Permeation Resistance of Personal Protective Equipment Materials to Monomethyhydrazine
NASA Technical Reports Server (NTRS)
Waller, J. M.; Williams, J. H.
1997-01-01
Permeation resistance was determined by measuring the breakthrough time and time-averaged vapor transmission rate of monomethylhydrazine (MMH) through two types of personal protective equipment (PPE). The two types of PPE evaluated were the totally encapsulating ILC Dover Chemturion Model 1212 chemical protective suit with accessories, and the FabOhio polyvinyl chloride (PVC) splash garment. Two exposure scenarios were simulated: (1) a saturated vapor exposure for 2 hours (h), and (2) a brief MMH 'splash' followed by a 2-h saturated vapor exposure. Time-averaged MMH concentrations inside the totally-encapsulating suit were calculated by summation of the area-weighted contributions made by each suit component. Results show that the totally encapsulating suit provides adequate protection at the new 10 ppb Threshold Limit Value Time-Weighted Average (TLV-TWA). The permeation resistance of the PVC splash garment to MMH was poorer than any of the totally encapsulating suit materials tested. Breakthrough occurred soon after initial vapor or 'splash' exposure.
Response personnel must wear the appropriate level of protection whenever near a hazardous release site. Level A is for the greatest exposure potential, and D is the minimum level. Examples range from totally encapsulated suits to hard hats.
Health hazard evaluation report HETA 85-538-1667, General Telephone Company, Sherman, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettigrew, G.L.
1986-02-01
Following an employee request, potential health problems among telephone cable splicers were investigated at the General Telephone Company Sherman, Texas. Information was collected on materials used, work procedures, and personal protective equipment employed. Materials of primary concern were petrolatum in the filled cable, petroleum distillates used as cable cleaner, and isocyanates in the two-part reenterable encapsulant. Personal air samples taken by OSHA during pouring operations with the encapsulant revealed no detectable isocyanate concentrations. Observation of a large splicing operation showed the head of the splicer was positioned over the top of the casing while pouring encapsulant components allowing potential exposure.more » Petrolatum was determined to be physiologically inert. Nine of 32 potentially exposed workers completed questionnaires. The most frequently reported symptoms were head congestion and headaches at work; 67% reported warts and 33% reported skin rashes. The author concludes that a health hazard to employees does not exist under normal operating conditions. Workers are advised not to use cable cleaner for personal cleanup. To avoid potential isocyanate sensitization, minimizing exposure, use of personal protective equipment, and good work practices are recommended. Cuts and abrasions among splicers may be implicated in wart formation.« less
Encapsulation of new active ingredients.
Onwulata, C I
2012-01-01
The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.
Flexible packaging for microelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis
An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less
Microfluidic approach for encapsulation via double emulsions.
Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin
2014-10-01
Double emulsions, with inner drops well protected by the outer shells, show great potential as compartmentalized systems to encapsulate multiple components for protecting actives, masking flavor, and targetedly delivering and controllably releasing drugs. Precise control of the encapsulation characteristics of each component is critical to achieve an optimal therapeutic efficacy for pharmaceutical applications. Such controllable encapsulation can be realized by using microfluidic approaches for producing monodisperse double emulsions with versatile and controllable structures as the encapsulation system. The size, number and composition of the emulsion drops can be accurately manipulated for optimizing the encapsulation of each component for pharmaceutical applications. In this review, we highlight the outstanding advantages of controllable microfluidic double emulsions for highly efficient and precisely controllable encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Encapsulation of cosmetic active ingredients for topical application--a review.
Casanova, Francisca; Santos, Lúcia
2016-02-01
Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs.
Photovoltaic module and laminate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.
A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaicmore » solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.« less
Hanno, Ibrahim; Anselmi, Cecilia; Bouchemal, Kawthar
2012-02-01
To prepare polyamide nanocapsules for skin photo-protection, encapsulating α-tocopherol, Parsol®MCX (ethylhexyl methoxycinnamate) and/or Parsol®1789 (butyl methoxydibenzoylmethane). Nanocapsules were obtained by combining spontaneous emulsification and interfacial polycondensation reaction between sebacoyl chloride and diethylenetriamine. Nano-emulsions used as control were obtained by the same process without monomers. The influence of carrier on release rate was studied in vitro with a membrane-free model. Epidermal penetration of encapsulated sunscreens was ex vivo evaluated using Franz diffusion cells. Ability of encapsulated sunscreens to improve photo-stability was verified by comparing percentage of degradation after UV radiation exposure. Sunscreen-containing nanocapsules (260-400 nm) were successfully prepared; yield of encapsulation was >98%. Parsol®MCX and Parsol®1789 encapsulation led to decreased release rate by up to 60% in comparison with nano-emulsion and allowed minimum penetration through pig ear epidermis. Presence of polyamide shell protected encapsulated sunscreen filters from photo-degradation without affecting their activity. Encapsulation of Parsol®MCX and Parsol®1789 into oil-core of polyamide nanocapsules allowed protection from photo-degradation, controlled release from nanocapsules, and limited penetration through pig ear epidermis.
NASA Technical Reports Server (NTRS)
Pearman, Benjamin Pieter; Calle, Luz M.
2015-01-01
This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.
NASA Astrophysics Data System (ADS)
Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.
2017-03-01
Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved.
Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection
NASA Technical Reports Server (NTRS)
Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.
2015-01-01
This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Astrophysics Data System (ADS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-10-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Technical Reports Server (NTRS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-01-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.
Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab
2017-04-01
Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.
Practicality of performing medical procedures in chemical protective ensembles.
Garner, Alan; Laurence, Helen; Lee, Anna
2004-04-01
To determine whether certain life saving medical procedures can be successfully performed while wearing different levels of personal protective equipment (PPE), and whether these procedures can be performed in a clinically useful time frame. We assessed the capability of eight medical personnel to perform airway maintenance and antidote administration procedures on manikins, in all four described levels of PPE. The levels are: Level A--a fully encapsulated chemically resistant suit; Level B--a chemically resistant suit, gloves and boots with a full-faced positive pressure supplied air respirator; Level C--a chemically resistant splash suit, boots and gloves with an air-purifying positive or negative pressure respirator; Level D--a work uniform. Time in seconds to inflate the lungs of the manikin with bag-valve-mask, laryngeal mask airway (LMA) and endotracheal tube (ETT) were determined, as was the time to secure LMAs and ETTs with either tape or linen ties. Time to insert a cannula in a manikin was also determined. There was a significant difference in time taken to perform procedures in differing levels of personal protective equipment (F21,72 = 1.75, P = 0.04). Significant differences were found in: time to lung inflation using an endotracheal tube (A vs. C mean difference and standard error 75.6 +/- 23.9 s, P = 0.03; A vs. D mean difference and standard error 78.6 +/- 23.9 s, P = 0.03); time to insert a cannula (A vs. D mean difference and standard error 63.6 +/- 11.1 s, P < 0.001; C vs. D mean difference and standard error 40.0 +/- 11.1 s, P = 0.01). A significantly greater time to complete procedures was documented in Level A PPE (fully encapsulated suits) compared with Levels C and D. There was however, no significant difference in times between Level B and Level C. The common practice of equipping hospital and medical staff with only Level C protection should be re-evaluated.
Damle, Viraj G; Tummala, Abhishiktha; Chandrashekar, Sriram; Kido, Cassidee; Roopesh, Ajay; Sun, Xiaoda; Doudrick, Kyle; Chinn, Jeff; Lee, James R; Burgin, Timothy P; Rykaczewski, Konrad
2015-02-25
The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.
Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.
Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat
2015-07-01
Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.
Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar
2015-01-01
Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778
A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells
Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab
2017-01-01
Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells. PMID:28875004
NASA Technical Reports Server (NTRS)
Kolyer, J. M.; Mann, N. R.
1977-01-01
Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.
Anti-Inflammatory Peptide Functionalized Hydrogels for Insulin-Secreting Cell Encapsulation
Su, Jing; Hu, Bi-Huang; Lowe, William L.; Kaufman, Dixon B.; Messersmith, Phillip B.
2009-01-01
Pancreatic islet encapsulation within semi-permeable materials has been proposed for transplantation therapy of Type I diabetes mellitus. Polymer hydrogel networks used for this purpose have been shown to provide protection from islet destruction by immunoreactive cells and antibodies. However, one of the fundamental deficiencies with current encapsulation methods is that the permselective barriers cannot protect islets from cytotoxic molecules of low molecular weight that are diffusible into the capsule material, which subsequently results in β-cell destruction. Use of materials that can locally inhibit the interaction between the permeable small cytotoxic factors and islet cells may prolong the viability and function of encapsulated islet grafts. Here we report the design of anti-inflammatory hydrogels supporting islet cell survival in the presence of diffusible pro-inflammatory cytokines. We demonstrated that a poly(ethylene glycol)-containing hydrogel network, formed by native chemical ligation and presenting an inhibitory peptide for islet cell surface IL-1 receptor, was able to maintain the viability of encapsulated islet cells in the presence of a combination of cytokines including IL-1β, TNF-α, and INF-γ. In stark contrast, cells encapsulated in unmodified hydrogels were mostly destroyed by cytokines which diffused into the capsules. At the same time, these peptide-modified hydrogels were able to efficiently protect encapsulated cells against β-cell specific T-lymphocytes and maintain glucose-stimulated insulin release by islet cells. With further development, the approach of encapsulating cells and tissues within hydrogels presenting anti-inflammatory agents may represent a new strategy to improve cell and tissue graft function in transplantation and tissue engineering applications. PMID:19782393
Mao, Yingyi; Dubot, Marie; Xiao, Hang; McClements, David Julian
2013-05-29
Emulsion-based delivery systems are needed to encapsulate, protect, and deliver lipophilic bioactive components in the food, personal care, and pharmaceutical industries. The functional performance of these systems can be controlled by engineering the composition and structure of the interfacial layer coating the lipid droplets. In this study, interfacial properties were controlled using two globular proteins with widely differing isoelectric points: lactoferrin (LF: pI ≈ 8.5) and β-lactoglobulin (BLG: pI ≈ 5). Oil-in-water emulsions were prepared with different interfacial properties: [LF]-only; [BLG]-only; [LF]-[BLG]-(laminated); [BLG]-[LF]-(laminated); and [BLG/LF]-(mixed). The influence of pH, ionic strength, and temperature on the physical stability of β-carotene-enriched emulsions was investigated. [LF]-emulsions were stable to droplet aggregation from pH 2 to 9 (0 mM NaCl), but all other emulsions aggregated at intermediate pH values. [BLG]-emulsions aggregated at high salt levels (≥50 mM NaCl), but all other emulsions were stable (0 to 300 mM NaCl). [BLG/LF]-emulsions were unstable to heating (≥60 °C), but all other emulsions were stable (30 to 90 °C). Color fading due to β-carotene degradation occurred relatively quickly in [BLG]-emulsions (37 °C) but was considerably lower in all other emulsions, which was attributed to the ability of LF to bind iron or interact with β-carotene. This study provides useful information for designing emulsion-based delivery systems to encapsulate and protect bioactive lipids, such as carotenoids.
Biomimetic Antigenic Nanoparticles Elicit Controlled Protective Immune Response to Influenza
Patterson, Dustin P.; Rynda-Apple, Agnieszka; Harmsen, Ann L.; Harmsen, Allen G.; Douglas, Trevor
2013-01-01
Here we present a biomimetic strategy towards nanoparticle design for controlled immune response through encapsulation of conserved internal influenza proteins on the interior of virus like particles (VLPs) to direct CD8+ cytotoxic T cell protection. Programmed encapsulation and sequestration of the conserved nucleoprotein (NP) from influenza on the interior of a VLP, derived from the bacteriophage P22, results in a vaccine that provides multi-strain protection against 100 times lethal doses of influenza in an NP specific CD8+ T cell-dependent manner. VLP assembly and encapsulation of the immunogenic NP cargo protein is the result of a genetically programmed self-assembly making this strategy amendable to the quick production of vaccines to rapidly emerging pathogens. Addition of adjuvants or targeting molecules were not required for eliciting the protective response. PMID:23540530
Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil
Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad
2017-01-01
Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation. PMID:28496464
Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.
Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad
2017-01-01
Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.
Hambleton, Alicia; Debeaufort, Frédéric; Beney, Laurent; Karbowiak, Thomas; Voilley, Andrée
2008-03-01
Edible films made of iota-carrageenans display interesting advantages: good mechanical properties, stabilization of emulsions, and reduction of oxygen transfers. Moreover, the addition of lipids to iota-carrageenan-based films to form emulsified films decreases the transfer of water vapor and can be considered to encapsulate active molecules as flavors. The aim of this study was to better understand the influence of the composition and the structure of the carrageenan-based film matrices on its barrier properties and thus on its capacity to encapsulate and to protect active substances encapsulated. Granulometry, differential scanning calorimetry, and Fourier transform infrared spectroscopy characterizations of films with or without flavor and/or fat showed that the flavor compound modifies the film structure because of interactions with the iota-carrageenan chains. The study of the water vapor permeability (WVP), realized at 25 and 35 degrees C and for three relative humidity differentials (30-100%, 30-84%, 30-75%), showed that the flavor compound increases significantly the WVP, especially for the weaker gradients, but has no effect on the oxygen permeability. This study brings new understanding of the role of carrageenan as a film matrix and on its capacity to protect encapsulated flavors.
Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A
2013-01-01
Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681
Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng
2015-03-01
The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1981-01-01
Encapsulant materials and processes for the production of cost-effective, long-life solar cell modules were investigated. The following areas were explored: (1) soil resistant surface treatment; (2) corrosion protecting coatings from mild steel substrates; (3) primers for bonding module interfaces; and (4) RS/4 accelerated aging of candidate encapsulation compounds
Method of making thermally removable polymeric encapsulants
Small, James H.; Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.
2001-01-01
A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90.degree. C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.
Diamantis, Dimitrios A; Ramesova, Sarka; Chatzigiannis, Christos M; Degano, Ilaria; Gerogianni, Paraskevi S; Karadima, Constantina; Perikleous, Sonia; Rekkas, Dimitrios; Gerothanassis, Ioannis P; Galaris, Dimitrios; Mavromoustakos, Thomas; Valsami, Georgia; Sokolova, Romana; Tzakos, Andreas G
2018-06-07
Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry) UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H 2 O 2 -induced DNA damage. Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and oxidation profile is retained in its encapsulated state. Although the protective ability of the quercetin-2HP-β-CD complex against H 2 O 2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. The oxidation profile of a natural product once it is encapsulated in a supramolecular cyclodextrin carrier as also it was discovered that decomplexation can be triggered by a chemical stimulus. Copyright © 2018. Published by Elsevier B.V.
Sultana, K; Godward, G; Reynolds, N; Arumugaswamy, R; Peiris, P; Kailasapathy, K
2000-12-05
A modified method using calcium alginate for the microencapsulation of probiotic bacteria is reported in this study. Incorporation of Hi-Maize starch (a prebiotic) improved encapsulation of viable bacteria as compared to when the bacteria were encapsulated without the starch. Inclusion of glycerol (a cryo-protectant) with alginate mix increased the survival of bacteria when frozen at -20 degrees C. The acidification kinetics of encapsulated bacteria showed that the rate of acid produced was lower than that of free cultures. The encapsulated bacteria, however, did not demonstrate a significant increase in survival when subjected to in vitro high acid and bile salt conditions. A preliminary study was carried out in order to monitor the effects of encapsulation on the survival of Lactobacillus acidophilus and Bifidobacterium spp. in yoghurt over a period of 8 weeks. This study showed that the survival of encapsulated cultures of L. acidophilus and Bifidobacterium spp. showed a decline in viable count of about 0.5 log over a period of 8 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. The encapsulation method used in this study did not result in uniform bead size, and hence additional experiments need to be designed using uniform bead size in order to assess the role of different encapsulation parameters, such as bead size and alginate concentration, in providing protection to the bacteria.
Tarantal, Alice F; Lee, C Chang I; Itkin-Ansari, Pamela
2009-07-15
Encapsulation of cells has the potential to eliminate the need for immunosuppression for cellular transplantation. Recently, the TheraCyte device was shown to provide long-term immunoprotection of murine islets in a mouse model of diabetes. In this report, translational studies were undertaken using skin fibroblasts from an unrelated rhesus monkey donor that were transduced with an HIV-1-derived lentiviral vector expressing firefly luciferase permitting the use of bioluminescence imaging (BLI) to monitor cell survival over time and in a noninvasive manner. Encapsulated cells were transplanted subcutaneously (n=2), or cells were injected without encapsulation (n=1) and outcomes compared. BLI was performed to monitor cell survival. The BLI signal from the encapsulated cells remained robust postinsertion and in one animal persisted for up to 1 year. In contrast, the control animal that received unencapsulated cells exhibited a complete loss of cell signal within 14 days. These data demonstrate that TheraCyte encapsulation of allogeneic cells provides robust immune protection in transplanted rhesus monkeys.
Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Osorio, Coralia; Nazareno, Mónica Azucena
2016-07-01
Betalain encapsulation was performed by ionic gelation as a stabilization strategy for these natural pigments. Betalains were extracted from purple cactus fruits and encapsulated in calcium-alginate and in combination of calcium alginate and bovine serum albumin. Beads were characterised by scanning electron microscopy and thermal analysis using differential scanning calorimetry and thermogravimetry. Moisture sorption isotherms were determined. Bead morphology was affected by matrix composition. Pigments storage stability was evaluated at different equilibrium relative humidity and temperatures. Pigment composition of beads was determined by HPLC-MS-MS and degradation products were also analysed after storage; betalamic acid being the major one. Both types of matrices protected the encapsulated pigments, being their storage stability better at low relative humidity than that of the non-encapsulated control material. Antiradical activities of beads were proportional to remaining betalain contents. At high relative humidity, there was no protection and low storage stability was observed in the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functional assessment of encapsulated citral for controlling necrotic enteritis in broiler chickens.
Yang, Yuexi; Wang, Qi; Diarra, Moussa S; Yu, Hai; Hua, Yufei; Gong, Joshua
2016-04-01
Development of viable alternatives to antibiotics to control necrotic enteritis (NE) caused by Clostridium perfringensis becoming urgent for chicken production due to pessures on poultry producers to limit or stop the use of antibiotics in feed. We have previously identified citral as a potential alternative to antibiotics. Citral has strong antimicrobial activity and can be encasupsulated in a powder form for protection from loss during feed processing, storage, and intestinal delivery. In the present study, encapsulated citral was evaluated both in vitro and in vivo for its antimicrobial activity against C. perfringens Encapsulation did not adversely affect the antimicrobial activity of citral. In addition, encapsulated citral was superior to the unencapsulated form in retaining its antimicrobial activity after treatment with simulated gastrointestinal fluids and in the presence of chicken intestinal digesta. In addition, the higher antimicrobial activity of encapsulated citral was confirmed in digesta samples from broilers that had been gavaged with encapsulated or unencapsulated citral. In broilers infected with C. perfringens, the diets supplemented with encapsualted citral at both 250 and 650 μg/g significantly reduced intestinal NE lesions, which was comparable to the effect of bacitracin- and salinomycin-containing diets. However, supplementation with the encapsulated citral appeared to have no significant impact on the intestinal burden of Lactobacillus These data indicate that citral can be used to control NE in chickens after proper protection by encapsulation. © Crown copyright 2016.
Micro-Encapsulation of Probiotics
NASA Astrophysics Data System (ADS)
Meiners, Jean-Antoine
Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.
NASA Astrophysics Data System (ADS)
Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying
2017-03-01
Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.
Li, Bo; Ma, Jian-Gong; Cheng, Peng
2018-06-04
The integration of metal/metal oxide nanoparticles (NPs) into metal-organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection-sacrifice (TPS) method to encapsulate metastable NPs such as Cu 2 O into MOFs. SiO 2 was used as both a protective shell for Cu 2 O nanocubes and a sacrificial template for forming a yolk-shell structure. The obtained Cu 2 O@ZIF-8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4-nitrophenol with high activity. This is the first report of a Cu 2 O@MOF-type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
1984-01-01
Photovoltaic (PV) modules consist of a string of electrically interconnected silicon solar cells capable of producing practical quantities of electrical power when exposed to sunlight. To insure high reliability and long term performance, the functional components of the solar cell module must be adequately protected from the environment by some encapsulation technique. The encapsulation system must provide mechanical support for the cells and corrosion protection for the electrical components. The goal of the program is to identify and develop encapsulation systems consistent with the PV module operating requirements of 30 year life and a target cost of $0.70 per peak watt ($70 per square meter) (1980 dollars). Assuming a module efficiency of ten percent, which is equivalent to a power output of 100 watts per square meter in midday sunlight, the capital cost of the modules may be calculated to be $70.00 per square meter. Out of this cost goal, only 20 percent is available for encapsulation due to the high cost of the cells, interconnects, and other related components. The encapsulation cost allocation may then be stated as $14.00 per square meter, included all coatings, pottant and mechanical supports for the cells.
Fazal, Zeeshan; Pelowitz, Jennifer; Johnson, Patrick E; Harper, Jason C; Brinker, C Jeffrey; Jakobsson, Eric
2017-04-25
In order to design hybrid cellular/synthetic devices such as sensors and vaccines, it is important to understand how the metabolic state of living cells changes upon physical confinement within three-dimensional (3D) matrices. We analyze the gene expression patterns of stationary phase Saccharomyces cerevisiae (S. cerevisiae) cells encapsulated within three distinct nanostructured silica matrices and relate those patterns to known naturally occurring metabolic states. Silica encapsulation methods employed were lipid-templated mesophase silica thin films formed by cell-directed assembly (CDA), lipid-templated mesophase silica particles formed by spray drying (SD), and glycerol-doped silica gel monoliths prepared from an aqueous silicate (AqS+g) precursor solution. It was found that the cells for all three-encapsulated methods enter quiescent states characteristic of response to stress, albeit to different degrees and with differences in detail. By the measure of enrichment of stress-related gene ontology categories, we find that the AqS+g encapsulation is more amenable to the cells than CDA and SD encapsulation. We hypothesize that this differential response in the AqS+g encapsulation is related to four properties of the encapsulating gel: (1) oxygen permeability, (2) relative softness of the material, (3) development of a protective sheath around individual cells (visible in TEM micrographs vide infra), and (4) the presence of glycerol in the gel, which has been previously noted to serve as a protectant for encapsulated cells and can serve as the sole carbon source for S. cerevisiae under aerobic conditions. This work represents a combination of experiment and analysis aimed at the design and development of 3D encapsulation procedures to induce, and perhaps control, well-defined physiological behaviors.
Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays
NASA Technical Reports Server (NTRS)
1979-01-01
A cost effective encapsulant system was identified and a silicone acrylic cover material containing a durable ultraviolet screening agent was prepared. The effectiveness of the cover material in protecting photo-oxidatively sensitive polymers was demonstrated.
NASA Astrophysics Data System (ADS)
Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki
2018-05-01
The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.
Issues deserve attention in encapsulating probiotics: Critical review of existing literature.
Chen, Jun; Wang, Qi; Liu, Cheng-Mei; Gong, Joshua
2017-04-13
Probiotic bacteria are being increasingly added to food for developing products with health-promoting properties. However, the efficacy of probiotics in commercial products is often questioned due to the loss of their viability during shelf storage and in human gastrointestinal tracts. Encapsulation of probiotics has been expected to provide protection to probiotics, but not many commercial products contain encapsulated and viable probiotic cells owing to various reasons. To promote the development and application of encapsulation technologies, this paper has critically reviewed previous publications with a focus on the areas where studies have fallen short, including insufficient consideration of structural effects of encapsulating material, general defects in encapsulating methods and issues in evaluation methodologies and risk assessments for application. Corresponding key issues that require further studies are highlighted. Some emerging trends in the field, such as current treads in encapsulating material and recently advanced encapsulation techniques, have also been discussed.
Buller, Mark J; Tharion, William J; Duhamel, Cynthia M; Yokota, Miyo
2015-01-01
First responders often wear personal protective equipment (PPE) for protection from on-the-job hazards. While PPE ensembles offer individuals protection, they limit one's ability to thermoregulate, and can place the wearer in danger of heat exhaustion and higher cardiac stress. Automatically monitoring thermal-work strain is one means to manage these risks, but measuring core body temperature (Tc) has proved problematic. An algorithm that estimates Tc from sequential measures of heart rate (HR) was compared to the observed Tc from 27 US soldiers participating in three different chemical/biological training events (45-90 min duration) while wearing PPE. Hotter participants (higher Tc) averaged (HRs) of 140 bpm and reached Tc around 39 °C. Overall the algorithm had a small bias (0.02 °C) and root mean square error (0.21 °C). Limits of agreement (LoA ± 0.48 °C) were similar to comparisons of Tc measured by oesophageal and rectal probes. The algorithm shows promise for use in real-time monitoring of encapsulated first responders. An algorithm to estimate core temperature (Tc) from non-invasive measures of HR was validated. Three independent studies (n = 27) compared the estimated Tc to the observed Tc in humans participating in chemical/ biological hazard training. The algorithm’s bias and variance to observed data were similar to that found from comparisons of oesophageal and rectal measurements.
Tarantal, Alice F.; Lee, C. Chang I.; Itkin-Ansari, Pamela
2009-01-01
Background Encapsulation of cells has the potential to eliminate the need for immunosuppression for cellular transplantation. Recently, the TheraCyte® device was shown to provide long-term immunoprotection of murine islets in the NOD/SCID mouse model of diabetes. In this report, translational studies were undertaken using skin fibroblasts from an unrelated rhesus monkey donor that were transduced with an HIV-1-derived lentiviral vector expressing firefly luciferase permitting the use of bioluminescence imaging (BLI) to monitor cell survival over time and in a noninvasive manner. Methods Encapsulated cells were transplanted subcutaneously (N=2) or cells were injected without encapsulation (N=1) and outcomes compared. BLI was performed to monitor cell survival. Results The BLI signal from the encapsulated cells remained robust post-insertion, and in one animal persisted for up to 1 year. In contrast, the control animal that received unencapsulated cells exhibited a complete loss of cell signal within 14 days. Conclusions These data demonstrate that TheraCyte® encapsulation of allogeneic cells provides robust immune protection in transplanted rhesus monkeys. PMID:19584678
Davis, Janelle L.; Paris, Hunter L.; Beals, Joseph W.; Binns, Scott E.; Giordano, Gregory R.; Scalzo, Rebecca L.; Schweder, Melani M.; Blair, Emek; Bell, Christopher
2016-01-01
Intravenous administration of vitamin C has been shown to decrease oxidative stress and, in some instances, improve physiological function in adult humans. Oral vitamin C administration is typically less effective than intravenous, due in part to inferior vitamin C bioavailability. The purpose of this study was to determine the efficacy of oral delivery of vitamin C encapsulated in liposomes. On 4 separate randomly ordered occasions, 11 men and women were administered an oral placebo, or 4 g of vitamin C via oral, oral liposomal, or intravenous delivery. The data indicate that oral delivery of 4 g of vitamin C encapsulated in liposomes (1) produces circulating concentrations of vitamin C that are greater than unencapsulated oral but less than intravenous administration and (2) provides protection from ischemia–reperfusion-mediated oxidative stress that is similar to the protection provided by unencapsulated oral and intravenous administrations. PMID:27375360
Probiotic Encapsulation Technology: From Microencapsulation to Release into the Gut
Gbassi, Gildas K.; Vandamme, Thierry
2012-01-01
Probiotic encapsulation technology (PET) has the potential to protect microorgansisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This paper reviews the methodological approach of probiotics encapsulation including biomaterials selection, choice of appropriate technology, in vitro release studies of encapsulated probiotics, and highlights the challenges to be overcome in this area. PMID:24300185
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1983-01-01
A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Scott R.; Sottos, Nancy R.; Kang, Sen
One aspect of the invention is a polymer material comprising a capsule coated with PDA. In certain embodiments, the capsule encapsulates a functional agent. The encapsulated functional agent may be an indicating agent, healing agent, protecting agent, pharmaceutical drug, food additive, or a combination thereof.
Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.
Vanhoestenberghe, A; Donaldson, N
2013-06-01
Corrosion is a prime concern for active implantable devices. In this paper we review the principles underlying the concepts of hermetic packages and encapsulation, used to protect implanted electronics, some of which remain widely overlooked. We discuss how technological advances have created a need to update the way we evaluate the suitability of both protection methods. We demonstrate how lifetime predictability is lost for very small hermetic packages and introduce a single parameter to compare different packages, with an equation to calculate the minimum sensitivity required from a test method to guarantee a given lifetime. In the second part of this paper, we review the literature on the corrosion of encapsulated integrated circuits (ICs) and, following a new analysis of published data, we propose an equation for the pre-corrosion lifetime of implanted ICs, and discuss the influence of the temperature, relative humidity, encapsulation and field-strength. As any new protection will be tested under accelerated conditions, we demonstrate the sensitivity of acceleration factors to some inaccurately known parameters. These results are relevant for any application of electronics working in a moist environment. Our comparison of encapsulation and hermetic packages suggests that both concepts may be suitable for future implants.
Long-lifetime thin-film encapsulated organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Wong, F. L.; Fung, M. K.; Tao, S. L.; Lai, S. L.; Tsang, W. M.; Kong, K. H.; Choy, W. M.; Lee, C. S.; Lee, S. T.
2008-07-01
Multiple fluorocarbon (CFx) and silicon nitride (Si3N4) bilayers were applied as encapsulation cap on glass-based organic light-emitting diodes (OLEDs). When CFx/Si3N4 bilayers were deposited onto the OLED structure, the devices showed performance worse than one without any encapsulation. The adverse effects were attributed to the damage caused by reaction species during the thin-film deposition processes. To solve this problem, a CuPc interlayer was found to provide effective protection to the OLED structure. With a structure of CuPc/(CFx/Si3N4)×5, the encapsulated device showed an operation lifetime over 8000 h (higher than 80% of that achieved with a conventional metal encapsulation).
Govender, Mershen; Choonara, Yahya E; van Vuuren, Sandy; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness
2016-09-01
A delayed-release dual delivery system for amoxicillin and the probiotic Lactobacillus acidophilus was developed and evaluated. Statistical optimization of a cross-linked denatured ovalbumin protective matrix was first synthesized using a Box-Behnken experimental design prior to encapsulation with glyceryl monostereate. The encapsulated ovalbumin matrix was thereafter incorporated with amoxicillin in a gastro-resistant capsule. In vitro characterization and stability analysis of the ovalbumin and encapsulated components were also performed Results: Protection of L. acidophilus probiotic against the bactericidal effects of amoxicillin within the dual formulation was determined. The dual formulation in this study proved effective and provides insight into current microbiome research to identify, classify and use functional healthy bacteria to develop novel probiotic delivery technologies.
NASA Astrophysics Data System (ADS)
Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel
2017-11-01
Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome models.
Chen, Rui; Lu, Shao-hong; Tong, Qun-bo; Lou, Di; Shi, Dong-yan; Jia, Bing-bing; Huang, Guo-ping; Wang, Jin-fu
2009-01-01
The dense granule protein 4 (GRA4) is a granular protein from Toxoplasma gondii, and is a candidate for vaccination against this parasite. In this study, the plasmid pcDNA3.1-GRA4 (pGRA4), encoding for the GRA4 antigen, was incorporated by the dehydration-rehydration method into liposomes composed of 16 mmol/L egg phosphatidylcholine (PC), 8 mmol/L dioleoyl phosphatidylethanolamine (DOPE), and 4 mmol/L 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP). C57BL/6 mice and BALB/c mice were immunized intramuscularly three times with liposome-encapsulated pGRA4 to determine whether DNA immunization could elicit a protective immune response to T. gondii. Enzyme-linked immunosorbent assay (ELISA) of sera from immunized mice showed that liposome-encapsulated pGRA4 generated high levels of IgG antibodies to GRA4. Production of primary interferon (IFN)-γ and interleukin (IL)-2 in GRA4-stimulated splenocytes from vaccinated mice suggested a modulated Th1-type response. 72.7% of C57BL/6 mice immunized with liposome-encapsulated pGRA4 survived the challenge with 80 tissue cysts of ME49 strain, whereas C57BL/6 mice immunized with pGRA4 had only a survival rate of 54.5%. When immunized BALB/c mice were intraperitoneally challenged with 103 tachyzoites of the highly virulent RH strain, the survival time of mice immunized with liposome-encapsulated pGRA4 was markedly longer than that of other groups. Our observations show that liposome-encapsulated pGRA4 enhanced the protective effect against infection of T. gondii. PMID:19585669
Thermal Stabilization of Biologics with Photoresponsive Hydrogels.
Sridhar, Balaji V; Janczy, John R; Hatlevik, Øyvind; Wolfson, Gabriel; Anseth, Kristi S; Tibbitt, Mark W
2018-03-12
Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (β-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. β-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex biologics during storage and shipment that additionally enable on-demand release of active molecules at the point of use.
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Coulbert, C. D.; Liang, R. H.; Gupta, A.; Willis, P.; Baum, B.
1983-01-01
Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described.
Essential oils: from extraction to encapsulation.
El Asbahani, A; Miladi, K; Badri, W; Sala, M; Aït Addi, E H; Casabianca, H; El Mousadik, A; Hartmann, D; Jilale, A; Renaud, F N R; Elaissari, A
2015-04-10
Essential oils are natural products which have many interesting applications. Extraction of essential oils from plants is performed by classical and innovative methods. Numerous encapsulation processes have been developed and reported in the literature in order to encapsulate biomolecules, active molecules, nanocrystals, oils and also essential oils for various applications such as in vitro diagnosis, therapy, cosmetic, textile, food etc. Essential oils encapsulation led to numerous new formulations with new applications. This insures the protection of the fragile oil and controlled release. The most commonly prepared carriers are polymer particles, liposomes and solid lipid nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Interaction of light with dye-doped calcium phosphate nanoparticles
NASA Astrophysics Data System (ADS)
Russin, Timothy John
In this work we present work on a novel amorphous calcium phosphate nanoparticle system for use in bioimaging and drug delivery applications. The system, by virtue of its synthesis, can be made to encapsulate and protect any number of molecules that are not suitable for biological applications on their own; for example, medication that is poorly soluble in aqueous solution can be encapsulated for delivery, or fragile optical molecules can be encapsulated to protect them from the local environment. We have encapsulated the near-infrared dye indocyanine green, which has beneficial properties for optical imaging (low biotoxicity, absorption and emission at a minimum of tissue absorption). There are two original works presented in this thesis. The first describes the measurement of the quantum yield of the indocyanine green-doped nanoparticles, as well as the development of a theoretical method to extract the molecular quantum yield of a fluorophore encapsulated in a dielectric sphere from effective quantum yield measurements of nanoparticle dispersions in solution. The second work is an application of diffuse scattering theory to the problem of light propagation in biological tissue; specifically, the limits on penetration depth for photodynamic therapy and bioimaging.
Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon
2009-10-07
We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.
Andrews, G P; Strachan, S T; Benner, G E; Sample, A K; Anderson, G W; Adamovicz, J J; Welkos, S L; Pullen, J K; Friedlander, A M
1999-03-01
To evaluate the role of Yersinia outer proteins (Yops) in conferring protective immunity against plague, six yop loci from Yersinia pestis were individually amplified by PCR, cloned, and expressed in Escherichia coli. The recombinant proteins were purified and injected into mice. Most Yop-vaccinated animals succumbed to infection with either wild-type encapsulated Y. pestis or a virulent, nonencapsulated isogenic variant. Vaccination with YpkA significantly prolonged mean survival time but did not increase overall survival of mice infected with the nonencapsulated strain. The only significant protection against death was observed in YopD-vaccinated mice challenged with the nonencapsulated strain.
NASA Astrophysics Data System (ADS)
Kim, Tae Woo; Kim, In Young; Park, Dae-Hwan; Choy, Jin-Ho; Hwang, Seong-Ju
2016-02-01
A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with various biological and inorganic anions. The encapsulation of deoxyribonucleic acid (DNA) in the cationic APTES-anchored titanate lattice makes possible the reliable long-term protection of DNA against enzymatic, chemical, and UV-vis light corrosions. The encapsulated DNA can be easily released from the titanate lattice via sonication, underscoring the functionality of the cationic APTES-anchored titanate nanosheet as a stable nanocontainer for DNA. The APTES-anchored titanate nanosheet can be also used as an efficient CO2 adsorbent and a versatile host material for various inorganic anions like polyoxometalates, leading to the synthesis of novel intercalative nanohybrids with unexplored properties and useful functionalities.
Kim, Tae Woo; Kim, In Young; Park, Dae-Hwan; Choy, Jin-Ho; Hwang, Seong-Ju
2016-02-24
A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with various biological and inorganic anions. The encapsulation of deoxyribonucleic acid (DNA) in the cationic APTES-anchored titanate lattice makes possible the reliable long-term protection of DNA against enzymatic, chemical, and UV-vis light corrosions. The encapsulated DNA can be easily released from the titanate lattice via sonication, underscoring the functionality of the cationic APTES-anchored titanate nanosheet as a stable nanocontainer for DNA. The APTES-anchored titanate nanosheet can be also used as an efficient CO2 adsorbent and a versatile host material for various inorganic anions like polyoxometalates, leading to the synthesis of novel intercalative nanohybrids with unexplored properties and useful functionalities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...
NASA Astrophysics Data System (ADS)
Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.
2016-07-01
The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g
The influence of immune system stimulation on encapsulated islet graft survival.
Orłowski, Tadeusz M; Godlewska, Ewa; Tarchalska, Magda; Kinasiewicz, Joanna; Antosiak, Magda; Sabat, Marek
2005-01-01
The aim of this study was to determine the influence activating of the recipient immune system on the function of microencapsulated islet xenografts. The skin of WAG or Fisher rats and WAG free or encapsulated (APA) Langerhans islets were transplanted to healthy or to streptozotocin diabetic BALB/c mice. Skin grafts were performed following the method of Billingham and Medawar. Rat islets were isolated from pancreas by the Lacy and Kostianovsy method and encapsulated with calcium alginate-poly-L-lysine-alginate according to the 3-step coating method of Sun. The transplantation of encapsulated WAG islets, despite activation of the host immune system, restored euglycemia for over 180 +/-100 days. A subsequent skin graft taken from the same donor was rejected in the second set mode, but euglycemia persisted. In diabetic recipients, impaired immune response was corrected by successful encapsulated islet transplantation. In diabetic mice, strong stimulation with 2-fold skin transplantation induced primary non-function of grafted islets despite their encapsulation. The survival of an islet xenograft depends on the level of activation of the recipient immune system. The immune response of diabetic mice was impaired, but increased after post-transplant restitution of euglycemia. Microencapsulation sufficiently protected grafted islets, and remission of diabetes was preserved. However, after strong specific or non-specific stimulation of the host immune system, non-function of xenografted islets developed despite their encapsulation. Therefore, islet graft recipients should avoid procedures which could stimulate their immune systems. If absolutely necessary, the graft should be protected by exogenous insulin therapy at that time.
Tzankova, Virginia; Aluani, Denitsa; Kondeva-Burdina, Magdalena; Yordanov, Yordan; Odzhakov, Feodor; Apostolov, Alexandar; Yoncheva, Krassimira
2017-08-01
The toxic liver impairment caused by free radical injury or excessive reactive oxigen species (ROS) formation could be effectivelly attenuated by natural antioxidants. The present study aimed to explore and compare the hepatoprotective and antioxidant effects of free and encapsulated quercetin in in vitro and in vivo models of hepatotoxicity. Thus, quercetin was encapsulated in chitosan/alginate nanoparticles by gelation method. Both empty and quercetin-loaded nanoparticles revealed good safety profile in vitro, determined by the lack of cytotoxicity in human hepatoma HepG2 cells. The pretreatment of HepG2 cells with encapsulated quercetin (10μg/ml) significantly attenuated the decrease in cell viability in H 2 О 2 -induced oxidative stress (0.1mM H 2 О 2 ) , thus showing an effective in vitro protection. In vivo evaluation of the antioxidant and hepatoprotective potential of free and encapsulated quercetin was performed in a model of paracetamol - induced liver injury in male Wistar rats. The oral pretreatment with encapsulated quercetin (0.18mg/kg b.w., 7days) significantly diminished the increased levels of serum transaminases ALT and AST, attenuated the lipid peroxidation and restored the levels of gluthation (a marker of cell antioxidant defence system). The protective effects of quercetin encapsulated in chitosan-based nanoformulation were superior to those of free quercetin. The results of the study suggest that the encapsulation of quercetin in chitosan/alginate nanoformulations might represent an effective therapeutic approach against oxidative stress induced liver injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N
2017-03-15
The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity
NASA Astrophysics Data System (ADS)
Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr
2016-09-01
Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.
Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.
Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr
2016-09-02
Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.
