positively affected FSH in the umbilical cord serum. The result expanded the database of the human burden of PAHs and suggested that PAHs can act as a type of Endocrine-Disrupting Chemical (EDC). These results may help to understand the complex pathways involved in disorders of human reproductive health associated with prenatal exposure to PAHs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Hua; Jiang, Min-Yan; Liu, Sha; Cai, Yan-Na; Liang, Cui-Li; Liu, Li
2015-08-01
Childhood cerebral X-linked adrenoleukodystrophy is a rapidly progressive neurodegenerative disorder that affects central nervous system myelin and the adrenal cortex. Hematopoietic stem cell transplantation is the best available curative therapy if performed during the early stages of disease. Only 30% of patients who might benefit from a hematopoietic stem cell transplant will have a full human leukocyte antigen-matched donor, which is considered to be the best choice. We present a 5-year-old boy with cerebral X-linked adrenoleukodystrophy whose brain magnetic resonance imaging severity score was 7 and who needed an immediate transplantation without an available full human leukocyte antigen-matched donor. We combined haploidentical and umbilical cord blood sources for transplantation and saw encouraging results. After transplantation, the patient showed neurological stability for 6 months and the level of very long chain fatty acids had decreased. By 1 year, the patient appeared to gradually develop cognition, motor, and visual disturbances resulting from possible mix chimerism. Transplantation of haploidentical stem cells combined with the infusion of umbilical cord blood is a novel approach for treating cerebral X-linked adrenoleukodystrophy. It is critical to monitor posttransplant chimerism and carry out antirejection therapy timely for a beneficial clinical outcome. Copyright © 2015 Elsevier Inc. All rights reserved.
Herrera, Emilio A.; Cifuentes‐Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo‐Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola
2016-01-01
Key points Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels.There is no evidence that this epigenetic programming is occurring on systemic fetal arteries.In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N‐acetylcysteine (NAC) during the second half of gestation.The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. Abstract In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N‐acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire‐myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal‐to‐placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS‐dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR‐derived ECs had a decreased DNA methylation (∼30%) at CpG −170 (from the transcription start site) and this epigenetic signature was absent in NAC‐treated fetuses (P < 0.001). These data show that IUGR‐ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants. PMID:27739590
Kochetkova, O Yu; Yurinskaya, M M; Evgen'ev, M B; Zatsepina, O G; Shabarchina, L I; Suslikov, A V; Tikhonenko, S A; Vinokurov, M G
2015-11-01
Microencapsulated heat shock proteins HSP 70 were studied in terms of their effects on neutrophil apoptosis, production of reactive oxygen species, and secretion of TNF-α by human neurtrophils and monocytes. Encapsulated HSP70 inhibited neutrophil apoptosis by 65% as compared to the effect of nonencapsulated HSP70; TNF-α production by the promonocytic THP-1 cells was similarly inhibited by the non-encapsulated and encapsulated HSP70. Thus, the polyelectrolyte micromolecules can be used as containers for effective delivery of HSP70 up to neutrophils and monocytes to correct the innate immunity functions.
Borowski, Dariusz; Czuba, Bartosz; Kaczmarek, Piotr; Włoch, Agata; Pawłowicz, Paweł; Wyrwas, Dorota; Wielgos, Mirosław; Sodowski, Krzysztof; Szaflik, Krzysztof
2006-03-01
Umbilical venous pulsation is an important sign of hemodynamic compromise, especially during fetal heart failure and asphyxia. The aim of this study was to determine of the blow flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations. The investigation included 18 fetuses with signs of the intrauterine growth restriction and umbilical venous pulsations after 28th weeks of gestation. We evaluated cerebral-placental ratio (CPR) and pulsation index (PI) in the middle cerebral artery (MCA) and the umbilical artery (UA). We observed brain sparring effect in all cases of analyzing fetuses. There were 77,8% of abnormal flow pattern in umbilical artery. 13 fetuses had a single pulsation pattern in umbilical vein and another 5 had double pulsation pattern. The coexistence of umbilical vein pulsation and abnormal flow pattern in umbilical artery is closely related to increased perinatal mortality.
Selig, Michael; Lewandowski, Albert; Burton, Michael S; Ball, Ray L
2015-12-01
Umbilical disorders, including omphalophlebitis, omphaloarteritis, external umbilical abscesses, urachal abscesses, patent urachus, and umbilical hernias, represent a significant challenge to the health and well-being of a neonate. The three neonatal giraffe (Giraffa camelopardalis) in this report were evaluated for umbilical swellings. Two developed omphalophlebitis, and one had an uncomplicated umbilical hernia. Omphalophlebitis is an inflammation and/or infection of the umbilical vein. Giraffe calves with a failure of passive transfer may be predisposed and should be thoroughly evaluated for the condition. Umbilical hernias result from a failure of the umbilical ring to close after parturition or from malformation of the umbilical ring during embryogenesis. These problems were surgically corrected for all three individuals, although one died due to postsurgical complications. The risks involved include anesthetic complications, surgical dehiscence, and maternal rejection. Early detection and surgical intervention are recommended for the correction of omphalophlebitis and umbilical hernias in neonatal giraffe.
[Measurement of umbilical activin A level in preterm infants].
Zhong, Ying; Li, Juan; Wei, Ke-Lun
2011-10-01
To evaluate the clinical significance of umbilical activin A in preterm infants. Forty-one preterm infants (gestation 28 to 36 weeks) were enrolled. Fetal membranes, umbilical cords and blood samples from umbilical vein were obtained. Umbilical activin A level was measured using ELISA. The histological examinations of fetal membranes and umbilical cords were performed. The umbilical level of activin A averaged 2069 pg/mL in the 41 preterm infants. The umbilical activin A level in the 5 infants with intrauterine infection was higher than in those without intrauterine infection (2510 pg/mL vs 1975 pg/mL; P<0.01). Umbilical activin A level at cutoff of 2490 pg/mL showed a sensitivity of 80.0% and a specificity of 90.6% as a marker of intrauterine infection. There were no significant differences in the umbilical activin A level between the infants with and without respiratory distress syndrome. Umbilical activin A level was positively correlated with the duration of postnatal oxygen therapy (r=0.326, P<0.05). Umbilical activin A may serve a marker of intrauterine infection in preterm infants. The umbilical activin A level is correlated with the duration of postnatal oxygen therapy.
Comunian, Talita A; Ravanfar, Raheleh; de Castro, Inar Alves; Dando, Robin; Favaro-Trindade, Carmen S; Abbaspourrad, Alireza
2017-10-15
Echium oil is rich in omega-3 fatty acids, which are important because of their benefits to human health; it is, however, unstable. The objective of this work was the coencapsulation of echium oil and quercetin or sinapic acid by microfluidic and ionic gelation techniques. The treatments were analyzed utilizing optical and scanning electron microscopy, encapsulation yield, particle size, thermogravimetry, Fourier transform infrared spectroscopy, stability under stress conditions, and oil oxidative/phenolic compound stability for 30days at 40°C. High encapsulation yield values were obtained (91-97% and 77-90% for the phenolic compounds and oil) and the encapsulated oil was almost seven times more stable than the non-encapsulated oil (0.34 vs 2.42mgMDA/kg oil for encapsulated and non-encapsulated oil, respectively). Encapsulation was shown to promote oxidative stability, allowing new vehicles for the application of these compounds in food without the use of solvents and high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Yoon-Jin; Yoo, Sae Mi; Park, Hwan Hee; Lim, Hye Jin; Kim, Yu-Lee; Lee, Seunghee; Seo, Kwang-Won; Kang, Kyung-Sun
2017-11-18
Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) play an important role in cutaneous wound healing, and recent studies suggested that MSC-derived exosomes activate several signaling pathways, which are conducive in wound healing and cell growth. In this study, we investigated the roles of exosomes that are derived from USC-CM (USC-CM Exos) in cutaneous collagen synthesis and permeation. We found that USC-CM has various growth factors associated with skin rejuvenation. Our in vitro results showed that USC-CM Exos integrate in Human Dermal Fibroblasts (HDFs) and consequently promote cell migration and collagen synthesis of HDFs. Moreover, we evaluated skin permeation of USC-CM Exos by using human skin tissues. Results showed that Exo-Green labeled USC-CM Exos approached the outermost layer of the epidermis after 3 h and gradually approached the epidermis after 18 h. Moreover, increased expressions of Collagen I and Elastin were found after 3 days of treatment on human skin. The results showed that USC-CM Exos is absorbed into human skin, it promotes Collagen I and Elastin synthesis in the skin, which are essential to skin rejuvenation and shows the potential of USC-CM integration with the cosmetics or therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.
Sonographic diagnosis and clinical significance of umbilical arterial atresia.
Ren, Jinhe
2017-05-01
To evaluate the feasibility of antenatal sonographic diagnosis of umbilical arterial atresia and its clinical significance. Data of 5 cases with umbilical arterial atresia diagnosed in our hospital were studied retrospectively. The antenatal ultrasonogram of umbilical arterial atresia was obtain, and the pathological examination of umbilical cords and the prognosis of neonates were analyzed. Among 5 cases with umbilical arterial atresia in this group, 1 case with double umbilical arterial atresia was found with dead fetus in uterus, and the rest 4 cases with single umbilical arterial atresia were found with survival fetuses. In the latter 4 cases with live fetus, once umbilical arterial atresia was diagnosed, cesarean section was performed to terminate pregnancy, and the 4 fetus were all healthy. The chromosome karyotypes and S/D value of umbilical arteries were showed normal in all 5 cases. Accurate antenatal diagnosis can be made according to the specific ultrasonogram of umbilical arterial atresia. Instant intervention should be performed upon observing umbilical arterial atresia with live fetus, so as to avoid dead fetus as much as possible.
The Intra-Umbilical Approach in Umbilical Hernia
Arslan, Sukru; Korkut, Ercan
2014-01-01
Objective: To investigate the “intra-umbilical incision”, a smaller incision compared to classic incisions, in cases of umbilical hernia, and which we believe will contribute to patient satisfaction in aesthetic terms, and also the practicability of such operations. Materials and Methods: The umbilical margins of eight patients with an umbilical hernia were marked between the levels of 6 and 12 o’clock, and a median intra-umbilical skin incision was performed between these two points. In some cases, where exploration could not be performed sufficiently, the incision was extended horizontally from 6 or 12 o’clock. Hernia repair and mesh placement was then performed using an intra-umbilical approach. Results: Patients were investigated according to the defect size and requirement for intra-umbilical incision extension. No requirement for intra-umbilical incision was encountered in six patients with a facial defect diameter smaller than 4 cm, while the incision had to be extended in two patients with defects greater than 4 cm. Conclusion: The intra-umbilical approach in umbilical hernia surgery is aesthetically superior to classical approaches and is a practicable technique. PMID:25610291
Noone, Cariosa; Kihm, Anthony; O'Dea, Shirley; Mahon, Bernard P.
2013-01-01
Umbilical cord tissue represents a unique source of cells with potential for cell therapy applications for multiple diseases. Human umbilical tissue-derived cells (hUTC) are a developmentally early stage, homogenous population of cells that are HLA-ABC dim, HLA-DR negative, and lack expression of co-stimulatory molecules in the unactivated state. The lack of HLA-DR and co-stimulatory molecule expression on unactivated hUTC may account for their reduced immunogenicity, facilitating their use in allogeneic settings. However, such approaches could be confounded by host innate cells such as natural killer (NK) cells. Here, we evaluate in vitro NK cell interactions with hUTC and compare them with human mesenchymal stem cells (MSC). Our investigations show that hUTC suppress NK activation, through prostaglandin-E2 secretion in a contact-independent manner. Prestimulation of hUTC or human MSC with interferon gamma (IFN-γ) induced expression of the tryptophan degrading enzyme indoleamine 2, 3 dioxygenase, facilitating enhanced suppression. However, resting NK cells of different killer immunoglobulin-like receptor haplotypes did not kill hUTC or MSC; only activated NK cells had the ability to kill nonstimulated hUTC and, to a lesser extent, MSC. The cell killing process involved signaling through the NKG2D receptor and the perforin/granzyme pathway; this was supported by CD54 (ICAM-1) expression by hUTC. IFN-γ-stimulated hUTC or hMSC were less susceptible to NK killing; in this case, protection was associated with elevated HLA-ABC expression. These data delineate the different mechanisms in a two-way interaction between NK cells and two distinct cell therapies, hUTC or hMSC, and how these interactions may influence their clinical applications. PMID:23795941
Fusogenic pH sensitive liposomal formulation for rapamycin: improvement of antiproliferative effect.
Ghanbarzadeh, Saeed; Khorrami, Arash; Mohamed Khosroshahi, Leila; Arami, Sanam
2014-07-01
Liposomes are increasingly employed to deliver chemotherapeutic agents, antisense oligonucleotides, and genes to various therapeutic targets. The present investigation evaluates the ability of fusogenic pH-sensitive liposomes of rapamycin in increasing its antiproliferative effect on human breast adenocarcinoma (MCF-7) cell line. Cholesterol (Chol) and dipalmitoylphosphatidylcholine (DPPC) (DPPC:Chol, 7:3) were used to prepare conventional rapamycin liposomes by a modified ethanol injection method. Dioleoylphosphatidylethanolamine (DOPE) was used to produce fusogenic and pH-sensitive properties in liposomes simultaneously (DPPC:Chol:DOPE, 7:3:4.2). The prepared liposomes were characterized by their size, zeta potential, encapsulation efficiency percent (EE%), and chemical stability during 6 months. The antiproliferative effects of both types of rapamycin liposomes (10, 25, and 50 nmol/L) with optimized formulations were assessed on MCF-7 cells, as cancerous cells, and human umbilical vein endothelial cells (HUVEC), as healthy cells, employing the diphenyltetrazolium bromide (MTT) assay for 72 h. The particle size, zeta potential, and EE% of the liposomes were 165 ± 12.3 and 178 ± 15.4 nm, -39.6 ± 1.3, and -41.2 ± 2.1 mV as well as 76.9 ± 2.6 and 76.9 ± 2.6% in conventional and fusogenic pH-sensitive liposomes, respectively. Physicochemical stability results indicated that both liposome types were relatively stable at 4 °C than 25 °C. In vitro antiproliferative evaluation showed that fusogenic pH-sensitive liposomes had better antiproliferative effects on MCF-7 cells compared to the conventional liposomes. Conversely, fusogenic pH-sensitive liposomes had less cytotoxicity on HUVEC cell line.
Handbook of Human Tissue Sources. A National Resource of Human Tissue Samples
1999-01-01
be frozen and thawed and still be viable for artificial insemination procedures or implan- tation. The newest type of human tissue storage for future...use is the storage of umbilical cord blood. SPERM, OVUM, AND EMBRYO BANKS Artificial insemination or donor insemination (DI) is a procedure to...anonymous human sperm for use in artificial insemination ; long-term semen storage for men facing the possibility of steril- ization, reduction in fertility
Asakura, Tadashi; Yokoyama, Masayuki; Shiraishi, Koichi; Aoki, Katsuhiko; Ohkawa, Kiyoshi
2018-03-01
CD147 (basigin/emmprin) is expressed on the surface of carcinoma cells. For studying the efficacy of CD147-targeting medicine on CD147-expressing cells, we studied the effect of anti-CD147-labeled polymeric micelles (CD147ab micelles) that encapsulated a conjugate of doxorubicin with glutathione (GSH-DXR), with specific accumulation and cytotoxicity against CD147-expressing A431 human epidermoid carcinoma cells, Ishikawa human endometrial adenocarcinoma cells, and PC3 human prostate carcinoma cells. By treatment of each cell type with CD147ab micelles for 1 h, a specific accumulation of CD147ab micelles in CD147-expressing cells was observed. In addition, the cytotoxicity of GSH-DXR-encapsulated micelles against each cell type was measured by treatment of the micelles for 1 h. The cytotoxic effect of CD147ab micelles carrying GSH-DXR was 3- to 10-fold higher for these cells than that of micelles without GSH-DXR. These results suggest that GSH-DXR-encapsulated CD147ab micelles could serve as an effective drug delivery system to CD147-expressing carcinoma cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Relationship between the tensile strengths and diameters of human umbilical cords.
Fernando, D M G; Gamage, S M K; Ranmohottige, S; Weerakkody, I; Abeyruwan, H; Parakrama, H
2018-05-01
Mothers of alleged infanticides might claim that umbilical cord broke during precipitate delivery causing injuries detected on baby at autopsy. There is paucity of evidence regarding this possibility. The objective of the study was to determine relationship between tensile strength and diameter or weight per unit length of cord. Diameters and weights per unit length of fresh umbilical cords were determined. Tensile strengths were measured by Hounsfield Testing Machine. Relationship between tensile strength versus cord diameter and weight per unit length were analyzed. Of 122 cords, average tensile strength, diameter and weight per centimeter were 50.4 N, 7.73 mm and 6.87 g respectively. The tensile strengths were directly proportional to diameter. There was no association between tensile strength and weight per centimeter. Measurement of the diameter of cord is important during autopsy to predict tensile strength and thereby to presume whether cord could have broken by the weight of the baby. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Krishnan, Rahul; Ko, David; Foster, Clarence E; Liu, Wendy; Smink, A M; de Haan, Bart; De Vos, Paul; Lakey, Jonathan R T
2017-01-01
Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.
2008-04-01
Nano-Encapsulated Contrast for Enhancing Magnetic Resonance Imaging of Prostate Cancer PRINCIPAL INVESTIGATOR: Joel W. Slaton, M.D...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of a Tumor Histologic-Specific, Nano-Encapsulated Contrast for Enhancing Magnetic...carry a contrast agent to human CaP cells growing in mice to enhance MR detection of cancer. Our work in the first year has focused on in vitro
Time-Dependent Effect of Encapsulating Alginate Hydrogel on Neurogenic Potential
Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad
2015-01-01
Objective Due to the restricted potential of neural stem cells for regeneration of central nervous system (CNS) after injury, providing an alternative source for neural stem cells is essential. Adipose derived stem cells (ADSCs) are multipotent cells with properties suitable for tissue engineering. In addition, alginate hydrogel is a biocompatible polysaccharide polymer that has been used to encapsulate many types of cells. The aim of this study was to assess the proliferation rate and level of expression of neural markers; NESTIN, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2) in encapsulated human ADSCs (hADSCs) 10 and14 days after neural induction. Materials and Methods In this experimental study, ADSCs isolated from human were cultured in neural induction media and seeded into alginate hydrogel. The rate of proliferation and differentiation of encapsulated cells were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay, immunocytoflourescent and realtime reverse transcriptase polymerase chain reaction (RT-PCR) analyzes 10 and 14 days after induction. Results The rate of proliferation of encapsulated cells was not significantly changed with time passage. The expression of NESTIN and GFAP significantly decreased on day 14 relative to day 10 (P<0.001) but MAP2 expression was increased. Conclusion Alginate hydrogel can promote the neural differentiation of encapsulated hADSCs with time passage. PMID:26199909
Lindenmair, Andrea; Hatlapatka, Tim; Kollwig, Gregor; Hennerbichler, Simone; Gabriel, Christian; Wolbank, Susanne; Redl, Heinz; Kasper, Cornelia
2012-01-01
Mesenchymal stem or stromal cells (MSC) have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through parakrine effects. Besides bone marrow (BM), still today the most common source of MSC, these cells were found to be present in a variety of postnatal and extraembryonic tissues and organs as well as in a large variety of fetal tissues. Over the last decade, the human umbilical cord and human amnion have been found to be a rich and valuable source of MSC that is bio-equivalent to BM-MSC. Since these tissues are discarded after birth, the cells are easily accessible without ethical concerns. PMID:24710543
MERP1: a mammalian ependymin-related protein gene differentially expressed in hematopoietic cells.
Gregorio-King, Claudia C; McLeod, Janet L; Collier, Fiona McL; Collier, Gregory R; Bolton, Karyn A; Van Der Meer, Gavin J; Apostolopoulos, Jim; Kirkland, Mark A
2002-03-20
We have utilized differential display polymerase chain reaction to investigate the gene expression of hematopoietic progenitor cells from adult bone marrow and umbilical cord blood. A differentially expressed gene was identified in CD34+ hematopoietic progenitor cells, with low expression in CD34- cells. We have obtained the full coding sequence of this gene which we designated human mammalian ependymin-related protein 1 (MERP1). Expression of MERP1 was found in a variety of normal human tissues, and is 4- and 10-fold higher in adult bone marrow and umbilical cord blood CD34+ cells, respectively, compared to CD34- cells. Additionally, MERP1 expression in a hematopoietic stem cell enriched population was down-regulated with proliferation and differentiation. Conceptual translation of the MERP1 open reading frame reveals significant homology to two families of glycoprotein calcium-dependant cell adhesion molecules: ependymins and protocadherins.
Mohan, Mahalaxmi; Rokade, Rahul; Kasturet, Sanjay
2013-03-01
Rats treated with isoproterenol (ISO, 85 mg/kg, sc, twice at an interval of 24 h) showed a significant increase in heart rate, mean arterial blood pressure, pressure rate index, ST elevation on ECG, and a significant increase in the levels of cardiac marker enzymes- lactate dehydrogenase, and creatine kinase in serum and a significant reduction in superoxide dismutase, and catalase and increase in thiobarbituric acid reactive substance activity in heart tissue. Treatment with Human umbilical cord blood (hUCBC; 500 and 1000 microL, iv, via the tail vein; 2 h after the second dose of ISO) significantly restored back to normal levels and showed a lesser degree of cellular infiltration and infarct size in histopathological and planimetry studies respectively. Thus, hUCBC ameliorates cardiotoxic effects of isoproterenol and may be of value in the treatment of myocardial infarction.
In-Home Toxic Exposures and the Community of Individuals Who Are Developmentally Disabled
ERIC Educational Resources Information Center
Trousdale, Kristie A.; Martin, Joyce; Abulafia, Laura; Del Bene Davis, Allison
2010-01-01
Chemicals are ubiquitous in the environment, and human exposure to them is inevitable. A benchmark investigation of industrial chemicals, pollutants, and pesticides in umbilical cord blood indicated that humans are born with an average of 200 pollutants already present in their bodies. The study found a total of 287 chemicals, of which, 180 are…
Ultrasonography of umbilical structures in clinically normal foals.
Reef, V B; Collatos, C
1988-12-01
The umbilical arteries, urachus, and umbilical vein were scanned ultrasonographically in 13 clinically normal foals that ranged in age from 6 hours to 4 weeks. Sonograms were obtained using a 7.5-MHz sector scanner transducer placed across the midline of the ventral portion of the foal's abdominal wall. The umbilical vein was scanned from the umbilical stalk to its entrance into the hepatic parenchyma. The mean (+/- SD) diameter of the umbilical vein was 0.61 +/- 0.20 cm immediately cranial to the umbilical stalk, 0.52 +/- 0.19 cm midway between the umbilicus and liver, and 0.6 +/- 0.19 cm at the liver. The urachus and umbilical arteries were scanned from the umbilical stalk to the apex of the urinary bladder and had a mean total diameter of 1.75 +/- 0.37 cm at the bladder apex. The umbilical arteries also were scanned along either side of the bladder and had a mean diameter of 0.85 +/- 0.21 cm. These measurements and the ultrasonographic appearance of the internal umbilical structures from clinically normal foals can be used as references to diagnose abnormalities of the umbilical structures in neonatal foals.
Zou, Qing; Wu, Mingjun; Zhong, Liwu; Fan, Zhaoxin; Zhang, Bo; Chen, Qiang; Ma, Feng
2016-01-01
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells. PMID:26882313
Zou, Qing; Wu, Mingjun; Zhong, Liwu; Fan, Zhaoxin; Zhang, Bo; Chen, Qiang; Ma, Feng
2016-01-01
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.
Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong
2017-01-01
In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level. PMID:28406431
Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong
2017-04-13
In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fenxi, E-mail: fxzhang0824@gmail.com; Hong, Yan; Liang, Wenmei
Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neuralmore » stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.« less
Qin, Yong; Prescott, Lauriston M; Deitch, Edwin A; Kaiser, Vicki L
2011-04-01
Experimental data have shown that mesenteric lymph from rats subjected to trauma-hemorrhagic shock (THS) but not trauma-sham shock induces neutrophil activation, cytotoxicity, decreased red blood cell (RBC) deformability, and bone marrow colony growth suppression. These data have led to the hypothesis that gut factors produced from THS enter the systemic circulation via the mesenteric lymphatics and contribute to the progression of multiple organ failure after THS. Ongoing studies designed to identify bioactive lymph agents implicated factors associated with the heparin use in the THS procedure. We investigated if heparin itself was responsible for reported toxicity to human umbilical vein endothelial cells (HUVECs). Human umbilical vein endothelial cell toxicity was not induced by lymph when alternate anticoagulants (citrate and EDTA) were used in THS. Human umbilical vein endothelial cell toxicity was induced by lymph after heparin but not saline or citrate injection into trauma-sham shock and naive animals and was dose dependent. Activities of both heparin-releasable lipases (lipoprotein and hepatic) were detected in the plasma and lymph from THS and naive animals receiving heparin but not citrate or saline. Lymph-induced HUVEC toxicity correlated with lymph lipase activities. Finally, incubation of HUVECs with purified lipoprotein lipase added to naive lymph-induced toxicity in vitro. These data show that heparin, not THS, is responsible for the reported lymph-mediated HUVEC toxicity through its release of lipases into the lymph. These findings can provide alternative explanations for several of the THS effects reported in the literature using heparin models, thus necessitating a review of previous work in this field.
Lee, Changsun; Shim, Sehwan; Jang, Hyosun; Myung, Hyunwook; Lee, Janet; Bae, Chang-Hwan; Myung, Jae Kyung; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Kim, Hwi-Yool; Lee, Seung-Sook; Park, Sunhoo
2017-09-01
Mesenchymal stromal cells (MSCs) are a promising agent for treating impaired wound healing, and their therapeutic potential may be enhanced by employing extracellular matrix scaffolds as cell culture scaffolds or transplant cell carriers. Here, we evaluated the effect of human umbilical cord blood-derived (hUCB)-MSCs and a porcine small intestinal submucosa (SIS)-derived extracellular matrix scaffold in a combined radiation-wound mouse model of impaired wound healing. hUCB-MSCs and SIS hydrogel composite was applied to the excisional wound of whole-body irradiated mice. Assessment of wound closing and histological evaluation were performed in vivo. We also cultured hUCB-MSCs on SIS gel and examined the angiogenic effect of conditioned medium on irradiated human umbilical vein endothelial cells (HUVECs) in vitro. hUCB-MSCs and SIS hydrogel composite treatment enhanced wound healing and angiogenesis in the wound site of mice. Conditioned medium from hUCB-MSCs cultured on SIS hydrogel promoted the chemotaxis of irradiated HUVECs more than their proliferation. The secretion of angiogenic growth factors hepatocyte growth factor, vascular endothelial growth factor-A and angiopoietin-1 from hUCB-MSCs was significantly increased by SIS hydrogel, with HGF being the predominant angiogenic factor of irradiated HUVECs. Our results suggest that the wound healing effect of hUCB-MSCs is enhanced by SIS hydrogel via a paracrine factor-mediated recruitment of vascular endothelial cells in a combined radiation-wound mouse model. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
[Umbilical endometriosis mimicking a keloid in a young black woman: A case report].
Kourouma, H-S; Ecra, E-J; Allou, A-S; Kouyaté, M; Kouassi, Y-I; Kaloga, M; Kouassi, K-A; Kassi, K; Kouamé, K; Ahogo, C; Gbery, I-P; Sangaré, A
2017-10-01
Most umbilical tumors are diagnosed as benign tumors, umbilical metastases of abdominal and pelvic tumors, or Sister Marie Joseph nodule. Herein, we report a case of cutaneous umbilical endometriosis mistaken for a keloid. A young black woman aged 26 consulted for a painful umbilical tumefaction. She had noted the appearance of a nodule of the umbilicus 10 months ago with bleeding during her menstrual periods. Skin examination revealed a firm and painful umbilical nodule 2.5cm in diameter. She was treated with corticosteroid injections for one month for umbilical keloid. Given that the symptoms recurred regularly at the time of menstruation, we suspected umbilical endometriosis. This diagnosis was finally confirmed by histopathological examination and hormone therapy was instituted on gynecological advice before scheduled surgical excision. In a setting of an umbilical tumor simulating a keloid associated with cyclical symptoms in a black woman, the diagnosis of umbilical endometriosis should not be overlooked by the dermatologist. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Herrera, Emilio A; Cifuentes-Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo-Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola; Krause, Bernardo J
2017-02-15
Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels. There is no evidence that this epigenetic programming is occurring on systemic fetal arteries. In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N-acetylcysteine (NAC) during the second half of gestation. The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N-acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire-myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal-to-placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS-dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR-derived ECs had a decreased DNA methylation (∼30%) at CpG -170 (from the transcription start site) and this epigenetic signature was absent in NAC-treated fetuses (P < 0.001). These data show that IUGR-ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Placental Glucose Transfer: A Human In Vivo Study
Holme, Ane M.; Roland, Marie Cecilie P.; Lorentzen, Bjørg; Michelsen, Trond M.; Henriksen, Tore
2015-01-01
Objectives The placental transfer of nutrients is influenced by maternal metabolic state, placenta function and fetal demands. Human in vivo studies of this interplay are scarce and challenging. We aimed to establish a method to study placental nutrient transfer in humans. Focusing on glucose, we tested a hypothesis that maternal glucose concentrations and uteroplacental arterio-venous difference (reflecting maternal supply) determines the fetal venous-arterial glucose difference (reflecting fetal consumption). Methods Cross-sectional in vivo study of 40 healthy women with uncomplicated term pregnancies undergoing planned caesarean section. Glucose and insulin were measured in plasma from maternal and fetal sides of the placenta, at the incoming (radial artery and umbilical vein) and outgoing vessels (uterine vein and umbilical artery). Results There were significant mean (SD) uteroplacental arterio-venous 0.29 (0.23) mmol/L and fetal venous-arterial 0.38 (0.31) mmol/L glucose differences. The transplacental maternal-fetal glucose gradient was 1.22 (0.42) mmol/L. The maternal arterial glucose concentration was correlated to the fetal venous glucose concentration (r = 0.86, p<0.001), but not to the fetal venous-arterial glucose difference. The uteroplacental arterio-venous glucose difference was neither correlated to the level of glucose in the umbilical vein, nor fetal venous-arterial glucose difference. The maternal-fetal gradient was correlated to fetal venous-arterial glucose difference (r = 0.8, p<0.001) and the glucose concentration in the umbilical artery (r = −0.45, p = 0.004). Glucose and insulin concentrations were correlated in the mother (r = 0.52, p = 0.001), but not significantly in the fetus. We found no significant correlation between maternal and fetal insulin values. Conclusions We did not find a relation between indicators of maternal glucose supply and the fetal venous-arterial glucose difference. Our findings indicate that the maternal-fetal glucose gradient is significantly influenced by the fetal venous-arterial difference and not merely dependent on maternal glucose concentration or the arterio-venous difference on the maternal side of the placenta. PMID:25680194
Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers.
Santo, Vítor E; Babo, Pedro; Amador, Miguel; Correia, Cláudia; Cunha, Bárbara; Coutinho, Daniela F; Neves, Nuno M; Mano, João F; Reis, Rui L; Gomes, Manuela E
2016-06-13
Gradients of physical and chemical cues are characteristic of specific tissue microenvironments and contribute toward morphogenesis and tissue regeneration upon injury. Recent advances on microfluidics and hydrogel manipulation raised the possibility of generating biomimetic biomaterials enriched with bioactive factors and encapsulating cells following designs specifically tailored for a target application. The novelty of this work relies on the combination of methacrylated gellan gum (MeGG) with platelet lysate (PL), aiming to generate novel advanced 3D PL-enriched photo-cross-linkable hydrogels and overcoming the lack of adhesion sites provided by the native MeGG hydrogels. This combination takes advantage of the availability, enriched growth factor composition, and potential autologous application of PL while simultaneously preserving the ability provided by MeGG to tailor mechanical properties, protein release kinetics, and shape of the construct according to the desired goal. Incorporation of PL in the hydrogels significantly improved cellular adhesion and viability in the constructs. The use of microfluidic tools allowed the design of a fiber-like hydrogel incorporating a gradient of PL along the length of the fiber. These spatial protein gradients led to the viability and cell number gradients caused by maintenance of human umbilical vein endothelial cells (HUVECs) survival in the fibers toward the PL-enriched sections in comparison with the nonloaded MeGG sections of the fibers. Altogether, we propose a proof of concept strategy to design a PL gradient biomaterial with potential in tissue engineering approaches and analysis of cell-microenvironment interactions.
Ali, Saniya; Saik, Jennifer E.; Gould, Dan J.; Dickinson, Mary E.
2013-01-01
Abstract Attachment, spreading, and organization of endothelial cells into tubule networks are mediated by interactions between cells in the extracellular microenvironment. Laminins are key extracellular matrix components and regulators of cell adhesion, migration, and proliferation. In this study, laminin-derived peptides were conjugated to poly(ethylene glycol) (PEG) monoacrylate and covalently incorporated into degradable PEG diacrylate (PEGDA) hydrogels to investigate the influence of these peptides on endothelial cellular adhesion and function in organizing into tubule networks. Degradable PEGDA hydrogels were synthesized by incorporating a matrix metalloproteinase (MMP)–sensitive peptide, GGGPQGIWGQGK (abbreviated PQ), into the polymer backbone. The secretion of MMP-2 and MMP-9 by endothelial cells promotes polymer degradation and consequently cell migration. We demonstrate the formation of extensive networks of tubule-like structures by encapsulated human umbilical vein endothelial cells in hydrogels with immobilized synthetic peptides. The resulting structures were stabilized by pericyte precursor cells (10T1/2s) in vitro. During tubule formation and stabilization, extracellular matrix proteins such as collagen IV and laminin were deposited. Tubules formed in the matrix of metalloproteinase sensitive hydrogels were visualized from 7 days to 4 weeks in response to different combination of peptides. Moreover, hydrogels functionalized with laminin peptides and transplanted in a mouse cornea supported the ingrowth and attachment of endothelial cells to the hydrogel during angiogenesis. Results of this study illustrate the use of laminin-derived peptides as potential candidates for modification of biomaterials to support angiogenesis. PMID:23914330
Dehghani Soltani, Samereh; Babaee, Abdolreza; Shojaei, Mohammad; Salehinejad, Parvin; Seyedi, Fatemeh; JalalKamali, Mahshid; Nematollahi-Mahani, Seyed Noureddin
2016-02-01
Light-emitting diodes (LED) have recently been introduced as a potential factor for proliferation of various cell types in vitro. Nowadays, stem cells are widely used in regenerative medicine. Human umbilical cord matrix-derived mesenchymal (hUCM) cells can be more easily isolated and cultured than adult mesenchymal stem cells. The aim of this study was to evaluate the effect of red and green lights produced by LED on the proliferation of hUCM cells. hUCM cells were isolated from the umbilical cord, and light irradiation was applied at radiation energies of 0.318, 0.636, 0.954, 1.59, 3.18, 6.36, 9.54, and 12.72 J/cm(2). Irradiation of the hUCM cells shows a significant (p < 0.05) increase in cell number as compared to controls after 40 h. In addition, cell proliferation on days 7, 14, and 21 in irradiated groups were significantly (p < 0.001) higher than that in the non-irradiated groups. The present study clearly demonstrates the ability of red and green lights irradiation to promote proliferation of hUCM cells in vitro. The energy applied to the cells through LED irradiation is an effective factor with paradoxical alterations. Green light inserted a much profound effect at special dosages than red light.
Guan, Huai; Wang, Man; Li, Xiaowei; Piao, Fengyuan; Li, Qiujuan; Xu, Lei; Kitamura, Fumihiko; Yokoyama, Kazuhito
2014-02-01
Manganese (Mn) is an essential element and a potential toxicant for developing organism. Deficiency and excess of it were both deleterious to fetal growth in experimental animals. However, literature on relationship between Mn status and birth outcome in humans is sparse. Mn concentrations were measured in mother whole blood (MWB) and umbilical cord blood (UCB) in 125 pairs of mother-infant; birth size was examined and relationship between them was analysed. Potentially environmental factors influencing Mn loads in maternal and fetal organisms were investigated through epidemiological method. Mn level in UCB was significantly higher than that in MWB (mean value: 54.98 vs. 78.75 µg/L), and a significant positive correlation was shown between them. There was a quadratic curvilinear (inverted U-shaped curve) relationship between MWB Mn and birth size, and between UCB Mn and birth size. Both univariate analysis and multiple linear regression analysis showed that exposure to harmful occupational factors during gestation remarkably increased maternal and fetal Mn levels. Living close to major transportation routes (<500 m) also increased the MWB Mn levels. Our results suggested that lower or higher Mn level in maternal and umbilical blood may induce adverse effect on birth size in humans. In addition, increased levels of Mn in MWB or UCB may be associated with exposure to some environmental hazard factors.
Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong
2017-04-01
At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.
Yaghoobi, Kayvan; Kaka, Gholamreza; Mansouri, Korosh; Davoodi, Shaghayegh; Sadraie, Seyed Homayoon; Hosseini, Seyed Ruhollah
2016-01-01
Introduction. The primary trauma of spinal cord injury (SCI) results in severe damage to nervous functions. At the cellular level, SCI causes astrogliosis. Human umbilical mesenchymal stem cells (HUMSCs), isolated from Wharton's jelly of the umbilical cord, can be easily obtained. Previously, we showed that the neuroprotective effects of Lavandula angustifolia can lead to improvement in a contusive SCI model in rats. Objective. The aim of this study was to investigate the effect of L. angustifolia (Lav) on HUMSC transplantation after acute SCI. Materials and Methods. Sixty adult female rats were randomly divided into eight groups. Every week after SCI onset, all animals were evaluated for behavior outcomes. H&E staining was performed to examine the lesions after injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results. Behavioral tests showed that the HUMSC group improved in comparison with the SCI group, but HUMSC + Lav 400 was very effective, resulting in a significant increase in locomotion activity. Sensory tests and histomorphological and immunohistochemistry analyses verified the potentiation effects of Lav extract on HUMSC treatment. Conclusion. Transplantation of HUMSCs is beneficial for SCI in rats, and Lav extract can potentiate the functional and cellular recovery with HUMSC treatment in rats after SCI. PMID:27057171
Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology
NASA Technical Reports Server (NTRS)
Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.
2010-01-01
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.
Jia, Yanhui; Yuan, Mei; Guo, Weimin; Huang, Jingxiang; Zhao, Bin; Xu, Wenjing; Lu, Shibi
2017-01-01
Umbilical cord Wharton's jelly-derived mesenchymal stem cell (WJMSC) is a new-found mesenchymal stem cell in recent years with multiple lineage potential. Due to its abundant resources, no damage procurement, and lower immunogenicity than other adult MSCs, WJMSC promises to be a good xenogenous cell candidate for tissue engineering. This in vivo pilot study explored the use of human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) containing a tissue engineering construct xenotransplant in rabbits to repair full-thickness cartilage defects in the femoral patellar groove. We observed orderly spatial-temporal remodeling of hWJMSCs into cartilage tissues during repair over 16 months, with characteristic architectural features, including a hyaline-like neocartilage layer with good surface regularity, complete integration with adjacent host cartilage, and regenerated subchondral bone. No immune rejection was detected when xenograft hWJMSCs were implanted into rabbit cartilage defects. The repair results using hWJMSCs were superior to those of chondrogenically induced hWJMSCs after assessing gross appearance and histological grading scores. These preliminary results suggest that using novel undifferentiated hWJMSCs as seed cells might be a better approach than using transforming growth factor-β-induced differentiated hWJMSCs for in vivo tissue engineering treatment of cartilage defects. hWJMSC allografts may be promising for clinical applications. PMID:28261617
Umbilical hernia management during liver transplantation.
de Goede, B; van Kempen, B J H; Polak, W G; de Knegt, R J; Schouten, J N L; Lange, J F; Tilanus, H W; Metselaar, H J; Kazemier, G
2013-08-01
Patients with liver cirrhosis scheduled for liver transplantation often present with a concurrent umbilical hernia. Optimal management of these patients is not clear. The objective of this study was to compare the outcomes of patients who underwent umbilical hernia correction during liver transplantation through a separate infra-umbilical incision with those who underwent correction through the same incision used to perform the liver transplantation. In the period between 1990 and 2011, all 27 patients with umbilical hernia and liver cirrhosis who underwent hernia correction during liver transplantation were identified in our hospital database. In 17 cases, umbilical hernia repair was performed through a separate infra-umbilical incision (separate incision group) and 10 were corrected from within the abdominal cavity without a separate incision (same incision group). Six patients died during follow-up; no deaths were attributable to intraoperative umbilical hernia repair. All 21 patients who were alive visited the outpatient clinic to detect recurrent umbilical hernia. One recurrent umbilical hernia was diagnosed in the separate incision group (6 %) and four (40 %) in the same incision group (p = 0.047). Two patients in the same incision group required repair of the recurrent umbilical hernia; one of whom underwent emergency surgery for bowel incarceration. The one recurrent hernia in the separate incision group was corrected electively. In the event of liver transplantation, umbilical hernia repair through a separate infra-umbilical incision is preferred over correction through the same incision used to perform the transplantation.