High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane
Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua
2005-01-01
Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922
21 CFR 1310.03 - Persons required to keep records and file reports.
Code of Federal Regulations, 2011 CFR
2011-04-01
... AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.03 Persons required to keep records and... chemical, a tableting machine, or an encapsulating machine shall keep a record of the transaction as...
21 CFR 1310.03 - Persons required to keep records and file reports.
Code of Federal Regulations, 2010 CFR
2010-04-01
... AND REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.03 Persons required to keep records and... chemical, a tableting machine, or an encapsulating machine shall keep a record of the transaction as...
NASA Astrophysics Data System (ADS)
Jamilah, It; Priyani, Nunuk; Lusia Natalia, Santa
2018-03-01
Lactic acid bacteria (LAB) has been added to various food products as a probiotic agent because it has been known to provide beneficial health effects in humans. In the application of LAB, cell viability often decreased as influenced by environment stresses. Encapsulation technique is one of the cell protection techniques using a coating material. Effective coating material is required to produce maximum protection of LAB cells. In this study, candidate of probiotic LAB (isolate US7) was encapsulated with alginate-mung bean flour and alginate-gram flour with inulin prebiotic by extrusion technique. Viability of encapsulated LAB cells were able to survive by up to 108CFU g‑1 after 4 weeks of storage at 4 °C. Beads were incubated in simulated liquid gastric acid (pH=2) for 2 hrs and simulated intestinal fluid (pH=6) for 3 hrs at 37 °C. The results showed that encapsulated LAB cells maintained the survival rate of 97% with the number of cells at 9.07 Log CFU g‑1in the simulated liquid gastric acid and then followed by releasing cells in simulated intestinal fluid. In general, this study indicates that encapsulation with alginate-mung bean flour and alginategram flour with inulin successfullyprotect probiotic bacteria against simulated human gastrointestinal conditions.
NASA Astrophysics Data System (ADS)
Song, Shang; Faleo, Gaetano; Yeung, Raymond; Kant, Rishi; Posselt, Andrew M.; Desai, Tejal A.; Tang, Qizhi; Roy, Shuvo
2016-03-01
Problems associated with islet transplantation for Type 1 Diabetes (T1D) such as shortage of donor cells, use of immunosuppressive drugs remain as major challenges. Immune isolation using encapsulation may circumvent the use of immunosuppressants and prolong the longevity of transplanted islets. The encapsulating membrane must block the passage of host’s immune components while providing sufficient exchange of glucose, insulin and other small molecules. We report the development and characterization of a new generation of semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM), designed with approximately 7 nm-wide slit-pores to provide middle molecule selectivity by limiting passage of pro-inflammatory cytokines. Moreover, the use of convective transport with a pressure differential across the SNM overcomes the mass transfer limitations associated with diffusion through nanometer-scale pores. The SNM exhibited a hydraulic permeability of 130 ml/hr/m2/mmHg, which is more than 3 fold greater than existing polymer membranes. Analysis of sieving coefficients revealed 80% reduction in cytokines passage through SNM under convective transport. SNM protected encapsulated islets from infiltrating cytokines and retained islet viability over 6 hours and remained responsive to changes in glucose levels unlike non-encapsulated controls. Together, these data demonstrate the novel membrane exhibiting unprecedented hydraulic permeability and immune-protection for islet transplantation therapy.
Nasseau, M; Boublik, Y; Meier, W; Winterhalter, M; Fournier, D
2001-12-05
How can enzymes be protected against denaturation and proteolysis while keeping them in a fully functional state? One solution is to encapsulate the enzymes into liposomes, which enhances their stability against denaturation and proteases. However, the permeability barrier of the lipid membrane drastically reduces the activity of enzyme entrapped in the liposome by reducing the internal concentration of the substrate. To overcome this problem, we permeabilized the wall of the liposome by reconstitution of a porin from Escherichia coli. In this way, we recovered the full functionality of the enzyme while retaining the protection against denaturation and proteolytic enzymes. Copyright 2001 John Wiley & Sons, Inc.
Lifetime Improvement of Organic Light Emitting Diodes using LiF Thin Film and UV Glue Encapsulation
NASA Astrophysics Data System (ADS)
Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsieh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang
2008-07-01
This work demonstrates the use of lithium fluoride (LiF) as a passivation layer and a newly developed UV glue for encapsulation on the LiF passivation layer to enhance the stability of organic light-emitting devices (OLEDs). Devices with double protective layers showed a 25-fold increase in operational lifetime compared to those without any packaging layers. LiF has a low melting point and insulating characteristics and it can be adapted as both a protective layer and pre-encapsulation film. The newly developed UV glue has a fast curing time of only 6 s and can be directly spin-coated onto the surface of the LiF passivation layer. The LiF thin film plus spin-coated UV glue is a simple packaging method that reduces the fabrication costs of OLEDs.
NASA Technical Reports Server (NTRS)
Duc, M. La; Chen, F.; Kern, R.; Koukol, R.; Baker, A.; Venkateswaran, K.
2001-01-01
A study in which several surface samples, retrieved from both the Mars Odyssey Spacecraft and the Kennedy Space Center (KSC) Spacecraft Assembly and Encapsulation Facility II (SAEF-II), were prcesed and evaluated by both molecular and traditional culture-based methods for the microbial diversity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...
Lin, Bingqian; Liu, Dan; Yan, Jinmao; Qiao, Zhi; Zhong, Yunxin; Yan, Jiawei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong James
2016-03-23
There is considerable demand for sensitive, selective, and portable detection of disease-associated proteins, particularly in clinical practice and diagnostic applications. Portable devices are highly desired for detection of disease biomarkers in daily life due to the advantages of being simple, rapid, user-friendly, and low-cost. Herein we report an enzyme-encapsulated liposome-linked immunosorbent assay for sensitive detection of proteins using personal glucose meters (PGM) for portable quantitative readout. Liposomes encapsulating a large amount of amyloglucosidase or invertase are surface-coated with recognition elements such as aptamers or antibodies for target recognition. By translating molecular recognition signal into a large amount of glucose with the encapsulated enzyme, disease biomarkers such as thrombin or C-reactive protein (CRP) can be quantitatively detected by a PGM with a high detection limit of 1.8 or 0.30 nM, respectively. With the advantages of portability, ease of use, and low-cost, the method reported here has potential for portable and quantitative detection of various targets for different POC testing scenarios, such as rapid diagnosis in clinic offices, health monitoring at the bedside, and chemical/biochemical safety control in the field.
Thantsha, M S; Labuschagne, P W; Mamvura, C I
2014-02-01
The probiotic industry faces the challenge of retention of probiotic culture viability as numbers of these cells within their products inevitably decrease over time. In order to retain probiotic viability levels above the therapeutic minimum over the duration of the product's shelf life, various methods have been employed, among which encapsulation has received much interest. In line with exploitation of encapsulation for protection of probiotics against adverse conditions, we have previously encapsulated bifidobacteria in poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex microparticles under supercritical conditions. The microparticles produced had suitable characteristics for food applications and also protected the bacteria in simulated gastrointestinal fluids. The current study reports on accelerated shelf life studies of PVP:PVAc-CA encapsulated Bifidobacterium lactis Bb12 and Bifidobacterium longum Bb46. Samples were stored as free powders in glass vials at 30 °C for 12 weeks and then analysed for viable counts and water activity levels weekly or fortnightly. Water activities of the samples were within the range of 0.25-0.43, with an average a(w) = 0.34, throughout the storage period. PVP:PVAc-CA interpolymer complex encapsulation retained viable levels above the recommended minimum for 10 and 12 weeks, for B. longum Bb46 and B. lactis Bb12, respectively, thereby extending their shelf lives under high storage temperature by between 4 and 7 weeks. These results reveal the possibility for manufacture of encapsulated probiotic powders with increased stability at ambient temperatures. This would potentially allow the supply of a stable probiotic formulation to impoverished communities without proper storage facilities recommended for most of the currently available commercial probiotic products.
Bainbridge, Melissa; Kraft, Jana
2016-01-01
Transfer efficiencies of rumen-protected n-3 fatty acids (FA) to milk are low, thus we hypothesized that rumen-protection technologies allow for biohydrogenation and excretion of n-3 FA. The objectives of this study were to i) investigate the ruminal protection and post-ruminal release of the FA derived from the lipid-encapsulated echium oil (EEO), and ii) assess the bioavailability and metabolism of the EEO-derived FA through measuring the FA content in plasma lipid fractions, feces, and milk. The EEO was tested for rumen stability using the in situ nylon bag technique, then the apparent total-tract digestibility was assessed in vivo using six Holstein dairy cattle. Diets consisted of a control (no EEO); 1.5% of dry matter (DM) as EEO and 1.5% DM as encapsulation matrix; and 3% DM as EEO. The EEO was rumen-stable and had no effect on animal production. EEO-derived FA were incorporated into all plasma lipid fractions, with the highest proportion of n-3 FA observed in cholesterol esters. Fecal excretion of EEO-derived FA ranged from 7–14%. Biohydrogenation products increased in milk, plasma, and feces with EEO supplementation. In conclusion, lipid-encapsulation provides inadequate digestibility to achieve an optimal transfer efficiency of n-3 FA to milk. PMID:27741299
Endothelial Targeting of Semi-permeable Polymer Nanocarriers for Enzyme Therapies
Dziubla, Thomas D; Shuvaev, Vladimir V.; Hong, Nan Kang; Hawkins, Brian; Muniswamy, Madesh; Takano, Hajime; Simone, Eric; Nakada, Marian T.; Fisher, Aron; Albelda, Steven M.; Muzykantov, Vladimir R.
2007-01-01
The medical utility of proteins, e.g. therapeutic enzymes, is greatly restricted by their liable nature and inadequate delivery. Most therapeutic enzymes do not accumulate in their targets and are inactivated by proteases. Targeting of enzymes encapsulated into substrate-permeable Polymeric Nano-Carriers (PNC) impermeable for proteases might overcome these limitations. To test this hypothesis, we designed endothelial targeted PNC loaded with catalase, the H2O2-detoxifying enzyme, and tested if this approach protects against vascular oxidative stress, a pathological process implicated in ischemia-reperfusion and other disease conditions. Encapsulation of catalase (MW 240KD), peroxidase (MW 42kD) and xanthine oxidase (XO, MW 300 kD) into ~300nm diameter PNC composed of co-polymers of PEG-PLGA (polyethylene glycol and poly-lactic/poly-glycolic acid) was in the range ~10% for all enzymes. PNC/catalase and PNC/peroxidase were protected from external proteolysis and exerted the enzymatic activity on their PNC diffusible substrates, H2O2 and ortho-phenylendiamine, whereas activity of encapsulated XO was negligible due to polymer impermeability to the substrate. PNC targeted to platelet-endothelial cell adhesion molecule-1 delivered active encapsulated catalase to endothelial cells and protected the endothelium against oxidative stress in cell culture and animal studies. Vascular targeting of PNC-loaded detoxifying enzymes may find wide medical applications including management of oxidative stress and other toxicities. PMID:17950837
McClements, David Julian
2017-02-01
Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given. Copyright © 2016 Elsevier B.V. All rights reserved.
Boettler, Tobias; Schneider, Darius; Cheng, Yang; Kadoya, Kuniko; Brandon, Eugene P; Martinson, Laura; von Herrath, Matthias
2016-01-01
Type 1 diabetes (T1D) is characterized by destruction of glucose-responsive insulin-producing pancreatic β-cells and exhibits immune infiltration of pancreatic islets, where CD8 lymphocytes are most prominent. Curative transplantation of pancreatic islets is seriously hampered by the persistence of autoreactive immune cells that require high doses of immunosuppressive drugs. An elegant approach to confer graft protection while obviating the need for immunosuppression is the use of encapsulation devices that allow for the transfer of oxygen and nutrients, yet prevent immune cells from making direct contact with the islet grafts. Here we demonstrate that macroencapsulation devices (TheraCyte) loaded with neonatal pancreatic tissue and transplanted into RIP-LCMV.GP mice prevented disease onset in a model of virus-induced diabetes mellitus. Histological analyses revealed that insulin-producing cells survived within the device in animal models of diabetes. Our results demonstrate that these encapsulation devices can protect from an immune-mediated attack and can contain a sufficient amount of insulin-producing cells to prevent overt hyperglycemia.
Hlaing, Mya M; Wood, Bayden R; McNaughton, Don; Ying, DanYang; Dumsday, Geoff; Augustin, Mary Ann
2017-03-01
Microencapsulation protects cells against environmental stress encountered during the production of probiotics, which are used as live microbial food ingredients. Freeze-drying and spray-drying are used in the preparation of powdered microencapsulated probiotics. This study examines the ability of Fourier transform infrared (FTIR) spectroscopy to detect differences in cells exposed to freeze-drying and spray-drying of encapsulated Lactobacillus rhamnosus GG cells. The FTIR analysis clearly demonstrated there were more significant molecular changes in lipid, fatty acid content, protein, and DNA conformation of nonencapsulated compared to encapsulated bacterial cells. The technique was also able to differentiate between spray-dried and freeze-dried cells. The results also revealed the extent of protection from a protein-carbohydrate-based encapsulant matrix on the cells depending on the type drying process. The extent of this protection to the dehydration stress was shown to be less in spray-dried cells than in freeze-dried cells. This suggests that FTIR could be used as a rapid, noninvasive, and real-time measurement technique to detect detrimental drying effects on cells.
Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery.
Smitha, K T; Sreelakshmi, M; Nisha, N; Jayakumar, R; Biswas, Raja
2014-02-01
This work reports the development of amidase encapsulated O-carboxymethyl chitosan nanoparticles (Ami-O-CMC NPs) of 300±50 nm size by ionic cross-linking method. The prepared Ami-O-CMC NPs had an encapsulation efficiency of 55.39%. Haemolysis assay and cytotoxicity studies proved the hemocompatibility and cytocompatibility of the prepared NPs. The sustained release of Ami from the NPs is expected to prolong its immunogenicity and in turn lead to development of better protective immunity against Staphylococcus aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.
Ruan, Xiang-cai; Wang, Shen-ming; Shi, Han-ping; Li, Xiao-xi; Xia, Feng-geng; Ming, Fei-ping
2009-03-10
To investigate the effects of micro-encapsulated bifidobacteria on gut barrier and bacterial translocation after hemorrhagic shock and resuscitation. Sprague-Dawley rats were divided into 6 groups: PBS+sham shock group fed with PBS for 7 days and then undergoing sham shock, bifidobacteria+sham shock group fed with bifidobacteria (10(9) cfu/d) for 7 days and then undergoing sham shock, micro-encapsulated bifidobacteria+sham shock group, fed with micro-encapsulated bifidobacteria (10(9) cfu/d) for 7 days and then undergoing sham shock, PBS+hemorrhagic shock group fed with PBS for 7 days and then undergoing hemorrhagic shock, bifidobacteria+shock group fed with bifidobacteria for 7 days and then undergoing hemorrhagic shock, and micro-encapsulated bifidobacteria+shock group, fed with micro-encapsulated bifidobacteria for 7 days and then undergoing hemorrhagic shock. Three hours after resuscitation laparotomy was performed, distal cecum was resected to undergo bacteriological analysis of the cecal content, mesenteric lymph nodes (MLNs), a liver lobe, and the middle part of spleen were resected to undergo bacterial culture for bacterial translocation, and the terminal ileum was resected to observe the villous damage. There was no significant difference in the amount of blood loss among the 3 hemorrhagic shock groups. The amounts of aerobes in cecum of the bifidobacteria+shock and micro-encapsulated bifidobacteria+shock groups, especially that of the latter group, were significantly lower than that of the PBS+shock group. The amounts of anaerobes and the amounts of bifidobacteria in cecum of the bifidobacteria+shock group and micro-encapsulated bifidobacteria+shock group, especially those of the latter group, were significantly higher than those of the PBS+shock group. No bacterial translocation to liver was observed in all groups. The magnitudes of total aerobes translocation in spleen of the bifidobacteria+shock and encapsulated bifidobacteria+shock groups were significantly lower than that of the PBS+shock group, however, there were not significant differences in the translocation in the MLN of total aerobes ad bifidobacteria among different groups. The percentage of ileal villous damage of the bifidobacteria+shock and encapsulated bifidobacteria+shock groups were significantly lower than that of the PBS+shock group. Bifidobacteria effectively protects the gut barrier, reduces bacterial translocation from the gut after hemorrhagic shock and resuscitation. And micro-encapsulated Bifidobacteria can enhance those effects further.
Han, Li-Bin; Yin, Li-Hong; Huang, Ling-Qiao; Wang, Chen-Zhu
2015-09-01
The ichneumonid wasp, Campoletis chlorideae Uchida, successfully develops in the cotton bollworm Helicoverpa armigera (Hübner), but rarely survives in the beet armyworm Spodoptera exigua (Hübner) due to the encapsulation by host immunity. In this study, we investigated the role of C. chlorideae ichnovirus (CcIV) and eggs in the evasion of the host immune system. Washed eggs of different types, immature, mature, newly laid, or pretreated with protease K, were injected alone or with the calyx fluid containing CcIV into the larvae of H. armigera and S. exigua. In H. armigera, when injected with washed eggs alone, only 9.5% of the mature eggs were encapsulated at 24h post-injection. This is much lower than that of the immature eggs (100%), mature eggs pretreated with protease K (100%) and newly laid eggs (54.4%). No encapsulation was observed when the washed eggs were co-injected with calyx fluid at 24h post-injection. Conversely, the eggs in all treatments were encapsulated in S. exigua. Electron microscopic observations of parasitoid eggs showed structural differences between the surfaces of the mature and other kinds of eggs. The injected CcIV decreased the numbers of host hemocytes and suppressed the spreading ability of plasmatocytes and granulocytes in H. armigera, but had little effect on the hemocytes from S. exigua. In conclusion, the C. chlorideae egg provides a passive protection against encapsulation by itself, and CcIV supplies an active protection through disrupting host immune responses. These coordinated protections are host-specific, implying their role in host range determination. Copyright © 2015 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2010-04-01
The primary purpose of this study was to assess the condition of piles that had been encapsulated in fiberglass and mortar jackets on four bridges that are part of the Hampton Roads Bridge-Tunnel (HRBT). Since these four bridges contain a total of ap...
Çabuk, Burcu; Tellioğlu Harsa, Şebnem
2015-12-01
In this research, whey protein/pullulan (WP/pullulan) microcapsules were developed in order to assess its protective effect on the viability of Lactobacillus acidophilus NRRL-B 4495 under in vitro gastrointestinal conditions. Results demonstrated that WP/pullulan microencapsulated cells exhibited significantly (p ≤ 0.05) higher resistance to simulated gastric acid and bile salt. Pullulan incorporation into protein wall matrix resulted in improved survival as compared to free cells after 3 h incubation in simulated gastric solution. Moreover WP/pullulan microcapsules were found to release over 70% of encapsulated L. acidophilus NRRL-B 4495 cells within 1 h. The effect of encapsulation during refrigerated storage was also studied. Free bacteria exhibited 3.96 log reduction while, WP/pullulan encapsulated bacteria showed 1.64 log reduction after 4 weeks of storage. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
Noninvasive encapsulated fiber optic probes for interferometric measurement
NASA Astrophysics Data System (ADS)
Zboril, O.; Cubik, J.; Kepak, S.; Nedoma, J.; Fajkus, M.; Zavodny, P.; Vasinek, V.
2017-10-01
This article focuses on the sensitivity of encapsulated interferometric probes. These probes are used mainly for BioMed and security applications. Fiber-optic sensors are interesting for these applications, as they are resistant to electromagnetic interference (EMI) and that also do not affect the surrounding medical and security equipment. Using a loop of the optical fiber with is not a suitable for these measurements. The optical fiber should be fixed to one position, and should not significantly bend. For these reasons, the optical fiber is encapsulated. Furthermore, it is necessary that the encapsulated measuring probes were flexible, inert, water resistant and not toxic. Fiber-optic sensors shouldn't be magnetically active, so they can be used for example, in magnetic resonance environments (MR). Probes meeting these requirements can be widely used in health care and security applications. Encapsulation of interferometric measuring arm brings changes in susceptibility of measurements in comparison with the optical fiber without encapsulation. To evaluate the properties of the encapsulated probes, series of probes made from different materials for encapsulation was generated, using two types of optical fibers with various degrees of protection. Comparison of the sensitivity of different encapsulated probes was performed using a series of measurements at various frequencies. The measurement results are statistically compared in the article and commented. Given the desired properties polydimethylsiloxane (PDMS) polymer has been proven the most interesting encapsulating material for further research.
Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.
Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime
2015-06-08
Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.
Protection of probiotic bacteria in synbiotic matrices
USDA-ARS?s Scientific Manuscript database
Probiotics, like Lactobacillus acidophilus, Lactobacillus reuteri, Bifidobacterium breve, Bifidobacterium longum, when encapsulated with prebiotic fibers such as fructo-oligosaccharides (FOS), inulin (I) and pectic-oligosaccharides (POS), formed a synbiotic matrix system that protected the bacteria ...
Durkut, Serap; Elçin, A Eser; Elçin, Y Murat
2015-02-01
Encapsulation techniques have the potential to protect hepatocytes from cryoinjury. In this study, we comparatively evaluated the viability and metabolic function of primary rat hepatocytes encapsulated in calcium alginate microbeads, in chitosan tripolyphosphate beads, and in three-layered alginate-chitosan-alginate (ACA) microcapsules, before and after cryopreservation at -80°C and in liquid nitrogen (LN2) for 1 and 3 months. Findings demonstrated that LN2 was atop of -80°C in regard to preservation of viability (> 90%) and hepatic functions. LN2-cryopreserved hepatocytes encapsulated in ACA microcapsules retained metabolic function post-thawing, with > 90% of the albumin, total protein and urea syntheses activities, and > 80% of oxidative function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley, W A
This report describes work performed under a subcontract to the National Renewable Energy Laboratory under the Photovoltaic Manufacturing Technology Project. The objectives of this subcontract are to (1) define the problem of yellowing/browning of EVA-based encapsulants; (2) determine probable mechanisms and the role of various parameters such as heat, UV exposure, module construction, EVA interfaces, and EVA thickness, in the browning of EVA-based encapsulants; (3) develop stabilization strategies for various module constructions to protect the encapsulant from degradative failure; (4) conduct laboratory, accelerated outdoor, and field testing of encapsulant, laminated test coupons, and full modules to demonstrate the functional adequacymore » of the stabilization strategies; and (5) implement these strategies. This report summarizes the accomplishments related to the above goals for the reporting period.« less
Use of encapsulated bacteriophages to enhance farm to fork food safety.
Hussain, Malik A; Liu, Huan; Wang, Qi; Zhong, Fang; Guo, Qian; Balamurugan, Sampathkumar
2017-09-02
Bacteriophages have been successfully applied to control the growth of pathogens in foods and to reduce the colonization and shedding of pathogens by food animals. They are set to play a dominant role in food safety in the future. However, many food-processing operations and the microenvironments in food animals' guts inactivate phages and reduce their infectivity. Encapsulation technologies have been used successfully to protect phages against extreme environments, and have been shown to preserve their activity and enable their release in targeted environments. A number of encapsulation technologies have shown potential for use with bacteriophages. This review discusses the current state of knowledge about the use of encapsulation technologies with bacteriophages to control pathogens in foods and food animals.
NASA Technical Reports Server (NTRS)
Gaines, G. B.; Carmichael, D. C.; Sliemers, F. A.; Brockway, M. C.; Bunk, A. R.; Nance, G. P.
1978-01-01
Three encapsulation designs for silicon photovoltaic arrays based on cells with silk-screened Ag metallization have been evaluated: transparent polymeric coatings over cells laminated between two films or sheets of polymeric materials; cells adhesively bonded to a glass cover with a polymer pottant and a glass or other substrate component. Silicone and acrylic coatings were assessed, together with acrylic sheet, 0.635 mm fiberglass-reinforced polyester sheet, 0.102 mm polycarbonate/acrylic dual-layer film, 0.127 mm fluorocarbon film, soda-lime glass, borosilicate glass, low-iron glass, and several adhesives. The encapsulation materials were characterized by light transmittance measurements, determination of moisture barrier properties and bond strengths, and by the performance of cells before and after encapsulation. Silicon and acrylic coatings provided inadequate protection. Acrylic and fluorocarbon films displayed good weatherability and acceptable optical transmittance. Borosilicate, low-iron and soda-lime-float glasses were found to be acceptable candidate encapsulants for most environments.
Antioxidant activity from encapsulated Cinnamaldehyde-Chitosan
NASA Astrophysics Data System (ADS)
Ariestiani, Bonita; Purbowatingrum; Ngadiwiyana; Ismiyarto; Fachriyah, Enny; Nurani, Khikmah
2018-05-01
Cinnamaldehyde compound is a powerful antioxidant agent that can effectively combat the free radicals referred to superoxide anions and hydroxy radicals, as well as other free radicals in in vitro testing. An antioxidant is an electron donor or reductant. antioxidants are also compounds that can inhibit oxidation reactions by binding to free radicals and highly reactive molecules. As a result, cell damage will be inhibited. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74,389% also antioxidant activity test showed that cinnamaldehyde encapsulated by nanochitosan could inhibit free radicals of 223.44 in IC50.
Chapter 10.2: Encapsulant Materials for PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, Michael D
2017-01-07
Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes; it provides optical coupling of PV cells and protection against environmental stress. Polymers must perform these functions under prolonged periods of high temperature, humidity, and UV radiation. When PV panels were first developed in the 1960s and the 1970s, the dominant encapsulants were based on polydimethyl siloxane (PDMS). Ethylene-co-vinyl acetate (EVA) is currently the dominant encapsulant chosen for PV applications, not because it has the best combination of properties, but because it is an economical option with an established history of acceptable durability. Getting new products onto the market ismore » challenging because there is no room for dramatic improvements, and one must balance the initial cost and performance with the unknowns of long-term service life. Recently, there has been renewed interest in using alternative encapsulant materials with some significant manufacturers switching from EVA to polyolefin elastomer-based (POE) alternatives.« less
Stability of lime essential oil microparticles produced with protein-carbohydrate blends.
Campelo, Pedro Henrique; Sanches, Edgar Aparecido; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela
2018-03-01
The objective of this work was to analyze the influence of maltodextrin equivalent dextrose on the lime essential oil reconstitution, storage, release and protection properties. Four treatments were evaluated: whey protein concentrate (WPC), and blends of maltodextrin with dextrose equivalents of 5 (WM5), 10 (WM10) and 20 (WM20). The reconstitution and storage properties of the microparticles (solubility, wettability and density), water kinetics adsorption, sorption isotherms, thermogravimetric properties, controlled release and degradation kinetics of encapsulated lime essential oil were studied to measure the quality of the encapsulated materials. The results of the study indicated that the DE degree influences the characteristics of reconstitution, storage, controlled release and degradation characteristics of encapsulated bioactive compounds. The increase in dextrose equivalent improves microparticle solubility, wettability and density, mainly due to the size of the maltodextrin molecules. The adsorption kinetics and sorption isotherm curves confirmed the increase in the hygroscopicity of maltodextrins with higher degrees of polymerization. The size of the maltodextrin chains influenced the release and protection of the encapsulated lime essential oil. Finally, the maltodextrin polymerization degree can be considered a parameter that will influence the physicochemical properties of microencapsulated food. Copyright © 2017 Elsevier Ltd. All rights reserved.
Speranza, Barbara; Petruzzi, Leonardo; Bevilacqua, Antonio; Gallo, Mariangela; Campaniello, Daniela; Sinigaglia, Milena; Corbo, Maria Rosaria
2017-06-01
The production of value-added and/or functional juices has increased significantly in recent years, following an increased consumer demand to promote health and/or prevent disease through diet and nutrition. Micro and nano-encapsulation are promising technologies to protect and deliver sensitive compounds, allowing a controlled release in the target sites. This paper offers an overview of current applications, limits and challenges of encapsulation technologies in the production of fruit and vegetable juices, with a particular emphasis on products derived from different botanical sources. © 2017 Institute of Food Technologists®.
Noisette, Fanny; Comtet, Thierry; Legrand, Erwann; Bordeyne, François; Davoult, Dominique; Martin, Sophie
2014-01-01
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 μatm) and at elevated levels (750 and 1400 μatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 μatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 μatm and 1400 μatm pCO2, respectively, than at 390 μatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.
Electrospun nanofibres in agriculture and the food industry: a review.
Noruzi, Masumeh
2016-11-01
The interesting characteristics of electrospun nanofibres, such as high surface-to-volume ratio, nanoporosity, and high safety, make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibres have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibres in agriculture is comparatively novel and is still in its infancy. In this paper, the specific applications of electrospun nanofibres in agriculture and food science, including plant protection using pheromone-loaded nanofibres, plant protection using encapsulation of biocontrol agents, preparation of protective clothes for farm workers, encapsulation of agrochemical materials, deoxyribonucleic acid extraction in agricultural research studies, pre-concentration and measurement of pesticides in crops and environmental samples, preparation of nanobiosensors for pesticide detection, encapsulation of food materials, fabrication of food packaging materials, and filtration of beverage products are reviewed and discussed. This paper may help researchers develop the use of electrospun nanofibres in agriculture and food science to address some serious problems such as the intensive use of pesticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Mahadevan, Reena
Nanoparticles are emerging as versatile vehicles for drug delivery, providing targeting, protection, and controlled-release capabilities to encapsulated cargo. Polymeric nanoparticles made from poly(lactide-co-glycolide) (PLGA) are biodegradable, exhibit tunable drug release, and have encapsulated a wide variety of biological agents. However, PLGA nanoparticles are relatively inefficient at encapsulating small-molecule hydrophilic drugs. Liposomes encapsulate greater amounts of hydrophilic agents and demonstrate good cellular affinity; however, they lack controlled-release functionality. Hydrogel-core lipid-shell nanoparticles, or nanolipogels, combine the controlled-release capability of polymeric nanocarriers with the hydrophilic and cellular affinity of liposomes into a single drug delivery vehicle. This study establishes a facile, reproducible synthetic protocol for nanolipogels and evaluates hydrogel swelling as a mechanism for release of the small hydrophilic antiretroviral azidothymidine from nanolipogels.
Bustamante, Mariela; Oomah, B Dave; Rubilar, Mónica; Shene, Carolina
2017-02-01
Mucilage (M) and soluble protein (SP) extracted from chia seed and flaxseed were used as encapsulating material for two probiotic bacteria: Bifidobacterium infantis and Lactobacillus plantarum by spray drying. Probiotic survival and viability after spray drying and during storage were evaluated. B. infantis and L. plantarum displayed high survival (⩾98%) after encapsulation with mixtures of maltodextrin (MD) combined with M and SP from flaxseed (MD:FM:FSP - 7.5:0.2:7.5%, w/w/w) and chia seed (MD:CM:CSP - 7.5:0.6:7.5%, w/w/w), respectively. These ternary blends protected the probiotics and enhanced their resistance to simulated gastric juice and bile solution. Probiotics encapsulated with the ternary blends incorporated in instant juice powder exhibited high viability (>9Log10CFU/g) after 45days refrigerated storage. Encapsulation with the ternary blends reduced particle size of the probiotic powders thereby offering additional functional benefits. Our results reveal that chia seed and flaxseed are excellent sources of probiotic encapsulating agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele
2015-01-01
Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications.
Funaro, Michael G; Nemani, Krishnamurthy V; Chen, Zhihang; Bhujwalla, Zaver M; Griswold, Karl E; Gimi, Barjor
2016-02-01
Cytosine deaminase (CD) catalyses the enzymatic conversion of the non-toxic prodrug 5-fluorocytosine (5-FC) to the potent chemotherapeutic form, 5-fluorouracil (5-FU). Intratumoral delivery of CD localises chemotherapy dose while reducing systemic toxicity. Encapsulation in biocompatible microcapsules immunoisolates CD and protects it from degradation. We report on the effect of alginate encapsulation on the catalytic and functional activity of isolated CD and recombinant E. coli engineered to express CD (E. coli(CD)). Alginate microcapsules containing either CD or Escherichia coli(CD) were prepared using ionotropic gelation. Conversion of 5-FC to 5-FU was quantitated in unencapsulated and encapsulated CD/E. coli(CD) using spectrophotometry, with a slower rate of conversion observed following encapsulation. Both encapsulated CD/5-FC and E. coli(CD)/5-FC resulted in cell kill and reduced proliferation of 9 L rat glioma cells, which was comparable to direct 5-FU treatment. Our results show that encapsulation preserves the therapeutic potential of CD and E. coli(CD) is equally effective for enzyme-prodrug therapy.
Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele
2015-01-01
Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications. PMID:26528254
Isolation, banking, encapsulation and transplantation of different types of Langerhans islets.
Antosiak-Iwańska, Magdalena; Sitarek, Elzbieta; Sabat, Marek; Godlewska, Ewa; Kinasiewicz, Joanna; Weryński, Andrzej
2009-05-01
The discovery of a cure for diabetes is a dream of many medical researchers. The transplantation of Langerhans islets is a potential treatment of choice for patients with type 1 diabetes as a source of endogenous insulin for the recipient. The aim of the experiment was to transplant Langerhans islets without immunosuppression. To protect the grafts against transplant rejection, semipermeable membranes could be used. Langerhans islets were isolated from rats and pigs and immunoisolated by encapsulation in alginate-protamine-heparin (APH) or alginate-poly-L-lysine-alginate (APA) membranes. Islets were pooled in a controlled manner. Tests for cryopreservation and biocompatibility were also performed. The capsules coated with APH are more resistant than the capsules coated with APA. After transplantation of the islets immunoisolated with APA, euglycemia is maintained longer than after transplantation of the islets immunoisolated with APH. Microencapsulation protects the islets from destruction by the host. It is feasible to treat experimental diabetes by transplantation of encapsulated Langerhans islets without immunosuppression.
Investigation of test methods, material properties and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.; Baum, B.
1983-01-01
The goal of the program is to identify, test, evaluate and recommend encapsulation materials and processes for the fabrication of cost-effective and long life solar modules. Of the $18 (1948 $) per square meter allocated for the encapsulation components approximately 50% of the cost ($9/sq m) may be taken by the load bearing component. Due to the proportionally high cost of this element, lower costing materials were investigated. Wood based products were found to be the lowest costing structural materials for module construction, however, they require protection from rainwater and humidity in order to acquire dimensional stability. The cost of a wood product based substrate must, therefore, include raw material costs plus the cost of additional processing to impart hygroscopic inertness. This protection is provided by a two step, or split process in which a flexible laminate containing the cell string is prepared, first in a vacuum process and then adhesively attached with a back cover film to the hardboard in a subsequent step.
NASA Technical Reports Server (NTRS)
Carmichael, D. C.; Gaines, G. B.; Sliemers, F. A.; Kistler, C. W.; Igou, R. D.
1976-01-01
Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions.
Gravity-induced encapsulation of liquids by destabilization of granular rafts
NASA Astrophysics Data System (ADS)
Abkarian, Manouk; Protière, Suzie; Aristoff, Jeffrey M.; Stone, Howard A.
2013-05-01
Droplets and bubbles coated by a protective armour of particles find numerous applications in encapsulation, stabilization of emulsions and foams, and flotation techniques. Here we study the role of a body force, such as in flotation, as a means of continuous encapsulation by particles. We use dense particles, which self-assemble into rafts, at oil-water interfaces. We show that these rafts can be spontaneously or controllably destabilized into armoured oil-in-water droplets, which highlights a possible role for common granular materials in environmental remediation. We further present a method for continuous production and discuss the generalization of our approach towards colloidal scales.
Ordering and partitioning in vesicle forming block copolymer thin films
NASA Astrophysics Data System (ADS)
Parnell, Andrew; Kamata, Yohei; Jones, Richard
Cell biology routinely uses encapsulation processes to package a payload and transport it to a location where the payload can then be used. Synthetic polymer based liposomes (Polymersomes) are one possible way in which we can artificially contain a molecule of interest that is protected from its surrounding environment. Encapsulation technologies at present rely on forming a lipid vesicle and then extruding it in a solution containing the target molecule to be encapsulated. Only a small fraction is encapsulated in this process. This is because of the complex structural formation pathway in going from individual isolated amphiphilic molecules into vesicle aggregates. My talk will discuss strategies to overcome the formation pathways, by forming a block copolymer film with the target molecule and then solvent ordering prior to the formation of vesicles. By studying block copolymer thin films with neutron reflectivity and ellipsometry we are able to observe partitioning and ordering which is essential for high encapsulation efficiencies. We acknowledge funding from STFC for use of the ISIS spallation neutron source.
Feasibility study of silicon nitride protection of plastic encapsulated semiconductors
NASA Technical Reports Server (NTRS)
Peters, J. W.; Hall, T. C.; Erickson, J. J.; Gebhart, F. L.
1979-01-01
The application of low temperature silicon nitride protective layers on wire bonded integrated circuits mounted on lead frame assemblies is reported. An evaluation of the mechanical and electrical compatibility of both plasma nitride and photochemical silicon nitride (photonitride) passivations (parallel evaluations) of integrated circuits which were then encapsulated in plastic is described. Photonitride passivation is compatible with all wire bonded lead frame assemblies, with or without initial chip passivation. Plasma nitride passivation of lead frame assemblies is possible only if the chip is passivated before lead frame assembly. The survival rate after the environmental test sequence of devices with a coating of plasma nitride on the chip and a coating of either plasma nitride or photonitride over the assembled device is significantly greater than that of devices assembled with no nitride protective coating over either chip or lead frame.
Micro/nanoreservoirs for controlled release of active species in smart functional coatings =
NASA Astrophysics Data System (ADS)
Maia, Frederico Calheiros
This work reports one possible way to develop new functional coatings used to increase the life time of metallic structures. The functionalities selected and attributed to model coatings in the frame of this work were corrosion protection, self-sensing and prevention of fouling (antifouling). The way used to confer those functionalities to coatings was based on the encapsulation of active compounds (corrosion inhibitors, pH indicators and biocides) in micro and nanocontainers followed by their incorporation into the coating matrices. To confer active corrosion protection, one corrosion inhibitor (2-mercaptobenzothiazole, MBT) was encapsulated in two different containers, firstly in silica nanocapsules (SiNC) and in polyurea microcapsules (PU-MC). The incorporation of both containers in different models coatings shows a significant improvement in the corrosion protection of aluminum alloy 2024 (AA2024). Following the same approach, SiNC and PU-MC were also used for the encapsulation of phenolphthalein (one well known pH indicator) to introduce sensing properties in polymeric coatings. SiNC and PU-MC containing phenolphthalein acted as corrosion sensor, showing a pink coloration due to the beginning of cathodic reaction, resulting in a pH increase identified by those capsules. Their sensing performance was proved in suspension and when integrated in coatings for aluminium alloy 2024 and magnesium alloy AZ31. In a similar way, the biocide activity (antifouling) was assigned to two polymeric matrices using SiNC for encapsulation of one biocide (Dichloro-2-octyl-2H-isothiazol-3-one, DCOIT) and also SiNC-MBT was tested as biocide. The antifouling activity of those two encapsulated compounds was assessed through inhibition and consequent decrease in the bioluminescence of modified E. coli. That effect was verified in suspension and when incorporated in coatings for AISI 1008 carbon steel. The developed micro and nanocontainers presented the desired performance, allowing the introduction of new functionalities to model coatings, showing potential to be used as functional additives in the next generation of multifunctional coatings.
Vermeirssen, Etiënne L M; Campiche, Sophie; Dietschweiler, Conrad; Werner, Inge; Burkhardt, Michael
2018-05-22
To protect house façades from fouling by microorganisms, biocides can be added to a render or paint before it is applied. During driving rain events, these biocides gradually leach out and have the potential to pollute soil or aquatic ecosystems. We studied the leaching behaviour of biocides and toxicity of leachates from renders with either free or encapsulated biocides. Both render types contained equal amounts of terbutryn, 2-octyl-3(2H)-isothiazolinone (OIT) and 4,5-dichloro-2-n-octyl-4-isothiazolino-3-one (DCOIT). Leachate samples were generated over nine immersion cycles according to a European standard and biocides were quantified. The first and ninth samples were tested using bioassays with algae, bacteria and water flea, the first sample with earthworms and springtails. Encapsulation reduced leaching of terbutryn, OIT and DCOIT four-, 17-, and 27-fold. For aquatic organisms, the toxicity of water from render containing encapsulated biocides was always lower than that of render with free biocides. Furthermore, toxicity decreased four- to five-fold over the nine immersion cycles. Inhibition of photosynthesis was the most sensitive endpoint, followed by algal growth rate, bacterial bioluminescence and water flea reproduction. Toxicity to algae was explained by terbutryn and toxicity to bacteria by OIT. None of the samples affected soil organisms. Results demonstrate that combining standardised leaching tests with standardised bioassays is a promising approach to evaluate the ecotoxicity of biocides that leach from façade renders. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ion-plating of solar cell arrays encapsulation task: LSA project 32
NASA Technical Reports Server (NTRS)
Volkers, J. C.
1983-01-01
An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.
Li, Ran; Zhang, Yufeng; Polk, D. Brent; Tomasula, Peggy M.; Yan, Fang; Liu, LinShu
2016-01-01
Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG’s beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics. PMID:27063422
Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely
2017-12-01
Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Washetine, Kevin; Kara-Borni, Mehdi; Heeke, Simon; Bonnetaud, Christelle; Félix, Jean-Marc; Ribeyre, Lydia; Bence, Coraline; Ilié, Marius; Bordone, Olivier; Pedro, Marine; Maitre, Priscilla; Tanga, Virginie; Gormally, Emmanuelle; Mossuz, Pascal; Lorimier, Philippe; Marquette, Charles Hugo; Mouroux, Jérôme; Cohen, Charlotte; Lassalle, Sandra; Long-Mira, Elodie; Clément, Bruno; Dagher, Georges; Hofman, Véronique; Hofman, Paul
2018-06-11
Collected specimens for research purposes may or may not be made available depending on their scarcity and/or on the project needs. Their protection against degradation or in the event of an incident is pivotal. Duplication and storage on a different site is the best way to assure their sustainability. The conservation of samples at room temperature (RT) by duplication can facilitate their protection. We describe a security system for the collection of non-small cell lung cancers (NSCLC) stored in the biobank of the Nice Hospital Center, France, by duplication and conservation of lyophilized (dried), encapsulated DNA kept at RT. Therefore, three frozen tissue collections from non-smoking, early stage and sarcomatoid carcinoma NSCLC patients were selected for this study. DNA was extracted, lyophilized and encapsulated at RT under anoxic conditions using the DNAshell technology. In total, 1974 samples from 987 patients were encapsulated. Six and two capsules from each sample were stored in the biobanks of the Nice and Grenoble (France) Hospitals, respectively. In conclusion, DNA maintained at RT allows for the conservation, duplication and durability of collections of interest stored in biobanks. This is a low-cost and safe technology that requires a limited amount of space and has a low environmental impact.
NASA Astrophysics Data System (ADS)
Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.
2008-05-01
Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.
NASA Astrophysics Data System (ADS)
Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul
2018-05-01
The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.
Effect of Coating Method on the Survival Rate of L. plantarum for Chicken Feed
Lee, Sang-Yoon; Jo, Yeon-Ji; Choi, Mi-Jung; Lee, Boo-Yong; Han, Jong-Kwon; Lim, Jae Kag
2014-01-01
This study was designed to find the most suitable method and wall material for microencapsulation of the Lactobacillus plantarum to maintain cell viability in different environmental conditions. To improve the stability of L. plantarum, we developed an encapsulation system of L. plantarum, using water-in-oil emulsion system. For the encapsulation of L. plantarum, corn starch and glyceryl monostearate were selected to form gel beads. Then 10% (w/v) of starch was gelatinized by autoclaving to transit gel state, and cooled down at 60ºC and mixed with L. plantarum to encapsulate it. The encapsulated L. plantarum was tested for the tolerance of acidic conditions at different temperatures to investigate the encapsulation ability. The study indicated that the survival rate of the microencapsulated cells in starch matrix was significantly higher than that of free cells in low pH conditions with relatively higher temperature. The results showed that corn starch as a wall material and glycerol monostearate as a gelling agent in encapsulation could play a role in the viability of lactic acid bacteria in extreme conditions. Using the current study, it would be possible to formulate a new water-in-oil system as applied in the protection of L. plantarum from the gastric conditions for the encapsulation system used in chicken feed industry. PMID:26760943
Kuipers, Annemarie; Stapels, Daphne A. C.; Weerwind, Lleroy T.; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C.; van Kessel, Kok P. M.
2016-01-01
Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance. PMID:27112346
Kuipers, Annemarie; Stapels, Daphne A C; Weerwind, Lleroy T; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C; van Kessel, Kok P M; Rooijakkers, Suzan H M
2016-07-01
Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.
Rezaei-Sadabady, Rogaie; Eidi, Akram; Zarghami, Nosratollah; Barzegar, Abolfazl
2016-01-01
Quercetin (3,5,7,3',4'-pentahydroxyflavone) is a natural bio-flavonoid originating from fruits, vegetables, seeds, berries, and tea. The antioxidant activity of quercetin and its protective effects against cardiovascular disorders, anti-cancer, anti-inflammatory, and anti-viral activities have been extensively documented; however, the clinical request of quercetin in cancer treatment is significantly limited due to its very poor delivery features. In order to increase the hydrophilicity and drug delivery capability, we encapsulated quercetin into liposomes. Our data indicated that liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be used as an effective antioxidant for ROS protection within the polar cytoplasm, and the nano-sized quercetin encapsulated by liposomes enhanced the cellular uptake (cancer cell human MCF_7). Quercetin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of quercetin in polar solvents by a comparative study using reduction of ferric iron in aqueous medium, intracellular ROS/toxicity assays, and reducing DPPH assays. Cell viability and ROS assays demonstrated that quercetin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and deadly belongings of cumene hydroperoxide. The purpose of this study was to determine whether a liposomal formulation of quercetin can suggestively improve its solubility and bioavailability and can be a possible request in the treatment of tumor. The authors encapsulated quercetin in a liposomal delivery system. They studied the in vitro effects of this compound on proliferation using human MCF-7 carcinoma cells. The activity of liposomal quercetin was equal to or better than that of free quercetin at equimolar concentrations. Our data indicated that liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be a potential application in the treatment of tumor.
Díaz, Dafne I; Beristain, Cesar I; Azuara, Ebner; Luna, Guadalupe; Jimenez, Maribel
2015-01-01
Blackberry (Rubus fruticosus) juice possesses compounds with antioxidant activity, which can be protected by different biopolymers used in the microencapsulation. Therefore, the effects of cell wall material including maltodextrin (MD), Arabic gum (GA) and whey protein concentrate (WPC) were evaluated on the physicochemical and antioxidant properties of encapsulated blackberries using a spray-drying technique. Anthocyanin concentration, polymeric colour, total polyphenols, radical scavenging activity of the 1,1-diphenyl-2-picrilhydrazil radical, reducing power and the stability at different storage conditions were evaluated. GA and MD conferred a similar protection to the antioxidant compounds when the microcapsules were stored at low water activities (aw < 0.515) in contrast to at a high moisture content (aw > 0.902), whereas WPC presented a high protection. Therefore, the selection of the best wall material for blackberry juice encapsulation depends of the conditions of storage of the powder.
Krams, Indrikis; Daukste, Janina; Kivleniece, Inese; Krama, Tatjana; Rantala, Markus J
2013-12-01
Immune defenses of insects show either broad reactions or specificity and durability of induced protection against attacking parasites and pathogens. In this study, we tested whether encapsulation response against nylon monofilament increases between two attempts of activation of immune system in mealworm beetles Tenebrio molitor, and whether previous exposure to nylon monofilament may also increase protection against an entomopathogenic fungus. We found that survival of beetles subjected to immune activation by nylon implant and subsequent fungal exposure a week later was significantly higher than survival of beetles which had been subjected to fungal infection only. This result suggests that previous immune activation by the nylon implant may be considered as broad spectrum "immune priming" which helps to fight not only the same intruder but also other parasites. © 2012 Institute of Zoology, Chinese Academy of Sciences.
Sanna, Vanna; Roggio, Anna Maria; Siliani, Silvia; Piccinini, Massimo; Marceddu, Salvatore; Mariani, Alberto; Sechi, Mario
2012-01-01
Background Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may be achieved via suitable carriers able to associate controlled release and protection. In this context, nanotechnology is proving to be a powerful strategy. In this study, we developed novel cationic chitosan (CS)- and anionic alginate (Alg)-coated poly(d,l-lactide-co-glycolide) nanoparticles (NPs) loaded with the bioactive polyphenolic trans-(E)-resveratrol (RSV) for biomedical applications. Methods NPs were prepared by the nanoprecipitation method and characterized in terms of morphology, size and zeta potential, encapsulation efficiency, Raman spectroscopy, swelling properties, differential scanning calorimetry, and in vitro release studies. The protective effect of the nanosystems under the light-stressed RSV and long-term stability were investigated. Results NPs turned out to be spherical in shape, with size ranging from 135 to about 580 nm, depending on the composition and the amount of polyelectrolytes, while the encapsulation efficiencies increased from 8% of uncoated poly(d,l-lactide-co-glycolide) (PLGA) to 23% and 32% of Alg- and CS-coated PLGA NPs, respectively. All nanocarriers are characterized by a biphasic release pattern, and more effective controlled release rates are obtained for NPs formulated with higher polyelectrolyte concentrations. Stability studies revealed that encapsulation provides significant protection against light-exposure degradation, by reducing the trans–cis photoisomerization reaction. Moreover, the nanosystems are able to prevent the degradation of trans isoform and the leakage of RSV from the carrier for a period of 6 months. Conclusion Our findings indicated that the newly developed CS- and Alg-coated PLGA NPs are suitable to be used for the delivery of bioactive RSV. The encapsulation of RSV into optimized polymeric NPs provides improved drug loading, effective controlled release, and protection against light-exposure degradation, thus opening new perspectives for the delivery of bioactive related phytochemicals to be used for (nano)chemoprevention/chemotherapy. PMID:23093904
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela
2009-04-15
Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.
Radian, Adi; Aukema, Kelly G; Aksan, Alptekin; Wackett, Lawrence P
2015-11-03
Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. Hypochlorite is used in vast quantities for water disinfection, killing bacteria on surfaces, and washing and whitening. In pools, spas, and other waters, hypochlorite is frequently delivered as chlorinated isocyanuric acids that release hypochlorite and cyanuric acid. Over time, cyanuric acid accumulates and impairs disinfection and must be removed. The microbial enzyme cyanuric acid hydrolase can potentially remove cyanuric acid to restore disinfection and protect swimmers. Whole bacterial cells expressing cyanuric acid hydrolase were encapsulated in an inert silica matrix containing an amine group. The amine group serves to permeabilize the cell membrane and accelerate cyanuric acid degradation, and it also reacts with hypochlorite to protect against inactivation of cyanuric acid hydrolase. Methods for promoting whole-cell biocatalysis are important in biotechnology, and the present work illustrates approaches to enhance rates and protect against an inhibitory substance. Copyright © 2015 Radian et al.
pH Responsive Microcapsules for Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco
2008-01-01
The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.
Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles.
Durand, L; Habran, N; Henschel, V; Amighi, K
2010-01-01
The aim of this study was to encapsulate ethylhexyl methoxycinnamate (EMC), a commonly used UVB filter, in a solid lipid matrix in order to obtain microparticles and then nanoparticles to reduce its photo-instability under UV light exposure. Glyceryl behenate, rice bran wax and ozokerite were investigated for encapsulating EMC. The suspensions of nanoparticles contained 70% encapsulated EMC (relative to the lipid mass). The absorbance level at 310 nm of suspensions containing nanoparticles was more than twice that of those containing microparticles. So, decreasing the size of particles improved the efficiency of light protection, regardless of the lipid material used. Moreover, free EMC presented a 30% loss of its efficiency after 2 h of irradiation, whereas the three NLC formulations showed a loss of absorbency between 10% and 21%. The in vitro cutaneous penetration test did not show a higher potential penetration for EMC contained in nanosuspensions compared to free EMC.
She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N
2012-07-09
Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.
Production of RNA by a polymerase protein encapsulated within phospholipid vesicles
NASA Technical Reports Server (NTRS)
Chakrabarti, A. C.; Breaker, R. R.; Joyce, G. F.; Deamer, D. W.
1994-01-01
Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.
Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids
Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua
2014-01-01
Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 ns to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 42 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect. PMID:21748265
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Williams, James H.; Fries, Joseph (Technical Monitor)
1999-01-01
The permeation resistance of chlorinated polyethylene (CPE) used in totally encapsulating chemical protective suits against the aerospace fuels hydrazine, monomethylhydrazine, and uns-dimethylhydrazine was determined by measuring the breakthrough time (BT) and time-averaged vapor transmission rate (VTR) using procedures consistent with ASTM F 739 and ASTM F 1383. Two exposure scenarios were simulated: a 2 hour (h) fuel vapor exposure, and a liquid fuel "splash" followed by a 2 h vapor exposure. To simulate internal suit pressure during operation, a positive differential pressure of 0.3 in. water (75 Pa) on the collection side of the permeation apparatus was used. Using the available data, a model was developed to estimate propellant concentrations inside an air-line fed, totally encapsulating chemical protective suit. Concentrations were calculated under simulated conditions of fixed vapor transmission rate, variable breathing air flow rate, and variable splash exposure area. Calculations showed that the maximum allowable permeation rates of hydrazine fuels through CPE were of the order of 0.05 to 0.08 ng/sq cm min for encapsulating suits with low breathing air flow rates (of the order of 5 scfm or 140 L min-1). Above these permeation rates, the 10 parts-per-billion (ppb) threshold limit value time-weighted average could be exceeded. To evaluate suit performance at 10 ppb threshold-limiting value/time-weighted average level concentrations, use of a sensitive analytical method such as cation exchange high performance liquid chromatography with amperometric detection was found to be essential. The analytical detection limit determines the lowest measurable VTR, which in turn governed the lowest per meant concentration that could be calculated inside the totally encapsulating chemical protective suit.
Xia, Chen; Chen, Pengfei; Mei, Sheng; Ning, Lei; Lei, Chenyang; Wang, Jiying; Zhang, Jianfeng; Ma, Jianjun; Fan, Shunwu
2017-01-10
Autophagy is a protective mechanism in normal cartilage. The present study aimed to investigate the synergistic therapeutic effect of promotion of chondrocyte autophagy via exposure to cordycepin encapsulated by chitosan microspheres (CM-cordycepin) and photo-crosslinked hyaluronic acid methacrylate (HAMA) hydrogel, with the goal of evaluating CM-cordycepin as a treatment for patients with osteoarthritis. First, we developed and evaluated the characteristics of HAMA hydrogels and chitosan microspheres. Next, we measured the effect of cordycepin on cartilage matrix degradation induced by IL1-β in chondrocytes and an ex vivo model. Cordycepin protects cartilage from degradation partly by activation of autophagy. Moreover, we surgically induced osteoarthritis in mice, which were injected intra-articularly with CM-cordycepin and HAMA. The combination of CM-cordycepin and HAMA hydrogel retarded the progression of surgically induced OA. Cordycepin ameliorated cartilage matrix degradation at least partially by inducing autophagy in vivo. Our results demonstrate that the combination of cordycepin encapsulated by CMs and photo-crosslinked HAMA hydrogel could be a promising strategy for treating patients with osteoarthritis.
Zhou, Yankun; Roos, Yrjö H
2012-08-01
Water plasticization of sugar-protein encapsulants may cause structural changes and decrease the stability of encapsulated compounds during storage. The retention of α-tocopherol in freeze-dried lactose-milk protein-oil, lactose-soy protein-oil, trehalose-milk protein-oil, and trehalose-soy protein-oil systems at various water activities (a(w)) and in the presence of sugar crystallization was studied. Water sorption was determined gravimetrically. Glass transition and sugar crystallization were studied using differential scanning calorimetry and the retention of α-tocopherol spectrophotometrically. The loss of α-tocopherol followed lipid oxidation, but the greatest stability was found at 0 a(w) presumably because of α-tocopherol immobilization at interfaces and consequent reduction in antioxidant activity. A considerable loss of α-tocopherol coincided with sugar crystallization. The results showed that glassy matrices may protect encapsulated α-tocopherol; however, its role as an antioxidant at increasing aw accelerated its loss. Sugar crystallization excluded the oil-containing α-tocopherol from the protecting matrices and exposed it to surroundings, which decreased the stability of α-tocopherol.
Gallovic, Matthew D; Schully, Kevin L; Bell, Matthew G; Elberson, Margaret A; Palmer, John R; Darko, Christian A; Bachelder, Eric M; Wyslouzil, Barbara E; Keane-Myers, Andrea M; Ainslie, Kristy M
2016-10-01
Subunit formulations are regarded as the safest type of vaccine, but they often contain a protein-based antigen that can result in significant challenges, such as preserving antigenicity during formulation and administration. Many studies have demonstrated that encapsulation of protein antigens in polymeric microparticles (MPs) via emulsion techniques results in total IgG antibody titers comparable to alum formulations, however, the antibodies themselves are non-neutralizing. To address this issue, a coaxial electrohydrodynamic spraying (electrospray) technique is used to formulate a microparticulate-based subunit anthrax vaccine under conditions that minimize recombinant protective antigen (rPA) exposure to harsh solvents and high shear stress. rPA and the adjuvant resiquimod are encapsulated either in separate or the same acetalated dextran MPs. Using a murine model, the electrospray formulations lead to higher IgG2a subtype titers as well as comparable total IgG antibody titers and toxin neutralization relative to the FDA-approved vaccine (BioThrax). BioThrax provides no protection against a lethal inhalational challenge of the highly virulent Ames Bacillus anthracis anthrax strain, whereas 50% of the mice vaccinated with separately encapsulated electrospray MPs survive. Overall, this study demonstrates the potential use of electrospray for encapsulating protein antigens in polymeric MPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vandamme, Katrien; Melkebeek, Vesna; Vesna, Melkebeek; Cox, Eric; Eric, Cox; Remon, Jean Paul; Paul, Remon Jean; Vervaet, Chris; Chris, Vervaet
2011-02-15
In this study, the adjuvanticity of methylvinylether-co-maleic anhydride (Gantrez(®)AN) nanoparticles (NP) was investigated in an oral immunisation experiment of pigs against F4+enterotoxigenic Escherichia coli (F4+ETEC). In addition, Wheat Germ Agglutinin (WGA)-coating of the nanoparticles was tested for enterocyte-targeting. Pigs were either vaccinated with F4 fimbriae, F4 encapsulated in Gantrez(®)AN NP, F4 encapsulated in Gantrez(®)AN NP coated with WGA or F4 fimbriae mixed with empty Gantrez(®)AN NP. Only vaccination with the combination of F4 mixed with empty Gantrez(®)AN NP improved protection against F4+ETEC infection. In addition, vaccination with this formulation also resulted in an F4-specific serum antibody response prior to F4+ETEC challenge. Encapsulation of F4 in Gantrez(®)AN NP only raised the serum antibody response after F4+ETEC challenge compared to soluble F4, but did not improve protection, whereas WGA-coating almost completely abolished the serum antibody response. These data indicate that nanoparticle effects after F4 encapsulation were of lesser importance for the adjuvant effect of Gantrez(®)AN NP, contrarily to the reactivity of the Gantrez(®)AN polymer used to prepare the nanoparticles. Copyright © 2010 Elsevier B.V. All rights reserved.
Davidov-Pardo, Gabriel; McClements, David Julian
2015-01-15
The aim of this work was to fabricate nanoemulsions-based delivery systems to encapsulate resveratrol. Nanoemulsions were formed using spontaneous emulsification method: 10% oil phase (grape seed oil plus orange oil) and 10% surfactant (Tween 80) were titrated into 80% aqueous phase. An optimum orange oil-to-grape seed oil ratio of 1:1(w/w) formed small droplets (d ≈ 100 nm) with good stability to droplet growth. The maximum amount of resveratrol that could be dissolved in the oil phase was 120 ± 10 μg/ml. The effect of droplet size on the chemical stability of encapsulated resveratrol was examined by preparing systems with different mean droplet diameters of 220 ± 2; 99 ± 3; and 45 ± 0.4 nm. Encapsulation of resveratrol improved its chemical stability after exposure to UV-light: 88% retention in nanoemulsions compared to 50% in dimethylsulphoxide (DMSO). This study showed that resveratrol could be encapsulated within low-energy nanoemulsion-based delivery systems and protected against degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioactive compounds from orange epicarp to enrich fish burgers.
Spinelli, Sara; Lecce, Lucia; Likyova, Desislava; Del Nobile, Matteo Alessandro; Conte, Amalia
2018-05-01
The orange industry produces considerable amounts of by-products, traditionally used for animal feed or fuel production. Most of these by-products could be used as functional ingredients. To assess the potential food application of orange epicarp, different percentages of micro-encapsulated orange extract were added to fresh fish burgers. Then, an in vitro digestion was also carried out, before and after micro-encapsulation, to measure the bio-accessibility of the active compounds. A significant increase of bio-accessibility of bioactive compounds has been observed in the orange epicarp extract after micro-encapsulation by spray-drying. From the sensory point of view, the fish sample enriched with 50 g kg -1 micro-encapsulated extract was the most comparable to the control burger, even if it showed a higher phenolic, flavonoid and carotenoid bio-accessibility. Orange epicarp may be used as a food additive to enhance the health content of food products. The micro-encapsulation is a valid technique to protect the bioactive compounds and increase their bio-accessibility. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan
NASA Astrophysics Data System (ADS)
Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.
2017-02-01
Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.
Miranda, Joana P; Rodrigues, Armanda; Tostões, Rui M; Leite, Sofia; Zimmerman, Heiko; Carrondo, Manuel J T; Alves, Paula M
2010-12-01
The maintenance of differentiated hepatocyte phenotype in vitro depends on several factors-in particular, on extracellular matrix interactions, for example, with three-dimensional (3D) matrices. Alginate hydrogel provides the cells with a good extracellular matrix due to the formation of a massive capsule with semi-permeable properties that allows for diffusion of the medium components into the cells as well as efficient waste product elimination. Simultaneously, alginate protects the cells from shear stress caused by the hydrodynamics when cultured in stirred systems such as bioreactors. We have previously developed a hepatocyte aggregate 3D culture system in a bioreactor where improved hepatocyte functionality could be maintained over longer periods (21 days). In this work, ultra-high-viscosity alginate was used for hepatocyte aggregates entrapment. Hepatocyte biotransformation (phase I and II enzymes), CYP450 inducibility, and secretory capacity (albumin and urea production) were monitored. The analyses were performed in both spinner vessels and bioreactors to test the effect of the pO(2) control, unavailable in the spinners. Performance of alginate-encapsulated hepatocyte aggregates in culture was compared with nonencapsulated aggregate cultures in both bioreactor (controlled environment) and spinner vessels. For both culture systems, hepatocytes' metabolic and biotransformation capacities were maintained for up to 1 month, and encapsulated cells in bioreactors showed the best performance. In particular, albumin production rate increased 2- and 1.5-fold in encapsulated aggregates compared with nonencapsulated aggregates in bioreactor and spinner vessels, respectively. Urea production rate increased twofold in encapsulated cultures compared with nonencapsulated cells, in both bioreactor and spinner vessels. Similarly, in both the bioreactor and the spinner system, cell encapsulation resulted in a 1.5- and 2.8-fold improvement of hepatocyte 7-ethoxycoumarin and uridine diphosphate glucuronosyltransferases (UGT) activities, respectively. For all parameters, but for UGT activity, the bioreactor system resulted better than the spinner vessels; for UGT activity no difference was observed between the two. Furthermore, both encapsulated and nonencapsulated 3D culture systems were inducible by 3-methylcholanthrene and dexamethasone. The encapsulated systems consistently showed improved performance over the nonencapsulated cells, indicating that the protection conferred by the alginate matrix plays a relevant role in maintaining the hepatocyte functionalities in vitro.
Encapsulated Islet Transplantation: Where Do We Stand?
Vaithilingam, Vijayaganapathy; Bal, Sumeet; Tuch, Bernard E
2017-01-01
Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.
Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang
2018-07-01
Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Templeman, James R; Rogers, Michael A; Cant, John P; McBride, Brian W; Osborne, Vern R
2018-02-20
The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Tipper, Donald J; Shen, Zu T; Lodge, Jennifer K; Leszyk, John; Ostroff, Gary R; Levitz, Stuart M
2015-12-22
A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens. Copyright © 2015 Specht et al.
Li, Ran; Zhang, Yufeng; Polk, D Brent; Tomasula, Peggy M; Yan, Fang; Liu, LinShu
2016-05-28
Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG's beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics. Copyright © 2016 Elsevier B.V. All rights reserved.
Polyfibroblast: A Self-Healing and Galvanic Protection Additive
2012-09-12
self-healing and galvanic protection capacity to the primer (Figure 1). Polyfibroblast consists of paint-filled microcapsules and zinc powder. It has...significant added cost. Microcapsule Figure 1. Polyfibroblast contains fresh paint encapsulated in polymer shells plus Zn powder. When scratched, resin...from the broken microcapsules fills the crack to form a polymer scar. Zn powder supplies galvanic protection in the event of incomplete healing
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y.; Geron, Ifat; Strongin, Alex Y.; Itkin-Ansari, Pamela
2009-01-01
Background Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human β-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human β-cells and their progenitors and (2) the engraftment of encapsulated murine β-cells in allo- and autoimmune settings. Methods Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Results Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary β-cells ameliorated diabetes without stimulating a detectable T-cell response. Conclusions We demonstrate for the first time that human β-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of β-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells. PMID:19352116
De Castro, Paula F; Ahmed, Adham; Shchukin, Dmitry G
2016-03-18
We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello
2015-02-25
This work presents the synthesis and characterization of a new zinc phthalocyanine complex tetrasubstituted with 3-carboxyphenoxy in the peripheral position. The photophysical properties of the new complex are compared with those of phthalocyanines tetra substituted with 3-carboxyphenoxy or 4-carboxyphenoxy at non-peripheral positions. Three phthalocyanine complexes were encapsulated within silica matrix to form a core shell and the hybrid nanoparticles particles obtained were spherical and mono dispersed. When encapsulated within the silica shell nanoparticles, phthalocyanines showed improved triplet quantum yields and singlet oxygen quantum yields than surface grafted derivatives. The improvements observed could be attributed to the protection provided for the phthalocyanine complexes by the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Wa; Liu, Xuejing; Jin, Wei
2017-10-01
We report the fabrication of in-line photonic microcells (PMCs) by encapsulating tapered elliptical microfibers (MFs) inside glass tubes. The encapsulation does not change the optical property of the MF but protects the elliptical MF from external disturbance and contamination and makes the micro-laboratory robust. Such micro-laboratory can be easily integrated into standard fiber-optic circuits with low loss, making the elliptical MF-based devices more practical for real-world applications. Evanescent field sensing is realized by fabricating micro-channel on the PMC for ingress/egress of sample liquids/gas. Based on the encapsulated elliptical MF PMCs, we demonstrated RI sensitivity of 2024 nm per refractive index unit (nm/RIU) in gaseous environment and 21231 nm/RIU in water.
Weidenbacher, L; Abrishamkar, A; Rottmar, M; Guex, A G; Maniura-Weber, K; deMello, A J; Ferguson, S J; Rossi, R M; Fortunato, G
2017-12-01
The fabrication of functional 3D tissues is a major goal in tissue engineering. While electrospinning is a promising technique to manufacture a structure mimicking the extracellular matrix, cell infiltration into electrospun scaffolds remains challenging. The robust and in situ delivery of cells into such biomimetic scaffolds would potentially enable the design of tissue engineered constructs with spatial control over cellular distribution but often solvents employed in the spinning process are problematic due to their high cytotoxicity. Herein, microfluidic cell encapsulation is used to establish a temporary protection vehicle for the in situ delivery of cells for the development of a fibrous, cell-laden hybrid biograft. Therefore a layer-by-layer process is used by alternating fiber electrospinning and cell spraying procedures. Both encapsulation and subsequent electrospraying of capsules has no negative effect on the viability and myogenic differentiation of murine myoblast cells. Propidium iodide positive stained cells were analyzed to quantify the amount of dead cells and the presence of myosin heavy chain positive cells after the processes was shown. Furthermore, encapsulation successfully protects cells from cytotoxic solvents (such as dimethylformamide) during in situ delivery of the cells into electrospun poly(vinylidene fluoride-co-hexafluoropropylene) scaffolds. The resulting cell-populated biografts demonstrate the clear potential of this approach in the creation of viable tissue engineering constructs. Infiltration of cells and their controlled spatial distribution within fibrous electrospun membranes is a challenging task but allows for the development of functional highly organized 3D hybrid tissues. Combining polymer electrospinning and cell electrospraying in a layer-by-layer approach is expected to overcome current limitations of reduced cell infiltration after traditional static seeding. However, organic solvents, used during the electrospinning process, impede often major issues due to their high cytotoxicity. Utilizing microfluidic encapsulation as a mean to embed cells within a protective polymer casing enables the controlled deposition of viable cells without interfering with the cellular phenotype. The presented techniques allow for novel cell manipulation approaches being significant for enhanced 3D tissue engineering based on its versatility in terms of material and cell selection. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Method of encapsulating solid radioactive waste material for storage
Bunnell, Lee Roy; Bates, J. Lambert
1976-01-01
High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.
Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo
2010-01-01
The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.
Defence Nutrition Workshop, April 2006, Proceedings
2007-05-01
pulsed electric field, micro- encapsulation, prebiotics, probiotics , glycaemic index and resistant starch (including the development of new cereal... probiotics . Microencapsulation is being used to protect vitamins that are not stable during processing and storage, and to similarly protect... probiotics . The potential health benefits of incorporating probiotics into ration pack items are also being investigated. Potential development areas
Cable Feedthrough Between Liquid Oxygen And Ambient
NASA Technical Reports Server (NTRS)
Myers, Don A.
1992-01-01
Encapsulant and back pressure provide double protection. Cable-feedthrough tube between ambient air and interior of vessel containing liquid oxygen protects external instrumentation and cable from oxygen. Cable in tube surrounded by potting compound. Provides flow of gaseous nitrogen to dilute oxidant and makes it harmless in case of leakage through crack in potting compound.
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.
1975-01-01
Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.
PIONEER VENUS 2 MULTI PROBE IS ENCAPSULATED IN PROTECTIVE SHROUD
NASA Technical Reports Server (NTRS)
1978-01-01
Encapsulation of the Pioneer Venus Multiprobe in its protective nose fairing is closely monitored by technicians in Hangar AO. The 2,000-pound spacecraft is one of two being launched toward the planet Venus. The Multiprobe is scheduled for launch aboard an Atlas Centaur rocket on August 7. Flying a direct path to the cloud-shrouded planet, the Multiprobe will reach Venus five days after the arrival of its sister spacecraft, the Pioneer Venus Orbiter, which was launched May 20, 1978. Three weeks before the Multiprobe reaches Venus, its four heavily instrumented scientific probes (seen on top of the spacecraft's main body or ''bus'') will be released and will impact at various points on the planet's surface. Together, the two spacecraft will conduct a thorough scientific exploration of the planet Venus.
The Heroes' Problems: Exploring the Potentials of Google Glass for Biohazard Handling Professionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Jack Shen-Kuen; Henry, Michael J.; Burtner, Edwin R.
2015-06-23
In “white powder incidents” or other suspicious and risky situations relating to deadly diseases or chemicals (e.g., Ebola investigation), those who handle the potentially hazardous materials are the heroes who spearhead the first responder’s operations. Although well trained, these heroes need to manage complex problems and make life-or-death decisions while handling the unknown and dangerous. We are motivated to explore how Google Glass can facilitate those heroes’ missions. To this end, we conducted contextual inquiry on six biohazard-handling, Personal Protective Equipment (PPE)-wearing professionals. With an inductive thematic analysis, we summarized the heroes’ workflow and four groups of “Heroes’ Problems”. Amore » unique “A3 Model” (Awareness, Analysis, Action) was generated to encapsulate our qualitative findings and proposed Glass features. The findings serve as the groundwork for our future development.« less
Industrial Fungal Enzymes: An Occupational Allergen Perspective
Green, Brett J.; Beezhold, Donald H.
2011-01-01
Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal enzymes are at an increased risk for IgE-mediated disease and occupational asthma. The utilization of new and emerging fungal enzymes in industrial production will present new occupational exposures. The production of antibody-based immunoassays is necessary for the assessment of occupational exposure and the development of threshold limit values. Allergen avoidance strategies including personal protective equipment, engineering controls, protein encapsulation, and reduction of airborne enzyme concentrations are required to mitigate occupational exposure to fungal enzymes. PMID:21747869
NASA Technical Reports Server (NTRS)
Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)
2005-01-01
Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.
Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.
Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd
2014-01-01
Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.
Anti-tumor therapy with macroencapsulated endostatin producer cells
2010-01-01
Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors. Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors. PMID:20196841
Anti-tumor therapy with macroencapsulated endostatin producer cells.
Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia
2010-03-02
Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors.Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors.
González-Ferrero, C; Irache, J M; González-Navarro, C J
2018-01-15
The present work describes the encapsulation of probiotics using a by-product as wall material and a process feasible to be scaled-up: coacervation of soybean protein concentrate (SPC) by using calcium salts and spray-drying. SPC was extracted from soybean flour, produced during the processing of soybean milk, by alkaline extraction following isoelectric precipitation. Two probiotic strains were selected for encapsulation (Lactobacillus plantarum CECT 220 and Lactobacillus casei CECT 475) in order to evaluate the ability of SPC to encapsulate and protect bacteria from stress conditions. The viability of these encapsulated strains under in vitro gastrointestinal conditions and shelf-life during storage were compared with the most common forms commercialized nowadays. Results show that SPC is a feasible material for the development of probiotic microparticles with adequate physicochemical properties and enhanced significantly both probiotic viability and tolerance against simulated gastrointestinal fluids when compared to current available commercial forms. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
2017-10-30
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less
Ydjedd, Siham; Bouriche, Sihem; López-Nicolás, Rubén; Sánchez-Moya, Teresa; Frontela-Saseta, Carmen; Ros-Berruezo, Gaspar; Rezgui, Farouk; Louaileche, Hayette; Kati, Djamel-Edine
2017-02-01
To determine the effect of in vitro gastrointestinal digestion on the release and antioxidant capacity of encapsulated and nonencapsulated phenolics carob pulp extracts, unripe and ripe carob pulp extracts were microencapsulated with polycaprolactone via double emulsion/solvent evaporation technique. Microcapsules' characterization was performed using scanning electron microscopy and Fourier transform infrared spectrometry analysis. Total phenolics and flavonoids content and antioxidant activities (ORAC, DPPH, and FRAP) were evaluated after each digestion step. The release of phenolic acids and flavonoids was measured along the digestion process by HPLC-MS/MS analysis. The most important phenolics and flavonoids content as well as antioxidant activities were observed after gastric and intestinal phases for nonencapsulated and encapsulated extracts, respectively. The microencapsulation of carob polyphenols showed a protective effect against pH changes and enzymatic activities along digestion, thereby promoting a controlled release and targeted delivery of the encapsulated compound, which contributed to an increase in its bioaccessibility in the gut.
Jiang, Jian; Zhu, Jianhui; Ai, Wei; Wang, Xiuli; Wang, Yanlong; Zou, Chenji; Huang, Wei; Yu, Ting
2015-01-01
Elemental sulfur cathodes for lithium/sulfur cells are still in the stage of intensive research due to their unsatisfactory capacity retention and cyclability. The undesired capacity degradation upon cycling originates from gradual diffusion of lithium polysulfides out of the cathode region. To prevent losses of certain intermediate soluble species and extend lifespan of cells, the effective encapsulation of sulfur plays a critical role. Here we report an applicable way, by using thin-layered nickel-based hydroxide as a feasible and effective encapsulation material. In addition to being a durable physical barrier, such hydroxide thin films can irreversibly react with lithium to generate protective layers that combine good ionic permeability and abundant functional polar/hydrophilic groups, leading to drastic improvements in cell behaviours (almost 100% coulombic efficiency and negligible capacity decay within total 500 cycles). Our present encapsulation strategy and understanding of hydroxide working mechanisms may advance progress on the development of lithium/sulfur cells for practical use. PMID:26470847
NASA Astrophysics Data System (ADS)
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
2017-10-01
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.
Recent progress on thin-film encapsulation technologies for organic electronic devices
NASA Astrophysics Data System (ADS)
Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei
2016-03-01
Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.
Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben Sasson, Shmuel; Bitton, Ronit; Bianco-Peled, Havazelet; Kohen, Ron
2017-01-01
Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf 2 pathway and induce phase II cytoprotective enzymes). Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases.
Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben Sasson, Shmuel; Bitton, Ronit; Bianco-Peled, Havazelet
2017-01-01
Curcumin was found to be beneficial in treating several skin pathologies and diseases, providing antioxidant protection due to its reducing properties and its electrophilic properties (the ability to activate the Nrf2 pathway and induce phase II cytoprotective enzymes). Nevertheless, clinical applications of curcumin are being hampered by its insufficient solubility, chemical instability, and poor absorption, leading to low efficacy in preventing skin pathologies. These limitations can be overcome by using a nanotechnology-based delivery system. Here, we elucidated the possibility of using curcumin encapsulated in a microemulsion preserving its unique chemical structure. We also examined whether curcumin microemulsion would reduce UVB-induced toxicity in skin. A significant curcumin concentration was found in the human skin dermis following topical application of a curcumin microemulsion. Moreover, curcumin microemulsion enhanced the reduction of UV-induced cytotoxicity in epidermal cells, paving the way for other incorporated electrophiles in encapsulated form protecting skin against stress-related diseases. PMID:28757910
Antidiabetic activity from cinnamaldydhe encapsulated by nanochitosan
NASA Astrophysics Data System (ADS)
Purbowatingrum; Ngadiwiyana; Fachriyah, E.; Ismiyarto; Ariestiani, B.; Khikmah
2018-04-01
Diabetes mellitus (DM) is a disease characterized by chronic hyperglycemia and metabolic disorders of carbohydrates, proteins, and fats due to reduced function of insulin. Treatment of diabetes can be done by insulin therapy or hypoglycemic drugs. Hypoglycemic drugs usually contain compounds that can inhibit the action of α-glucosidase enzymes that play a role in breaking carbohydrates into blood sugar. Cinnamaldehyde has α-glucosidase inhibit activity because it has a functional group of alkene that is conjugated with a benzene ring and a carbonyl group. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74%. Inhibition test result showed that cinnamaldehyde-chitosan nanoparticles at 100 ppm could inhibit α-glucosidase activity in 23.9% with 134,13 in IC50. So it can be concluded that cinnamaldehyde can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.
Orłowski, Tadeusz; Godlewska, Ewa; Mościcka, Maria; Sitarek, Elzbieta
2003-12-01
To protect the allografts or xenografts against transplant rejection special semipermeable membranes are applied. So far, there are only a few studies on the influence of an immunoisolated graft on the recipient immune system. Therefore, the possibility that an intraperitoneally grafted alginate/poly L-lysine/alginate (APA) coated pancreatic islets graft can effectively sensitize the recipient and provoke second set phenomenon was studied. C3H male mice and male WAG rats were used as donors of full-thickness skin and of free or encapsulated islet intraperitoneal grafts. Male BALB/c mice served as recipients. Skin grafts were performed following the method of Billingham and Medawar. The length of the second skin graft survival time served as the criterion for the sensitizing capacity of the primary graft. APA encapsulation of islets delayed but has not prevented the development of the second set phenomenon. However, the second skin graft rejection time was significantly longer after grafting of encapsulated islets than after free islets transplantation. APA microencapsulation of intraperitoneally transplanted islets delayed but did not prevent the development of the second set phenomenon. Encapsulation does not ensure complete immunoisolation, but only creates "an artificially immunoprivileged site of transplantation."
Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer
Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H.; Kupnik, Mario; Khuri-Yakub, Butrus Thomas
2010-01-01
The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs. PMID:21170294
Bolger, Zara; Brunton, Nigel P; Monahan, Frank J
2017-10-18
Vitamin E and omega-3 fatty acids can be incorporated into meat products at levels supporting health claims of "protecting against oxidative stress" and "maintaining normal blood cholesterol levels", respectively. Chicken sausages were formulated to contain vitamin E (12 mg per 100 g) and flaxseed oil (2 g per 100 g) using different oil incorporation methods. The formulations were: (1) control (no oil); (2) oil; (3) emulsified oil; (4) freeze-dried encapsulated oil; (5) freeze-dried encapsulated oil with cross-linker genipin; (6) spray-dried encapsulated oil. α-Linolenic acid and α-tocopherol were retained in all fortified formulations at levels to meet nutrient and health claims but emulsification or encapsulation had no additional benefit in retention following cooking or on product quality as measured by proximate composition, lipid oxidation, colour, microbial analysis, cook loss and texture profile analysis. While the addition of flaxseed oil had a negative effect on consumer acceptance of flavour (although not when emulsified), overall acceptance of the chicken sausages was only reduced significantly (p ≤ 0.05) when oil was encapsulated.
Sprayed shielding of plastic-encapsulated electronic modules
NASA Technical Reports Server (NTRS)
Muller, A. N.
1969-01-01
Metallic coating directly sprayed on electronic modules provides simple and reliable lightweight protection against radio frequency interference. A plasma arc may be used. Aluminum and copper are the most effective metals.