USDA-ARS?s Scientific Manuscript database
Probiotics have shown beneficial effects on human health. To increase the efficacy of probiotic applications, we used Lactobacillus rhamnosus GG (LGG) as a probiotic model to investigate approaches to enhance the bioavailability of probiotics. LGG was encapsulated in hydrogel beads containing pectin...
Lange-Konior, K
1999-01-01
The aim of the paper was to evaluate the activity of inhibitor of the phytoagglutinin Pisum sativum (IfPs) in sera of mothers' and umbilical blood of their newborns in confrontation with the course of pregnancy and delivery. The investigations involved 152 tests of sera collected from women delivering at Department of Obstetrics and Perinatology in the Institute of Gynecology and Obstetrics PMU in Szczecin in the years 1992-1993, as well as 156 samples of sera stemming from their newborn infants and were taken from the umbilical cord vessels. The method of investigations being used in the paper was the reaction of inhibiting the phytohemagglutination, wherein the inhibiting action of sera in bearing women and of sera in umbilical blood exerted on agglutinating one was assessed in relation to human erythrocytes of the group 0 with Pisum sativum lectin properties. The accepted titer of inhibitor of the agglutinin Pisum sativum (IfPs) was expressed as the highest dilution of serum, at which complete inhibition of phytohemagglutination was still preserved. The performed investigations have disclosed statistically significant differences between the activity of IfPs occurring in sera of the mothers and the inhibiting factor in umbilical blood sera of the newborns (Tab. 1). No effect of the duration of pregnancy and the course of pregnancy on the IfPs activity in sera of mothers was disclosed. The absence of inhibitor of Pisum sativum lectin in umbilical blood sera was essentially frequently recorded in premature termination of pregnancy between 31-37 weeks of its duration as well as in sera of newborns born by cesarean section and newborns with birth mass being equal or lower than 2500 g in comparison to sera of full term newborns born by forces of nature (Tab. 2, 3, 5). The birth status of newborns according to Apgar scale did not have any influence of IfPs activity in their sera, however, IfPs activity in sera of umbilical blood was statistically significantly more frequent in cases of deliveries lasting longer than 4 hours as compared to its activity in cases of deliveries being shorter than 4 hours (Tab. 4). On the basis of results of the performed investigations it has been revealed that at the period of intensive divisions of cells, their differentiation (intrauterine period of fetal development) the activity of the inhibitors of phytohemagglutination appearing in body fluids of human being is residual only or does not appear at all. The IfPs activity was intensifying with the progress of intrauterine maturation of the fetus. In the paper closer attention was focussed on the new point of view concerning the role of phytoagglutinins and endogenic lectins as well as their inhibitors in various pathological processes particularly neoplastic ones.
1993-07-01
Minick. antibodies in infectious mononucleosis . Am. J. Med. 76:85. 1973. Culture of human endothelial cells derived from um- 5I. Friedman. H. M.. E...TCIDs5 ,, 50% tissue culture infectious dose, totoxicity assay using a colorimetric kit (LK-1(X), Proteins • • • •• • • S •112 VIRUS-INDUCED
NASA Astrophysics Data System (ADS)
Kao, Chia-Tze; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Wu, Yu-Tin; Chen, Yi-Wen; Shie, Ming-You
2016-02-01
Angiogenesis plays an important role in determining the biostimulation of bone regeneration, in either new bone or blood vessel formation. Human umbilical cord cells (HUVECs) are important effector cells in angiogenesis and are indispensable for osteogenesis and for their heterogeneity and plasticity. However, there are very few studies about the effects of HUVECs on diode laser-stimulated/regulated osteogenesis. In this study, we used diode laser as a model biostimulation to examine the role of HUVECs on laser-stimulated osteogenesis. Several bone formation-related proteins were also significantly up-regulated by the diode laser stimulation, indicating that HUVECs may participate in diode laser-stimulated osteogenesis. Interestingly, when human mesenchymal stem cells (hMSCs) cultured with HUVECs were diode laser-treated, the osteogenesis differentiation of the hMSCs was significantly promoted, indicating the important role of HUVECs in diode laser-enhanced osteogenesis. Adequately activated HUVECs are vital for the success of diode laser-stimulated hard-tissue regeneration. These findings provided valuable insights into the mechanism of diode laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment in periodontal repair.
Chiti, Maria Costanza; Dolmans, Marie-Madeleine; Mortiaux, Lucie; Zhuge, Flanco; Ouni, Emna; Shahri, Parinaz Asiabi Kohneh; Van Ruymbeke, Evelyne; Champagne, Sophie-Demoustier; Donnez, Jacques; Amorim, Christiani Andrade
2018-01-01
The aim of this study is to optimize fibrin matrix composition in order to mimic human ovarian tissue architecture for human ovarian follicle encapsulation and grafting. Ultrastructure of fresh human ovarian cortex in age-related women (n = 3) and different fibrin formulations (F12.5/T1, F30/T50, F50/T50, F75/T75), rheology of fibrin matrices and histology of isolated and encapsulated human ovarian follicles in these matrices. Fresh human ovarian cortex showed a highly fibrous and structurally inhomogeneous architecture in three age-related patients, but the mean ± SD of fiber thickness (61.3 to 72.4 nm) was comparable between patients. When the fiber thickness of four different fibrin formulations was compared with human ovarian cortex, F50/T50 and F75/T75 showed similar fiber diameters to native tissue, while F12.5/T1 was significantly different (p value < 0.01). In addition, increased concentrations of fibrin exhibited enhanced storage modulus with F50/T50, resembling physiological ovarian rigidity. Excluding F12.5/T1 from further analysis, only three remaining fibrin matrices (F30/T50, F50/T50, F75/T75) were histologically investigated. For this, frozen-thawed fragments of human ovarian tissue collected from 22 patients were used to isolate ovarian follicles and encapsulate them in the three fibrin formulations. All three yielded similar follicle recovery and loss rates soon after encapsulation. Therefore, based on fiber thickness, porosity, and rigidity, we selected F50/T50 as the fibrin formulation that best mimics native tissue. Of all the different fibrin matrix concentrations tested, F50/T50 emerged as the combination of choice in terms of ultrastructure and rigidity, most closely resembling human ovarian cortex.
Properties of probiotics and encapsulated probiotics in food.
Ozyurt, V Hazal; Ötles, Semih
2014-01-01
Probiotics are microorganisms which confer health benefits upon application in sufficiently-high viable cell amounts. Probiotics are typically members of Lactobacillus and Bifidobacterium species commonly associated with human gastrointestinal tracts. In the recent past, there has been a rising interest in producing functional foods containing encapsulated probiotic bacteria. Recent studies have been reported using dairy products like cheese, yogurt and ice cream as food carrier, and non-dairy products like meat, fruits, cereals, chocolate, etc. However, the industrial sector contains only few encapsulated probiotic products. Probiotics have been developed by several companies in a capsule or a tablet form. The review compiles probiotics, encapsulation technology and cell life in the food matrices.
Hou, Chen; Peng, Danyi; Gao, Li; Tian, Daiyin; Dai, Jihong; Luo, Zhengxiu; Liu, Enmei; Chen, Hong; Zou, Lin; Fu, Zhou
2018-01-08
The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O 2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation. Copyright © 2017. Published by Elsevier Inc.
Noh, Hyung Jun; Yang, Hyo Hyun; Kim, Geum Soog; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Lee, Eun Suk; Ji, Seung Heon; Kang, Ki Sung; Park, Hye-Jin; Kim, Jae-Ryong; Kim, Ki Hyun
2015-12-01
Hericium erinaceum is an edible and medicinal mushroom widely used in Korea, Japan, and China. On the search for biologically active compounds supporting the medicinal usage, the MeOH extract of the fruiting bodies of H. erinaceum was investigated for its chemical constituents. Six compounds were isolated and identified as hericenone D (1), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (2), erinacerin B (3), hericenone E (4), hericenone F (5) and isohericerin (6) by comparing their spectroscopic data with previously reported values. The inhibitory effects on adriamycin-induced cellular senescence in human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs) of the isolates (1-6) were studied. Among the isolated compounds, ergosterol peroxide (2) reduced senescence associated β-galactosidase (SA-β-gal) activity increased in HUVECs treated with adriamycin. According to experimental data obtained, the active compound may inspire the development of a new pharmacologically useful substance to be used in the treatment and prevention of age-related diseases.
Phadnis, Smruti M; Joglekar, Mugdha V; Venkateshan, Vijayalakshmi; Ghaskadbi, Surendra M; Hardikar, Anandwardhan A; Bhonde, Ramesh R
2006-01-01
Fetal calf serum (FCS) is conventionally used for animal cell cultures due to its inherent growth-promoting activities. However animal welfare issues and stringent requirements for human transplantation studies demand a suitable alternative for FCS. With this view, we studied the effect of FCS, human AB serum (ABS), and human umbilical cord blood serum (UCBS) on murine islets of Langerhans and human bone marrow-derived mesenchymal-like cells (hBMCs). We found that there was no difference in morphology and functionality of mouse islets cultured in any of these three different serum supplements as indicated by insulin immunostaining. A comparative analysis of hBMCs maintained in each of these three different serum supplements demonstrated that UCBS supplemented media better supported proliferation of hBMCs. Moreover, a modification of adipogenic differentiation protocol using UCBS indicates that it can be used as a supplement to support differentiation of hBMCs into adipocytes. Our results demonstrate that UCBS not only is suitable for maintenance of murine pancreatic islets, but also supports attachment, propagation, and differentiation of hBMCs in vitro. We conclude that UCBS can serve as a better serum supplement for growth, maintenance, and differentiation of hBMCs, making it a more suitable supplement in cell systems that have therapeutic potential in human transplantation programs.
Fu, Z-X; Han, J-S; Liu, F; Zhao, Z-L; Li, D-B; Shi, L; Dong, J-T; Zhou, Y; Cai, J-H
2017-05-01
This study is to observe the immunosuppression of CD137L transfected umbilical blood Dcs (Dendritic cell) vaccine to tumor development of SCID/ Beige nude mice. Samples of umbilical blood in the childbirth pregnant women were collected by density gradient centrifugation. Umbilical cord blood dendritic cells (Dcs) were transfected by specific CD137L via LipofectamineTM method and cells were harvested. Meanwhile, the peripheral blood of volunteers was collected to isolate Dcs, the Dcs were cultured for 5 days and hatched with SW-1116 cells antigen. The mature Dcs were harvested. The male SCID/Beige nude mice were subcutaneously injected with human SW-1116 cells in axillary to build colorectal carcinoma model as blank control (Blank). The naked peripheral blood Dc vaccine group (cPBMCs), the SW-1116 antigen-specific peripheral blood Dc vaccine group (pDcs) and the CD137L specific umbilical blood Dc vaccine group (tuDcs) were injected 24 h before tumor cells injection, respectively to recur the humanized immune reconstruction. The general life, living habits changes, tumor growing time and tumor size were observed. The nude mice were sacrificed 18 days after tumor formation. The tumor size, mice weight, in vitro tumor weight, liver weight and spleen weight of mice were recorded to evaluate the anti-tumor effect of the specific immune cells. The nude mice in pDcs group showed better general living condition, slower tumor growth, smaller tumor volume and no ulceration, necrosis, and death in nude mice. The tumor formation time in different groups was 4.71 ± 0.18 ds (blank), 7.71 ± 0.29 ds (cPBMCs), 7.86 ± 0.26 ds (pDcs) and 8.14 ± 0.69 ds (tuDcs) respectively. There were significant differences between blank and other three groups (F = 40.96, p < 0.01). Compared to mice in blank group, the tumor volume of cPBMCs group was significantly smaller (201.43 ± 69.84 mm³ vs. 436.04 ± 54.50 mm³, p < 0.01) and the tumor weight were significantly smaller (1.25 ± 0.12 g vs. 2.83 ± 0.24 g, p < 0.01). The tumor volume of tuDcs mice was significantly smaller than that of blank (92.11 ± 11.55 mm³ vs. 436.04 ± 54.50 mm³, p < 0.01) and cPBMCs mice (92.11 ± 11.55 mm³ vs. 201.43 ± 69.84 mm³, p < 0.01). Similarly, the tumor weight of tuDcs mice was significantly smaller than that of blank (0.66 ± 0.07 g vs. 2.83 ± 0.24 g, p < 0.01) and cPBMCs mice (0.66 ± 0.07 g vs. 1.25 ± 0.12 g, p < 0.01). There was no significant difference in tumor volume (92.11 ± 11.55 mm³ vs. 85.61 ± 11.59 mm³, p = 0.69) and tumor weight (0.66 ± 0.07 g vs. 0.63 ± 0.09 g, p = 0.75) between tuDcs group and pDcs group. The specific CD137L transfected umbilical blood Dc vaccine had significant anti-tumor effect against human colon cancer in nude mice via increasing the number of immune effector cell in tumor microenvironment.
Ali, Hazem; Kalashnikova, Irina; White, Mark Andrew; Sherman, Michael; Rytting, Erik
2013-01-01
The purpose of this study was to prepare dexamethasone-loaded polymeric nanoparticles and evaluate their potential for transport across human placenta. Statistical modeling and factorial design was applied to investigate the influence of process parameters on the following nanoparticle characteristics: particle size, polydispersity index, zeta potential, and drug encapsulation efficiency. Dexamethasone and nanoparticle transport was subsequently investigated using the BeWo b30 cell line, an in vitro model of human placental trophoblast cells, which represent the rate-limiting barrier for maternal-fetal transfer. Encapsulation efficiency and drug transport were determined using a validated high performance liquid chromatography method. Nanoparticle morphology and drug encapsulation were further characterized by cryo-transmission electron microscopy and X-ray diffraction, respectively. Nanoparticles prepared from poly(lactic-co-glycolic acid) were spherical, with particle sizes ranging from 140–298 nm, and encapsulation efficiency ranging from 52–89%. Nanoencapsulation enhanced the apparent permeability of dexamethasone from the maternal compartment to the fetal compartment more than 10-fold in this model. Particle size was shown to be inversely correlated with drug and nanoparticle permeability, as confirmed with fluorescently-labeled nanoparticles. These results highlight the feasibility of designing nanoparticles capable of delivering medication to the fetus, in particular, potential dexamethasone therapy for the prenatal treatment of congenital adrenal hyperplasia. PMID:23850397
NASA Astrophysics Data System (ADS)
Jamilah, It; Priyani, Nunuk; Lusia Natalia, Santa
2018-03-01
Lactic acid bacteria (LAB) has been added to various food products as a probiotic agent because it has been known to provide beneficial health effects in humans. In the application of LAB, cell viability often decreased as influenced by environment stresses. Encapsulation technique is one of the cell protection techniques using a coating material. Effective coating material is required to produce maximum protection of LAB cells. In this study, candidate of probiotic LAB (isolate US7) was encapsulated with alginate-mung bean flour and alginate-gram flour with inulin prebiotic by extrusion technique. Viability of encapsulated LAB cells were able to survive by up to 108CFU g‑1 after 4 weeks of storage at 4 °C. Beads were incubated in simulated liquid gastric acid (pH=2) for 2 hrs and simulated intestinal fluid (pH=6) for 3 hrs at 37 °C. The results showed that encapsulated LAB cells maintained the survival rate of 97% with the number of cells at 9.07 Log CFU g‑1in the simulated liquid gastric acid and then followed by releasing cells in simulated intestinal fluid. In general, this study indicates that encapsulation with alginate-mung bean flour and alginategram flour with inulin successfullyprotect probiotic bacteria against simulated human gastrointestinal conditions.
Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development.
Abd El Aziz, M T; Abd El Nabi, E A; Abd El Hamid, M; Sabry, D; Atta, H M; Rahed, L A; Shamaa, A; Mahfouz, S; Taha, F M; Elrefaay, S; Gharib, D M; Elsetohy, Khaled A
2015-03-01
We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1). EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I) were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS) was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI.
Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells
Swioklo, Stephen; Constantinescu, Andrei
2016-01-01
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C–23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 106 cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. Significance Despite considerable advancement in the clinical application of cell-based therapies, major logistical challenges exist throughout the cell therapy supply chain associated with the storage and distribution of cells between the sites of manufacture and the clinic. A simple, low-cost system capable of preserving the viability and functionality of human adipose-derived stem cells (a cell with substantial clinical interest) at hypothermic temperatures (0°C–32°C) is presented. Such a system has considerable potential for extending the shelf life of cell therapy products at multiple stages throughout the cell therapy supply chain. PMID:26826163
Doxycycline-encapsulated nanotube-modified dentin adhesives.
Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C
2014-12-01
This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP inhibitors into the synthesis of therapeutic adhesives that may enhance the longevity of hybrid layers and the overall clinical performance of adhesively bonded resin composite restorations. © International & American Associations for Dental Research.
Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives
Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.
2014-01-01
This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP inhibitors into the synthesis of therapeutic adhesives that may enhance the longevity of hybrid layers and the overall clinical performance of adhesively bonded resin composite restorations. PMID:25201918
Chemical Characterization of an Encapsulated Red Wine Powder and Its Effects on Neuronal Cells.
Rocha-Parra, Diego; Chirife, Jorge; Zamora, Clara; de Pascual-Teresa, Sonia
2018-04-07
Red wine polyphenols are known for their implications for human health protection, although they suffer from high instability. For this reason, a red wine powder was prepared by freeze-drying encapsulation in maltodextrin/arabic gum matrix, and its composition was determined by means of high-performance liquid chromatography coupled quadrupole time-of-flight mass spectrometry (HPLC-MS-QTOF). More than thirty polyphenols, including anthocyanins, flavanols, flavonols, phenolic acids and stilbenoids, were identified. Some of the main quantified polyphenols were: malvidin-3- O -glucoside, malvidin 3- O -(6″-acetyl-glucose), petunidin-3- O -glucoside, quercetin-3- O -glucuronide, syringenin-3- O -glucoside, epicatechin, gallic acid and syringic acid. The biological activity of this de-alcoholized and encapsulated red wine on human neuroblastoma SH-SY5Y cells was studied. The results showed that the encapsulated red wine powder has active redox properties, as verified by performing reactive oxygen species (ROS) analysis utilizing a neuronal model. This could help explain its action against the neurotoxicity induced by 6-hydroxydopamine (6-OHDA).
Wang, Ran; Qi, Xingshun; Peng, Ying; Deng, Han; Li, Jing; Ning, Zheng; Dai, Junna; Hou, Feifei; Zhao, Jiancheng; Guo, Xiaozhong
2016-11-01
Umbilical hernia is a common abdominal complication in cirrhotic patients with ascites. Our study aimed to evaluate the correlation of umbilical hernia with the volume of ascites. Cirrhotic patients that underwent axial abdominopelvic computed tomography (CT) scans at our hospital between June 2012 and June 2014 were eligible. All CT images were reviewed to confirm the presence of umbilical hernia. The volume of ascites was estimated by five-point method. One hundred and fifty-seven patients were enrolled into this study. Among them, 101 patients had ascites and 6 patients had umbilical hernia. Alkaline phosphatase (AKP) and serum sodium were significantly lower in patients with umbilical hernia (P = 0.008, P = 0.011, respectively). Child-Pugh scores and the volume of ascites were significantly higher in patients with umbilical hernia (P = 0.03, P < 0.0001, respectively). Correlation analysis demonstrated that the volume of ascites, Child-Pugh scores, and blood ammonia had positive correlations with umbilical hernia (r = 0.4579, P < 0.0001; r = 0.175, P = 0.03; r = 0.342, P = 0.001, respectively) and that serum sodium had a negative correlation with umbilical hernia (r = -0.203, P = 0.011). In patients with ascites ≥2000 mL, only AKP was significantly associated with umbilical hernia (P = 0.0497). No variables were significantly associated with umbilical hernia in a subgroup analysis of patients matched according to the volume of ascites. The volume of ascites has a positive correlation with umbilical hernia. However, the factors associated with umbilical hernia in patients with severe ascites remain unclear. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Sekhon, Mehtab K; Yoder, Bradley A
2018-05-08
Necrotizing enterocolitis (NEC) is a serious complication of prematurity. Our objective was to evaluate the impact of an umbilical cord milking protocol (UCM) and pasteurized donor human milk (PDHM) on NEC rates in infants less than 30 weeks gestational age from January 1, 2010 to September 30, 2016. We hypothesized an incremental decrease in NEC after each intervention. We performed a retrospective review of 638 infants born less than 30 weeks gestational age. Infants were grouped into three epochs: pre-UCM/pre-PDHM (Epoch 1, n = 159), post-UCM/pre-PDHM (Epoch 2, n = 133), and post-UCM/post-PDHM (Epoch 3, n = 252). The incidence of NEC, surgical NEC, and NEC/death were compared. Logistic regression was used to determine independent significance of time epoch, gestational age, birth weight, and patent ductus arteriosus for NEC, surgical NEC, and death/NEC. At birth, infants in Epoch 1 were younger than Epoch 2 and 3 (26.8 weeks versus 27.3 and 27.2, respectively, P = 0.036) and smaller (910 g versus 1012 and 983, respectively, P = 0.012). Across epochs, there was a significant correlation between patent ductus arteriosus treatment and NEC rate (P < 0.001, Cochran-Mantel-Haenszel). There was a significant decrease in rates of NEC, surgical NEC, and NEC/death between groups. Logistic regression showed this as significant for rates of NEC and surgical NEC between Epoch 1 and 3. Patent ductus arteriosus was a significant variable affecting the incidence of NEC, but not surgical NEC or death/NEC. An umbilical cord milking protocol and pasteurized donor human milk availability was associated with decreased rates of NEC and surgical NEC. This suggests an additive effect of these interventions in preventing NEC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang
2007-06-15
We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver.more » More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.« less
Rare Abdominal Wall Malformation: Case Report of Umbilical Cord Hernia.
Gliha, Andro; Car, Andrija; Višnjić, Stjepan; Zupancic, Bozidar; Kondza, Karmen; Petracic, Ivan
The umbilical cord hernia is the rarest form of abdominal wall malformations, anatomically completely different from gastroschisis and omphalocele. It occurs due to the permanent physiological evisceration of abdominal organs into umbilical celom and persistence of a patent umbilical ring. The umbilical cord hernia is often mistaken for omphalocele and called "small omphalocele". Here we present a case of a female newborn with umbilical cord hernia treated in our Hospital. After preoperative examinations surgery was done on the second day of life. The abdominal wall was closed without tension. The aim of this article is to present the importance of the proper diagnose of these three entities and to stimulate academic community for the answer, is this umbilical cord hernia or small omphalocele.
21 CFR 870.3450 - Vascular graft prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... terephthalate and polytetrafluoroethylene, and it may be coated with a biological coating, such as albumin or... animal origin, including human umbilical cords. (b) Classification. Class II (special controls). The special control for this device is the FDA guidance document entitled “Guidance Document for Vascular...
21 CFR 870.3450 - Vascular graft prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... terephthalate and polytetrafluoroethylene, and it may be coated with a biological coating, such as albumin or... animal origin, including human umbilical cords. (b) Classification. Class II (special controls). The special control for this device is the FDA guidance document entitled “Guidance Document for Vascular...
21 CFR 870.3450 - Vascular graft prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... terephthalate and polytetrafluoroethylene, and it may be coated with a biological coating, such as albumin or... animal origin, including human umbilical cords. (b) Classification. Class II (special controls). The special control for this device is the FDA guidance document entitled “Guidance Document for Vascular...
21 CFR 870.3450 - Vascular graft prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... terephthalate and polytetrafluoroethylene, and it may be coated with a biological coating, such as albumin or... animal origin, including human umbilical cords. (b) Classification. Class II (special controls). The special control for this device is the FDA guidance document entitled “Guidance Document for Vascular...
[Advance on human umbilical cord mesenchymal stem cells for treatment of ALI in severe burns].
Wang, Yu; Hu, Xiaohong
2017-01-01
Severe burn is often accompanied by multiple organ damage. Acute lung injury (ALI) is one of the most common complications, and often occurs in the early stage of severe burns. If it is not treated in time, it will progress to acute respiratory distress syndrome (ARDS), which will be a serious threat to the lives of patients. At present, the treatment of ALI in patients with severe burn is still remained in some common ways, such as the liquid resuscitation, the primary wound treatment, ventilation support, and anti-infection. In recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been found having some good effects on ALI caused by various causes, but few reports on the efficacy of ALI caused by severe burns were reported. By reviewing the mechanism of stem cell therapy for ALI, therapeutic potential of hUCMSCs in the treatment of severe burns with ALI and a new approach for clinical treatment was provided.
Chang, Hsin-Ning; Pang, Jong-Hwei Su; Yang, Sien-Hung; Hung, Chi-Feng; Chiang, Chi-Hsin; Lin, Tung-Yi; Lin, Yin-Ku
2010-09-14
The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo naturalis extract attenuated TNF-α-induced increase in Jurkat T cell adhesion to HUVECs as well as decreased the protein and messenger (m)RNA expression levels of vascular cell adhesion molecule-1 (VCAM-1) on HUVECs. Indigo naturalis extract also inhibited the protein expression of activator protein-1 (AP-1)/c-Jun, a critical transcription factor for the activation of VCAM-1 gene expression. Since the reduction of lymphocyte adhesion to vascular cells by indigo naturalis extract could subsequently reduce the inflammatory reactions caused by lymphocyte infiltration in the epidermal layer and help to improve psoriasis, this study provides a potential mechanism for the anti-inflammatory therapeutic effect of indigo naturalis extract in psoriasis.
Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuaiyu; Korea Food Research Institute, 516 Baekhyun-dong, Bundang-gu, Songnam, Kyungki-do 463-746; Yoon, Yeo Cho
2012-05-11
Highlights: Black-Right-Pointing-Pointer Cafestol inhibits tube formation and migration of VEGF-stimulated HUVEC. Black-Right-Pointing-Pointer Cafestol inhibits phosphorylation of FAK and Akt. Black-Right-Pointing-Pointer Cafestol decreases NO production. -- Abstract: As angiogenesis plays important roles in tumor growth and metastasis, searching for antiangiogenic compounds is a promising tactic for treating cancers. Cafestol, a diterpene found mainly in unfiltered coffee, provides benefit through varied biological activity, including antitumorigenic, antioxidative, and anti-inflammatory effects. This study aimed to investigate the effects of cafestol on angiogenesis and to uncover the associated mechanism. We show that cafestol inhibits angiogenesis of human umbilical vascular endothelial cells. This inhibition affects themore » following specific steps of the angiogenic process: proliferation, migration, and tube formation. The inhibitory effects of cafestol are accompanied by decreasing phosphorylation of FAK and Akt and by a decrease in nitric oxide production. Overall, cafestol inhibits angiogenesis by affecting the angiogenic signaling pathway.« less
Yi, Eui-Yeun; Han, Kyung-Suk; Kim, Yung-Jin
2014-01-01
Angiogenesis is important processes for tumor growth and metastasis. Anti-angiogenesis target therapy has recently been known to be new anti-cancer therapeutic strategies. Natural products such as traditional medicine comprise a major source of angiogenesis inhibitors. Artemisia lavandulaefolia has been known to use in the traditional medical practices. However, its molecular mechanism on the tumor protection and therapy was not clearly elucidated. In this study, we investigated the possibility that extract of A. lavandulaefolia inhibits in vitro angiogenesis. Therefore, we examined the effect of extract of A. lavandulaefolia on the vascular network formation of human umbilical vein endothelial cells (HUVECs). We found that the treatment of A. lavandulaefolia extract suppressed the tube formation of HUVECs without any influence on the viability of HUVECs. In addition, extract of A. lavandulaefolia inhibited the migration and invasion of HUVECs. These results suggest that extract of A. lavandulaefolia could be act for an angiogenic inhibitor. PMID:25574458
Leng, Xiangfeng; Fan, Yongle; Wang, Yating; Sun, Jian; Cai, Xia; Hu, Chunnan; Ding, Xiaoying; Hu, Xiaoying; Chen, Zhengyu
2017-06-06
BACKGROUND Recent studies have shown that skin flap transplantation technique plays an important role in surgical procedures. However, there are many problems in the process of skin flap transplantation surgeries, especially ischemia-reperfusion injury, which directly affects the survival rate of the skin flap and patient prognosis after surgeries. MATERIAL AND METHODS In this study, we used a new method of the "stem cells-gene" combination therapy. The "F-5" gene fragment of heat shock protein 90-α (Hsp90-α) was transfected into human umbilical cord mesenchymal stem cells (hUC-MSCs) by genetic engineering technique. RESULTS The synergistic effects of "F-5" gene and hUC-MSCs in the treatment of ischemia-reperfusion injury of the skin flap were confirmed by histochemical and immunohistochemical methods. CONCLUSIONS This study showed that the hUC-MSCs transfected with "F-5" gene can effectively improve the repair of ischemia-reperfusion injury.
46. BASE OF UMBILICAL MAST FROM UMBILICAL MAST TRENCH. ERECTION ...
46. BASE OF UMBILICAL MAST FROM UMBILICAL MAST TRENCH. ERECTION AND RETRACTION CYLINDERS BETWEEN MAST AND TRENCH WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Incarceration of a pedunculated uterine fibroid in an umbilical hernia.
Kim, Mi Ju; Cha, Hyun-Hwa; Seong, Won Joon
2017-05-01
Uterine fibroids are common benign tumors that may cause an umbilical hernia in patients with increased intra-abdominal pressure due to pregnancy, obesity, ascites, and intra-abdominal tumors. However, the simultaneous occurrence of uterine fibroids and umbilical hernias, or fibroids and an associated umbilical hernia, during pregnancy has rarely been reported. Here, we present the case of a fibroid presenting as an incarcerated umbilical hernia in a menopausal patient.
İnce, E; Temiz, A; Ezer, S S; Gezer, H Ö; Hiçsönmez, A
2017-06-01
Umbilical cord hernia is poorly understood and often miscategorized as "omphalocele minor". Careless clamping of the cord leads to iatrogenic gut injury in the situation of umbilical cord hernia. This study aimed to determine the characteristics and outcomes of umbilical cord hernias. We also highlight an alternative repair method for umbilical cord hernias. We recorded 15 cases of umbilical cord hernias over 10 years. The patients' data were retrospectively reviewed, and preoperative preparation of the newborn, gestational age, birth weight, other associated malformations, surgical technique used, enteral nutrition, and length of hospitalization were recorded. This study included 15 neonates with umbilical cord hernias. The mean gestational age at the time of referral was 38.2 ± 2.1
USDA-ARS?s Scientific Manuscript database
This manuscript served to characterize and evaluate Human Serum Albumin-encapsulated Nanoparticles (NPs) for drug delivery of a tyrosine kinase inhibitor combined with induction of photothermal ablation (PTA) combination therapy of Renal Cell Carcinoma (RCC). RCC is the most common type of kidney c...
Martín, Pedro; Enrique, Nicolás; Palomo, Ana R. Roldán; Rebolledo, Alejandro; Milesi, Veronica
2012-01-01
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account. PMID:22688134
Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele
2015-01-01
Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications.
Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele
2015-01-01
Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications. PMID:26528254
Ansari, Sahar; Diniz, Ivana M; Chen, Chider; Sarrion, Patricia; Tamayol, Ali; Wu, Benjamin M; Moshaverinia, Alireza
2017-12-01
Repair or regeneration of damaged nerves is still a challenging clinical task in reconstructive surgeries and regenerative medicine. Here, it is demonstrated that periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) isolated from adult human periodontal and gingival tissues assume neuronal phenotype in vitro and in vivo via a subcutaneous transplantation model in nude mice. PDLSCs and GMSCs are encapsulated in a 3D scaffold based on alginate and hyaluronic acid hydrogels capable of sustained release of human nerve growth factor (NGF). The elasticity of the hydrogels affects the proliferation and differentiation of encapsulated MSCs within scaffolds. Moreover, it is observed that PDLSCs and GMSCs are stained positive for βIII-tubulin, while exhibiting high levels of gene expression related to neurogenic differentiation (βIII-tubulin and glial fibrillary acidic protein) via quantitative polymerase chain reaction (qPCR). Western blot analysis shows the importance of elasticity of the matrix and the presence of NGF in the neurogenic differentiation of encapsulated MSCs. In vivo, immunofluorescence staining for neurogenic specific protein markers confirms islands of dense positively stained structures inside transplanted hydrogels. As far as it is known, this study is the first demonstration of the application of PDLSCs and GMSCs as promising cell therapy candidates for nerve regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mitchell, D H; James, G T; Kruse, C A
1990-06-01
The molecular integrity of human recombinant interleukin-2 (rIL-2), as measured by size exclusion chromatography, was not altered when exposed to high electrical field intensities. In addition, the biological activity was unaffected, as evidenced by the ability of the rIL-2 to stimulate the proliferation (by cell growth assays and tritiated thymidine uptake) and differentiation (by cytotoxicity assay) of human lymphocytes into killer cells. Electroporation conditions chosen for the loading of rIL-2, based upon those which provided for good recovery of carriers and minimal hemoglobin release, involved a lower field intensity (i.e., 6 kV/cm instead of 7 or 8 kV/cm) and multiple pulses (eight pulses, 5 microseconds) rather than a single pulse (40 microseconds). Human erythrocyte carriers consistently encapsulated 5-7.5% of the rIL-2 by electroporation (6 kV/cm, eight pulses, 5 microseconds duration). A rIL-2 concentration of 600,000 U/ml surrounding the erythrocytes during loading resulted in ca. 245,000 U/ml carriers, which represents a therapeutically significant quantity. Thus, rIL-2 shows potential as an encapsulated agent for slow release in the erythrocyte carrier system.
Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong
2017-07-01
Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize vessels by interfering anterior gradient 2-mediated angiogenesis in metastatic colorectal cancer.
Incarceration of a pedunculated uterine fibroid in an umbilical hernia
Kim, Mi Ju; Seong, Won Joon
2017-01-01
Uterine fibroids are common benign tumors that may cause an umbilical hernia in patients with increased intra-abdominal pressure due to pregnancy, obesity, ascites, and intra-abdominal tumors. However, the simultaneous occurrence of uterine fibroids and umbilical hernias, or fibroids and an associated umbilical hernia, during pregnancy has rarely been reported. Here, we present the case of a fibroid presenting as an incarcerated umbilical hernia in a menopausal patient. PMID:28534020
Gubar, O S; Rodnichenko, A E; Vasyliev, R G; Zlatska, A V; Zubov, D O
2017-09-01
We aimed to isolate and characterize the cell types which could be obtained from postnatal extra-embryonic tissues. Fresh tissues (no more than 12 h after delivery) were used for enzymatic or explants methods of cell isolation. Obtained cultures were further maintained at 5% oxygen. At P3 cell phenotype was assessed by fluorescence-activated cell sorting, population doubling time was calculated and the multilineage differentiation assay was performed. We have isolated multiple cell types from postnatal tissues. Namely, placental mesenchymal stromal cells from placenta chorionic disc, chorionic membrane mesenchymal stromal cells (ChM-MSC) from free chorionic membrane, umbilical cord MSC (UC-MSC) from whole umbilical cord, human umbilical vein endothelial cells (HUVEC) from umbilical vein, amniotic epithelial cells (AEC) and amniotic MSC (AMSC) from amniotic membrane. All isolated cell types displayed high proliferation rate together with the typical MSC phenotype: CD73 + CD90 + CD105 + CD146 + CD166+CD34 - CD45 - HLA-DR - . HUVEC constitutively expressed key markers CD31 and CD309. Most MSC and AEC were capable of osteogenic and adipogenic differentiation. We have shown that a wide variety of cell types can be easily isolated from extra-embryonic tissues and expanded ex vivo for regenerative medicine applications. These cells possess typical MSC properties and can be considered an alternative for adult MSC obtained from bone marrow or fat, especially for allogeneic use.
Smith, Kate E; Kelly, Amy C; Min, Catherine G; Weber, Craig S; McCarthy, Fiona M; Steyn, Leah V; Badarinarayana, Vasudeo; Stanton, J Brett; Kitzmann, Jennifer P; Strop, Peter; Gruessner, Angelika C; Lynch, Ronald M; Limesand, Sean W; Papas, Klearchos K
2017-11-01
Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic β cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to β cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and β cell function and leads to increased inflammatory signaling.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Quraishi, Naveed (Technical Monitor)
2003-01-01
The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the ARTS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller's bandwidth, at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This report develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially straight, cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals, under the indicated assumptions.
NASA Technical Reports Server (NTRS)
Hampton, R. David; Quraishi, Naveed; Rupert, Jason K.
2000-01-01
The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the ARIS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller's bandwidth. at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This paper develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on:orbit application. The analysis assumes an initially straight. cantilevered umbilical with uniform cross-section. which undergoes large deflections with no plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals. under the indicated assumptions.
Automated Ground Umbilical Systems (AGUS) Project
NASA Technical Reports Server (NTRS)
Gosselin, Armand M.
2007-01-01
All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).
Haskins, I N; Rosen, M J; Prabhu, A S; Amdur, R L; Rosenblatt, S; Brody, F; Krpata, D M
2017-10-01
Umbilical hernias present commonly during pregnancy secondary to increased intra-abdominal pressure. As a result, umbilical hernia incarceration or strangulation may affect pregnant females. The purpose of this study is to detail the operative management and 30-day outcomes of umbilical hernias in pregnant patients using the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP). All female patients undergoing umbilical hernia repair during pregnancy were identified within the ACS-NSQIP. Preoperative patient variables, intraoperative variables, and 30-day patient morbidity and mortality outcomes were investigated using a variety of statistical tests. A total of 126 pregnant patients underwent umbilical hernia repair from 2005 to 2014; 73 (58%) had incarceration or strangulation at the time of surgical intervention. The majority of patients (95%) underwent open umbilical hernia repair. Superficial surgical site infection was the most common morbidity in patients undergoing open umbilical hernia repair. Based on review of the ACS-NSQIP database, the incidence of umbilical hernia repair during pregnancy is very low; however, the majority of patients required repair for incarceration of strangulation. When symptoms develop, these hernias can be repaired with minimal 30-day morbidity to the mother. Additional studies are needed to determine the long-term recurrence rate of umbilical hernia repairs performed in pregnant patients and the effects of surgical intervention and approach on the fetus.
Nutritional status and umbilical hernia in Nigerian school children of different ethnic groups.
Ebomoyi, E.; Parakoyi, D. B.; Omonisi, M. K.
1991-01-01
The relationship between nutritional status and umbilical hernia was assessed among Hausa and Yoruba school children in rural areas of Kwara State, Nigeria. The prevalence of umbilical hernia in the rural school pupils was 19.4%. The Yoruba school children had a higher prevalence rate of 22.0%, while the prevalence rate for Hausa pupils was 16.9%. The association between umbilical hernia and primary school class was statistically significant. More school children suffering from protein energy malnutrition presented with umbilical hernia. The association between umbilical hernia and nutritional status was weak. The school health component of the national primary health program should be intensified to screen school children regularly for umbilical hernia. The school health environment of rural Nigerian schools should be improved through government efforts. Images Figure 1 Figure 2 PMID:1800766
Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet.
Strand, Berit L; Coron, Abba E; Skjak-Braek, Gudmund
2017-04-01
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C
2014-04-01
To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.
Chen, Ke; Wang, Ding; Du, Wei Ting; Han, Zhi-Bo; Ren, He; Chi, Ying; Yang, Shao Guang; Zhu, Delin; Bayard, Francis; Han, Zhong Chao
2010-06-01
Human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) constitute an attractive alternative to bone-marrow-derived MSCs for potential clinical applications because of easy preparation and lower risk of viral contamination. In this study, both proliferation of human peripheral blood mononuclear cells (hPBMCs) and their IFN-gamma production in response to mitogenic or allogeneic stimulus were effectively inhibited by hUC-MSCs. Co-culture experiments in transwell systems indicated that the suppression was largely mediated by soluble factor(s). Blocking experiments identified prostaglandin E(2) (PGE(2)) as the major factor, because inhibition of PGE(2) synthesis almost completely mitigated the immunosuppressive effects, whereas neutralization of TGF-beta, IDO, and NO activities had little effects. Moreover, the inflammatory cytokines, IFN-gamma and IL-1beta, produced by hPBMCs upon activation notably upregulated the expression of cyclooxygenase-2 (COX-2) and the production of PGE(2) by hUC-MSCs. In conclusion, our data have demonstrated for the first time the PGE(2)-mediated mechanism by which hUC-MSCs exert their immunomodulatory effects. Copyright 2010 Elsevier Inc. All rights reserved.