Capsules made from prefabricated thin films
NASA Astrophysics Data System (ADS)
Amstad, Esther
2018-02-01
Capsules are composed of a core, typically a liquid containing active substances, and a surrounding shell. They are used to delay the degradation of active ingredients, protect them from reacting or interacting with substances contained in the surrounding shell, or to prevent premature consumption of encapsulants (1, 2). The performance of capsules is often determined by their permeability toward encapsulants and stability against rupture; these parameters can be adjusted with the composition, structure, and thickness of the shell (3, 4). Mechanically robust capsules with a minimal permeability even toward low molecular weight substances often have rather thick shells (5). On page 775 of this issue, Kumar et al. (6) report an elegant process to fabricate capsules with very thin, rigid shells that display a low permeability even toward small encapsulants.
NASA Astrophysics Data System (ADS)
Han, Jin-Woo; Kang, Hee-Jin; Kim, Jong-Yeon; Kim, Gwi-Yeol; Seo, Dae-Shik
2006-12-01
In this study, inorganic multilayer thin-film encapsulation is adopted for the first time to protect an organic layer from moisture and oxygen. Inorganic multilayer thin-film encapsulation is deposited onto poly(ethylene terephthalate) (PET) using an electron beam and sputtering. The SiON/SiO2 and parylene layer show the most suitable properties. Under these conditions, the water vapor transmission rate (WVTR) for PET can be reduced from a level of 0.57 g m-2 day-1 (bare substrate) to 1× 10-5 g m-2 day-1 after the application of a SiON and SiO2 layer. These results indicate that PET/parylene/SiO2/SiON barrier coatings have high potential for flexible organic light-emitting diode (OLED) applications.
Encapsulation in the food industry: a review.
Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N
1999-05-01
Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.
Protection of xenografts by a combination of immunoisolation and a single dose of anti-CD4 antibody.
Mckenzie, A W; Georgiou, H M; Zhan, Y; Brady, J L; Lew, A M
2001-01-01
Immunoisolation is the separation of transplanted cells from cells of the immune system using a semipermeable membrane. Using one such immunoisolation capsule-the TheraCyte device-we have assessed the survival of encapsulated xenogeneic tissue in vivo as well as the contribution of CD4+ve T cells to encapsulated xenograft rejection. The foreign body reaction to the TheraCyte capsule in vivo was assessed by transplanting empty capsules into normal mice. These capsules elicit a foreign body response by the host animal. Encapsulated CHO, NIT-1, and PK-15 cells were placed in culture and in immunodeficient mice to investigate their growth characteristics in the TheraCyte device. These cell lines survive both in culture and in immunodeficient SCID mice. Xenogeneic PK cells were also transplanted into normal C57BL/6 mice. These cells do not survive in normal mice despite the absence of direct contact between infiltrating and encapsulated cells. In addition, the survival of encapsulated cells in mice treated with a single dose of anti-CD4 antibody was examined. This was assessed using two systems: 1) histological analysis of capsule sections; 2) a quantitative luciferase reporter system using PK cells transfected to express luciferase. In both cases, anti-CD4 antibody contributed to prolonged encapsulated xenogeneic cell survival. Encapsulated xenogeneic cells survive in immunodeficient mice but not normal mice. Treatment of normal mice with anti-CD4 antibody results in prolonged survival of xenogeneic cells that can be measured using a luciferase reporter system. These results highlight the contribution of CD4+ve T cells to encapsulated xenograft rejection.
Chang, Feng-Peng; Chen, Yi-Ping; Mou, Chung-Yuan
2014-11-01
An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Fréchet, Jean MJ.; Albrecht, Mark T.; Mateczun, Alfred J.; Ainslie, Kristy M.; Pesce, John T.; Keane-Myers, Andrea M.
2010-01-01
Toll-like receptor (TLR) agonists induce potent innate immune responses and can be used in the development of novel vaccine adjuvants. However, access to TLRs can be challenging as exemplified by TLR 7, which is located intracellularly in endosomal compartments. To increase recognition and subsequent stimulatory effects of TLR 7, imiquimod was encapsulated in acetalated-dextran (Ac-DEX) microparticles. Ac-DEX, a water-insoluble and biocompatible polymer, is relatively stable at pH 7.4, but degrades rapidly under acidic conditions, such as those found in lysosomal vesicles. To determine the immunostimulatory capacity of encapsulated imiquimod, we compared the efficacy of free versus encapsulated imiquimod in activating RAW 264.7 macrophages, MH-S macrophages, and bone marrow derived dendritic cells. Encapsulated imiquimod significantly increased IL-1β, IL-6, and TNF-α cytokine expression in macrophages relative to the free drug. Furthermore, significant increases were observed in classic macrophage activation markers (iNOS, PD1-L1, and NO) after treatment with encapsulated imiquimod over the free drug. Also, bone marrow derived dendritic cells produced significantly higher levels of IL-1β, IL-6, IL-12p70, and MIP-1α as compared to their counterparts receiving free imiquimod. These results suggest that encapsulation of TLR ligands within Ac-DEX microparticles results in increased immunostimulation and potentially better protection from disease when used in conjunction with vaccine formulations. PMID:20230025
Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications.
Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H
2017-01-01
Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.
An Encapsulated Yersinia pseudotuberculosis Is a Highly Efficient Vaccine against Pneumonic Plague
Derbise, Anne; Cerdà Marín, Alba; Ave, Patrick; Blisnick, Thierry; Huerre, Michel; Carniel, Elisabeth; Demeure, Christian E.
2012-01-01
Background Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined. Methodology and Principal Findings The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer's patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells) and the mucosal levels (IgA and Th17 cells). A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD50 of the fully virulent Y. pestis CO92 strain) and 94% against a high challenge dose (3,300×LD50). Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis. Conclusions and Significance The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality. PMID:22348169
An encapsulated Yersinia pseudotuberculosis is a highly efficient vaccine against pneumonic plague.
Derbise, Anne; Cerdà Marín, Alba; Ave, Patrick; Blisnick, Thierry; Huerre, Michel; Carniel, Elisabeth; Demeure, Christian E
2012-01-01
Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined. The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer's patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells) and the mucosal levels (IgA and Th17 cells). A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD(50) of the fully virulent Y. pestis CO92 strain) and 94% against a high challenge dose (3,300×LD(50)). Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis. The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality.
Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M
2017-06-01
The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect carvacrol structure and increase its efficiency and stability. Moreover, nano-encapsulation of carvacrol is more efficient than nano-emulsion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ursic-Bedoya, Raul; Mire, Chad E; Robbins, Marjorie; Geisbert, Joan B; Judge, Adam; MacLachlan, Ian; Geisbert, Thomas W
2014-02-15
Marburg virus (MARV) infection causes severe morbidity and mortality in humans and nonhuman primates. Currently, there are no licensed therapeutics available for treating MARV infection. Here, we present the in vitro development and in vivo evaluation of lipid-encapsulated small interfering RNA (siRNA) as a potential therapeutic for the treatment of MARV infection. The activity of anti-MARV siRNAs was assessed using dual luciferase reporter assays followed by in vitro testing against live virus. Lead candidates were tested in lethal guinea pig models of 3 different MARV strains (Angola, Ci67, Ravn). Treatment resulted in 60%-100% survival of guinea pigs infected with MARV. Although treatment with siRNA targeting other MARV messenger RNA (mRNA) had a beneficial effect, targeting the MARV NP mRNA resulted in the highest survival rates. NP-718m siRNA in lipid nanoparticles provided 100% protection against MARV strains Angola and Ci67, and 60% against Ravn. A cocktail containing NP-718m and NP-143m provided 100% protection against MARV Ravn. These data show protective efficacy against the most pathogenic Angola strain of MARV. Further development of the lipid nanoparticle technology has the potential to yield effective treatments for MARV infection.
Villalobos-Hernández, J R; Müller-Goymann, C C
2007-01-01
This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.
Waste management technology development and demonstration programs at Brookhaven National Laboratory
NASA Technical Reports Server (NTRS)
Kalb, Paul D.; Colombo, Peter
1991-01-01
Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.
Boesteanu, Alina C; Babu, Nadarajan S; Wheatley, Margaret; Papazoglou, Elisabeth S; Katsikis, Peter D
2010-12-16
Current influenza virus vaccines primarily elicit antibodies and can be rendered ineffective by antigenic drift and shift. Vaccines that elicit CD8+ T cell responses targeting less variable proteins may function as universal vaccines that have broad reactivity against different influenza virus strains. To generate such a universal vaccine, we encapsulated live influenza virus in a biopolymer and delivered it to mice subcutaneously. This vaccine was safe, induced potent CD8+ T cell immunity and protected mice against heterosubtypic lethal challenge. Safety of subcutaneous (SQ) vaccination was tested in Rag-/-γc-/- double knockout mice which we show cannot control intranasal infection. Biopolymer encapsulation of live influenza virus could be used to develop universal CD8+ T cell vaccines against heterosubtypic and pandemic strains. Copyright © 2010 Elsevier Ltd. All rights reserved.
de Oliveira, Jhones Luiz; Campos, Estefania Vangelie Ramos; Pereira, Anderson E S; Nunes, Lucas E S; da Silva, Camila C L; Pasquoto, Tatiane; Lima, Renata; Smaniotto, Giovani; Polanczyk, Ricardo Antonio; Fraceto, Leonardo F
2018-05-07
The nanoencapsulation of botanical compounds (such as geraniol) is an important strategy that can be used to increase the stability and efficiency of these substances in integrated pest management. In this study, chitosan/gum arabic nanoparticles containing geraniol were prepared and characterized. In addition, evaluation was made of the biological activity of geraniol encapsulated in chitosan/gum arabic nanoparticles towards whitefly (Bemisia tabaci). The optimized formulation showed a high encapsulation efficiency (>90%) and remained stable for about 120 days. The formulation protected the geraniol against degradation by UV radiation, and the in vitro release was according to a diffusion mechanism that was influenced by temperature. An attraction effect was observed for Bemisia tabaci, indicating the potential of this type of system for use in pest management, especially in trap devices.
Gao, Ting-ting; Li, Wei; Zhao, Yan; Zhang, Feng-qiang; Wu, Jin; Cui, Xianlan; Wang, Yun-Feng
2012-01-01
Background Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine. Methodology/Principal Findings A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9. Conclusions/Significance NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles. PMID:23285276
Encapsulants for protecting MEMS devices during post-packaging release etch
Peterson, Kenneth A.
2005-10-18
The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.
Nano spray drying for encapsulation of pharmaceuticals.
Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi
2018-05-17
Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
Ryan, Aideen E; Lohan, Paul; O'Flynn, Lisa; Treacy, Oliver; Chen, Xizhe; Coleman, Cynthia; Shaw, Georgina; Murphy, Mary; Barry, Frank; Griffin, Matthew D; Ritter, Thomas
2014-01-01
Allogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion. Differentiation altered immunogenicity as evidenced by induced proliferation of allogeneic T cells and increased susceptibility to cytotoxic lysis by allo-specific T cells. Undifferentiated or differentiated allo-MSCs were implanted subcutaneously, with and without alginate encapsulation. Increased CD3+ and CD68+ infiltration was evident in differentiated and splenocyte encapsulated implants only. Without encapsulation, increased local memory T-cell responses were detectable in recipients of undifferentiated and differentiated MSCs; however, only differentiated MSCs induced systemic memory T-cell responses. In recipients of encapsulated allogeneic cells, only differentiated allo-MSCs induced memory T-cell responses locally and systemically. Systemic alloimmune responses to differentiated MSCs indicate immunogenicity regardless of alginate encapsulation and may require immunosuppressive therapy for therapeutic use. PMID:24184966
Wei, Qiang; Wei, Wei; Tian, Rui; Wang, Lian-Yan; Su, Zhi-Guo; Ma, Guang-Hui
2008-07-15
Relatively uniform-sized poly(lactide-co-ethylene glycol) (PELA) microspheres with high encapsulation efficiency were prepared rapidly by a novel method combining emulsion-solvent extraction and premix membrane emulsification. Briefly, preparation of coarse double emulsions was followed by additional premix membrane emulsification, and antigen-loaded microspheres were obtained by further solidification. Under the optimum condition, the particle size was about 1 mum and the coefficient of variation (CV) value was 18.9%. Confocal laser scanning microscope and flow cytometer analysis showed that the inner droplets were small and evenly dispersed and the antigen was loaded uniformly in each microsphere when sonication technique was occupied to prepare primary emulsion. Distribution pattern of PEG segment played important role on the properties of microspheres. Compared with triblock copolymer PLA-PEG-PLA, the diblock copolymer PLA-mPEG yielded a more stable interfacial layer at the interface of oil and water phase, and thus was more suitable to stabilize primary emulsion and protect coalescence of inner droplets and external water phase, resulting in high encapsulation efficiency (90.4%). On the other hand, solidification rate determined the time for coalescence during microspheres fabrication, and thus affected encapsulation efficiency. Taken together, improving the polymer properties and solidification rate are considered as two effective strategies to yield high encapsulation.
Photopolymerizable liquid encapsulants for microelectronic devices
NASA Astrophysics Data System (ADS)
Baikerikar, Kiran K.
2000-10-01
Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion of a thermal initiator on the thermal and mechanical properties of the final cured encapsulants have been investigated. The results show that the material properties of the PLEs are the same, if not better, than those exhibited by conventional transfer molding compounds and demonstrate the potential of using PLEs for encapsulating microelectronic devices.
Chemical Characterization of an Encapsulated Red Wine Powder and Its Effects on Neuronal Cells.
Rocha-Parra, Diego; Chirife, Jorge; Zamora, Clara; de Pascual-Teresa, Sonia
2018-04-07
Red wine polyphenols are known for their implications for human health protection, although they suffer from high instability. For this reason, a red wine powder was prepared by freeze-drying encapsulation in maltodextrin/arabic gum matrix, and its composition was determined by means of high-performance liquid chromatography coupled quadrupole time-of-flight mass spectrometry (HPLC-MS-QTOF). More than thirty polyphenols, including anthocyanins, flavanols, flavonols, phenolic acids and stilbenoids, were identified. Some of the main quantified polyphenols were: malvidin-3- O -glucoside, malvidin 3- O -(6″-acetyl-glucose), petunidin-3- O -glucoside, quercetin-3- O -glucuronide, syringenin-3- O -glucoside, epicatechin, gallic acid and syringic acid. The biological activity of this de-alcoholized and encapsulated red wine on human neuroblastoma SH-SY5Y cells was studied. The results showed that the encapsulated red wine powder has active redox properties, as verified by performing reactive oxygen species (ROS) analysis utilizing a neuronal model. This could help explain its action against the neurotoxicity induced by 6-hydroxydopamine (6-OHDA).
Improvement of curcuminoid bioaccessibility from turmeric by a nanostructured lipid carrier system.
Park, Sung Jin; Garcia, Coralia V; Shin, Gye Hwa; Kim, Jun Tae
2018-06-15
Turmeric contains curcumin and its analogues, which show anticancer and antiinflammatory effects; however, curcuminoids are lipophilic and are poorly absorbed by the human body. Nanostructured lipid carriers for encapsulating whole turmeric powder were successfully produced by ultrasonication, and their physicochemical properties and stability in simulated gastric and intestinal media were evaluated. The turmeric nanostructured lipid carriers (TNLCs) exhibited a round shape, small diameter (282 ± 7.19 nm), adequate zeta potential (-22.75 ± 1.20 mV), and high encapsulation efficiency (93.3 ± 0.01%). The TNLCs were able to protect the encapsulated curcuminoids under acidic gastric conditions, and effectively released 95 ± 2.51% of the curcuminoids in the simulated intestinal medium, demonstrating their suitability for controlled release. The in vitro bioaccessibility of the encapsulated curcuminoids was 75 ± 1.24%, representing more than a fourfold increase compared to that of free turmeric. Therefore, the proposed TNLCs are a promising delivery system for increasing the bioaccessibility of curcuminoids from turmeric. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optical design for reliability and efficiency in concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Leutz, Ralf; Annen, Hans Philipp; Fu, Ling
2010-08-01
Complex systems like modules in concentrating photovoltaics (CPV) are designed in a systems approach. The better the components are concerted, the better the performance goals of the system can be fulfilled. Optics are central to the CPV module's reliability and efficiency. Fresnel lens optics provide the module cover, and protect the module against the environment. Fresnel lenses on glass can provide the module's structural integrity. The secondary optical element, used to increase the collection of light, the acceptance half-angle, and the uniformity on the cell, may provide encapsulation for the receiver. This encapsulation function may be provided by some optical designs in sol gel, or silicone. Both materials are unknown in their longevity in this application. We present optical designs fulfilling structural or protective functions, discuss the optical penalties to be paid, and the innovative materials and manufacturing technologies to be tested.
Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan
2018-05-02
Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.
McClements, David Julian
2018-03-01
There are many examples of bioactive proteins and peptides that would benefit from oral delivery through functional foods, supplements, or medical foods, including hormones, enzymes, antimicrobials, vaccines, and ACE inhibitors. However, many of these bioactive proteins are highly susceptible to denaturation, aggregation or hydrolysis within commercial products or inside the human gastrointestinal tract (GIT). Moreover, many bioactive proteins have poor absorption characteristics within the GIT. Colloidal systems, which contain nanoparticles or microparticles, can be designed to encapsulate, retain, protect, and deliver bioactive proteins. For instance, a bioactive protein may have to remain encapsulated and stable during storage and passage through the mouth and stomach, but then be released within the small intestine where it can be absorbed. This article reviews the application of food-grade colloidal systems for oral delivery of bioactive proteins, including microemulsions, emulsions, nanoemulsions, solid lipid nanoparticles, multiple emulsions, liposomes, and microgels. It also provides a critical assessment of the characteristics of colloidal particles that impact the effectiveness of protein delivery systems, such as particle composition, size, permeability, interfacial properties, and stability. This information should be useful for the rational design of medical foods, functional foods, and supplements for effective oral delivery of bioactive proteins. Copyright © 2018 Elsevier B.V. All rights reserved.
Nitroxide delivery system for Nrf2 activation and skin protection.
Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Sasson, Shmuel Ben; Bianco-Peled, Havazelet; Bitton, Ronit; Kohen, Ron
2015-08-01
Cyclic nitroxides are a large group of compounds composed of diverse stable radicals also known as synthetic antioxidants. Although nitroxides are valuable for use in several skin conditions, in in vivo conditions they have several drawbacks, such as nonspecific dispersion in normal tissue, preferential renal clearance and rapid reduction of the nitroxide to the corresponding hydroxylamine. However, these drawbacks can be easily addressed by encapsulating the nitroxides within microemulsions. This approach would allow nitroxide activity and therefore their valuable effects (e.g. activation of the Keap1-Nrf2-EpRE pathway) to continue. In this work, nitroxides were encapsulated in a microemulsion composed of biocompatible ingredients. The nanometric size and shape of the vehicle microemulsion and nitroxide microemulsion displayed high similarity, indicating that the stability of the microemulsions was preserved. Our studies demonstrated that nitroxide microemulsions were more potent inducers of the Keap1-Nrf2-EpRE pathway than the free nitroxides, causing the activation of phase II enzymes. Moreover, microemulsions containing nitroxides significantly reduced UVB-induced cytotoxicity in the skin. Understanding the mechanism of this improved activity may expand the usage of many other Nrf2 modulating molecules in encapsulated form, as a skin protection strategy against oxidative stress-related conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Tao; Li, Jian; Shao, Zengwu; Ma, Kaige; Zhang, Zhicai; Wang, Baichuan; Zhang, Yannan
2018-06-01
Due to its moldability, biocompatibility, osteoconductivity and resorbability, calcium phosphate cement (CPC) is a highly promising scaffold material for orthopedic applications. However, pH changes and ionic activity during the CPC setting reaction may adversely affect cells seeded directly on CPC. Moreover, a lack of macropores in CPC limits ingrowth of new bone. The objectives of this study were to prepare macroporous CPC scaffolds via porogen leaching, using mannitol crystals as the porogen and to evaluate the in vitro proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) encapsulated in chitosan/β-glycerophosphate (C/GP) hydrogel prior to exposure to the novel CPC scaffold. MSCs were found to be adhered to the surfaces of CPC macropores via scanning electron microscopy. The viability and osteogenic differentiation of MSCs in C/GP hydrogel with or without exposure to CPC constructs containing mannitol crystals indicated that coating with C/GP hydrogel protected the cells during cement mixing and setting. In conclusion, novel, macroporous CPC scaffolds were prepared, and our data indicate that a hydrogel encapsulation-based strategy can be used to protect cells during scaffold formation. Thus, the MSC-laden CPC scaffolds show promise for the delivery of stem cells to promote bone regeneration. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
Method for integrating microelectromechanical devices with electronic circuitry
Barron, Carole C.; Fleming, James G.; Montague, Stephen
1999-01-01
A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.
Antifouling Thermoplastic Composites with Maleimide Encapsulated in Clay Nanotubes.
Fu, Ye; Gong, Congcong; Wang, Wencai; Zhang, Liqun; Ivanov, Evgenii; Lvov, Yuri
2017-09-06
An antifouling ethylene-vinyl acetate copolymer (EVA) coating with halloysite clay nanotubes loaded with maleimide (TCPM) is prepared. Such antifoulant encapsulation allowed for extended release of TCPM and a long-lasting, efficient protection of the coated surface against marine microorganisms proliferation. Halloysite also induces the composite's anisotropy due to parallel alignment of the nanotubes. The maleimide loaded halloysite incorporated into the polymer matrix allowed for 12-month release of the bacterial inhibitor preventing fouling; it is much longer than the 2-3 month protection when TCPM is directly admixed into EVA. The antifouling properties of the EVA-halloysite nanocomposites were tested by monitoring surface adhesion and proliferation of marine V. natriegens bacteria with SEM. As compared to the composite directly doped with TCPM-antifoulant, there were much less bacteria accumulated on the EVA-halloysite-TCPM coating after a 2-month exposure to seawater. Field tests at South China Sea marine station further confirmed the formulation efficiency. The doping of 28 wt % TCPM loaded halloysite drastically enhanced material antifouling property, which promises wide applications for protective marine coating.
Bryant, Stephanie J; Vernerey, Franck J
2018-01-01
Biomimetic and biodegradable synthetic hydrogels are emerging as a promising platform for cell encapsulation and tissue engineering. Notably, synthetic-based hydrogels offer highly programmable macroscopic properties (e.g., mechanical, swelling and transport properties) and degradation profiles through control over several tunable parameters (e.g., the initial network structure, degradation kinetics and behavior, and polymer properties). One component to success is the ability to maintain structural integrity as the hydrogel transitions to neo-tissue. This seamless transition is complicated by the fact that cellular activity is highly variable among donors. Thus, computational models provide an important tool in tissue engineering due to their unique ability to explore the coupled processes of hydrogel degradation and neo-tissue growth across multiple length scales. In addition, such models provide new opportunities to develop predictive computational tools to overcome the challenges with designing hydrogels for different donors. In this report, programmable properties of synthetic-based hydrogels and their relation to the hydrogel's structural properties and their evolution with degradation are reviewed. This is followed by recent progress on the development of computational models that describe hydrogel degradation with neo-tissue growth when cells are encapsulated in a hydrogel. Finally, the potential for predictive models to enable patient-specific hydrogel designs for personalized tissue engineering is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2003-04-10
The Space Infrared Telescope Facility (SIRTF) is ready for encapsulation. A fairing will be installed around the spacecraft to protect it during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.
1998-10-29
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician prepares the Mars Polar Lander for encapsulation inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
1998-10-29
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians prepare the Mars Polar Lander for encapsulation inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
1998-10-29
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander sits on the workstand encapsulated inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
Bernela, Manju; Ahuja, Munish; Thakur, Rajesh
2016-06-05
Bromelain-loaded katira gum nanoparticles were synthesized using 3 level optimization process and desirability approach. Nanoparticles of the optimized batch were characterized using particle size analysis, zeta potential, transmission electron microscopy and Fourier-transform infrared spectroscopy. Investigation of their in vivo anti-inflammatory activity by employing carrageenan induced rat-paw oedema method showed that encapsulation of bromelain in katira gum nanoparticles substantially enhanced its anti-inflammatory potential. This may be attributed to enhanced absorption owing to reduced particle size or to protection of bromelain from acid proteases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P
2001-02-09
Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.
Soft x ray window encapsulant for HgI2 detectors
NASA Technical Reports Server (NTRS)
Entine, G.; Shah, K.; Squillante, M.
1987-01-01
HgI2 is an excellent semiconductor material for a low energy, room temperature x-ray spectrometer. The high values of the atomic numbers for its constituent elements gives high x-ray and gamma ray stopping power. The band gap of HgI2 is significantly higher than other commonly used semiconductors. Owing to the large value band gap, the leakage current for HgI2 devices is smaller, thus allowing low noise performance. Devices fabricated from HgI2 crystals have demonstrated energy resolution sufficient to distinguish the x-ray emission from the neighboring elements on the periodic table. Also the power requirements of HgI2 are very low. These characteristics make a HgI2 spectrometer an ideal component in a satellite based detection system. Unfortunately, HgI2 crystals tend to deteriorate with time, even if protected by standard semiconductor encapsulants. This degradation ruins the performance of the device in terms of its energy resolution and pulse amplitude. The degrading mechanism is believed to be material loss occurring from below the electrodes, due to high vapor pressure of HgI2 at room temperature. To address this major obstacle to rapid expansion of HgI2 technology, a research program aimed at improving device stability by encapsulation with inert polymeric materials was carried out. The program focused specifically on optimizing the encapsulant materials and their deposition techniques. The principal objectives for this program were device encapsulation, device testing, and accelerated testing to ensure very long term stability of these high resolution sensors. A variety of encapsulants were investigated with the selection criteria based on their chemical diffusion barrier properties, mechanical stability, reactivity, and morphology of encapsulant films. The investigation covered different classes of encapsulants including solvent based encapsulants, vapor deposited encapsulants, and plasma polymerized encapsulants. A variety of characterization techniques were employed to examine their effectiveness in stabilizing HgI2 devices; these included permeability evaluation, vacuum and heat testing, scanning electron microscopy (SEM) as well as studying the detector performance of coated detectors. The plasma polymerized films appear to have entirely solved the HgI2 degradation problem. Another achievement of this program was the development of an accelerated testing technique which correlates extremely well with long term tesing.
Zein-alginate based oral drug delivery systems: Protection and release of therapeutic proteins.
Lee, Sungmun; Kim, Yeu-Chun; Park, Ji-Ho
2016-12-30
Reactive oxygen species (ROS) play an important role in the development of inflammatory bowel diseases. Superoxide dismutase (SOD) has a great therapeutic potential by scavenging superoxide that is one of ROS; however, in vivo application is limited especially when it is orally administered. SOD is easily degraded in vivo by the harsh conditions of gastrointestinal tract. Here, we design a zein-alginate based oral drug delivery system that protects SOD from the harsh conditions of gastrointestinal tract and releases it in the environment of the small intestine. SOD is encapsulated in zein-alginate nanoparticles (ZAN) via a phase separation method. We demonstrate that ZAN protect SOD from the harsh conditions of the stomach or small intestine condition. ZAN (200:40) at the weight ratio of 200mg zein to 40mg of alginate releases SOD in a pH dependent manner, and it releases 90.8±1.2% of encapsulated SOD at pH 7.4 in 2h, while only 11.4±0.4% of SOD was released at pH 1.3. The encapsulation efficiency of SOD in ZAN (200:40) was 62.1±2.0%. SOD in ZAN (200:40) reduced the intracellular ROS level and it saved 88.9±7.5% of Caco-2 cells from the toxic superoxide in 4 hours. Based on the results, zein-alginate based oral drug delivery systems will have numerous applications to drugs that are easily degradable in the harsh conditions of gastrointestinal tract. Copyright © 2016 Elsevier B.V. All rights reserved.
Burnout in University Teaching Staff: A Systematic Literature Review
ERIC Educational Resources Information Center
Watts, J.; Robertson, N.
2011-01-01
Background: Teacher stress potentially impairs personal and professional competence and compromises productivity. Aversive emotional experience has been most comprehensively encapsulated by the phenomenon of burnout, which is particularly prominent for staff in human service sectors. Burnout reactions have been characterised as tripartite: the…
NASA Astrophysics Data System (ADS)
Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao
2016-02-01
Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.
Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao
2016-01-01
Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509
Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao
2016-02-10
Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.
Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Kai; Li, Zhen; Yang, Ye
Formamidinium (FA)-based lead iodide perovskites have emerged as the most promising light-absorber materials in the prevailing perovskite solar cells (PSCs). However, they suffer from the phase-instability issue in the ambient atmosphere, which is holding back the realization of the full potential of FA-based PSCs in the context of high efficiency and stability. Herein, the tetraethylorthosilicate hydrolysis process is integrated with the solution crystallization of FA-based perovskites, forming a new film structure with individual perovskite grains encapsulated by amorphous silica layers that are in situ formed at the nanoscale. The silica not only protects perovskite grains from the degradation but alsomore » enhances the charge-carrier dynamics of perovskite films. The underlying mechanism is discussed using a joint experiment-theory approach. Through this in situ grain encapsulation method, PSCs show an efficiency close to 20% with an impressive 97% retention after 1000-h storage under ambient conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F.J.; Glick, S.H.; Czanderna, A.W.
The stabilization effects of various superstrate materials against UV-induced EVA discoloration and the effect of photocurrent enhancement by white light-reflecting substrates are summarized. Based on the results, some alternative PV module encapsulation schemes are proposed for improved module performance, where the current or modified formulations of EVA encapsulants still can be used so that the typical processing tools and conditions need not to be changed significantly. The schemes are designed in an attempt to eliminate or minimize the EVA yellow-browning and to increase the module power output. Four key experimental results from the studies of EVA discoloration and encapsulation aremore » to employ: (1) UV-absorbing (filtering) glasses as superstrates to protect EVA from UV-induced discoloration, (2) gas-permeable polymer films as superstrates and/or substrates to prevent EVA yellowing by permitting photobleaching reactions, (3) modified EVA formulations, and (4) internal reflection of the light by white substrates. {copyright} {ital 1996 American Institute of Physics.}« less
Encapsulation and controlled release of retinol from silicone particles for topical delivery.
Shields, C Wyatt; White, John P; Osta, Erica G; Patel, Jerishma; Rajkumar, Shashank; Kirby, Nickolas; Therrien, Jean-Philippe; Zauscher, Stefan
2018-05-28
Retinol, a derivative of vitamin A, is a ubiquitous compound used to treat acne, reduce wrinkles and protect against conditions like psoriasis and ichthyosis. While retinol is used as the primary active ingredient (AI) in many skin care formulations, its efficacy is often limited by an extreme sensitivity to degrade and toxicity at high concentrations. While microencapsulation is an appealing method to help overcome these issues, few microencapsulation strategies have made a major translational impact due to challenges with complexity, cost, limited protection of the AI and poor control of the release of the AI. We have developed a class of silicone particles that addresses these challenges for the encapsulation, protection and controlled release of retinol and other hydrophobic compounds. The particles are prepared by the sol-gel polymerization of silane monomers, which enables their rapid and facile synthesis at scale while maintaining a narrow size distribution (i.e., CV < 20%). We show that our particles can: (i) encapsulate retinol with high efficiency (>85%), (ii) protect retinol from degradation (yielding a half-life 9× greater than unencapsulated retinol) and (iii) slowly release retinol over several hours (at rates from 0.14 to 0.67 μg cm -2 s -1/2 ). To demonstrate that the controlled release of retinol from the particles can reduce irritation, we performed a double blind study on human subjects and found that formulations containing our particles were 12-23% less irritating than identical formulations containing Microsponge® particles (an industry standard by Amcol, Inc.). To show that the silicone particles can elicit a favorable biological response, similar to the Microsponge® particles, we applied both formulations to reconstructed human epidermal tissues and found an upregulation of keratin 19 (K19) and a downregulation of K10, indicating that the reduced irritation observed in the human study was not caused by reduced activity. We also found a decrease in the production of interleukin-1α (IL-1α) compared to formulations containing the Microsponge particles, suggesting lower irritation levels and supporting the findings from the human study. Finally, we show that the silicone particles can encapsulate other AIs, including betamethasone, N, N-diethyl-meta-toluamide (DEET), homosalate and ingenol mebutate, establishing these particles as a true platform technology. Copyright © 2018. Published by Elsevier B.V.
Encapsulation of sex sorted boar semen: sperm membrane status and oocyte penetration parameters.
Spinaci, Marcella; Chlapanidas, Theodora; Bucci, Diego; Vallorani, Claudia; Perteghella, Sara; Lucconi, Giulia; Communod, Ricardo; Vigo, Daniele; Galeati, Giovanna; Faustini, Massimo; Torre, Maria Luisa
2013-03-01
Although sorted semen is experimentally used for artificial, intrauterine, and intratubal insemination and in vitro fertilization, its commercial application in swine species is still far from a reality. This is because of the low sort rate and the large number of sperm required for routine artificial insemination in the pig, compared with other production animals, and the greater susceptibility of porcine spermatozoa to stress induced by the different sex sorting steps and the postsorting handling protocols. The encapsulation technology could overcome this limitation in vivo, protecting and allowing the slow release of low-dose sorted semen. The aim of this work was to evaluate the impact of the encapsulation process on viability, acrosome integrity, and on the in vitro fertilizing potential of sorted boar semen. Our results indicate that the encapsulation technique does not damage boar sorted semen; in fact, during a 72-hour storage, no differences were observed between liquid-stored sorted semen and encapsulated sorted semen in terms of plasma membrane (39.98 ± 14.38% vs. 44.32 ± 11.72%, respectively) and acrosome integrity (74.32 ± 12.17% vs. 66.07 ± 10.83%, respectively). Encapsulated sorted spermatozoa presented a lower penetration potential than nonencapsulated ones (47.02% vs. 24.57%, respectively, P < 0.0001), and a significant reduction of polyspermic fertilization (60.76% vs. 36.43%, respectively, polyspermic ova/total ova; P < 0.0001). However, no difference (P > 0.05) was observed in terms of total efficiency of fertilization expressed as normospermic oocytes/total oocytes (18.45% vs. 15.43% for sorted diluted and sorted encapsulated semen, respectively). The encapsulation could be an alternative method of storing of pig sex sorted spermatozoa and is potentially a promising technique in order to optimize the use of low dose of sexed spermatozoa in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.
Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity
NASA Technical Reports Server (NTRS)
Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.
2001-01-01
Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.
Allijn, Iris E; Czarny, Bertrand M S; Wang, Xiaoyuan; Chong, Suet Yen; Weiler, Marek; da Silva, Acarilia Eduardo; Metselaar, Josbert M; Lam, Carolyn Su Ping; Pastorin, Giorgia; de Kleijn, Dominique P V; Storm, Gert; Wang, Jiong-Wei; Schiffelers, Raymond M
2017-02-10
Inflammation is a known mediator of adverse ventricular remodeling after myocardial infarction (MI) that may lead to reduction of ejection fraction and subsequent heart failure. Berberine is a isoquinoline quarternary alkaloid from plants that has been associated with anti-inflammatory, anti-oxidative, and cardioprotective properties. Its poor solubility in aqueous buffers and its short half-life in the circulation upon injection, however, have been hampering the extensive usage of this natural product. We hypothesized that encapsulation of berberine into long circulating liposomes could improve its therapeutic availability and efficacy by protecting cardiac function against MI in vivo. Berberine-loaded liposomes were prepared by ethanol injection and characterized. They contained 0.3mg/mL of the drug and were 0.11μm in diameter. Subsequently they were tested for IL-6 secretion inhibition in RAW 264.7 macrophages and for cardiac function protection against adverse remodeling after MI in C57BL/6J mice. In vitro, free berberine significantly inhibited IL-6 secretion (IC 50 =10.4μM), whereas encapsulated berberine did not as it was not released from the formulation in the time frame of the in vitro study. In vivo, berberine-loaded liposomes significantly preserved the cardiac ejection fraction at day 28 after MI by 64% as compared to control liposomes and free berberine. In conclusion, liposomal encapsulation enhanced the solubility of berberine in buffer and preserves ejection fraction after MI. This shows that delivery of berberine-loaded liposomes significantly improves its therapeutic availability and identifies berberine-loaded liposomes as potential treatment of adverse remodeling after MI. Copyright © 2017 Elsevier B.V. All rights reserved.
Frequency regulator for synchronous generators
Karlicek, Robert F.
1982-01-01
The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices.
Silk-based blood stabilization for diagnostics.
Kluge, Jonathan A; Li, Adrian B; Kahn, Brooke T; Michaud, Dominique S; Omenetto, Fiorenzo G; Kaplan, David L
2016-05-24
Advanced personalized medical diagnostics depend on the availability of high-quality biological samples. These are typically biofluids, such as blood, saliva, or urine; and their collection and storage is critical to obtain reliable results. Without proper temperature regulation, protein biomarkers in particular can degrade rapidly in blood samples, an effect that ultimately compromises the quality and reliability of laboratory tests. Here, we present the use of silk fibroin as a solid matrix to encapsulate blood analytes, protecting them from thermally induced damage that could be encountered during nonrefrigerated transportation or freeze-thaw cycles. Blood samples are recovered by simple dissolution of the silk matrix in water. This process is demonstrated to be compatible with a number of immunoassays and provides enhanced sample preservation in comparison with traditional air-drying paper approaches. Additional processing can remediate interactions with conformational structures of the silk protein to further enhance blood stabilization and recovery. This approach can provide expanded utility for remote collection of blood and other biospecimens empowering new modalities of temperature-independent remote diagnostics.
Ursic-Bedoya, Raul; Mire, Chad E.; Robbins, Marjorie; Geisbert, Joan B.; Judge, Adam; MacLachlan, Ian; Geisbert, Thomas W.
2014-01-01
Background. Marburg virus (MARV) infection causes severe morbidity and mortality in humans and nonhuman primates. Currently, there are no licensed therapeutics available for treating MARV infection. Here, we present the in vitro development and in vivo evaluation of lipid-encapsulated small interfering RNA (siRNA) as a potential therapeutic for the treatment of MARV infection. Methods. The activity of anti-MARV siRNAs was assessed using dual luciferase reporter assays followed by in vitro testing against live virus. Lead candidates were tested in lethal guinea pig models of 3 different MARV strains (Angola, Ci67, Ravn). Results. Treatment resulted in 60%–100% survival of guinea pigs infected with MARV. Although treatment with siRNA targeting other MARV messenger RNA (mRNA) had a beneficial effect, targeting the MARV NP mRNA resulted in the highest survival rates. NP-718m siRNA in lipid nanoparticles provided 100% protection against MARV strains Angola and Ci67, and 60% against Ravn. A cocktail containing NP-718m and NP-143m provided 100% protection against MARV Ravn. Conclusions. These data show protective efficacy against the most pathogenic Angola strain of MARV. Further development of the lipid nanoparticle technology has the potential to yield effective treatments for MARV infection. PMID:23990568
Mokhtarieh, Amir Abbas; Lee, Jieun; Kim, Semi; Lee, Myung Kyu
2018-06-01
Previously a scalable and extrusion-free method has been developed for efficient liposomal encapsulation of DNA by twice stepwise mixing of lipids in ethanol and DNA solution using T-shape mixing chamber. In this study, we prepared nanoliposomes encapsulating siRNA by simply discontinuous mixing of lipids in ethanol/ether/water mixture and acidic siRNA solution without use of special equipment. The simple mixing siRNA/liposomal particles (siRNA/SMLs) prepared using ethanol/ether/water (3:1:1) mixture showed 120.4 ± 20.2 nm particle size, 0.174 ± 0.033 polydispersity and 86.5 ± 2.76% siRNA encapsulation rate. In addition, the SMLs almost completely protected the encapsulated siRNA from RNase A digestion. Coupling of anti-human epidermal growth factor receptor (EGFR) Fab' to siRNA/SMLs enhanced EGFR-specific cell penetration of SMLs and induced siRNA dependent gene silencing. Unexpectedly, the Cy5.5-labeled Fab' showed almost no in vivo targeting to the xenografted A549 tumors in SCID-NOD mice. However, multiple injection of the unmodified siRNA/SMLs accumulated in the tumors and induced siRNA-dependent in vivo gene silencing. These results demonstrate that the siRNA/SMLs can be used as a siRNA delivery tool for gene therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of encapsulation technology on organic light emitting diode lifetime
NASA Astrophysics Data System (ADS)
Zhong, Jian; Gao, Zhuo; Gao, Juan; Dai, Ke; Chen, Jiule
2012-03-01
A kind of green organic light-emitting diodes (OLED) was prepared via vacuum thermal evaporation, of which the multilayer structure was indium-tin oxide (ITO)/copper-phthalocyanine (CuPc) (200 Å)/ N,N'-bis(1-naphthyl)- N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine ( α-NPD) (600 Å)/ N'-diphenyl- N,N'-tris(8-hydroxyquinoline) aluminium (Alq3) (400 Å):10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1 H,5 H,11 H-(l)benzopyropyrano(6,7,8- i, j)quinolizin-11-one (C545T) (2%)/Alq3 (200 Å)/LiF (10 Å)/Al (1000 Å). And we used both traditional glass encapsulation and thin film encapsulation (TFE) technologies to protect the device, reducing impact of vapor and oxygen. Organic film offered an excellent surface morphology, while inorganic film was nearly a perfect barrier to vapor and oxygen. Both of them constituted the encapsulation unit of TFE. According to the results of acceleration life test, the operation lifetime of device using TFE was 22% less than that of device using traditional glass cap encapsulation. So, the technology of TFE should be optimized further, and the quality of TFE needs a great improvement. There is a long way to go and a lot of hard work before realizing flexible display with OLED, but the dream will be true one day.
Effects on bread and oil quality after functionalization with microencapsulated chia oil.
González, Agustín; Martínez, Marcela L; León, Alberto E; Ribotta, Pablo D
2018-03-23
Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
A chemically stable PVD multilayer encapsulation for lithium microbatteries
NASA Astrophysics Data System (ADS)
Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.
2015-10-01
A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.
Nano-preparation of Andrographis paniculata extract by casein micelle for antidiabetic agent
NASA Astrophysics Data System (ADS)
Arbianti, Rita; Dewi, Veronica; Imansari, Farisa; Hermansyah, Heri; Sahlan, Muhamad
2017-02-01
Side effects caused by oral medications for person with diabetic are the background of the development of alternative treatments by traditional medicine, herbs. Andrographis paniculata (AP) is one of the herbs that is potent to be anti-diabetic agent. The active compound of AP, andrographolide have been examined to have anti-diabetic activity as α-glucosidase enzyme inhibitor. This research aims to encapsulate sambiloto's extract with casein micelle and produce nanoparticles which have anti-diabetic activity as α-glucosidase inhibitor. Extract of AP is encapsulated by casein micelle and made into nano size using sonicator. The dominant active compounds in AP extract coated by casein are andrographolide, neoandrographolide, 14-deoxy-11,12didehydroandrographolide with encapsulation efficiency of 68.83%, 89.15% and 81.69%, the average diameter of the particles is about 120.57 nm and its loading capacity is 28.85%. AP's extract has antidiabetic activity as α-glucosidase inhibitor with percent inhibition of 95%. The morphology of nanoencapsulated AP's extract analyzed by FE-SEM, were similar with casein micelle.
Graça, J S; de Oliveira, R F; de Moraes, M L; Ferreira, M
2014-04-01
An important step in several bioanalytical applications is the immobilization of biomolecules. Accordingly, this procedure must be carefully chosen to preserve their biological structure and fully explore their properties. For this purpose, we combined the versatility of the layer-by-layer (LbL) method for the immobilization of biomolecules with the protective behavior of liposome-encapsulated systems to fabricate a novel amperometric glucose biosensor. To obtain the biosensing unit, an LbL film of the H2O2 catalyst polypeptide microperoxidase-11 (MP-11) was assembled onto an indium-tin oxide (ITO) electrode followed by the deposition of a liposome-encapsulated glucose oxidase (GOx) layer. The biosensor response toward glucose detection showed a sensitivity of 0.91±0.09 (μA/cm2)/mM and a limit of detection (LOD) of 8.6±1.1 μM, demonstrating an improved performance compared to similar biosensors with a single phospholipid-liposome or even containing a non-encapsulated GOx layer. Finally, glucose detection was also performed in a zero-lactose milk sample to demonstrate the potential of the biosensor for food analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Encapsulated Bacillus anthracis interacts closely with liver endothelium.
Piris-Gimenez, Alejandro; Corre, Jean-Philippe; Jouvion, Gregory; Candela, Thomas; Khun, Huot; Goossens, Pierre L
2009-11-01
The Bacillus anthracis poly-gamma-D-glutamate capsule is essential for virulence. It impedes phagocytosis and protects bacilli from the immune system, thus promoting systemic dissemination. To further define the virulence mechanisms brought into play by the capsule, we characterized the interactions between encapsulated nontoxinogenic B. anthracis and its host in vivo through histological analysis, perfusion, and competition experiments with purified capsule. Clearance of encapsulated bacilli from the blood was rapid (>90% clearance within 5 min), with 75% of the bacteria being trapped in the liver. Competition experiments with purified capsule polyglutamate inhibited this interaction. At the septicemic phase of cutaneous infection with spores, the encapsulated bacilli were trapped in the vascular spaces of the liver and interacted closely with the liver endothelium in the sinusoids and terminal and portal veins. They often grow as microcolonies containing capsular material shed by the bacteria. We show that, in addition to its inhibitory effect on the interaction with the immune system, the capsule surrounding B. anthracis plays an active role in mediating the trapping of the bacteria within the liver and may thus contribute to anthrax pathogenesis. Because other microorganisms produce polyglutamate, it may also represent a general mechanism of virulence or in vivo survival.
Mangrio, Farhana Akbar; Dwivedi, Pankaj; Han, Shuya; Zhao, Gang; Gao, Dayong; Si, Ting; Xu, Ronald X
2017-12-04
Artemether is one of the most effective drugs for the treatment of chloroquine-resistant and Plasmodium falciparum strains of malaria. However, its therapeutic potency is hindered by its poor bioavailability. To overcome this limitation, we have encapsulated artemether in poly(lactic-co-glycolic) acid (PLGA) core-shell microparticles (MPs) using the coaxial electrospray method. With optimized process parameters including liquid flow rates and applied electric voltages, experiments are systematically carried out to generate a stable cone-jet mode to produce artemether-loaded PLGA-MPs with an average size of 2 μm, an encapsulation efficiency of 78 ± 5.6%, and a loading efficiency of 11.7%. The in vitro release study demonstrates the sustained release of artemether from the core-shell structure in comparison with that of plain artemether and that of MPs produced by single-axial electrospray without any relevant cytotoxicity. The in vivo studies are performed to evaluate the pharmacokinetic characteristics of the artemether-loaded PLGA-MPs. Our study implies that artemether can be effectively encapsulated in a protective shell of PLGA for controlled release kinetics and enhanced oral bioavailability.
2011-03-01
Mile per hour ms Millisecond NEDU Navy Experimental Diving Unit PFD Personal flotation device PIW Person in the water PVC Polyvinyl chloride RDC...electrically resistive, yet conductive, clay. We then encapsulated the clay around a 1/2” diameter, 6-inch long copper rod, and then tightly wrapped it with...short length of 12 American Wire Gauge (AWG) stranded copper wire to the copper rod within each electrode. For each electrode pair, we joined
1998-10-29
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician looks over the Mars Polar Lander before its encapsulation inside the backshell, a protective cover. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Baeza, I.; Ibanez, M.; Wong, C.; Chavez, P.; Gariglio, P.; Oro, J.
1991-01-01
Some properties of DNA condensed with spermidine have been compared with the properties of DNA condensed with Co3+(NH3)6 to determine whether condensation of DNA with these trivalent cations protects DNA against the action of DNase I and increases transcription and encapsulation of DNA into liposomes. It was shown that DNA condensed with Co3+(NH3)6 was resistant to the action of the endonuclease DNase I such as DNA condensed with spermidine was. However, DNA condensed with Co3+(NH3)6 was significantly less active in transcription with the E. coli RNA polymerase than DNA-spermidine condensed forms. In addition, it was demonstrated that both compacted forms of DNA were more efficiently encapsulated into neutral liposomes; however, negatively, charged liposomes were scarcely formed in the presence of DNA condensed with Co3+(NH3)6. These experiments and the well documented properties of polyamines increasing the resistance to radiations and hydrolysis of nucleic acids, as well as their biological activities, such as replication, transcription, and translation, together with the low concentration of Co3+ in the environment, lead us to propose spermidine as a plausible prebiotic DNA condensing agent rather than Co3+ and the basic proteins proposed by other authors. Then, we consider the possible role and relevance of the polyamine-nucleic acids complexes in the evolution of life.
NASA Astrophysics Data System (ADS)
Kilic, Ece; Novoselova, Marina V.; Lim, Su Hui; Pyataev, Nikolay A.; Pinyaev, Sergey I.; Kulikov, Oleg A.; Sindeeva, Olga A.; Mayorova, Oksana A.; Murney, Regan; Antipina, Maria N.; Haigh, Brendan; Sukhorukov, Gleb B.; Kiryukhin, Maxim V.
2017-03-01
Lactoferrin (Lf) has considerable potential as a functional ingredient in food, cosmetic and pharmaceutical applications. However, the bioavailability of Lf is limited as it is susceptible to digestive enzymes in gastrointestinal tract. The shells comprising alternate layers of bovine serum albumin (BSA) and tannic acid (TA) were tested as Lf encapsulation system for oral administration. Lf absorption by freshly prepared porous 3 μm CaCO3 particles followed by Layer-by-Layer assembly of the BSA-TA shells and dissolution of the CaCO3 cores was suggested as the most efficient and harmless Lf loading method. The microcapsules showed high stability in gastric conditions and effectively protected encapsulated proteins from digestion. Protective efficiency was found to be 76 ± 6% and 85 ± 2%, for (BSA-TA)4 and (BSA-TA)8 shells, respectively. The transit of Lf along the gastrointestinal tract (GIT) of mice was followed in vivo and ex vivo using NIR luminescence. We have demonstrated that microcapsules released Lf in small intestine allowing 6.5 times higher concentration than in control group dosed with the same amount of free Lf. Significant amounts of Lf released from microcapsules were then absorbed into bloodstream and accumulated in liver. Suggested encapsulation system has a great potential for functional foods providing lactoferrin.
Dianawati, Dianawati; Lim, Seng Feng; Ooi, Yasmin Beng Houi; Shah, Nagendra P
2017-09-01
The aims of this study were to evaluate the effect of types of protein-based microcapsules and storage at various ambient temperatures on the survival of Lactobacillus acidophilus during exposure to simulated gastrointestinal tract and on the change in thermo-tolerance during heating treatment. The encapsulating materials were prepared using emulsions of protein (sodium caseinate, soy protein isolate, or pea protein), vegetable oil, and glucose, with maltodextrin was used as a wall material. The formulations were heated at 90 °C for 30 min to develop Maillard substances prior to being incorporated with L. acidophilus. The mixtures were then spray dried. The microspheres were stored at 25, 30, and 35 °C for 8 wk and examined every 4 wk. The addition of proteins as encapsulating materials demonstrated a significant protective effect (P < 0.05) as compared to the control sample. Sodium caseinate and soy protein isolate appeared more effective than pea protein in protecting the bacteria after spray drying and during the storage at different room temperatures. Storage at 35 °C resulted in a significant decrease in survival at end of storage period regardless the type of encapsulating materials. The addition of protein-based materials also enhanced the survival of L. acidophilus during exposure to simulated gastrointestinal condition as compared to the control. After spray drying and after 0th wk storage, casein, soy protein isolate, and pea protein-based formulations protected the bacteria during heat treatment. In fact, a significant decrease in thermal tolerance was inevitable after 2 wk of storage at 25 °C. © 2017 Institute of Food Technologists®.
Frequency regulator for synchronous generators
Karlicek, R.F.
1982-08-10
The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices. 11 figs.
Lee, Joo-Young; Nakao, Kouhei; Takahashi, Naoki; Son, Su-Young; Bakri, Ilham; Tochihara, Yutaka
2011-01-01
The purpose of this study was to investigate the validity of infrared tympanic temperature (IR T(ty)) as a thermal index to evaluate the heat strain of workers in hot environments, in comparison with rectal temperatures at various depths (T(re-4, -8, and -16) for 4, 8 and 16 cm from the anal sphincter). Eight males underwent twelve experimental conditions: two activities (rest and exercise) × three clothing levels [Control, HDPE (high-density polyethylene coverall) and PVC (polyvinyl chloride coverall) condition] × two air temperatures (25 and 32℃ with 50%RH). The results showed that 1) in the conditions with most heat strain (HDPE or PVC condition at 32℃), IR T(ty) was equal to or even higher than T(re); 2) during exercise, physiological strain index (PSI) using IR T(ty) did not underestimate PSI-values using T(re-16), and overestimated those PSI-values from T(re-16) in HDPE and PVC conditions at 32℃; 3) during exercise, the relationships between IR T(ty) and heart and total sweat rate were stronger than those between T(re-16) and heart and total sweat rate. These results indicated that IR T(ty) is valid as a thermal index to evaluate the heat strain of workers wearing impermeable protective coveralls in hot environments. However, the application of IR T(ty) is limited only for strenuous works wearing encapsulated personal protective clothing with a hood in heat.
Oliveira, Jhones L de; Campos, Estefânia V R; Pereira, Anderson E S; Pasquoto, Tatiane; Lima, Renata; Grillo, Renato; Andrade, Daniel Junior de; Santos, Fabiano Aparecido Dos; Fraceto, Leonardo Fernandes
2018-02-14
Botanical repellents represent one of the main ways of reducing the use of synthetic pesticides and the contamination of soil and hydric resources. However, the poor stability and rapid degradation of these compounds in the environment hinder their effective application in the field. Zein nanoparticles can be used as eco-friendly carrier systems to protect these substances against premature degradation, provide desirable release characteristics, and reduce toxicity in the environment and to humans. In this study, we describe the preparation and characterization of zein nanoparticles loaded with the main constituents of the essential oil of citronella (geraniol and R-citronellal). The phytotoxicity, cytotoxicity, and insect activity of the nanoparticles toward target and nontarget organisms were also evaluated. The botanical formulations showed high encapsulation efficiency (>90%) in the nanoparticles, good physicochemical stability, and effective protection of the repellents against UV degradation. Cytotoxicity and phytotoxicity assays showed that encapsulation of the botanical repellents decreased their toxicity. Repellent activity tests showed that nanoparticles containing the botanical repellents were highly repellent against the Tetranychus urticae Koch mite. This nanotechnological formulation offers a new option for the effective use of botanical repellents in agriculture, reducing toxicity, protecting against premature degradation, and providing effective pest control.
41 CFR 50-204.7 - Personal protective equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTRACTS General Safety and Health Standards § 50-204.7 Personal protective equipment. Protective equipment, including personal protective equipment for eyes, face, head, and extremities, protective clothing... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Personal protective...
41 CFR 50-204.7 - Personal protective equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTRACTS General Safety and Health Standards § 50-204.7 Personal protective equipment. Protective equipment, including personal protective equipment for eyes, face, head, and extremities, protective clothing... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Personal protective...
Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application.
Islam, Golam S; Wang, Qi; Sabour, Parviz M
2018-01-01
Due to emerging antibiotic-resistant strains among the pathogens, a variety of strategies, including therapeutic application of bacteriophages, have been suggested as a possible alternative to antibiotics in food animal production. As pathogen-specific biocontrol agents, bacteriophages are being studied intensively. Primarily their applications in the food industry and animal production have been recognized in the USA and Europe, for pathogens including Salmonella, Campylobacter, Escherichia coli, and Listeria. However, the viability of orally administered phage may rapidly reduce under the harsh acidic conditions of the stomach, presence of enzymes and bile. It is evident that bacteriophages, intended for phage therapy by oral administration, require efficient protection from the acidic environment of the stomach and should remain active in the animal's gastrointestinal tract where pathogen colonizes. Encapsulation of phages by spray drying or extrusion methods can protect phages from the simulated hostile gut conditions and help controlled release of phages to the digestive system when appropriate formulation strategy is implemented.
Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.
Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès
2015-01-01
Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.
40 CFR 170.240 - Personal protective equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Personal protective equipment. 170.240... WORKER PROTECTION STANDARD Standard for Pesticide Handlers § 170.240 Personal protective equipment. (a... protective equipment specified on the labeling for use of the product. (b) Definition. (1) Personal...
Wang, Sheng-Yao; Ho, Yi-Fang; Chen, Yen-Po; Chen, Ming-Ju
2015-04-01
Lactobacillus kefiranofaciens M1 (M1) has been shown to possess many different beneficial health effects including anti-colitis activity. The purpose of this study was to develop a novel and easily scaled-up encapsulating technique that would improve the temperature tolerance of the bacterium and reduce the sensitivity of the organism to gastrointestinal fluid. A mixture of sodium alginate, gellan gum and skim milk powder was used as a coating material to entrap M1. The M1 gel was then directly freeze dried in order to dehydrate the covering and form microcapsules. The viable cell numbers of M1 present only dropped ten folds after the freeze-drying encapsulation process. The viable cell counts remained constant at 5 × 10(7) CFU/g after heating from 25 °C to 75 °C and holding at 75 °C for 1 min. The viable cell counts were reduced to 10(6) CFU/g and 10(5) CFU/g after 8-week storage at 4 °C and subsequent heat treatment with simulated gastrointestinal fluid test (SGFT) and bile salts, respectively. The effect of encapsulated M1 on the organism's anti-colitis activity was evaluated using the dextran sodium sulfate (DSS) induced colitis mouse model. An in vivo study indicated that administration of heat treated encapsulated M1 was able to ameliorate DSS-induced colitis producing a significant reduction in the bleeding score and an attenuation of inflammatory score. These findings clearly demonstrate that encapsulation of M1 using this novel technique is able to provide good protection from temperature changes and SGFT treatment and also does not affect the organism's anti-colitis activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck
2011-01-01
Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.
Krishnan, Rahul; Ko, David; Foster, Clarence E; Liu, Wendy; Smink, A M; de Haan, Bart; De Vos, Paul; Lakey, Jonathan R T
2017-01-01
Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.
Assessment of bioburden encapsulated in bulk materials
NASA Astrophysics Data System (ADS)
Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond
2016-05-01
The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms are capable of surviving encapsulation within, and liberation from, epoxy solids. It must be noted, however, that all purposely spiked experimental solids, resulted in very low recovery (1 × 10-3-1 × 10-5 CFU/cm3) of viable organisms.
Monte Carlo Simulation of Nanoparticle Encapsulation in Flames
NASA Technical Reports Server (NTRS)
Sun, Z.; Huertas, J. I.; Axelbaum, R. L.
1999-01-01
Two critical challenges facing the application of flames for synthesis of nanopowder materials are: (1) overcoming formation of agglomerates and (2) ensuring that the highly reactive nanopowders that are synthesized in flames can be produced in such a manner that their purity is maintained during subsequent processing. Agglomerates are produced in flames because particle formation occurs in a high temperature and high number density environment. They are undesirable in most advanced applications of powders. For example, agglomerates have a deleterious effect on compaction density, leading to voids when nanopowders are consolidated. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Powder purity must also be maintained during subsequent handling of nanopowders and this poses a significant challenge for any synthesis route because nanopowders, particularly metals and non-oxide ceramic powders, are inherently reactive. Impurities acquired during handling of nanopowders have slowed the advancement of the nanostructured materials industry. One promising approach that has been proposed to address these problems is nano-encapsulation. In this approach, the core particles are encapsulated in a removable material while they are within the flame but before excessive agglomeration has occurred. Condensation can be very rapid so that core particles are trapped within the condensed material and agglomeration is limited. Nano-encapsulation also addresses the handling concerns for post-synthesis processing. Results have shown that when nano-encapsulated powders are exposed to atmosphere the core particles are protected from oxidation and/or hydrolysis. Thus, handling of the powders does not require extreme care. If, for example, at the time of consolidation the encapsulation material is removed by vacuum annealing, the resulting powder remains unagglomerated and free of impurities. In this work, we described a novel aerosol model that has been developed to simulate particle encapsulation in flames. The model will ultimately be coupled to a one-dimensional spherical flame code and compared to results from microgravity flame experiments.
Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.
Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B
2017-09-01
We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Upschulte, B. L.; Weyl, G. M.; Marinelli, W. J.; Aifer, E.; Hastings, D.; Snyder, D.
1991-01-01
A variety of experiments were performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells. These efforts have led to reduction of greater than a factor of 100 in the arc frequency of a single cell following proper remediation procedures. Experiments naturally lead to and focussed on the adhesive/encapsulant that is used to bond the protective cover slip to the solar cell. An image-intensified charge coupled device (CCD) camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude. Water contamination was also identified as a key contributor which enhances arcing of the encapsulant bead along the solar cell edge. Spectrally resolved measurements of the observable UV light shows a feature assignable to OH(A-X) electronic emission, which is common for water contaminated discharges. Experiments in which the solar cell temperature was raised to 85 C showed a reduced arcing frequency, suggesting desorption of H2O. Exposing the solar cell to water vapor was shown to increase the arcing frequency. Clean dry gases such as O2, N2, and Ar show no enhancement of the arcing rate. Elimination of the exposed encapsulant eliminates any measurable sensitivity to H2O vapor.
Photostability effect of silica nanoparticles encapsulated fluorescence dye
NASA Astrophysics Data System (ADS)
Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul
2017-12-01
Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.
Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles.
Wernig, Karin; Griesbacher, Martin; Andreae, Fritz; Hajos, Franz; Wagner, Julian; Mosgoeller, Wilhelm; Zimmer, Andreas
2008-09-10
Drug delivery of protein and peptide-based drugs, which represent a growing and important therapeutic class, is hampered by these drugs' very short half-lives. High susceptibility towards enzymatic degradation necessitates frequent drug administration followed by poor adherence to therapy. Among these drugs is vasoactive intestinal peptide (VIP), a potent systemic and pulmonary vasodilator, which is a promising drug for the treatment of idiopathic pulmonary arterial hypertension (IPAH). Encapsulation of VIP into the nanoparticle matrix of biodegradable protamine-oligonucleotide nanoparticles (proticles) protects the peptide against rapid enzymatic degradation. Additionally, the nanoparticle matrix will be able to sustain drug release. Proticles consist of 18mer non-sense oligonucleotides and protamine, a polycationic arginine-rich peptide. VIP encapsulation occurs during self-assembly of the components. Within the present study, we evaluate nanoparticle size (hydrodynamic diameter) and zeta potential of VIP-loaded proticles as well as encapsulation efficiency and VIP release. Further, the pharmacological VIP response of "encapsulated VIP" is investigated using an ex vivo lung arterial model system. We found satisfying encapsulation efficiency (up to 80%), VIP release (77-87%), and an appropriate nanoparticle size (177-251 nm). Investigations on rat pulmonary arteries showed a modified VIP response of proticle-associated VIP. We noted differences in the profile of artery relaxation where VIP proticles lead to a 20-30% lower relaxation maximum than aqueous VIP solutions followed by prolonged vasodilatation. Our data indicate that proticles could be a feasible drug delivery system for a pulmonary VIP depot formulation.
Connect and Thrive: Perspectives from a Newly Tenured Professor
ERIC Educational Resources Information Center
Ciocchetti, Corey A.
2011-01-01
This essay encapsulates the author's perspective on how average professors can become highly effective professors. The author asserts that the secret rests in the ability to genuinely connect with students. Connecting really matters--even if it takes some personality adaptation and thrusts academics out of their comfort zones. Many professors fail…
Stabilization of Tetanus Toxoid Encapsulated in PLGA Microspheres
Jiang, Wenlei; Schwendeman, Steven P.
2014-01-01
Delivery of vaccine antigens from controlled-release poly(lactic/glycolic acid) (PLGA) microspheres is a novel approach to reduce the number of antigen doses required for protection against infection. A major impediment to developing single-shot vaccines is encapsulated antigen instability during months of exposure to physiological conditions. For example, efforts to control neonatal tetanus in developing countries with a single-dose TT vaccine have been plagued by poor stability of the 150 kDa formaldehyde-detoxified protein antigen, tetanus toxoid (TT) in PLGA microspheres. We examined the denatured states of PLGA-encapsulated TT, revealing two primary TT instability mechanisms: 1) protein aggregation mediated by formaldehyde and 2) acid-induced protein unfolding and epitope damage. Further, we systemically identified excipients which can efficiently inhibit TT aggregation and retain TT antigenicity under simulated deleterious conditions, i.e., elevated temperature and humidity. By employing these novel additives in the PLGA system, we report the slow and continuous release of high doses of TT for one month with retained antigen stability during bioerosion of PLGA. PMID:18710256
Kim, Miju; Yeo, Seon Ju; Highley, Christopher B.; ...
2015-07-14
Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pHmore » or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.« less
Chrétien, Michelle N; Heafey, Eve; Scaiano, Juan C
2010-01-01
Oxybenzone (OXB) is one of the most widely employed sunscreen ingredients, yet its allowed load is limited to a maximum of 6% reflecting the frequency with which adverse effects are reported. From a spectroscopic point of view, OXB has excellent absorption properties in both the UVB and UVA regions. We propose that zeolite encapsulation can lead to a sunscreen composite ingredient, that we describe as a supramolecular sunscreen, that will retain the excellent spectroscopic properties of OXB, while preventing contact between the skin and the active ingredient. OXB is very photostable, with the only photodegradative pathway observed being the monophotonic photoejection of electrons that leads to trace yields of phenoxyl radicals; this trace reaction is so minor that it cannot be detected from the recovery of unreacted OXB following UV exposure. Solution, as well as powder and in vitro studies of the supramolecular sunscreen, demonstrate that the protective properties of OXB are totally preserved when encapsulated in zeolite NaY.
NASA Astrophysics Data System (ADS)
Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.
Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.
Boar semen controlled delivery system: storage and in vitro spermatozoa release.
Torre, M L; Faustini, M; Norberti, R; Stacchezzini, S; Maggi, L; Maffeo, G; Conte, U; Vigo, D
2002-12-13
Swine spermatozoa were encapsulated in barium alginate and protamine-barium alginate membranes to lengthen their preservation time and to provide a means of controlling their release. Precocious acrosome reactions and secondary anomalies were measured as indices of semen quality. These characteristics were observed for two forms of encapsulated spermatozoa when stored at 18 and 38 degrees C for 24 h and for semen diluted in a classical extender at both temperatures. The results indicate that encapsulation enhances semen preservation, providing protection against membrane damage upon dilution. The effect is even more evident at the higher temperature (38 degrees C), where cell metabolism is higher. An in vitro release test of spermatozoa showed a massive cell delivery from barium alginate capsules within 6 h, and a slow release from protamine-barium alginate capsules. The properties of spermatozoa 24 h after release did not differ from the semen stored at the same temperature in capsules, indicating that the release process does not impair semen quality.
NASA Astrophysics Data System (ADS)
Wawrzyńczyk, Dominika; Kulbacka, Julita; Bazylińska, Urszula
2017-08-01
We have investigated the change in optical properties and biocompatibility of up-converting NaYF4 nanoparticles (NPs) upon encapsulation inside the polyester nanocarriers (NCs) stabilized by Crempophor RH40 (CRH40), poly(D,L-lactide) (PLA), Pluronic P123 (P123). NaYF4:Er3+,Yb3+ NPs showed intense green and red emission, and upon encapsulation the increase of red band in respect to green one was observed, with no luminescence lifetime shortening. Obtained NCs showed prolonged colloidal stability and protective effect of the polymer shell simultaneously preserving the high emission efficiency of nanoparticles embedded within the silicon oil (SO) core. Based on emission spectra, kinetic measurements and cytotoxicity studies upon human malignant melanoma Me45 cell line we have shown the advantages of using polyester NCs as containers for the up-converting NPs. Due to the possibility of co-encapsulation of photosensitizers the obtained nanocarriers showed potential for application in theranostics.
Kim, Miju; Yeo, Seon Ju; Highley, Christopher B; Burdick, Jason A; Yoo, Pil J; Doh, Junsang; Lee, Daeyeon
2015-08-25
Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Miju; Yeo, Seon Ju; Highley, Christopher B.
Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pHmore » or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.« less
Sun, Ting; Li, Xuwen; Yang, Jie; Li, Lanjie; Jin, Yongri; Shi, Xiaolei
2015-06-01
In this study, graphene-encapsulated silica was synthesized by a hydrothermal reduction strategy. The presence of silica in graphene was identified by Fourier-transform infrared spectrometry, X-ray diffraction and scanning electron microscopy. The graphene-encapsulated silica subsequently was used as adsorbent for matrix solid-phase dispersion extraction of poly-methoxylated flavonoids from the dried leaves of Murraya panaculata (L.) Jack. Compared with the other adsorbents (graphene, silica gel, C18 silica, neutral alumina, diatomaceous earth) and without any adsorbents, better results were obtained. Then a method for analysis of poly-methoxylated flavonoids was established by coupling matrix solid-phase dispersion extraction with ultra high performance liquid chromatography and UV detection. Compared with reflux extraction and ultrasonic extraction, the proposed method is quicker, more efficient and more environmental protection. Less than 10 min is needed from extraction to detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat
2016-06-15
Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH. Copyright © 2016. Published by Elsevier Ltd.
Preparation and characterization of clove essential oil-loaded liposomes.
Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène
2015-07-01
In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields.
Eklund, Karin; Ahnesjö, Anders
2010-11-01
Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., "electron") diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly corrected unshielded diode were shown to give comparable, or better, results than the traditionally used shielded diode. Spectra calculated for photon fields in water can be directly used for modeling the response of unshielded silicon diodes with plastic encapsulations. Unshielded diodes used together with appropriate corrections can replace shielded diodes in photon dose measurements.
Polyfibroblast: A Self-Healing and Galvanic Protection Additive
2011-05-25
Laurel, MD 20723 Figure 3: Attempt to encapsulate DABCO 197 surfactant within a polyurea shell. Note the highly wrinkled appearance. The wrinkles...will be used in different concentrations to obtain the best performance. Special attention will be given to the durability of the OTS/ polyurea films
Role of intellectual property in investment-backed personalized medicine.
Norviel, Vern; Akhavan, Ray; Alemozafar, Ali R
2010-01-01
Personalized medicine is a growing field that promises to provide individualized treatment that is tailored to each patient. For a startup personalized medicine company, an initial step in securing financing is to protect its intellectual property (IP), for example, through patent protection. When deciding whether to invest in a personalized medicine company, investors, such as venture capitalists, assess the scope of a personalized medicine company's protection of its IP. Patent protection is a powerful way for a personalized medicine startup company to protect its IP, but patent protection for personalized medicine inventions can differ from one country to another. A personalized medicine company could benefit from developing a well-defined IP strategy for maximizing the scope and breadth of its IP protection.
49 CFR 214.111 - Personal protective equipment, generally.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Personal protective equipment, generally. 214.111... Personal protective equipment, generally. With the exception of foot protection, the railroad or railroad contractor shall provide and the bridge worker shall use appropriate personal protective equipment described...
49 CFR 214.111 - Personal protective equipment, generally.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Personal protective equipment, generally. 214.111... Personal protective equipment, generally. With the exception of foot protection, the railroad or railroad contractor shall provide and the bridge worker shall use appropriate personal protective equipment described...
NASA Technical Reports Server (NTRS)
Baeza, Isabel; Ibanez, Miguel; Wong, Carlos; Chavez, Pedro; Gariglio, Patricio; Oro, J.
1992-01-01
While DNA which has undergone ionic condensation with Co(3+)(NH3)6 is resistant to the action of the endonuclase DNAse I, in much the same way as DNA condensed with spermidine, it was significantly less active in transcription with the E. coli RNA polymerase than DNA-spermidine condensed forms. Although both compacted forms of DNA were more efficiently encapsulated into neutral liposomes, negatively charged liposomes were seldom formed in the presence of the present, positive ion-condensed DNA; spermidine is accordingly proposed as a plausible prebiotic DNA-condensing agent. Attention is given to the relevance of the polyimide-nucleic acids complexes in the evolution of life.
2003-04-10
In the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) is ready for encapsulation. A fairing will be installed around the spacecraft to protect it during launch. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is currently scheduled for launch April 18 aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station.
Study program for encapsulation materials interface for low cost silicon solar array
NASA Technical Reports Server (NTRS)
Kaelble, D. H.; Mansfeld, F. B.; Lunsden, J. B., III; Leung, C.
1980-01-01
An atmospheric corrosion model was developed and verified by five months of corrosion rate and climatology data acquired at the Mead, Nebraska LSA test site. Atmospheric corrosion rate monitors (ACM) show that moisture condensation probability and ionic conduction at the corroding surface or interface are controlling factors in corrosion rate. Protection of the corroding surface by encapsulant was shown by the ACM recordings to be maintained, independent of climatology, over the five months outdoor exposure period. The macroscopic corrosion processes which occur at Mead are shown to be reproduced in the climatology simulator. Controlled experiments with identical moisture and temperature aging cycles show that UV radiation causes corrosion while UV shielding inhibits LSA corrosion.
2018-02-07
In a clean room at Astrotech Space Operations in Titusville, Florida, technicians and engineers monitor progress as NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, is encapsulated in its payload fairing. It soon will be moved to Space Launch Complex 41 at Cape Canaveral Air Force Station for mounting atop the Atlas V rocket that will boost the satellite to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
Cozzi, Arianna C; Perugini, Paola; Gourion-Arsiquaud, Samuel
2018-06-03
The growing incidence of photodamaging effects caused by UV radiation (e.g. sunburn, skin cancer) has increased the attention from health authorities which recommend the topical application of sunscreens to prevent these skin damages. The economic stakes for those companies involved in this international market are to develop new UV filters and innovative technologies to provide the most efficient, flexible and robust sunscreen products. Today the development of innovative and competitive sunscreen products is a complex formulation challenge. Indeed, the current sunscreens must protect against skin damages, while also being safe for the skin and being sensory and visually pleasant for the customers when applied on the skin. Organic UV filters, while proposing great advantages, also present the risk to penetrate the stratum corneum and diffuse into underlying structures with unknown consequences; moreover, their photo-stability are noted thorny outcomes in sunscreen development and subsequent performance. In recent years, the evaluation of the interaction between skin and sunscreen in terms of penetration after topical application has been considered from European authority but still its testing as their photo-stability assessment are not mandatory in most countries. This study, based on in-vitro approaches, was performed to evaluate and compare the retention and the penetration of organic UV filters in free or encapsulated form inside the skin as well as their respective photo-stability. Sunscreen formulation with a combination of Avobenzone and Octocrylene in "free form" and a formulation using the same UV filters but encapsulated in a sol-gel silica capsule, were analyzed and compared by FTIR Imaging Spectroscopy. Tape stripping method was used to investigate the penetration of these UV filters inside the stratum corneum. Their photo-stabilities were evaluated by spectroscopic measurements (FTIR, UV/Vis) and standard measurements were calculated: AUC (Area Under the Curve) and SPF (Sun Protection Factor). With traditional formulation, the organic UV filters penetrated significantly into the stratum corneum while the same UV filters combined with encapsulation technology remained on the skin surface. The encapsulation technology also improved significantly their stability. Encapsulation technology is a promising strategy to improve the efficacy of sunscreen product using organic UV filters and to reduce safety problem. On the other hand, this study highlighted the pertinence of the FTIR Spectroscopy to test, compare and investigate sunscreen formulations. Copyright © 2018 Elsevier B.V. All rights reserved.
Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.
Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M
2017-06-01
This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.
Process optimization by use of design of experiments: Application for liposomalization of FK506.
Toyota, Hiroyasu; Asai, Tomohiro; Oku, Naoto
2017-05-01
Design of experiments (DoE) can accelerate the optimization of drug formulations, especially complexed formulas such as those of drugs, using delivery systems. Administration of FK506 encapsulated in liposomes (FK506 liposomes) is an effective approach to treat acute stroke in animal studies. To provide FK506 liposomes as a brain protective agent, it is necessary to manufacture these liposomes with good reproducibility. The objective of this study was to confirm the usefulness of DoE for the process-optimization study of FK506 liposomes. The Box-Behnken design was used to evaluate the effect of the process parameters on the properties of FK506 liposomes. The results of multiple regression analysis showed that there was interaction between the hydration temperature and the freeze-thaw cycle on both the particle size and encapsulation efficiency. An increase in the PBS hydration volume resulted in an increase in encapsulation efficiency. Process parameters had no effect on the ζ-potential. The multiple regression equation showed good predictability of the particle size and the encapsulation efficiency. These results indicated that manufacturing conditions must be taken into consideration to prepare liposomes with desirable properties. DoE would thus be promising approach to optimize the conditions for the manufacturing of liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Asbestos-Containing Materials in School Buildings: A Guidance Document. Part 2.
ERIC Educational Resources Information Center
Sawyer, Robert N.; Spooner, Charles M.
Part 2 of the Environmental Protection Agency (EPA) guidance manuals consists of more detailed information on asbestos identification and control methods. Available information on sprayed asbestos-containing materials in buildings is summarized. Guidelines are presented for the detection and monitoring, removal or encapsulation, and disposal of…
USDA-ARS?s Scientific Manuscript database
Selenium, an essential mineral, plays important roles in optimizing human health. Chitosan is an effective, naturally oriented material for synthesizing nanoparticles with polyanions and exhibit preferable properties such as biocompatibility, biodegradation and resistance to certain enzymes. We have...
1987-05-01
LIST OF TABLES Table Page I Estimation of Energy Expenditure from AIHA Ergonomie Guides for Moderate Work at A Hazardous Waste Site 44... Ergonomie Guide. Am. Ind. Hyg. Assoc. J. 32:560 (1971). 3. Ramsey, J.D. Heat Stress Standard: OSHA’s Advisory Committee
NASA Astrophysics Data System (ADS)
Pool, Hector; Luna-Barcenas, Gabriel; McClements, David Julian; Mendoza, Sandra
2017-09-01
In this study, pH-sensitive nanospheres were fabricated using a polymethacrylate-based copolymer to encapsulate, protect, and release catechin, and thereby overcome its poor water solubility and low oral bioaccessibility. The polymer used was a polymethacrylic acid-co-ethyl acrylate 1:1 copolymer that dissolves above pH 5.5, and so can be used to retain and protect bioactives within the stomach but releases them in the small intestine. Catechin-loaded nanospheres were fabricated using the solvent displacement method. Physicochemical characterization of the nanospheres indicated that they were relatively small ( d = 160 nm) and had a high negative charge ( ζ = - 36 mV), which meant that they had good stability to aggregation under physiological conditions (pH 7.2). Catechin was trapped within the nanospheres at an encapsulation efficiency of about 51% in an amorphous state. A simulated gastrointestinal study showed that catechin was slowly released under gastric conditions (pH 2.5), but rapidly released under small intestine conditions (pH 7.2). The observed improvement in the antioxidant activity and bioaccessibility of catechin after encapsulation was attributed to the fact that it was in an amorphous state and had good water dispersibility. This study provides useful information for the formulation of novel delivery systems to improve the dispersibility, bioaccessibility, and bioactivity of catechin and potentially other active components. These delivery systems could be used to improve the efficacy of bioactive components in foods, supplements, and pharmaceutical products.
Efficiency and protective effect of encapsulation of milk immunoglobulin G in multiple emulsion.
Chen, C C; Tu, Y Y; Chang, H M
1999-02-01
Milk immunoglobulin G (IgG), separated with protein G affinity chromatography, and IgG in colostral whey were encapsulated by 0.5% (w/v) of Tween 80, sucrose stearate, or soy protein, which were used as secondary emulsifiers in the water in oil in water type multiple emulsion. The residual contents of separated IgG and IgG in colostral whey, ranging from 58.7 to 49.7% and from 13.2 to 21.3%, respectively, in the inner water phase (water phase surrounded by oil phase) with emulsifiers were determined by ELISA. However, the emulsion stability decreased after 24 h, and the residual IgG content in the inner water phase was lowered. Encapsulation of IgG in the multiple emulsion increased the stability of separated IgG against acid (pH 2.0) and alkali (pH 12.0) by 21-56% and 33-62%, respectively, depending on the emulsifier used. Moreover, multiple emulsion also provided a remarkable protective effect on separated IgG stability against proteases. The residual contents of separated IgG in multiple emulsion, using Tween 80 as secondary emulsifier, incubated for 2 h with pepsin (pH 2.0) and trypsin and chymotrypsin (pH 7.6) (enzyme/substrate = 1/20) were 35.4, 72.5, and 82.3%, whereas those of separated IgG in enzyme solution were only 7.2, 33. 1, and 35.2%, respectively. However, the separated IgG loss during the preparation of multiple emulsion was almost 41-50%.