Li, Xiaocong; Jiang, Chunyu; Zhao, Jungong
2016-08-01
Wound healing is deeply dependent on neovascularization to restore blood flow. The neovascularization of endothelial progenitor cells (EPCs) through paracrine secretion has been reported in various tissue repair models. Exosomes, key components of cell paracrine mechanism, have been rarely reported in wound healing. Exosomes were isolated from the media of EPCs obtained from human umbilical cord blood. Diabetic rats wound model was established and treated with exosomes. The in vitro effects of exosomes on the proliferation, migration and angiogenic tubule formation of endothelial cells were investigated. We revealed that human umbilical cord blood EPCs derived exosomes transplantation could accelerate cutaneous wound healing in diabetic rats. We also showed that exosomes enhanced the proliferation, migration and tube formation of vascular endothelial cells in vitro. Furthermore, we found that endothelial cells stimulated with these exosomes would increase expression of angiogenesis-related molecules, including FGF-1, VEGFA, VEGFR-2, ANG-1, E-selectin, CXCL-16, eNOS and IL-8. Taken together, our findings indicated that EPCs-derived exosomes facilitate wound healing by positively modulating vascular endothelial cells function. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of collagen peptide-based biomaterials for tissue engineering applications
NASA Astrophysics Data System (ADS)
Hernandez Gordillo, Victor
The transition from in vitro to in vivo use of stem cells in regenerative medicine requires biomaterial scaffolds that can maintain stem cell viability and at the same time allow cell differentiation. We have previously reported the design of a collagen mimetic peptide (CMP) that assembles into a mesh-like three-dimensional (3D) structure upon the addition of metal ions and its potential for the culture of human cells. The addition of a chelating solution, such as EDTA, results in disassembly of the 3D structure, demonstrating the flexibility in the assembly/disassembly process. In the second chapter of this dissertation, we report the design of CMPs that can be functionalized with His-tagged cargoes within the 3D scaffold, via metal coordination. We show that the addition of GFP-His8 and human epidermal growth factor (hEGF-His6) has minimal effect in the assembly process. Additionally, we show that the bound hEGF-His6 can be released gradually in vitro for 5 days and induces cell proliferation in an EGF-dependent cell line. Furthermore, we functionalized the CMPs with the cell adhesion sequence (RGDS) to promote cell differentiation of two human non-tumorigenic cells lines, MCF10A and 3522-S1. In the third chapter, we evaluated the possibility of using the collagen mimetic-peptide-based (CMP) scaffolds for cell encapsulation and differentiation of human mesenchymal stem cells (hMSC). We show that hMSC encapsulated within the CMP scaffold are viable for up to 24 days post encapsulation. Moreover, hMSC at days 1, 4 and 8 days after encapsulation can be recovered from the scaffold and retain their stemness properties when analyzed for in vitro differentiation. We also demonstrate by real time PCR (RT-PCR) that genes important for osteogenic and chondrogenic differentiation are over-expressed in the absence of stimulating factors when the cells are encapsulated in the 3D scaffold at 8 and 24 days post encapsulation. Lastly, the incorporation of the cell adhesion sequence (RGDS) was shown to influence the scaffold-cell interaction. hMSCs within these RGDS-modified scaffold adopted spindle shape morphology and a complex cell organization at the outermost layer of the scaffold. In contrast, in the scaffold lacking the RGDS sequence hSMCs formed cell aggregates.
Cellular Encapsulation Enhances Cardiac Repair
Levit, Rebecca D.; Landázuri, Natalia; Phelps, Edward A.; Brown, Milton E.; García, Andrés J.; Davis, Michael E.; Joseph, Giji; Long, Robert; Safley, Susan A.; Suever, Jonathan D.; Lyle, Alicia N.; Weber, Collin J.; Taylor, W. Robert
2013-01-01
Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Masson's Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases. PMID:24113327
Umbilical paracentesis for incarcerated umbilical hernia in patients with end-stage liver disease.
Alonso, S; Donat, M; Carrion, L; Rodriguez, J M; Diego, L; Acin, D; Serrano, A; Perez, E; Pereira, F
2016-08-01
Patients with cirrhosis and ascites are prone to abdominal wall complications largely predominate by umbilical hernia. Elective surgery is indicated in select patients but a high morbidity and mortality rate occurs if it is performed in emergency conditions. We present a clinical case of a patient with advanced alcoholic liver disease who came to the emergency room for an acutely incarcerated umbilical hernia. Due to the high surgical risk, we had to discuss other treatment options. The use of umbilical paracentesis for incarcerated hernia reduction in cirrhotic patients with tense ascites is a safe and reproducible technique. Umbilical paracentesis could be considered as an alternative to emergency surgery in these high-risk patients.
Spontaneous Endometriosis Within a Primary Umbilical Hernia
Yheulon, Christopher G
2017-01-01
Umbilical hernias are rather common in the General Surgery clinic; however, endometriosis of an umbilical hernia is rare. It is especially unusual to have endometriosis of an umbilical hernia spontaneously occur compared to occurring at a site of a prior surgery. We present a case of spontaneous endometriosis of an umbilical hernia without prior surgery to her umbilicus. She had not presented with the usual symptoms of endometriosis and it was not considered as a diagnosis prior to surgery. Umbilical endometriosis is rare but usually occurs after prior laparoscopic surgery. We believe this is the second reported case in the English literature and the first such case reported from North America of spontaneous endometriosis of an umbilical hernia. This case highlights the importance of a full review of systems and qualifying the type and occurrence of pain. Additionally, it is always important to analyze surgical specimens in pathology to avoid errors in diagnosis. PMID:29164008
Umbilical hernia with cholelithiasis and hiatal hernia: a clinical entity similar to Saint's triad.
Yamanaka, Takahiro; Miyazaki, Tatsuya; Kumakura, Yuji; Honjo, Hiroaki; Hara, Keigo; Yokobori, Takehiko; Sakai, Makoto; Sohda, Makoto; Kuwano, Hiroyuki
2015-01-01
We experienced two cases involving the simultaneous presence of cholelithiasis, hiatal hernia, and umbilical hernia. Both patients were female and overweight (body mass index of 25.0-29.9 kg/m(2)) and had a history of pregnancy and surgical treatment of cholelithiasis. Additionally, both patients had two of the three conditions of Saint's triad. Based on analysis of the pathogenesis of these two cases, we consider that these four diseases (Saint's triad and umbilical hernia) are associated with one another. Obesity is a common risk factor for both umbilical hernia and Saint's triad. Female sex, older age, and a history of pregnancy are common risk factors for umbilical hernia and two of the three conditions of Saint's triad. Thus, umbilical hernia may readily develop with Saint's triad. Knowledge of this coincidence is important in the clinical setting. The concomitant occurrence of Saint's triad and umbilical hernia may be another clinical "tetralogy."
Spontaneous Endometriosis Within a Primary Umbilical Hernia.
Laferriere, Nicole R; Yheulon, Christopher G
2017-11-01
Umbilical hernias are rather common in the General Surgery clinic; however, endometriosis of an umbilical hernia is rare. It is especially unusual to have endometriosis of an umbilical hernia spontaneously occur compared to occurring at a site of a prior surgery. We present a case of spontaneous endometriosis of an umbilical hernia without prior surgery to her umbilicus. She had not presented with the usual symptoms of endometriosis and it was not considered as a diagnosis prior to surgery. Umbilical endometriosis is rare but usually occurs after prior laparoscopic surgery. We believe this is the second reported case in the English literature and the first such case reported from North America of spontaneous endometriosis of an umbilical hernia. This case highlights the importance of a full review of systems and qualifying the type and occurrence of pain. Additionally, it is always important to analyze surgical specimens in pathology to avoid errors in diagnosis.
Dissanayaka, Waruna Lakmal; Hargreaves, Kenneth M.; Jin, Lijian; Samaranayake, Lakshman P.
2015-01-01
Securing an adequate blood supply for the survival of cell transplants is critical for a successful outcome in tissue engineering. Interactions between endothelial and progenitor/stem cells are important for vascularization of regenerating tissue. Recently, self-assembling peptide nanofibers were described as a promising environment for pulp regeneration due to their synthetic nature and controlled physicochemical properties. In this study, the peptide hydrogel PuraMatrix™ was used as a scaffold system to investigate the role of dental pulp stem cells (DPSCs) in triggering angiogenesis and the potential for regenerating vascularized pulp in vivo. Human umbilical vein endothelial cells (HUVECs), DPSCs, or cocultures of both cell types were encapsulated in three-dimensional PuraMatrix. The peptide nanofiber microenvironment supported cell survival, cell migration, and capillary network formation in the absence of exogenous growth factors. DPSCs increased early vascular network formation by facilitating the migration of HUVECs and by increasing vascular endothelial growth factor (VEGF) expression. Both the DPSC-monoculture and coculture groups exhibited vascularized pulp-like tissue with patches of osteodentin after transplantation in mice. The cocultured groups exhibited more extracellular matrix, vascularization, and mineralization than the DPSC-monocultures in vivo. The DPSCs play a critical role in initial angiogenesis, whereas coordinated efforts by the HUVECs and DPSCs are required to achieve a balance between extracellular matrix deposition and mineralization. The findings of this study also highlighted the importance of a microenvironment that supports cell–cell interactions and cell migration, which contribute to successful dental pulp regeneration. PMID:25203774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Miyoung; Jeong, Sang Young; Ha, Jueun
2014-04-18
Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challengemore » in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.« less
Neonatal oxidative stress depends on oxygen blood pressure in umbilical artery.
Proietti, F; De Bernardo, G; Longini, M; Sordino, D; Scaramuzzini, G; Tataranno, M L; Belvisi, E; Bazzini, F; Perrone, S; Buonocore, G
2016-01-01
With advancing gestation, partial pressure of oxygen (pO2) and pH fall significantly. Hypoxia is a main factor inducing free radical generation and thereby oxidative stress (OS). Placental and fetal tissue response when oxygen becomes restricted is complex and partially known. We tested the hypothesis that changes in umbilical artery and vein blood gas concentrations modulate OS occurrence in the newborn. Seventy umbilical artery and vein plasma samples were collected from healthy term newborns immediately after delivery. F2 Isoprostanes (F2-Isop) were measured in all samples as reliable markers of lipid peroxidation. Significantly lower pCO2 and higher pO2 and pH were found in umbilical vein than in artery, as expected. A positive correlation was detected between pH and pO2 only in umbilical artery (p=0.019). F2-Isop levels were no different between artery and vein in cord blood. Significant correlations were found between F2-Isop and pCO2 (p=0.025) as well as between F2-Isop and pH in umbilical vein (p=0.027). F2-Isop correlated with pCO2 (p=0.007) as well as with pO2 values (p=0.005) in umbilical artery blood. Oxidative stress (OS) in newborns depends on oxygen concentrations in umbilical artery. OS biomarkers significantly correlate with pO2 and in umbilical artery but not in umbilical vein. In normoxic conditions fetal-maternal gas exchanges occurring in placenta re-establish normal higher oxygen levels in umbilical vein than artery, with a normal production of free radicals without any deleterious effects.
Zhao, Hongbo; Wu, Lanxiang; Wang, Yahui; Zhou, Jiayi; Li, Ruixia; Zhou, Jiabing; Wang, Zehua; Xu, Congjian
2017-04-01
Pre-eclampsia, characterized as defective uteroplacental vascularization, remains the major cause of maternal and fetal mortality and morbidity. Previous epidemiological studies demonstrated that cigarette smoking reduced the risk of pre-eclampsia. However, the molecular mechanism remains elusive. In the present study, it is demonstrated that a low dose of nicotine decreased soluble vascular endothelial growth factor receptor 1 (sFlt1) secretion in human trophoblast cells under hypoxic conditions. Nicotine was then observed to promote vascular endothelial growth factor (VEGF) secretion by reducing sFlt1 secretion and increasing VEGF mRNA transcription. Further data showed that nicotine enhanced hypoxia-mediated hypoxia-inducible factor-1α (HIF-1α) expression and HIF-1α small interfering RNA abrogated nicotine-induced VEGF secretion, indicating that HIF-1α may be responsible for nicotine-mediated VEGF transcription under hypoxic conditions. Moreover, conditioned medium from human trophoblast cells treated with nicotine under hypoxic conditions promoted the proliferation and tube formation capacity of human umbilical endothelial cells (HUVEC) by promoting VEGF secretion. These findings indicate that nicotine may promote VEGF secretion in human trophoblast cells under hypoxic conditions by reducing sFlt1 secretion and up-regulating VEGF transcription and improve the proliferation and tube formation of HUVEC cells, which may contribute to elucidate the protective effect of cigarette smoking against pre-eclampsia. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Onisto, Maurizio; Ananian, Viviana; Caenazzo, Luciana
2011-12-01
Storage of human biological samples and personal data associated with them is organised in Biobanks. In spite of expectation given by biobanks in medicine, their management involved some ethical questions, for example, the need for policies to regulate economic interests, potential commercial use of data (including patents), private sector financing, ownership of samples and benefit sharing. In the context of contributing to the general public interest, we can consider the act of giving biological material to biobanks as a donation, in which the donation constitutes part of a generalised form of reciprocity in which the act of donation contributes to society's common good. Starting from this perspective, we move into a different situation represented by the biobanking of umbilical cord blood for personal use. We used the example of the private biobanking of umbilical cords to demonstrate the restrictive utility of the collection and preservation of cord blood for personal use in private biobanks, in the context of society's common good. In summary, a system based on solidarity seems to be able to guarantee necessary levels of supply for the donation of biological material to biobanks.
Recurrent umbilical cord accidents in a bottlenose dolphin Tursiops truncatus.
García-Párraga, Daniel; Brook, Fiona; Crespo-Picazo, José Luís; Alvaro, Teresa; Valls, Mónica; Penadés, Mariola; Ortega, Joaquín; Corpa, Juan Manuel
2014-02-19
Three successive umbilical cord accidents (UCAs) were diagnosed in the same female bottlenose dolphin Tursiops truncatus during consecutive gestations. In 2 of these, transabdominal ultrasonographic examination revealed coiling of the UC around the peduncle of the foetus. All 3 foetuses were male, died in utero during the last third of gestation and were spontaneously aborted. The 3 UCs were elongated, flattened and congested. For 3 subsequent pregnancies, a different sire was used for mating, handling protocols and treatments were adjusted, and 3 live female calves were successfully delivered. UC lengths were normal. UCAs are associated with excessively long UCs and are not uncommon in humans and horses but are unusual in other species. We believe this is the first detailed report of recurrent UCAs in a dolphin.
2009-02-19
VANDENBERG AIR FORCE BASE, Calif. -- On Launch Complex 576-E at Vandenberg Air Force Base in California, NASA's Orbiting Carbon Observatory, or OCO, spacecraft awaits a GN2 instrument purge flow test in preparation for launch Feb. 24. The spacecraft sits atop Orbital Sciences' Taurus XL rocket. At right is a portion of the umbilical tower attached to the upper stack. The spacecraft sits atop Orbital Sciences' Taurus XL rocket. At right is a portion of the umbilical tower attached to the upper stack. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo courtesy of Jim Stowers, Orbital Sciences
Discordant Umbilical Cord Drug Testing Results in Monozygotic Twins.
Alexander, Amy; Abbas, Liaqat; Jones, Mary; Jones, Joseph; Lewis, Douglas; Negrusz, Adam
2018-06-01
Our laboratory received segments of umbilical cord that originated from identical twins for routine toxicology analysis. The specimens were analyzed multiple times by liquid chromatography tandem mass spectrometry. The umbilical cord from newborn #1 was positive for hydromorphone only (1.06 ng/g), and the umbilical cord from newborn #2 was positive for hydromorphone (0.81 ng/g) and benzoylecgonine (5.41 ng/g). The hydromorphone results are consistent with maternal administration of hydromorphone; however, the cause of the discrepant benzoylecgonine results in the umbilical cords from the identical twins is unknown.
Pandey, Divya; Sharma, Ritu; Salhan, Sudha
2015-08-01
Spontaneous umbilical endometriosis occurring in absence of any previous abdominal or uterine surgery is extremely atypical. Its association with umbilical hernia is very rare and hernia getting spontaneously resolved has not been reported in literature so far. Here we report a case of a patient with spontaneous umbilical endometriosis associated with umbilical hernia which led to spontaneous hernia reduction. This was also associated with multiple uterine fibromyoma and bilateral ovarian endometrioma which were simultaneously treated by total abdominal hysterectomy with bilateral salpingo-oopherectomy along with surgical excision of the endometriotic tissue and repair of the abdominal wall defect. To the best of our knowledge, this is the first described case of spontaneous umbilical hernia reduction due to development of endometriosis.
Vecchiatini, R; Penolazzi, L; Lambertini, E; Angelozzi, M; Morganti, C; Mazzitelli, S; Trombelli, L; Nastruzzi, C; Piva, R
2015-08-01
Bioreactors are devices that efficiently create an environment that enables cell cultures to grow in a three-dimensional (3D) context mimicking in vivo conditions. In this study, we investigate the effect of dynamic fluid flow on the osteogenic potential of human mesenchymal stem cells obtained from periodontal ligament and entrapped in alginate microbeads. After proper immunophenotyping, cells were encapsulated in barium alginate, cultured in 3D static or 3D dynamic conditions represented by a bioreactor system. Calcein-AM/propidium iodide staining was used to assess cellular viability. Quantitative real-time polymerase chain reaction was used to analyze the expression of osteogenic markers (Runx2 and COL1). Alizarin Red S staining and the Fourier transform infrared spectroscopy were used to assess mineral matrix deposition. Optimal encapsulation procedure, in terms of polymer pumping rate, distance from droplet generator to the gelling bath and atomizing airflow was assessed. Cell viability was not affected by encapsulation in alginate microbeads. Bioreactor cell exposure was effective in anticipating osteogenic differentiation and improving mineral matrix deposition. For the first time human mesenchymal stem cells obtained from periodontal ligaments encapsulated in alginate microbeads were cultured in a bioreactor system. This combination could represent a promising strategy to create a cell-based smart system with enhanced osteogenic potential useful for many different dental applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Alginate Immobilization of Metabolic Enzymes (AIME) for High ...
Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput screening (HTS) assays to assess chemical perturbations of molecular and cellular endpoints. A key criticism of using HTS assays for toxicity assessment is the lack of xenobiotic metabolism (XM) which precludes both metabolic detoxification as well as bioactivation of chemicals tested in vitro thereby mischaracterizing the potential risk posed by these chemicals. To address this deficiency, we have developed an extracellular platform to retrofit existing HTS assays with XM activity. This platform utilizes the S9 fraction of liver homogenate encapsulated in an alginate gel network which reduces the cytotoxicity caused by direct addition of S9 to cells in culture. Alginate microspheres containing encapsulated human liver S9 were cross-linked to solid supports extending from a 96-well plate lid and were assayed using a pro-luciferin substrate specific for CYP3A4 (IPA). We demonstrate that S9 was successfully encapsulated and remained enzymatically active post-encapsulation with 5-10X the CYP3A4 activity as compared to 1 µg solubilized human liver S9. Ketoconazole, a known inhibitor of human CYP3A4, inhibited CYP3A4 activity in a concentration-dependent manner (IC50: 0.27 µM) and inhibiti
Fabrication, characterization and bioevaluation of silibinin loaded chitosan nanoparticles.
Pooja, Deep; Babu Bikkina, Dileep J; Kulhari, Hitesh; Nikhila, Nalla; Chinde, Srinivas; Raghavendra, Y M; Sreedhar, B; Tiwari, Ashok K
2014-08-01
Silibinin is reported to possess multiple biological activities. However, its hydrophobic nature limits its bioavailability compromising in vivo biological activities. Nanoparticles-based delivery of such molecules has emerged as new technique to resolve these issues. Bio-degradable, compatible and adhesive nature of chitosan has recently attracted its suitability as a carrier for biologically active molecules. This study presents fabrication and characterization of chitosan-tripolyphosphate based encapsulation of silibinin. Various preparations of silibinin encapsulated chitosan-tripolyphosphate nanoparticles were studied for particle size, morphology, zeta-potential, and encapsulation efficiencies. Preparations were also evaluated for cytotoxic activities in vitro. The optimized silibinin loaded chitosan nanoparticles were of 263.7±4.1nm in particle size with zeta potential 37.4±1.57mV. Nanoparticles showed high silibinin encapsulation efficiencies (82.94±1.82%). No chemical interactions between silibinin and chitosan were observed in FTIR analysis. Powder X-ray diffraction analysis revealed transformed physical state of silibinin after encapsulation. Surface morphology and thermal behaviour were determined using TEM and DSC analysis. Encapsulated silibinin displayed increased dissolution and better cytotoxicity against human prostate cancer cells (DU145) than silibinin alone. Copyright © 2014 Elsevier B.V. All rights reserved.
Headen, Devon M.; Aubry, Guillaume; Lu, Hang
2014-01-01
Cell and islet microencapsulation in synthetic hydrogels provide an immunoprotective and cell-supportive microenvironment. A microfluidic strategy for the genaration of biofunctionalized, synthetic microgel particles with precise control over particle size and molecular permeability for cell and protein delivery is presented. These engineered capsules support high cell viability and function of encapsulated human stem cells and islets. PMID:24615922
Maintenance of Normoglycemia in Diabetic Mice by Subcutaneous Xenografts of Encapsulated Islets
NASA Astrophysics Data System (ADS)
Lacy, Paul E.; Hegre, Orion D.; Gerasimidi-Vazeou, Andriani; Gentile, Frank T.; Dionne, Keith E.
1991-12-01
The goal of islet transplantation in human diabetes is to maintain the islet grafts in the recipients without the use of immunosuppression. One approach is to encapsulate the donor islets in permselective membranes. Hollow fibers fabricated from an acrylic copolymer were used to encapsulate small numbers of rat islets that were immobilized in an alginate hydrogel for transplantation in diabetic mice. The fibers were biocompatible, prevented rejection, and maintained normoglycemia when transplanted intraperitoneally; hyperglycemia returned when the fibers were removed at 60 days. Normoglycemia was also maintained by subcutaneous implants that had an appropriately constructed outer surface on the fibers.
Han, Zhen-Xia; Shi, Qing; Wang, Da-Kun; Li, Dong; Lyu, Ming
2013-10-01
Bone marrow (BM) and umbilical cord (UC) are the major sources of mesenchymal stem cells for therapeutics. This study was aimed to compare the basic biologic characteristics of bone marrow-derived and umbilical cord derived-mesenchymal stem cells (BM-MSC and UC-MSC) and their immunosuppressive capability in vitro. The BM-MSC and UC-MSC were cultured and amplified under same culture condition. The growth kinetics, phenotypic characteristics and immunosuppressive effects of UC-MSC were compared with those of BM-MSC.Gene chip was used to compare the genes differentially expressed between UC-MSC and BM-MSC. The results showed that UC-MSC shared most of the characteristics of BM-MSC, including morphology and immunophenotype. UC-MSC could be ready expanded for 30 passages without visible changes. However, BM-MSC grew slowly, and the mean doubling time increased notably after passage 6. Both UC-MSC and BM-MSC could inhibit phytohemagglutinin-stimulated peripheral blood mononuclear cell proliferation, in which BM-MSC mediated more inhibitory effect. Compared with UC-MSC, BM-MSC expressed more genes associated with immune response. Meanwhile, the categories of up-regulated genes in UC-MSC were concentrated in organ development and growth. It is concluded that the higher proliferation capacity, low human leukocyte antigen-ABC expression and immunosuppression make UC-MSC an excellent alternative to BM-MSC for cell therapy. The differences between BM-MSC and UC-MSC gene expressions can be explained by their ontogeny and different microenvironment in origin tissue. These differences can affect their efficacy in different therapeutic applications.
McIntire, Ramsey H.; Sifers, Travis; Platt, J. Sue; Ganacias, Karen G.; Langat, Daudi K.; Hunt, Joan S.
2008-01-01
Human placentas are sources of cytokines, hormones and other substances that program receptive cells. One of these substances is HLA-G, which influences the functioning of both leukocytes and endothelial cells. In this study we investigated the possibility that these and/or other types of cells in extraembryonic fetal tissues might respond to HLA-G by interacting with one or another of the leukocyte immunoglobulin-like receptors (LILR). LILRB1 is expressed by most leukocytes and LILRB2 is expressed primarily by monocytes, macrophages and dendritic cells. Analysis of term placentas by immunohistochemistry and Real Time PCR demonstrated that LILRB1 and LILRB2 protein and specific messages are produced in the mesenchyme of term villous placenta but are differently localized. LILRB1 was abundant in stromal cells and LILRB2 was prominent perivascularly. Neither receptor was identified in trophoblast. Further investigation using double label immunofluorescence indicated that placental vascular smooth muscle but not endothelia exhibit LILRB2. Term umbilical cord exhibited the same LILRB2 patterns as term placenta. Samples obtained by laser capture dissection of vascular smooth muscle in umbilical cords demonstrated LILRB2 mRNA, and double labeling immunofluorescence showed that cord vascular smooth muscle but not endothelium exhibited LILRB2 protein. The presence of LILRB1 in placental stromal cells and LILRB2 in vascular smooth muscle strongly suggest that HLA-G has novel functions in these tissues that could include regulation of placental immunity as well as development and function of the extraembryonic vasculature. PMID:18538388
Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L
2016-08-01
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Umbilical cord blood banking: implications for perinatal care providers.
Armson, B Anthony
2005-03-01
To evaluate the risks and benefits of umbilical cord blood banking for future stem cell transplantation and to provide guidelines for Canadian perinatal care providers regarding the counselling, procedural, and ethical implications of this potential therapeutic option. Selective or routine collection and storage of umbilical cord blood for future autologous (self) or allogenic (related or unrelated) transplantation of hematopoietic stem cells to treat malignant and nonmalignant disorders in children and adults. Maternal and perinatal morbidity, indications for umbilical cord blood transplantation, short- and long-term risks and benefits of umbilical cord blood transplantation, burden of umbilical cord blood collection on perinatal care providers, parental satisfaction, and health care costs. MEDLINE and PubMed searches were conducted from January 1970 to October 2003 for English-language articles related to umbilical cord blood collection, banking, and transplantation; the Cochrane library was searched; and committee opinions of the Royal College of Obstetricians and Gynaecologists, the American Academy of Pediatrics, and the American College of Obstetricians and Gynecologists were obtained. The evidence collected was reviewed and evaluated by the Maternal/Fetal Medicine Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC), and recommendations were made using the evaluation of evidence guidelines developed by the Canadian Task Force on the Periodic Health Exam. Umbilical cord blood is a readily available source of hematopoietic stem cells used with increasing frequency as an alternative to bone marrow or peripheral stem cells for transplantation in the treatment of malignant and nonmalignant conditions in children and adults. Umbilical cord blood transplantation provides a rich source of hematopoietic stem cells with several advantages, including prompt availability, decreased risk of transmissible viral infections and graft-versus-host disease (GVHD) in both human leukocyte antigen(HLA)-matched and HLA-mismatched stem cell transplants, and ease of collection with little risk to the mother or newborn. Potential limitations of umbilical cord blood transplantation include insufficient stem cell dose to reliably treat larger children and adult recipients, slower rate of engraftment, and the potential for transfer of genetically abnormal hematopoietic stem cells. The optimum method of umbilical cord blood transplantation is not yet clear, though available evidence would favour collection before delivery of the placenta. There are many unresolved ethical issues related to umbilical cord blood banking, particularly related to the rapid growth of private, for-profit, cord blood banks offering long-term storage for potential future autologous or related allogenic transplantation. The financial burden to the health care system for public cord blood banking and to families for private cord blood collection and storage is considerable. 1. Perinatal care providers should be informed about the promising clinical potential of hematopoietic stem cells in umbilical cord blood and about current indications for its collection, storage, and use, based on sound scientific evidence (II-3B). 2. Umbilical cord blood collection should be considered for a sibling or parent in need of stem cell transplantation when an HLA-identical bone marrow cell or peripheral stem cell donation from a sibling or parent is unavailable for transplantation (II-2B). 3. Umbilical cord blood should be considered when allogeneic transplantation is the treatment of choice for a child who does not have an HLA-identical sibling or a well-matched, unrelated adult bone marrow donor (II-2B). 4. Umbilical cord blood should be considered for allogeneic transplantation in adolescents and young adults with hematologic malignancies who have no suitable bone marrow donor and who require urgent transplantation (II-3B). 5. Altruistic donation of cord blood for public banking and subsequent allogeneic transplantation should be encouraged when umbilical cord blood banking is being considered by childbearing women, prenatal care providers, and(or) obstetric facilities (II-2B). 6. Collection and long-term storage of umbilical cord blood for autologous donation is not recommended because of the limited indications and lack of scientific evidence to support the practice (III-D). 7. Birth unit staff should receive training in standardized cord blood unit volume and reduce the rejection rate owing to labelling problems, bacterial contamination, and clotting (II-3B). 8. The safe management of obstetric delivery should never be compromised to facilitate cord blood collection. Manoeuvres to optimize cord blood unit volume, such as early clamping of the umbilical cord, may be employed at the discretion of the perinatal care team, provided the safety of the mother and newborn remains the major priority (III-A). 9. Collection of cord blood should be performed after the delivery of the infant but before delivery of the placenta, using a closed collection system and procedures that minimize risk of bacterial and maternal fluid contamination (see Figures 1a-1c) (I-B). 10. Public and private cord blood banks should strictly adhere to standardized policies and procedures for transportation, safety testing, HLA typing, cryopreservation, and long-term storage of umbilical cord blood units to prevent harm to the recipient, to eliminate the risk of transmitting communicable diseases, and thus to maximize the effectiveness of umbilical cord blood stem cell transplantation (II-1A). 11. Canada should establish registration, regulation, and accreditation of cord blood collection centres and banks (III-B). 12. Recruitment of cord blood donors should be fair and noncoercive. Criteria to ensure an equitable recruitment process include the following: (a) adequate supply to meet population transplantation needs; (b) fair distribution of the burdens and benefits of cord blood collection; (c) optimal timing of recruitment; (d) appropriately trained personnel; and (e) accurate recruitment message (III-A). 13. Informed consent for umbilical cord blood collection and banking should be obtained during prenatal care, before the onset of labour, with confirmation of consent after delivery (III-B). 14. Linkage of cord blood units and donors is recommended for public safety. Policies regarding the disclosure of abnormal test results to donor parents should be developed. Donor privacy and confidentiality of test results must be respected (III-C). 15. Commercial cord blood banks should be carefully regulated to ensure that promotion and pricing practices are fair, financial relationships are transparent, banked cord blood is stored and used according to approved standards, and parents and care providers understand the differences between autologous versus allogenic donations and private versus public banks (III-B). 16. Policies and procedures need to be developed by perinatal facilities and national health authorities to respond to prenatal requests for public and private cord blood banking (III-C).
Surgical anatomy and morphologic variations of umbilical structures.
Fathi, Amir H; Soltanian, Hooman; Saber, Alan A
2012-05-01
The umbilicus is the main access route to the abdominal cavity in laparoscopic surgeries. However, its anatomical configuration is rarely studied in the surgical and anatomical literature. With introduction of laparoendoscopic single-site surgery and considering the significant number of primary and postoperative umbilical hernias, we felt the necessity to comprehensively study the umbilical structures and analyze their protective function against hernias. Twenty-four embalmed cadavers were studied in the anatomy laboratory of Case Western Reserve University. Round hepatic, median and medial ligaments, umbilical ring, umbilical and umbilicovesicular fasciae, and pattern of attachment to the ring were dissected and measured. Mean age was 82.1 years, ranging between 56 and 96 years, with a male-to-female ratio of 1.4:1. Ninety-two per cent was white and 8 per cent black adults. According to shape and attachment pattern of ligaments, umbilical ring is classified into five types. Hernia incidence was 25 per cent. All hernia cases lacked the umbilical fascia and the round hepatic ligament was not attached to the inferior border of the ring. The umbilical ring and its morphologic relation with adjacent ligaments are described and classified into five types. In contrary to sparse existing literature, we propose that umbilical fascia is continuation and condensation of umbilicovesicular rather than transversalis fascia. It was absent in cadavers forming conjoined median and medial ligaments with a single insertion site to the ring. Round ligament insertion to the inferior border of the ring provides another protective factor. These two protective measures were absent in all the observed umbilical hernias.
Umbilical scarring in hatchling American alligators
Wiebe, J.J.; Sepulveda, M.S.; Buckland, J.E.; Anderson, S.R.; Gross, T.S.
2004-01-01
Umbilical scarring is the presence of excess scar tissue deposited between abdominal dermal layers at the site of yolk sac absorption in hatchling American alligators (Alligator mississippiensis). The presence of this dermal condition plays a key evaluatory role in the overall quality and subsequent value for various commercial leather products. Despite the prevalent nature of this condition, currently the industry has no standardized protocols for its quantification. The objectives of this study were to examine the relationship between hatchling weight and age and incidence of umbilical scarring and to develop a quantifiable and reproducible technique to measure this dermal condition in hatchling American alligators. Thirty eggs from each of nine clutches were incubated in two separate incubators at different facilities and hatchling umbilical scarring was measured at 2 and 10 days of age using digital calipers. Umbilical area was calculated by multiplying umbilical length times umbilical width. There was a significant effect of both age and clutch on umbilical area (overall decline of 64%) by 10 days post-hatch. However, only five of the nine clutches utilized expressed a noticeable decline in the size of this dermal condition (range 67-74%). We had hypothesized that larger hatchlings would have larger umbilical areas and a slower rate of improvement in this condition during the first few days post-hatch. The differences in umbilical area and percent decline with age across clutches, however, were not associated with differences in initial hatchling weights. Within clutches and time periods, hatchling weight had no significant effect on the size and/or rate of decline of this condition. ?? 2004 Published by Elsevier B.V.
Song, Wei; Lu, Yen-Chun; Frankel, Angela S.; An, Duo; Schwartz, Robert E.; Ma, Minglin
2015-01-01
Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies. PMID:26592180
Peters, Erica B; Liu, Betty; Christoforou, Nicolas; West, Jennifer L; Truskey, George A
2015-10-01
Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p < 0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications.
Peters, Erica B.; Liu, Betty; Christoforou, Nicolas; West, Jennifer L.; Truskey, George A.
2015-01-01
Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p <0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications. PMID:25777295
Balgi-Agarwal, Saloni; Winter, Caitlyn; Corral, Alexis; Mustafa, Shamimunisa B; Hornsby, Peter; Moreira, Alvaro
2018-06-27
Mesenchymal stem cells (MSCs) have shown promise as therapeutic agents in treating morbidities associated with premature birth. MSCs derived from the human umbilical cord are easy to isolate and have low immunogenicity and a robust ability to secrete paracrine factors. To date, there are no studies evaluating preterm versus term umbilical cord tissue-derived MSCs. Therefore, our aim was twofold: (1) to compare stem cell properties in preterm versus term MSCs and (2) to examine the impact of oxygen tension on stem cell behavior. Umbilical cord tissue was obtained from 5 preterm and 5 term neonates. The cells were isolated and characterized as MSCs in accordance with the International Society for Cellular Therapy. We exposed MSCs to different oxygen tensions to examine the impact of environmental factors on cell performance. We studied the following stem cell properties: (i) motility, (ii) proliferation, (iii) senescence, (iv) cell viability, (v) colony-forming unit efficiency, and (vi) inflammatory cytokine expression. Under normoxia (21% O2), cells from preterm and term infants had similar properties. Under hypoxic conditions (1% O2), term MSCs had better cell proliferation; however, cells exposed to hyperoxia (90% O2) had the slowest motility and lowest cell viability (p < 0.05). There was no difference in the expression of senescence or cytokine expression between the groups. The term cells demonstrated more colony-forming efficiency than the preterm cells. In sum, our preliminary findings suggest that MSCs derived from term and preterm umbilical cords have similar characteristics, offering the potential of future autologous/allogeneic MSC transplants in neonates. © 2018 S. Karger AG, Basel.
Deformation and Flexibility Equations for ARIS Umbilicals Idealized as Planar Elastica
NASA Technical Reports Server (NTRS)
Hampton, R. David; Leamy, Michael J.; Bryant, Paul J.; Quraishi, Naveed
2005-01-01
The International Space Station relies on the active rack isolation system (ARIS) as the central component of an integrated, stationwide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an international standard payload rack from disturbances due to the motion of the Space Station. Disturbances to microgravity experiments on ARIS isolated racks are transmitted primarily via the ARIS power and vacuum umbilicals. Experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller s bandwidth at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This work documents the development and verification of equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, inextensible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially curved (not necessarily circular), cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical slope changes monotonically. The treatment is applicable to the ARIS power and vacuum umbilicals under the indicated assumptions.
The Development and Implementation of the Kennedy Space Center Umbilical Clearance Tool
NASA Technical Reports Server (NTRS)
Chesnutt, David
2016-01-01
In preparation for NASAs upcoming Space Launch System program, the Kennedy Space Center is currently developing subsystems to provide fuel, purges and communications to the flight vehicle, known as umbilicals. It is vital to the crew and mission that these umbilicals release at T-0 without re-contacting the vehicle as it is accelerating from the launch pad. To help ensure this requirement is met by the program, a methodology of evaluating the moving bodies was developed and implemented into a tool using MATLAB. The tool, known as the KSC Umbilical Clearance Tool, takes a given elevation of interest and an umbilical retract profile within the plane to evaluate the clearance between the umbilical arm and thousands of independent flight vehicle drift profiles from a Monte Carlo analysis. The presentation will delve into the challenges associated with developing and implementing the tool framed in the context of evaluating the clearance for one of the SLS umbilicals.
[Intestinal polyp of the umbilical cord].
Guschmann, M; Janda, J; Wenzelides, K; Vogel, M
2002-02-01
The morphology, pathogenesis, complications and differential diagnosis of an intestinal polyp of the umbilical cord are presented. The polyp were detected postnatal on the umbilical cord in an healthy male newborn. The presents of intestinal tissue upon the umbilical cord ist possible about the persistence from remnants of the ductus omphalomesentericus with prolapse and differentiation of the intestinal cells. The ductus omphalomesentericus is a tubular structure, a communication between the developing embryonic gut and the yolk sac, forming during the early embryonic life. Obliteration of the omphalomesenteric duct is usually complete by the 10(th) week of gestation. Various portions of the duct may persist, however, giving rise to polyps, fistulas or cysts of the umbilical cord with potentially dangerous clinical consequences. Other tumors of the umbilical cord are myxoma, angioma and teratoma are differential diagnosis.
[Umbilical hernia repair in conjunction with abdominoplasty].
Bai, Ming; Dai, Meng-Hua; Huang, Jiu-Zuo; Qi, Zheng; Lin, Chen; Ding, Wen-Yun; Zhao, Ru
2012-09-01
To investigate the feasibility and clinical benefits of umbilical hernia repair in conjunction with abdominoplasty. The incision was designed in accord with abdominoplasty. The skin and subcutaneous tissue was dissected toward the costal arch, and then the anterior sheath of rectus abdominus was exposed. After exposure and dissection of the sac of umbilical hernia, tension-free hernioplasty was performed with polypropylene mesh. After dissecting the redundant skin and subcutaneous tissue, the abdominal wall was tightened. Between May 2008 and May 2011, ten patients were treated in the way mentioned above. The repair of umbilical hernia and the correction of abdominal wall laxity were satisfactory. There was no recurrence of umbilical hernia, hematoma, seroma or fat liquefaction. Through careful selection of patients, repair of umbilical hernia and body contouring could be achieved simultaneously.
Therapy of umbilical hernia during laparoscopic cholecystectomy.
Zoricić, Ivan; Vukusić, Darko; Rasić, Zarko; Schwarz, Dragan; Sever, Marko
2013-09-01
The aim of this study is to show our experience with umbilical hernia herniorrhaphy and laparoscopic cholecystectomy, both in the same act. During last 10 years we operated 89 patients with cholecystitis and pre-existing umbilical hernia. In 61 of them we performed standard laparoscopic cholecystectomy and additional sutures of abdominal wall, and in 28 patients we performed in the same act laparoscopic cholecystectomy and herniorrhaphy of umbilical hernia. We observed incidence of postoperative herniation, and compared patients recovery after herniorrhaphy combined with laparoscopic cholecystectomy in the same act, and patients after standard laparoscopic cholecystectomy and additional sutures of abdominal wall. Patients, who had in the same time umbilical hernia herniorrhaphy and laparoscopic cholecystectomy, shown better postoperative recovery and lower incidence of postoperative umbilical hernias then patients with standard laparoscopic cholecystectomy and additional abdominal wall sutures.