2016-01-01
The usage of amorphous solids in practical applications, such as in medication, is commonly limited by the poor long-term stability of this state, because unwanted crystalline transitions occur. In this study, three different polymeric coatings are investigated for their ability to stabilize amorphous films of the model drug clotrimazole and to protect against thermally induced transitions. For this, drop cast films of clotrimazole are encapsulated by initiated chemical vapor deposition (iCVD), using perfluorodecyl acrylate (PFDA), hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA). The iCVD technique operates under solvent-free conditions at low temperatures, thus leaving the solid state of the encapsulated layer unaffected. Optical microscopy and X-ray diffraction data reveal that at ambient conditions of about 22 °C, any of these iCVD layers extends the lifetime of the amorphous state significantly. At higher temperatures (50 or 70 °C), the p-PFDA coating is unable to provide protection, while the p-HEMA and p-MAA strongly reduce the crystallization rate. Furthermore, p-HEMA and p-MAA selectively facilitate a preferential alignment of clotrimazole and, interestingly, even suppress crystallization upon a temporary, rapid temperature increase (3 °C/min, up to 150 °C). The results of this study demonstrate how a polymeric coating, synthesized directly on top of an amorphous phase, can act as a stabilizing agent against crystalline transitions, which makes this approach interesting for a variety of applications. PMID:27467099
Christian, Paul; Ehmann, Heike M A; Coclite, Anna Maria; Werzer, Oliver
2016-08-24
The usage of amorphous solids in practical applications, such as in medication, is commonly limited by the poor long-term stability of this state, because unwanted crystalline transitions occur. In this study, three different polymeric coatings are investigated for their ability to stabilize amorphous films of the model drug clotrimazole and to protect against thermally induced transitions. For this, drop cast films of clotrimazole are encapsulated by initiated chemical vapor deposition (iCVD), using perfluorodecyl acrylate (PFDA), hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA). The iCVD technique operates under solvent-free conditions at low temperatures, thus leaving the solid state of the encapsulated layer unaffected. Optical microscopy and X-ray diffraction data reveal that at ambient conditions of about 22 °C, any of these iCVD layers extends the lifetime of the amorphous state significantly. At higher temperatures (50 or 70 °C), the p-PFDA coating is unable to provide protection, while the p-HEMA and p-MAA strongly reduce the crystallization rate. Furthermore, p-HEMA and p-MAA selectively facilitate a preferential alignment of clotrimazole and, interestingly, even suppress crystallization upon a temporary, rapid temperature increase (3 °C/min, up to 150 °C). The results of this study demonstrate how a polymeric coating, synthesized directly on top of an amorphous phase, can act as a stabilizing agent against crystalline transitions, which makes this approach interesting for a variety of applications.
Assessment of arsenic exposures and controls in gallium arsenide production.
Sheehy, J W; Jones, J H
1993-02-01
The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.
Fuel tank for liquefied natural gas
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2012-01-01
A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.
Peroral Immunization of Rats with Escherichia coli Heat-Labile Enterotoxin Delivered by Microspheres
Klipstein, Frederick A.; Engert, Richard F.; Sherman, William T.
1983-01-01
The antigenicity of the Escherichia coli heat-labile enterotoxin was not protected against the adverse effect of gastric acidity when the toxin was given together with bicarbonate for peroral immunization to rats, but immunization with the heat-labile enterotoxin encapsulated in pH-dependent microspheres aroused the same strong degree of serum and mucosal antitoxin responses and of protection against challenge as was achieved by peroral immunization after ablation of gastric secretions by pretreatment with cimetidine. PMID:6339378
2 CFR 200.82 - Protected Personally Identifiable Information (Protected PII).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Protected Personally Identifiable Information (Protected PII). 200.82 Section 200.82 Grants and Agreements Office of Management and Budget... § 200.82 Protected Personally Identifiable Information (Protected PII). Protected PII means an...
Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.
2016-01-01
This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods.Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed.The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.
Kopeć, Renata; Bubak, Anna; Budzanowski, Maciej; Sas-Bieniarz, Anna; Szumska, Agnieszka
2016-09-01
Stringent standards of hygiene must be applied in medical institutions, especially at operating blocks or during interventional radiology procedures. Medical equipment, including personal dosemeters that have to be worn by medical staff during such procedures, needs therefore to be sterilised. In this study, the effect of various sterilisation procedures has been tested on the dose response of extremity rings and of eye lens dosemeters in which thermoluminescent (TL) detectors (of types MTS-N and MCP-N, respectively) are used. The effects of medical sterilisation procedures were studied: by chemicals, by steam or by ultraviolet (UV), on the dose assessment by extremity rings and by eye lens dosemeters. Since it often happens that a dosemeter is accidentally machine-washed together with protective clothing, the effect of laundering on dose assessment by these dosemeters was also tested. The sterilisation by chemicals is mostly safe for TL detectors assuming that the dosemeters are waterproofed. Following sterilisation by water vapour, the response of these dosemeters diminished by some 30 %, irrespectively of the period of sterilisation; therefore, this method is not recommended. UV sterilisation can be applied to EYE-D™ eye lens dosemeters if their encapsulation is in black. The accidental dosemeter laundry in a washing machine has no impact on measured dose. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Aluani, Denitsa; Tzankova, Virginia; Kondeva-Burdina, Magdalena; Yordanov, Yordan; Nikolova, Elena; Odzhakov, Feodor; Apostolov, Alexandar; Markova, Tzvetanka; Yoncheva, Krassimira
2017-10-01
The present study deals with development and evaluation of the safety profile of chitosan/alginate nanoparticles as a platform for delivery of a natural antioxidant quercetin. The nanoparticles were prepared by varying the ratios between both biopolymers giving different size and charge of the formulations. The biocompatibility was explored in vitro in cells from different origin: cultivated HepG2 cells, isolated primary rat hepatocytes, isolated murine spleen lymphocytes and macrophages. In vivo toxicological evaluation was performed after repeated 14-day oral administration to rats. The study revealed that chitosan/alginate nanoparticles did not change body weight, the relative weight of rat livers, liver histology, hematology and biochemical parameters. The protective effects of quercetin-loaded nanoparticles were investigated in the models of iron/ascorbic acid (Fe 2+ /AA) induced lipid peroxidation in microsomes and tert-butyl hydroperoxide oxidative stress in isolated rat hepatocytes. Interesting finding was that the empty chitosan/alginate nanoparticles possessed protective activity themselves. The antioxidant effects of quercetin loaded into the nanoparticles formulated with higher concentration of chitosan were superior compared to quercetin encapsulated in nanoparticles with higher amount of sodium alginate. In conclusion, chitosan/alginate nanoparticles can be considered appropriate carrier for quercetin, combining safety profile and improved protective activity of the encapsulated antioxidant. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical system for monitoring pressurized equipment
NASA Astrophysics Data System (ADS)
Dobra, Remus; Pasculescu, Dragos; Boca, Maria Loredana; Moldovan, Lucian
2016-12-01
Electrical devices for operation in potentially explosive atmospheres are designed and built in accordance with European standard EN 50015: 1995 ex. the pressurized enclosure "p". The type of protector p, by using a protective gas in the housing is intended to prevent the formation of an explosive atmosphere within it, while maintaining an overpressure to the surrounding atmosphere and, where appropriate, by the use dilution. Research conducted for pressurized encapsulation aimed at developing new procedures for determining the parameters of pressurization to allow safe use of electrical appliances. Pressurization with compensation for losses allegedly maintaining overpressure inside the enclosure when the outlets are closed, is made by feeding protective gas in an amount sufficient to fully compensate for losses from the housing inevitable pressurized and its associated pipework. The conditions and necessary measures that are required for appliances and equipment with potential ignition of explosive atmospheres are detailed in the SR EN 50016/2000. For pressurized encapsulation protection mode, the electric equipment can be maintained safety by the overpressure created inside them and in the supply pipes with air. The paper presents a modern method to determine the parameters of the electric equipment with pressurization enclosures. For controlling of such equipment, a specific algorithm has been developed and laboratory tested.
Efficacy and safety of a modified vaccinia Ankara (MVA) vectored plague vaccine in mice
Brewoo, Joseph N.; Powell, Tim D.; Stinchcomb, Dan T.; Osorio, Jorge E.
2010-01-01
The efficacy and safety of plague vaccines based on the modified vaccinia Ankara (MVA) viral vector was evaluated. MVA recombinants were constructed expressing Yersinia pestis antigens under the translational control of the encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES) and/or fused to the tissue plasminogen activator (tPA) secretory signal. A MVA/Y. pestis recombinant that expressed a truncated version of the low-calcium response V antigen (MVA/IRES/tPA/V307), conferred significant protection (87.5%–100%) against intranasal or intraperitoneal challenge with CO92 (encapsulated) or Java 9 (non-encapsulated) strains of Y pestis, respectively. In contrast, a MVA/Y. pestis recombinant that expressed the full-length V antigen provided only 37.5% protection against challenge with CO92 or Java 9 strains, respectively. Interestingly, a MVA/Y. pestis recombinant that expressed the capsular protein (F1) did not elicit significant antibody titers but still conferred 50% and 25% protection against CO92 or Java 9 challenge, respectively. The MVA/Y. pestis recombinant viruses did not demonstrate any mortality or morbidity in SCID mice. Based on their safety and efficacy in mice, these MVA/Y. pestis recombinants are candidates for further development as biodefense and public health vaccines. PMID:20638759
Code of Federal Regulations, 2010 CFR
2010-07-01
...) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Personal Protective Equipment (PPE) Pt. 1915... Personal Fall Protection Systems (Non-Mandatory) B Appendix B to Subpart I of Part 1915 Labor Regulations... Guidelines for Personal Fall Protection Systems (Non-Mandatory) 1. Personal fall arrest systems—(a) General...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Personal Protective Equipment (PPE) Pt. 1915... Personal Fall Protection Systems (Non-Mandatory) B Appendix B to Subpart I of Part 1915 Labor Regulations... Guidelines for Personal Fall Protection Systems (Non-Mandatory) 1. Personal fall arrest systems—(a) General...
Min, Kyung Hyun; Park, Kyeongsoon; Kim, Yoo-Shin; Bae, Sang Mun; Lee, Seulki; Jo, Hyung Gon; Park, Rang-Woon; Kim, In-San; Jeong, Seo Young; Kim, Kwangmeyung; Kwon, Ick Chan
2008-05-08
To prepare a water-insoluble camptothecin (CPT) delivery carrier, hydrophobically modified glycol chitosan (HGC) nanoparticles were constructed by chemical conjugation of hydrophobic 5beta-cholanic acid moieties to the hydrophilic glycol chitosan backbone. Insoluble anticancer drug, CPT, was easily encapsulated into HGC nanoparticles by a dialysis method and the drug loading efficiency was above 80%. CPT-encapsulated HGC (CPT-HGC) nanoparticles formed nano-sized self-aggregates in aqueous media (280-330 nm in diameter) and showed sustained release of CPT for 1 week. Also, HGC nanoparticles effectively protected the active lactone ring of CPT from the hydrolysis under physiological condition, due to the encapsulation of CPT into the hydrophobic cores in the HGC nanoparticles. The CPT-HGC nanoparticles exhibited significant antitumor effects and high tumor targeting ability towards MDA-MB231 human breast cancer xenografts subcutaneously implanted in nude mice. Tumor growth was significantly inhibited after i.v. injection of CPT-HGC nanoparticles at doses of 10 mg/kg and 30 mg/kg, compared to free CPT at dose of 30 mg/kg. The significant antitumor efficacy of CPT-HGC nanoparticles was attributed to the ability of the nanoparticles to show both prolonged blood circulation and high accumulation in tumors, as confirmed by near infrared (NIR) fluorescence imaging systems. Thus, the delivery of CPT to tumor tissues at a high concentration, with the assistance of HGC nanoparticles, exerted a potent therapeutic effect. These results reveal the promising potential of HGC nanoparticles-encapsulated CPT as a stable and effective drug delivery system in cancer therapy.
Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y.
2016-01-01
Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity. PMID:27428953
PLGA microspheres encapsulating siRNA.
De Rosa, Giuseppe; Salzano, Giuseppina
2015-01-01
The therapeutic use of small interfering RNA (siRNA) represents a new and powerful approach to suppress the expression of pathologically genes. However, biopharmaceutical drawbacks, such as short half-life, poor cellular uptake, and unspecific distribution into the body, hamper the development of siRNA-based therapeutics. Poly(lactide-co-glycolide), (PLGA) microspheres can be a useful tool to overcome these issues. siRNA can be encapsulated into the PLGA microspheres, which protects the loaded nucleic acid against the enzymatic degradation. Moreover, PLGA microspheres can be injected directly into the action site, where the siRNA can be released in controlled manner, thus avoiding the need of frequent invasive administrations. The complete biodegradability of PLGA to monomers easily metabolized by the body, and its approval by FDA and EMA for parenteral administration, assure the safety of this copolymer and do not require the removal of the device after the complete drug release. In chapter, a basic protocol for the preparation of PLGA microspheres encapsulating siRNA is described. This protocol is based on a double emulsion/solvent evaporation technique, a well known and easy to reproduce method. This specific protocol has been developed to encapsulate a siRNA anti-TNFα in PLGA microspheres, and it has been designed and optimized to achieve high siRNA encapsulation efficiency and slow siRNA release in vitro. However, it can be extended also to other siRNA as well as other RNA or DNA-based oligonucleotides (miRNA, antisense, decoy, etc.). Depending on the applications, chemical modifications of the backbone and site-specific modification within the siRNA sequences could be required.
Cinnamomum casia Extract Encapsulated Nanochitosan as Antihypercholesterol
NASA Astrophysics Data System (ADS)
Ngadiwiyana; Purbowatiningrum; Fachriyah, Enny; Ismiyarto
2017-02-01
Atherosclerosis vascular disease with clinical manifestations such as cardiovascular disease and stroke are the leading cause of death in Indonesia. One solution to these problems is a natural antihypercholesterol medicine by utilizing Cinnamomum casia extract. However, the use of natural extracts to lower blood cholesterol levels do not provide optimal results because it is possible that the active components of extract have been degraded/damaged during the absorption process. So that, we need to do the research to get a combination of chitosan nanoparticles-Cinnamomum casia. extract as a compound which has an antihypercholesterol activity through the in vitro study. Modification of natural extracts encapsulated nanochitosan be a freshness in this study, which were conducted using the method of inclusion. The combination of both has the dual function of protecting the natural extracts from degradation and deliver the natural extracts to the target site. Analysis of nanochitosan using the Particle Size Analyzer (PSA) shows the particle size of synthesis product that is equal to 64.9 nm. Encapsulation efficiency of Cinnamomum casia extract-Chitosan Nanoparticles known through UV-VIS spectrophotometry test and obtained the efficiency encapsulation percentage of 84.93%. Zeta Potential at 193,3 mv that chitosan appropriate for a delivery drug. Antihypercholesterol activity tested in vitro assay that showed the extract-nanoparticle chitosan in concentration 150 ppm gave the highest cholesterol decreasing level in the amount of 49.66% w/v. So it can be concluded that Cinnamomum casia extract can be encapsulated in nanoparticles of chitosan and proved that it has a cholesterol-lowering effect through the in vitro study.
Holzmeister, Ib; Schamel, Martha; Groll, Jürgen; Gbureck, Uwe; Vorndran, Elke
2018-04-24
Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
29 CFR 1910.136 - Foot protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.136 Foot protection. (a) General... § 1910.6; (ii) ANSI Z41-1999, “American National Standard for Personal Protection—Protective Footwear... Personal Protection—Protective Footwear,” which is incorporated by reference in § 1910.6. (2) Protective...
29 CFR 1910.136 - Foot protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.136 Foot protection. (a) General... § 1910.6; (ii) ANSI Z41-1999, “American National Standard for Personal Protection—Protective Footwear... Personal Protection—Protective Footwear,” which is incorporated by reference in § 1910.6. (2) Protective...
29 CFR 1926.28 - Personal protective equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Personal protective equipment. 1926.28 Section 1926.28... Provisions § 1926.28 Personal protective equipment. (a) The employer is responsible for requiring the wearing of appropriate personal protective equipment in all operations where there is an exposure to...
29 CFR 1926.28 - Personal protective equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Personal protective equipment. 1926.28 Section 1926.28... Provisions § 1926.28 Personal protective equipment. (a) The employer is responsible for requiring the wearing of appropriate personal protective equipment in all operations where there is an exposure to...
Radiation detection system for portable gamma-ray spectroscopy
Rowland, Mark S [Alamo, CA; Howard, Douglas E [Livermore, CA; Wong, James L [Dublin, CA; Jessup, James L [Tracy, CA; Bianchini, Greg M [Livermore, CA; Miller, Wayne O [Livermore, CA
2006-06-20
A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.
Agallou, Maria; Margaroni, Maritsa; Athanasiou, Evita; Toubanaki, Dimitra K.; Kontonikola, Katerina; Karidi, Konstantina; Kammona, Olga; Kiparissides, Costas
2017-01-01
Background Through their increased potential to be engaged and processed by dendritic cells (DCs), nanovaccines consisting of Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with both antigenic moieties and adjuvants are attractive candidates for triggering specific defense mechanisms against intracellular pathogens. The aim of the present study was to evaluate the immunogenicity and prophylactic potential of a rationally designed multi-epitope peptide of Leishmania Cysteine Protease A (CPA160-189) co-encapsulated with Monophosphoryl lipid A (MPLA) in PLGA NPs against L. infantum in BALB/c mice and identify immune markers correlated with protective responses. Methodology/Principal Findings The DCs phenotypic and functional features exposed to soluble (CPA160-189, CPA160-189+MPLA) or encapsulated in PLGA NPs forms of peptide and adjuvant (PLGA-MPLA, PLGA-CPA160-189, PLGA-CPA160-189+MPLA) was firstly determined using BALB/c bone marrow-derived DCs. The most potent signatures of DCs maturation were obtained with the PLGA-CPA160-189+MPLA NPs. Subcutaneous administration of PLGA-CPA160-189+MPLA NPs in BALB/c mice induced specific anti-CPA160-189 cellular and humoral immune responses characterized by T cells producing high amounts of IL-2, IFN-γ and TNFα and IgG1/IgG2a antibodies. When these mice were challenged with 2x107 stationary phase L. infantum promastigotes, they displayed significant reduced hepatic (48%) and splenic (90%) parasite load at 1 month post-challenge. This protective phenotype was accompanied by a strong spleen lymphoproliferative response and high levels of IL-2, IFN-γ and TNFα versus low IL-4 and IL-10 secretion. Although, at 4 months post-challenge, the reduced parasite load was preserved in the liver (61%), an increase was detected in the spleen (30%), indicating a partial vaccine-induced protection. Conclusions/Significance This study provide a basis for the development of peptide-based nanovaccines against leishmaniasis, since it reveals that vaccination with well-defined Leishmania MHC-restricted epitopes extracted from various immunogenic proteins co-encapsulated with the proper adjuvant or/and phlebotomine fly saliva multi-epitope peptides into clinically compatible PLGA NPs could be a promising approach for the induction of a strong and sustainable protective immunity. PMID:28114333
USDA-ARS?s Scientific Manuscript database
Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...
saline, tourniquet-induced IR+lipo-Dex, and tourniquet-induced IR+Dex groups. These experiments tested the protective effects of lipo-Dex and Dex on...skeletal muscle morphology and function in mice with tourniquet-induced IR. Lipo-Dex is liposome-encapsulated Dex. Our study found that lipo-Dex was
USDA-ARS?s Scientific Manuscript database
Immunostimulating complexes (ISCOMs) are unique multimolecular structures formed by encapsulating antigens, lipids and triterpene saponins and are one of the most successful antigen delivery systems for microbial antigens. In the current study, both the route of administration and the antigen conce...
Module level solutions to solar cell polarization
Xavier, Grace , Li; Bo, [San Jose, CA
2012-05-29
A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.
Mura, Marzia; Palmieri, Daniela; Garella, Davide; Di Stilo, Antonella; Perego, Patrizia; Cravotto, Giancarlo; Palombo, Domenico
2015-01-01
This study proposes an alternative technique to prevent heat degradation induced by classic procedures of bioactive compound extraction, comparing classical maceration/decoction in hot water of polyphenols from Mango (Mangifera indica L.) (MI) with ultrasound-assisted extraction (UAE) in a water solution of β-cyclodextrin (β-CD) at room temperature and testing their biological activity on TNFα-induced endothelial dysfunction. Both extracts counteracted TNFα effects on EAhy926 cells, down-modulating interleukin-6, interleukin-8, cyclooxygenase-2 and intracellular adhesion molecule-1, while increasing endothelial nitric oxide synthase levels. β-CD extract showed higher efficacy in improving endothelial function. These effects were abolished after pre-treatment with the oestrogen receptor inhibitor ICI1182,780. Moreover, the β-CD extract induced Akt activation and completely abolished the TNFα-induced p38MAPK phosphorylation. UAE and β-CD encapsulation provide an efficient extraction protocol that increases polyphenol bioavailability. Polyphenols from MI play a protective role on endothelial cells and may be further considered as oestrogen-like molecules with vascular protective properties.
Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings
NASA Technical Reports Server (NTRS)
Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.
2015-01-01
The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.
Wang, Lei; Gao, Yahui; Li, Juan; Subirade, Muriel; Song, Yuanda; Liang, Li
2016-04-01
Food proteins have been widely used as carrier materials due to their multiple functional properties. Hydrophobic bioactives are generally dissolved in the oil phase of O/W emulsions. Ligand-binding properties provide the possibility of binding bioactives to the protein membrane of oil droplets. In this study, the influence of whey protein isolate (WPI) concentration and amphiphilic resveratrol or hydrophilic ascorbic acid on the decomposition of α-tocopherol in the oil phase of WPI emulsions is considered. Impact of ascorbic acid, in the continuous phase, on the decomposition depended on the vitamin concentration. Resveratrol partitioned into the oil-water interface and the cis-isomer contributed most of the protective effect of this polyphenol. About 94% of α-tocopherol and 50% of resveratrol were found in the oil droplets stabilized by 0.01% WPI. These results suggest the feasibility of using the emulsifying and ligand-binding properties of WPI to produce carriers for simultaneous encapsulation of bioactives with different physicochemical properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
...] Personal Protective Equipment for General Industry; Extension of the Office of Management and Budget's (OMB... collection requirements contained in the Personal Protective Equipment Standard for General Industry (29 CFR... personal protective equipment (PPE) necessary. Where such hazards are present, employers must communicate...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... Standard on Personal Protective Equipment (PPE) for Shipyard Employment; Extension of the Office of... requirements specified in the Standard on Personal Protective Equipment (PPE) for Shipyard Employment (29 CFR... information collection requirements contained in the Standard on Personal Protective Equipment (PPE) for...
46 CFR 197.555 - Personal protective clothing and equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Personal protective clothing and equipment. 197.555... SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.555 Personal protective clothing and equipment. (a) When the use of respirators in compliance with § 197.550 and the personal protective clothing...
46 CFR 197.555 - Personal protective clothing and equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Personal protective clothing and equipment. 197.555... SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.555 Personal protective clothing and equipment. (a) When the use of respirators in compliance with § 197.550 and the personal protective clothing...
Ma, Qiang; Yang, Junjie; Huang, Xu; Guo, Weisheng; Li, Sulei; Zhou, Hao; Li, Jingwei; Cao, Feng; Chen, Yundai
2018-04-01
Stem cell transplantation is a promising therapeutic strategy for myocardial infarction. However, transplanted cells face low survival rates due to oxidative stress and the inflammatory microenvironment in ischemic heart tissue. Melatonin has been used as a powerful endogenous antioxidant to protect cells from oxidative injury. However, melatonin cannot play a long-lasting effect against the hostile microenvironment. Nano drug delivery carriers have the ability to protect the loaded drug from degradation in physiological environments in a controlled manner, which results in longer effects and decreased side effects. Therefore, we constructed poly(lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) (PLGA-mPEG) nanoparticles to encapsulate melatonin. We tested whether the protective effect of melatonin encapsulated by PLGA-mPEG nanoparticles (melatonin nanoparticles [Mel-NPs]) on adipose-derived mesenchymal stem cells (ADSCs) was enhanced compared to that of free melatonin both in vitro and in vivo. In the in vitro study, we found that Mel-NPs reduced formation of the p53- cyclophilin D complex, prevented mitochondrial permeability transition pores from opening, and rescued ADSCs from hypoxia/reoxygenation injury. Moreover, Mel-NPs can achieve higher ADSC survival rates than free melatonin in rat myocardial infarction areas, and the therapeutic effects of ADSCs pretreated with Mel-NPs were more apparent. Hence, the combination of Mel-NPs and stem cell transplantation may be a promising strategy for myocardial infarction therapy. Stem Cells 2018;36:540-550. © AlphaMed Press 2018.
Silicon nitride protective coatings for silvered glass mirrors
Tracy, C. Edwin; Benson, David K.
1988-01-01
A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.
Silicon nitride protective coatings for silvered glass mirrors
Tracy, C.E.; Benson, D.K.
1984-07-20
A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.
Current and Future Perspectives on Alginate Encapsulated Pancreatic Islet.
Strand, Berit L; Coron, Abba E; Skjak-Braek, Gudmund
2017-04-01
Transplantation of pancreatic islets in immune protective capsules holds the promise as a functional cure for type 1 diabetes, also about 40 years after the first proof of principal study. The concept is simple in using semipermeable capsules that allow the ingress of oxygen and nutrients, but limit the access of the immune system. Encapsulated human islets have been evaluated in four small clinical trials where the procedure has been evaluated as safe, but lacking long-term efficacy. Host reactions toward the biomaterials used in the capsules may be one parameter limiting the long-term function of the graft in humans. The present article briefly discusses important capsule properties such as stability, permeability and biocompatibility, as well as possible strategies to overcome current challenges. Also, recent progress in capsule development as well as the production of insulin-producing cells from human stem cells that gives promising perspectives for the transplantation of encapsulated insulin-producing tissue is briefly discussed. Stem Cells Translational Medicine 2017;6:1053-1058. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Ahmadi, Abbas; Milani, Elnaz; Madadlou, Ashkan; Mortazavi, Seyed Ali; Mokarram, Reza Rezaei; Salarbashi, Davoud
2014-08-01
Yogurt-ice cream is a nutritious product with a refreshing taste and durability profoundly longer than that of yogurt. The probiotic Lactobacillus acidophilus (La-5) cells either in free or encapsulated form were incorporated into yog-ice cream and their survivability were studied. Fructooligosaccharide (FOS) as a prebiotic compound at three levels (0, 4 & 8 % w/w) was added to yogurt-ice cream mix and its effects on some chemical properties, overrun and firmness of product were evaluated. The higher the incorporated FOS concentration, the lower were the pH value and higher the total solid content of treatments. FOS incorporation (8 %) significantly increased the overrun of treatments and reduced their firmness. The viable counts of free probiotics decreased from ~9.55 to ~7.3 log cfu/g after 60 days of frozen storage while that of encapsulated cells merely decreased less than 1 log cycle. Encapsulation with alginate microbeads protected the probiotic cells against injuries in the freezing stage as well as, during frozen storage.
Single Walled Carbon Nanotube Based Air Pocket Encapsulated Ultraviolet Sensor.
Kim, Sun Jin; Han, Jin-Woo; Kim, Beomseok; Meyyappan, M
2017-11-22
Carbon nanotube (CNT) is a promising candidate as a sensor material for the sensitive detection of gases/vapors, biomarkers, and even some radiation, as all these external variables affect the resistance and other properties of nanotubes, which forms the basis for sensing. Ultraviolet (UV) radiation does not impact the nanotube properties given the substantial mismatch of bandgaps and therefore, CNTs have never been considered for UV sensing, unlike the popular ZnO and other oxide nanwires. It is well-known that UV assists the adsorption/desorption characteristics of oxygen on carbon nanotubes, which changes the nanotube resistance. Here, we demonstrate a novel sensor structure encapsulated with an air pocket, where the confined air is responsible for the UV sensing mechanism and assures sensor stability and repeatability over time. In addition to the protection from any contamination, the air pocket encapsulated sensor offers negligible baseline drift and fast recovery compared to previously reported sensors. The air pocket isolated from the outside environment can act as a stationary oxygen reservoir, resulting in consistent sensor characteristics. Furthermore, this sensor can be used even in liquid environments.
Stabilization of tetanus toxoid encapsulated in PLGA microspheres.
Jiang, Wenlei; Schwendeman, Steven P
2008-01-01
Delivery of vaccine antigens from controlled-release poly(lactic/glycolic acid) (PLGA) microspheres is a novel approach to reduce the number of antigen doses required for protection against infection. A major impediment to developing single-shot vaccines is encapsulated antigen instability during months of exposure to physiological conditions. For example, efforts to control neonatal tetanus in developing countries with a single-dose TT vaccine based on PLGA microspheres have been plagued by poor stability of the 150 kDa formaldehyde-detoxified protein antigen, tetanus toxoid (TT), in the polymer. We examined the denatured states of PLGA-encapsulated TT, revealing two primary TT instability mechanisms: (1) protein aggregation mediated by formaldehyde and (2) acid-induced protein unfolding and epitope damage. Further, we systematically identified excipients, which can efficiently inhibit TT aggregation and retain TT antigenicity under simulated deleterious conditions, i.e., elevated temperature and humidity. By employing these novel additives in the PLGA system, we report the slow and continuous release of high doses of TT for one month with retained antigen stability during bioerosion of PLGA.
Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air
NASA Astrophysics Data System (ADS)
Son, Seok-Kyun; Šiškins, Makars; Mullan, Ciaran; Yin, Jun; Kravets, Vasyl G.; Kozikov, Aleksey; Ozdemir, Servet; Alhazmi, Manal; Holwill, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Ghazaryan, Davit; Novoselov, Kostya S.; Fal'ko, Vladimir I.; Mishchenko, Artem
2018-01-01
The excellent electronic and mechanical properties of graphene allow it to sustain very large currents, enabling its incandescence through Joule heating in suspended devices. Although interesting scientifically and promising technologically, this process is unattainable in ambient environment, because graphene quickly oxidises at high temperatures. Here, we take the performance of graphene-based incandescent devices to the next level by encapsulating graphene with hexagonal boron nitride (hBN). Remarkably, we found that the hBN encapsulation provides an excellent protection for hot graphene filaments even at temperatures well above 2000 K. Unrivalled oxidation resistance of hBN combined with atomically clean graphene/hBN interface allows for a stable light emission from our devices in atmosphere for many hours of continuous operation. Furthermore, when confined in a simple photonic cavity, the thermal emission spectrum is modified by a cavity mode, shifting the emission to the visible range spectrum. We believe our results demonstrate that hBN/graphene heterostructures can be used to conveniently explore the technologically important high-temperature regime and to pave the way for future optoelectronic applications of graphene-based systems.
Liposomal Encapsulation Enzymes: From Medical Applications to Kinetic Characteristics.
Jahadi, M; Khosravi-Darani, K
2017-01-01
Liposomes and nanoliposomes as small vesicles composed of phospholipid bilayer (entrapping one or more hydrophilic or lipophilic components) have recently found several potential applications in medicine and food industry. These vesicles may protect the core materials from moisture, heat and other extreme conditions. They may also provide controlled release of various bioactive agents, including food ingredients at the right place and time. Potential applications of enzyme-loaded liposomes are in the medical or biomedical field, particularly for the enzymereplacement therapy, as well as cheese industry for production of functional foods with improved health beneficial impacts on the consumer. Encapsulation process has a recondite impact on enzymes. In fact, liposome preparation techniques may alter the pH and temperature optima, affinity of the enzyme to substrate (Km), and maximum rate of reaction (Vmax). In addition, in this paper, the impact of process variables on the kinetic characteristics of enzymes encapsulated in liposomes was investigated. Also, the effects of enzyme entrapment in liposomes, prepared by different methods, on the catalytic efficiency of enzyme, as well as its kinetic properties and stability compared to native (free) enzymes has been reviewed.
Angelova, Angelina; Garamus, Vasil M; Angelov, Borislav; Tian, Zhenfen; Li, Yawen; Zou, Aihua
2017-11-01
The present work highlights recent achievements in development of nanostructured dispersions and biocolloids for drug delivery applications. We emphasize the key role of biological small-angle X-ray scattering (BioSAXS) investigations for the nanomedicine design. A focus is given on controlled encapsulation of small molecular weight phytochemical drugs in lipid-based nanocarriers as well as on encapsulation of macromolecular siRNA, plasmid DNA, peptide and protein pharmaceuticals in nanostructured nanoparticles that may provide efficient intracellular delivery and triggered drug release. Selected examples of utilisation of the BioSAXS method for characterization of various types of liquid crystalline nanoorganizations (liposome, spongosome, cubosome, hexosome, and nanostructured lipid carriers) are discussed in view of the successful encapsulation and protection of phytochemicals and therapeutic biomolecules in the hydrophobic or the hydrophilic compartments of the nanocarriers. We conclude that the structural design of the nanoparticulate carriers is of crucial importance for the therapeutic outcome and the triggered drug release from biocolloids. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier
NASA Astrophysics Data System (ADS)
Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.
2013-04-01
We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.
Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Nath, Rupa
Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization of high latent heat storage capability of phase change materials is one of the keys to an efficient way to store thermal energy. However, some of the limitations of the existing technology are the high volumetric expansion and low thermal conductivity of phase change materials (PCMs), low energy density, low operation temperatures and high cost. The present work deals with encapsulated PCM system, which operates at temperatures above 500°C and takes advantage of the heat transfer modes at such high temperatures to overcome the aforementioned limitations of PCMs. Encapsulation with sodium silicate coating on preformed PCM pellets were investigated. A low cost, high temperature metal, carbon steel has been used as a capsule for PCMs with a melting point above 500° C. Sodium silicate and high temperature paints were used for oxidation protection of steel at high temperatures. The emissivity of the coatings to enhance heat transfer was investigated.
Dexamethasone acetate encapsulation into Trojan particles.
Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas
2008-05-22
We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release.
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-06
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO 2 , NO, H 2 O, as well as the related fragments during the O 2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO 2 during the complex surface chemical reaction of the ligand and O 2 plasma were monitored using the QCM. The remote PEALD ZrO 2 /zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10 -5 g/m 2 /day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.
NASA Astrophysics Data System (ADS)
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-01
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10-5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.
Non-hermetic encapsulation for implantable electronic devices based on epoxy.
Boeser, Fabian; Ordonez, Juan S; Schuettler, Martin; Stieglitz, Thomas; Plachta, Dennis T T
2015-08-01
Hermetic and non-hermetic implant packaging are the two strategies to protect electronic systems from the humid conditions inside the human body. Within the scope of this work twelve different material combinations for a non-hermetic, high-reliable epoxy based encapsulation technique were characterized. Three EPO-TEK (ET) epoxies and one low budget epoxy were chosen for studies with respect to their processability, water vapor transmission rate (WVTR) and adhesion to two different ceramic-based substrates as well as to one standard FR4-substrate. Setups were built to analyze the mentioned properties for at least 30 days using an aging test in a moist environment. As secondary test subjects, commercially available USB flash drives (UFD) were successfully encapsulated inside the epoxies, soaked in phosphate buffered saline (PBS, pH=7.4), stored in an incubator (37°C) and tested for 256 days without failure. By means of epoxy WVTR (0.0278 g/day/m(2)) and degrease of adhesion (24.59 %) during 30 days in PBS, the combination of the standard FR4-substrate and the epoxy ET 301-2 was found to feature the best encapsulation properties. If a ceramic-based electronic system has to be used, the most promising combination consists of the alumina substrate and the epoxy ET 302-3M (WVTR: 0.0588 g/day/m(2); adhesion drop: 49.58 %).
Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J
2018-03-14
We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.
Léonard, Alexandre; Dandoy, Philippe; Danloy, Emeric; Leroux, Grégory; Meunier, Christophe F; Rooke, Joanna C; Su, Bao-Lian
2011-02-01
This critical review highlights the advances that have been made over recent years in the domain of whole-cell immobilisation and encapsulation for applications relating to the environment and human health, particularly focusing on examples of photosynthetic plant cells, bacteria and algae as well as animal cells. Evidence that encapsulated photosynthetic cells remain active in terms of CO(2) sequestration and biotransformation (solar driven conversion of CO(2) into biofuels, drugs, fine chemicals etc.), coupled with the most recent advances made in the field of cell therapy, reveals the need to develop novel devices based on the preservation of living cells within abiotic porous frameworks. This review shall corroborate this statement by selecting precise examples that unambiguously demonstrate the necessity and the benefits of such smart materials. As will be described, the handling and exploitation of photosynthetic cells are enhanced by entrapment or encapsulation since the cells are physically separated from the liquid medium, thereby facilitating the recovery of the metabolites produced. In the case of animal cells, their encapsulation within a matrix is essential in order to create a physical barrier that can protect the cells auto-immune defenders upon implantation into a living body. For these two research axes, the key parameters that have to be kept in mind when designing hybrid materials will be identified, concentrating on essential aspects such as biocompatibility, mechanical strength and controlled porosity (264 references).
Cullen, D Kacy; R Patel, Ankur; Doorish, John F; Smith, Douglas H; Pfister, Bryan J
2008-12-01
Neural-electrical interface platforms are being developed to extracellularly monitor neuronal population activity. Polyaniline-based electrically conducting polymer fibers are attractive substrates for sustained functional interfaces with neurons due to their flexibility, tailored geometry and controlled electro-conductive properties. In this study, we addressed the neurobiological considerations of utilizing small diameter (<400 microm) fibers consisting of a blend of electrically conductive polyaniline and polypropylene (PA-PP) as the backbone of encapsulated tissue-engineered neural-electrical relays. We devised new approaches to promote survival, adhesion and neurite outgrowth of primary dorsal root ganglion neurons on PA-PP fibers. We attained a greater than ten-fold increase in the density of viable neurons on fiber surfaces to approximately 700 neurons mm(-2) by manipulating surrounding surface charges to bias settling neuronal suspensions toward fibers coated with cell-adhesive ligands. This stark increase in neuronal density resulted in robust neuritic extension and network formation directly along the fibers. Additionally, we encapsulated these neuronal networks on PA-PP fibers using agarose to form a protective barrier while potentially facilitating network stability. Following encapsulation, the neuronal networks maintained integrity, high viability (>85%) and intimate adhesion to PA-PP fibers. These efforts accomplished key prerequisites for the establishment of functional electrical interfaces with neuronal populations using small diameter PA-PP fibers-specifically, improved neurocompatibility, high-density neuronal adhesion and neuritic network development directly on fiber surfaces.
A Study of Thermistor Performance within a Textile Structure.
Hughes-Riley, Theodore; Lugoda, Pasindu; Dias, Tilak; Trabi, Christophe L; Morris, Robert H
2017-08-05
Textiles provide an ideal structure for embedding sensors for medical devices. Skin temperature measurement is one area in which a sensor textile could be particularly beneficial; pathological skin is normally very sensitive, making the comfort of anything placed on that skin paramount. Skin temperature is an important parameter to measure for a number of medical applications, including for the early detection of diabetic foot ulcer formation. To this end an electronic temperature-sensor yarn was developed by embedding a commercially available thermistor chip into the fibres of a yarn, which can be used to produce a textile or a garment. As part of this process a resin was used to encapsulate the thermistor. This protects the thermistor from mechanical and chemical stresses, and also allows the sensing yarn to be washed. Building off preliminary work, the behaviour and performance of an encapsulated thermistor has been characterised to determine the effect of encapsulation on the step response time and absolute temperature measurements. Over the temperature range of interest only a minimal effect was observed, with step response times varying between 0.01-0.35 s. A general solution is presented for the heat transfer coefficient compared to size of the micro-pod formed by the encapsulation of the thermistor. Finally, a prototype temperature-sensing sock was produced using a network of sensing yarns as a demonstrator of a system that could warn of impending ulcer formation in diabetic patients.
Wei, Xuetuan; Luo, Mingfang; Xie, Yuchun; Yang, Liangrong; Li, Haojian; Xu, Lin; Liu, Huizhou
2012-12-01
This study presents a novel and integrated preparation technology for nattokinase functional food, including strain screening, fermentation, separation, and encapsulation. To rapidly screen a nattokinase-productive strain, PCR-based screening method was combined with fibrinolytic activity-based method, and a high productive strain, Bacillus subtilis LSSE-22, was isolated from Chinese soybean paste. Reduction of poly-γ-glutamic acid (γ-PGA) concentration may contribute to separation of nattokinase and reduction of late-onset anaphylaxis risk. Chickpeas were confirmed as the favorable substrate for enhancement of nattokinase production and reduction of γ-PGA yield. Using cracked chickpeas, the nattokinase activity reached 356.25 ± 17.18 FU/g (dry weight), which is much higher than previous reports. To further reduce γ-PGA concentration, ethanol fractional extraction and precipitation were applied for separation of nattokinase. By extraction with 50 % and precipitation with 75 % ethanol solution, 4,000.58 ± 192.98 FU/g of nattokinase powders were obtained, and the activity recovery reached 89 ± 1 %, while γ-PGA recovery was reduced to 21 ± 2 %. To improve the nattokinase stability at acidic pH condition, the nattokinase powders were encapsulated, and then coated with methacrylic acid-ethyl acrylate copolymer. After encapsulation, the nattokinase was protected from being denatured under various acid conditions, and pH-responsible controlled release at simulated intestinal fluid was realized.