Potential antitumor activity of novel DODAC/PHO-S liposomes
Luna, Arthur Cássio de Lima; Saraiva, Greice Kelle Viegas; Filho, Otaviano Mendonça Ribeiro; Chierice, Gilberto Orivaldo; Neto, Salvador Claro; Cuccovia, Iolanda Midea; Maria, Durvanei Augusto
2016-01-01
In recent studies, we showed that synthetic phosphoethanolamine (PHO-S) has a great potential for inducing cell death in several tumor cell lines without damage to normal cells. However, its cytotoxic effect and selectivity against tumor cells could increase with encapsulation in cationic liposomes, such as dioctadecyldimethylammonium chloride (DODAC), due to electrostatic interactions between these liposomes and tumor cell membranes. Our aim was to use cationic liposomes to deliver PHO-S and to furthermore maximize the therapeutic effect of this compound. DODAC liposomes containing PHO-S (DODAC/PHO-S), at concentrations of 0.3–2.0 mM, prepared by ultrasonication, were analyzed by scanning electron microscopy (SEM) and dynamic light scattering. The cytotoxic effect of DODAC/PHO-S on B16F10 cells, Hepa1c1c7 cells, and human umbilical vein endothelial cells (HUVECs) was assessed by MTT assay. Cell cycle phases of B16F10 cells were analyzed by flow cytometry and the morphological changes by SEM, after treatment. The liposomes were spherical and polydisperse in solution. The liposomes were stable, presenting an average of ∼50% of PHO-S encapsulation, with a small reduction after 40 days. DODAC demonstrated efficient PHO-S delivery, with the lowest values of IC50% (concentration that inhibits 50% of the growth of cells) for tumor cells, compared with PHO-S alone, with an IC50% value of 0.8 mM for B16F10 cells and 0.2 mM for Hepa1c1c7 cells, and without significant effects on endothelial cells. The Hepa1c1c7 cells showed greater sensitivity to the DODAC/PHO-S formulation when compared to B16F10 cells and HUVECs. The use of DODAC/PHO-S on B16F10 cells induced G2/M-phase cell cycle arrest, with the proportion significantly greater than that treated with PHO-S alone. The morphological analysis of B16F10 cells by SEM showed changes such as “bleb” formation, cell detachment, cytoplasmic retraction, and apoptotic bodies after DODAC/PHO-S treatment. Cationic liposomal formulation for PHO-S delivery promoted cytotoxicity more selectively and effectively against B16F10 and Hepa1c1c7 cells. Thus, the DODAC/PHO-S liposomal formulation presents great potential for preclinical studies. PMID:27143880
Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh; Khorrami, Arash
2014-03-01
pH-responsive polymers produce liposomes with pH-sensitive property which can release their encapsulated drug under mild acidic conditions found inside the cellular endosomes, inflammatory tissues and cancerous cells. The aim of this study was preparing pH-sensitive and plasma stable liposomes in order to enhance the selectivity and antiproliferative effect of Rapamycin. In the present study we used PEG-poly (monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymer and Oleic acid (OA) to induce pH-sensitive property in Rapamycin liposomes. pH-sensitive liposomal formulations bearing copolymer PEG-PMMI-CholC6 and OA were characterized in regard to physicochemical stability, pH-responsiveness and stability in human plasma. The ability of pH-sensitive liposomes in enhancing the cytotoxicity of Rapamycin was evaluated in vitro by using colon cancer cell line (HT-29) and compared with its cytotoxicity on human umbilical vein endothelial cell (HUVEC) line. Both formulations were found to release their contents under mild acidic conditions rapidly. However, unlike OA-based liposomes, the PEG-PMMI-CholC6 bearing liposomes preserved their pH-sensitivity in plasma. Both types of pH-sensitive Rapamycin-loaded liposomes exhibited high physicochemical stability and could deliver antiproliferative agent into HT-29 cells much more efficiently in comparison with conventional liposomes. Conversely, the antiproliferative effect of pH-sensitive liposomes on HUVEC cell line was less than conventional liposomes. This study showed that both OA and PEG-PMMI-CholC6-based vesicles could submit pH-sensitive property, however, only PEG-PMMI-CholC6-based liposomes could preserve pH-sensitive property after incubation in plasma. As a result pH-sensitive PEG-PMMI-CholC6-based liposomal formulation can improve the selectivity, stability and antiproliferative effect of Rapamycin. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhu, Wen-Ting; Liu, Sheng-Yao; Wu, Lei; Xu, Hua-Li; Wang, Jun; Ni, Guo-Xin; Zeng, Qing-Bing
2017-01-01
Background It has been widely reported that curcumin (CUR) exhibits anticancer activity and triggers the apoptosis of human A549 non-small-cell lung cancer (NSCLC) cells. However, its application is limited owing to its poor solubility and bioavailability. Therefore, there is an urgent need to develop a new CUR formulation with higher water solubility and better biocompatibility for clinical application in the future. Materials and methods In this study, CUR-loaded methoxy polyethylene glycol–polylactide (CUR/mPEG–PLA) polymeric micelles were prepared by a thin-film hydration method. Their characteristics and antitumor effects were evaluated subsequently. Results The average size of CUR/mPEG–PLA micelles was 34.9±2.1 nm with its polydispersity index (PDI) in the range of 0.067–0.168. The encapsulation efficiency and drug loading were 90.2%±0.78% and 9.1%±0.07%, respectively. CUR was constantly released from the CUR/mPEG–PLA micelles, and its cellular uptake in A549 cells was significantly increased. It was also found that CUR/mPEG–PLA micelles inhibited A549 cell proliferation, increased the cell cytotoxicity, induced G2/M stage arrest and promoted cell apoptosis. Moreover, the CUR/mPEG–PLA micelles suppressed the migration and invasion of A549 cells more obviously than free CUR. Additionally, CUR/mPEG–PLA micelles inhibited human umbilical vein endothelial cells migration, invasion and corresponding tube formation, implying the antiangiogenesis ability. Its enhanced antitumor mechanism may be related to the reduced expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, MMP-9 and Bcl-2 as well as the increased expression of Bax. Conclusion The mPEG–PLA copolymer micelles can serve as an efficient carrier for CUR. The CUR/mPEG–PLA micelles have promising clinical potential in treating NSCLC. PMID:28435247
Umbilical hernia masking primary umbilical endometriosis - a case report.
Brătilă, Elvira; Ionescu, Oana Maria; Badiu, Dumitru Cristinel; Berceanu, Costin; Vlădăreanu, Simona; Pop, Doina Mihaela; MehedinŢu, Claudia
2016-01-01
Endometriosis is a gynecologic condition affecting mainly the pelvic organs. However, extrapelvic endometriosis has been reported in almost all parts of the body. Umbilical endometriosis, either primary or secondary, is uncommon and has a documented neoplastic risk. We present the case of a 46-year-old woman with a large umbilical hernia associating primary umbilical endometriosis discovered during surgery and confirmed later by pathological and immunohistochemical exams. The patient underwent omphalectomy and partial omentum resection, alongside with mesh abdominal wall repair. The patient was informed about the recurrence risk and was asymptomatic at follow-up consults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook
2007-06-29
Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types,more » including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.« less
NASA Astrophysics Data System (ADS)
Terazono, Hideyuki; Kim, Hyonchol; Nomura, Fumimasa; Yasuda, Kenji
2016-06-01
We developed a microprocessing-assisted technique to select single-strand DNA aptamers that bind to unknown targets on the cell surface by modifying the conventional systematic evolution of ligands by exponential enrichment (cell-SELEX). Our technique involves 1) the specific selection of target-cell-surface-bound aptamers without leakage of intracellular components by trypsinization and 2) cloning of aptamers by microprocessing-assisted picking of single cells using magnetic beads. After cell-SELEX, the enriched aptamers were conjugated with magnetic beads. The aptamer-magnetic beads conjugates attached to target cells were collected individually by microassisted procedures using microneedles under a microscope. After that, the sequences of the collected magnetic-bead-bound aptamers were identified. As a result, a specific aptamer for the surface of target cells, e.g., human umbilical vein endothelial cells (HUVECs), was chosen and its specificity was examined using other cell types, e.g., HeLa cells. The results indicate that this microprocessing-assisted cell-SELEX method for identifying aptamers is applicable in biological research and clinical diagnostics.
Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong
2012-01-01
Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH(•) free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H(2)O(2)-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H(2)O(2) stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases.
Leng, Xiangfeng; Fan, Yongle; Wang, Yating; Sun, Jian; Cai, Xia; Hu, Chunnan; Ding, Xiaoying; Hu, Xiaoying; Chen, Zhenyu
2017-01-01
Background Recent studies have shown that skin flap transplantation technique plays an important role in surgical procedures. However, there are many problems in the process of skin flap transplantation surgeries, especially ischemia-reperfusion injury, which directly affects the survival rate of the skin flap and patient prognosis after surgeries. Material/Methods In this study, we used a new method of the “stem cells-gene” combination therapy. The “F-5” gene fragment of heat shock protein 90-α (Hsp90-α) was transfected into human umbilical cord mesenchymal stem cells (hUC-MSCs) by genetic engineering technique. Results The synergistic effects of “F-5” gene and hUC-MSCs in the treatment of ischemia-reperfusion injury of the skin flap were confirmed by histochemical and immunohistochemical methods. Conclusions This study showed that the hUC-MSCs transfected with “F-5” gene can effectively improve the repair of ischemia-reperfusion injury. PMID:28586321
Lu, Zhaoyu; Lu, Fuhua; Zheng, Yanqun; Zeng, Yuqun; Zou, Chuan; Liu, Xusheng
2016-01-01
To investigate the effects of grape seed proanthocyanidin extract (GSPE) on indoxyl sulfate-induced Human Umbilical Vein Endothelial Cells (HUVECs) injury in vitro and study its mechanism. HUVECs were incubated with indoxyl sulfate at concentrations in the range found in uremic patients. Then we determined the effect of indoxyl sulfate on endothelial phenotype, endothelial function, ROS (reactive oxygen species), cell apoptosis and mitochondrial function. In addition, we detected whether GSPE can suppress the injury of HUVECs induced by indoxyl sulfate and probe the mechanism underlying the protective effects of GSPE by analyzing mitochondrial dysfunction. GSPE treatment significantly attenuated indoxyl sulfate-induced HVUECs injury in a dose- and time-dependent manner. GSPE-enhanced eNOS and VE-cadherin expression, inhibited intracellular ROS level and cell apoptosis, adjust mitochondrial membrane potential and reduced 8-hydroxy-desoxyguanosine (8-OHdG) level induced by indoxyl sulfate. These results suggest that GSPE prevents HUVECs from indoxyl sulfate-induced injury by ameliorating mitochondrial dysfunction and may be a promising agent for treating uremia toxin-induced injury.
Pritchett, Joshua C; Green, Jaime S; Thomm, Angela M; Knox, Konstance K; Verneris, Michael R; Lund, Troy C
2016-12-15
Human herpesvirus 6B (HHV-6B) commonly reactivates after umbilical cord blood transplantation (UCBT) and is associated with delayed engraftment, fever, rash, and central nervous system dysfunction. Recently, CD134 (OX40) has been implicated as a potential viral entry receptor. We evaluated CD4 + CD134 + / neg-lo and CD8 + CD134 + / neg-lo cells at day 28 after UCBT in 20 subjects with previously documented HHV-6 reactivation and persistent viremia. Analysis of CD4 + CD134 + cells as compared to CD4 + CD134 neg-lo cells showed 0.308 versus 0.129 copies of HHV-6B/cell (P = .0002). CD8 + CD134 +/neg-lo cells contained little to no HHV-6B copies. Following UCBT, CD4 + CD134 + cells harbor significantly increased levels of HHV-6B, suggesting that CD134 (OX40) may facilitate viral entry. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu
2016-01-01
To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation. PMID:26727026
Hailer, N P; Oppermann, E; Leckel, K; Cinatl, J; Markus, B H; Blaheta, R A
2000-07-15
Interaction of endothelial P-selectin with sialyl Lewis(x)-glycoprotein or P-selectin glycoprotein ligand (PSGL)-1 on leukocytes represents an early step in leukocyte recruitment. Redistribution of P-selectin to the endothelial cell surface occurs rapidly after challenge with several proinflammatory agents, for example, histamine, leucopterins, or lipopolysaccharide. We present evidence that prostaglandin E2 (PGE2) is an efficient inductor of surface P-selectin on cultured human umbilical vein endothelial cells (HUVEC). The increase in P-selectin-immunoreactivity coincided with redistribution of cytoplasmic P-selectin-reactive granulae to the endothelial cell surface, as visualized by confocal laser microscopic examination. CD4-T-cell adhesion to PGE2-stimulated HUVEC was also enhanced by a factor of 4, and blocking mAb directed against the binding site of P-selectin almost completely abrogated this increase in CD4-T-cell adhesion. In summary, our findings show that liberation of PGE2 is an important inductor of P-selectin surface expression on endothelial cells, resulting in enhanced recruitment of inflammatory cells.
Gan, Jingyi; Meng, Fanwei; Zhou, Xin; Li, Chan; He, Yixin; Zeng, Xiaoping; Jiang, Xingen; Liu, Jia; Zeng, Guifang; Tang, Yunxia; Liu, Muyun; Mrsny, Randall J; Hu, Xiang; Hu, Jifan; Li, Tao
2015-04-01
Acute radiation syndrome (ARS) leads to pancytopenia and multi-organ failure. Transplantation of hematopoietic stem cells provides a curative option for radiation-induced aplasia, but this therapy is limited by donor availability. We examined an alternative therapeutic approach to ARS with the use of human extracellular superoxide dismutase (ECSOD)-modified umbilical cord mesenchymal stromal cells (UCMSCs). This treatment combines the unique regenerative role of UCMSCs with the anti-oxidative activity of ECSOD. We demonstrated that systemically administered ECSOD-UCMSCs are able to protect mice from sub-lethal doses of radiation and improve survival by promoting multilineage hematopoietic recovery. The therapeutic effect of this treatment is related to the decrease in radiation-induced O(2)(-) and apoptosis. Our data highlight the clinical potential of this two-pronged approach to the treatment of ARS, thereby serving as a rapid and effective first-line strategy to combat the hematopoietic failure resulting from a radiation accident, nuclear terrorism and other radiologic emergencies. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Kim, Eun Sung; Jeon, Hong Bae; Lim, Hoon; Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Oh, Wonil; Yang, Yoon Sun; Cho, Dong-Hyung; Kim, Ju-Yeon
2015-01-01
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.
Kovalenko, Olga A; Azzam, Edouard I; Ende, Norman
2013-11-01
The purpose of this study was to evaluate the window of time and dose of human umbilical-cord-blood (HUCB) mononucleated cells necessary for successful treatment of radiation injury in mice. Female A/J mice (27-30 weeks old) were exposed to an absorbed dose of 9-10 Gy of (137)Cs γ-rays delivered acutely to the whole body. They were treated either with 1 × 10(8) or 2 × 10(8) HUCB mononucleated cells at 24-52 h after the irradiation. The antibiotic Levaquin was applied 4 h postirradiation. The increased dose of cord-blood cells resulted in enhanced survival. The enhancement of survival in animals that received 2 × 10(8) HUCB mononucleated cells relative to irradiated but untreated animals was highly significant (P < 0.01). Compared with earlier studies, the increased dose of HUCB mononucleated cells, coupled with early use of an antibiotic, extended the window of time for effective treatment of severe radiation injury from 4 to 24-52 h after exposure.
Dehghani-Soltani, Samereh; Shojaee, Mohammad; Jalalkamali, Mahshid; Babaee, Abdolreza; Nematollahi-Mahani, Seyed Noureddin
2017-08-30
Recently, light emitting diodes (LEDs) have been introduced as a potential physical factor for proliferation and differentiation of various stem cells. Among the mesenchymal stem cells human umbilical cord matrix-derived mesenchymal (hUCM) cells are easily propagated in the laboratory and their low immunogenicity make them more appropriate for regenerative medicine procedures. We aimed at this study to evaluate the effect of red and green light emitted from LED on the neural lineage differentiation of hUCM cells in the presence or absence of retinoic acid (RA). Harvested hUCM cells exhibited mesenchymal and stemness properties. Irradiation of these cells by green and red LED with or without RA pre-treatment successfully differentiated them into neural lineage when the morphology of the induced cells, gene expression pattern (nestin, β-tubulin III and Olig2) and protein synthesis (anti-nestin, anti-β-tubulin III, anti-GFAP and anti-O4 antibodies) was evaluated. These data point for the first time to the fact that LED irradiation and optogenetic technology may be applied for neural differentiation and neuronal repair in regenerative medicine.
NASA Astrophysics Data System (ADS)
Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong
2016-09-01
Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.
NASA Astrophysics Data System (ADS)
Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu
2016-01-01
To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation.
Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K; Saber, Anne T; Wallin, Håkan; Loft, Steffen; Vogel, Ulla; Møller, Peter
2013-03-01
Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species. In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis.
Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong
2012-01-01
Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH• free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H2O2-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H2O2 stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases. PMID:23109851
Zhang, Yanmin; He, Langchong; Zhou, Yali
2008-01-01
The present study was to evaluate the effects of taspine isolated from Radix et Rhizoma Leonticsi on the growth and apoptosis of human umbilical vein endothelial cell (HUVEC) line by MTT and flow cytometer, respectively. At the same time, a series of changes were observed in HUVEC treated by taspine, including microstructure, protein expression of bax, bcl-2 and VEGF. The change of microstructure was observed by transmission electron microscope (TEM). The protein expression of bax and bcl-2 was detected by immunohistochemistry (IHC), and VEGF protein secreted was determined by enzyme-linked immunosorbent assay (ELISA). The results showed taspine could inhibit growth and induce apoptosis of HUVEC in a dose-dependent manner. Cell cycle was significantly stopped at the S phase. Under electronic microscope, the morphology of HUVEC treated with taspine showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. Bcl-2 and VEGF expressions were decreased and bax expression was increased. All these results demonstrate that taspine has an inhibitory effect on growth of HUVEC and can induce its apoptosis.
6-Gingerol prevents MEHP-induced DNA damage in human umbilical vein endothelia cells.
Yang, G; Gao, X; Jiang, L; Sun, X; Liu, X; Chen, M; Yao, X; Sun, Q; Wang, S
2017-11-01
Mono (2-ethylhexyl) phthalate (MEHP) is the principal metabolite of di (2-etylhexyl) phthalate, which is widely used as a plasticizer, especially in medical devices. MEHP has toxic effects on cardiovascular system. The aim of this study was to investigate the possibility that 6-gingerol may inhibit the oxidative DNA damage of MEHP in human umbilical vein endothelial cells (HUVECs) and the potential mechanism. The comet assay was used to monitor DNA strand breaks. We have shown that 6-gingerol significantly reduced the DNA strand breaks caused by MEHP. MEHP increased the levels of reactive oxygen species and malondialdehyde, decreased the level of glutathione and activity of superoxide dismutase, and altered the mitochondrial membrane potential. In addition, DNA damage-associated proteins (p53 and p-Chk2 (T68)) were significantly increased by the treatment of MEHP. Those effects can all be protected by 6-gingerol. The results firmly indicate that 6-gingerol may have a strong protective ability against the DNA damage caused by MEHP in HUVECs, and the mechanism may relate to the antioxidant activity.
NASA Technical Reports Server (NTRS)
Ding, Ke-Hong; Zhong, Qing; Isales, Carlos M.; Iscules, C. M. (Principal Investigator)
2003-01-01
We have previously characterized the receptor for glucose-dependent insulinotropic polypeptide (GIPR) in vascular endothelial cells (EC). Different EC types were found to contain distinct GIPR splice variants. To determine whether activation of the GIPR splice variants resulted in different cellular responses, we examined GIP effects on human umbilical vein endothelial cells (HUVEC), which contain two GIPR splice variants, and compared them with a spontaneously transformed human umbilical vein EC line, ECV 304, which contains four GIPR splice variants. GIP dose-dependently stimulated HUVEC and ECV 304 proliferation as measured by [3H]thymidine incorporation. GIP increased endothelin-1 (ET-1) secretion from HUVEC but not from ECV 304. Use of the endothelin B receptor blocker BQ-788 resulted in an inhibition of [3H]thymidine incorporation in HUVEC but not in ECV 304. These findings suggest that, although GIP increases [3H]thymidine incorporation in both HUVEC and ECV 304, this proliferative response is mediated by ET-1 only in HUVEC. These differences in cellular response to GIP may be related to differences in activation of GIPR splice variants.
Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang
2018-07-01
Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
2011-01-01
Background The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed. Methods Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer. Results Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a p value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a p value = 0.001. Conclusions Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed. PMID:21943045
Wu, Jie-Ying; Lu, Yan; Chen, Jin-Song; Wu, Shao-Qing; Tang, Xue-Wei; Li, Yan
2015-08-01
To investigate the feasibility of umbilical cord blood plasma (UCP) as a replacement for fetal bovine serum (FBS) for culturing mesenchymal stem cells (MSC) derived from umbilical cord, and to observe the supporting effects of these cells (served as a feeder layer) on ex vivo expanding of human umbilical cord blood CD34(+) cells. Umbilical cord blood (UCB) units were suitable if the Guangzhou cord blood bank donor selection criteria strictly were fulfilled. UCP were ready to use after the collection from the plasma depletion/reduction during the processing and pooling of suitable UCB units (at least 30 units were screened for pathogens and microorganisms, and qualified). Umbilical cord mesenchymal stem cells (UCMSC) were harvested from the umbilical cord tissue of health full-term newborns after delivery by enzyme digestion and divided into 3 groups: group 1 and 2 were cultured in the presence of DMEM/F12 containing either FBS or UCP; and group 3 was cultured in serum-free medium (StemPro® MSC SFM CTS™). Morphology, proliferation and surface marker expression were examined by flow cytometry, and the differentiation toward adipogenic and osteogenic lineages was used for investigating the effect of media on UCMSC after 3-5 passages. Next, the cells cultured in the three different media were cryopreserved and thawed, then prepared as feeder layers with the name of UCMSC(FBS), UCMSC(UCP), and UCMSC(SFM), respectively. The CD34⁺ cells were separated from UCB by magnetic activated cell sorting (MACS) and divided into 4 groups cultured in StemPro(-34) SFM medium added with hematopoietic cytokine combination (StemSpan® CC100). The control group included only CD34⁺ cells as group A (blank control) and experimental groups included UCMSC(FBS) + CD34⁺ cells as group B, UCMSC(UCP) + CD34⁺ cells as group C, UCMSC(SFM) + CD34⁺ cells as group D, and cells in all groups were cultured ex vivo for 7 days. The nucleated cell (NC) number was counted by cell counter, CD34⁺ cells were measured by flow cytometry, and clonogenic assay was conducted at day 0 and 7 of culture. The expansion efficiency was assessed. The morphology (spindle-shaped and plastic-adherent), the immunophenotype (high positive percentage of CD73, CD90, CD105 and CD166) and the differentiation potential (osteogenic and adipogenic) were almost indistinguishable among the cells cultured in any of these three media except for the expression of CD105 in group 3 (serum-free medium) was lower than that in other 2 groups (P < 0.05). UCMSC grown in UCP medium demonstrated significantly higher proliferation rates than that in media containing FBS or commercial serum-free supplement (P < 0.05). After co-culture for 7 days, the CD34⁺ cell percentage decreased in all the groups, while NC were amplified effectively and the CD34⁺ cell number increased with the same order as group C or D group B or A (control group) (P < 0.05). As compared with the colony-forming unit (CFU) number at day 0, there was no significant difference in the expansion multiple between group C and D, while the expansion of CFU in group C were higher than that in group B and A. The UCP can be used as a better animal-free serum supplement for growth, maintenance and differentiation of UCMSC, thus would be a safe choice for clinical-scale production of human MSC.
Tan, Hiang Keat; Chang, Pik Eu
2013-01-01
Umbilical herniation is common in patients with liver cirrhosis and ascites. Rarely, they suffer from incarceration and strangulation of the umbilical hernia after treatment of ascites. We report 3 cases of umbilical hernia incarceration following removal of massive ascites with different treatment modalities. Physicians managing this group of patients should be aware of this rare and potentially fatal complication. PMID:25374722
Kočí, Zuzana; Výborný, Karel; Dubišová, Jana; Vacková, Irena; Jäger, Aleš; Lunov, Oleg; Jiráková, Klára; Kubinová, Šárka
2017-06-01
Extracellular matrix (ECM) hydrogels prepared by tissue decellularization have been reported as natural injectable materials suitable for neural tissue repair. In this study, we prepared ECM hydrogel derived from human umbilical cord (UC) and evaluated its composition and mechanical and biological properties in comparison with the previously described ECM hydrogels derived from porcine urinary bladder (UB), brain, and spinal cord. The ECM hydrogels did not differ from each other in the concentration of collagen, while the highest content of glycosaminoglycans as well as the shortest gelation time was found for UC-ECM. The elastic modulus was then found to be the highest for UB-ECM. In spite of a different origin, topography, and composition, all ECM hydrogels similarly promoted the migration of human mesenchymal stem cells (MSCs) and differentiation of neural stem cells, as well as axonal outgrowth in vitro. However, only UC-ECM significantly improved proliferation of tissue-specific UC-derived MSCs when compared with the other ECMs. Injection of UC-ECM hydrogels into a photothrombotic cortical ischemic lesion in rats proved its in vivo gelation and infiltration with host macrophages. In summary, this study proposes UC-ECM hydrogel as an easily accessible biomaterial of human origin, which has the potential for neural as well as other soft tissue reconstruction.
Placenta-an alternative source of stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matikainen, Tiina; Laine, Jarmo
2005-09-01
The two most promising practical applications of human stem cells are cellular replacement therapies in human disease and toxicological screening of candidate drug molecules. Both require a source of human stem cells that can be isolated, purified, expanded in number and differentiated into the cell type of choice in a controlled manner. Currently, uses of both embryonic and adult stem cells are investigated. While embryonic stem cells are pluripotent and can differentiate into any specialised cell type, their use requires establishment of embryonic stem cell lines using the inner cell mass of an early pre-implantation embryo. As the blastocyst ismore » destroyed during the process, ethical issues need to be carefully considered. The use of embryonic stem cells is also limited by the difficulties in growing large numbers of the cells without inducing spontaneous differentiation, and the problems in controlling directed differentiation of the cells. The use of adult stem cells, typically derived from bone marrow, but also from other tissues, is ethically non-controversial but their differentiation potential is more limited than that of the embryonic stem cells. Since human cord blood, umbilical cord, placenta and amnion are normally discarded at birth, they provide an easily accessible alternative source of stem cells. We review the potential and current status of the use of adult stem cells derived from the placenta or umbilical cord in therapeutic and toxicological applications.« less
NASA Astrophysics Data System (ADS)
Benoit, Danielle S. W.; Schwartz, Michael P.; Durney, Andrew R.; Anseth, Kristi S.
2008-10-01
Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.
Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells.
Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank; Jork, Anette; Kassem, Moustapha; Geigle, Peter
2013-01-01
Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical studies and an ongoing safety trial in humans but further studies have to prove the overall potential of CellBead technology in cell-based regenerative medicine.
Hooper, Stuart B; Crossley, Kelly J; Zahra, Valerie A; van Vonderen, Jeroen; Moxham, Alison; Gill, Andrew W; Kluckow, Martin; Te Pas, Arjan B; Wallace, Euan M; Polglase, Graeme R
2017-07-01
While delayed umbilical cord clamping (UCC) is thought to facilitate placental to infant blood transfusion, the physiological factors regulating flow in the umbilical arteries and veins during delayed UCC is unknown. We investigated the effects of gravity, by changing fetal height relative to the placenta, and ventilation on umbilical blood flows and the cardiovascular transition during delayed UCC at birth. Catheters and flow probes were implanted into preterm lambs (128 days) prior to delivery to measure pulmonary, carotid, umbilical artery (UaBF) and umbilical venous (UvBF) blood flows. Lambs were placed either 10 cm below or 10 cm above the ewe. Ventilation commenced 2-3 min before UCC and continued for 30 min after UCC. Gravity reduced umbilical and cerebral flows when lambs were placed below the midline, but the reduction in UaBF and UvBF was similar. Ventilation during delayed UCC reduced UvBF and UaBF by similar amounts, irrespective of the lamb's position, such that flows into and out of the placenta remained balanced. The effects of ventilation on umbilical flows were much greater than the effects of gravity, but no net placental to lamb blood transfusion could be detected under any condition. Cardiovascular parameters, cerebral oxygen kinetics and final blood volumes were similar in both groups 5 min after UCC. Gravity caused small transient effects on umbilical and cerebral flow, but given changes were similar in umbilical arteries and veins, no net placental transfusion was detected. Ventilation during delayed UCC has a markedly greater influence on cardiovascular function in the newborn. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Umbilical cord care in newborns
... the stump clean with gauze and water only. Sponge bathe the rest of your baby, as well. ... Neonatal care - umbilical cord Images Umbilical cord healing Sponge bath References Carlo WA, Ambalavanan N. The umbilicus. ...
Development of alginate microspheres containing thyme essential oil using ionic gelation.
Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy
2016-08-01
Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Ruoxi; Tian, Zhigang; Chen, Lingyun
2011-03-15
Novel microparticles (3-5 μm) were created by pre-emulsifying barley proteins with a homogenizer followed a microfluidizer system. These microparticles exhibited a high oil carrying capacity (encapsulation efficiency, 93-97%; loading efficiency, 46-49%). Microparticle degradation and bioactive compound release behaviours were studied in the simulated gastro-intestinal (GI) tract. The data revealed that nano-encapsulations (20-30 nm) were formed as a result of enzymatic degradation of barley protein microparticle bulk matrix in the simulated gastric tract. These nano-encapsulations delivered β-carotene to a simulated human intestinal tract intact, where they were degraded by pancreatic enzymes and steadily released the β-carotene. These uniquely structured microparticles may provide a new strategy for the nutraceutical and pharmaceutical industries to develop targeted delivery systems for lipophilic bioactive compounds. Copyright © 2011 Elsevier B.V. All rights reserved.
Verocytotoxin-induced apoptosis of human microvascular endothelial cells.
Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W
2001-04-01
The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.
Ren, S; Hu, J; Chen, Y; Yuan, T; Hu, H; Li, S
2016-03-01
Inflammation instigated by interleukin (IL)-17-producing cells is central to the development and pathogenesis of several human autoimmune diseases and animal models of autoimmunity. The expansion of IL-17-producing cells from healthy donors is reportedly promoted by mesenchymal stem cells derived from fetal bone marrow. In the present study, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were examined for their effects on lymphocytes from healthy donors and from patients with systemic lupus erythematosus (SLE). Significantly higher levels of IL-17 were produced when CD4(+) T cells from healthy donors were co-cultured with hUC-MSCs than those that were cultured alone. Blocking experiments identified that this effect might be mediated partially through prostaglandin E2 (PGE2 ) and IL-1β, without IL-23 involvement. We then co-cultured hUC-MSCs with human CD4(+) T cells from systemic lupus erythematosus patients. Ex-vivo inductions of IL-17 by hUC-MSCs in stimulated lymphocytes were significantly higher in SLE patients than in healthy donors. This effect was not observed for IL-23. Taken together, our results represent that hUC-MSCs can promote the IL-17 production from CD4(+) T cells in both healthy donor and SLE patients. PGE2 and IL-1β might also be partially involved in the promotive effect of hUC-MSCs. © 2015 British Society for Immunology.
Chen, Huan-Huan; Zhou, Hui-Jun; Fang, Xin
2003-09-01
Artemisinin derivatives artesunate (ART) and dihydroartemisinin are remarkable anti-malarial drugs with low toxicity to humans. In the present investigation, we find they also inhibited tumor cell growth and suppressed angiogenesis in vitro. The anti-cancer activity was demonstrated by inhibition (IC(50)) of four human cancer cell lines: cervical cancer Hela, uterus chorion cancer JAR, embryo transversal cancer RD and ovarian cancer HO-8910 cell lines growth by the MTT assay. IC(50) values ranged from 15.4 to 49.7 microM or from 8.5 to 32.9 microM after treatment with ART or dihydroartemisinin for 48 h, indicating that dihydroartemisinin was more effective than ART in inhibiting cancer cell lines. The anti-angiogenic activities were tested on in vitro models of angiogenesis, namely, proliferation, migration and tube formation of human umbilical vein endothelial (HUVE) cells. We investigated the inhibitory effects of ART and dihydroartemisinin on HUVE cells proliferation by cell counting, migration into the scratch wounded area in HUVE cell monolayers and microvessel tube-like formation on collagen gel. The results showed ART and dihydroartemisinin significantly inhibited angiogenisis in a dose-dependent form in range of 12.5-50 microM and 2.5-50 microM, respectively. They indicated that dihydroartemisinin was more effective than ART in inhibiting angiogenesis either. These results and the known low toxicity are clues that ART and dihydroartemisinin may be promising novel candidates for cancer chemotherapy.
Chen, Bin; Che, Tuanjie; Bai, Decheng; He, Xiangyi
2013-04-01
To evaluate the effects of non-Saccharomyces albicans metabolic products on the cell cycle distribution and proliferation of human umbilical vein endothelial cell ECV304 cells in vitro. The parallel dilution supernatant of Saccharomyces tropicalis, Saccharomyces krusei and Saccharomyces glabrata were prepared, and 1, 4, 16-fold(s) diluted concentration and control group were set up. The line of human umbilical vein endothelial cell ECV304 was cultured in vitro and treated by non-Saccharomyces albicans supernatant. The proliferous effect of ECV304 induced by non-Saccharomyces albicans supernatant after 24, 48, 72 h was detected by the methods of MTT, and the changes of cell density and cycle after 48 h were investigated by inverted microscope and flow cytometry. At the 24th hour, all of the higher concentration (1-fold) of non-Saccharomyces albicans supernatant and the 4-folds diluted Saccharomyces krusei could promote ECV304 proliferation(P < 0.05). After adding various non-Saccharomyces albicans supernatant at 48h and 72th hour, Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant significantly increased proliferation rate of ECV304, while Saccharomyces tropicalis supernatant group showed no significant change no matter which concentration was tested. At 48th hour after adding the non-Saccharomyces albicans supernatant, the ECV304 cells density treated by Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant were significantly higher under the inverted microscope. The G0/G1 population of ECV304 cells decreased while cell proliferation index (PI) increased after incubated with Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant for 48 hours (P < 0.05). Saccharomyces tropicalis group showed no significant change (P > 0.05). The metabolic products of Sacharoymces krusei and Saccharomyces glabrata could induce proliferation of ECV304 cell, which suggests non-Saccharomyces albicans should be undergone more attention clinically in detection and treatment.
Human umbilical cord blood stem cells show PDGF-D–dependent glioma cell tropism in vitro and in vivo
Gondi, Christopher S.; Veeravalli, Krishna Kumar; Gorantla, Bharathi; Dinh, Dzung H.; Fassett, Dan; Klopfenstein, Jeffrey D.; Gujrati, Meena; Rao, Jasti S.
2010-01-01
Despite advances in clinical therapies and technologies, the prognosis for patients with malignant glioma is poor. Neural stem cells (NSCs) have a chemotactic tropism toward glioma cells. The use of NSCs as carriers of therapeutic agents for gliomas is currently being explored. Here, we demonstrate that cells isolated from the umbilical cord blood show mesenchymal characteristics and can differentiate to adipocytes, osteocytes, and neural cells and show tropism toward cancer cells. We also show that these stem cells derived from the human umbilical cord blood (hUCB) induce apoptosis-like cell death in the glioma cell line SNB19 via Fas-mediated caspase-8 activation. From our glioma tropism studies, we have observed that hUCB cells show tropism toward glioma cells in vitro, in vivo, and ex vivo. We determined that this migration is partially dependent on the expression levels of platelet-derived growth factor (PDGF)-D from glioma cells and have observed that local concentration gradient of PDGF-D is sufficient to cause migration of hUCB cells toward the gradient as seen from our brain slice cultures. In our animal experiment studies, we observed that intracranially implanted SNB19 green fluorescent protein cells induced tropism of the hUCB cells toward themselves. In addition, the ability of these hUCBs to inhibit established intracranial tumors was also observed. We also determined that the migration of stem cells toward glioma cells was partially dependent on PDGF secreted by glioma cells and that the presence of PDGF-receptor (PDGFR) on hUCB is required for migration. Our results demonstrate that hUCB are capable of inducing apoptosis in human glioma cells and also show that glioma tropism and hUCB tropism toward glioma cells are partially dependent on the PDGF/PGGFR system. PMID:20406896
PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.
Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T
2018-01-01
Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p < 0.05). Human umbilical vein endothelial cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p < 0.05). Wounds treated with PHD-2 knockdown mesenchymal stromal cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p < 0.05). Histologic studies revealed increased blood vessel density and increased cellularity in the wounds treated with PHD-2 knockdown mesenchymal stromal cells (p < 0.05). Silencing PHD-2 in mesenchymal stromal cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.
Yang, Hongna; Sun, Jinhua; Li, Yan; Duan, Wei-Ming; Bi, Jianzhong; Qu, Tingyu
2016-04-01
Bone marrow-derived mesenchymal stem cells (MSCs) are promising candidate cells for therapeutic application in autoimmune diseases due to their immunomodulatory properties. Unused human umbilical cords (UC) offer an abundant and noninvasive source of MSCs without ethical issues and are emerging as a valuable alternative to bone marrow tissue for producing MSCs. We thus investigated the immunomodulation effect of umbilical cord-derived MSCs (UC-MSCs) on human peripheral blood mononuclear cells (PBMCs), T cells in particular, in a co-culture system. We found that UC-MSCs efficiently suppressed the proliferation of phytohaemagglutinin (PHA)-stimulated PBMCs (p<0.01). Kinetic analysis revealed that UC-MSCs primarily inhibited the division of generation 3 (G3) and 4 (G4) of PBMCs. In addition, UC-MSCs augmented the expression of CD127(+) and CD45RA(+) but reduced the expression of CD25(+) in PBMCs stimulated by PHA (p<0.05). Furthermore, UC-MSCs inhibited PHA-resulted increase in the frequency of CD4(+)CD25(+)CD127(low/-) Tregs significantly (p<0.01) but augmented PHA-resulted increase in the frequency of CD4(+)CD25(high)CD45RA(+) Tregs to about three times in PBMCs. The levels of anti-inflammatory cytokines, PEG2, TGF-β, and IL-10 were greatly up-regulated, accompanied by a significant down-regulation of pro-inflammatory IFN-γ in the co-culture (p<0.01). Our results showed that UC-MSCs are able to suppress mitogen-induced PBMC activation and proliferation in vitro by altering T lymphocyte phenotypes, increasing the frequency of CD4(+)CD25(high)CD45RA(+) Tregs, and modulating the associated cytokine production. Further studies are warranted to investigate the therapeutic potential of UC-MSCs in immunologically-diseased conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Umbilical metastasis derived from early stage rectal cancer: a case report
2014-01-01
Background Umbilical metastasis, also called Sister Mary Joseph’s nodule (SMJN), is defined as the umbilical nodule associated with advanced metastatic intra-abdominal and pelvic malignancies. A patient with umbilical metastasis has been deemed to have a poor prognosis. Rectal cancer presenting with a SMJN is a rare phenomenon, especially in the early stage and in middle-low rectal cancer. Case presentation We report a case of a 70-year-old male presenting with umbilical metastasis derived from rectal cancer (10 cm from the anal verge, T2N0). Discussion and conclusion For rectal cancer with umbilical metastasis, the exact metastatic routes as well as the criterion of diagnosis and treatments are not very clear. Here we review the literature on rectal cancer and SMJN to deepen the understanding of this disease. PMID:24708697
An ovary as unusual contents of an incarcerated umbilical hernia
Ahmed, R; Kamat, S; Elkholy, K
2014-01-01
We present the unusual case of a woman presenting with an incarcerated umbilical hernia. Intraoperatively, the contents of the hernia were found to be an ovary. We outline the clinical presentation of our patient, investigations and management as well as a discussion on unusual contents of umbilical hernias. To our knowledge, this is the first case of a non-malignant ovary incarcerated in an umbilical hernia. PMID:25198958
An ovary as unusual contents of an incarcerated umbilical hernia.
Ahmed, U; Ahmed, R; Kamat, S; Elkholy, K
2014-09-01
We present the unusual case of a woman presenting with an incarcerated umbilical hernia. Intraoperatively, the contents of the hernia were found to be an ovary. We outline the clinical presentation of our patient, investigations and management as well as a discussion on unusual contents of umbilical hernias. To our knowledge, this is the first case of a non-malignant ovary incarcerated in an umbilical hernia.
Kacerovsky, Marian; Pliskova, Lenka; Menon, Ramkumar; Kutova, Radka; Musilova, Ivana; Maly, Jan; Andrys, Ctirad
2014-11-01
To evaluate Ureaplasma species and M. hominis DNA in the umbilical cord blood and its correlation with its microbial load in the amniotic fluid, as a measure of microbial burden in fetal inflammatory response and neonatal outcome in pregnancies complicated by preterm prelabor rupture of membranes (pPROM). A retrospective study of 158 women with singleton pregnancies complicated by pPROM between 24(0/7) and 36(6/7) weeks was conducted. Amniotic fluid was obtained from all women by transabdominal amniocentesis, and umbilical cord blood was obtained by venipuncture from umbilical cords immediately after the delivery of the neonates. The Ureaplasma species and M. hominis DNA was quantitated using absolute quantification techniques. Ureaplasma species and M. hominis DNA was identified in 9% of the umbilical cord blood samples. No correlation between the amniotic fluid and umbilical cord blood microbial load was observed. The presence of Ureaplasma species and M. hominis DNA in the umbilical cord blood had no impact on short-term neonatal morbidity. A high microbial load of genital mycoplasma Ureaplasma species DNA in the umbilical cord in pregnancies complicated by pPROM is not associated with a high fetal inflammatory response and is therefore not associated with serious neonatal morbidity.
Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4+ T cells
Yang, Zhou Xin; Chi, Ying; Ji, Yue Ru; Wang, You Wei; Zhang, Jing; Luo, Wei Feng; Li, Li Na; Hu, Cai Dong; Zhuo, Guang Sheng; Wang, Li Fang; Han, Zhi-Bo; Han, Zhong Chao
2017-01-01
Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhanced IL-9 production by CD4+ T cells. Transwell experiments suggested that UC-MSC promotion of IL-9 production by CD4+ T cells was dependent on cell-cell contact. Upregulated expression of CD106 was observed in UC-MSC co-cultured with CD4+ T cells, and the addition of a blocking antibody of CD106 significantly impaired the ability of UC-MSC to promote IL-9 production by CD4+ T cells. Therefore, the results of the present study demonstrated that UC-MSC promoted the generation of IL-9 producing cells, which may be mediated, in part by CD106. The findings may act to expand understanding and knowledge of the immune modulatory role of UC-MSC. PMID:29042945
Behjati, Mohaddeseh; Hashemi, Mohammad; Kazemi, Mohammad; Salehi, Mansoor; Javanmard, Shaghayegh Haghjooy
2017-01-01
Decreased high-energy phosphate level is involved in endothelial cell injury and dysfunction. Reduced telomerase activity in endothelial cells in parallel with reduced energy levels might be due to altered direction of alternative splicing machine as a complication of depleted energy during the process of atherosclerosis. Isolated human umbilical vein endothelial cells (HUVECs) were treated for 24 hours by oligomycine (OM) and 2-deoxy glucose (2-DG). After 24 hours, the effect of energy depletion on telomerase splicing pattern was evaluated using RT-PCR. Indeed, in both treated and untargeted cells, nitric oxide (NO) and von Willebrand factor (vWF) were measured. ATP was depleted in treated cells by 43.9% compared with control group. We observed a slight decrease in NO levels ( P = 0.09) and vWF ( P = 0.395) in the setting of 49.36% ATP depletion. In both groups, no telomerase gene expression was seen. Telomerase and housekeeping gene expression were found in positive control group (colon cancer tissue) and sample tissue. The absence of telomerase gene expression in HUVECs might be due to the mortality of these cells or the low level of telomerase gene expression in these cells under normal circumstances.
Wei, Xiao-Juan; Zhang, Hong-Chao; Guo, Zi-Kuan; Zheng, Hai-Bin; Yang, Lei-Lei; Liu, Chao-Zhong
2015-10-01
To investigate the protection of silymarin against the human mesenchymal stem cell (MSC) apoptosis induced by serum deprivation and its underlying mechanism. Human umbilical cord MSCs were cultured in the absence of serum, and the silymain of different concentration (1-10 µg/ml) was added into the medium. MTT test was performed to observe the cell proliferation status. After being cultured for 72 hours, the cells were collected, and flow cytometry with Annexin-V-PI double-staining was used to detect the apoptotic cells from the control and silymarin-treated groups. Furthermore, the intracellular contents of BAX and BCL-2 were detected by Western blot for exploring the potential mechanism. The silymarin promoted the proliferation of human UC-MSCs in a dose-dependent manner, reaching its maximal at a dose of 5 µg/ml. Moreover, silymarin could inhibit the serum deprivation-induced apoptosis of MSCs and, the inhibitory rate reached up to 30% when it was added at a concentration of 5 µg/ml. The content of intracellular BAX was obviously elevated after serum-deprivation treatment, and this increase could be blunted by the addition of silymarin. Meanwhile, the content of BCL-2 was not obviously changed. The silymarin can stimulate MSC growth and inhibit the apoptosis of MSCs probably by the mitochondria pathway.
Niu, Tingting; Xuan, Rongrong; Jiang, Ligang; Wu, Wei; Zhen, Zhanghe; Song, Yuling; Hong, Lili; Zheng, Kaiqin; Zhang, Jiaxing; Xu, Qingshan; Tan, Yinghong; Yan, Xiaojun; Chen, Haimin
2018-02-14
Astaxanthin is a powerful antioxidant that possesses potent protective effects against various human diseases and physiological disorders. However, the mechanisms underlying its antioxidant functions in cells are not fully understood. In the present study, the effects of astaxanthin on reactive oxygen species (ROS) production and antioxidant enzyme activity, as well as mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K)/Akt, and the nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) pathways in human umbilical vein endothelial cells (HUVECs), were examined. It was shown that astaxanthin (0.1, 1, and 10 μM) induced ROS production by 9.35%, 14.8%, and 18.06% compared to control, respectively, in HUVECs. In addition, astaxanthin increased the mRNA levels of phase II enzymes HO-1 and also promoted GSH-Px enzyme activity. Furthermore, we observed ERK phosphorylation, nuclear translocation of Nrf-2, and activation of antioxidant response element-driven luciferase activity upon astaxanthin treatment. Knockdown of Nrf-2 by small interfering RNA inhibited HO-1 mRNA expression by 60%, indicating that the Nrf-2/ARE signaling pathway is activated by astaxanthin. Our results suggest that astaxanthin activates the Nrf-2/HO-1 antioxidant pathway by generating small amounts of ROS.
Ren, Hong-ying; Zhao, Qin-jun; Xing, Wen; Yang, Shao-guang; Lu, Shi-hong; Ren, Qian; Zhang, Lei; Han, Zhong-chao
2010-04-01
To investigate the biological function of hepatocyte-like cells derived from mesenchymal stem cells that isolated from human umbilical cord UC-MSCs in vitro, and to detect the changes in the immunogenicity of the differentiated hepatocyte-like cells (DHC). Transdifferentiation of UC-MSCs into hepatic lineage in vitro was induced in modified two-step induction medium. The expressions of hepatic specific markers were detected by RT-PCR analysis and immunofluorescence staining at different time points after induction. The levels of albumin and urea in the supernatants of cultures were measured by enzyme-linked immunosorbent assay. Furthermore, the immunosuppressive property of DHC was detected by one-way mixed lymphocyte culture. The mRNA and proteins of alpha fetoprotein (AFP), albumin (ALB),and cytokeratin-19 (CK-19) were expressed in naive UC-MSCs at low levels. DHC highly expressed hepatic markers AFP, ALB, CK-19, and tryptophan 2, 3-dioxygenase 14 and 28 days after hepatic differentiation and were accompanied by an increased production of ALB and urea in supernatant in a time-dependent manner. DHC did not express human leukocyte antigen DR antigen and significantly decreased the lymphocyte proliferation. UC-MSCs are able to differentiate into functional hepatocyte-like cells in vitro, while the immunogenicity of DHC remains low.
Xue, Gai; Han, Xiaolei; Ma, Xin; Wu, Honghai; Qin, Yabin; Liu, Jianfang; Hu, Yuqin; Hong, Yang; Hou, Yanning
2016-01-01
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo. PMID:27088093
Takimoto, T; Sato, H; Ogura, H
1986-01-01
The appearance of Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA) and induction of EBV-induced early antigen (EA) in human umbilical cord blood lymphocytes (HUCLs) and two EBV genome-negative Burkitt's lymphoma (BL) lines (BJAB and Ramos) were studied by infection with EBVs prepared from three different cell lines: marmoset cell line (B95-8) derived from infections mononucleosis, BL-derived cell line (P3HR-1) and human epithelial hybrid cell line (NPC-KT) derived from nasopharyngeal carcinoma. B95-8 virus can transform HUCLs but cannot superinfect Raji cells. P3HR-1 virus can transform HUCLs cells but cannot transform HUCLs. NPC-KT virus can transform HUCLs and can superinfect Raji cells. We have examined the time sequence of EBNA appearance and EA induction in HUCLs, BJAB cells and Ramos cells, in order to determine if three different strains of EBV differ in their abilities to infect their cells. We found that all three strains of EBV can induce EBNA in HUCLs, BJAB cells and Ramos cells. On the other hand, we found that P3HR-1 virus and NPC-KT virus can induce EA in BJAB cells and Ramos cells, but B95-8 virus cannot induce EA in their cells.
Zhang, Lianshuang; Wei, Jialiu; Ren, Lihua; Zhang, Jin; Yang, Man; Jing, Li; Wang, Ji; Sun, Zhiwei; Zhou, Xianqing
2017-01-01
Endosulfan, an organochlorine pesticide, was found in human blood, and its possible cardiovascular toxicity has been suggested. However, the mechanism about endothelial cell injuries induced by endosulfan has remained unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were chosen to explore the toxicity mechanism and were treated with 0, 1, 6, and 12 μg/mL -1 endosulfan for 24 h, respectively. The results showed that exposure to endosulfan could inhibit the cell viability, increase the release of lactate dehydrogenase (LDH), damage the ultrastructure, and lead to apoptosis and necroptosis in HUVECs. Furthermore, endosulfan upregulated the expressions of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), mixed lineage kinase domain-like (MLKL), caspase 8, and caspase 3, which means the activation of RIPK1 pathways. In addition, endosulfan promoted the increases of ROS, IL-1α, and IL-33 levels while antioxidant N-acetyl-L-cysteine (NAC) effectively attenuated the cytotoxicity from endosulfan. Taken together, these results have demonstrated that endosulfan induces the apoptosis and necroptosis of HUVECs, where the RIPK pathway plays a pro-necroptotic role and NAC plays an anti-necroptotic role. Our results may contribute to understanding cellular mechanisms for endosulfan-induced cardiovascular toxicity.
Giant Ovarian Tumor Presenting as an Incarcerated Umbilical Hernia: A Case Report
Aydın, Özgür; Onur, Erdal; Çelik, Nilufer Yiğit; Moray, Gökhan
2009-01-01
We report a rare case of a giant ovarian tumor presenting as an incarcerated umbilical hernia. A 61-yr-old woman was admitted to the hospital with severe abdominal pain, an umbilical mass, nausea and vomiting. On examination, a large, irreducible umbilical hernia was found. The woman underwent an urgent operation for a possible strangulated hernia. A large, multilocular tumor was found. The tumor was excised, and a total abdominal hysterectomy and bilateral salphingo-oophorectomy were performed. The woman was discharged 6 days after her admission. This is the first report of incarcerated umbilical hernia containing a giant ovarian tumor within the sac. PMID:19543424
... Prompt diagnosis and treatment can help prevent complications. Causes During pregnancy, the umbilical cord passes through a small opening ... abdominal pressure can cause an umbilical hernia. Possible causes in adults include: ... pregnancies Fluid in the abdominal cavity (ascites) Previous abdominal ...
ACOG committee opinion number 399, February 2008: umbilical cord blood banking.
2008-02-01
Two types of banks have emerged for the collection and storage of umbilical cord blood--public banks and private banks. Public banks promote allogenic (related or unrelated) donation, analogous to the current collection of whole blood units in the United States. Private banks were initially developed to store stem cells from umbilical cord blood for autologous use (taken from an individual for subsequent use by the same individual) by a child if the child develops disease later in life. If a patient requests information on umbilical cord blood banking, balanced and accurate information regarding the advantages and disadvantages of public versus private banking should be provided. The remote chance of an autologous unit of umbilical cord blood being used for a child or a family member (approximately 1 in 2,700 individuals) should be disclosed. The collection should not alter routine practice for the timing of umbilical cord clamping. Physicians or other professionals who recruit pregnant women and their families for for-profit umbilical cord blood banking should disclose any financial interests or other potential conflicts of interest.
Pozio, E
2001-01-01
Seven species belonging to the Trichinella genus (five with encapsulated larvae and two with non-encapsulated larvae in host muscles) and three additional genotypes have been described to date: T. spiralis (genotype T1), a cosmopolitan species with a high infectivity to swine and rats; T. nativa (T2), etiological agent of sylvatic trichinellosis in arctic and subarctic areas of the Holarctic region, and its related genotype (Trichinella T6), detected in Alaska, Idaho, Montana, Pennsylvania, Wyoming, and Ontario; T. britovi (T3), etiological agent of sylvatic trichinellosis in temperate areas of Europe and Asia, and its related genotypes Trichinella T9 in Japan and Trichinella T8 in South Africa and Namibia; T. murrelli (T5), etiological agent of sylvatic trichinellosis in temperate areas of the USA; T. nelsoni (T7), etiological agent of sylvatic trichinellosis in Africa south of the Sahara; T. pseudospiralis (T4), a non-encapsulated cosmopolitan species infecting both mammals and birds; and T. papuae (T10), a recently discovered non-encapsulated species in sylvatic swine of Papua New Guinea. In the Southeast Asia and Australian regions, T. spiralis, T. pseudospiralis and T. papuae have been detected in sylvatic and domestic animals and in humans. A focus of human trichinellosis due to T. papuae was recently discovered in Papua New Guinea, with a prevalence of 28.9%. Trichinellosis has also been documented in domestic animals and/or humans in Cambodia, Indonesia (Bali and Sumatra), Lao PDR, Malaysia, Myanmar, Thailand, and New Zealand, and in wildlife of Tasmania.
Isolation and characterization of human umbilical cord-derived endothelial colony-forming cells
Zhang, Hao; Tao, Yanling; Ren, Saisai; Liu, Haihui; Zhou, Hui; Hu, Jiangwei; Tang, Yongyong; Zhang, Bin; Chen, Hu
2017-01-01
Endothelial colony-forming cells (ECFCs) are a population of endothelial progenitor cells (EPCs) that display robust proliferative potential and vessel-forming capability. Previous studies have demonstrated that a limited number of ECFCs may be obtained from adult bone marrow, peripheral blood and umbilical cord (UC) blood. The present study describes an effective method for isolating ECFCs from human UC. The ECFCs derived from human UC displayed the full properties of EPCs. Analysis of the growth kinetics, cell cycle and colony-forming ability of the isolated human UC-ECFCs indicated that the cells demonstrated properties of stem cells, including relative stability and rapid proliferation in vitro. Gene expression of Fms related tyrosine kinase 1, kinase insert domain receptor, vascular endothelial cadherin, cluster of differentiation (CD)31, CD34, epidermal growth factor homology domains-2, von Willebrand factor and endothelial nitric oxide synthase was assessed by reverse transcription-polymerase chain reaction. The cells were positive for CD34, CD31, CD73, CD105 and vascular endothelial growth factor receptor-2, and negative for CD45, CD90 and human leukocyte antigen-antigen D related protein according to flow cytometry. 1,1′-dioctadecyl-3,3,3′,3′-tetra-methyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein and fluorescein isothiocyanate-Ulex europaeus-l were used to verify the identity of the UC-ECFCs. Matrigel was used to investigate tube formation capability. The results demonstrated that the reported technique is a valuable method for isolating human UC-ECFCs, which have potential for use in vascular regeneration. PMID:29067104
Schack, L; Lange, A; Kelsen, J; Agnholt, J; Christensen, B; Petersen, T E; Sørensen, E S
2009-11-01
Osteopontin (OPN) is a multifunctional bioactive protein that is implicated in numerous biological processes such as bone remodeling, inhibition of ectopic calcification, and cellular adhesion and migration, as well as several immune functions. Osteopontin has cytokine-like properties and is a key factor in the initiation of T helper 1 immune responses. Osteopontin is present in most tissues and body fluids, with the highest concentrations being found in milk. In the present study, ELISA for human and bovine milk OPN were developed and OPN concentration in human breast milk, bovine milk, and infant formulas was measured and compared. The OPN concentration in human milk was measured to approximately 138 mg/L, which corresponds to 2.1% (wt/wt) of the total protein in human breast milk. This is considerably higher than the corresponding OPN concentrations in bovine milk (approximately 18 mg/L) and infant formulas (approximately 9 mg/L). Moreover, bovine milk OPN is shown to induce the expression of the T helper 1 cytokine IL-12 in cultured human lamina propria mononuclear cells isolated from intestinal biopsies. Finally, the OPN concentration in plasma samples from umbilical cords, 3-mo-old infants, and pregnant and nonpregnant adults was measured. The OPN level in plasma from 3-mo-old infants and umbilical cords was found to be 7 to 10 times higher than in adults. Thus, the high levels of OPN in milk and infant plasma suggest that OPN is important to infants and that ingested milk OPN is likely to induce cytokine production in neonate intestinal immune cells.
Chaikham, Pittaya; Apichartsrangkoon, Arunee; Worametrachanon, Srivilai; Supraditareporn, Wissanee; Chokiatirote, Ekachai; Van der Wiele, Tom
2013-07-01
Fruit drinks containing probiotics are gaining interest in the global marketplace. For example, longan juice, containing carbohydrate and various bioactive components, is a potentially health-promoting beverage as well as probiotic carrier for human consumption. In this study, high-pressure and thermal processes were applied to eliminate competitive micro-organisms in longan juice prior to the addition of Lactobacillus acidophilus LA5 or Lactobacillus casei 01. The activities of these probiotics in a simulated gastrointestinal tract were also investigated. Encapsulated probiotics could survive in the acidic environment of the stomach and small intestine, while the free cells were completely eliminated. In the colon experiment, the influence of encapsulated L. casei 01 on colon lactobacilli was significantly greater than that of encapsulated L. acidophilus LA5. Both encapsulated probiotics suspended in processed longan juices led to extensive increases in the formation of lactic acid and short-chain fatty acids (SCFA). Acetate was the major SCFA produced by colon bacteria, followed by propionate and butyrate. The discernible clear zone suggested that L. casei 01 provided greater antibacterial activity than L. acidophilus LA5. Both encapsulated probiotics along with processed longan juice led to significant increases in colon lactobacilli, lactic acid and SCFA formation. © 2012 Society of Chemical Industry.
[Pathophysiological changes of umbilical vessels in intrauterine growth restriction].
Jakó, Mária; Surányi, Andrea; Kaiser, László; Domokos, Dóra; Gáspár, Róbert; Bártfai, György
2014-12-14
The prevalence of intrauterine growth restriction is 4-5000/100,000 births, and they give the majority of perinatal morbidity. The aim of the authors was to compare the pathomorphologic data and vasoreactivity of umbilical vessels and placenta of small for date newborns to that of the normal pregnancies. Samples of the umbilical cord and placenta were divided into case and control groups. Two 10 cm long segments were cut of the umbilical cord at placental insertion. Tissue bath experiment was performed on umbilical vessels and pathomorphologic data were collected according to the Royal College of Pathologists' protocol. After the development of basal tone, oxytocin and desmopressin did not enhance the vascular contraction, but the pathomorphological and ultrasonographic data were significantly different in the two groups. The results indicate that umbilical vessels might not have oxytocin or vasopressin receptors. The pathomorphologic and flowmetric differences could be the causes of small birth weight.
[Disseminated cryptococcosis in an immunocompetent patient].
Elkhihal, B; Hasnaoui, A; Ghfir, I; Moustachi, A; Aoufi, S; Lyagoubi, M
2015-09-01
Disseminated cryptococcosis is a serious opportunistic fungal infection caused by a yeast-encapsulated fungus of the genus Cryptococcus neoformans. It occurs most often in patients with a significant deficit of cellular immunity and preferentially affects the central nervous system. The skin and the lungs are the most commonly affected sites outside the neuro-subarachnoid location. We report the case of a patient apparently immunocompetent who had a disseminated cryptococcosis. The disease started with the multiple purplish skin lesions, large umbilicated on the face, groin, forearm and leg with progressively increasing volume. This symptomatology had evolved in the context of weight loss and poor general condition. The diagnosis was established by the presence of cryptococcal at the skin biopsy and cerebrospinal fluid. Research of immunosuppression common pathologies were negative. Treatment was initiated based on amphotericin B for 40 days. The patient's condition deteriorates onset of paraplegia and swallowing disorders causing death in an array of cachexia. This observation points out that disseminated cryptococcosis can occur in an immunocompetent patient. The skin lesions may be the first sign of the disease. Copyright © 2015. Published by Elsevier Masson SAS.
Green, Charlotte J; Charlton, Catriona A; Wang, Lai-Mun; Silva, Michael; Morten, Karl J; Hodson, Leanne
2017-12-01
Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.
Chan, Joanna S Y; Baergen, Rebecca N
2012-01-01
Umbilical cord complications (UCC), such as true knots (TK), velamentous (VEL) insertion, marginal umbilical cord (MUC) insertion, umbilical cord entanglement (UCE) (both nuchal and non-nuchal), excessively long umbilical cord (ELUC), and excessively twisted umbilical cord (ETUC), can lead to decreased UC blood flow and have been associated with adverse fetal outcome and intrauterine fetal demise (IUFD). Few large series exist that correlate UCC with specific pathologic findings of the placenta. We present the largest series of UCC at this time. Eight hundred forty-one 3rd-trimester placentas with UCC were identified, as well as 858 randomly selected gestational age-matched placentas with grossly unremarkable UC. Lesions associated with circulatory stasis and thrombosis, including villous capillary congestion (VC), umbilical vessel distension (UVD), chorionic plate vessel distension (CPD), umbilical vessel thrombosis (UVT), fetal vascular thrombosis (FVT), intimal fibrin cushions (IFC), and avascular villi (AV), were noted, as well as other pathologic lesions. Data were analyzed by analysis of variance and Fisher exact tests, with P < 0.05 statistically significant. Umbilical cord complications as a group was associated with a significant increase in placental circulatory stasis lesions. Lesions associated with hypoxia, namely nucleated red blood cells and chorangiosis, were also increased. Finally, the presence of any UCC was significantly associated with IUFD. We also found that multiple UCC are associated with nonreassuring fetal heart rate and chorangiosis but that the presence of a single UCC was not. This indicates that UCC may lead to intrauterine hypoxia and subsequent adverse fetal outcome and that multiple UCC may be cumulative in effect.
Low risk, but not no risk, of umbilical hernia complications requiring acute surgery in childhood.
Ireland, Amanda; Gollow, Ian; Gera, Parshotam
2014-04-01
Umbilical hernias are a common finding in the paediatric community, with a preponderance to affect Afro-Caribbean and premature children. The rate of incarceration varies greatly between populations. Therefore, it is valuable to obtain some Australian data on this topic. We undertook a retrospective study of the records of all patients who underwent umbilical hernia repair over a 12-year period of between October 1999 and May 2012 at Princess Margaret Hospital. From this group, all patients that had an umbilical hernia repair for reason of acute complication were identified and analysed for age, ethnicity and co-morbidities. Between October 1999 and May 2012, 433 umbilical hernias were repaired at Princess Margaret Hospital, five of which were as the direct result of an acutely complicated umbilical hernia. The mean age of hernia repair was 5 years old, and the mean age of acute complication was 5 years old. Out of the patients with acutely complicated umbilical hernia, there were no Afro-Caribbean patients, and one was premature complicated by hyaline membrane disease and broncho-pulmonary dysplasia. Western Australia has an incidence of acutely complicated umbilical hernia requiring operative intervention of 1:3000 to 1:11,000. On an international scale, this is low, and studies with similar incidence do not advocate for immediate repair of all identified umbilical hernias. The authors believe repair should be guided by patient and guardian, but if there is an episode of incarceration, acute repair is advised. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Concomitant Abdominoplasty and Laparoscopic Umbilical Hernia Repair.
van Schalkwyk, Constant P; Dusseldorp, Joseph R; Liang, Derek G; Keshava, Anil; Gilmore, Andrew J; Merten, Steve
2018-04-20
Umbilical hernia is a common finding in patients undergoing abdominoplasty, especially those who are post-partum with rectus divarication. Concurrent surgical treatment of the umbilical hernia at abdominoplasty presents a "vascular challenge" due to the disruption of dermal blood supply to the umbilicus, leaving the stalk as the sole axis of perfusion. To date, there have been no surgical techniques described to adequately address large umbilical herniae during abdominoplasty. To present an effective and safe technique that can address large umbilical herniae during abdominoplasty. A prospective series of 10 consecutive patients, undergoing concurrent abdominoplasty and laparoscopic umbilical hernia repair between 2014 and 2017 were included in the study. All procedures were performed by the same general surgeon and plastic surgeon at the Macquarie University Hospital in North Ryde, NSW, Australia. Data was collected with approval of our ethics committee. At 12-month follow-up there were no instances of umbilical necrosis, wound complications, seroma or recurrent hernia. The mean body mass index was 23.8 kg/m2 (range, 16.1-30.1 kg/m2). Rectus divarication ranged from 35-80 mm (mean, 53.5 mm). Umbilical hernia repair took a mean of 25.9 minutes to complete (range, 18-35 minutes). We present a technique that avoids incision of the rectus fascia minimizes dissection of the umbilical stalk and is able to provide a gold standard hernia repair with mesh. This procedure is particularly suited to post-partum patients with large herniae (>3-4 cm diameter) and wide rectus divarication, where mesh repair with adequate overlap is the recommended treatment.
2012-04-02
during cutaneous wound healing . Mediators Inflamm. 2010, 342328. Ringseis, R., Muller, A., Herter, C., Gahler, S., Steinhart, H., Eder, K., 2006. CLA...glutamylcysteine (GGC), a dipeptide and precursor of glutathione (GSH), and conjugated linoleic acid (CLA), a trans-fatty acid, exhibit antioxidant properties...synthesis in human endothelial cells. Changes in levels of 8-epi-PGF2a, thiobarbituric acid reac- tive substances (TBARS), GSH, total antioxidants , GSH
USDA-ARS?s Scientific Manuscript database
Maternal obesity has been hypothesized to lead to developmental programming of excessive weight and adiposity in offspring. In addition, excessive gestational weight gain (GWG) is also a demonstrated determinant of later-life adiposity. We examined genome-wide DNA methylation (Infinium® HumanMethyla...
Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang
2017-04-25
Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.
Optoacoustic measurements of human placenta and umbilical blood oxygenation
NASA Astrophysics Data System (ADS)
Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.
2016-03-01
Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.
Li, Jia; Mao, QiuXian; He, JingJun; She, HaoQing; Zhang, Zhi; Yin, ChunYan
2017-03-09
Human umbilical cord mesenchymal stem cells (hUCMSCs) are a type of pluripotent stem cell which are isolated from the umbilical cord of newborns. hUCMSCs have great therapeutic potential. We designed this experimental study in order to investigate whether the transplantation of hUCMSCs can improve the ovarian reserve function of perimenopausal rats and delay ovarian senescence. We selected naturally aging rats confirmed by vaginal smears as models of perimenopausal rats, divided into the control group and the treatment group, and selected young fertile female rats as normal controls. hUCMSCs were transplanted into rats of the treatment group through tail veins. Enzyme-linked immunosorbent assay (ELISA) detected serum levels of sex hormones, H&E staining showed ovarian tissue structure and allowed follicle counting, immunohistochemistry and western blot analysis revealed ovarian expression of hepatocyte growth factor (HGF), vascular endothelial cell growth factor (VEGF), and insulin-like growth factor-1 (IGF-1), polymerase chain reaction (PCR) and western blot analysis revealed hUCMSCs expression of HGF, VEGF, and IGF-1. At time points of 14, 21, and 28 days after hUCMSCs transplantation, estradiol (E 2 ) and anti-Müllerian hormone (AMH) increased while follicle-stimulating hormone (FSH) decreased; ovarian structure improved and follicle number increased; ovarian expression of HGF, VEGF, and IGF-1 protein elevated significantly. Meanwhile, PCR and western blot analysis indicated hUCMSCs have the capacity of secreting HGF, VEGF, and IGF-1 cytokines. Our results suggest that hUCMSCs can promote ovarian expression of HGF, VEGF, and IGF-1 through secreting those cytokines, resulting in improving ovarian reserve function and withstanding ovarian senescence.
Adaptive shut-down of EEG activity predicts critical acidemia in the near-term ovine fetus.
Frasch, Martin G; Durosier, Lucien Daniel; Gold, Nathan; Cao, Mingju; Matushewski, Brad; Keenliside, Lynn; Louzoun, Yoram; Ross, Michael G; Richardson, Bryan S
2015-07-01
In fetal sheep, the electrocorticogram (ECOG) recorded directly from the cortex during repetitive heart rate (FHR) decelerations induced by umbilical cord occlusions (UCO) predictably correlates with worsening hypoxic-acidemia. In human fetal monitoring during labor, the equivalent electroencephalogram (EEG) can be recorded noninvasively from the scalp. We tested the hypothesis that combined fetal EEG - FHR monitoring allows for early detection of worsening hypoxic-acidemia similar to that shown for ECOG-FHR monitoring. Near-term fetal sheep (n = 9) were chronically instrumented with arterial and venous catheters, ECG, ECOG, and EEG electrodes and umbilical cord occluder, followed by 4 days of recovery. Repetitive UCOs of 1 min duration and increasing strength (with regard to the degree of reduction in umbilical blood flow) were induced each 2.5 min until pH dropped to <7.00. Repetitive UCOs led to marked acidosis (arterial pH 7.35 ± 0.01 to 7.00 ± 0.03). At pH of 7.22 ± 0.03 (range 7.32-7.07), and 45 ± 9 min (range 1 h 33 min-20 min) prior to attaining pH < 7.00, both ECOG and EEG amplitudes began to decrease ~fourfold during each FHR deceleration in a synchronized manner. Confirming our hypothesis, these findings support fetal EEG as a useful adjunct to FHR monitoring during human labor for early detection of incipient fetal acidemia. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Gornicka-Pawlak, El Bieta; Janowski, Miroslaw; Habich, Aleksandra; Jablonska, Anna; Drela, Katarzyna; Kozlowska, Hanna; Lukomska, Barbara; Sypecka, Joanna; Domanska-Janik, Krystyna
2011-01-01
The aim of the study was to evaluate therapeutic effectiveness of intra-arterial infusion of human umbilical cord blood (HUCB) derived cells at different stages of their neural conversion. Freshly isolated mononuclear cells (D-0), neurally directed progenitors (D-3) and neural-like stem cells derived from umbilical cord blood (NSC) were compared. Focal brain damage was induced in rats by stereotactic injection of ouabain into dorsolateral striatum Three days later 10(7) of different subsets of HUCB cells were infused into the right internal carotid artery. Following surgery rats were housed in enriched environment for 30 days. Behavioral assessment consisted of tests for sensorimotor deficits (walking beam, rotarod, vibrissae elicited forelimb placing, apomorphine induced rotations), cognitive impairments (habit learning and object recognition) and exploratory behavior (open field). Thirty days after surgery the lesion volume was measured and the presence of donor cells was detected in the brain at mRNA level. At the same time immunohistochemical analysis of brain tissue was performed to estimate the local tissue response of ouabain injured rats and its modulation after HUCB cells systemic treatment. Functional effects of different subsets of cord blood cells shared substantial diversity in various behavioral tests. An additional analysis showed that D-0 HUCB cells were the most effective in functional restoration and reduction of brain lesion volume. None of transplanted cord blood derived cell fractions were detected in rat's brains at 30(th) day after treatment. This may suggest that the mechanism(s) underlying positive effects of HUCB derived cell may concern the other than direct neural cell supplementation. In addition increased immunoreactivity of markers indicating local cells proliferation and migration suggests stimulation of endogenous reparative processes by HUCB D-0 cell interarterial infusion.
Bana, Nikoo; Sanooghi, Davood; Soleimani, Mansoureh; Hayati Roodbari, Nasim; Alavi Moghaddam, Sepideh; Joghataei, Mohammad Taghi; Sayahpour, Forough Azam; Faghihi, Faezeh
2017-08-01
Musculodegenerative diseases threaten the life of many patients in the world. Since drug administration is not efficient in regeneration of damaged tissues, stem cell therapy is considered as a good strategy to restore the lost cells. Since the efficiency of myogenic differentiation potential of human Chorion- derived Mesenchymal Stem Cells (C-MSCs) has not been addressed so far; we set out to evaluate myogenic differentiation property of these cells in comparison with Umbilical Cord Blood- derived Mesenchymal Stem Cells (UCB-MSCs) in the presence of 5-azacytidine. To do that, neonate placenta Umbilical Cord Blood were transferred to the lab. After characterization of the isolated cells using flowcytometry and multilineage differentiation capacity, the obtained Mesenchymal Stem Cells were cultured in DMEM/F12 supplemented with 2% FBS and 10μM of 5-azacytidine to induce myogenic differentiation. Real-time PCR and immunocytochemistry were used to assess the myogenic properties of the cells. Our data showed that C-MSCs and UCB-MSCs were spindle shape in morphology. They were positive for CD90, CD73 and CD44 antigens, and negative for hematopoietic markers. They also differentiated into osteoblast and adipoblast lineages. Real-time PCR results showed that the cells could express MyoD, desmin and α-MHC at the end of the first week (P<0.05). No significant upregulation was detected in the expression of GATA-4 in both groups. Immunocytochemical staining revealed the expression of Desmin, cTnT and α-MHC. Results showed that these cells are potent to differentiate into myoblast- like cells. An upregulation in the expression of some myogenic markers (desmin, α- MHC) was observed in C-MSCs in comparison with UCB-MSCs. Copyright © 2017. Published by Elsevier Ltd.
Park, Gi-Young; Kwon, Dong Rak; Lee, Sang Chul
2015-11-01
Rotator cuff tendon tear is one of the most common causes of chronic shoulder pain and disability. In this study, we investigated the therapeutic effects of ultrasound-guided human umbilical cord blood (UCB)-derived mesenchymal stem cell (MSC) injection to regenerate a full-thickness subscapularis tendon tear in a rabbit model by evaluating the gross morphology and histology of the injected tendon and motion analysis of the rabbit's activity. At 4 weeks after ultrasound-guided UCB-derived MSC injection, 7 of the 10 full-thickness subscapularis tendon tears were only partial-thickness tears, and 3 remained full-thickness tendon tears. The tendon tear size and walking capacity at 4 weeks after UCB-derived MSC injection under ultrasound guidance were significantly improved compared with the same parameters immediately after tendon tear. UCB-derived MSC injection under ultrasound guidance without surgical repair or bioscaffold resulted in the partial healing of full-thickness rotator cuff tendon tears in a rabbit model. Histology revealed that UCB-derived MSCs induced regeneration of rotator cuff tendon tear and that the regenerated tissue was predominantly composed of type I collagens. In this study, ultrasound-guided injection of human UCB-derived MSCs contributed to regeneration of the full-thickness rotator cuff tendon tear without surgical repair. The results demonstrate the effectiveness of local injection of MSCs into the rotator cuff tendon. The results of this study suggest that ultrasound-guided umbilical cord blood-derived mesenchymal stem cell injection may be a useful conservative treatment for full-thickness rotator cuff tendon tear repair. ©AlphaMed Press.
Park, Gi-Young; Lee, Sang Chul
2015-01-01
Rotator cuff tendon tear is one of the most common causes of chronic shoulder pain and disability. In this study, we investigated the therapeutic effects of ultrasound-guided human umbilical cord blood (UCB)-derived mesenchymal stem cell (MSC) injection to regenerate a full-thickness subscapularis tendon tear in a rabbit model by evaluating the gross morphology and histology of the injected tendon and motion analysis of the rabbit’s activity. At 4 weeks after ultrasound-guided UCB-derived MSC injection, 7 of the 10 full-thickness subscapularis tendon tears were only partial-thickness tears, and 3 remained full-thickness tendon tears. The tendon tear size and walking capacity at 4 weeks after UCB-derived MSC injection under ultrasound guidance were significantly improved compared with the same parameters immediately after tendon tear. UCB-derived MSC injection under ultrasound guidance without surgical repair or bioscaffold resulted in the partial healing of full-thickness rotator cuff tendon tears in a rabbit model. Histology revealed that UCB-derived MSCs induced regeneration of rotator cuff tendon tear and that the regenerated tissue was predominantly composed of type I collagens. In this study, ultrasound-guided injection of human UCB-derived MSCs contributed to regeneration of the full-thickness rotator cuff tendon tear without surgical repair. The results demonstrate the effectiveness of local injection of MSCs into the rotator cuff tendon. Significance The results of this study suggest that ultrasound-guided umbilical cord blood-derived mesenchymal stem cell injection may be a useful conservative treatment for full-thickness rotator cuff tendon tear repair. PMID:26371340
Gertz, Jacqueline M; McLean, Kelley C; Bouchard, Beth A
2018-05-15
Plasma- and platelet-derived factor Va are essential for thrombin generation catalyzed by the prothrombinase complex; however, several observations demonstrate that the platelet-derived cofactor, which is formed following megakaryocyte endocytosis and modification of the plasma procofactor, factor V, is more hemostatically relevant. Factor V endocytosis, as a function of megakaryocyte differentiation and proplatelet formation, was assessed by flow cytometry and microscopy in CD34 + hematopoietic progenitor cells isolated from human umbilical cord blood and cultured for 12 days in the presence of cytokines to induce ex vivo differentiation into megakaryocytes. Expression of an early marker of megakaryocyte differentiation, CD41, endocytosis of factor V, and the percentage of CD41 + cells that endocytosed factor V increased from days 6 to 12 of differentiation. In contrast, statistically significant decreases in expression of the stem cell marker, CD34, and in the percentage of CD34 + cells that endocytosed factor V were observed. A statistically significant increase in the expression of CD42b, a late marker of megakaryocyte differentiation, was also observed over time, such that by Day 12, all CD42b + cells endocytosed factor V and expressed CD41. This endocytosed factor V was trafficked to proplatelet extensions and was localized in a punctate pattern in the cytoplasm consistent with its storage in α-granules. In conclusion, loss of CD34 and expression of CD42b define cells capable of factor V endocytosis and trafficking to proplatelet extensions during differentiation of megakaryocytes ex vivo from progenitor cells isolated from umbilical cord blood. © 2018 Wiley Periodicals, Inc.
Core Stage Inter-Tank Umbilical (CSITU) Lift at ML
2017-10-11
A heavy-lift crane and rigging are used to lift the Core Stage Inter-tank Umbilical (CSITU) up to about the 140-foot level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The CSITU is moved into place for a fit check of the attachment hardware. The umbilical will then be lowered down and installed permanently on the ML at a later date. The CSITU is a swing-arm umbilical that will connect to the Space Launch System core stage inter-tank. It will provide conditioned air, pressurized gases and power and data connection to the core stage. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
NASA Astrophysics Data System (ADS)
Fimantari, Khansa; Budianto, Emil
2018-04-01
Helicobacterpylori infection can be treated using trihydrate amoxicillin. However, this treatment is not effective enough, as the conventional dosage treatment has a relatively short retention time in the human stomach. In the present study, the amoxicillin trihydrate drug will be encapsulated into a semi-IPN K-PNVP hydrogel matrix with 7,5% KHCO3 as a pore-forming agent. The encapsulated drug is tested with in vitro method to see the efficiency of its encapsulation and dissolution. The hydrogel in situ loading produces an encapsulation efficiency value. The values of the encapsulation efficiency are 95% and 98%, while post loading hydrogel yields an encapsulation efficiency value is 77% and the dissolution is 84%. The study of drug dissolution mechanism was done by using mathematical equation model to know its kinetics and its mechanism of dissolution. The post loading hydrogel was done by using thefirst-order model, while hydrogel in situ loading used Higuchi model. The Korsmeyer-Peppas model shows that post loading hydrogel dissolution mechanism is a mixture of diffusion and erosion, and in situ loading hydrogel in the form of diffusion. It is supported by the results of hydrogel characterization, before and after dissolution test with an optical microscope. The results of the optical microscope show that the hydrogel surface before and after the dissolution tested for both methods shows the change becomes rougher.
A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep
Herrera, E A; Kane, A D; Hansell, J A; Thakor, A S; Allison, B J; Niu, Y; Giussani, D A
2012-01-01
Virtually nothing is known about the effects on fetal physiology of xanthine oxidase inhibition. This is despite maternal treatment with the xanthine oxidase inhibitor allopurinol being considered in human complicated pregnancy to protect the infant's brain from excessive generation of ROS. We investigated the in vivo effects of maternal treatment with allopurinol on fetal cardiovascular function in ovine pregnancy in late gestation. Under anaesthesia, pregnant ewes and their singleton fetus were instrumented with vascular catheters and flow probes around an umbilical and a fetal femoral artery at 118 ± 1 dGA (days of gestational age; term ca. 145 days). Five days later, mothers were infused i.v. with either vehicle (n= 11) or allopurinol (n= 10). Fetal cardiovascular function was stimulated with increasing bolus doses of phenylephrine (PE) following maternal vehicle or allopurinol. The effects of maternal allopurinol on maternal and fetal cardiovascular function were also investigated following fetal NO blockade (n= 6) or fetal β1-adrenergic antagonism (n= 7). Maternal allopurinol led to significant increases in fetal heart rate, umbilical blood flow and umbilical vascular conductance, effects abolished by fetal β1-adrenergic antagonism but not by fetal NO blockade. Maternal allopurinol impaired fetal α1-adrenergic pressor and femoral vasopressor responses and enhanced the gain of the fetal cardiac baroreflex. These effects of maternal allopurinol were restored to control levels during fetal NO blockade. Maternal treatment with allopurinol induced maternal hypotension, tachycardia and acid–base disturbance. We conclude that maternal treatment with allopurinol alters in vivo maternal, umbilical and fetal vascular function via mechanisms involving NO and β1-adrenergic stimulation. The evidence suggests that the use of allopurinol in clinical practice should be approached with caution. PMID:22331413
Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy
NASA Astrophysics Data System (ADS)
Kim, Hyun-Chul; Kim, Eunjoo; Jeong, Sang Won; Ha, Tae-Lin; Park, Sang-Im; Lee, Se Guen; Lee, Sung Jun; Lee, Seung Woo
2015-10-01
Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia.Magnetic nanoparticle-conjugated polymeric micelles (MNP-PMs) consisting of poly(ethylene glycol)-poly(lactide) (PEG-PLA) and iron oxide nanoparticles were prepared and used as nanocarriers for combined hyperthermia and chemotherapy. Doxorubicin (DOX) was encapsulated in MNP-PMs, and an alternating magnetic field (AMF) resulted in an increase to temperature within a suitable range for inducing hyperthermia and a higher rate of drug release than observed without AMF. In vitro cytotoxicity and hyperthermia experiments were carried out using human lung adenocarcinoma A549 cells. When MNP-PMs encapsulated with an anticancer drug were used to treat A549 cells in combination with hyperthermia under AMF, 78% of the cells were killed by the double effects of heat and the drug, and the combination was more effective than either chemotherapy or hyperthermia treatment alone. Therefore, MNP-PMs encapsulated with an anticancer drug show potential for combined chemotherapy and hyperthermia. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04130a
2017-05-30
A view of the mobile launcher (ML) taken from the "eyebrow" of the nearby Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The ML tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The Orion Service Module Umbilical and Core State Forward Skirt Umbilical were recently installed on the ML. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Spontaneous evisceration of bowel through an umbilical hernia in a patient with refractory ascites
Ogu, Uchechukwu Stanley; Valko, Janice; Wilhelm, Jakub; Dy, Victor
2013-01-01
Umbilical hernia in the cirrhotic patient is frequently seen in the setting of refractory ascites. This article reports a rare case of spontaneous rupture of a recurrent umbilical hernia in a patient with persistent ascites, following an acute increase in intra-abdominal pressure, leading to bowel evisceration. This case highlights a potentially fatal complication of umbilical hernia in the setting of chronic ascites, which was successfully managed with prompt surgical intervention. PMID:24964319
The relation between umbilical cord characteristics and the outcome of external cephalic version.
Kuppens, Simone M I; Waerenburgh, Evelyne R; Kooistra, Libbe; van der Donk, Riet W P; Hasaart, Tom H M; Pop, Victor J M
2011-05-01
Umbilical cords of fetuses in breech presentation differ in length and coiling from their cephalic counterparts and it might be hypothesised that these cord characteristics may in turn affect ECV outcome. To investigate the relation between umbilical cord characteristics and the outcome of external cephalic version (ECV). Prospective cohort study. Women (>35 weeks gestation) with a singleton fetus in breech presentation, suitable for external cephalic version. Demographic, lifestyle and obstetrical parameters were assessed at intake. ECV success was based on cephalic presentation on ultrasound post-ECV. Umbilical cord length (UCL) and umbilical coiling index (UCI) were measured after birth. The relation between umbilical cord characteristics (cord length and coiling) and the success of external cephalic version. ECV success rate was overall 79/146 (54%), for multiparas 37/46(80%) and for nulliparas 42/100 (42%). Multiple logistic regression showed that UCL (OR: 1.04, CI: 1.01-1.07), nulliparity (OR: 0.20, CI: 0.08-0.51), frank breech (OR: 0.37, 95% CI: 0.15-0.90), body mass index (OR: 0.85, CI: 0.76-0.95), placenta anterior (OR: 0.27, CI: 0.12-0.63) and birth weight (OR: 1.002, CI: 1.001-1.003) were all independently related to ECV success. Umbilical cord length is independently related to the outcome of ECV, whereas umbilical coiling index is not. Copyright © 2011 Elsevier Ltd. All rights reserved.
You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung
2015-11-01
Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
56. DETAIL OF PAYLOAD ELECTRICAL AND AIRCONDITIONING UMBILICAL CONNECTIONS ON ...
56. DETAIL OF PAYLOAD ELECTRICAL AND AIR-CONDITIONING UMBILICAL CONNECTIONS ON NORTH FACE OF SLC-3W UMBILICAL MAST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Placental passage of antiepileptic drugs at delivery and neonatal outcomes
Bank, Anna M.; Stowe, Zachary N.; Newport, D. Jeffrey; Ritchie, James C.; Pennell, Page B.
2017-01-01
Summary Children of women treated with antiepileptic drugs (AEDs) are at increased risk for adverse outcomes detectable in the neonatal period, which may be associated with the amount of AED in the fetal circulation. Placental passage of AEDs can be measured by calculating the ratio of umbilical cord to maternal AED concentrations collected at delivery. The aims of this study were to determine the umbilical cord concentrations and umbilical to maternal ratios for AEDs, and to determine whether higher cord concentrations are associated with increased risk of neonatal complications. AED cord and maternal blood concentrations from 70 mother-newborn dyads and neonatal complications were recorded. Logistic regressions were performed to determine the association between AED concentrations and complications. Mean umbilical to maternal ratios for total concentrations ranged from 0.79 for carbamazepine to 1.20 for valproic acid, and mean umbilical to maternal ratios for free concentrations ranged from 0.86 for valproic acid to 1.42 for carbamazepine, indicating complete placental passage. Neither umbilical cord concentrations nor umbilical to maternal ratios were associated with adverse neonatal outcomes. Additional investigations are warranted to delineate the relationship between quantified fetal AED exposure and neonatal complications. PMID:28387929
Kim, William; Abdelshehid, Corollos; Lee, Hak J; Ahlering, Thomas
2012-06-01
To discuss a technique currently used at our institution for the management of umbilical hernias during robot-assisted laparoscopic prostatectomy. As more patients undergo robot-assisted radical prostatectomy, there will be an increase in patients who qualify for robotic surgery with comorbidities. This technique has been utilized in clinically localized prostate cancer patients with umbilical hernias using the da Vinci Surgical System and standard laparoscopic instrumentation. Port placements and closures were performed by a resident assistant and a nurse at the operating table. The prostatectomy was performed by a single experienced surgeon at the console. Currently, no data are available regarding patients with umbilical hernias undergoing robotic prostatectomy. We reviewed our technique of port placement for patients with a pre-existing umbilical hernia undergoing robot-assisted laparoscopic prostatectomy. This technique allows for a reduction of the umbilical hernia, the use of the fascial defect as a robotic port, and the removal of the prostate by way of transverse incision and transverse repair. In our experience, this technique is feasible and reproducible for any small or large umbilical hernia. Copyright © 2012 Elsevier Inc. All rights reserved.
Kim, Kitai; Zhao, Rui; Doi, Akiko; Ng, Kitwa; Unternaehrer, Juli; Cahan, Patrick; Hongguang, Huo; Loh, Yuin-Han; Aryee, Martin J.; Lensch, M. William; Li, Hu; Collins, James J.; Feinberg, Andrew P.; Daley, George Q.
2012-01-01
We compared bona-fide human induced pluripotent stem cells (iPSC) derived from umbilical cord blood (CB) and neonatal keratinocytes (K). As a consequence of both incomplete erasure of tissue-specific methylation and aberrant de novo methylation, CB-iPSC and K-iPSC are distinct in genome-wide DNA methylation profiles and differentiation potential. Extended passage of some iPSC clones in culture didn't improve their epigenetic resemblance to ESC, implying that some human iPSC retain a residual “epigenetic memory” of their tissue of origin. PMID:22119740
Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca
2012-01-01
We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayaalti, Zeliha, E-mail: kayaalti@ankara.edu.tr; Kaya-Akyüzlü, Dilek; Söylemez, Esma
Human hemochromatosis protein (HFE), a major histocompatibility complex class I-like integral membrane protein, participates in the down regulation of intestinal iron absorption by binding to transferrin receptor (TR). HFE competes with transferrin-bound iron for the TR and thus reduces uptake of iron into cells. On the other hand, a lack of HFE increases the intestinal absorption of iron similarly to iron deficiency associated with increasing in absorption and deposition of lead. During pregnancy, placenta cannot prevent transfer lead to the fetus; even low-level lead poisoning causes neurodevelopmental toxicity in children. The aim of this study was to determine the associationmore » between the maternal HFE H63D single-nucleotide polymorphism and lead levels in placental tissue, maternal blood and umbilical cord bloods. The study population comprised 93 mother–placenta pairs. Venous blood from mother was collected to investigate lead levels and HFE polymorphism that was detected by standard PCR–RFLP technique. Cord bloods and placentas were collected for lead levels which were analyzed by dual atomic absorption spectrometer system. The HFE H63D genotype frequencies of mothers were found as 75.3% homozygote typical (HH), 23.6% heterozygote (HD) and 1.1% homozygote atypical (DD). Our study results showed that the placental tissue, umbilical cord and maternal blood lead levels of mothers with HD+DD genotypes were significantly higher than those with HH genotype (p<0.05). The present study indicated for the first time that mothers with H63D gene variants have higher lead levels of their newborn's placentas and umbilical cord bloods. - Highlights: • Mothers with H63D gene variants have higher lead levels of their newborn's umbilical cord blood. • Unborn child of women with HD+DD genotypes may be at increased risk of internal exposure to lead. • Maternal HFE status may have an effect on increased placenta, maternal and cord blood lead levels. • Maternal HFE status may have an effect on lead transfer from maternal to fetal circulation. • Placental, maternal and cord blood lead levels were not correlated with mothers' age.« less
Crankson, S J; Ahmed, G S; Palkar, V
1998-12-01
Umbilical anomalies arise from fetal structures such as the omphalomesenteric duct (OMD) or urachus or from failure of closure of the umbilical fascial ring. Persistence of the OMD may lead to several anomalies including umbilical sinus, umbilical cyst, Meckel's diverticulum, or patent OMD (POMD). A POMD is usually associated with the ileum, but rarely may be with the caecum or appendix. We describe a POMD of the vermiform appendix and discuss the possible pathogenesis and management.
Hepatic laceration as a life-threatening complication of umbilical venous catheterization.
Gülcan, Hande; Hanta, Deniz; Törer, Birgin; Temiz, Adbülkerim; Demir, Senay
2011-01-01
Umbilical venous catheterization is an intravenous infusion route for maintenance fluids, medications, blood products, and parenteral nutrition in preterm neonates. However, this procedure may be associated with several complications, such as infection, thrombosis, vessel perforation, and cardiac and hepatic injuries. Hepatic laceration is a rare but life-threatening complication of umbilical venous catheterization that is a result of direct injury through the liver parenchyma. Here, we present a preterm newborn with hepatic laceration as a rare and serious complication of umbilical venous catheterization.
Rupture of Umbilical Hernia with Evisceration in a Newborn - A Case Report.
Kittur, Dinesh H; Bhandarkar, Kailas P; Patil, Santosh V; Jadhav, Sudhakar S
2017-01-01
Most umbilical hernias in infants do not need surgery and the ring will eventually close. Occasionally few complications can arise and incarceration is most common. Spontaneous rupture of the hernia and eventual evisceration is a rarely seen complication. A 3-week-old neonate having umbilical hernia presented with rupture of the sac with evisceration of bowel within a few days of first visit. No underlying cause like umbilical sepsis was found. The baby had emergency repair of the hernia with an uneventful recovery.
Incarceration of umbilical hernia after radiological insertion of a Denver peritoneovenous shunt.
Ohta, Kengo; Shimohira, Masashi; Hashizume, Takuya; Kawai, Tatsuya; Kurosaka, Kenichiro; Suzuki, Kazushi; Watanabe, Kenichi; Shibamoto, Yuta
2013-03-01
We report a rare complication of incarceration of an umbilical hernia after Denver peritoneovenous shunt placement. A 50-year-old man presented with refractory ascites from liver cirrhosis. He also had an umbilical hernia. Because the ascites became uncontrollable, Denver peritoneovenous shunting was performed. The operation was successful and the ascites decreased. Ten days later, however, incarceration of the umbilical hernia occurred. A surgical repair was performed, but he died 2 days later. The cause of death was considered to be sepsis.
Fabrication of hemispherical liquid encapsulated structures based on droplet molding
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroki; Miki, Norihisa
2015-12-01
We have developed and demonstrated a method for forming spherical structures of a thin polydimethylsiloxane (PDMS) membrane encapsulating a liquid. Liquid encapsulation can enhance the performance of microelectromechanical systems (MEMS) devices by providing deformability and improved dielectric properties. Parylene deposition and wafer bonding are applied to encapsulate liquid into a MEMS device. In parylene deposition, a parylene membrane is directly formed onto a liquid droplet. However, since the parylene membrane is stiff, the membrane is fragile. Although wafer bonding can encapsulate liquid between two substrates, the surface of the fabricated structure is normally flat. We propose a new liquid encapsulation method by dispensing liquid droplets. At first, a 20 μl PDMS droplet is dispensed on ethylene glycol. A 70 μl glycerin droplet is dispensed into a PDMS casting solution layer. The droplet forms a layer on heated ethylene glycol. Glycerin and ethylene glycol are chosen for their high boiling points. Additionally, a glycerin droplet is dispensed on the layer and surrounded by a thin PDMS casting solution film. The film is baked for 1 h at 75 °C. As the result, a structure encapsulating a liquid in a flexible PDMS membrane is obtained. We investigate the effects of the volume, surface tension, and guide thickness on the shape of the formed structures. We also evaluated the effect of the structure diameter on miniaturization. The structure can be adapted for various functions by changing the encapsulated liquid. We fabricated a stiffness-tunable structure by dispensing a magnetorheoligical fluid droplet with a stiffness that can be changed by an external magnetic field. We also confirmed that the proposed structure can produce stiffness differences that are distinguishable by humans.
Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe
2015-01-01
Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID:26345627
Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.
2014-01-01
Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569
Mutalik, Srinivas; Salian, Sujith Raj; Avadhani, Kiran; Menon, Jyothsna; Joshi, Haritima; Hegde, Aswathi Raju; Kumar, Pratap; Kalthur, Guruprasad; Adiga, Satish Kumar
2014-06-01
Cryopreservation of spermatozoa plays a significant role in reproductive medicine and fertility preservation. Chicken egg yolk is used as an extender in cryopreservation of human spermatozoa using glycerol egg yolk citrate (GEYC) buffered medium. Even though 50% survival of spermatozoa is generally achieved with this method, the risk of high levels of endotoxins and transmission pathogens from chicken egg yolk is a matter of concern. In the present study we attempted to establish a chemically defined cryopreservation medium which can replace the chicken egg yolk without affecting sperm survival. Ejaculates from 28 men were cryopreserved with GEYC based freezing medium or liposome encapsulated soy lecithin-cholesterol based freezing medium (LFM). The semen samples were subjected to rapid thawing after 14 days of storage in liquid nitrogen. Post-thaw analysis indicated significantly higher post-thaw motility and sperm survival in spermatozoa cryopreserved with LFM compared to conventional GEYC freezing medium. The soy lecithin and cholesterol at the ratio of 80:20 with sucrose showed the highest percentage of post-thaw motility and survival compared to the other compositions. In conclusion, chemically defined cryopreservation medium with liposome encapsulated soy lecithin and cholesterol can effectively replace the chicken egg yolk from human semen cryopreservation medium without compromising post-thaw outcome.
Umbilical cord blood: a guide for primary care physicians.
Martin, Paul L; Kurtzberg, Joanne; Hesse, Brett
2011-09-15
Umbilical cord blood stem cell transplants are used to treat a variety of oncologic, genetic, hematologic, and immunodeficiency disorders. Physicians have an important role in educating, counseling, and offering umbilical cord blood donation and storage options to patients. Parents may donate their infant's cord blood to a public bank, pay to store it in a private bank, or have it discarded. The federal government and many state governments have passed laws and issued regulations regarding umbilical cord blood, and some states require physicians to discuss cord blood options with pregnant women. Five prominent medical organizations have published recommendations about cord blood donation and storage. Current guidelines recommend donation of umbilical cord blood to public banks when possible, or storage through the Related Donor Cord Blood Program when a sibling has a disease that may require a stem cell transplant. Experts do not currently recommend private banking for unidentified possible future use. Step-by-step guidance and electronic resources are available to physicians whose patients are considering saving or donating their infant's umbilical cord blood.
Evidence-based pathology: umbilical cord coiling.
Khong, T Y
2010-12-01
The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.
Concomitant abdominoplasty and umbilical hernia repair using the Ventralex hernia patch.
Neinstein, Ryan M; Matarasso, Alan; Abramson, David L
2015-04-01
Patients requesting abdominoplasty often have concomitant umbilical hernias and may request simultaneous treatment. The vascularity of the umbilicus is potentially at risk during these combined procedures. In this study, the authors present a technique for treating umbilical hernias at the time of abdominoplasty surgery using the Ventralex hernia patch. A total of 11 female patients with a mean age of 39.4 years (range, 28 to 51 years) undergoing abdominoplasty with umbilical hernia repair with the Ventralex patch were included. The mean body mass index was 27.6 kg/m (range, 20 to 34 kg/m). No vascular compromise of the umbilicus was seen. The hernia repair did not alter the abdominoplasty results. One patient had transient umbilical swelling postoperatively that resolved within 6 months postoperatively. The authors present a series of umbilical hernia repairs in abdominoplasty patients using a minimal access incision by means of the rectus fascia and the Ventralex patch that is fast and reliable and preserves the blood supply to the umbilicus.
Tsukada, Manabu; Ozaki, Akihiko; Ohira, Hiromichi; Sawano, Toyoaki; Nemoto, Tsuyoshi; Kanazawa, Yukio
2016-11-01
Intraabdominal tumors can cause umbilical hernia and may lead to serious consequences, such as incarcerated or necrotized intestine. However, little information is available concerning how the location and characteristics of tumors may affect the process of umbilical hernia development. A 46-year-old Japanese man presented at the department of surgery with abdominal pain and abdominal retention, which appeared on the day of presentation and 4 years before the presentation, respectively. Abdominal computed tomography revealed a suspected gastrointestinal stromal tumor(GIST)and an umbilical hernia close to the tumor, both of which were clinically diagnosed. Surgical tumor resection and hernia repair were conducted successfully. The patient was pathologically diagnosed with high-risk GIST. Adjuvant therapy with imatinib was administered with no recurrence as of 1 year post-surgery. This is a case of GIST complicated by umbilical hernia. Small solid tumors may cause umbilical hernia if they are in close proximity to vulnerable parts of the abdominal wall.
Umbilical Hernia in Peritoneal Dialysis Patients: Surgical Treatment and Risk Factors.
Banshodani, Masataka; Kawanishi, Hideki; Moriishi, Misaki; Shintaku, Sadanori; Ago, Rika; Hashimoto, Shinji; Nishihara, Masahiro; Tsuchiya, Shinichiro
2015-12-01
No previous reports have focused on surgical treatments and risk factors of umbilical hernia alone in peritoneal dialysis (PD) patients. Herein, we evaluated the treatments and risk factors. A total of 411 PD patients were enrolled. Of the 15 patients with umbilical hernia (3.6%), six underwent hernioplasty. There was no recurrence in five patients treated with tension-free hernioplasty. The mean PD vintage after onset of hernia in the hernioplasty group tended to be longer than that in the non-hernioplasty group. An incarcerated hernia occurred in one non-hernioplasty patient. Although the incidence was significantly higher among women (P = 0.02), female sex was not a risk factor for umbilical hernia (P = 0.08). Our findings suggest that umbilical hernias should be repaired for continuing PD. Furthermore, there were no significant risk factors for umbilical hernia in PD patients. Future studies with larger sample groups are required to elucidate these risk factors. © 2015 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
Tucker, Tracy; Riccardi, Vincent M.; Sutcliffe, Margaret; Vielkind, Juergen; Wechsler, Janine; Wolkenstein, Pierre; Friedman, Jan M.
2011-01-01
Multiple neurofibromas are cardinal features of neurofibromatosis 1 (NF1). Several different types of NF1-associated neurofibromas occur, each distinct in terms of pathological details, clinical presentation, and natural history. Mast cells are present in most neurofibromas and have been shown to be critical to the origin and progression of neurofibromas in both human NF1 and relevant mouse models. In this investigation, the authors determined whether mast cell involvement is the same for all types of NF1-associated neurofibromas. They examined the density and distribution of mast cells within 49 NF1-associated neurofibromas classified histopathologically as diffuse or encapsulated on the basis of the presence or absence of the perineurium or its constituent cells. They made two observations: (1) Diffuse neurofibromas had significantly higher densities of mast cells than did encapsulated neurofibromas, and (2) mast cells were evenly distributed throughout diffuse neurofibromas but were primarily restricted to the periphery of encapsulated neurofibromas. The differences in mast cell density and distribution differentiate the two basic types of NF1-associated neurofibromas, suggesting that the pathogenesis of diffuse and encapsulated neurofibromas may be significantly different. PMID:21525187
Wani, Touseef Ahmed; Shah, Adil Gani; Wani, Sajad Mohd; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Nissar, Nazia; Shagoo, Mudasir Ahmad
2016-11-17
Functional foods find a very important place in the modern era, where different types of cancer, diabetes, cardiovascular diseases, etc. are on a high. Irrespective of the abundance of bioactive components in different fruits and vegetables, their low solubility in aqueous solution, vulnerability to destruction in different environmental and gastrointestinal conditions and a low intestinal absorption becomes a concern. Because it is quite difficult to commercialize non food materials for the food encapsulation purposes due to their safety concerns in the human body, scientists in the recent times have come up with the idea of encapsulating the different bioactive components in different food grade materials that are able to safeguard these bioactive components against the different environmental and gastrointestinal conditions and ensure their safe and targeted delivery at their absorption sites. Different food grade encapsulation materials including various oligosaccharides, polysaccharides (starch, cyclodextrins, alginates, chitosan, gum arabic, and carboxymethyl cellulose) and proteins and their suitability for encapsulating various bioactive components like flavonoids (catechins, rutin, curcumin, hesperetin, and vanillin), nonflavonoids (resveratrol), carotenoids (β-carotene, lycopene, and lutein), and fatty acids (fish oil, flaxseed oil, and olive oil) of high medical and nutritional value are reviewed here.
Body piercing with fatal consequences.
Ranga, N; Jeffery, A J
2011-01-25
Body modifications such as piercings, tattoos and surgery have increased in popularity in recent times and have become more socially acceptable. The common complications of piercing different parts of the human anatomy are well-documented, including sepsis, allergic reactions and, more rarely, endocarditis and ischaemia. Deaths related to piercing complications are primarily septic in origin. In this case, a man in his 50s died due to complications of his multiple umbilical piercings. The cause of death was unusually linked to body modification; the umbilical piercings had ultimately led to a mesenteric infarction. Cases such as these are forensically important due to potential manslaughter charges that could be brought against a piercing establishment. More importantly, this case highlights another extreme complication of body modification. Fashion statements are always changing and impact upon many lives. It is important to highlight to people the potentially life-threatening complications of common piercing practices.
2009-02-19
VANDENBERG AIR FORCE BASE, Calif. -- With the fairing door off, Orbital Sciences' Glenn Weigle and Brett Gladish maneuver into position to take the GN2 flow reading from NASA's Orbiting Carbon Observatory, or OCO, spacecraft. At left, Jose Castillo and Mark Neuse stand by to replace the fairing door when the OCO operation is complete. The spacecraft sits atop Orbital Sciences' Taurus XL rocket. At right is a portion of the umbilical tower attached to the upper stack. The spacecraft sits atop Orbital Sciences' Taurus XL rocket. At right is a portion of the umbilical tower attached to the upper stack. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo courtesy of Jim Stowers, Orbital Sciences
Chantalat, E; Vaysse, C; Delchier, M C; Bordier, B; Game, X; Chaynes, P; Cavaignac, E; Roumiguié, M
2018-03-27
In radical cystectomy, the surgeon generally ligates the umbilical artery at its origin. This artery may give rise to several arteries that supply the sexual organs. Our aim was to evaluate pelvic and perineal devascularisation in women after total cystectomy. We carried out a prospective anatomical and radiological study. We performed bilateral pelvic dissections of fresh adult female cadavers to identify the dividing branches of the umbilical artery. In parallel, we examined and compared the pre- and postoperative imaging investigations [magnetic resonance imaging (MRI) angiography] in patients undergoing cystectomy for benign disease to quantify the loss of pelvic vascularisation on the postoperative images by identifying the occluded arteries. The anatomical study together with the radiological study visualised 35 umbilical arteries (n = 70) with their branching patterns and collateral arteries. The uterine artery originated from the umbilical artery in more than 75% of cases (n = 54) of the internal pudendal artery in 34% (n = 24) and the vaginal artery in 43% (n = 30). The postoperative MRI angiograms showed pelvic devascularisation in four patients. Devascularisation was dependent on the level of surgical ligation. In the four patients with loss of pelvic vascular supply, the umbilical artery had been ligated at its origin. The umbilical artery gives rise to various branches that supply the pelvis and perineum. If the surgeon ligates the umbilical artery at its origin during total cystectomy, there is a significant risk of pelvic and perineal devascularisation.
Treatment of umbilical hernia and recti muscles diastasis without a periumbilical incision.
Kulhanek, J; Mestak, O
2013-08-01
Postpartum rectus diastasis eventually combined with umbilical hernia is a condition that is frequently treated by plastic surgeons and general surgeons. Standard treatment of this condition is abdominoplasty with a periumbilical incision, which often results in an umbilical incision or an inverted-T scar. Limited incision abdominoplasty differs from traditional abdominoplasty by disconnecting the umbilical stalk from the abdominal wall during flap dissection, thus allowing the resection of excess skin above and under the umbilicus without causing periumbilical scarring. We conducted a retrospective cohort study of women undergoing a limited scar abdominoplasty without a periumbilical incision for the treatment of a separation of the recti muscles and/or an umbilical hernia. We recorded the postoperative complications and patient satisfaction with the results of the treatment. We operated on 50 patients from 2002 to 2010. We followed the patients for 2-8 years. The most common complication, as with other abdominoplasty procedures, was minor dehiscention in the middle part of the wound, which occurred in 16 % (n = 8) of the patients. All of these complications were treated conservatively. No recurrence of diastasis or umbilical hernia was observed. Extended miniabdominoplasty with a low suprapubic incision and umbilical caudalization for treating the diastasis of the abdominal rectus muscles and/or an umbilical hernia is an excellent method that results in a small, hidden scar. This method is especially beneficial for young, slim women with an abdominal wall deformity after pregnancy.
"Knowing How" and "Knowing That" - An Unnecessary Dichotomy in Physical Education?
ERIC Educational Resources Information Center
Aspin, D. N.
As a contribution to the philosophical enquiry into the nature and forms of human activity, the hypothesis is ventured that "knowledge" relative to human movement and physical activities encapsulates and presents modes of perception, reflection, experience, and communication that are at least as important in human development as other generally…
Rueda, Felix; Eich, Christina; Cordobilla, Begoña; Domingo, Pere; Acosta, Gerardo; Albericio, Fernando; Cruz, Luis J; Domingo, Joan C
2017-11-01
Nanoliposomes (NLs) hold promise as new highly specific nanomedicine for anti-tumor vaccines, since they could be targeted to specific receptors on dendritic cell (DC) to induce maturation and activation and increase the anti-tumor immune response. Here we studied a NLs formulation targeted or not to FcR (the receptor for the IgG Fc fragment) for the treatment of androgen-responsive prostate cancer. Luteinizing-hormone-releasing hormone (LHRH) peptide (B- and T-cell epitopes), in tandem with a tetanus toxoid T-helper epitope (830-844 region) and several TLR (Toll-Like Receptor) ligands as adjuvants were co-encapsulated. Specific uptake in vitro of LHRH-TT liposomes targeted to the FcRs of human DCs was enhanced. DC maturation/activation, cytokine production and lymphocyte activation were consistently higher in targeted than non-targeted liposomes. Similar increase was observed as more adjuvants were administrated. Targeting to specific receptor and co-encapsulation of several TLR adjuvants are essential factors for the immune response in peptide based liposome vaccine. Copyright © 2017 Elsevier GmbH. All rights reserved.
Ducat, E; Deprez, J; Gillet, A; Noël, A; Evrard, B; Peulen, O; Piel, G
2011-11-28
The purpose of this study is to propose a suitable vector combining increased circulation lifetime and intracellular delivery capacities for a therapeutic peptide. Long circulating classical liposomes [SPC:CHOL:PEG-750-DSPE (47:47:6 molar% ratio)] or pH-sensitive stealth liposomes [DOPE:CHEMS:CHOL:PEG(750)-DSPE (43:21:30:6 molar% ratio)] were used to deliver a therapeutic peptide to its nuclear site of action. The benefit of using stealth pH-sensitive liposomes was investigated and formulations were compared to classical liposomes in terms of size, shape, charge, encapsulation efficiency, stability and, most importantly, in terms of cellular uptake. Confocal microscopy and flow cytometry were used to evaluate the intracellular fate of liposomes themselves and of their hydrophilic encapsulated material. Cellular uptake of peptide-loaded liposomes was also investigated in three cell lines: Hs578t human epithelial cells from breast carcinoma, MDA-MB-231 human breast carcinoma cells and WI-26 human diploid lung fibroblast cells. The difference between formulations in terms of peptide delivery from the endosome to the cytoplasm and even to the nucleus was investigated as a function of time. Characterization studies showed that both formulations possess acceptable size, shape and encapsulation efficiency but cellular uptake studies showed the important benefit of the pH-sensitive formulation over the classical one, in spite of liposome PEGylation. Indeed, stealth pH-sensitive liposomes were able to deliver hydrophilic materials strongly to the cytoplasm. Most importantly, when encapsulated in pH-sensitive stealth liposomes, the peptide was able to reach the nucleus of tumorigenic and non tumorigenic breast cancer cells. Copyright © 2011 Elsevier B.V. All rights reserved.
Curcumin bioavailability from enriched bread: the effect of microencapsulated ingredients.
Vitaglione, Paola; Barone Lumaga, Roberta; Ferracane, Rosalia; Radetsky, Irena; Mennella, Ilario; Schettino, Rita; Koder, Saul; Shimoni, Eyal; Fogliano, Vincenzo
2012-04-04
Human bioavailability of curcumin from breads enriched with 1 g/portion of free curcumin (FCB), encapsulated curcumin (ECB), or encapsulated curcumin plus other polyphenols (ECBB) was evaluated. Parental and metabolized curcuminoids and phenolic acids were quantified by HPLC/MS/MS in blood, urine, and feces collected over 24 h. The concentrations of serum curcuminoids were always below 4 nmol/L and those of glucuronides 10-fold less. Encapsulation delayed and increased curcuminoid absorption as compared to the free ingredient. Serum and urinary concentrations of ferulic and vanillic acid were between 2- and 1000-fold higher than those of curcuminoids, with ECBB eliciting the highest amounts. Fecal curcuminoids were 6-fold more abundant after ECB than FCB, while phenolic acids after ECBB quadruplicated those after ECB. Curcuminoid encapsulation increased their bioavailability from enriched bread, probably preventing their biotransformation, with combined compounds slightly reducing this effect. Phenolic acids are the major metabolites of curcuminoids and may contribute to their biological properties.
Yeung, Timothy W.; Üçok, Elif F.; Tiani, Kendra A.; McClements, David J.; Sela, David A.
2016-01-01
Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions. PMID:27148184
Bhattacharya, N; Mukherijee, K; Chettri, M K; Banerjee, T; Mani, U; Bhattacharya, S
2001-01-01
In the animal kingdom, even herbivorous animals swallow the placenta after the birth of the baby (for example, the cow). In the human system, we do not know about the proper utilization of the placenta and membranes although there are suggestions regarding this on the basis of research on placental umbilical cord blood stem cells as an alternative to bone marrow transplantation. In this present series of placental umbilical cord whole blood transfusions, we wanted to examine the safety aspect of other components of cord blood transfusion, e.g., fetal RBC, growth factors and cytokine filled plasma, etc., in different indications of blood transfusion, from the pediatric to the geriatric age group, in malignant and non-malignant disorders affecting our patients. One hundred and seventy-four units of umbilical cord whole blood were collected aseptically from the umbilical vein after caesarean section in standard pediatric blood transfusion bags, after the removal of the baby from the operative field and after confirming the stable condition of the mother. The volume of cord blood varied from 50 ml to 140 ml with a mean of 86 ml+/-16 ml. The cord blood was transfused immediately (within three days of collection) to 62 patients from nine years to 78 years of age, of whom 32 were suffering from varying stages and grades of malignancy from 1 April 1999 till date i.e., 11 Aug 2000, after obtaining adequate consent and following the precautions of standard blood transfusion protocol. The remaining 30 patients included patients suffering from thalassemia major, aplastic anemia, systemic lupus erythematosus, chronic renal failure, rheumatoid arthritis, ankylosing spondylitis and a geriatric group of patients with benign prostatic hypertrophy. All have tolerated the procedure without any immunological or non-immunological reactions. On the basis of our experience with 174 units of placental umbilical cord whole blood transfusion in malignant and non-malignant conditions (within three days of collection and preservation at 1-6 degrees C in a refrigerator), we are of the opinion that this is a safe transfusion protocol which takes advantage of the safety of nature's finest biological sieve, i.e., the placenta, as an alternative to adult whole blood transfusion. It also has the advantage of a higher oxygen carrying capacity of fetal hemoglobin in addition to many growth factors and other cytokine filled cord blood plasma along with its hypoantigenicity.
126. REDUNDANCY SYSTEM CONTROLS FOR UMBILICAL MAST RETRACTION AT LOWER ...
126. REDUNDANCY SYSTEM CONTROLS FOR UMBILICAL MAST RETRACTION AT LOWER LEFT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
109. REDUNDANCY SYSTEM CONTROLS FOR UMBILICAL MAST RETRACTION AT LOWER ...
109. REDUNDANCY SYSTEM CONTROLS FOR UMBILICAL MAST RETRACTION AT LOWER LEFT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Holzman, L B; Marks, R M; Dixit, V M
1990-11-01
We have previously described the cloning of a group of novel cellular immediate-early response genes whose expression in human umbilical vein endothelial cells is induced by tumor necrosis factor alpha in the presence of cycloheximide. These genes are likely to participate in mediating the response of the vascular endothelium to proinflammatory cytokines. In this study, we further characterized one of these novel gene products named B61. Sequence analysis of cDNA clones encoding B61 revealed that its protein product has no significant homology to previously described proteins. Southern analysis suggested that B61 is an evolutionarily conserved single-copy gene. B61 is primarily a hydrophilic molecule but contains both a hydrophobic N-terminal and a hydrophobic C-terminal region. The N-terminal region is typical of a signal peptide, which is consistent with the secreted nature of the protein. The mature form of the predicted protein consists of 187 amino acid residues and has a molecular weight of 22,000. Immunoprecipitation of metabolically labeled human umbilical vein endothelial cell preparations revealed that B61 is a 25-kilodalton secreted protein which is markedly induced by tumor necrosis factor.
Holzman, L B; Marks, R M; Dixit, V M
1990-01-01
We have previously described the cloning of a group of novel cellular immediate-early response genes whose expression in human umbilical vein endothelial cells is induced by tumor necrosis factor alpha in the presence of cycloheximide. These genes are likely to participate in mediating the response of the vascular endothelium to proinflammatory cytokines. In this study, we further characterized one of these novel gene products named B61. Sequence analysis of cDNA clones encoding B61 revealed that its protein product has no significant homology to previously described proteins. Southern analysis suggested that B61 is an evolutionarily conserved single-copy gene. B61 is primarily a hydrophilic molecule but contains both a hydrophobic N-terminal and a hydrophobic C-terminal region. The N-terminal region is typical of a signal peptide, which is consistent with the secreted nature of the protein. The mature form of the predicted protein consists of 187 amino acid residues and has a molecular weight of 22,000. Immunoprecipitation of metabolically labeled human umbilical vein endothelial cell preparations revealed that B61 is a 25-kilodalton secreted protein which is markedly induced by tumor necrosis factor. Images PMID:2233719
Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach
NASA Astrophysics Data System (ADS)
Sultani, A. Billal; Marquez-Curtis, Leah A.; Elliott, Janet A. W.; McGann, Locksley E.
2016-10-01
Cryopreservation of human umbilical vein endothelial cells (HUVECs) facilitated their commercial availability for use in vascular biology, tissue engineering and drug delivery research; however, the key variables in HUVEC cryopreservation have not been comprehensively studied. HUVECs are typically cryopreserved by cooling at 1 °C/min in the presence of 10% dimethyl sulfoxide (DMSO). We applied interrupted slow cooling (graded freezing) and interrupted rapid cooling with a hold time (two-step freezing) to identify where in the cooling process cryoinjury to HUVECs occurs. We found that linear cooling at 1 °C/min resulted in higher membrane integrities than linear cooling at 0.2 °C/min or nonlinear two-step freezing. DMSO addition procedures and compositions were also investigated. By combining hydroxyethyl starch with DMSO, HUVEC viability after cryopreservation was improved compared to measured viabilities of commercially available cryopreserved HUVECs and viabilities for HUVEC cryopreservation studies reported in the literature. Furthermore, HUVECs cryopreserved using our improved procedure showed high tube forming capability in a post-thaw angiogenesis assay, a standard indicator of endothelial cell function. As well as presenting superior cryopreservation procedures for HUVECs, the methods developed here can serve as a model to optimize the cryopreservation of other cells.
Zheng, Yuanyuan; Panhwar, Fazil
2016-01-01
Cryopreservation of human umbilical vein endothelial cells (HUVECs) is important to tissue engineering applications and the study of the role of endothelial cells in cardiovascular and cerebrovascular diseases. The traditional methods for cryopreservation by vitrification (cooling samples to a cryogenic temperature without apparent freezing) using high concentration of cryoprotective agents (CPAs) and slow freezing are suboptimal due to the severe toxicity of high concentration of CPAs and ice formation-induced cryoinjuries, respectively. In this study, we developed a method to cryopreserve HUVECs by vitrification with low concentration of CPAs. This is achieved by optimizing the CPAs and using highly thermally conductive quartz capillary (QC) to contain samples for vitrification. The latter minimizes the thermal mass to create ultra-fast cooling/warming rates. Our data demonstrate that HUVECs can be vitrified in the QC using 1.4 mol/L ethylene glycol and 1.1 mol/L dimethyl sulfoxide with more than 90% viability. Moreover, this method significantly improves the attachment efficiency of the cryopreserved HUVECs. The attached cells post-cryopreservation proliferate similarly to fresh cells. Therefore, this study may provide an effective vitrification technique to bank HUVECs for vascular tissue engineering and other applications. PMID:27673413
Xu, Maolei; Xing, Yun; Zhou, Ling; Yang, Xue; Yao, Wenjun; Xiao, Wen; Ge, Chiyu; Ma, Yanjun; Yang, Jie; Wu, Jie; Cao, Rongyue; Li, Taiming; Liu, Jingjing
2013-06-01
Vaccination with xenogeneic or syngeneic endothelial cells targeting tumor angiogenesis is effective for inhibiting tumor growth. OK432, an effective adjuvant, was mixed with viable human umbilical vein endothelial cells (HUVECs) to prepare a novel HUVECs-OK432 vaccine, which could have an improved therapeutic efficacy. In this study, HUVECs-OK432 was administrated in mice by subcutaneous injection in a therapeutic procedure. The results showed that a stronger HUVEC-specific Abs and cytotoxic T lymphocyte immune response were elicited, which resulted in significant inhibition on the growth of B16F10 melanoma and remarkably prolonged survival of B16F10 melanoma-bearing mice compared with HUVECs. Besides, parallel results were obtained in vitro showing a stronger inhibition of HUVEC proliferation by immune sera of HUVECs-OK432 than that of HUVECs. Moreover, histochemistry and immunohistochemistry analysis showed that HUVECs-OK432 induced large areas of continuous necrosis within tumors and significantly reduced the vessel density, correlating well with the extent of tumor inhibition. Our present results suggest that OK432 could be employed as an effective adjuvant for HUVEC vaccines and therefore should be useful for adjuvant immunotherapy of cancer.
Kumbhar, Sneha G; Pawar, S H
2016-01-01
Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.
Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi
2015-10-01
The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.
Zhu, Haibo; Zou, Libo; Tian, Jingwei; Lin, Fei; He, Jie; Hou, Jian
2014-03-01
Sodium formononetin-3'-sulphonate is a derivative of the plant isoflavone formononetin. The present study aimed to investigate the neuroprotective and angiogenesis effects of sodium formononetin-3'-sulphonate in vivo and in vitro. Treatment with sodium formononetin-3'-sulphonate (3, 7.5, 15, and 30 mg/kg, intravenous injection) could protect the brain from ischemia and reperfusion injury by improving neurological function, suppressing cell apoptosis, and increasing expression levels of vascular endothelial growth factor and platelet endothelial cell adhesion molecule 1 by middle cerebral artery occlusion. Treatment with sodium formononetin-3'-sulphonate (10 and 20 µg/mL) significantly increased cell migration, tube formation, and vascular endothelial growth factor and platelet endothelial cell adhesion molecule levels in human umbilical vein endothelial cells. Our results suggest that sodium formononetin-3'-sulphonate provides significant neuroprotective effects against cerebral ischemia and reperfusion injury in rats, and improves cerebrovascular angiogenesis in human umbilical vein endothelial cells. The protective mechanisms of sodium formononetin-3'-sulphonate may be attributed to the suppression of cell apoptosis and improved cerebrovascular angiogenesis by promoting vascular endothelial growth factor and platelet endothelial cell adhesion molecule expression. Georg Thieme Verlag KG Stuttgart · New York.