Shrivastava, Shubham; Lole, Kavita S; Tripathy, Anuradha S; Shaligram, Umesh S; Arankalle, Vidya A
2009-11-05
To reduce extra injections, cost and ensure better coverage, use of combination vaccines is preferable. An attempt was made to evaluate the encapsulation of hepatitis E virus neutralizing epitope (NE) region and hepatitis B virus surface antigen (HBsAg) in liposomes as DNAs, proteins and DNA+protein. Mice groups were immunized with different liposome-encapsulated formulations and monitored for anti-HEV and anti-HBs titres, IgG subtypes, antigen-specific lymphocyte proliferation and cytokine levels. The protective levels of anti-HBs and in vitro virus-binding capacity of anti-HEV antibodies were assessed. Liposome-encapsulated DNA either singly or in combination did not elicit antibody response. Anti-HEV and anti-HBs IgG titres of individual component of protein alone (Lipo-E-P/Lipo-B-P) or DNA+protein formulations (Lipo-E-DP/Lipo-B-DP) were comparable to respective titres in combination vaccine of protein (Lipo-BE-P) and DNA+protein formulations (Lipo-BE-DP). IgG1 levels were significantly higher in Lipo-BE-P group whereas, equivalent levels of IgG1 and IgG2a were observed in Lipo-BE-DP group against both components of the vaccine. Combination vaccine group showed mixed Th1/Th2 cytokine profile. Liposome entrapped NE and HBsAg in protein and DNA+protein formats induce excellent immune response to both the components and need to be evaluated in higher animals.
Esmaeili, Akbar; Asgari, Azadeh
2015-11-01
In recent years, the unparalleled and functional properties of essential oils have been extensively reported, but the sensitivity of essential oils to environmental factors and their poor aqueous solubility have limited their applications in industries. Hence, we encapsulated CEO in chitosan nanoparticles by an emulsion-ionic gelation with pantasodium tripolyphosphate (TPP) and sodium hexametaphosphte (HMP), separately, as crosslinkers. The nanoparticles were analyzed by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency (EE) and loading capacity (LC) of CEO in chitosan nanoparticles increased with the increase of initial CEO amount. The nanoparticles displayed an average size of 30-80nm with a spherical shape and regular distribution. In vitro release profiles exhibited an initial burst release and followed by a sustained CEO release at different pH conditions. The amount of CEO release from chitosan nanoparticles was higher in acidic pH to basic or neutral pH, respectively. The biological properties of CEO, before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and agar disk diffusion method, respectively. The results indicated the encapsulation of CEO in chitosan nanoparticles could be protected the quality. Copyright © 2015 Elsevier B.V. All rights reserved.
Thermoacoustic sound projector: exceeding the fundamental efficiency of carbon nanotubes.
Aliev, Ali E; Codoluto, Daniel; Baughman, Ray H; Ovalle-Robles, Raquel; Inoue, Kanzan; Romanov, Stepan A; Nasibulin, Albert G; Kumar, Prashant; Priya, Shashank; Mayo, Nathanael K; Blottman, John B
2018-08-10
The combination of smooth, continuous sound spectra produced by a sound source having no vibrating parts, a nanoscale thickness of a flexible active layer and the feasibility of creating large, conformal projectors provoke interest in thermoacoustic phenomena. However, at low frequencies, the sound pressure level (SPL) and the sound generation efficiency of an open carbon nanotube sheet (CNTS) is low. In addition, the nanoscale thickness of fragile heating elements, their high sensitivity to the environment and the high surface temperatures practical for thermoacoustic sound generation necessitate protective encapsulation of a freestanding CNTS in inert gases. Encapsulation provides the desired increase of sound pressure towards low frequencies. However, the protective enclosure restricts heat dissipation from the resistively heated CNTS and the interior of the encapsulated device. Here, the heat dissipation issue is addressed by short pulse excitations of the CNTS. An overall increase of energy conversion efficiency by more than four orders (from 10 -5 to 0.1) and the SPL of 120 dB re 20 μPa @ 1 m in air and 170 dB re 1 μPa @ 1 m in water were demonstrated. The short pulse excitation provides a stable linear increase of output sound pressure with substantially increased input power density (>2.5 W cm -2 ). We provide an extensive experimental study of pulse excitations in different thermodynamic regimes for freestanding CNTSs with varying thermal inertias (single-walled and multiwalled with varying diameters and numbers of superimposed sheet layers) in vacuum and in air. The acoustical and geometrical parameters providing further enhancement of energy conversion efficiency are discussed.
Microencapsulation Technology for Corrosion Mitigation by Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.
2011-01-01
A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain
Bauermeister, Anja; Mahnert, Alexander; Auerbach, Anna; Böker, Alexander; Flier, Niwin; Weber, Christina; Probst, Alexander J; Moissl-Eichinger, Christine; Haberer, Klaus
2014-01-01
Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid) materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu) per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary Protection considerations, our results could prove useful for the manufacturing of food packaging, pharmacy industry and implant technology.
Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen dairy desserts.
Hong, S H; Marshall, R T
2001-06-01
Viable lactic acid-producing bacteria in frozen dairy desserts can be a source of beta-galactosidase for persons who absorb lactose insufficiently. However, freezing kills many of the cells, causing loss of enzymatic activity. Cultures selected for high beta-galactosidase activities and high survival rates in the presence of bile were examined for survivability during freezing in reduced-fat ice cream. Encapsulated S. thermophilus strains survived better than their nonencapsulated mutants in reduced-fat ice cream after freezing and frozen storage at -29 degrees C for 16 d (28 vs. 19%). However, a small nonencapsulated strain of Lactobacillus delbrueckii sp. bulgaricus survived better than the large encapsulated strain in reduced-fat ice cream. Factors that improved survival of encapsulated S. thermophilus 1068 in ice cream were 1) harvest of cells in the late-log phase of growth at 37 degrees C rather than at 40, 42.5, or 45 degrees C; 2) overrun at 50% rather than 100%; and 3) storage at -17 degrees C rather than -23 or -29 degrees C. Survival of strain ST1068 was unaffected by 1) neutralization of acid during growth or 2) substitution of nitrogen for air in building overrun.
29 CFR 1910.183 - Helicopters.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mechanically. (e) Personal protective equipment. (1) Personal protective equipment shall be provided and the employer shall ensure its use by employees receiving the load. Personal protective equipment shall consist... device before ground personnel touch the suspended load, unless protective rubber gloves are being worn...
29 CFR 1910.183 - Helicopters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mechanically. (e) Personal protective equipment. (1) Personal protective equipment shall be provided and the employer shall ensure its use by employees receiving the load. Personal protective equipment shall consist... device before ground personnel touch the suspended load, unless protective rubber gloves are being worn...
... medlineplus.gov/ency/patientinstructions/000447.htm Personal protective equipment To use the sharing features on this page, please enable JavaScript. Personal protective equipment is special equipment you wear to create a ...
29 CFR 1926.300 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Personal protective equipment. Employees using hand and power tools and exposed to the hazard of falling... shall be provided with the particular personal protective equipment necessary to protect them from the hazard. All personal protective equipment shall meet the requirements and be maintained according to...
29 CFR 1926.300 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Personal protective equipment. Employees using hand and power tools and exposed to the hazard of falling... shall be provided with the particular personal protective equipment necessary to protect them from the hazard. All personal protective equipment shall meet the requirements and be maintained according to...
A person is not a number: discourse involvement in subject-verb agreement computation.
Mancini, Simona; Molinaro, Nicola; Rizzi, Luigi; Carreiras, Manuel
2011-09-02
Agreement is a very important mechanism for language processing. Mainstream psycholinguistic research on subject-verb agreement processing has emphasized the purely formal and encapsulated nature of this phenomenon, positing an equivalent access to person and number features. However, person and number are intrinsically different, because person conveys extra-syntactic information concerning the participants in the speech act. To test the person-number dissociation hypothesis we investigated the neural correlates of subject-verb agreement in Spanish, using person and number violations. While number agreement violations produced a left-anterior negativity followed by a P600 with a posterior distribution, the negativity elicited by person anomalies had a centro-posterior maximum and was followed by a P600 effect that was frontally distributed in the early phase and posteriorly distributed in the late phase. These data reveal that the parser is differentially sensitive to the two features and that it deals with the two anomalies by adopting different strategies, due to the different levels of analysis affected by the person and number violations. Copyright © 2011 Elsevier B.V. All rights reserved.
Lopes, Priscila Diniz; Okino, Cintia Hiromi; Fernando, Filipe Santos; Pavani, Caren; Casagrande, Viviane Mariguela; Lopez, Renata F V; Montassier, Maria de Fátima Silva; Montassier, Helio José
2018-05-03
Avian infectious bronchitis virus (IBV) is one of the most important viral diseases of poultry. The mucosa of upper respiratory tract, specially the trachea, is the primary replication site for this virus. However, conventional inactivate IBV vaccines usually elicit reduced mucosal immune responses and local protection. Thus, an inactivated IBV vaccine containing BR-I genotype strain encapsulated in chitosan nanoparticles (IBV-CS) was produced by ionic gelation method to be administered by oculo-nasal route to chickens. IBV-CS vaccine administered alone resulted in markedly mucosal immune responses, characterized by high levels of anti-IBV IgA isotype antibodies and IFNγ gene expression at 1dpi. The association of live attenuated Massachusetts IBV and IBV-CS vaccine also induced strong mucosal immune responses, though a switch from IgA isotype to IgG was observed, and IFNγ gene expression peak was late (at 5 dpi). Efficacy of IBV-CS was evaluated by tracheal ciliostasis analysis, histopathology examination, and viral load determination in the trachea and kidney. The results indicated that IBV-CS vaccine administered alone or associated with a live attenuated heterologous vaccine induced both humoral and cell-mediated immune responses at the primary site of viral replication, and provided an effective protection against IBV infection at local (trachea) and systemic (kidney) sites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... for OMB Review; Comment Request; Personal Protective Equipment Standard for General Industry ACTION... Administration (OSHA) sponsored information collection request (ICR) titled, ``Personal Protective Equipment...: Regulations 29 CFR part 1910, subpart I requires that personal protective equipment (PPE)--including equipment...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... for OMB Review; Comment Request; Personal Protective Equipment for Shipyard Employment ACTION: Notice... (OSHA) sponsored information collection request (ICR) titled, ``Personal Protective Equipment for... employee uses the appropriate personal protective equipment (PPE) for the eyes, face, head, extremities...
29 CFR 1915.156 - Foot protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Personal Protective Equipment... Standard for Personal Protection—Protective Footwear,” which is incorporated by reference in § 1915.5; or (iii) ANSI Z41-1991, “American National Standard for Personal Protection—Protective Footwear,” which is...
40 CFR 721.63 - Protection in the workplace.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wear, personal protective equipment that provides a barrier to prevent dermal exposure to the substance in the specific work area where it is selected for use. Each such item of personal protective... other personal protective equipment selected in paragraph (a)(1) of this section, the following items...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
... Non-Respiratory Personal Protective Equipment (PPE).'' To view the notice and related materials, visit... processes, to address conformity assessment of non-respiratory personal protective equipment. Conformity...
About Personal Protective Equipment (PPE)
... Equipment for Infection Control Questions About Personal Protective Equipment (PPE) Share Tweet Linkedin Pin it More sharing ... Print Q1. How do manufacturers ensure personal protective equipment (PPE) is safe and effective? A1. To help ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... fumigant manufacturers' recommendations and warnings, and the proper use of personal protective equipment... other personal protective equipment recommended by the fumigant manufacturer for protection against the... and required to use any personal protective equipment recommended by the manufacturer of the product...
Code of Federal Regulations, 2010 CFR
2010-07-01
... fumigant manufacturers' recommendations and warnings, and the proper use of personal protective equipment... other personal protective equipment recommended by the fumigant manufacturer for protection against the... and required to use any personal protective equipment recommended by the manufacturer of the product...
Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G
1992-01-01
The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin-mediated effects, not only as components of the intracellular antibacterial arsenal of the neutrophil, but also as potentially therapeutic extracellular agents. PMID:1522221
Weiss, J; Elsbach, P; Shu, C; Castillo, J; Grinna, L; Horwitz, A; Theofan, G
1992-09-01
The bactericidal/permeability-increasing protein (BPI) of neutrophils and BPI fragments neutralize the effects of isolated Gram-negative bacterial lipopolysaccharides both in vitro and in vivo. Since endotoxin most commonly enters the host as constituents of invading Gram-negative bacteria, we raised the question: Can BPI and its bioactive fragments also protect against whole bacteria? To determine whether the bactericidal and endotoxin-neutralizing activities of BPI/fragments are expressed when Gram-negative bacteria are introduced to the complex environment of whole blood we examined the effects of added BPI and proteolytically prepared and recombinant NH2-terminal fragments on: (a) the fate of serum-resistant encapsulated Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa that survive the antibacterial actions of whole blood and (b) the ability of these bacteria to trigger cytokine release. Added BPI in nanomolar concentrations killed each of three encapsulated strains of E. coli and in closely parallel fashion inhibited tumor necrosis factor (TNF) release. Holo-BPI and its NH2-terminal fragment were equipotent toward a rough LPS chemotype K1-encapsulated strain, but the fragment was substantially more potent than holo-BPI toward two encapsulated smooth LPS chemotype strains. TNF release induced by K. pneumoniae and P. aeruginosa was also inhibited by both holo-BPI and fragment but, at the protein concentrations tested, P. aeruginosa was killed only by the fragment and K. pneumoniae was not killed by either protein. The bactericidal action of BPI/fragment toward E. coli is inhibited by C7-depleted serum, but accelerated by normal serum, indicating that BPI, acting in synergy with late complement components, enhances extracellular killing of serum-resistant bacteria. Thus, BPI and an even more potent NH2-terminal fragment may protect against Gram-negative bacteria in the host by blocking bacterial proliferation as well as endotoxin-mediated effects, not only as components of the intracellular antibacterial arsenal of the neutrophil, but also as potentially therapeutic extracellular agents.
Taylor, Myra F; Westbrook, Dominique; Chang, Paul
2016-02-01
This study aimed to determine whether the viewing of a personal photoaged photograph had the capacity to alter Western Australian teenagers' pro-tanning attitudes. Semi-structured interviews were conducted with fifteen teenagers. The teenagers' pro-tanning attitudes prior to viewing their photoaged photograph are encapsulated in the study's central theme: 'You've got to look after your skin and use sunscreen, but I always forget!'. Post-viewing their photoaged facial image many teenagers reiterated their intentions to adopt (when they remembered) skin-protective measures. However, photoaged photography did not alter other teenagers' intention to tan. NEW KNOWLEDGE: Teenagers who choose to continue to tan were aware of the long-term health risks associated with ultra-violet over-exposure. However, their desire remained strong to emulate the media promoted image of bronzed youth being popular individuals. Indeed, the social benefits of being considered attractive to their peers became an attitudinal barrier to the teenagers' adoption of skin-protective behaviours. Those teenagers who changed their pro-tanning attitudes following their viewing of their ultra-violet photoaged photograph did so because of the shock they received when they saw their sun-damaged facial image. This suggests that photoageing photography can be effective with many adolescents because it reduces the cause-and-effect delay that exists between the occurrence of sun-damage and its visual presentation in later-life. Greater effort needs to be focused on increasing teenagers' understanding of how sun-damage occurs, when it is appropriate to apply sunscreen, as well as in changing the prevailing media image of an attractive body being a tanned body.
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-01
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10−5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime. PMID:28059160
Fabrication and characterization of sol-gel based nanoparticles for drug delivery
NASA Astrophysics Data System (ADS)
Yadav, Reeta
Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.
Singh, Shirene M; Alkie, Tamiru N; Abdelaziz, Khaled Taha; Hodgins, Douglas C; Novy, Anastasia; Nagy, Éva; Sharif, Shayan
2016-06-01
Avian influenza virus (AIV), a mucosal pathogen, gains entry into host chickens through respiratory and gastrointestinal routes. Most commercial AIV vaccines for poultry consist of inactivated, whole virus with adjuvant, delivered by parenteral administration. Recent advances in vaccine development have led to the application of nanoparticle emulsion delivery systems, such as poly (d,l-lactic-co-glycolic acid) (PLGA) nanoparticles to enhance antigen-specific immune responses. In chickens, the Toll-like receptor 21 ligand, CpG oligodeoxynucleotides (ODNs), have been demonstrated to be immunostimulatory. The objective of this study was to compare the adjuvant potential of CpG ODN 2007 encapsulated in PLGA nanoparticles with nonencapsulated CpG ODN 2007 when combined with a formalin-inactivated H9N2 virus, through intramuscular and aerosol delivery routes. Chickens were vaccinated at days 7 and 21 posthatch for the intramuscular route and at days 7, 21, and 35 for the aerosol route. Antibody-mediated responses were evaluated weekly in sera and lacrimal secretions in specific pathogen-free chickens. The results indicate that nonencapsulated CpG ODN 2007 in inactivated AIV vaccines administered by the intramuscular route generated higher antibody responses compared to the encapsulated CpG ODN 2007 formulation by the same route. Additionally, encapsulated CpG ODN 2007 in AIV vaccines administered by the aerosol route elicited higher mucosal responses compared to nonencapsulated CpG ODN 2007. Future studies may be aimed at evaluating protective immune responses induced with PLGA encapsulation of AIV and adjuvants.
A Study of Thermistor Performance within a Textile Structure
Hughes-Riley, Theodore; Lugoda, Pasindu; Dias, Tilak; Trabi, Christophe L.; Morris, Robert H.
2017-01-01
Textiles provide an ideal structure for embedding sensors for medical devices. Skin temperature measurement is one area in which a sensor textile could be particularly beneficial; pathological skin is normally very sensitive, making the comfort of anything placed on that skin paramount. Skin temperature is an important parameter to measure for a number of medical applications, including for the early detection of diabetic foot ulcer formation. To this end an electronic temperature-sensor yarn was developed by embedding a commercially available thermistor chip into the fibres of a yarn, which can be used to produce a textile or a garment. As part of this process a resin was used to encapsulate the thermistor. This protects the thermistor from mechanical and chemical stresses, and also allows the sensing yarn to be washed. Building off preliminary work, the behaviour and performance of an encapsulated thermistor has been characterised to determine the effect of encapsulation on the step response time and absolute temperature measurements. Over the temperature range of interest only a minimal effect was observed, with step response times varying between 0.01–0.35 s. A general solution is presented for the heat transfer coefficient compared to size of the micro-pod formed by the encapsulation of the thermistor. Finally, a prototype temperature-sensing sock was produced using a network of sensing yarns as a demonstrator of a system that could warn of impending ulcer formation in diabetic patients. PMID:28783067
Biomimetic silica encapsultation of living cells
NASA Astrophysics Data System (ADS)
Jaroch, David Benjamin
Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.
Caizhen, Guo; Yan, Gao; Ronron, Chang; Lirong, Yang; Panpan, Chu; Xuemei, Hu; Yuanbiao, Qiao; Qingshan, Li
2015-04-10
An essential in vivo drug delivery system of a momordica anti-HIV protein, MAP30, was developed through encapsulating in chemically synthesized matrices of zirconium egg- and soy-phosphatidylcholines, abbreviated to Zr/EPC and Zr/SPC, respectively. Matrices were characterized by transmission electron microscopy and powder X-ray diffractometry studies. Zr/EPC granule at an approximate diameter of 69.43±7.78 nm was a less efficient encapsulator than the granule of Zr/SPC. Interlayer spacing of the matrices encapsulating MAP30 increased from 8.8 and 9.7 Å to 7.4 and 7.9 nm, respectively. In vivo kinetics on degradation and protein release was performed by analyzing the serum sampling of intravenously injected SPF chickens. The first order and biphasic variations were obtained for in vivo kinetics using equilibrium dialysis. Antimicrobial and anti-HIV assays yielded greatly decreased MIC50 and EC50 values of nanoformulated MAP30. An acute toxicity of MAP30 encapsulated in Zr/EPC occurred at a single intravenous dose above 14.24 mg/kg bw in NIH/KM/ICR mice. The folding of MAP30 from Zr/EPC sustained in vivo chickens for more than 8 days in high performance liquid chromatography assays. These matrices could protect MAP30 efficiently with strong structure retention, lowered toxicity and prolonged in vivo life. Copyright © 2015 Elsevier B.V. All rights reserved.
Lim, Kaiyang; Saravanan, Rathi; Chong, Kelvin K L; Goh, Sharon H M; Chua, Ray R Y; Tambyah, Paul A; Chang, Matthew W; Kline, Kimberly A; Leong, Susanna S J
2018-04-17
Anhydrous polymers are actively explored as alternative materials to overcome limitations of conventional hydrogel-based antibacterial coating. However, the requirement for strong organic solvent in polymerization reactions often necessitates extra protection steps for encapsulation of target biomolecules, lowering encapsulation efficiency, and increasing process complexity. This study reports a novel coating strategy that allows direct solvation and encapsulation of antimicrobial peptides (HHC36) into anhydrous polycaprolactone (PCL) polymer-based dual layer coating. A thin 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) film is layered onto the peptide-impregnated PCL as a diffusion barrier, to modulate and enhance release kinetics. The impregnated peptides are eventually released in a controlled fashion. The use of 2,2,2-trifluoroethanol (TFE), as polymerization and solvation medium, induces the impregnated peptides to adopt highly stable turned conformation, conserving peptide integrity, and functionality during both encapsulation and subsequent release processes. The dual layer coating showed sustained antibacterial functionality, lasting for 14 days. In vivo assessment using an experimental mouse wounding model demonstrated good biocompatibility and significant antimicrobial efficacy of the coating under physiological conditions. The coating was translated onto silicone urinary catheters and showed promising antibacterial efficacy, even outperforming commercial silver-based Dover cather. This anhydrous polymer-based platform holds immense potential as an effective antibacterial coating to prevent clinical device-associated infections. The simplicity of the coating process enhances its industrial viability. © 2018 Wiley Periodicals, Inc.
Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: a comprehensive review.
Saez, V; Souza, I D L; Mansur, C R E
2018-04-01
The antioxidative and photoprotective properties of vitamin E have caused it to be included as an active agent in various pharmaceutical and cosmetic products. However, its lipophilicity, chemical instability and poor skin penetration have limited the effectiveness of these formulations. For that reason, many attempts to include it in different drug delivery systems have been made. In recent decades, lipid nanoparticles have received special attention due to their advantages of compatibility with the skin, ability to enhance penetration of drugs in the stratum corneum, protection of the encapsulated substance against degradation induced by the external medium and control of drug release. This work reviews the current status of the encapsulation of vitamin E in lipid nanoparticles. We describe the most important methods for obtaining and characterizing lipid nanoparticles containing vitamin E (LNP-VE), various techniques for the evaluation of vitamin E's properties after encapsulation, the main in vitro and in vivo studies of the potential effectiveness or toxicity of LNP-VE, the formulations and stability studies of this delivery system, the commercial products based on LNP-VE and the regulatory aspects related to lipid nanoparticles. Finally, we discuss the most relevant advantages of encapsulating vitamin E in such particles and critical aspects that still demand attention to enhance the potential of solid lipid nanoparticles to deliver vitamin E. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Method for Improving Acoustic Impedance of Epoxy Resins
2010-06-11
neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect acoustic...different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A
Liposomes as protective capsules for active silica sol-gel biocomposite synthesis.
Li, Ye; Yip, Wai Tak
2005-09-21
Using liposome to shield an enzyme from hostile chemical environments during the sol-gel formation process has resulted in a novel approach to synthesizing silica sol-gel biocomposite materials. By reporting the encapsulation of horseradish peroxidase and firefly luciferase, we demonstrate that this new protocol can produce silica biocomposites that are more active than trapping the enzymes directly into hydrogels.
NASA Technical Reports Server (NTRS)
Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.
2015-01-01
The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.
Nanocontainer-based corrosion sensing coating.
Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L
2013-10-18
The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.
Chitosan nanoparticle based delivery systems for sustainable agriculture.
Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia
2015-01-01
Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.
Most Likely to Succeed: Long-Run Returns to Adolescent Popularity
Shi, Ying; Moody, James
2016-01-01
Sociological explanations for economic success tend toward measures of embeddedness in longstanding social institutions, such as race and gender, or personal skills represented mainly by educational attainment. In this paper we seek a distinctively social foundation for success by investigating the long-term association between high school popularity and income. Using rich longitudinal data, we find a clear and persistent association between the number of friendship nominations received and adult income, even after accounting for the mediating influences of diverse personal, family, and work characteristics. This skill is distinct from conventional personality measures such as the Big Five, and persists long into adulthood. We hypothesize that popularity encapsulates a socioemotional skill recognized by peers as the practice of being a good friend rather than an indicator of social status. PMID:28439525
Most Likely to Succeed: Long-Run Returns to Adolescent Popularity.
Shi, Ying; Moody, James
2017-02-01
Sociological explanations for economic success tend toward measures of embeddedness in longstanding social institutions, such as race and gender, or personal skills represented mainly by educational attainment. In this paper we seek a distinctively social foundation for success by investigating the long-term association between high school popularity and income. Using rich longitudinal data, we find a clear and persistent association between the number of friendship nominations received and adult income, even after accounting for the mediating influences of diverse personal, family, and work characteristics. This skill is distinct from conventional personality measures such as the Big Five, and persists long into adulthood. We hypothesize that popularity encapsulates a socioemotional skill recognized by peers as the practice of being a good friend rather than an indicator of social status.
NASA Astrophysics Data System (ADS)
Prouty, Malcolm D.
2007-12-01
Layer-by-layer (LbL) self-assembly has demonstrated broad perspectives for encapsulating, and the controllable delivery, of drugs. The nano-scale polymer layers have the capability of material protection. Magnetic nanoparticles have great potential to be applied with LbL technology to achieve both "focusing" of the encapsulated drugs to a specific location followed by "switching" them on to release the encapsulated drugs. In this work, Phor21-betaCG(ala), dextran, and dexamethasone were used as model drugs. Encapsulation of these drugs with layer-by-layer self-assembly formed biolnano robotic capsules for controlled delivery and drug release. Silica nanoparticles coated with polyelectrolyte layers of sodium carboxymethyl cellulose (CMC) or gelatin B, along with an oppositely charged peptide drug (Phor2l-betaCG(ala)), were prepared using LbL self-assembly and confirmed using QCM and zeta potential measurements. The peptide drug was assembled as a component of the multilayer walls. The release kinetics of the embedded peptide were determined. Up to 18% of the embedded Phor21-betaCG(ala) was released from the CMC multilayers over a period of 28 hours. The release was based on physiological conditions, and an external control mechanism using magnetic nanoparticles needed to be developed. Magnetic permeability control experiments were setup by applying LbL self-assembly on MnCO3 micro-cores to fabricate polyelectrolyte microcapsules embedded with superparamagnetic gold coated cobalt (Co Au) nanoparticles. An alternating magnetic field was applied to the microcapsules to check for changes in permeability. Permeability experiments were achieved by adding fluorescein isothiocyanate (FITC) labeled dextran to the microcapsule solution. Before an alternating magnetic field was applied, the capsules remained impermeable to the FITC-dextran; however, after an alternating magnetic field was applied for 30 minutes, approximately 99% of the capsules were filled with FITC-dextran, showing that the Co Au embedded microcapsules were indeed "switched on" using an alternating magnetic field. LbL assembly was then applied to encapsulate micronized dexamethasone with biocompatible polyelectrolytes such as protamine sulfate C, chondroitin sulfate sodium salt, and gelatin B, along with a layer of superparamagnetic nanoparticles. The biocompatible polymers were used to retain and protect the vulnerable drug. In vitro drug release kinetics were investigated according to different environmental factors such as temperature and pH. An external oscillating magnetic field was applied to "switch on" and accelerate the drug release. The results were compared to those without applying a magnetic field.
Nanoencapsulation of phase change materials for advanced thermal energy storage systems
Shchukina, E. M.; Graham, M.; Zheng, Z.
2018-01-01
Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, “on demand” energy release/uptake. PMID:29658558
Nanoencapsulation of phase change materials for advanced thermal energy storage systems.
Shchukina, E M; Graham, M; Zheng, Z; Shchukin, D G
2018-06-05
Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, "on demand" energy release/uptake.
Castangia, Ines; Manca, Maria Letizia; Catalán-Latorre, Ana; Maccioni, Anna Maria; Fadda, Anna Maria; Manconi, Maria
2016-04-01
The phycobiliprotein phycocyanin, extracted from Klamath algae, possesses important biological properties but it is characterized by a low bioavailability due to its high molecular weight. To overcome the bioavailability problems, phycocyanin was successfully encapsulated, using an environmentally-friendly method, into hyalurosomes, a new kind of phospholipid vesicles immobilised with hyaluronan sodium salt by the simple addition of drug/sodium hyaluronate water dispersion to phospholipids. Liposomes were used as a comparison. Vesicles were small in size and homogeneously dispersed, being the mean size always smaller than 150 nm and PI never higher than 0.31. Liposomes were unilamellar and spherical, the addition of the polymer slightly modify the vesicular shape which remain spherical, while the addition of PEG improve the lamellarity of vesicles being multilamellar vesicles. In all cases phycocyanin was encapsulated in good amount especially using hyalurosomes and PEG hyalurosomes (65 and 61% respectively). In vitro penetration studies suggested that hyalurosomes favoured the phycocyanin deposition in the deeper skin layers probably thanks to their peculiar hyaluronan-phospholipid structure. Moreover, hyalurosomes were highly biocompatible and improved phycocyanin antioxidant activity on stressed human keratinocytes respect to the drug solution.
Insulin-egg yolk dispersions in self microemulsifying system.
Singnurkar, P S; Gidwani, S K
2008-11-01
Formulation of insulin into a microemulsion very often presents a physicochemical instability during their preparation and storage. In order to overcome this lack of stability and facilitate the handling of these colloidal systems, stabilization of insulin in presence of hydrophobic components of a microemulsion appears as the most promising strategy. The present paper reports the use of egg yolk for stabilization of insulin in self microemulsifying dispersions. Insulin loaded egg yolk self microemulsifying dispersions were prepared by lyophilization followed by dispersion into self microemulsifying vehicle. The physicochemical characterization of selfmicroemulsifying dispersions includes such as insulin encapsulation efficiency, in vitro stability of insulin in presence of proteolytic enzymes and in vitro release. The biological activity of insulin from the dispersion was estimated by enzyme-linked immunosorbant assay and in vivo using Wistar diabetic rats. The particle size ranged 1.023±0.316 μm in diameter and insulin encapsulation efficiency was 98.2±0.9 %. Insulin hydrophobic self microemulsifying dispersions suppressed insulin release in pH 7.4 phosphate buffer and shown to protect insulin from enzymatic degradation in vitro in presence of chymotripsin. Egg yolk encapsulated insulin was bioactive, demonstrated through both in vivo and in vitro.
Liposomal nanomedicines: an emerging field.
Fenske, David B; Chonn, Arcadio; Cullis, Pieter R
2008-01-01
Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA-containing therapeutic genes, antisense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (>6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is "leaky" and allows extravasation of particles with small diameters. Thus, LNs protect the drug during circulation, prevent it from reaching healthy tissues, and permit its accumulation at sites of disease. We will discuss recent advances in this field involving conventional anticancer drugs as well as gene-delivery, immunostimulatory, and gene-silencing applications involving the new genetic drugs. LNMs have the potential to offer new treatments in such areas as cancer therapy, vaccine development, and cholesterol management.
Fenske, David B; Cullis, Pieter R
2008-01-01
Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines, represent an advanced class of drug delivery systems, with several formulations presently on the market and many more in clinical trials. Over the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs (such as anticancer drugs and antibiotics) and the new genetic drugs (plasmid DNA containing therapeutic genes, antisense oligonucleotides and small interfering RNA) within LNs. If the LNs possess certain properties, they tend to accumulate at sites of disease, such as tumours, where the endothelial layer is 'leaky' and allows extravasation of particles with small diameters. These properties include a diameter centred on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (> 6 h) circulation lifetime. These properties permit the LNs to protect their contents during circulation, prevent contact with healthy tissues, and accumulate at sites of disease. The authors discuss recent advances in this field involving conventional anticancer drugs, as well as applications involving gene delivery, stimulation of the immune system and silencing of unwanted gene expression. Liposomal nanomedicines have the potential to offer new treatments in such areas as cancer therapy, vaccine development and cholesterol management.
Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation.
Park, Minsung; Shin, Sungchul; Cheng, Jie; Hyun, Jinho
2017-02-20
We describe the nanocomposite membrane for cell encapsulation using nanocelluose hydrogels. One of the surfaces of bacterial cellulose (BC) pellicles was coated with collagen to enhance cell adhesion and the opposite side of the BC pellicles was coated with alginate to protect transplanted cells from immune rejection by the reduced pore size of the composite membrane. The morphology of nanocomposite membrane was observed by scanning electron microscopy and the permeability of the membrane was estimated by the release test using different molecular weights of polymer solution. The nanocomposite membrane was permeable to small molecules but impermeable to large molecules such as IgG antibodies inferring the potential use in cell implantation. In addition, the BC-based nanocomposite membrane showed a superior mechanical property due to the incorporation of compared with alginate membranes. The cells attached efficiently to the surface of BC composite membranes with a high level of cell viability as well as bioactivity. Cells grown on the BC composite membrane kit released dopamine freely to the medium through the membrane, which showed that the BC composite membrane would be a promising cell encapsulation material in implantation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches
Chu, Leonard Y.; Ye, Ling; Dong, Ke; Compans, Richard W.; Yang, Chinglai; Prausnitz, Mark R.
2015-01-01
Purpose This study tested the hypothesis that encapsulation of influenza vaccine in microneedle patches increases vaccine stability during storage at elevated temperature. Methods Whole inactivated influenza virus vaccine (A/Puerto Rico/8/34) was formulated into dissolving microneedle patches and vaccine stability was evaluated by in vitro and in vivo assays of antigenicity and immunogenicity after storage for up to 3 months at 4, 25, 37 and 45°C. Results While liquid vaccine completely lost potency as determined by hemagglutination (HA) activity within 1–2 weeks outside of refrigeration, vaccine in microneedle patches lost 40–50% HA activity during or shortly after fabrication, but then had no significant additional loss of activity over 3 months of storage, independent of temperature. This level of stability required reduced humidity by packaging with desiccant, but was not affected by presence of oxygen. This finding was consistent with additional stability assays, including antigenicity of the vaccine measured by ELISA, virus particle morphological structure captured by transmission electron microscopy and protective immune responses by immunization of mice in vivo. Conclusions These data show that inactivated influenza vaccine encapsulated in dissolving microneedle patches has enhanced stability during extended storage at elevated temperatures. PMID:26620313
Receptor-mediated transfer of pSV2CAT DNA to mouse liver cells using asialofetuin-labeled liposomes.
Hara, T; Aramaki, Y; Takada, S; Koike, K; Tsuchiya, S
1995-12-01
Asialofetuin-labeled liposomes (AF-liposomes) were developed as a nonviral vector having high transfection activity for receptor-mediated gene transfer to hepatocytes by systemic administration. Initially, the majority of pSV2CAT, a chloramphenicol acetyltransferase (CAT) gene expression plasmid, was associated with AF-liposomes (AF-liposome-pSV2CAT), and they were injected into the portal vein of an adult mouse. Significantly high CAT activity was observed in the liver. The CAT activity in the liver was further increased two-fold by using AF-liposomes completely encapsulating pSV2CAT. Nonlabeled control liposomes, on the other hand, showed lower CAT activity in the liver than in the spleen or lung. The level of CAT mRNA reflected the CAT activity obtained by each liposome preparation in each tissue. Immunohistochemical staining showed that CAT was produced in a large number of parenchymal cells localizing in the periportal area. The plasmid encapsulated in the internal aqueous layer of the liposomes was effectively protected from environmental degradation. Thus, by administration into the blood circulation, AF-liposomes would be successfully incorporated into hepatocytes through receptor-mediated endocytosis, and the encapsulated plasmid would be transferred to the intracellular pathway.
Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.
Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A
2013-02-04
Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.
NASA Astrophysics Data System (ADS)
Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu
2014-11-01
Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.
Hassani Najafabadi, Alireza; Abdouss, Majid; Faghihi, Shahab
2014-08-01
Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ((1)HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and (1)HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanomaterial Solutions for the Protection of Insulin Producing Beta Cells
NASA Astrophysics Data System (ADS)
Atchison, Nicole Ann
Islet transplantation is a promising treatment for type 1 diabetes. However, even with the many successes, islet transplantation has yet to reach its full potential. Limited islet sources, loss of cell viability during isolation and culture, and post-transplant graft loss are a few of the issues preventing extensive use of islet transplantation. The application of biomaterial systems to alleviate some of the stresses affecting islet viability has led to improvements in isolation and transplantation outcomes, but problems persist. In this work we approach two distinct issues affecting islet viability; ischemic conditions and immunological attack post-transplant. Ischemic conditions have been linked to a loss of islet graft function and occur during organ preservation, islet isolation and culture, and after islets are transplanted. We show that liposomal delivery of adenosine triphosphate (ATP) to beta cells can limit cell death and loss of function in ischemic conditions. We demonstrate that by functionalizing liposomes with the fibronectin-mimetic peptide PR_b, delivery of liposomes to porcine islets and rat beta cells is increased compared to nontargeted controls. Additionally, liposomes are shown to protect by providing both ATP and lipids to the ischemic cells. The delivery of ATP was investigated here but application of PR_b functionalized liposomes could be extended to other interesting cargos as well. The second area of investigation involves encapsulation of islets with silica nanoparticles to create a permselective barrier. Silica nanoparticles are an interesting material for encapsulation given their ability to be fine-tuned and further functionalized. We demonstrate that size-tunable, fluorescent silica nanoparticles can be assembled layer-by-layer on the surface of cells and that silica nanoparticle encapsulated islets are able to secrete insulin in response to a glucose challenge.
Hădărugă, Daniel I; Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T
2014-01-01
Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.
Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T
2014-01-01
Summary Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated. PMID:25550747
NASA Astrophysics Data System (ADS)
Goel, Sarika
The selective encapsulation of metal clusters within zeolites can be used to prepare clusters that are uniform in diameter and to protect them against sintering and contact with feed impurities, while concurrently allowing active sites to select reactants based on their molecular size, thus conferring enzyme-like specificity to chemical catalysis. The apertures in small and medium-pore zeolites preclude the use of post-synthetic protocols to encapsulate the relevant metal precursors because cationic or anionic precursors with their charge-balancing double layer and gaseous complexes cannot diffuse through their windows or channels. We have developed general strategies to encapsulate metal clusters within small-pore zeolites by using metal precursors stabilized by ammonia or organic amine ligands, which stabilize metal precursors against their premature precipitation at the high temperature and pH conditions required for the hydrothermal synthesis of the target zeolite structures and favor interactions between metal precursors and incipient aluminosilicate nuclei during the self-assembly of microporous frameworks. When synthesis temperatures were higher than 400 K, available ligands were unable to prevent the premature precipitation of the metal precursors. In such cases, encapsulation was achieved instead via interzeolite transformations after successfully encapsulating metal precursors or clusters via post-synthesis exchange or ligand protection into parent zeolites and subsequently converting them into the target structures while retaining the encapsulated clusters or precursors. Such strategies led to the successful selective encapsulation of a wide range of metal clusters (Pt, Pd, Ru, Rh, Ir, Re, and Ag) within small-pore (SOD (sodalite), LTA (Linde type A (zeolite A)), GIS (gismondine), and ANA (analcime)) and medium-pore (MFI (ZSM-5)) zeolites. These protocols provide novel and diverse mechanism-based strategies for the design of catalysts with protected active sites. We have demonstrated the selectivity of the encapsulation processes by combining transmission electron microscopy and chemisorptive titrations with rigorous catalytic assessments of the ability of these materials to catalyze reactions of small molecules, which can access the intracrystalline voids, but not of larger molecules that cannot access the metal clusters within such voids. The selective confinement of clusters also prevented their contact with sulfur compounds (e.g., thiophene and H2S), thus allowing reactions to occur at conditions that otherwise render unconfined clusters unreactive. We have also developed synthetic protocols and guiding principles, inspired by mechanistic considerations, for the synthesis of zeolites via interzeolite transformations without the use of organic structure-directing agents (OSDA). More specifically, we have synthesized high-silica MFI (ZSM-5), CHA (chabazite), STF (SSZ-35) and MTW (ZSM-12) zeolites from FAU (faujasite) or BEA (beta) parent materials. Structures with lower framework densities (FAU or BEA) were successfully transformed into thermodynamically-favored, more stable structures with higher framework densities (MFI, CHA, STF, and MTW); to date, target materials with higher Si/Al ratios (Si/Al >10) have not been synthesized via interzeolite transformations without the aid of the OSDA species used to discover these zeolite structures and deemed essential up until now for their successful synthesis. Overcoming kinetic hurdles in such transformations required either the presence of common composite building units (CBU) between parent and target structures or, in their absence, the introduction of small amount of seeds of the daughter structures. The NaOH/SiO2 ratio, H2O/SiO2 ratio and Al content in reagents are used to enforce synchronization between the swelling and local restructuring within parent zeolite domains with the spalling of fragments or building units from seeds of the target structure. The pseudomorphic nature of these seed-mediated transformations, which conserve the volume occupied by the parent crystals and lead to similar size and crystal shape in products, reflect incipient nucleation of target structures occurring at the outer regions of the parent domains and lead to the formation of mesoporosity as a natural consequence of the space-conserving nature of these structural changes and of the higher density of the daughter frameworks. The synthesis mechanism and the guidelines developed enable us to enforce conditions required for the formation of zeolites that previously required OSDA species for their synthesis, thus expanding to a significant extent the diversity of zeolite frameworks that are accessible via these synthesis protocols and providing potential savings in the time and cost involved in the synthesis of some of these zeolite structures.