Iqbal, Sakib; Rashid, Mohammad H.; Arbab, Ali S.; Khan, Mujibur
2017-01-01
We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19–23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50–160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22–90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52–53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%. PMID:28845137
Iqbal, Sakib; Rashid, Mohammad H; Arbab, Ali S; Khan, Mujibur
2017-04-01
We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19-23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50-160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22-90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52-53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%.
Yourdkhani, Mostafa; Leme-Kraus, Ariene Arcas; Aydin, Berdan; Bedran-Russo, Ana Karina; White, Scott R
2017-06-01
To sustain the bioactivity of proanthocyanidins-rich plant-derived extracts via encapsulation within biodegradable polymer microcapsules. Polylactide microcapsules containing grape seed extract (GSE) were manufactured using a combination of double emulsion and solvent evaporation techniques. Microcapsule morphology, size distribution, and cross-section were examined via scanning electron microscopy. UV-vis measurements were carried out to evaluate the core loading and encapsulation efficiency of microcapsules. The bioactivity of extracts was evaluated after extraction from capsules via solvent partitioning one week or one year post-encapsulation process. Fifteen human molars were cut into 7mm×1.7mm×0.5mm thick mid-coronal dentin beams, demineralized, and treated with either encapsulated GSE, pristine GSE, or left untreated. The elastic modulus of dentin specimens was measured based on three-point bending experiments as an indirect assessment of the bioactivity of grape seed extracts. The effects of the encapsulation process and storage time on the bioactivity of extracts were analyzed. Polynuclear microcapsules with average diameter of 1.38μm and core loading of up to 38wt% were successfully manufactured. There were no statistically significant differences in the mean fold increase of elastic modulus values among the samples treated with encapsulated or pristine GSE (p=0.333), or the storage time (one week versus one year storage at room temperature, p=0.967). Polynuclear microcapsules containing proanthocyanidins-rich plant-derived extracts were prepared. The bioactivity of extracts was preserved after microencapsulation. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Tzankova, Virginia; Aluani, Denitsa; Kondeva-Burdina, Magdalena; Yordanov, Yordan; Odzhakov, Feodor; Apostolov, Alexandar; Yoncheva, Krassimira
2017-08-01
The toxic liver impairment caused by free radical injury or excessive reactive oxigen species (ROS) formation could be effectivelly attenuated by natural antioxidants. The present study aimed to explore and compare the hepatoprotective and antioxidant effects of free and encapsulated quercetin in in vitro and in vivo models of hepatotoxicity. Thus, quercetin was encapsulated in chitosan/alginate nanoparticles by gelation method. Both empty and quercetin-loaded nanoparticles revealed good safety profile in vitro, determined by the lack of cytotoxicity in human hepatoma HepG2 cells. The pretreatment of HepG2 cells with encapsulated quercetin (10μg/ml) significantly attenuated the decrease in cell viability in H 2 О 2 -induced oxidative stress (0.1mM H 2 О 2 ) , thus showing an effective in vitro protection. In vivo evaluation of the antioxidant and hepatoprotective potential of free and encapsulated quercetin was performed in a model of paracetamol - induced liver injury in male Wistar rats. The oral pretreatment with encapsulated quercetin (0.18mg/kg b.w., 7days) significantly diminished the increased levels of serum transaminases ALT and AST, attenuated the lipid peroxidation and restored the levels of gluthation (a marker of cell antioxidant defence system). The protective effects of quercetin encapsulated in chitosan-based nanoformulation were superior to those of free quercetin. The results of the study suggest that the encapsulation of quercetin in chitosan/alginate nanoformulations might represent an effective therapeutic approach against oxidative stress induced liver injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
127. HYDRAULIC CONTROLS AND GAUGES FOR THE UMBILICAL MAST ON ...
127. HYDRAULIC CONTROLS AND GAUGES FOR THE UMBILICAL MAST ON UPPER RIGHT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ...
123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON LEFT; HYDRAULIC CONTROL PANEL FOR UMBILICAL MAST AND TRENCH DOORS IN CENTER OF ROOM, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
The conception, birth, and growth of a missile umbilical system
NASA Technical Reports Server (NTRS)
Nordman, G. W.
1977-01-01
The design development of the Sprint 2 and the Improved Sprint 2 Missile System umbilical system is reviewed. Unique system requirements, umbilical designs considered to meet the requirements, and the problems encountered and solutions derived during the design and development testing of the selected systems are described.
42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST ...
42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST BASE. LAUNCHER IS BEHIND UMBILICAL MAST AND RAIL SYSTEM IS PARALLEL TO MAST ON RIGHT AND LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Obstructed Umbilical Hernia: A Normal Presentation with Abnormal Contents.
P Agrawal, Vijay; S Shetty, Nikhil; Narasimhaprasad, Ashwin
2015-01-01
Umbilical hernia is a common problem encountered in children. The rarity of finding cecum and appendix is probably due to the fact that the appendix is seldom found in the proximity of the umbilicus. It would, therefore, appear worthwhile to report the occurrence of cecum and an inflamed appendix with Ladd's bands in an umbilical hernia of a child. The last case with similar presentation was presented in 1950s. Agrawal VP, Shetty NS, Narasimhaprasad A. Obstructed Umbilical Hernia: A Normal Presentation with Abnormal Contents. Euroasian J Hepato-Gastroenterol 2015;5(2):110-111.
Zicker, S C; Vivrette, S; Rogers, Q R
1994-06-01
Concentrations of 16 of 24 amino acids in plasma of foetuses were significantly higher, while four of 24 were lower, than their concentration in maternal plasma. The higher foetal concentrations of amino acids in plasma are similar to other species, with some exceptions, and suggest that equine placenta actively transports and concentrates amino acids into the umbilical circulation. Concentrations of nine of 24 amino acids were significantly lower in plasma from the umbilical artery compared to plasma from the umbilical vein, while no significant differences were present between maternal artery and vein plasma. The umbilical venous-arterial difference in concentrations of amino acids in plasma suggests the foetus extracts amino acids from the umbilical circulation for catabolism or protein synthesis, as in other species.
The crying sign: the winking umbilical cord
Smith, Aisling M; Healy, David B; Ryan, C Anthony; Dempsey, Eugene M
2015-01-01
A preterm baby girl, born at 34 weeks gestation, with features of Beckwith-Wiedemann syndrome was noted to have a relatively large umbilical stump. No fetal abnormalities had been detected on anatomy scan at 28 weeks and only mild polyhydramnios and macrosomia were noted on a 32-week ultrasound scan. Although there was no obvious omphalocoele, clinical assessment of the umbilical cord revealed an abdominal wall defect through which bowel would protrude into the umbilicus when the infant was crying. In keeping with an abdominal wall defect α-fetoprotein was found to be elevated. Surgical consultation advised conservative management. Subsequently, detachment of the umbilical cord occurred 1 week postdischarge and a large umbilical hernia persists. Genetic analysis confirmed a diagnosis of Beckwith-Wiedemann syndrome. PMID:25820111
NASA Technical Reports Server (NTRS)
Rupert, J. K.; Hampton, R. D.; Beech, G. S.
2005-01-01
In the late 1980s, microgravity researchers began to voice their concern that umbilical-transmitted energy could significantly degrade the acceleration environment of microgravity space science experiments onboard manned spacecraft. Since umbilicals are necessary for many experiments, control designers began to seek ways to compensate for these "indirect" disturbances. Hampton, et al., used the Kane s method to develop a model of the active rack isolation system (ARIS) that includes (1) actuator control forces, (2) direct disturbance forces, and (3) indirect, actuator-transmitted disturbances. Their model does not, however, include the indirect, umbilical-transmitted disturbances. Since the umbilical stiffnesses are not negligible, these indirect disturbances must be included in the model. Until the umbilicals have been appropriately included, the model will be incomplete. This Technical Memorandum presents a nonlinear model of ARIS with umbilicals included. Model verification was achieved by utilizing two commercial-off-the-shelf software tools. Various forces and moments were applied to the model to yield simulated responses of the system. Plots of the simulation results show how various critical points on an ARIS-outfitted international standard payload rack behave under the application of direct disturbances, indirect disturbances, and control forces. Simulations also show system response to a variety of initial conditions.
Umbilical hernia: Influence of adhesive strapping on outcome.
Hayashida, Makoto; Shimozono, Takashi; Meiri, Satoru; Kurogi, Jun; Yamashita, Naoto; Ifuku, Toshinobu; Yamamura, Yoshiko; Tanaka, Etsuko; Ishii, Shigeki; Shimonodan, Hidemi; Mihara, Yuka; Kono, Keiichiro; Nakatani, Keigo; Nishiguchi, Toshihiro
2017-12-01
Adhesive strapping for umbilical hernia has been re-evaluated as a promising treatment. We evaluated the influence of adhesive strapping on the outcome of umbilical hernia. We retrospectively evaluated patients with umbilical hernia referred to the present institution from April 2011 to December 2015. Patients who were treated with adhesive strapping were compared with an observation alone group. The adhesive strapping group was also subdivided into two groups: the cure group and the treatment failure group. A total of 212 patients with umbilical hernia were referred to the present institution. Eighty-nine patients were treated with adhesive strapping, while 27 had observation only. The cure rate in the adhesive strapping group was significantly higher than that in the observation group. The duration of treatment of the adhesive strapping group was significantly shorter than that of the observation group. In the adhesive strapping group, the patients in the cure group were treated significantly earlier than those in the treatment failure group (P < 0.001). Furthermore, even in cases of umbilical hernia non-closure, surgical repair was easier after adhesive strapping. Adhesive strapping represents a promising treatment for umbilical hernia. To achieve the best results, adhesive strapping should be initiated as early as possible. © 2017 Japan Pediatric Society.
Umbilical Hernia Repair: Analysis After 934 Procedures.
Porrero, José L; Cano-Valderrama, Oscar; Marcos, Alberto; Bonachia, Oscar; Ramos, Beatriz; Alcaide, Benito; Villar, Sol; Sánchez-Cabezudo, Carlos; Quirós, Esther; Alonso, María T; Castillo, María J
2015-09-01
There is a lack of consensus about the surgical management of umbilical hernias. The aim of this study is to analyze the medium-term results of 934 umbilical hernia repairs. In this study, 934 patients with an umbilical hernia underwent surgery between 2004 and 2010, 599 (64.1%) of which were evaluated at least one year after the surgery. Complications, recurrence, and the reoperation rate were analyzed. Complications were observed in 5.7 per cent of the patients. With a mean follow-up time of 35.5 months, recurrence and reoperation rates were 3.8 per cent and 4.7 per cent, respectively. A higher percentage of female patients (60.9 % vs 29 %, P = 0.001) and a longer follow-up time (47.4 vs 35 months, P = 0.037) were observed in patients who developed a recurrence. No significant differences were observed between complications and the reoperation rate in patients who underwent Ventralex(®) preperitoneal mesh reinforcement and suture repair; however, a trend toward a higher recurrence rate was observed in patients with suture repair (6.5 % vs 3.2 %, P = 0.082). Suture repair had lower recurrence and reoperation rates in patients with umbilical hernias less than 1 cm. Suture repair is an appropriate procedure for small umbilical hernias; however, for larger umbilical hernias, mesh reinforcement should be considered.
Robinson, A L; Timms, L L; Stalder, K J; Tyler, H D
2015-08-01
The objective of this study was to compare the effect of 4 antiseptic compounds on the healing rate and incidence of infection of umbilical cords in newborn calves (n=60). Late gestation Jersey cows were monitored at a commercial farm (Sioux Jersey, Salix, IA) and newborn purebred (n=30) and crossbred (n=30) calves were obtained within 30min after birth. Calves were alternately assigned by birth order to 4 treatment groups: 7% tincture of iodine, 0.1% chlorine created using a novel chlorine disinfectant technology, chlorohexidine gluconate 4.0% wt/vol, and 10% trisodium citrate. Prior to dipping (within 30min of birth), diameter of the umbilical cords (as an indicator of cord drying and healing) were determined using digital calipers. In addition, as an indicator of umbilical infections, surface temperature of the umbilical stump (along with a reference point at the midpoint of the sternum) was determined using a dual-laser infrared thermometer. These measurements were all repeated at 24±1 h of age. All data were analyzed using mixed model methods. All models included fixed effects of breed (Jersey or Jersey cross), sex (bull or heifer), and treatment. Fixed effect interactions were not included in the statistical model due to the relatively small sample size. No treatment differences were noted for healing rate of umbilical cords. Initially, mean umbilical cord diameter was 22.84±3.89mm and cords healed to a mean diameter of 7.64±4.12mm at 24 h of age. No umbilical infections were noted for calves on any treatment during the course of this study. Mean surface temperature of the umbilical stump was 33.1±2.2°C at birth (1.5±1.6°C higher than the sternal reference temperature), and at 24±1 h of age the mean temperature of the umbilical stump was 33.0±4.3°C (0.5±1.8°C lower than the sternal reference temperature). These data suggest that these antiseptic compounds are equally effective for preventing infections and permitting healing of the umbilical cord when used within 30min of birth. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Liu, Lingying; Song, Huifeng; Duan, Hongjie; Chai, Jiake; Yang, Jing; Li, Xiao; Yu, Yonghui; Zhang, Xulong; Hu, Xiaohong; Xiao, Mengjing; Feng, Rui; Yin, Huinan; Hu, Quan; Yang, Longlong; Du, Jundong; Li, Tianran
2016-07-22
The hMSCs have become a promising approach for inflammation treatment in acute phase. Our previous study has demonstrated that human umbilical cord-MSCs could alleviate the inflammatory reaction of severely burned wound. In this study, we further investigated the potential role and mechanism of the MSCs on severe burn-induced excessive inflammation. Wistar rats were randomly divided into following groups: Sham, Burn, Burn+MSCs, Burn+MAPKs inhibitors, and Burn, Burn+MSCs, Burn+Vehicle, Burn+siTSG-6, Burn+rhTSG-6 in the both experiments. It was found that MSCs could only down-regulate P38 and JNK signaling, but had no effect on ERK in peritoneal macrophages of severe burn rats. Furthermore, suppression of P38 and JNK activations significantly reduced the excessive inflammation induced by severe burn. TSG-6 was secreted by MSCs using different inflammatory mediators. TSG-6 from MSCs and recombinant human (rh)TSG-6 all significantly reduced activations of P38 and JNK signaling induced by severe burn and then attenuated excessive inflammations. On the contrary, knockdown TSG-6 in the cells significantly increased phosphorylation of P38 and JNK signaling and reduced therapeutic effect of the MSCs on excessive inflammation. Taken together, this study suggested TSG-6 from MSCs attenuated severe burn-induced excessive inflammation via inhibiting activation of P38 and JNK signaling.
Hikspoors, Jill P J M; Peeters, Mathijs M J P; Kruepunga, Nutmethee; Mekonen, Hayelom K; Mommen, Greet M C; Köhler, S Eleonore; Lamers, Wouter H
2017-12-07
Couinaud based his well-known subdivision of the liver into (surgical) segments on the branching order of portal veins and the location of hepatic veins. However, both segment boundaries and number remain controversial due to an incomplete understanding of the role of liver lobes and vascular physiology on hepatic venous development. Human embryonic livers (5-10 weeks of development) were visualized with Amira 3D-reconstruction and Cinema 4D-remodeling software. Starting at 5 weeks, the portal and umbilical veins sprouted portal-vein branches that, at 6.5 weeks, had been pruned to 3 main branches in the right hemi-liver, whereas all (>10) persisted in the left hemi-liver. The asymmetric branching pattern of the umbilical vein resembled that of a "distributing" vessel, whereas the more symmetric branching of the portal trunk resembled a "delivering" vessel. At 6 weeks, 3-4 main hepatic-vein outlets drained into the inferior caval vein, of which that draining the caudate lobe formed the intrahepatic portion of the caval vein. More peripherally, 5-6 major tributaries drained both dorsolateral regions and the left and right ventromedial regions, implying a "crypto-lobar" distribution. Lobar boundaries, even in non-lobated human livers, and functional vascular requirements account for the predictable topography and branching pattern of the liver veins, respectively.
Hong, Seung Hyun; Gang, Eun Ji; Jeong, Ju Ah; Ahn, Chiyoung; Hwang, Soo Han; Yang, Il Ho; Park, Hwon Kyum; Han, Hoon; Kim, Hoeon
2005-05-20
In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.
Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells.
Izuta, Hiroshi; Shimazawa, Masamitsu; Tsuruma, Kazuhiro; Araki, Yoko; Mishima, Satoshi; Hara, Hideaki
2009-11-17
Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis > bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.
Duan, B; Kapetanovic, E; Hockaday, L A; Butcher, J T
2014-05-01
Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach, however, is constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, 3-D printable formulations of hybrid hydrogels are developed, based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and used to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate understanding of physiological valve cell interactions and progress towards de novo living valve replacements. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kerscher, Petra; Turnbull, Irene C; Hodge, Alexander J; Kim, Joonyul; Seliktar, Dror; Easley, Christopher J; Costa, Kevin D; Lipke, Elizabeth A
2016-01-01
Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward, ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. Here we demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue. PMID:26826618
Incarcerated umbilical hernia in children.
Chirdan, L B; Uba, A F; Kidmas, A T
2006-02-01
Umbilical hernia is common in children. Complications from umbilical hernias are thought to be rare and the natural history is spontaneous closure within 5 years. A retrospective analysis was performed of the medical records of a series of 23 children who presented with incarcerated umbilical hernias at our institution over an 8-year period. Fifty-two children with umbilical hernias were seen in the hospital over the period. Twenty-three (44.2%) had incarceration. Seventeen (32.7%) had acute incarceration while 6 (11.5%) had recurrent incarceration. There were 16 girls and 7 boys. The ages of the children with acute incarceration ranged from 3 weeks to 12 years (median 4 years), while the ages of those with recurrent incarceration ranged from 3-15 years (median 8.5 years). Incarceration occurred in hernias of more than 1.5 cm in diameter (in those whose defect size was measured). Twenty-one children (15 with acute and all six with recurrent incarceration) underwent repair of the umbilical hernia using standard methods. The parents of two children with acute incarceration declined surgery after spontaneous reduction of the hernia in one and taxis in the other. One boy had gangrenous bowel containing Meckel's diverticulum inside the sac, for which bowel resection with end-to-end anastomosis was done. Operation led to disappearance of pain in all 6 children with recurrent incarceration. Superficial wound infection occurred in one child. There was no mortality. Incarcerated umbilical hernia is not as uncommon as thought. Active observation of children with umbilical hernia is necessary to prevent morbidity from incarceration.
Predicting intrapartum fetal compromise using the fetal cerebro-umbilical ratio.
Sabdia, S; Greer, R M; Prior, T; Kumar, S
2015-05-01
The aim of this study was to explore the association between the cerebro-umbilical ratio measured at 35-37 weeks and intrapartum fetal compromise. This retrospective cross sectional study was conducted at the Mater Mothers' Hospital in Brisbane, Australia. Maternal demographics and fetal Doppler indices at 35-37 weeks gestation for 1381 women were correlated with intrapartum and neonatal outcomes. Babies born by caesarean section or instrumental delivery for fetal compromise had the lowest median cerebro-umbilical ratio 1.60 (IQR 1.22-2.08) compared to all other delivery groups (vaginal delivery, emergency delivery for failure to progress, emergency caesarean section for other reasons or elective caesarean section). The percentage of infants with a cerebro-umbilical ratio <10th centile that required emergency delivery (caesarean section or instrumental delivery) for fetal compromise was 22%, whereas only 7.3% of infants with a cerebro-umbilical ratio between the 10th-90th centile and 9.6% of infants with a cerebro-umbilical ratio > 90th centile required delivery for the same indication (p < 0.001). A lower cerebro-umbilical ratio was associated with an increased risk of emergency delivery for fetal compromise, OR 2.03 (95% CI 1.41-2.92), p < 0.0001. This study suggests that a low fetal cerebro-umbilical ratio measured at 35-37 weeks is associated with a greater risk of intrapartum compromise. This is a relatively simple technique which could be used to risk stratify women in diverse healthcare settings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bowen's Disease Associated With Two Human Papilloma Virus Types.
Eftekhari, Hojat; Gharaei Nejad, Kaveh; Azimi, Seyyede Zeinab; Rafiei, Rana; Mesbah, Alireza
2017-09-01
Bowen's disease (BD) is an epidermal in-situ squamous cell carcinoma (SCC). Most Human Papilloma Viruses (HPV)-positive lesions in Bowen's disease are localized to the genital region or distal extremities (periungual sites) in which HPV type-16 is frequently detected. Patient was a 64-year-old construction worker for whom we detected 2 erythematous psoriasiform reticular scaly plaques on peri-umbilical and medial knee. Biopsy established the diagnosis of Bowen's disease and polymerase chain reaction assay showed HPV-6, -18 co-infection. Patient was referred for surgical excision.
Mucinous cystadenoma of the appendix presenting as an umbilical hernia: A case report.
Ren, Bingbing; Meng, Xiangchao; Cao, Z I; Guo, Chunli; Zhang, Zili
2016-06-01
Mucinous cystadenoma of the appendix is a rare condition that develops as a result of proliferation of mucin-secreting cells in an occluded appendix. Mucinous cystadenoma of the appendix presenting as an umbilical hernia is a rare clinical entity. The most common causes of this condition are known to be ascites, hepatitis and cirrhosis; however, the patient in the present study, was diagnosed as hepatitis- and cirrhosis-negative, with no history of chronic coughing or constipation. The aim of the present study was to report a rare case of mucinous cystadenoma of the appendix presenting as an umbilical hernia in a 66-year-old female patient. The patient had a 6-month history of a reducible mass in the umbilical region and was diagnosed with umbilical hernia. Computed tomography and ultrasonography were performed and revealed massive ascites. Ultimately, a laparoscopic appendectomy was performed and borderline mucinous appendiceal cystadenoma of low malignant potential was confirmed. In addition, the present study discussed the association between mucinous cystadenoma of the appendix and umbilical hernia, as well as the diagnostic process and treatment strategies.
Mucinous cystadenoma of the appendix presenting as an umbilical hernia: A case report
REN, BINGBING; MENG, XIANGCHAO; CAO, ZI; GUO, CHUNLI; ZHANG, ZILI
2016-01-01
Mucinous cystadenoma of the appendix is a rare condition that develops as a result of proliferation of mucin-secreting cells in an occluded appendix. Mucinous cystadenoma of the appendix presenting as an umbilical hernia is a rare clinical entity. The most common causes of this condition are known to be ascites, hepatitis and cirrhosis; however, the patient in the present study, was diagnosed as hepatitis- and cirrhosis-negative, with no history of chronic coughing or constipation. The aim of the present study was to report a rare case of mucinous cystadenoma of the appendix presenting as an umbilical hernia in a 66-year-old female patient. The patient had a 6-month history of a reducible mass in the umbilical region and was diagnosed with umbilical hernia. Computed tomography and ultrasonography were performed and revealed massive ascites. Ultimately, a laparoscopic appendectomy was performed and borderline mucinous appendiceal cystadenoma of low malignant potential was confirmed. In addition, the present study discussed the association between mucinous cystadenoma of the appendix and umbilical hernia, as well as the diagnostic process and treatment strategies. PMID:27313766
Encapsulation of new active ingredients.
Onwulata, C I
2012-01-01
The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.
Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji
2017-06-06
Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.
Placentophagy: therapeutic miracle or myth?
Coyle, Cynthia W; Hulse, Kathryn E; Wisner, Katherine L; Driscoll, Kara E; Clark, Crystal T
2015-10-01
Postpartum women are consuming their placentas encapsulated, cooked, and raw for the prevention of postpartum depression (PPD), pain relief, and other health benefits. Placentophagy is supported by health advocates who assert that the placenta retains hormones and nutrients that are beneficial to the mother. A computerized search was conducted using PubMed, Medline Ovid, and PsychINFO between January 1950 and January 2014. Keywords included placentophagy, placentophagia, maternal placentophagia, maternal placentophagy, human placentophagia, and human placentophagy. A total of 49 articles were identified. Empirical studies of human or animal consumption of human placentas were included. Editorial commentaries were excluded. Animal placentophagy studies were chosen based on their relevance to human practice. Ten articles (four human, six animal) were selected for inclusion. A minority of women in developed countries perceive placentophagy to reduce PPD risk and enhance recovery. Experimental animal research in support of pain reduction has not been applied in humans. Studies investigating placenta consumption for facilitating uterine contraction, resumption of normal cyclic estrogen cycle, and milk production are inconclusive. The health benefits and risks of placentophagy require further investigation of the retained contents of raw, cooked, and encapsulated placenta and its effects on the postpartum woman.
Mercury in the Umbilical Cord: Implications for Risk Assessment for Minamata Disease.
Dalgard, C; Grandjean, P; Jorgensen, PJ; Weihe, P
1994-01-01
Umbilical cord tissue was obtained from 50 births in the Faroe Islands, where high mercury intake is due to ingestion of pilot whale meat. The mercury concentration correlated significantly with the frequency of maternal whale meat dinners during pregnancy and with mercury concentrations in umbilical cord blood and in maternal hair. The results were compared with published values for mercury in umbilical cord tissue from 12 infants diagnosed with congenital methylmercury poisoning in Minamata, Japan. From the regression coefficients obtained in the Faroese samples, the median umbilical cord mercury concentration of 4.95 nmol/g dry weight in Minamata would correspond to 668 nmol/l cord blood and 114 nmol/g maternal hair. These levels agree well with other evidence of susceptibility of the fetus to increased exposure to methylmercury. Images Figure 1. Figure 2. PMID:9679113
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-05-25
Construction workers assist as a crane lifts the Core Stage Forward Skirt Umbilical up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-05-25
Cranes and rigging are being used to lift up the Core Stage Forward Skirt Umbilical (CSFSU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-05-25
A construction worker welds a metal part during installation of the Core Stage Forward Skirt Umbilical on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-05-25
Construction workers assist as a crane lifts the Core Stage Forward Skirt Umbilical into position for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Spacecraft automatic umbilical system
NASA Technical Reports Server (NTRS)
Goldin, R. W.; Jacquemin, G. G.; Johnson, W. H.
1981-01-01
An umbilical system design is described that incorporates all the features specified for a power system to payload interconnect capability. A proof-of-concept prototype of the umbilical system was built to determine experimentally the suitability of the threading characteristics of the ram mechanism and to verify freedom from cross threading. It is concluded that Berthing systems that utilize remote manipulator systems (RMS) can be simplified by using RMS targets, closed circuit TV cameras, tie into the RMS control system, and grapple-fixture and end-effector-like capture and secure mechanisms. To effect a remotely controlled umbilical interconnect in proximity with a manned spacecraft and to provide for extravehicular activity backup and maintenance capabilities, 18 different mechanisms are found to be necessary. The weight impact of proving for maintenance capability in a large multiple connector umbilical system was found to be in the order of +60 percent.
Avanzini, Maria Antonietta; Bernardo, Maria Ester; Cometa, Angela Maria; Perotti, Cesare; Zaffaroni, Nadia; Novara, Francesca; Visai, Livia; Moretta, Antonia; Del Fante, Claudia; Villa, Raffaella; Ball, Lynne M.; Fibbe, Willem E.; Maccario, Rita; Locatelli, Franco
2009-01-01
Background Mesenchymal stromal cells are employed in various different clinical settings in order to modulate immune response. However, relatively little is known about the mechanisms responsible for their immunomodulatory effects, which could be influenced by both the cell source and culture conditions. Design and Methods We tested the ability of a 5% platelet lysate-supplemented medium to support isolation and ex vivo expansion of mesenchymal stromal cells from full-term umbilical-cord blood. We also investigated the biological/functional properties of umbilical cord blood mesenchymal stromal cells, in comparison with platelet lysate-expanded bone marrow mesenchymal stromal cells. Results The success rate of isolation of mesenchymal stromal cells from umbilical cord blood was in the order of 20%. These cells exhibited typical morphology, immunophenotype and differentiation capacity. Although they have a low clonogenic efficiency, umbilical cord blood mesenchymal stromal cells may possess high proliferative potential. The genetic stability of these cells from umbilical cord blood was demonstrated by a normal molecular karyotype; in addition, these cells do not express hTERT and telomerase activity, do express p16ink4a protein and do not show anchorage-independent cell growth. Concerning alloantigen-specific immune responses, umbilical cord blood mesenchymal stromal cells were able to: (i) suppress T- and NK-lymphocyte proliferation, (ii) decrease cytotoxic activity and (iii) only slightly increase interleukin-10, while decreasing interferon-γ secretion, in mixed lymphocyte culture supernatants. While an indoleamine 2,3-dioxygenase-specific inhibitor did not reverse mesenchymal stromal cell-induced suppressive effects, a prostaglandin E2-specific inhibitor hampered the suppressive effect of both umbilical cord blood- and bone marrow-mesenchymal stromal cells on alloantigen-induced cytotoxic activity. Mesenchymal stromal cells from both sources expressed HLA-G. Conclusions Umbilical cord blood- and bone marrow-mesenchymal stromal cells may differ in terms of clonogenic efficiency, proliferative capacity and immunomodulatory properties; these differences may be relevant for clinical applications. PMID:19773264
Attitudes of Swiss mothers toward unrelated umbilical cord blood banking 6 months after donation.
Danzer, Enrico; Holzgreve, Wolfgang; Troeger, Carolyn; Kostka, Ulrike; Steimann, Sabine; Bitzer, Johanes; Gratwohl, Alois; Tichelli, André; Seelmann, Kurt; Surbek, Daniel V
2003-05-01
During the past decade, the use of umbilical cord blood (CB) as a source of transplantable hematopoietic stem cells has been increasing. Little is known about the psychosocial consequences that later affect parents after unrelated CB donation. The objective of this study was to evaluate the attitudes of mothers toward unrelated donation of umbilical CB for transplantation 6 months after giving birth. A prospective study was performed with a standardized, anonymous questionnaire distributed to 131 women 6 months after CB donation. The questionnaire included topics concerning views about the ethical accuracy of having donated CB, emotional responses after donation, concerns about genetic testing and research with CB samples, attitude toward anonymity between her child and possible unrelated CB recipient, and willingness to repeatedly donate umbilical CB in a next pregnancy. The vast majority (96.1%) stated that they would donate umbilical CB again, and all respondents were certain that their decision to have donated umbilical CB was ethical. With regard to the potential risks of genetic testing and "experimentation" of umbilical CB, a significant correlation (p = 0.01) was found between negative attitudes and the decision not to donate umbilical CB again. Additionally, it was observed that women who had a negative experience concerning the donation of CB would not donate again (p = 0.004). This study shows a high degree of satisfaction of unrelated umbilical CB donation for banking in women 6 months after delivery. Despite a well-performed and detailed informed consent procedure, one of the ongoing issues for the donators in CB banking involves the concern regarding of improper use of the cells, such as genetic testing or experimentation. Accurate and detailed counseling of pregnant women and their partners therefore maximizes the likelihood that they will donate CB for unrelated banking. These data provide a basis for the improvement of donor selection procedures and public education regarding the use of CB for banking and transplantation.
Kysucan, J; Malý, T; Neoral, C
2010-12-01
Umbilicus is a scar, which is the place of the previous merger of the fetus with the umbilical cord. After birth, it has no known function, however, unless the umbilical annulus is completely closed, umbilical hernia may occur. Umbilical scar is also an area where may occur a number of anomalies that may be present alone or together with umbilical hernia. Failure of involution leads to persistence of omphalomesenteric duct and urachal remnants. These embryonic remnants may cause more or less significant clinical problems, or may be completely asymptomatic and may be diagnosed at random. The authors present their own group of patients who were diagnosed and dealt with the defect omphalomesenteric duct or urachus. In past 7 years we observed 35 children with these abnormalities. A large group of patients represents incidental findings during elective surgery for umbilical hernia. Another large group are patients with symptomatic or asymptomatic Meckel's diverticulum. The anatomical observations, clinical manifestations, complications and treatment of these anomalies are mentioned. A total of 35 children were found with these birth defects. In 23 cases we observed omphalomesenteric duct disorders and 12 urachal remnants were reported. Of these, 12 abnormalities were found incidentally during elative procedure for umbilical hernia. Asymptomatic or symptomatic Meckel's diverticulum appeared in 16 cases. Surgical treatment included resection or exstirpation, if urachal anomaly was accompanied then partial resection of the bladder vertex was added. Postoperative complications emerged in 4 cases, three times it was ileus from adhesions 6 months after surgery, once postoperative cystitis appeared and was treated conservatively. Birth abnormalities of the umbilicus are relatively rare diseases that may occur in the pediatric population. Omfalomesenteric duct and urachal anomalies constitute a major group of these congenital disorders and are often associated with umbilical hernia. They can be diagnosed soon after birth or later in life. Surgical treatment involves excision or radical exstirpation to prevent early or late complications (urachal carcinoma in adulthood).
Profile of paediatric umbilical hernias managed at Federal Medical Centre Umuahia.
Ezomike, U O; Ituen, M A; Ekpemo, S C; Eke, C B; Eke, B C
2012-01-01
Umbilical hernias are common in children but many resolve spontaneously within the first five years of life. Most umbilical herniorrhaphies in our environment are due to symptomatic hernias which constitute a small percentage of all umbilical hernias. A retrospective review of all pediatric patients with UH treated at Federal Medical Centre Umuahia, Abia State from February 2001 to February 2011. There were 22 patients but only 20 of the folders were found and analyzed. They were made up of 11 males and 9 females with a mean age of 6.19 +/- 0.83 years and median age of 6 years. Nine(7 males and 2 females) had acute incarcerations, nine (3 males and 6 females) had recurrent umbilical pains without incarceration and two (1 male and 1 female) had recurrent incarcerations. Age range for acute incarceration was 2-8 years (mean: 4.69 years, median: 4 years); recurrent umbilical pains was 4 months -15 years (mean: 7.7 years, median: 8 years) and for recurrent incarceration 2-10 years (mean: 6 years). All had standard umbilical hernia repairs except one whose parents declined surgery after reduction of acute incarceration. One patient with acute incarceration had gangrenous bowel with hernia sac abscess and was offered bowel resection with end-to-end anastomosis. On short-term follow-up, the symptoms resolved in all the patients following surgery. Five patients had six complications: 1 exuberant granulation tissue, 2 stitch reactions, 2 superficial wound dehiscence and one superficial wound infection. There were no mortalities and no recurrence on short-term follow-up. Only one patient (5%) registered under the National Health Insurance Scheme (NHIS). Active observation of all umbilical hernias at all ages will ensure early detection of complications and prompt treatment. Elective repair of umbilical hernias in patientsabove five years with fascia defect greater than 1.5cm is encouraged. Comprehensive NHIS will ensure early presentation and reduced complications.
Umbilical cord rupture: a case report and review of literature.
Naidu, Madhusudhan; Nama, Vivek; Karoshi, Mahantesh; Kakumani, Vijayasri; Worth, Richard
2007-01-01
The umbilical cord acts as a mechanical conduit between the fetus and placenta, allowing movement of water and nutrient substances between the fetal circulation and the amniotic fluid. Complications can occur antenatally or intranatally and are usually acute events that require immediate delivery to prevent intrauterine death. Even though the majority of the cord complications are unpreventable, significant improvement in perinatal mortality and morbidity can be achieved if such an event can be predicted. Umbilical cord rupture is not uncommon, but significantly underreported. We present an unusual cause of umbilical cord rupture and a review of literature.
Umbilical Hernia Repair: Overview of Approaches and Review of Literature.
Appleby, Paul W; Martin, Tasha A; Hope, William W
2018-06-01
Umbilical hernias are ubiquitous, and surgery is indicated in symptomatic patients. Umbilical hernia defects can range from small (<1 cm) to very large/complex hernias, and treatment options should be tailored to the clinical situation. Open, laparoscopic, and robotic options exist for repair, with each having its advantages and disadvantages. In general, mesh should be used for repair, because it has been shown to decrease recurrence rates, even in small hernias. Although outcomes are generally favorable after umbilical hernia repairs, some patients have chronic complaints that are mostly related to recurrences. Copyright © 2018 Elsevier Inc. All rights reserved.
Obstructed Umbilical Hernia: A Normal Presentation with Abnormal Contents
P Agrawal, Vijay; Narasimhaprasad, Ashwin
2015-01-01
Umbilical hernia is a common problem encountered in children. The rarity of finding cecum and appendix is probably due to the fact that the appendix is seldom found in the proximity of the umbilicus. It would, therefore, appear worthwhile to report the occurrence of cecum and an inflamed appendix with Ladd’s bands in an umbilical hernia of a child. The last case with similar presentation was presented in 1950s. How to cite this article Agrawal VP, Shetty NS, Narasimhaprasad A. Obstructed Umbilical Hernia: A Normal Presentation with Abnormal Contents. Euroasian J Hepato-Gastroenterol 2015;5(2):110-111. PMID:29201704
Ropacka-Lesiak, Mariola; Lebioda, Anna; Breborowicz, Grzegorz
2012-09-01
A case of an umbilical cord collision diagnosed in the first trimester of a monochorionic monoamniotic twin pregnancy is presented. An intensive surveillance included ultrasound monitoring with color and spectral Doppler and fetal echocardiography. The first signs of fetal distress were observed at 31 weeks of gestation. The brain sparing effect as well as a periodic appearance of the "notch" in the wave forms obtained from the umbilical artery from the collision region were observed. In the first ultrasound scan there were no abnormalities in twin I. In contrast, in twin II a vascular resistance in the umbilical artery was at the upper limit for the gestational age. Five days later, decreased vascular resistance in the middle cerebral artery, which fluctuated at the lower limit, was noticed in twin II. After the next four days, PI in the middle cerebral artery decreased below the lower limit and tricuspid regurgitation appeared. In twin I the vascular resistance in the umbilical artery increased and remained at the upper limit of the reference ranges. Cardiotocographic records did not reveal signs of fetal distress. After a week the signs of brain sparing effect were visible in both fetuses. However, twin II showed features of umbilical cord clamping in the form of abnormal blood flow waveforms in the umbilical artery ("notch"). Therefore, despite the absence of signs of fetal distress in CTG in monochorionic monoamniotic twins with growth discordance of 20% and exponents of periodical clamping of the umbilical cord in twin II at 34 weeks, the decision to perform a caesarean section was made. The patient gave birth to two daughters (twin I: weight 1780g, Ap 10, pH 7.39, 7.40, BE -3.0, -2.6, and twin II: weight 1860g, Ap 10, pH 7.29, 7.35, BE -1.4, -2.4). During the delivery the umbilical cords collision was found at the region close to the body of twins. This case presents the possibility of using ultrasound and Doppler in the early diagnosis, monitoring and surveillance of pregnancies complicated by umbilical cords collision in monochorionic monoamniotic twins from the first trimester. Application of these methods allowed a safe monitoring of the fetuses and the identification of the onset of the cords collision. This in turn allowed the achievement of fetal maturity at 34 weeks, when both the risk of death and neonatal morbidity are significantly minimized. The use of Doppler blood flow velocimetry allowed the diagnosis of umbilical cords tightening before there were any signs of cardiac dysfunction in the CTG. This enabled to determine the most favorable, earlier time for delivery. The paper presents diagnostic management and surveillance in monochorionic monoamniotic pregnancy complicated by umbilical cord collision since the early pregnancy.
NASA Astrophysics Data System (ADS)
Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo
2014-08-01
This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.
ERIC Educational Resources Information Center
Kaldis, Byron
2009-01-01
This paper puts forward the model of "microcosm-macrocosm" isomorphism encapsulated in certain philosophical views on the form of university education. The human being as a "microcosm" should reflect internally the external "macrocosm". Higher Education is a socially instituted attempt to guide human beings into forming themselves as microcosms of…
Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.
2011-01-01
Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377
Platinum nanoparticles induce damage to DNA and inhibit DNA replication
Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel
2017-01-01
Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8–11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent. PMID:28704436
Platinum nanoparticles induce damage to DNA and inhibit DNA replication.
Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel; Adam, Vojtech
2017-01-01
Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8-11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent.
Cardona, Pere-Joan
2015-01-01
A review of the pathology of human pulmonary TB cases at different stages of evolution in the pre-antibiotic era suggests that neutrophils play an instrumental role in the progression toward active TB. This progression is determined by the type of lesion generated. Thus, exudative lesions, in which neutrophils are the major cell type, are both triggered by and induce local high bacillary load, and tend to enlarge and progress toward liquefaction and cavitation. In contrast, proliferative lesions are triggered by low bacillary loads, mainly comprise epithelioid cells and fibroblasts and tend to fibrose, encapsulate and calcify, thus controlling the infection. Infection of the upper lobes is key to the progression toward active TB for two main reasons, namely poor breathing amplitude, which allows local bacillary accumulation, and the high mechanical stress to which the interlobular septae (which enclose secondary lobes) are submitted, which hampers their ability to encapsulate lesions. Overall, progressing factors can be defined as internal (exudative lesion, local bronchogenous dissemination, coalescence of lesions), with lympho-hematological dissemination playing a very limited role, or external (exogenous reinfection). Abrogating factors include control of the bacillary load and the local encapsulation process, as directed by interlobular septae. The age and extent of disease depend on the quality and speed with which lesions liquefy and disseminate bronchially, the volume of the slough, and the amount and distribution of the sloughing debris dispersed.
Cardona, Pere-Joan
2015-01-01
A review of the pathology of human pulmonary TB cases at different stages of evolution in the pre-antibiotic era suggests that neutrophils play an instrumental role in the progression toward active TB. This progression is determined by the type of lesion generated. Thus, exudative lesions, in which neutrophils are the major cell type, are both triggered by and induce local high bacillary load, and tend to enlarge and progress toward liquefaction and cavitation. In contrast, proliferative lesions are triggered by low bacillary loads, mainly comprise epithelioid cells and fibroblasts and tend to fibrose, encapsulate and calcify, thus controlling the infection. Infection of the upper lobes is key to the progression toward active TB for two main reasons, namely poor breathing amplitude, which allows local bacillary accumulation, and the high mechanical stress to which the interlobular septae (which enclose secondary lobes) are submitted, which hampers their ability to encapsulate lesions. Overall, progressing factors can be defined as internal (exudative lesion, local bronchogenous dissemination, coalescence of lesions), with lympho-hematological dissemination playing a very limited role, or external (exogenous reinfection). Abrogating factors include control of the bacillary load and the local encapsulation process, as directed by interlobular septae. The age and extent of disease depend on the quality and speed with which lesions liquefy and disseminate bronchially, the volume of the slough, and the amount and distribution of the sloughing debris dispersed. PMID:26136741
Infection of internal umbilical remnant in foals by Clostridium sordellii.
Ortega, J; Daft, B; Assis, R A; Kinde, H; Anthenill, L; Odani, J; Uzal, F A
2007-05-01
Omphalitis and the resulting septicemia contribute to perinatal mortality in several animal species. In foals, the most important causes of omphalitis are Escherichia coli and Streptococcus zooepidemicus. However to date, no information has been published about the role of Clostridium sordellii in these infections. In this paper, we describe 8 cases of perinatal mortality in foals associated with internal umbilical remnant infection by C. sordellii. The foals studied were between 12 and 21 days old at the time of death, and various breeds were represented in the group. Five of the foals were male and 3 were female. The diagnosis was established on the basis of the detection of C. sordellii by 3 methods (culture, fluorescent antibody test, and immunohistochemistry) and on gross and histopathologic findings. All foals had acute peritonitis, and the internal umbilical remnant was thickened by edema, hemorrhage, and fibrosis. A moderate amount of serosanguinous fluid with fibrin strands was present in the pericardial sac and pleural cavity. Histopathologically, the urachus and umbilical arterial walls were thickened by edema and exhibited hemorrhage, fibrin, and leukocytic infiltration. Gram-positive bacterial rods were observed in subepithelial areas of the urachus, the adventicia of umbilical arteries, and interstitium of the internal umbilical remnant. On the basis of these findings, we suggest that C. sordellii should be considered in the differential diagnosis for infections of the internal umbilical remnant in foals.
Watanabe, Kazushi; Iwasaki, Ai; Mori, Toshitaka; Kimura, Chiharu; Matsushita, Hiroshi; Shinohara, Koichi; Wakatsuki, Akihiko
2013-04-01
The purpose of the present study was to determine whether oxidative stress occurring in the maternal body also affects the fetus in preeclamptic women with FGR. We ∥@consecutively recruited 17 preeclamptic women with FGR, 16 preeclamptic women without FGR, and 16 healthy pregnant women with uncomplicated pregnancy. We measured concentrations of derivatives of reactive oxygen metabolites (d-ROMs) as a marker of oxygen free radicals in a maternal vein, umbilical artery, and umbilical vein. ∥@Maternal d-ROM levels were higher in preeclamptic groups compared to the control group. Umbilical artery and vein d-ROM levels were elevated in preeclamptic women with FGR compared to the control group. Umbilical artery d-ROM levels were significantly higher than in the vein in preeclamptic women with FGR, but not in those without FGR. Umbilical arterial blood pH was significantly lower in preeclamptic women with FGR. The partial pressure of oxygen (PaO2) in umbilical arterial blood tended to be lower in preeclamptic women with FGR (p=0.08). The partial pressure of carbon dioxide (PaCO2) in umbilical arterial blood was significantly higher in preeclamptic women with FGR. These results indicate that oxidative stress occurring in the maternal body also affects the fetus in preeclamptic women with FGR. Copyright © 2013. Published by Elsevier B.V.
Olutoye, Oluyinka O; Johnson, Mark P; Coleman, Beverly G; Crombleholme, Timothy M; Adzick, N Scott; Flake, Alan W
2004-01-01
To identify factors predictive of fetal demise in fetuses with sacrococcygeal teratoma (SCT). The recent management of monochorionic twins discordant for a large SCT and a singleton with a large SCT was reviewed. Serial fetal echocardiography and ultrasonography with Doppler flow measurements documented rapid growth of the SCT in both cases with a relatively modest increase in combined cardiac output. No placentomegaly or hydrops was observed at any time. In both fetuses with SCT, evolution of abnormal umbilical artery waveforms was observed with the ultimate development of reversed end-diastolic umbilical arterial flow that was followed by sudden fetal demise. Death in these 2 fetuses with large SCTs in the absence of placentomegaly/hydrops or hemodynamic changes suggestive of evolving high-output failure suggests a previously unrecognized mechanism of death in fetuses with large rapidly growing SCTs. In these cases, fetal demise may only be heralded by abnormal umbilical artery waveforms that progress to the premorbid observation of reversed diastolic umbilical artery blood flow. Umbilical artery waveform analysis should be closely monitored with other hemodynamic parameters in fetuses with large SCTs. In such fetuses, depending on the gestational age, abnormalities in umbilical artery waveform should be considered indications for early delivery or in utero intervention to prevent fetal demise. Copyright 2004 S. Karger AG, Basel
Olutoye, Oluyinka O; Johnson, Mark P; Coleman, Beverly G; Crombleholme, Timothy M; Adzick, N Scott; Flake, Alan W
2003-01-01
To identify factors predictive of fetal demise in fetuses with sacrococcygeal teratoma (SCT). The recent management of monochorionic twins discordant for a large SCT and a singleton with a large SCT were reviewed. Serial fetal echocardiography and ultrasonography with Doppler flow measurements documented rapid growth of the SCT in both cases with a relatively modest increase in combined cardiac output. No placentomegaly or hydrops was observed at any time. In both fetuses with SCT, evolution of abnormal umbilical artery waveforms was observed with the ultimate development of reversed end-diastolic umbilical arterial flow that was followed by sudden fetal demise. Death in these 2 fetuses with large SCTs in the absence of placentomegaly/hydrops or hemodynamic changes suggestive of evolving high-output failure suggests a previously unrecognized mechanism of death in fetuses with large rapidly growing SCTs. In these cases, fetal demise may only be heralded by abnormal umbilical artery waveforms that progress to the premorbid observation of reversed diastolic umbilical artery blood flow. Umbilical artery waveform analysis should be closely monitored with other hemodynamic parameters in fetuses with large SCTs. In such fetuses, depending on the gestational age, abnormalities in umbilical artery waveform should be considered indications for early delivery or in utero intervention to prevent fetal demise. Copyright 2003 S. Karger AG, Basel
Remote Coupling of Electrical Connectors
NASA Technical Reports Server (NTRS)
Barbour, R. T.
1985-01-01
Device alines plug and receptacle axially and radially. Standard multiple-pin plug and socket mounted in mechanism. As threaded shaft moves out from its mounting bracket, two sets of petals engage each other and correct misalinement. Misalinement absorbed by spring-mounted swivels. Designed for umbilical cables between Space Shuttle and payload, mechanism adaptable to other remote or hazardous situations in which human not available to connect mating parts by hand.
Umbilical hernias and anterior fontanelle size in Jamaican children.
Cohen, I P
1989-06-01
This cross-sectional study documents the frequent occurrence of umbilical hernias among Jamaican children and suggests, for the first time, that the presence of an umbilical hernia may be associated with larger anterior fontanelle dimensions. It also demonstrates that data about the people a community health officer serves can be recorded during a busy clinic schedule.
Layer-by-Layer Polyelectrolyte Encapsulation of Mycoplasma pneumoniae for Enhanced Raman Detection
Rivera-Betancourt, Omar E.; Sheppard, Edward S.; Krause, Duncan C.; Dluhy, Richard A.
2014-01-01
Mycoplasma pneumoniae is a major cause of respiratory disease in humans and accounts for as much as 20% of all community-acquired pneumonia. Existing mycoplasma diagnosis is primarily limited by the poor success rate at culturing the bacteria from clinical samples. There is a critical need to develop a new platform for mycoplasma detection that has high sensitivity, specificity, and expediency. Here we report the layer-by-layer (LBL) encapsulation of M. pneumoniae cells with Ag nanoparticles in a matrix of the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS). We evaluated nanoparticle encapsulated mycoplasma cells as a platform for the differentiation of M. pneumoniae strains using surface enhanced Raman scattering (SERS) combined with multivariate statistical analysis. Three separate M. pneumoniae strains (M129, FH and II-3) were studied. Scanning electron microscopy and fluorescence imaging showed that the Ag nanoparticles were incorporated between the oppositely charged polyelectrolyte layers. SERS spectra showed that LBL encapsulation provides excellent spectral reproducibility. Multivariate statistical analysis of the Raman spectra differentiated the three M. pneumoniae strains with 97 – 100% specificity and sensitivity, and low (0.1 – 0.4) root mean square error. These results indicated that nanoparticle and polyelectrolyte encapsulation of M. pneumoniae is a potentially powerful platform for rapid and sensitive SERS-based bacterial identification. PMID:25017005
Popa, Elena G; Caridade, Sofia G; Mano, João F; Reis, Rui L; Gomes, Manuela E
2015-05-01
Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of κ-carrageenan hydrogels for the delivery of stem cells obtained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation method and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v κ-carrageenan solution at a cell density of 5 × 10(6) cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that κ-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mechanical analysis demonstrated an increase in stiffness and viscoelastic properties of κ-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that κ-carrageenan exhibits properties that enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects. Copyright © 2013 John Wiley & Sons, Ltd.
Higgins, Nicole; Fitzgerald, Paul C; van Dyk, Dominique; Dyer, Robert A; Rodriguez, Natalie; McCarthy, Robert J; Wong, Cynthia A
2018-06-01
Spinal anesthesia for cesarean delivery is associated with a high incidence of hypotension. Phenylephrine results in higher umbilical artery pH than ephedrine when used to prevent or treat hypotension in healthy women. We hypothesized that phenylephrine compared to ephedrine would result in higher umbilical artery pH in women with preeclampsia undergoing cesarean delivery with spinal anesthesia. This study was a randomized double-blind clinical trial. Nonlaboring women with preeclampsia scheduled for cesarean delivery with spinal anesthesia at Prentice Women's Hospital of Northwestern Medicine were randomized to receive prophylactic infusions of phenylephrine or ephedrine titrated to maintain systolic blood pressure >80% of baseline. Spinal anesthesia consisted of hyperbaric 0.75% bupivacaine 12 mg, fentanyl 15 µg, and morphine 150 µg. The primary outcome was umbilical arterial blood pH and the secondary outcome was umbilical artery base excess. One hundred ten women were enrolled in the study and 54 per group were included in the analysis. There were 74 and 72 infants delivered in the ephedrine and phenylephrine groups, respectively. The phenylephrine:ephedrine ratio for umbilical artery pH was 1.002 (95% confidence interval [CI], 0.997-1.007). Mean [standard deviation] umbilical artery pH was not different between the ephedrine 7.20 [0.10] and phenylephrine 7.22 [0.07] groups (mean difference -0.02, 95% CI of the difference -0.06 to 0.07; P = .38). Median (first, third quartiles) umbilical artery base excess was -3.4 mEq/L (-5.7 to -2.0 mEq/L) in the ephedrine group and -2.8 mEq/L (-4.6 to -2.2mEq/L) in the phenylephrine group (difference -0.6 mEq/L, 95% CI of the difference -1.6 to 0.3 mEq/L; P = .10). When adjusted for gestational age and infant gender, umbilical artery pH did not differ between groups. There were also no differences in the umbilical artery pH stratified by magnesium therapy or by the severity of preeclampsia. We were unable to demonstrate a beneficial effect of phenylephrine on umbilical artery pH compared with ephedrine. Our findings suggest that phenylephrine may not have a clinically important advantage compared with ephedrine with regard to improved neonatal acid-base status when used to prevent spinal anesthesia-induced hypotension in women with preeclampsia undergoing cesarean delivery.
Umbilical necrosis rates after abdominal-based microsurgical breast reconstruction.
Ricci, Joseph A; Kamali, Parisa; Becherer, Babette E; Curiel, Daniel; Wu, Winona; Tobias, Adam M; Lin, Samuel J; Lee, Bernard T
2017-07-01
Umbilical stalk necrosis represents a rare, yet important complication after abdominal-based microsurgical breast reconstruction, which is both underrecognized and understudied in the literature. Once identified, umbilical reconstruction can be an extremely challenging problem. All consecutive breast free flaps at a single institution from February 2004 to February 2016 were reviewed, excluding non-abdominal-based flaps. Patients were divided based on the development of umbilical necrosis postoperatively. Demographics, surgical characteristics, and other complications were compared between the groups. A total of 918 patients met the inclusion criteria, with 29 developing umbilical necrosis identified (3.2%). Patients developing necrosis tended to be older (49.4 yrs versus 52.9 yrs; P < 0.01); have higher BMI (31.3 versus 27.8; P < 0.01); and were more likely to be smokers (27.5% versus 11.6%; P = 0.01). Umbilical necrosis was also associated with increased flap weight (830 g versus 656 g; P < 0.01), decreased time of perforator dissection (151 min versus 169 min; P = 0.02); bilateral cases (68.9% versus 44.7%; P < 0.01), and increased number of perforators per flap (2.5 versus 2.2; P = 0.03). There was no association with flap type (deep inferior epigastric perforator, superficial inferior epigastric artery, or free TRAM), diabetes, previous abdominal surgery, or use of preoperative imaging. Umbilical necrosis was not associated with any concomitant complications. Umbilical stalk necrosis was found to occur in 3.2% of patients and was associated with several preoperative comorbidities and intraoperative characteristics. This information should help influence intraoperative decision-making to prevent the development of this undesirable complication. Copyright © 2017 Elsevier Inc. All rights reserved.
Samanta, Ajanta; Roy, Samir Ghosh; Mistri, Pallab Kumar; Mitra, Anirban; Pal, Ranjan; Naskar, Animesh; Bhattacharya, Sanjay Kumar; Pal, Partha Pratim; Pande, Arindam
2013-01-01
Retained placenta is an important cause of maternal mortality. The present study was aimed to determine the efficacy of umbilical injection of oxytocin as a treatment modality in this condition. This was a single-center randomized controlled trial incorporating 58 women with retained placenta of more than 30 min, equally distributed into two study arms of intra-umbilical injection of oxytocin (50 IU oxytocin diluted with normal saline [NS] to a total volume 30 mL) and intra-umbilical injection of NS (30 mL). Primary outcome was expulsion of the placenta within 30 min following intervention. All the data were analyzed on an intention-to-treat basis. The success rate in the intra-umbilical oxytocin group was 51.72% compared to 20.69% in the control arm. This difference in the primary outcome was statistically significant with a P-value<0.05 (P=0.014) favoring intra-umbilical oxytocin infusion with an efficacy rate of 1.5 and a number-needed-to-treat of 3. The peripartum bleeding complications were more in the NS group with a statistically higher (P<0.001) requirement of extra oxytocin to control post-partum bleeding. There were no differences between the two groups in respect to other secondary outcomes, such as post-partum fever, antibiotic requirement and hospital stay. Umbilical vein injection of 50IU oxytocin in 30mL of NS delivered effectively via the umbilical cord with milking in cases of retained placenta seems a simple and promising technique to reduce the incidence of a potentially morbid procedure and other complications. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.
Duarte, Luciana de Barros; Cavalli, Ricardo de Carvalho; Carvalho, Daniela Miarelli; Filgueira, Gabriela Campos de Oliveira; Marques, Maria Paula; Lanchote, Vera Lucia; Duarte, Geraldo
2015-01-01
Background: Neonatal effects of drugs administered to mothers before delivery depend on the quantity that crosses the placental barrier, which is determined by the pharmacokinetics of the drug in the mother, fetus, and placenta. Diabetes mellitus can alter the kinetic disposition and the metabolism of drugs. This study investigated the placental transfer of lidocaine and its metabolite monoethylglycinexylidide (MEGX) in pregnant women with gestational diabetes mellitus (GDM) submitted to peridural anesthesia. Patients and Methods: A total of 10 normal pregnant women (group 1) and 6 pregnant women with GDM (group 2) were studied, all at term. The patients received 200 mg 2% lidocaine hydrochloride by the peridural locoregional route. Maternal blood samples were collected at the time of delivery and, after placental expulsion, blood samples were collected from the intervillous space, umbilical artery, and vein for determination of lidocaine and MEGX concentrations and analysis of the placental transfer of the drug. Results: The following respective lidocaine ratios between the maternal and the fetal compartments were obtained for groups 1 and 2: umbilical vein/maternal peripheral blood, 0.60 and 0.46; intervillous space/maternal blood, 1.01 and 0.88; umbilical artery/umbilical vein, 0.77 and 0.91; and umbilical vein/intervillous space, 0.53 and 0.51. The following MEGX ratios for groups 1 and 2 were, respectively, fetal/maternal, 0.43 and 0.97; intervillous space/maternal blood, 0.64 and 0.90; umbilical artery/umbilical vein, 1.09 and 0.99; and umbilical vein/intervillous space, 0.55 and 0.78. Conclusion: Gestational diabetes mellitus did not affect the transplacental transfer of lidocaine but interfered with the transfer of MEGX, acting as a mechanism facilitating the transport of the metabolite. PMID:25563756
Moises, Elaine Christine Dantas; Duarte, Luciana de Barros; Cavalli, Ricardo de Carvalho; Carvalho, Daniela Miarelli; Filgueira, Gabriela Campos de Oliveira; Marques, Maria Paula; Lanchote, Vera Lucia; Duarte, Geraldo
2015-07-01
Neonatal effects of drugs administered to mothers before delivery depend on the quantity that crosses the placental barrier, which is determined by the pharmacokinetics of the drug in the mother, fetus, and placenta. Diabetes mellitus can alter the kinetic disposition and the metabolism of drugs. This study investigated the placental transfer of lidocaine and its metabolite monoethylglycinexylidide (MEGX) in pregnant women with gestational diabetes mellitus (GDM) submitted to peridural anesthesia. A total of 10 normal pregnant women (group 1) and 6 pregnant women with GDM (group 2) were studied, all at term. The patients received 200 mg 2% lidocaine hydrochloride by the peridural locoregional route. Maternal blood samples were collected at the time of delivery and, after placental expulsion, blood samples were collected from the intervillous space, umbilical artery, and vein for determination of lidocaine and MEGX concentrations and analysis of the placental transfer of the drug. The following respective lidocaine ratios between the maternal and the fetal compartments were obtained for groups 1 and 2: umbilical vein/maternal peripheral blood, 0.60 and 0.46; intervillous space/maternal blood, 1.01 and 0.88; umbilical artery/umbilical vein, 0.77 and 0.91; and umbilical vein/intervillous space, 0.53 and 0.51. The following MEGX ratios for groups 1 and 2 were, respectively, fetal/maternal, 0.43 and 0.97; intervillous space/maternal blood, 0.64 and 0.90; umbilical artery/umbilical vein, 1.09 and 0.99; and umbilical vein/intervillous space, 0.55 and 0.78. Gestational diabetes mellitus did not affect the transplacental transfer of lidocaine but interfered with the transfer of MEGX, acting as a mechanism facilitating the transport of the metabolite. © The Author(s) 2015.
Karakulak, Murat; Saygili, Uğur; Temur, Muzaffer; Yilmaz, Özgür; Özün Özbay, Pelin; Calan, Mehmet; Coşar, Hese
2017-05-01
Ghrelin is a potent orexigenic peptide hormone secreted from the gastrointestinal tract that plays a crucial role in the regulation of lipids and glucose metabolism. Ghrelin also has links with fetal development and growth. Gestational diabetes mellitus (GDM) causes fetal macrosomia, but there is no available evidence of a relationship between ghrelin levels and birth weight in women with GDM. The purpose of this study is to investigate whether umbilical cord ghrelin concentrations are altered in full-term pregnant women with GDM compared to women without GDM and whether birth weight is correlated with ghrelin levels. Sixty pregnant women with GDM and 64 healthy pregnant women without GDM were included in this cross-sectional study. Blood samples were drawn from the umbilical vein following birth. Ghrelin concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Umbilical vein ghrelin levels were decreased in women with GDM (879.6 ± 256.1 vs. 972.2 ± 233.6 pg/ml in women without GDM, p=0.033), whereas birth weights were higher for babies in the GDM than in the non-GDM group (3448 ± 410 vs. 3308 ± 365 gr, respectively, p=0.046). Umbilical ghrelin levels were inversely correlated with birth weight (r=-0.765, p<0.001). Multiple regression analysis revealed that birth weight was independently and negatively associated with umbilical ghrelin levels (β= -2.077, 95% CI=-2.652 to -1.492, p=0.002). Umbilical ghrelin levels were lower in GDM women. Birth weight was inversely associated with umbilical ghrelin levels. This association may be explained by a negative feedback mechanism between ghrelin and birth weight.
Palmer, Kendra L; Wood, Kelly E; Krasowski, Matthew D
2017-04-01
The objective of this study was to compare detection rates of newborn drug exposure at an academic medical center transitioning from meconium to umbilical cord tissue toxicology testing. We performed an Institutional Review Board-approved retrospective chart review on all newborns (n=2072) for whom newborn drug testing was ordered at our academic medical center between June 2012 and August 2015 (in August 2013, umbilical cord tissue became the preferred specimen). Meconium toxicology testing was positive for at least one compound in 221 cases (21.3% of 1037 total specimens), with non-medical drug use identified in 85 cases (8.2%). Umbilical cord tissue toxicology testing was positive for at least one compound in 302 cases (29.2%), with non-medical drug use identified in 107 cases (10.3%). Of the cases involving non-medical drug use, the most common compounds detected were tetrahydrocannabinol and amphetamines. Non-medical drug use did not differ significantly between meconium and umbilical cord tissue, either as a total or for classes of drugs such as amphetamines, cannabinoids, and opiates. Maternal non-medical use of tramadol (not tested for in meconium) was identified in 5 cases (0.4%). There were significant differences in rate of detection of iatrogenic medications. Specifically, morphine, lorazepam, phenobarbital, and codeine were more commonly detected in meconium, while oxycodone was more commonly detected in umbilical cord tissue. Umbilical cord tissue toxicology testing yielded a similar detection rate compared to meconium testing. The use of umbilical cord tissue avoids detection of medications given to the neonate prior to meconium collection. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Grindflek, Eli; Hansen, Marianne H S; Lien, Sigbjørn; van Son, Maren
2018-05-29
Umbilical hernia is one of the most prevalent congenital defect in pigs, causing economic losses and substantial animal welfare problems. Identification and implementation of genomic regions controlling umbilical hernia in breeding is of great interest to reduce incidences of hernia in commercial pig production. The aim of this study was to identify such regions and possibly identify causative variation affecting umbilical hernia in pigs. A case/control material consisting of 739 Norwegian Landrace pigs was collected and applied in a GWAS study with a genome-wide distributed panel of 60 K SNPs. Additionally candidate genes were sequenced to detect additional polymorphisms that were used for single SNP and haplotype association analyses in 453 of the pigs. The GWAS in this report detected a highly significant region affecting umbilical hernia around 50 Mb on SSC14 (P < 0.0001) explaining up to 8.6% of the phenotypic variance of the trait. The region is rather broad and includes 62 significant SNPs in high linkage disequilibrium with each other. Targeted sequencing of candidate genes within the region revealed polymorphisms within the Leukemia inhibitory factor (LIF) and Oncostatin M (OSM) that were significantly associated with umbilical hernia (P < 0.001). A highly significant QTL for umbilical hernia in Norwegian Landrace pigs was detected around 50 Mb on SSC14. Resequencing of candidate genes within the region revealed SNPs within LIF and OSM highly associated with the trait. However, because of extended LD within the region, studies in other populations and functional studies are needed to determine whether these variants are causal or not. Still without this knowledge, SNPs within the region can be used as genetic markers to reduce incidences of umbilical hernia in Norwegian Landrace pigs.
Ultrasound-guided rectus sheath block in children with umbilical hernia: Case series.
Alsaeed, Abdul Hamid; Thallaj, Ahmed; Khalil, Nancy; Almutaq, Nada; Aljazaeri, Ayman
2013-10-01
Umbilical hernia repair, a common day-case surgery procedure in children, is associated with a significant postoperative pain. The most popular peripheral nerve blocks used in umbilical hernia repair are rectus sheath infiltration and caudal block. The rectus sheath block may offer improved pain relief following umbilical hernia repair with no undesired effects such as lower limb motor weakness or urinary retention seen with caudal block which might delay discharge from the hospital. Ultrasound guidance of peripheral nerve blocks has reduced the number of complications and improved the quality of blocks. The aim of this case series is to assess the post rectus sheath block pain relief in pediatric patients coming for umbilical surgery. Twenty two (22) children (age range: 1.5-8 years) scheduled for umbilical hernia repair were included in the study. Following the induction of general anesthesia, the ultrasonographic anatomy of the umbilical region was studied with a 5-16 MHz 50 mm linear probe. An ultrasound-guided posterior rectus sheath block of both rectus abdominis muscles (RMs) was performed (total of 44 punctures). An in-plain technique using Stimuplex A insulated facet tip needle 22G 50mm. Surgical conditions, intraoperative hemodynamic parameters, and postoperative analgesia by means of the modified CHEOPS scale were evaluated. ultrasonograghic visualization of the posterior sheath was possible in all patients. The ultrasound guided rectus sheath blockade provided sufficient analgesia in all children with no need for additional analgesia except for one patient who postoperatively required morphine 0.1 mg/kg intravenously. There were no complications. Ultrasound guidance enables performances of an effective rectus sheath block for umbilical hernia. Use of the Stimuplex A insulated facet tip needle 22G 50mm provides easy, less traumatic skin and rectus muscle penetration and satisfactory needle visualiza.
Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; ...
2014-12-12
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less
Vitellointestinal Duct Anomalies in Infancy
Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep
2016-01-01
Background: Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5–9 of intrauterine life. Methods: This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Results: Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: patent VID in 9 (56.25%) patients, umbilical cyst in 2(12.25%), umbilical granuloma in 2 (12.25%), and Meckel diverticulum as content of hernia sac in obstructed umbilical hernia in 1 (6.25%) patient. Two patients with umbilical fistula had severe electrolyte disturbance and died without surgical intervention. Conclusion: Persistent VID may have varied presentations in infancy. High output umbilical fistula and excessive bowel prolapse demand urgent surgical intervention to avoid morbidity and mortality. PMID:27433448
Vitellointestinal Duct Anomalies in Infancy.
Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep
2016-01-01
Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5-9 of intrauterine life. This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: patent VID in 9 (56.25%) patients, umbilical cyst in 2(12.25%), umbilical granuloma in 2 (12.25%), and Meckel diverticulum as content of hernia sac in obstructed umbilical hernia in 1 (6.25%) patient. Two patients with umbilical fistula had severe electrolyte disturbance and died without surgical intervention. Persistent VID may have varied presentations in infancy. High output umbilical fistula and excessive bowel prolapse demand urgent surgical intervention to avoid morbidity and mortality.
NASA Technical Reports Server (NTRS)
Banerjee, B. B.; Allaire, P. E.; Grodsinsky, C. M.
1996-01-01
Microgravity experiments will require active vibration isolation in the low to mid frequency range of 0.1 Hz to 10 Hz. Approximately two orders of acceleration reduction (40 dB) will be required. Previous works have reported results for accelerations transmitted through the umbilical. This paper describes experimental and theoretical results for vibration isolation in one dimension (horizontal) where the simulated experiment is connected to the spacecraft by a spring umbilical. The experiment consisted of a spacecraft (shaker), experiment (mass), umbilical, accelerometer, control electronics, and Lorentz actuator. The experiment mass was supported in magnetic bearings to avoid any stiction problems. Acceleration feedback control was employed to obtain the vibration isolation. Three different spring umbilicals were employed. Acceleration reductions on the order of 40 dB were obtained over the frequency range of 0.1 Hz to 10 Hz. Good agreement was obtained between theory and experiment.
[Persistent neonatal hypoglycaemia caused by arterial positioning of the umbilical venous catheter].
Peters, P A G; Brus, F; Noordam, C; Smorenburg, M K; van Setten, P A
2007-10-06
Two neonates, a girl born at 40 2/7 weeks weighing 4165 g and a boy born at 37 6/7 weeks weighing 4040 g, received umbilical venous catheters to help manage hypoglycaemia. The catheter was ineffective or only effective when high doses of glucose were used, due to what later appeared to be arterial positioning of the catheter. Both patients recovered without consequences. Persistent hypoglycaemia is a common problem in newborns and can cause severe neurological sequelae. A relatively uncommon cause is malpositioning of the umbilical catheter. Positioning in an artery leads to direct infusion of glucose into the pancreas, which causes hyperinsulinaemia and can lead to potentially dangerous nonketotic hypoglycaemia. Arterial positioning of the umbilical catheter should be ruled out at an early stage. Correct catheter positioning can be determined using careful inspection of the umbilical veins, radiological examination of the catheter position, blood gas analysis or vascular pulsation.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-05-25
A crane has been attached to the Core Stage Forward Skirt Umbilical (CSFSU) to lift it up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-05-25
Cranes and rigging are being used to lift the Core Stage Forward Skirt Umbilical (CSFSU) into position for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Core Stage Forward Skirt Umbilical Installation onto Mobile Laun
2017-05-25
Seeming to hang in midair, the Core Stage Forward Skirt Umbilical (CSFSU) is lifted high up by crane for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Communicating with Virtual Humans.
ERIC Educational Resources Information Center
Thalmann, Nadia Magnenat
The face is a small part of a human, but it plays an essential role in communication. An open hybrid system for facial animation is presented. It encapsulates a considerable amount of information regarding facial models, movements, expressions, emotions, and speech. The complex description of facial animation can be handled better by assigning…
Shirzad, Negin; Bordbar, Sima; Goodarzi, Alireza; Mohammad, Monire; Khosravani, Pardis; Sayahpour, Froughazam; Baghaban Eslaminejad, Mohamadreza; Ebrahimi, Marzieh
2017-10-01
The diverse clinical applications for human mesenchymal stem cells (hMSCs) in cellular therapy and regenerative medicine warrant increased focus on developing adequate culture supplements devoid of animal-derived products. In the present study, we have investigated the feasibility of umbilical cord blood-platelet lysate (UCB-PL) as a standard substitute for fetal bovine serum (FBS) and human peripheral blood-PL (PB-PL). In this experimental study, platelet concentrates (PC) from UCB and human PB donors were frozen, melted, and sterilized to obtain PL. Quality control included platelet cell counts, sterility testing (viral and microbial), total protein concentrations, growth factor levels, and PL stability. The effects of UCB-PL and PB-PL on hMSCs proliferation and differentiation into osteocytes, chondrocytes, and adipocytes were studied and the results compared with FBS. UCB-PL contained high levels of protein content, platelet-derived growth factor- AB (PDGF-AB), and transforming growth factor (TGF) compared to PB-PL. All growth factors were stable for at least nine months post-storage at -70˚C. hMSCs proliferation enhanced following treatment with UCB-PL. With all three supplements, hMSCs could differentiate into all three lineages. PB-PL and UCB-PL both were potent in hMSCs proliferation. However, PB promoted osteoblastic differentiation and UCB-PL induced chondrogenic differentiation. Because of availability, ease of use and feasible standardization of UCB-PL, we have suggested that UCB-PL be used as an alternative to FBS and PB-PL for the cultivation and expansion of hMSCs in cellular therapy. Copyright© by Royan Institute. All rights reserved.
Zhang, Bing; Wei, Chun-Yan; Chang, Kai-Kai; Yu, Jia-Jun; Zhou, Wen-Jie; Yang, Hui-Li; Shao, Jun; Yu, Jin-Jin; Li, Ming-Qing; Xie, Feng
2017-12-01
Our previous study demonstrated that thymic stromal lymphopoietin (TSLP) secreted by cervical cancer cells promotes angiogenesis and recruitment, and regulates the function of eosinophils (EOS). However, the function of TSLP in the crosstalk between EOS and vascular endothelial cells in cancer lesions remains unknown. The aim of the present study was to investigate the effect of EOS caused by TSLP in in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs). The results of the present study revealed that recombinant human TSLP protein (rhTSLP) increased the secretion of vascular endothelial growth factor (VEGF), but not fibroblast growth factors, in HL-60-eosinophils (HL-60E). Compared with cervical cancer cells (HeLa or CasKi cells) or HL-60E alone, there were increased levels of interleukin (IL)-8 and VEGF in the co-culture system between cervical cancer cells, and HL-60E cells. This effect was strengthened by rhTSLP, but inhibited by inhibiting the TSLP signal with anti-human TSLP or TSLP receptor neutralizing antibodies. The results of the tube formation assays revealed that treatment with the supernatant from cervical cancer cells and/or HL-60E resulted in an increase in angiogenesis in HUVECs, which could be decreased by TSLP or TSLPR inhibitors. The results of the present study suggested that TSLP derived of cervical cancer cells may indirectly stimulate angiogenesis of HUVECs, by upregulating IL-8 and VEGF production, in a co-culture model between cervical cancer cells and EOS, therefore promoting the development of cervical cancer.
Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Yoo, Hye Soo; Sung, Se In; Choi, Soo Jin; Park, Won Soon
2015-08-01
The aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood-derived mesenchymal stromal cells (HUMs), human adipose tissue-derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared. Hyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 10(5) cells) were given intratracheally at postnatal day 5. Hyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group. HUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Lai, Xiulan; Liu, Sizheng; Chen, Yezeng; Zheng, Zexin; Xie, Qingdong; Maldonado, Martin; Cai, Zhiwei; Qin, Shan; Ho, Guyu; Ma, Lian
2013-01-01
Human umbilical cord mesenchymal stem cells (HUMSCs) are highly proliferative and can be induced to differentiate into advanced derivatives of all three germ layers. Thus, HUMSCs are considered to be a promising source for cell-targeted therapies and tissue engineering. However there are reports on spontaneous transformation of mesenchymal stem cells (MSCs) derived from human bone marrows. The capacity for HUMSCs to undergo malignant transform spontaneously or via induction by chemical carcinogens is presently unknown. Therefore, we isolated HUMSCs from 10 donors and assessed their transformation potential either spontaneously or by treating them with 3-methycholanthrene (3-MCA), a DNA-damaging carcinogen. The malignant transformation of HUMSCs in vitro was evaluated by morphological changes, proliferation rates, ability to enter cell senescence, the telomerase activity, chromosomal abnormality, and the ability to form tumors in vivo. Our studies showed that HUMSCs from all 10 donors ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUMSCs from two of the 10 donors treated with 3-MCA displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. When these cells (tHUMSCs) were injected into immunodeficient mice, they gave rise to sarcoma-like or poorly differentiated tumors. Moreover, in contrast to HUMSCs, tHUMSCs showed a positive expression of human telomerase reverse transcriptase (hTERT) and did not exhibit a shortening of the relative telomere length during the long-term culture in vitro. Our studies demonstrate that HUMSCs are not susceptible to spontaneous malignant transformation. However, the malignant transformation could be induced by chemical carcinogen 3-MCA. PMID:24339974
Eviscerated urinary bladder via ruptured umbilical hernia: a rare occurrence.
Pandey, A; Kumar, V; Gangopadhyay, A N; Upadhyaya, V D
2008-06-01
Umbilical hernia is a common problem encountered in children. Rupture and evisceration are very rare phenomena, and the usual content that is eviscerated is the bowel. We present an infant who had a ruptured umbilical hernia with eviscerated urinary bladder dome. As this is the first case of its kind, it is being reported with a brief review of literature.
Persistent Umbilical Discharge from an Omphalomesenteric Duct Cyst Containing Gastric Mucosa
Tamilselvan, Kanimozhi; Mohan, Arunodaya; Cheslyn-Curtis, Sarah; Eisenhut, Michael
2012-01-01
Umbilical discharge in infancy is often attributed to infection or an umbilical granuloma. It is important to investigate if such a discharge is due to an underlying congenital abnormality because corrective surgical intervention may then be required. We present the first case of an infant with a persistent umbilical discharge from an omphalomesenteric duct cyst. The discharge was associated with periumbilical dermatitis. The dermatitis was most likely due to irritation of the skin by gastric acid produced by the ectopic gastric mucosa contained in the omphalomesenteric duct cyst. Both discharge and dermatitis resolved after surgical removal of the cyst. PMID:22693676
Assessment of umbilical artery flow and fetal heart rate to predict delivery time in bitches.
Giannico, Amália Turner; Garcia, Daniela Aparecida Ayres; Gil, Elaine Mayumi Ueno; Sousa, Marlos Gonçalves; Froes, Tilde Rodrigues
2016-10-15
The aim of this study was to quantitatively investigate the oscillation of the fetal heart rate (HR) in advance of normal delivery and whether this index could be used to indicate impending delivery. In addition, fetal HR oscillation and umbilical artery resistive index (RI) were correlated to determine if the combination of these parameters provided a more accurate prediction of the time of delivery. Sonographic evaluation was performed in 11 pregnant bitches to evaluate the fetal HR and umbilical artery RI at the following antepartum times: 120 to 96 hours, 72 to 48 hours, 24 to 12 hours, and 12 to 1 hours. Statistical analysis indicated a correlation between the oscillation of fetal HR and the umbilical artery RI. As delivery approached a considerable reduction in the umbilical artery RI was documented and greater oscillations between maximum and minimum HRs occurred. We conclude that the quantitative analysis of fetal HR oscillations may be used to predict the time of delivery in bitches. The combination of fetal HR and umbilical artery RI together may provide more accurate predictions of time of delivery. Copyright © 2016 Elsevier Inc. All rights reserved.
A "Kane's Dynamics" Model for the Active Rack Isolation System
NASA Astrophysics Data System (ADS)
Rupert, J. K.; Hampton, R. D.; Beech, G. S.
2005-02-01
In the late 1980s, microgravity researchers began to voice their concern that umbilical-transmitted energy could significantly degrade the acceleration environment of microgravity space science experiments onboard manned spacecraft. Since umbilicals are necessary for many experiments, control designers began to seek ways to compensate for these "indirect" disturbances. Hampton, et al., used the Kane s method to develop a model of the active rack isolation system (ARIS) that includes (1) actuator control forces, (2) direct disturbance forces, and (3) indirect, actuator-transmitted disturbances. Their model does not, however, include the indirect, umbilical-transmitted disturbances. Since the umbilical stiffnesses are not negligible, these indirect disturbances must be included in the model. Until the umbilicals have been appropriately included, the model will be incomplete. This Technical Memorandum presents a nonlinear model of ARIS with umbilicals included. Model verification was achieved by utilizing two commercial-off-the-shelf software tools. Various forces and moments were applied to the model to yield simulated responses of the system. Plots of the simulation results show how various critical points on an ARIS-outfitted international standard payload rack behave under the application of direct disturbances, indirect disturbances, and control forces. Simulations also show system response to a variety of initial conditions.
Design of the Core Stage Inter-Tank Umbilical {CSITU) Compliance Mechanism
NASA Technical Reports Server (NTRS)
Smith, Kurt R.
2013-01-01
Project Goals: a) Design the compliance mechanism for the CSITU system to a 30% level -3D models completed in Pro/Engineer -Relevant design analysis b) Must meet all system requirements and establish basis for proceeding with detailed design. Tasks to be completed: A design that meets requirements for the 30% design review, 01/16/2013. Umbilical arms provide commodities to the launch vehicle prior to T-0. Commodities can range anywhere from hydraulics, pneumatics, cryogenic, electrical, ECS, etc ... Umbilicals commonly employ truss structures to deliver commodities to vehicle. Common configurations include: -Tilt-up -Swing Arm -Hose Drape -Drop Arm Umbilical arms will be mounted to Mobile Launch Platform. SLS currently has 9 T-0 umbilical arms. The compliance refers to the ability of the umbilical to adjust to minor changes in vehicle location. The compliance mechanism refers to the mechanism on the ground support equipment {GSE) that compensates for these changes. For the CSITU, these minor changes, or vehicle excursions, can be up to +4 in. Excursions refer to movements of the vehicle caused by wind loads and thermal expansion. It is ideal to have significant vertical compliance so a passive secondary release mechanism may be implemented.