29 CFR 1910.335 - Safeguards for personnel protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
....335 Safeguards for personnel protection. (a) Use of protective equipment—(1) Personal protective... with, and shall use, electrical protective equipment that is appropriate for the specific parts of the body to be protected and for the work to be performed. Note: Personal protective equipment requirements...
29 CFR 1910.335 - Safeguards for personnel protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
....335 Safeguards for personnel protection. (a) Use of protective equipment—(1) Personal protective... with, and shall use, electrical protective equipment that is appropriate for the specific parts of the body to be protected and for the work to be performed. Note: Personal protective equipment requirements...
Code of Federal Regulations, 2011 CFR
2011-07-01
... personal protective equipment and clothing are provided in accordance with subpart I of this part. Note to... maintained; and (iv) Respiratory protection and other appropriate personal protective equipment and clothing... and appropriate personal protective equipment and clothing are provided in accordance with subpart I...
Code of Federal Regulations, 2010 CFR
2010-07-01
... personal protective equipment and clothing are provided in accordance with subpart I of this part. Note to... maintained; and (iv) Respiratory protection and other appropriate personal protective equipment and clothing... and appropriate personal protective equipment and clothing are provided in accordance with subpart I...
Thermoplastic Applications for Pulse Power Alternators
2006-01-01
person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...Laboratory through Lockheed-Martin Missile and Fire Control under contract # 4300050944. The authors would also wish to thank Encap Technologies for...encapsulation as a design feature for a BLDC motor in a disk drive," Encap Technologies Technical Papers, http://www.encaptechnologies.com/papers.html. [2
ERIC Educational Resources Information Center
Lennon, Sean M.
2007-01-01
Pre-service teachers and education students in three different classes (N = 53) were directed to read a short story by Mark Twain titled "Heaven or Hell?" written within a compilation of short stories late in his career. The story, "Heaven or Hell?" illustrates a koan, or an unanswerable moral or ethical dilemma. The students,…
Selecting PPE for the Workplace (Personal Protective Equipment for the Eyes and Face)
... Additional References Site Map Credits Selecting Personal Protective Equipment (PPE) for the Workplace Impact Heat Chemicals Dust Optical Radiation OSHA Requirements Home | Selecting Personal Protective Equipment (PPE) for the Workplace | OSHA Requirements Site Map | ...
The interfacial, emulsification and encapsulation properties of hydrophobically modified inulin.
Kokubun, S; Ratcliffe, I; Williams, P A
2018-08-15
Octenyl- and dodecenyl succinic anhydride derivatives (OSA- and DDSA-) of inulin have been synthesised and their solution and interfacial properties have been determined and compared to a commercially available alkylated inulin, Inutec SP1. All samples formed micellar aggregates in solution above a critical concentration (critical aggregation concentration) and were able to 'dissolve' a hydrophobic dye. They were also able to form stable oil-in-water (O/W) emulsions as assessed by measurements of their droplet size as a function of time. DDSA-inulin with a high degree of substitution was found to be effective at encapsulating beta carotene using the solvent evaporation method which yielded a solid which dissolved readily in simulated gastric fluid. The results confirm the potential application of these materials in a number of areas including, drug delivery, pharmaceuticals, neutraceuticals, cosmetics and personal care. Copyright © 2018 Elsevier Ltd. All rights reserved.
Safety of nursing staff and determinants of adherence to personal protective equipment.
Neves, Heliny Carneiro Cunha; Souza, Adenícia Custódia Silva e; Medeiros, Marcelo; Munari, Denize Bouttelet; Ribeiro, Luana Cássia Miranda; Tipple, Anaclara Ferreira Veiga
2011-01-01
A qualitative study conducted in a teaching hospital with 15 nursing professionals. Attempted to analyze the reasons, attitudes and beliefs of nursing staff regarding adherence to personal protective equipment. Data were collected through focus groups, analyzed by the method of interpretation of meanings, considering Rosenstock's model of health beliefs as a reference framework. Data revealed two themes: Occupational safety and Interpersonal Relationship. We identified several barriers that interfere in matters of safety and personal protective equipment, such as communication, work overload, physical structure, accessibility of protective equipment and organizational and management aspects. Adherence to personal protective equipment is determined by the context experienced in the workplace, as well as by individual values and beliefs, but the decision to use the personal protective equipment is individual.
Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination
Derbise, Anne; Hanada, Yuri; Khalifé, Manal; Carniel, Elisabeth; Demeure, Christian E.
2015-01-01
Background No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. Methodology/Principal Findings The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1—Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. Significance VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral administration. PMID:26473734
Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.
Derbise, Anne; Hanada, Yuri; Khalifé, Manal; Carniel, Elisabeth; Demeure, Christian E
2015-01-01
No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral administration.
Brinker, Andrea; Prior, Kate; Schumacher, Jan
2009-01-01
The threat of mass casualties caused by an unconventional terrorist attack is a challenge for the public health system, with special implications for emergency medicine, anesthesia, and intensive care. Advanced life support of patients injured by chemical or biological warfare agents requires an adequate level of personal protection. The aim of this study was to evaluate the personal protection knowledge of emergency physicians and anesthetists who would be at the frontline of the initial health response to a chemical/biological warfare agent incident. After institutional review board approval, knowledge of personal protection measures among emergency medicine (n = 28) and anesthetics (n = 47) specialty registrars in the South Thames Region of the United Kingdom was surveyed using a standardized questionnaire. Participants were asked for the recommended level of personal protection if a chemical/biological warfare agent(s) casualty required advanced life support in the designated hospital resuscitation area. The best awareness within both groups was regarding severe acute respiratory syndrome, and fair knowledge was found regarding anthrax, plague, Ebola, and smallpox. In both groups, knowledge about personal protection requirements against chemical warfare agents was limited. Knowledge about personal protection measures for biological agents was acceptable, but was limited for chemical warfare agents. The results highlight the need to improve training and education regarding personal protection measures for medical first receivers.
Wrapping with a splash: High-speed encapsulation with ultrathin sheets
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Paulsen, Joseph D.; Russell, Thomas P.; Menon, Narayanan
2018-02-01
Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings.
Meredith, Alicea N; Harper, Bryan; Harper, Stacey L
2016-01-01
Encapsulation technology involves entrapping a chemical active ingredient (a.i.) inside a hollow polymeric shell and has been applied to commercial pesticide manufacturing for years to produce capsule suspension (CS) formulations with average particle sizes in the micron-scale. The few literature sources that investigate the environmental fate and toxicity to non-target organisms of encapsulated commercially available pesticide products with regard to capsule size report on average sizes between 20 and 50 μm. Here, we have identified a CS formulation with an average capsule size of approximately 2 μm with some capsules extending into the nanometer scale (~200 nm). Determining how carrier size influences toxicity is important to understanding if current pesticide risk assessments are sufficient to protect against products that incorporate encapsulation technology. Here, a commercial pyrethroid CS pesticide with lambda-cyhalothrin (λ-Cy) as the a.i. was separated into two suspensions, a fraction consisting of nano-sized capsules (~250 nm) and a fraction of micron-sized capsules (~2200 nm) in order to investigate the influence of capsule size on toxicity to embryonic zebrafish, Danio rerio. Toxicity was evaluated 24h after exposure to equivalent amounts of a.i. by the presence and severity of pyrethroid-specific tremors, 14 sublethal developmental impacts and mortality. Fish exposed to greater than 20 μg a.i. L(-1) technical λ-Cy or formulated product experienced curvature of the body axis, pericardial edema, craniofacial malformations, and mortality. Exposure to the unfractionated formulation, micro fraction, nano fraction and technical a.i. resulted in no significant differences in the occurrence of sublethal impacts or mortality; however, the technical a.i. exposure resulted in significantly less fish experiencing tremors and shorter tremors compared to any of the formulated product exposures. This suggests that the capsule size does not influence the toxic response of the entrapped λ-Cy, but the presence or absence of the capsules does. Testing across other encapsulated products is needed to determine if size does not have influence on toxicity regardless of encapsulation technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Privacy online: up, close and personal.
Tikk, Eneken
2017-01-01
In the era of information, administration of personal data protection mingles with expectations of access to information as well as the overall sense of cyber (in)security. A failure to appropriately consider the system of data processing relationships easily reduces personal data protection to assurances in letter. The complexity of contemporary data transactions demands a systemic and structured normative approach to personal data protection. Any evaluation of relevant norms should not be isolated from factors that determine or condition their implementation. As privacy is an intrinsically subjective claim, enforcing data privacy is premised on data subject's personal participation in the protection of her data.
10 CFR 850.29 - Protective clothing and equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
....132, Personal Protective Equipment General Requirements, when workers use personal protective clothing... 10 Energy 4 2010-01-01 2010-01-01 false Protective clothing and equipment. 850.29 Section 850.29... § 850.29 Protective clothing and equipment. (a) The responsible employer must provide protective...
10 CFR 850.29 - Protective clothing and equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
....132, Personal Protective Equipment General Requirements, when workers use personal protective clothing... 10 Energy 4 2011-01-01 2011-01-01 false Protective clothing and equipment. 850.29 Section 850.29... § 850.29 Protective clothing and equipment. (a) The responsible employer must provide protective...
Trauma, innocence and the core complex of dissociation.
Kalsched, Donald E
2017-09-01
Trauma survivors often lament that they have lost their innocence or lost their souls and that something vulnerable and whole about themselves has been 'broken' or annihilated. Yet when the psychotherapeutic relationship begins, and symbolic material from dreams and the transference emerges, discernible patterns become apparent, indicating that a core of innocence and vitality has not been totally lost or annihilated. On the contrary, it has been 'saved' by dissociation and its system of inner objects and their protective and/or persecutory narrative 'scripts' or 'schemas'. The dissociative system splits off a wounded, orphaned 'child' in the psyche and clinging to this 'child' is a penumbra of innocence that apparently must be preserved at all costs. Unfortunately the costs of preservation are high because such encapsulated innocence becomes malignant, and the inner world turns perverse and destructive. Only when the wounded, orphaned, and innocent part of the personality is allowed to suffer experience again - this time with the promise of a new outcome - can true healing of trauma occur. How to facilitate this authentic suffering in the face of powerful resistances thrown up by the 'system', will be the focus of this paper. © 2017, The Society of Analytical Psychology.
Insect repellents and associated personal protection for a reduction in human disease
USDA-ARS?s Scientific Manuscript database
Personal protection measures against biting arthropods include topical insect repellents, area repellents, insecticide-treated bednets and treated clothing. The literature on the effectiveness of personal protection products against arthropods is mainly limited to studies of prevention of bites, rat...
77 FR 72781 - Standards Improvement Project-Phase IV
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... prepare and maintain written training-certification records for personal protective equipment, revised... revising the standards related to fit testing personal protective equipment, notably Sec. Sec. 1926.103 and... requirement to certify personal protective equipment (PPE) training. OSHA concluded that it could obtain the...
Halloysite Nanotubes for Cleaning, Consolidation and Protection.
Cavallaro, Giuseppe; Lazzara, Giuseppe; Milioto, Stefana; Parisi, Filippo
2018-01-10
Herein, we report our recent research concerning the development of halloysite based protocols for cleaning, consolidation and protection purposes. Surface modification of halloysite cavity by anionic surfactants was explored to fabricate inorganic micelles able to solubilize hydrophobic contaminants. Hybrid dispersions based on halloysite and ecocompatible polymers were tested as consolidants for paper and waterlogged archaeological woods. Encapsulation of deacidifying and flame retardant agents within the halloysite lumen was conducted with aim to obtain nanofiller with a long-term protection ability. The results prove the suitability and versatility of halloysite nanotubes, which are perspective inorganic nanoparticles within materials science, remedation and conservation of cultural heritage fields. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Personal Fall Protection Systems (Non-Mandatory) B Appendix B to Subpart I of Part 1915 Labor Regulations... Guidelines for Personal Fall Protection Systems (Non-Mandatory) 1. Personal fall arrest systems—(a) General... create the free fall distance should be the one supplied with the system, or in its absence, the least...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Personal Fall Protection Systems (Non-Mandatory) B Appendix B to Subpart I of Part 1915 Labor Regulations... Guidelines for Personal Fall Protection Systems (Non-Mandatory) 1. Personal fall arrest systems—(a) General... create the free fall distance should be the one supplied with the system, or in its absence, the least...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Personal Fall Protection Systems (Non-Mandatory) B Appendix B to Subpart I of Part 1915 Labor Regulations... Guidelines for Personal Fall Protection Systems (Non-Mandatory) 1. Personal fall arrest systems—(a) General... create the free fall distance should be the one supplied with the system, or in its absence, the least...
Method for Improving Acoustic Impedance of Epoxy Resins
2010-06-21
include neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect...a different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...an epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A
Holding Cargo in Place With Foam
NASA Technical Reports Server (NTRS)
Fisher, T. T.
1985-01-01
Foam fills entire container to protect cargo from shock and vibration. Originally developed for stowing space debris and spent satellites in Space Shuttle for return to Earth, encapsulation concept suitable for preparing shipments carried by truck, boat, or airplane. Equipment automatically injects polyurethane foam into its interior to hold cargo securely in place. Container of rectangular or other cross section built to match shape of vehicle used.
Conjugate-like immunogens produced as protein capsular matrix vaccines.
Thanawastien, Ann; Cartee, Robert T; Griffin, Thomas J; Killeen, Kevin P; Mekalanos, John J
2015-03-10
Capsular polysaccharides are the primary antigenic components involved in protective immunity against encapsulated bacterial pathogens. Although immunization of adolescents and adults with polysaccharide antigens has reduced pathogen disease burden, pure polysaccharide vaccines have proved ineffective at conferring protective immunity to infants and the elderly, age cohorts that are deficient in their adaptive immune responses to such antigens. However, T-cell-independent polysaccharide antigens can be converted into more potent immunogens by chemically coupling to a "carrier protein" antigen. Such "conjugate vaccines" efficiently induce antibody avidity maturation, isotype switching, and immunological memory in immunized neonates. These immune responses have been attributed to T-cell recognition of peptides derived from the coupled carrier protein. The covalent attachment of polysaccharide antigens to the carrier protein is thought to be imperative to the immunological properties of conjugate vaccines. Here we provide evidence that covalent attachment to carrier proteins is not required for conversion of T-independent antigens into T-dependent immunogens. Simple entrapment of polysaccharides or a d-amino acid polymer antigen in a cross-linked protein matrix was shown to be sufficient to produce potent immunogens that possess the key characteristics of conventional conjugate vaccines. The versatility and ease of manufacture of these antigen preparations, termed protein capsular matrix vaccines (PCMVs), will likely provide improvements in the manufacture of vaccines designed to protect against encapsulated microorganisms. This in turn could improve the availability of such vaccines to the developing world, which has shown only a limited capacity to afford the cost of conventional conjugate vaccines.
Encapsulation of the heteroepitaxial growth of wide band gap γ-CuCl on silicon substrates
NASA Astrophysics Data System (ADS)
Lucas, F. O.; O'Reilly, L.; Natarajan, G.; McNally, P. J.; Daniels, S.; Taylor, D. M.; William, S.; Cameron, D. C.; Bradley, A. L.; Miltra, A.
2006-01-01
γ-CuCl semiconductor material has been identified as a candidate material for the fabrication of blue-UV optoelectronic devices on Si substrates due to its outstanding electronic, lattice and optical properties. However, CuCl thin films oxidise completely into oxyhalides of Cu II within a few days of exposure to air. Conventional encapsulation of thin γ-CuCl by sealed glass at a deposition/curing temperature greater than 250 °C cannot be used because CuCl interacts chemically with Si substrates when heated above that temperature. In this study we have investigated the behaviour of three candidate dielectric materials for use as protective layers for the heteroepitaxial growth of γ-CuCl on Si substrates: SiO 2 deposited by plasma-enhanced chemical vapour deposition (PECVD), organic polysilsesquioxane-based spin on glass material (PSSQ) and cyclo olefin copolymer (COC) thermoplastic-based material. The optical properties (UV/Vis and IR) of the capped luminescent CuCl films were studied as a function of time, up to 28 days and compared with bare uncapped films. The results clearly show the efficiency of the protective layers. Both COC and the PSSQ layer prevented CuCl film from oxidising while SiO 2 delayed the effect of oxidation. The dielectric constant of the three protective layers was evaluated at 1 MHz to be 2.3, 3.6 and 6.9 for C0C, SiO 2 and PSSQ, respectively.
Antioxidant Chemistry of Graphene-Based Materials and its Role in Oxidation Protection Technology
Qiu, Yang; Wang, Zhongying; Owens, Alisa C.E.; Kulaots, Indrek; Chen, Yantao; Kane, Agnes B.; Hurt, Robert H.
2015-01-01
Two-dimensional nanomaterials have potential as a new class of antioxidants that combine physical barrier function with ultrahigh surface area for free radical scavenging. This work presents the first measurements of the chemical reactivities of graphene-based materials toward a set of model free radicals and reactive oxygen species using electron paramagnetic resonance spectroscopy (EPR) and sacrificial dye protection assays. Graphene-based materials are shown to protect a variety of molecular targets from oxidation by these species, and to be highly effective as hydroxyl-radical scavengers. When hydroxyl radical is produced photolytically, the overall antioxidant effect is a combination of preventative antioxidant activity (UV absorption) and ·OH radical scavenging. Few-layer graphene is more active than monolayer graphene oxide, despite its lower surface area, which indicates that the primary scavenging sites are associated with the sp2-carbon network rather than oxygen-containing functional groups. To explain this trend, we propose that GO is a weak hydrogen donor, due to the non-phenolic nature of most OH groups on GO, which reside at basal sp3-carbon sites that do not allow for radical resonance stabilization following hydrogen donation. As an example application of graphene antioxidant behavior, we show that encapsulation of TiO2 nanoparticles in graphene nanosacks reduces undesired photo-oxidative damage to nearby organic target molecules, which suggests graphene encapsulation as a new approach to managing adverse environmental or health impacts of redox-active nanomaterials. PMID:25157875
Gao, Xiaojian; Zhang, Xiaojun; Lin, Li; Yao, Dongrui; Sun, Jingjing; Du, Xuedi; Li, Xiumei; Zhang, Yue
2016-01-01
Vibrio spp. are major causes of mortality in white shrimp (Litopenaeus vannamei) which is lacking adaptive immunity. Passive immunization with a specific egg yolk antibody (IgY) is a potential method for the protection of shrimp against vibriosis. In this study, immune effects of the specific egg yolk powders (IgY) against both V. harveyi and V. parahaemolyticus on white shrimp were evaluated. The egg yolk powders against V. harveyi and V. parahaemolyticus for passive immunization of white shrimp were prepared, while a tube agglutination assay and an indirect enzyme-linked immunosorbent assay (ELISA) were used for detection of IgY titer. Anti-Vibrio egg yolk was encapsulated by β-cyclodextrin, which could keep the activity of the antibody in the gastrointestinal tract of shrimp. The results showed that the anti-Vibrio egg powders had an inhibiting effect on V. harveyi and V. parahaemolyticus in vitro. Lower mortality of infected zoeae, mysis, and postlarva was observed in groups fed with anti-Vibrio egg powders, compared with those fed with normal egg powders. The bacterial load in postlarva fed with specific egg powders in seeding ponds was significantly lower than those fed with normal egg powders in seeding ponds. These results show that passive immunization by oral administration with specific egg yolk powders (IgY) may provide a valuable protection of vibrio infections in white shrimp. PMID:27196895
29 CFR 1918.104 - Foot protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Personal Protective Equipment § 1918.104 Foot protection. (a) The employer shall ensure that each affected employee wears protective footwear when working... National Standard for Personal Protection—Protective Footwear,” which is incorporated by reference in...
29 CFR 1977.5 - Persons protected by section 11(c).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 9 2012-07-01 2012-07-01 false Persons protected by section 11(c). 1977.5 Section 1977.5... OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 General § 1977.5 Persons protected by section 11(c). (a) All... engaging in protected activity. (c) In view of the definitions of “employer” and “employee” contained in...
29 CFR 1977.5 - Persons protected by section 11(c).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 9 2013-07-01 2013-07-01 false Persons protected by section 11(c). 1977.5 Section 1977.5... OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 General § 1977.5 Persons protected by section 11(c). (a) All... engaging in protected activity. (c) In view of the definitions of “employer” and “employee” contained in...
29 CFR 1977.5 - Persons protected by section 11(c).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 9 2014-07-01 2014-07-01 false Persons protected by section 11(c). 1977.5 Section 1977.5... OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 General § 1977.5 Persons protected by section 11(c). (a) All... engaging in protected activity. (c) In view of the definitions of “employer” and “employee” contained in...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
... Technology Use in Industry Sectors AGENCY: National Institute for Occupational Safety and Health (NIOSH...), Personal Protective Technology (PPT) Program and National Personal Protective Technology Laboratory (NPPTL... explore personal protective technology use in industry sectors. In addition, conformity assessment...
Date, Abhijit A.; Long, Julie M.; Nochii, Tomonori; Belshan, Michael; Shibata, Annemarie; Vincent, Heather; Baker, Caroline E.; Thayer, William O.; Kraus, Guenter; Lachaud-Durand, Sophie; Williams, Peter; Destache, Christopher J.; Garcia, J. Victor
2015-01-01
Vaginal HIV transmission accounts for the majority of new infections worldwide. Currently, multiple efforts to prevent HIV transmission are based on pre-exposure prophylaxis with various antiretroviral drugs. Here, we describe two novel nanoformulations of the reverse transcriptase inhibitor rilpivirine for pericoital and coitus-independent HIV prevention. Topically applied rilpivirine, encapsulated in PLGA nanoparticles, was delivered in a thermosensitive gel, which becomes solid at body temperature. PLGA nanoparticles with encapsulated rilpivirine coated the reproductive tract and offered significant protection to BLT humanized mice from a vaginal high-dose HIV-1 challenge. A different nanosuspension of crystalline rilpivirine (RPV LA), administered intramuscularly, protected BLT mice from a single vaginal high-dose HIV-1 challenge one week after drug administration. Using transmitted/founder viruses, which were previously shown to establish de novo infection in humans, we demonstrated that RPV LA offers significant protection from two consecutive high-dose HIV-1 challenges one and four weeks after drug administration. In this experiment, we also showed that, in certain cases, even in the presence of drug, HIV infection could occur without overt or detectable systemic replication until levels of drug were reduced. We also showed that infection in the presence of drug can result in acquisition of multiple viruses after subsequent exposures. These observations have important implications for the implementation of long-acting antiretroviral formulations for HIV prevention. They provide first evidence that occult infections can occur, despite the presence of sustained levels of antiretroviral drugs. Together, our results demonstrate that topically- or systemically administered rilpivirine offers significant coitus-dependent or coitus-independent protection from HIV infection. PMID:26271040
Kasturi, Sudhir Pai; Kozlowski, Pamela A; Nakaya, Helder I; Burger, Matheus C; Russo, Pedro; Pham, Mathew; Kovalenkov, Yevgeniy; Silveira, Eduardo L V; Havenar-Daughton, Colin; Burton, Samantha L; Kilgore, Katie M; Johnson, Mathew J; Nabi, Rafiq; Legere, Traci; Sher, Zarpheen Jinnah; Chen, Xuemin; Amara, Rama R; Hunter, Eric; Bosinger, Steven E; Spearman, Paul; Crotty, Shane; Villinger, Francois; Derdeyn, Cynthia A; Wrammert, Jens; Pulendran, Bali
2017-02-15
Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed. Copyright © 2017 American Society for Microbiology.
Modular Research-Based Composably Trustworthy Mission-Oriented Resilient Clouds (MRC2)
2016-02-01
obtain in this way, encapsulation is a very promising technique to apply to larger cloud components. For example, ‘ big data ’ processing systems, such...UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data ...Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey
75 FR 68306 - Modification of Significant New Uses of 2-Propen-1-one, 1-(4-morpholinyl)-
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... protective equipment (including gloves demonstrated to be impervious) and respiratory personal protective... remaining potential risks, the modified consent order: Requires the use of dermal personal protective... , including any personal information provided, unless the comment includes information claimed to be...
49 CFR 229.41 - Protection against personal injury.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Protection against personal injury. 229.41 Section... Requirements § 229.41 Protection against personal injury. Fan openings, exposed gears and pinions, exposed... breakers, contactors, relays, grid resistors, and fuses shall be in non-hazardous locations or equipped...
49 CFR 229.41 - Protection against personal injury.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Protection against personal injury. 229.41 Section... Requirements § 229.41 Protection against personal injury. Fan openings, exposed gears and pinions, exposed... breakers, contactors, relays, grid resistors, and fuses shall be in non-hazardous locations or equipped...
ERIC Educational Resources Information Center
National Association of Protection and Advocacy Systems, Washington, DC.
The report summarizes: (1) 1988 program data for state Protection and Advocacy Systems for persons with developmental disabilities and persons with mental illness, and (2) 1988 program data for Client Assistance Programs. The data are derived from reports from 56 states and territories. In addition to nationwide data totals, each state's…
Shima, Fumiaki; Akagi, Takami; Akashi, Mitsuru
2015-05-20
The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. Adjuvants that can control the balance and induction level of cellular and humoral immunities are urgently required for the treatment of and/or protection from infectious diseases and cancers. However, there are no adjuvants which can achieve these requirements. In this study, amphiphilic poly(γ-glutamic acid) (γ-PGA) with various kinds of hydrophobic amino acid ethyl esters (AAE) was synthesized (γ-PGA-AAE) and used to prepare antigen-encapsulated nanoparticles (NPs). γ-PGA-graft-Leu (γ-PGA-Leu, where Leu = leucine ethyl ester), γ-PGA-graft-Phe (γ-PGA-Phe, where Phe = phenylalanine ethyl ester), and γ-PGA-graft-Trp (γ-PGA-Trp, where Trp = tryptophan ethyl ester) formed monodispersed NPs that encapsulated ovalbumin (OVA). The type and the induction level of the antigen-specific cellular and humoral immunities could be controlled by the kinds of hydrophobic segments and vaccine formulation (encapsulation or mixture) used. When OVA was encapsulated into NPs, the cellular immunity was dominantly induced, while humoral immunity was dominant when OVA was mixed with NPs. These results are a first report to demonstrate that the balance and induction level of cellular and humoral immunities could be controlled by modifying compositions of NPs and vaccine formulation. Our results suggest that γ-PGA-AAE NPs can provide safe and efficient nanoparticle-based vaccine adjuvants, and the results also provide guidelines in the rational design of amphiphilic polymers as vaccine adjuvants which can control the balance of immune responses.
Polák, P; Freibergerová, M; Husa, P; Slesinger, P; Svoboda, R; Sťásek, J; Frola, L; Macháček, C
2012-09-01
Syndrome of fulminant sepsis in splenectomized (overwhelming postsplenectomy infection - OPSI) is feared and often fatal infectious complication in patients after splenectomy. The risk of syndrome of fulminant sepsis in splenectomized in these persons persists lifelong and doesn't diminish during the time. Etiologically, encapsulated bacterias like Streptococcus pneumoniae, Haemophilus influenzae group b and Neisseria meningitidis are involved. As the mortality of syndrome of fulminant sepsis in splenectomized is very high, it is indispensable to educate and vaccinate persons in risk. The authors present case reports of three splenectomized patients who were hospitalized for invasive pneumococcal infection in the University Hospital Brno, Czech Republic, in 2011.
Vinner, Gurinder K.; Vladisavljević, Goran T.; Clokie, Martha R. J.
2017-01-01
The prevalence of pathogenic bacteria acquiring multidrug antibiotic resistance is a global health threat to mankind. This has motivated a renewed interest in developing alternatives to conventional antibiotics including bacteriophages (viruses) as therapeutic agents. The bacterium Clostridium difficile causes colon infection and is particularly difficult to treat with existing antibiotics; phage therapy may offer a viable alternative. The punitive environment within the gastrointestinal tract can inactivate orally delivered phages. C. difficile specific bacteriophage, myovirus CDKM9 was encapsulated in a pH responsive polymer (Eudragit® S100 with and without alginate) using a flow focussing glass microcapillary device. Highly monodispersed core-shell microparticles containing phages trapped within the particle core were produced by in situ polymer curing using 4-aminobenzoic acid dissolved in the oil phase. The size of the generated microparticles could be precisely controlled in the range 80 μm to 160 μm through design of the microfluidic device geometry and by varying flow rates of the dispersed and continuous phase. In contrast to free ‘naked’ phages, those encapsulated within the microparticles could withstand a 3 h exposure to simulated gastric fluid at pH 2 and then underwent a subsequent pH triggered burst release at pH 7. The significance of our research is in demonstrating that C. difficile specific phage can be formulated and encapsulated in highly uniform pH responsive microparticles using a microfluidic system. The microparticles were shown to afford significant protection to the encapsulated phage upon prolonged exposure to an acid solution mimicking the human stomach environment. Phage encapsulation and subsequent release kinetics revealed that the microparticles prepared using Eudragit® S100 formulations possess pH responsive characteristics with phage release triggered in an intestinal pH range suitable for therapeutic purposes. The results reported here provide proof-of-concept data supporting the suitability of our approach for colon targeted delivery of phages for therapeutic purposes. PMID:29023522
40 CFR 710.29 - Persons not subject to this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Persons not subject to this subpart. 710.29 Section 710.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update Reporting § 710.29 Persons...
40 CFR 716.5 - Persons who must report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Persons who must report. 716.5 Section 716.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.5 Persons who must report. (a) Except as...
40 CFR 716.5 - Persons who must report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Persons who must report. 716.5 Section 716.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.5 Persons who must report. (a) Except as...
40 CFR 716.5 - Persons who must report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Persons who must report. 716.5 Section 716.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.5 Persons who must report. (a) Except as...
40 CFR 716.5 - Persons who must report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Persons who must report. 716.5 Section 716.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.5 Persons who must report. (a) Except as...
40 CFR 716.5 - Persons who must report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Persons who must report. 716.5 Section 716.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.5 Persons who must report. (a) Except as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Person. 40.115-5 Section 40.115-5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.115-5 Person. (a) Under the Federal Water Pollution Control Act, an individual...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Person. 40.115-5 Section 40.115-5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.115-5 Person. (a) Under the Federal Water Pollution Control Act, an individual...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
33 CFR 142.24 - Use of equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.24 Use of... required by this subpart to use or wear personal protective equipment do so when within the lease area or... personnel engaged in the operation properly use or wear the personal protective equipment specified by this...
33 CFR 142.24 - Use of equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective Equipment § 142.24 Use of... required by this subpart to use or wear personal protective equipment do so when within the lease area or... personnel engaged in the operation properly use or wear the personal protective equipment specified by this...
40 CFR 717.5 - Persons subject to this part.
Code of Federal Regulations, 2011 CFR
2011-07-01
... REACTIONS TO HEALTH OR THE ENVIRONMENT General Provisions § 717.5 Persons subject to this part. (a... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Persons subject to this part. 717.5 Section 717.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...
40 CFR 717.5 - Persons subject to this part.
Code of Federal Regulations, 2014 CFR
2014-07-01
... REACTIONS TO HEALTH OR THE ENVIRONMENT General Provisions § 717.5 Persons subject to this part. (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Persons subject to this part. 717.5 Section 717.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...
29 CFR 1926.95 - Criteria for personal protective equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shoes, and normal work boots; or (ii) Ordinary clothing, skin creams, or other items, used solely for... 29 Labor 8 2010-07-01 2010-07-01 false Criteria for personal protective equipment. 1926.95 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Personal Protective and Life...
29 CFR 1926.95 - Criteria for personal protective equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... shoes, and normal work boots; or (ii) Ordinary clothing, skin creams, or other items, used solely for... 29 Labor 8 2011-07-01 2011-07-01 false Criteria for personal protective equipment. 1926.95 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Personal Protective and Life...
29 CFR 1926.551 - Helicopters.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and mechanically. (e) Personal protective equipment. (1) Personal protective equipment for employees... the suspended load, or protective rubber gloves shall be worn by all ground personnel touching the...
29 CFR 1926.551 - Helicopters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and mechanically. (e) Personal protective equipment. (1) Personal protective equipment for employees... the suspended load, or protective rubber gloves shall be worn by all ground personnel touching the...
High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids
Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua
2014-01-01
High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086
García-Saldaña, Jesús S; Campas-Baypoli, Olga N; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Cantú-Soto, Ernesto U; Rodríguez-Ramírez, Roberto
2016-06-15
Sulforaphane is a phytochemical that has received attention in recent years due to its chemopreventive properties. However, the uses and applications of this compound are very limited, because is an unstable molecule that is degraded mainly by changes in temperature and pH. In this research, the use of food grade polymers for microencapsulation of sulforaphane was studied by a complex coacervation method using the interaction of oppositely charged polymers as gelatin/gum arabic and gelatin/pectin. The polymers used were previously characterized in moisture content, ash and nitrogen. The encapsulation yield was over 80%. The gelatin/pectin complex had highest encapsulation efficiency with 17.91%. The presence of sulforaphane in the complexes was confirmed by FTIR and UV/visible spectroscopy. The materials used in this work could be a new and attractive option for the protection of sulforaphane. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silva, A L; Soema, P C; Slütter, B; Ossendorp, F; Jiskoot, W
2016-04-02
Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.
Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell
NASA Astrophysics Data System (ADS)
Shinde, K. P.; Ranot, M.; Choi, C. J.; Kim, H. S.; Chung, K. C.
2017-07-01
Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.
Feasibility Study of Solar Dome Encapsulation of Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
1978-01-01
The technical and economic advantages of using air-supported plastic enclosures to protect flat plate photovoltaic arrays are described. Conceptual designs for a fixed, latitude-tilt array and a fully tracking array were defined. Detailed wind loads and strength analyses were performed for the fixed array. Detailed thermal and power output analyses provided array performance for typical seasonal and extreme temperature conditions. Costs of each design as used in a 200 MWe central power station were defined from manufacturing and material cost estimates. The capital cost and cost of energy for the enclosed fixed-tilt array were lower than for the enclosed tracking array. The enclosed fixed-tilt array capital investment was 38% less, and the levelized bus bar energy cost was 26% less than costs for a conventional, glass-encapsulated array design. The predicted energy cost for the enclosed fixed array was 79 mills/kW-h for direct current delivered to the power conditioning units.
Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Rayl, G.
1978-01-01
A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.
Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha
2015-01-01
Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304
Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha
2015-01-01
Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.
Solanki, Himanshu K.; Pawar, Dipak D.; Shah, Dushyant A.; Prajapati, Vipul D.; Jani, Girish K.; Mulla, Akil M.; Thakar, Prachi M.
2013-01-01
The administration of probiotic bacteria for health benefit has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. The oral administration of most of the probiotics results in the lack of ability to survive in a high proportion of the harsh conditions of acidity and bile concentration commonly encountered in the gastrointestinal tract of humans. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. Probiotic encapsulation technology has the potential to protect microorganisms and to deliver them into the gut. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This review focuses mainly on the methodological approach of probiotic encapsulation including biomaterials selection and choice of appropriate technology in detailed manner. PMID:24027760
Han, Yuanyuan; Bu, Jing; Zhang, Yuying; Tong, Weijun; Gao, Changyou
2012-10-01
Annealing of PDADMAC/PSS multilayer microcapsules assembled on PSS-doped CaCO(3) particles at 80 °C for 30 min reduces their size dramatically from 6.9 ± 0.3 to 3.1 ± 0.5 µm. Methylene blue molecules are encapsulated by spontaneous deposition and post-annealing with a concentration of 22 mg · mL(-1), which is 1000 times higher than the feeding value. The unreleased MB molecules are retained stably for a long time, which are then protected by the capsules against reductive enzymes and keep their photodynamic activity. The viability of HeLa cells incubated with the MB-loaded capsules decreases sharply from ≈ 75 (dark cytotoxicity) to ≈ 20% after irradiation with a laser at 671 nm and 60 J · cm(-2) for 75 s. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thiévent, Kevin; Hofer, Lorenz; Rapp, Elise; Tambwe, Mgeni Mohamed; Moore, Sarah; Koella, Jacob C
2018-05-04
Insecticides targeting adult mosquitoes are the main way of controlling malaria. They work not only by killing mosquitoes, but also by repelling and irritating them. Indeed their repellent action gives valuable personal protection against biting mosquitoes. In the context of malaria control this personal protection is especially relevant when mosquitoes are infectious, whereas to protect the community we would prefer that the mosquitoes that are not yet infectious are killed (so, not repelled) by the insecticide. As the infectious stage of malaria parasites increases the motivation of mosquitoes to bite, we predicted that it would also change their behavioural response to insecticides. With two systems, a laboratory isolate of the rodent malaria Plasmodium berghei infecting Anopheles gambiae and several isolates of P. falciparum obtained from schoolchildren in Tanzania that infected Anopheles arabiensis, we found that mosquitoes harbouring the infectious stage (the sporozoites) of the parasite were less repelled by permethrin-treated nets than uninfected ones. Our results suggest that, at least in the laboratory, malaria infection decreases the personal protection offered by insecticide-treated nets at the stage where the personal protection is most valuable. Further studies must investigate whether these results hold true in the field and whether the less effective personal protection can be balanced by increased community protection.
Failure of enzyme encapsulation to prevent sensitization of workers in the dry bleach industry.
Liss, G M; Kominsky, J R; Gallagher, J S; Melius, J; Brooks, S M; Bernstein, I L
1984-03-01
BDE added to dry bleach have been associated with immunologic sensitization and development of clinical allergic disease in detergent workers and occasionally in consumers. However, improved dust control and modification of the manufacturing process through encapsulation of enzyme were believed to have reduced or eliminated these problems. To determine whether or not immunologic sensitization could still develop in the detergent industry, we studied employees of a dry bleach manufacturing plant that incorporated encapsulated BDE into a consumer product. We performed air sampling for enzyme dust and total particulates, administered questionnaires, conducted physical examinations, and spirometry in 13 currently exposed, two previously exposed and nine nonexposed, employees. To assess sensitization status, RAST and ELISA were performed. Air concentrations of enzyme dust ranged from 0.002 to 1.57 micrograms/m3; all of these levels were below the TLV of 3.9 micrograms/m3. Positive BDE-specific RAST results (3.4%, 4.4%, and 8.0% binding) were obtained in three of 12 currently exposed workers. Results of personal breathing-zone air sampling indicated that these workers had high dust-exposure levels. Specificity of RAST was verified by RAST inhibition with BDE. BDE-RAST binding was not significantly elevated in the nonworkers (range: 0.6% to 1.4% binding). Positive results for specific IgG by ELISA were obtained in four of 12 currently exposed and in one of two previously exposed workers but in none of the nonexposed workers. We conclude that immunologic sensitization can develop after occupational exposure to encapsulated BDE in the dry bleach industry. We have not proved, however, that this immunologic reactivity is related to clinical sensitivity.
Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong
2017-09-10
The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
Personal Protective Equipment for Pesticide Handlers
Personal protective equipment.use is subject to certain requirement under the Worker Protection Standard. Learn about these requirements, which include cleaning and maintenance, as well as standards for availability.
2011-01-13
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, technicians removed most of the protective covering surrounding NASA's Glory spacecraft. Next, the spacecraft will be encapsulated in its protective payload fairing before it is transported to Space Launch Complex 576-E and joined with the Taurus XL rocket's third stage. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB
2011-01-13
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, technicians removed most of the protective covering surrounding NASA's Glory spacecraft. Next, the spacecraft will be encapsulated in its protective payload fairing before it is transported to Space Launch Complex 576-E and joined with the Taurus XL rocket's third stage. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB
2011-01-13
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, NASA's Glory spacecraft will be removed from its protective covering. Next, the spacecraft will be encapsulated in its protective payload fairing before it is transported to Space Launch Complex 576-E and joined with the Taurus XL rocket's third stage. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB
2011-01-13
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, technicians begin to remove the protective covering surrounding NASA's Glory spacecraft. Next, the spacecraft will be encapsulated in its protective payload fairing before it is transported to Space Launch Complex 576-E and joined with the Taurus XL rocket's third stage. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB
2011-01-13
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, technicians removed most of the protective covering surrounding NASA's Glory spacecraft. Next, the spacecraft will be encapsulated in its protective payload fairing before it is transported to Space Launch Complex 576-E and joined with the Taurus XL rocket's third stage. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB