Science.gov

Sample records for enchanced ct scan

  1. CT Scans

    MedlinePlus

    ... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...

  2. Head CT scan

    MedlinePlus

    Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...

  3. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... 2016:chap 133. Radiologyinfo.org. Computed tomography (CT) - abdomen and pelvis. Updated June 16, 2016. www.radiologyinfo. ...

  4. Arm CT scan

    MedlinePlus

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... your provider should weigh this risk against the benefits of getting a correct diagnosis for a medical ...

  5. Cardiac CT Scan

    MedlinePlus

    ... rate. Before the test, a contrast dye, often iodine, may be injected into a vein in your ... should not receive more CT scans than the number that clinical guidelines recommend. Another risk is that ...

  6. Pediatric CT Scans

    Cancer.gov

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  7. CT Scans - Multiple Languages

    MedlinePlus

    ... Tomography) Scan - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section CT ( ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section CT ( ...

  8. Body CT (CAT Scan)

    MedlinePlus

    ... during the procedure. Metal objects, including jewelry, eyeglasses, dentures and hairpins, may affect the CT images and ... may increase the risk of an unusual adverse effect. Women should always inform their physician and the ...

  9. Body CT (CAT Scan)

    MedlinePlus

    ... lives. CT has been shown to be a cost-effective imaging tool for a wide range of ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  10. Liver echinococcus - CT scan (image)

    MedlinePlus

    This upper abdominal CT scan shows multiple cysts in the liver, caused by dog tapeworm (echinococcus). Note the large circular cyst (seen on the left side of the screen) and multiple smaller cysts throughout ...

  11. CT densities in delayed iodine hepatic scanning

    SciTech Connect

    Perkerson, R.B. Jr.; Erwin, B.C.; Baumgartner, B.R.; Phillips, V.M.; Torres, W.E.; Clements, J.L. Jr.; Gedgaudas-McClees, K.; Bernardino, M.E.

    1985-05-01

    Sixty patients underwent CT scanning of the liver prior to, immediately after, and four hours after intravenous administration of 60% meglumine diatrizoate. Twenty patients received a 50 ml bolus of contrast material, 20 received 100 ml, and 20 received 200 ml. In each group, delayed CT scanning safely raised the inherent density of the liver significantly. Thus, delayed scanning with doses presently used in abdominal and neurological CT examinations may be helpful in detecting hepatic lesions.

  12. Negative appendectomy rate: influence of CT scans.

    PubMed

    McGory, Marcia L; Zingmond, David S; Nanayakkara, Darshani; Maggard, Melinda A; Ko, Clifford Y

    2005-10-01

    Negative appendectomy rate varies significantly depending on patient age and sex. However, the impact of computed tomography (CT) scans on the diagnosis of appendicitis is unknown. The goal of this study was to examine the negative appendectomy rate using a statewide database and analyze the association of receipt of CT scan. Using the California Inpatient File, all patients undergoing appendectomy in 1999-2000 were identified (n = 75,452). Demographic and clinical data were analyzed, including procedure approach (open vs laparoscopic) and appendicitis type (negative, simple, abscess, peritonitis). Patients with CT scans performed were identified to compare the negative appendectomy rate. For the entire cohort, appendicitis type was 59 per cent simple, 10 per cent with abscess, 18.7 per cent with peritonitis, and 9.3 per cent negative. Males had a lower rate of negative appendicitis than females (6.0% vs 13.4%, P < 0.0001). The use of CT scans was associated with an overall lower negative appendectomy rate for females, especially in the < 5 years and > 45 years age categories. Use of CT scans in males does not appear to be efficacious, as the negative appendectomy rates were similar across all age categories. In conclusion, use of CT was associated with lower rate of negative appendectomy, depending on patient age and sex.

  13. Pulmonary nodule, solitary - CT scan (image)

    MedlinePlus

    ... a single lesion (pulmonary nodule) in the right lung. This nodule is seen as the light circle in the upper portion of the dark area on the left side of the picture. A normal lung would look completely black in a CT scan.

  14. CT scans through metal scanning technique versus hardware composition.

    PubMed

    Haramati, N; Staron, R B; Mazel-Sperling, K; Freeman, K; Nickoloff, E L; Barax, C; Feldman, F

    1994-01-01

    Streak artifact on CT scans of metal containing areas has been a long standing problem. Although several artifact reducing methods have been used to improve image quality, most have been limited by requiring specialized equipment or lengthy complex calculations that are not automated. Others have shown that increasing the beam energy results in increased thickness of metal that may be imaged by CT without severe image degradation. We have studied the image quality of bone surrounding metal both with titanium and cobalt-chrome prostheses using various scanning techniques. In a double blind fashion, 28 radiology residents and attendings were surveyed as to the best technique for imaging bone detail surrounding metal. A series of images was arranged of an implanted titanium prosthesis, a cobalt-chrome prosthesis and a pelvis repaired with stainless steel pelvic reconstruction plates. Scans were performed using three techniques: 120 kVp, 170 mA, 2 s, 360 degrees rotation, 140 kVp, 140 mA, 3 s, 360 degrees rotation, 140 kVp, 140 mA, 4 s, 420 degrees rotation. Titanium was superior to cobalt-chrome (p < .0001 Wilcoxon Signed Rank Test). No advantage was noted for higher kVp or increased scan arc of 420 degrees compared to the standard 360 degrees. Titanium allows improved bone detail surround the metal than CT cobalt-chrome. We have found no advantage to using either high kVp or a 420 degrees scan arc to improve the image quality of bone surrounded by metal.

  15. CT scan correlates of gesture recognition.

    PubMed

    Ferro, J M; Martins, I P; Mariano, G; Caldas, A C

    1983-10-01

    The ability to recognise gestures was studied in 65 left-hemispheric stroke patients whose lesions were located by CT scan. In the acute stage (first month) frontal lobe and basal ganglia were frequently involved in patients showing inability to recognise gestures. In the later (third to fourth month) and chronic stages (greater than 6 months) parietal lobe involvement was important; lesions causing gesture recognition impairment were larger, had more extensive and frequent parietal involvement and produced less temporal lobe damage than those causing aural comprehension defects. These findings are discussed in the light of recent models of cerebral localisation of complex functions.

  16. CT scan correlates of gesture recognition.

    PubMed Central

    Ferro, J M; Martins, I P; Mariano, G; Caldas, A C

    1983-01-01

    The ability to recognise gestures was studied in 65 left-hemispheric stroke patients whose lesions were located by CT scan. In the acute stage (first month) frontal lobe and basal ganglia were frequently involved in patients showing inability to recognise gestures. In the later (third to fourth month) and chronic stages (greater than 6 months) parietal lobe involvement was important; lesions causing gesture recognition impairment were larger, had more extensive and frequent parietal involvement and produced less temporal lobe damage than those causing aural comprehension defects. These findings are discussed in the light of recent models of cerebral localisation of complex functions. Images PMID:6644319

  17. An implementation of dual energy CT scanning.

    PubMed

    Marshall, W; Hall, E; Doost-Hoseini, A; Alvarez, R; Macovski, A; Cassel, D

    1984-08-01

    We have described a prereconstruction method for dual energy (PREDECT) analysis of CT scans. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. Our implementation proves these statements and eliminates some of the objectionable noise. We constructed a phantom with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, we fabricated a beam filter changer containing erbium, tungsten, aluminum, and steel. We used erbium, tungsten, and steel at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. We found a decrease in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing.

  18. CT Scans Might Help Gauge Heart Attack Risk

    MedlinePlus

    ... fullstory_167148.html CT Scans Might Help Gauge Heart Attack Risk Researchers aim to identify vulnerable patients before ... into irreversible plaque could potentially help cardiologists prevent heart attacks, the scientists said. "Currently, CT only tells you ...

  19. Gallbladder opacification on gadoxetate disodium-enhanced CT scan.

    PubMed

    Karam, Adib R; Scortegagna, Eduardo; Chen, Byron Y; Dupuis, Carolyn S; Coughlin, Dennis D

    2017-04-01

    This study aimed to evaluate the radiologist's ability to identify excreted gadoxetate disodium within the gallbladder on CT scan. Thirty three healthy adults underwent imaging of the liver during work-up for potential liver donation. Three patients had undergone prior cholecystectomy and therefore were excluded. Imaging consisted of gadoxetate disodium-enhanced magnetic resonance cholangiography (MRC) and multiphase contrast-enhanced CT scan of the abdomen and pelvis. Two fellowship-trained abdominal imaging radiologists, who were blinded to the MRC images and the contrast agent used during MRC, independently reviewed the CT scans of the 30 patients that were included. The scans were evaluated for the presence or absence of abnormal hyperdensity within the gallbladder. Three patients did not receive intravenous gadoxetate disodium, 4 patients had their MRC after the CT scan, and 1 patient had the CT scans 5 days following the MRC. Twenty two patients had the CT scan within 24 h following the gadoxetate disodium-enhanced MRC. Of the 22 patients expected to have gadolinium in the gallbladder, both reviewers identified hyperdensity in the same 20 patients (90%). Both reviewers reported no abnormal hyperdensity within the gallbladder in the remaining 10 patients. CT scan can reveal excreted gadoxetate disodium within the gallbladder lumen and therefore gadoxetate disodium-enhanced CT scan can potentially play a role in the evaluation of cystic duct patency and work-up of acute cholecystitis.

  20. Computed Tomography (CT) Scans and Cancer

    MedlinePlus

    ... Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at NCI ( ... improve CT or new uses of CT imaging technology. Some of these clinical trials are run by ...

  1. Ultrafast CT scanning of an oak log for internal defects

    Treesearch

    Francis G. Wagner; Fred W. Taylor; Douglas S. Ladd; Charles W. McMillin; Fredrick L. Roder

    1989-01-01

    Detecting internal defects in sawlogs and veneer logs with computerized tomographic (CT) scanning is possible, but has been impractical due to the long scanning time required. This research investigated a new scanner able to acquire 34 cross-sectional log scans per second. This scanning rate translates to a linear log feed rate of 85 feet (25.91 m) per minute at one...

  2. CT scan utilization patterns in pediatric patients with recurrent headache.

    PubMed

    DeVries, Andrea; Young, Paul C; Wall, Eric; Getchius, Thomas ScD; Li, Chia-hsuan; Whitney, John; Rosenberg, Alan

    2013-07-01

    Although unnecessary for children with headache and normal history, computed tomography (CT) scans are widely used. This study sought to determine current practice patterns of neuroimaging to diagnose pediatric headache in a variety of treatment settings and to identify factors associated with increased use of neuroimaging. This retrospective claims analysis included children (aged 3–17 years) with ≥2 medical claims for headache. The primary outcome was CT scan utilization on or after first presentation with headache in a physician’s office or emergency department (ED). Of 15 836 patients, 26% (4034 patients; mean age: 11.8 years) had ≥1 CT scan, 74% within 1 month of index diagnosis. Patients with ED visits were 4 times more likely to undergo a CT scan versus those without ED visits (P < .001 [95% confidence interval: 3.9–4.8]). However, even outside the ED, use of CT scans remained widespread. Two-thirds of patients with CT scans had no ED use.Among patients with no ED utilization, >20% received a CT scan during the study period. Evaluation by a neurologist was strongly associated with a lower likelihood of CT scan compared with other provider specialties (odds ratio: 0.37; P < .01 [95% confidence interval: 0.30–0.46]). Use of CT scans to diagnose pediatric headache remains high despite existing guidelines, low diagnostic yield, and high potential risk. Implementing quality improvement initiatives to ensure that CT scans in children are performed only when truly indicated will reduce unnecessary exposure to ionizing radiation and associated cancer risks.

  3. CT scanning of the breast using a conventional CT scanner.

    PubMed

    Doust, B D; Milbrath, J R; Doust, V L

    1981-09-01

    Using a conventional body CT scanner, computed tomography of the breast was performed on 32 patients known to have or suspected of having breast masses. Xeromammograms were available for comparison in all cases. All mass lesions were histologically proved. Seven patients were examined prone, 25 supine. The prone position yielded pictures that resembled craniocaudal mammograms. Breast asymmetry, skin thickening, stranding from a mass to the chest wall, calcification, and axillary lymphadenopathy could be demonstrated by means of CT. The portion of the breast adjacent to the chest wall was more readily examined by means of CT than by conventional mammography. Internal mammary nodes could not be demonstrated.

  4. Intracranial extramedullary hematopoiesis. CT and bone marrow scan findings

    SciTech Connect

    Urman, M.; O'Sullivan, R.A.; Nugent, R.A.; Lentle, B.C. )

    1991-06-01

    This case concerns a patient with intracranial extramedullary hematopoiesis (EH) suspected on a CT scan and subsequently confirmed with In-111 chloride and Tc-99m SC bone marrow scans. The bone marrow scans also provided additional information by demonstrating other sites of EH in the paravertebral tissues and bone marrow expansion into the distal extremities.

  5. Full-Body CT Scans - What You Need to Know

    MedlinePlus

    ... Radiation-Emitting Products Radiation-Emitting Products and Procedures Medical Imaging Medical X-ray Imaging Full-Body CT Scans - ... cancer, cardiac disease, and other abnormalities, clinics and medical imaging facilities nationwide are touting a new service for ...

  6. Innovative advanced occlusion planning with superimposed CT and optical scans.

    PubMed

    Tremblay, Gilbert

    2011-04-01

    In order to increase the likelihood of a successful treatment plan outcome, it is critical to be able to effectively view the patient's underlying bony skeletal relationship of his or her TMJ. An innovative approach suggested to achieve this is to use the CT scan, optical scan, and Kois deprogrammer. Once the vertical dimension has been increased, the novelty of this approach is the ability to superimpose both scans along with the Kois deprogrammer and, using computer software, evaluate the TMJ position in three dimensions. This case presentation describes how TMJ CT scan evaluation is used in planning a complex rehabilitation case, given that the occlusion structures can be visualized independently and interactively.

  7. Abdominal CT scanning in critically ill surgical patients.

    PubMed Central

    Norwood, S H; Civetta, J M

    1985-01-01

    Clinical parameters, intensive care unit (ICU) course, abdominal computed tomography (CT) scans, and the clinical decisions of 53 critically ill patients were reviewed to determine the influence of the CT scan. No scans were positive before the eighth day. Sensitivity was 48% and specificity, 64%. Seventeen (23%) scans of the 72 provided beneficial results: eight localized abscesses that were drained; nine were negative and not operated on. Five (7%) scans provided detrimental information: scan negative with abscess discovered or scan positive but negative laparotomy. Fifty (70%) scans were either of no help or not used in management. The mortality rate was 50% when CT led to an intervention, and 47% in the entire group. Hospital charges were +33,408. Personnel time and cost were 497 hours and +3658; of the total +37,066, 77% (+28,541) could be considered wasted. From these data, it was concluded that CT scans should be used to confirm abscesses, not to search for a source of sepsis. PMID:4015222

  8. Indications for CT scanning in minor head injuries: a review.

    PubMed

    Żyluk, Andrzej

    2015-01-01

    To determine indications for performing head CT following minor head injuries, which allow reducing number of imaging. Based on 15 articles dedicated to this topic, the clinical decision rules were systematically analysed. The Canadian Computed Tomography Head Rule was found to be the most reliable instrument meeting these criteria, characterised by excellent sensitivity of 100% and fairly good specificity of 48-77%. Remaining scales, although very sensitive, showed poor ability to reduce number of "unnecessary" CT scans. Features most predictive for intracranial injuries included: disorientation, abnormal alertness, somnolentia and neurological deficits. Patients with no loss of consciousness and in normal physical condition need only clinical assessment. Indications to head CT scanning are determined by decision rules presented in the article. Use of clinical decision rules may have effect on reducing number of head CT scanning performed "just in a case". Copyright © 2015 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Purulent lupus panniculitis unmasked by FDG-PET/CT scan

    PubMed Central

    van der Geest, Kornelis S.M.; Moerman, Rada V.; Koopmans, Klaas P.; Holman, Nicole D.; Janssen, Wilbert M.T.

    2016-01-01

    Abstract Rationale: Lupus panniculitis (LP) is a unique variant of cutaneous lupus erythematosus. Clinical manifestations are typically mild and include erythema, nodules, and small ulcers. In certain cases, diagnosing LP may be challenging. Skin overlying the typical subcutaneous inflammation may appear normal, and bacterial superinfections of the skin sometimes mask the underlying LP. It has been suggested that a computed tomography (CT) scan may help to identify obscure LP lesions. Here, we report a case of a 54-year-old woman with an unusually severe form of LP, in which the full disease extent was only revealed by a fluorodeoxyglucose positron emission tomography (FDG-PET)/CT scan. Patient concerns/Diagnoses/Interventions/Outcomes: Our patient initially presented with a bacterial infection of the skin. After initial improvement with antibiotic treatment, new erythematous lesions and sterile subcutaneous pus collections developed. An FDG-PET/CT scan revealed extensive subcutaneous inflammation at sites that had appeared normal during physical examination and on CT scan. As the subcutaneous lesions showed a remarkably linear pattern on FDG-PET/CT scan, the patient was suspected of having LP. After confirmation of this diagnosis by a deep-skin biopsy, our patient was treated with systemic glucocorticoids. Eventually, our patient succumbed to complications of LP and its treatment. Lessons: Our case demonstrates that clinical manifestations of LP are not always mild and that timely diagnosis is needed. Furthermore, we show that obscure LP lesions are more readily identified on an FDG-PET/CT scan than CT scan. PMID:27902603

  10. Hybrid detection of lung nodules on CT scan images

    SciTech Connect

    Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-09-15

    Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithms were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.

  11. CT Scan of NASA Booster Nozzle

    SciTech Connect

    Schneberk, D; Perry, R; Thompson, R

    2004-07-27

    We scanned a Booster Nozzle for NASA with our 9 meV LINAC, AmSi panel scanner. Three scans were performed using different filtering schemes and different positions of the nozzle. The results of the scan presented here are taken from the scan which provided the best contrast and lowest noise of the three. Our inspection data shows a number of indications of voids in the outer coating of rubber/carbon. The voids are mostly on the side of the nozzle, but a few small voids are present at the ends of the nozzle. We saw no large voids in the adhesive layer between the Aluminum and the inner layer of carbon. This 3D inspection data did show some variation in the size of the adhesive layer, but none of the indications were larger than 3 pixels in extent (21 mils). We have developed a variety of contour estimation and extraction techniques for inspecting small spaces between layers. These tools might work directly on un-sectioned nozzles since the circular contours will fit with our tools a little better. Consequently, it would be useful to scan a full nozzle to ensure there are no untoward degradations in data quality, and to see if our tools would work to extract the adhesive layer.

  12. Dynamic CT scanning of spinal column trauma

    SciTech Connect

    Brown, B.M.; Brant-Zawadzki, M.; Cann, C.E.

    1982-12-01

    Dynamic sequential computed tomographic scanning with automatic table incrementation uses low milliampere-second technique to eliminate tube cooling delays between scanning slices and, thus, markedly shortens examination times. A total of 25 patients with spinal column trauma involving 28 levels were studied with dynamic scans and retrospectively reviewed. Dynamic studies were considerably faster than conventional spine examinations and yielded reliable diagnosis. Bone disruption and subluxation was accurately evaluated, and the use of intrathecal metrizamide in low doses allowed direct visualization of spinal cord or radicular compromise. Multiplanar image reformation was aided by the dynamic incrementation technique, since motion between slices (and the resulting misregistration artifact on image reformation) was minimized. A phantom was devised to test spatial resolution of computed tomography for objects 1-3 mm in size and disclosed minimal differences for dynamic and conventional computed tomographic techniques in resolving medium-to-high-contrast objects.

  13. State-of-the-art in CT hardware and scan modes for cardiovascular CT

    PubMed Central

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J.; Gentry, Ralph; George, Richard T.; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm. Guy

    2013-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and the coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography (SCCT) Basic and Emerging Sciences and Technology (BEST) Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging. PMID:22551595

  14. State-of-the-art in CT hardware and scan modes for cardiovascular CT.

    PubMed

    Halliburton, Sandra; Arbab-Zadeh, Armin; Dey, Damini; Einstein, Andrew J; Gentry, Ralph; George, Richard T; Gerber, Thomas; Mahesh, Mahadevappa; Weigold, Wm Guy

    2012-01-01

    Multidetector row computed tomography (CT) allows noninvasive anatomic and functional imaging of the heart, great vessels, and coronary arteries. In recent years, there have been several advances in CT hardware, which have expanded the clinical utility of CT for cardiovascular imaging; such advances are ongoing. This review article from the Society of Cardiovascular Computed Tomography Basic and Emerging Sciences and Technology Working Group summarizes the technical aspects of current state-of-the-art CT hardware and describes the scan modes this hardware supports for cardiovascular CT imaging.

  15. An evaluation of cranial CT scanning in clinical psychiatry.

    PubMed

    Colohan, H; O'Callaghan, E; Larkin, C; Waddington, J L

    1989-07-01

    From 6,300 psychiatric admissions over a 37 month period, all 54 patient referrals for CT were identified and their charts reviewed. CT influenced diagnosis, management or prognosis in 11.7 percent of patients scanned. There was poor correlation between organicity on CT scan and findings on physical examination, laboratory testing, EEG and psychological testing. The mental state examination was the single significant correlate of CT abnormality. We suggest that the use of a formalised mental state examination such as the Mini Mental State, in addition to the usual clinical assessment of mental state, may improve the accuracy of prediction of abnormality on CT scan. The introduction of X-ray computed tomography (CT) is recognised to be one of the most important innovations in the recent history of clinical medicine. In neurology the value of a non-invasive technique for examining the intracranial contents was quickly realised in the areas of diagnosis, particularly in the detection of vascular accidents and tumours. CT has also attained a significant place in psychiatry. In research studies, it has provided important information on schizophrenia, alcoholism and chronic organic reactions. The place of CT in clinical psychiatry is less clear. As its availability has increased, such scans are being requested with increasing frequency in psychiatric patients. Cranial CT is a highly sensitive diagnostic procedure which, when used unselectively, may result in the discovery of incidental findings. Until recently, a function of the psychiatrist in relation to diagnosis was to first seek to distinguish symptoms produced by organic pathology from those produced by functional illness.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Comparison of CT scanning and radionuclide imaging in liver disease

    SciTech Connect

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient.

  17. CT scan of the brain (image)

    MedlinePlus

    ... CAT scan (computed tomography) is a much more sensitive imaging technique than x-ray, allowing high definition not only of the bony structures, but of the soft tissues. Clear images of organs such as the brain, muscles, joint structures, veins ...

  18. Laser microbeam CT scanning of dosimetry gels

    NASA Astrophysics Data System (ADS)

    Maryanski, Marek J.; Ranade, Manisha K.

    2001-06-01

    A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.

  19. Treatment of Alzheimer Disease With CT Scans

    PubMed Central

    Moore, Eugene R.; Hosfeld, Victor D.; Nadolski, David L.

    2016-01-01

    Alzheimer disease (AD) primarily affects older adults. This neurodegenerative disorder is the most common cause of dementia and is a leading source of their morbidity and mortality. Patient care costs in the United States are about 200 billion dollars and will more than double by 2040. This case report describes the remarkable improvement in a patient with advanced AD in hospice who received 5 computed tomography scans of the brain, about 40 mGy each, over a period of 3 months. The mechanism appears to be radiation-induced upregulation of the patient’s adaptive protection systems against AD, which partially restored cognition, memory, speech, movement, and appetite. PMID:27103883

  20. CT scan diagnosis of bleeding peptic ulcer after gastric bypass.

    PubMed

    Husain, Syed; Ahmed, Ahmed R; Johnson, Joseph; Boss, Thad; O'Malley, William

    2007-11-01

    Investigation of the bypassed stomach in patients with suspected peptic ulcer disease presents a major challenge to bariatric surgeons. Various methods have been suggested for visualization of the duodenum and bypassed stomach. These include endoscopy via percutaneous gastrostomy access, retrograde endoscopy and virtual gastroscopy using CT scan. We present a case of peptic ulcer bleeding diagnosed with the help of conventional CT scan. To the best of our knowledge, this is the second such case reported in the literature and the first in the bariatric population.

  1. Digital radiographic localization for CT scanning of the larynx

    SciTech Connect

    Silverman, P.M.; Korobkin, M.; Rauch, R.F.

    1983-12-01

    Computed tomography (CT) of the larynx is the preferred method for staging laryngeal carcinoma and assessing the extent of injury from trauma. The standard method of examination consists of 5 mm contiguous scans throughout the larynx in quiet respiration. Scans are performed with the patient supine with the neck slightly extended allowing the long axis of the larynx to be perpendicular to the scanning plane. A complete examination requires scanning from the supraglottic region (level of hyoid bone) to the subglottic region (level of cricoid cartlage). In the authors' experience when this method is used, multiple scans are performed cephalad to the level of interest because no upper limit of the examination is established before transaxial scans are done. We have used the lateral digital radiograph of the neck to identify specific landmarks so that the upper and lower limets of the examination can be established before scanning.

  2. Comparison of full-scan and half-scan for cone beam breast CT imaging

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Lai, Chao-jen; Altunbas, Mustafa C.; Wang, Tianpeng; Tu, Shu-ju; Liu, Xinming

    2006-03-01

    The half-scan cone beam technique, requiring a scan for 180° plus detector width only, can help achieve both shorter scan time as well as higher exposure in each individual projection image. This purpose of this paper is to investigate whether half-scan cone beam CT technique can provide acceptable images for clinical application. The half-scan cone beam reconstruction algorithm uses modified Parker's weighting function and reconstructs from slightly more than half of the projection views for full-scan, giving out promising results. A rotation phantom, stationary gantry bench top system was built to conduct experiments to evaluate half-scan cone beam breast CT technique. A post-mastectomy breast specimen, a stack of lunch meat slices embedded with various sizes of calcifications and a polycarbonate phantom inserted with glandular and adipose tissue equivalents are imaged and reconstructed for comparison study. A subset of full-scan projection images of a mastectomy specimen were extracted and used as the half-scan projection data for reconstruction. The results show half-scan reconstruction algorithm for cone beam breast CT images does not significantly degrade image quality when compared with the images of same or even half the radiation dose level. Our results are encouraging, emphasizing the potential advantages in the use of half-scan technique for cone beam breast imaging.

  3. Metal artifact reduction of CT scans to improve PET/CT.

    PubMed

    van der Vos, Charlotte S; Arens, Anne Ij; Hamill, Jim; Hofmann, Christian; Panin, Vladimir Y; Meeuwis, Antoi Pw; Visser, Eric P; de Geus-Oei, Lioe-Fee

    2017-05-10

    In recent years different metal artifact reduction (MAR) methods have been developed for computed tomography (CT). These methods have only recently been introduced for positron emission tomography/computed tomography (PET/CT) even though they could be beneficial for interpretation, segmentation and quantification of the PET/CT images. In this study, phantom and patient scans were analyzed visually and quantitatively to measure the effect on PET images of iterative metal artifact reduction (iMAR) of CT data. Methods The phantom consisted of two types of hip prostheses in a solution of (18)F-flurodeoxyglucose ((18)F-FDG) and water. (18)F-FDG PET/CT scans of 14 patients with metal implants (either dental implants, hip prostheses, shoulder prostheses or pedicle screws) and (68)Ga-labeled prostate-specific membrane antigen ((68)Ga-PSMA) PET/CT scans of 7 patients with hip prostheses were scored by two experienced nuclear medicine physicians to analyze clinical relevance. For all patients a lesion was located in the field of view of the metal implant. Phantom and patients were scanned in an mCT PET/CT scanner (Siemens Healthcare). The standard low-dose CTs were processed with the iMAR algorithm. The PET data were reconstructed using attenuation correction provided by both standard CT and iMAR-processed CT. Results For the phantom scans cold artifacts were visible on the PET image. There was a 30% deficit in (18)F-FDG concentration, which was restored by iMAR processing, indicating that metal artifacts on CT images induce quantification errors in PET data. The iMAR algorithm was useful for most patients. When iMAR was used the confidence in interpretation increased or stayed the same, with an average improvement of 28±20% (scored on a scale of 0-100% confidence). The standardized uptake value (SUV) increase or decrease depended on the type of metal artifact. The mean difference in absolute values of SUVmean of the lesions was 3.5±3.3%. Conclusion The iMAR algorithm

  4. Automated lung segmentation of low resolution CT scans of rats

    NASA Astrophysics Data System (ADS)

    Rizzo, Benjamin M.; Haworth, Steven T.; Clough, Anne V.

    2014-03-01

    Dual modality micro-CT and SPECT imaging can play an important role in preclinical studies designed to investigate mechanisms, progression, and therapies for acute lung injury in rats. SPECT imaging involves examining the uptake of radiopharmaceuticals within the lung, with the hypothesis that uptake is sensitive to the health or disease status of the lung tissue. Methods of quantifying lung uptake and comparison of right and left lung uptake generally begin with identifying and segmenting the lung region within the 3D reconstructed SPECT volume. However, identification of the lung boundaries and the fissure between the left and right lung is not always possible from the SPECT images directly since the radiopharmaceutical may be taken up by other surrounding tissues. Thus, our SPECT protocol begins with a fast CT scan, the lung boundaries are identified from the CT volume, and the CT region is coregistered with the SPECT volume to obtain the SPECT lung region. Segmenting rat lungs within the CT volume is particularly challenging due to the relatively low resolution of the images and the rat's unique anatomy. Thus, we have developed an automated segmentation algorithm for low resolution micro-CT scans that utilizes depth maps to detect fissures on the surface of the lung volume. The fissure's surface location is in turn used to interpolate the fissure throughout the lung volume. Results indicate that the segmentation method results in left and right lung regions consistent with rat lung anatomy.

  5. Harms of CT scanning prior to surgery for suspected appendicitis.

    PubMed

    Rogers, William; Hoffman, Jerome; Noori, Naudereh

    2015-02-01

    In this brief analysis we compare the risks and benefits of performing a CT scan to confirm appendicitis prior to surgery instead of operating based on the surgeon's clinical diagnosis. We conclude that the benefit of universal imaging is to avoid 12 unnecessary appendectomies but the cost of those 12 avoided surgeries is one cancer death due to the imaging.

  6. Do CT scans aid assessment of distal tibial physeal fractures?

    PubMed

    Cutler, L; Molloy, A; Dhukuram, V; Bass, A

    2004-03-01

    Distal tibial physeal fractures are the second most common growth plate injury and the most common cause of growth arrest and deformity. This study assesses the accuracy of pre-operative planning for placement of the screws in these fractures using either standard radiographs or CT scans. We studied 62 consecutive physeal fractures over a period of four years. An outline of a single cut of the CT scan was used for each patient. An ideal position for the screw was determined as being perpendicular to and at the midpoint of the fracture. The difference in entry point and direction of the screw between the ideal and the observers' assessments were compared using the paired Student's t-test. There was a statistically significant improvement (p < 0.0001) in the accuracy of the point of insertion and the direction of the screw on the pre-operative plan when CT scans were used rather than plain radiographs. We would, therefore, recommend that CT scans are routinely used in the pre-operative assessment and treatment of distal tibial physeal fractures.

  7. Time delay study of a CT simulator in respiratory gated CT scanning

    SciTech Connect

    Guan Huaiqun

    2006-04-15

    In respiratory-gated radiotherapy (RGRT), if the time delay in a computed tomography (CT) simulator and that in a linear accelerator (Linac) are different, the simulation and the treatment cannot be synchronized. In this study, we presented a technique to measure the time delay of the AcQSim CT simulator (Philips Medical Systems, Cleveland, OH) using Varian's Real-Time Positioning Management (RPM) system (Varian Medical Systems, Palo Alto, CA). A respiratory gating platform (REF 91150, Standard Imaging, Inc., Middleton, MI) was first set at the position of amplitude maximum (phase 0). Then a ball of 1.3 cm diameter was put on the platform and set at the CT laser. A single axial scan was acquired across the center of the ball without motion. Then the motion was turned on and single axial scans gated at different phases were acquired with a very narrow gating window. The time between the phase giving a good estimate of the ball and phase 0 is the overall delay time. We found that for AcQSim CT, the overall delay for a single axial scan (with 1 s scan time) is 1.75 s. For multiple axial scans, the overall delay is 1.75 s for the first scan and 0.75 s for the subsequent ones. This demonstrated that the CT mechanical startup delay is 1 s. After the first axial scan, the overall delay per scan is less because CT gantry continuously spins and no mechanical delay exists. We call the overall delay without mechanical part the scanning delay, which basically equals half the scan time (0.5 s for 1 s scan time) plus the gating pulse triggering delay (250 ms). The delays were also verified using metal balls of 1.5 mm diameter set at the amplitude minimum (phase 180, initially). We note that it is the scanning delay rather than the triggering delay that should be compensated when doing motion-synchronized radiotherapy. The current interface between the RPM system and the AcQSim CT does not compensate for this scanning delay.

  8. Thromboembolic Complications Following Spine Surgery Assessed with Spiral CT Scans

    PubMed Central

    Kim, Han Jo; Walcott-Sapp, Sarah; Adler, Ronald S.; Pavlov, Helene; Boachie-Adjei, Oheneba

    2010-01-01

    Spine surgery is associated with a significant risk of postoperative pulmonary embolism (PE) and/or deep vein thrombosis (DVT). The goal of this study was to determine which symptoms and risk factors were associated with spiral CT scans positive for PE and/or DVT in the postoperative spine surgery patient. We conducted a retrospective review of all spine patients who underwent a postoperative CT to rule out PE during the period of March 2004–February 2006. The type of surgical procedure, risk factors, symptoms prompting scan ordering, anticoagulation, and treatment were recorded. Logistic regression models were used to determine significant predictors of a positive CT in this patient population. Of the 3,331 patients that had spine surgery during the study period, 130 (3.9%) had a spiral CT scan to rule out PE and/or proximal DVT. Thirty-three of the 130 (25.4%) CT scans were positive for PE only, five (3.8%) for PE and DVT, and three (2.3%) for DVT only. Only 24.5% (32) patients had risk factors for thromboembolic disease, and of these, a history of PE and/or DVT was the only significant risk factor for a positive scan (p = 0.03). No presenting symptoms or demographic variables were noted to have a significant association with PE and/or DVT. The type of surgical procedure (i.e., anterior, posterior, and percutaneous) was not associated with an increased risk for PE and/or DVT. Patients who are undergoing spine surgery with a history of thromboembolic disease should be carefully monitored postoperatively and may benefit from more aggressive prophylaxis. PMID:22294955

  9. An automatic approach for 3D registration of CT scans

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Saber, Eli; Dianat, Sohail; Vantaram, Sreenath Rao; Abhyankar, Vishwas

    2012-03-01

    CT (Computed tomography) is a widely employed imaging modality in the medical field. Normally, a volume of CT scans is prescribed by a doctor when a specific region of the body (typically neck to groin) is suspected of being abnormal. The doctors are required to make professional diagnoses based upon the obtained datasets. In this paper, we propose an automatic registration algorithm that helps healthcare personnel to automatically align corresponding scans from 'Study' to 'Atlas'. The proposed algorithm is capable of aligning both 'Atlas' and 'Study' into the same resolution through 3D interpolation. After retrieving the scanned slice volume in the 'Study' and the corresponding volume in the original 'Atlas' dataset, a 3D cross correlation method is used to identify and register various body parts.

  10. Correlation between IVC dimensions and volume status on CT scan.

    PubMed

    Miraflor, Emily; Yeung, Louise; Strumwasser, Aaron; Sadjadi, Javid; Victorino, Gregory P

    2011-10-01

    End points of resuscitation in trauma patients are difficult to define. The size of the inferior vena cava (IVC) on CT scan may accurately indicate volume status and guide resuscitation efforts. Our hypothesis was that IVC "flatness" on CT scan reflects volume status in hemodynamically normal trauma patients. The study population was drawn from a database of trauma patients who had abdominal CT scans and lactate levels drawn on arrival. Lactate was chosen as a marker of volume status since hypotensive patients were unlikely to undergo CT. Anteroposterior (AP) and transverse (TV) diameters of the IVC were measured at the suprarenal and infrarenal locations. A flatness index was calculated for each location (TV ÷ AP) and this value was correlated with heart rate, blood pressure, and lactate. There was no difference in IVC flatness at the suprarenal or infrarenal position for patients with an elevated lactate compared with those with a normal lactate: 1.54 ± 0.18 versus 1.43 ± 0.08 (P = 0.2) suprarenal and 1.54 ± 0.46 versus 1.68 ± 0.58 (P = 0.4) infrarenal. IVC flatness at the suprarenal location weakly correlated with blood pressure (r = -0.29). IVC flatness did not correlate with blood pressure at the infrarenal location (r = -0.1). IVC flatness did not correlate with heart rate (P > 0.3) or age (P > 0.2). These results did not demonstrate a correlation between IVC flatness and the markers of intravascular volume of heart rate, blood pressure, or lactate. IVC flatness on CT scan is not a valid indicator of volume status in hemodynamically normal trauma patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Interactive annotation of textures in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Kockelkorn, Thessa T. J. P.; de Jong, Pim A.; Gietema, Hester A.; Grutters, Jan C.; Prokop, Mathias; van Ginneken, Bram

    2010-03-01

    This study describes a system for interactive annotation of thoracic CT scans. Lung volumes in these scans are segmented and subdivided into roughly spherical volumes of interest (VOIs) with homogeneous texture using a clustering procedure. For each 3D VOI, 72 features are calculated. The observer inspects the scan to determine which textures are present and annotates, with mouse clicks, several VOIs of each texture. Based on these annotations, a k-nearest-neighbor classifier is trained, which classifies all remaining VOIs in the scan. The algorithm then presents a slice with suggested annotations to the user, in which the user can correct mistakes. The classifier is retrained, taking into account these new annotations, and the user is presented another slice for correction. This process continues until at least 50% of all lung voxels in the scan have been classified. The remaining VOIs are classified automatically. In this way, the entire lung volume is annotated. The system has been applied to scans of patients with usual and non-specific interstitial pneumonia. The results of interactive annotation are compared to a setup in which the user annotates all predefined VOIs manually. The interactive system is 3.7 times as fast as complete manual annotation of VOIs and differences between the methods are similar to interobserver variability. This is a first step towards precise volumetric quantitation of texture patterns in thoracic CT in clinical research and in clinical practice.

  12. Semi-automatic classification of textures in thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Kockelkorn, Thessa T. J. P.; de Jong, Pim A.; Schaefer-Prokop, Cornelia M.; Wittenberg, Rianne; Tiehuis, Audrey M.; Gietema, Hester A.; Grutters, Jan C.; Viergever, Max A.; van Ginneken, Bram

    2016-08-01

    The textural patterns in the lung parenchyma, as visible on computed tomography (CT) scans, are essential to make a correct diagnosis in interstitial lung disease. We developed one automatic and two interactive protocols for classification of normal and seven types of abnormal lung textures. Lungs were segmented and subdivided into volumes of interest (VOIs) with homogeneous texture using a clustering approach. In the automatic protocol, VOIs were classified automatically by an extra-trees classifier that was trained using annotations of VOIs from other CT scans. In the interactive protocols, an observer iteratively trained an extra-trees classifier to distinguish the different textures, by correcting mistakes the classifier makes in a slice-by-slice manner. The difference between the two interactive methods was whether or not training data from previously annotated scans was used in classification of the first slice. The protocols were compared in terms of the percentages of VOIs that observers needed to relabel. Validation experiments were carried out using software that simulated observer behavior. In the automatic classification protocol, observers needed to relabel on average 58% of the VOIs. During interactive annotation without the use of previous training data, the average percentage of relabeled VOIs decreased from 64% for the first slice to 13% for the second half of the scan. Overall, 21% of the VOIs were relabeled. When previous training data was available, the average overall percentage of VOIs requiring relabeling was 20%, decreasing from 56% in the first slice to 13% in the second half of the scan.

  13. Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.

    2006-03-01

    We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.

  14. Colitis detection on abdominal CT scans by rich feature hierarchies

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Lay, Nathan; Wei, Zhuoshi; Lu, Le; Kim, Lauren; Turkbey, Evrim; Summers, Ronald M.

    2016-03-01

    Colitis is inflammation of the colon due to neutropenia, inflammatory bowel disease (such as Crohn disease), infection and immune compromise. Colitis is often associated with thickening of the colon wall. The wall of a colon afflicted with colitis is much thicker than normal. For example, the mean wall thickness in Crohn disease is 11-13 mm compared to the wall of the normal colon that should measure less than 3 mm. Colitis can be debilitating or life threatening, and early detection is essential to initiate proper treatment. In this work, we apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals to detect potential colitis on CT scans. Our method first generates around 3000 category-independent region proposals for each slice of the input CT scan using selective search. Then, a fixed-length feature vector is extracted from each region proposal using a CNN. Finally, each region proposal is classified and assigned a confidence score with linear SVMs. We applied the detection method to 260 images from 26 CT scans of patients with colitis for evaluation. The detection system can achieve 0.85 sensitivity at 1 false positive per image.

  15. Variation of quantitative emphysema measurements from CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Henschke, Claudia I.; Barr, R. Graham; Yankelevitz, David F.

    2008-03-01

    Emphysema is a lung disease characterized by destruction of the alveolar air sacs and is associated with long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema, and several measures have been introduced for the quantification of the extent of disease. In this paper we compare these measures for repeatability over time. The measures of interest in this study are emphysema index, mean lung density, histogram percentile, and the fractal dimension. To allow for direct comparisons, the measures were normalized to a 0-100 scale. These measures have been computed for a set of 2,027 scan pairs in which the mean interval between scans was 1.15 years (σ: 93 days). These independent pairs were considered with respect to three different scanning conditions (a) 223 pairs where both were scanned with a 5 mm slice thickness protocol, (b) 695 with the first scanned with the 5 mm protocol and the second with a 1.25 mm protocol, and (c) 1109 pairs scanned both times using a 1.25 mm protocol. We found that average normalized emphysema index and histogram percentiles scores increased by 5.9 and 11 points respectively, while the fractal dimension showed stability with a mean difference of 1.2. We also found, a 7 point bias introduced for emphysema index under condition (b), and that the fractal dimension measure is least affected by scanner parameter changes.

  16. CT scan range estimation using multiple body parts detection: let PACS learn the CT image content.

    PubMed

    Wang, Chunliang; Lundström, Claes

    2016-02-01

    The aim of this study was to develop an efficient CT scan range estimation method that is based on the analysis of image data itself instead of metadata analysis. This makes it possible to quantitatively compare the scan range of two studies. In our study, 3D stacks are first projected to 2D coronal images via a ray casting-like process. Trained 2D body part classifiers are then used to recognize different body parts in the projected image. The detected candidate regions go into a structure grouping process to eliminate false-positive detections. Finally, the scale and position of the patient relative to the projected figure are estimated based on the detected body parts via a structural voting. The start and end lines of the CT scan are projected to a standard human figure. The position readout is normalized so that the bottom of the feet represents 0.0, and the top of the head is 1.0. Classifiers for 18 body parts were trained using 184 CT scans. The final application was tested on 136 randomly selected heterogeneous CT scans. Ground truth was generated by asking two human observers to mark the start and end positions of each scan on the standard human figure. When compared with the human observers, the mean absolute error of the proposed method is 1.2% (max: 3.5%) and 1.6% (max: 5.4%) for the start and end positions, respectively. We proposed a scan range estimation method using multiple body parts detection and relative structure position analysis. In our preliminary tests, the proposed method delivered promising results.

  17. Complications in CT-guided Procedures: Do We Really Need Postinterventional CT Control Scans?

    SciTech Connect

    Nattenmüller, Johanna Filsinger, Matthias Bryant, Mark Stiller, Wolfram Radeleff, Boris Grenacher, Lars Kauczor, Hans-Ullrich Hosch, Waldemar

    2013-06-19

    PurposeThe aim of this study is twofold: to determine the complication rate in computed tomography (CT)-guided biopsies and drainages, and to evaluate the value of postinterventional CT control scans.MethodsRetrospective analysis of 1,067 CT-guided diagnostic biopsies (n = 476) and therapeutic drainages (n = 591) in thoracic (n = 37), abdominal (n = 866), and musculoskeletal (ms) (n = 164) locations. Severity of any complication was categorized as minor or major. To assess the need for postinterventional CT control scans, it was determined whether complications were detected clinically, on peri-procedural scans or on postinterventional scans only.ResultsThe complication rate was 2.5 % in all procedures (n = 27), 4.4 % in diagnostic punctures, and 1.0 % in drainages; 13.5 % in thoracic, 2.0 % in abdominal, and 3.0 % in musculoskeletal procedures. There was only 1 major complication (0.1 %). Pneumothorax (n = 14) was most frequent, followed by bleeding (n = 9), paresthesia (n = 2), material damage (n = 1), and bone fissure (n = 1). Postinterventional control acquisitions were performed in 65.7 % (701 of 1,067). Six complications were solely detectable in postinterventional control acquisitions (3 retroperitoneal bleeds, 3 pneumothoraces); all other complications were clinically detectable (n = 4) and/or visible in peri-interventional controls (n = 21).ConclusionComplications in CT-guided interventions are rare. Of these, thoracic interventions had the highest rate, while pneumothoraces and bleeding were most frequent. Most complications can be detected clinically or peri-interventionally. To reduce the radiation dose, postinterventional CT controls should not be performed routinely and should be restricted to complicated or retroperitoneal interventions only.

  18. Direct use of CT scans for hyperthermia treatment planning

    SciTech Connect

    James, B.J.; Sullivan, D.M. )

    1992-08-01

    In the field of deep regional hyperthermia cancer therapy, the BSD-2000 Hyperthermia System is one of the most widely used devices. Because of the complexity of the treatment process, computer modeling has long been viewed as a desirable means of planning patient treatments. Patient-specific, three-dimensional computer modeling for treatment planning in the BSD-2000 has been in clinical use at this institution for two years. Two of the persistent problems have been the large amount of time needed to create the patient model from a computed tomography (CT) scan, and the lack of a way to view the large amounts of data that comprise the output of treatment plan, i.e., the specific absorption rate (SAR) at 20 000 to 30 000 cells. Here the authors present a method that obtains the dielectric properties needed for hyperthermia treatment planning directly from the CT image with minimum operator interaction, a process which takes about a half day and is more accurate. Comparison is made with the previous method of drawing contours around the different tissue types. They further describe a method which displays the output as iso-SAR contours directly over the CT scan of the patient.

  19. Automated detection of bone metastatic changes using serial CT scans.

    PubMed

    Oh, Jihun; Kim, Gyehyun; Lee, Jaesung; Cheon, Minsu; Park, Yongsup; Kim, Sewon; Yi, Jonghyon; Lee, Ho Yun

    2017-06-01

    Bone metastases resulting from a primary tumor invasion to the bone are common and cause significant morbidity in advanced cancer patients. Although the detection of bone metastases is often straightforward, it is difficult to identify their spread and track their changes, particularly in early stages. This paper presents a novel method that automatically finds the changes in appearance and the progress of bone metastases using longitudinal CT images. In contrast to previous methods based on nodule detection within a specific bone site in an individual CT scan, the approach in the present study is based on the subtraction between two registered CT volumes. The volumes registered using the proposed weighted-Demons registration and symmetric warping were subtracted with minimizing noise, and the Jacobian and false positive suppressions were performed to reduce false alarms. The proposed method detects the changes in bone metastases within 3min for entire chest bone structures covering the spine, ribs, and sternum. The method was validated based on 3-fold cross validation using the radiologists' markings of 459 lesions in 24 subjects and was performed with a sensitivity of 92.59%, a false positive volume of 2.58%, and 9.71 false positives per patient. Note that 113 lesions (24%) missed by the radiologists were identified by the present system and confirmed to be true metastases. Indeed, three patients diagnosed initially as normal, having no metastatic difference, by radiologists were found to be abnormal using the proposed system. Automatic detection method of bone metastatic changes in the entire chest bone was developed. Weighted Demons, symmetric warping, following false positive suppressions, and their parallel computing implementation enabled precise and fast computation of delicate changes in serial CT scans. The cross validation proved that this method can be quite useful for assisting radiologists in sensing minute metastatic changes from early stage

  20. Visual anatomical lung CT scan assessment of lung recruitability.

    PubMed

    Chiumello, Davide; Marino, Antonella; Brioni, Matteo; Menga, Federica; Cigada, Irene; Lazzerini, Marco; Andrisani, Maria C; Biondetti, Pietro; Cesana, Bruno; Gattinoni, Luciano

    2013-01-01

    The computation of lung recruitability in acute respiratory distress syndrome (ARDS) is advocated to set positive end-expiratory pressure (PEEP) for preventing lung collapse. The quantitative lung CT scan, obtained by manual image processing, is the reference method but it is time consuming. The aim of this study was to evaluate the accuracy of a visual anatomical analysis compared with a quantitative lung CT scan analysis in assessing lung recruitability. Fifty sets of two complete lung CT scans of ALI/ARDS patients computing lung recruitment were analyzed. Lung recruitability computed at an airway pressure of 5 and 45 cm H(2)O was defined as the percentage decrease in the collapsed/consolidated lung parenchyma assessed by two expert radiologists using a visual anatomical analysis and as the decrease in not aerated lung regions using a quantitative analysis computed by dedicated software. Lung recruitability was 11.3 % (interquartile range 7.39-16.41) and 15.5 % (interquartile range 8.18-21.43) with the visual anatomical and quantitative analysis, respectively. In the Bland-Altman analysis, the bias and agreement bands between the visual anatomical and quantitative analysis were -2.9 % (-11.8 to +5.9 %). The ROC curve showed that the optimal cutoff values for the visual anatomical analysis in predicting high versus low lung recruitability was 8.9 % (area under the ROC curve 0.9248, 95 % CI 0.8550-0.9946). Considering this cutoff, the sensitivity, specificity, and diagnostic accuracy were 0.96, 0.76, and 0.86, respectively. Visual anatomical analysis can classify patients into those with high and low lung recruitability allowing more intensivists to get access to lung recruitability assessment.

  1. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  2. Lipiodol enhanced CT scanning of malignant hepatic tumors.

    PubMed

    Eurvilaichit, C

    2000-04-01

    From August 1984 to March 1991, 41 patients with malignant liver tumors, 30 males and 11 females, aged 30-75 years were treated at Ramathibodi Hospital with injection of mitomycin-C lipiodol emulsion into the tumor via the feeding artery followed by embolization of the feeding artery with gelfoam particles. The patients comprised 30 cases of hepatocellular carcinoma, 4 cases of cholangiocarcinoma and 7 cases of metastatic tumors of which one was from CA stomach, three were from CA breast, and three from CA colon. The vascularity of the tumor was assessed in angiogram obtained prior to treatment and retention pattern of lipiodol in the tumor was evaluated in lipiodol-enhanced CT scan images taken 2-4 weeks following therapy. The results showed that lipiodol CT scan images exhibited four patterns of lipiodol retention in the tumor appearing as opacity as follows (1) homogenous (2) heterogeneous (3) ring-like and (4) none. Lipiodol retention pattern appeared to be somewhat related to vascularity of the tumor. Most of the hypervascular tumors such as hepatocellular carcinoma had homogeneous lipiodol accumulation pattern if the tumor size was less than 5 cm. Metastatic tumors and cholangiocarcinoma showed heterogeneous or ring-like pattern of lipiodol accumulation because they were relatively hypovascular. Hypervascular hepatocellular carcinoma may exhibit heterogeneous or ring-like pattern if they are larger than 5 cms, and have multiple feeding arteries, necrosis or AV shunting. Hepatocellular carcinoma with AV shunting may not show any lipiodol accumulation at all.

  3. CT Scan Method Accurately Assesses Humeral Head Retroversion

    PubMed Central

    Boileau, P.; Mazzoleni, N.; Walch, G.; Urien, J. P.

    2008-01-01

    Humeral head retroversion is not well described with the literature controversial regarding accuracy of measurement methods and ranges of normal values. We therefore determined normal humeral head retroversion and assessed the measurement methods. We measured retroversion in 65 cadaveric humeri, including 52 paired specimens, using four methods: radiographic, computed tomography (CT) scan, computer-assisted, and direct methods. We also assessed the distance between the humeral head central axis and the bicipital groove. CT scan methods accurately measure humeral head retroversion, while radiographic methods do not. The retroversion with respect to the transepicondylar axis was 17.9° and 21.5° with respect to the trochlear tangent axis. The difference between the right and left humeri was 8.9°. The distance between the central axis of the humeral head and the bicipital groove was 7.0 mm and was consistent between right and left humeri. Humeral head retroversion may be most accurately obtained using the patient’s own anatomic landmarks or, if not, identifiable retroversion as measured by those landmarks on contralateral side or the bicipital groove. PMID:18264854

  4. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from a series of horizontal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  5. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from a series of horizontal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  6. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view depict horizontal slices from top to bottom of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  7. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the specimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. This view is made from three orthogonal slices. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: Los Alamos National Laboratory and the University of Colorado at Boulder).

  8. CT Scans of Soil Specimen Processed in Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CT scans of the spcimens on STS-79 reveal internal cone-shaped features and radial patterns not seen in specimens processed on the ground. The lighter areas are the densest in these images. CT scans produced richly detailed images allowing scientists to build 3D models of the interior of the specimens that can be compared with microscopic examination of thin slices. These views depict vertical slices from side to middle of a flight specimen. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: Los Alamos National Laboratory and the University of Colorado at Boulder.

  9. Flat panel CT detectors for sub-second volumetric scanning

    NASA Astrophysics Data System (ADS)

    Colbeth, Richard E.; Mollov, Ivan P.; Roos, Pieter G.; Shapiro, Edward G.

    2005-04-01

    This paper explores the potential of flat panel detectors in sub-second CT scanning applications. Using a PaxScan 4030CB with 600um thick CsI(Tl), a central section of the panel (16 to 32 rows), was scanned at frame rates up to 1000fps. Using this platform, fundamental issues related to high speed scanning were characterized. The offset drift of the imager over 60 seconds was found to be less than 0.014 ppm/sec relative to full scale. The gain stability over a 10 hour period is better than +/- .45%, which is at the resolution limit of the measurement. Two different types of lag measurements were performed in order to separate the photodiode array lag from the CsI afterglow. The panel lag was found to be 0.41% 1st frame and 0.054% 25th frame at 1000fps. The CsI(Tl) afterglow, however, is roughly an order of magnitude higher, dominating the lag for sub-second scans. At 1000fps the 1st frame lag due to afterglow was 3.3% and the 25th frame lag was 0.34%. Both the lag and afterglow are independent of signal level and each follows a simple power law evolution versus time. Reconstructions of anatomical phantoms and the CATPHAN 500 phantom are presented. With a 2 second, 1200 projection scan of the CATPHAN phantom at 600fps in 32 slice mode, using 120kVp and CTDI100 of 43.2mGy, 0.3% contrast resolution for a 6mm diameter target, can be visualized. In addition, 15lp/cm spatial resolution was achieved with a 2mm slice and a central CTDI100 of 10.8mGy.

  10. Multi-detector row CT scanning in Paleoanthropology at various tube current settings and scanning mode.

    PubMed

    Badawi-Fayad, J; Yazbeck, C; Balzeau, A; Nguyen, T H; Istoc, A; Grimaud-Hervé, D; Cabanis, E- A

    2005-12-01

    The purpose of this study was to determine the optimal tube current setting and scanning mode for hominid fossil skull scanning, using multi-detector row computed tomography (CT). Four fossil skulls (La Ferrassie 1, Abri Pataud 1, CroMagnon 2 and Cro-Magnon 3) were examined by using the CT scanner LightSpeed 16 (General Electric Medical Systems) with varying dose per section (160, 250, and 300 mAs) and scanning mode (helical and conventional). Image quality of two-dimensional (2D) multiplanar reconstructions, three-dimensional (3D) reconstructions and native images was assessed by four reviewers using a four-point grading scale. An ANOVA (analysis of variance) model was used to compare the mean score for each sequence and the overall mean score according to the levels of the scanning parameters. Compared with helical CT (mean score=12.03), the conventional technique showed sustained poor image quality (mean score=4.17). With the helical mode, we observed a better image quality at 300 mAs than at 160 in the 3D sequences (P=0.03). Whereas in native images, a reduction in the effective tube current induced no degradation in image quality (P=0.05). Our study suggests a standardized protocol for fossil scanning with a 16 x 0.625 detector configuration, a 10 mm beam collimation, a 0.562:1 acquisition mode, a 0.625/0.4 mm slice thickness/reconstruction interval, a pitch of 5.62, 120 kV and 300 mAs especially when a 3D study is required.

  11. Impact of PET-CT scan on management in upper gastrointestinal malignancy.

    PubMed

    Sharma, Aditya; Young, Michael

    2016-07-01

    Curative treatments of upper gastrointestinal (UGI) cancers carry significant morbidity and mortality. Therefore, accurate pre-treatment staging is important. PET-CT scan is an expensive modality, and not readily available in New Zealand. The aim of this study was to describe how PET-CT scan influences management in UGI cancer. This retrospective descriptive study included patients with UGI cancer with no evidence of metastatic disease on IV contrast CT scan, and those medically fit for curative treatment. Patients then underwent PET-CT scan. We defined influence or change in management if PET-CT showed metastatic disease or other lesions requiring further investigation. Seventy-nine patients were identified for the purposes of this study. Fifty-nine (74.7%) had CT scan showing no evidence of metastatic disease. Of these, PET-CT scan influenced management in 14 patients (23.7%) and found distant metastasis in eight patients (13.6%). The remaining 20 of 79 patients (25.3%) had CT scan showing indeterminate lesions. Of these, PET-CT scan influenced management in eight patients (40%), with metastatic disease seen in seven patients (35%). Our study confirms the value of PET-CT scan in pre-operative staging of UGI cancer. It had a greater impact on patients with intermediate lesions on staging CT.

  12. A study evaluating the dependence of the patient dose on the CT dose change in a SPECT/CT scan

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Hyun; Kim, Ho-Sung; Dong, Kyung-Rae; Chung, Woon-Kwan; Cho, Jae-Hwan; Shin, Jae-Woo

    2012-07-01

    This study assessed ways of reducing the patient dose by examining the dependence of the patient dose on the CT (computed tomography) dose in a SPECT (single-photon emission computed tomography)/CT scan. To measure the patient dose, we used Precedence 16 SPECT/CT along with a phantom for the CT dose measurement (CT dose phantom kit for adult's head and body, Model 76-414-4150), a 100-mm ionization chamber (CT Ion Chamber) and an X-ray detector (Victoreen Model 4000M+). In addition, the patient dose was evaluated under conditions similar to those for an actual examination using an ImPACT (imaging performance assessment of CT scanners) dosimetry calculator in the Monte Carlo simulation method. The experimental method involved the use of a CT dose phantom to measure the patient dose under different CT conditions (kVp and mAs) to determine the CTDI (CT dose index) under each condition. An ImPACT dosimetry calculator was also used to measure CTDIw (CT dose index water ), CTDIv (CT dose index volume ), DLP (dose-length product), and effective dose. According to the patient dose measurements using the CT dose phantom, the CTDI showed an approximately 54 fold difference between when the maximum (140 kVp and 250 mAs) and the minimum dose (90 kVp and 25 mAs) was used. The CTDI showed a 4.2 fold difference between the conditions (120 kVp and 200 mAs) used mainly in a common CT scan and the conditions (120 kVp and 50 mAs) used mainly in a SPECT/CT scan. According to the measurement results using the dosimetry calculator, the effective dose showed an approximately 35 fold difference between the conditions for the maximum and the minimum doses, as in the case with the CT dose phantom. The effective dose showed a 4.1 fold difference between the conditions used mainly in a common CT scan and those used mainly in a SPECT/CT scan. This study examined the patient dose by reducing the CT dose in a SPECT/CT scan. As various examinations can be conducted due to the development of

  13. CT scanning phantom for normalization of infant brain attenuation.

    PubMed

    Thompson, J R; Triolo, P J; Moore, R J; Hinshaw, D B; Hasso, A N

    1984-01-01

    The x-ray attenuation values of brain studied with computed tomography (CT) are strikingly affected by the ages of the subjects. Premature neonates, for example, may have brain attenuation values 20-30 H below adult values. These lower attenuation values for developing compared with adult brain can be ascribed partly to machine-related effects (beam-hardening, adult algorithms, scanning geometry, etc.). A scanning phantom made from aluminum was developed that can be used to develop a nomogram for any particular scanner from which normalized brain attenuation may be derived for any small head size. Using this nomogram, predicted neonatal attenuations are still 10-15 H higher than those actually observed in scanning neonates. The model predicts that, at the most, 3-4 H of this discrepancy can be accounted for by less beam-hardening from the lower bone attenuation of the thinner developing skull. Presumably, the rest is from a lower brain density in neonates (higher water content). By normalizing to cerebrospinal fluid (water) with special care to avoid partial-volume artifacts, one can predict attenuation values for developing brain more accurately.

  14. Orthogonal-rotating tetrahedral scanning for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Ye, Ivan B.; Wang, Ge

    2012-10-01

    In this article, a cone-beam CT scanning mode is designed assuming four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite to each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. Several scanning schemes are proposed which consist of two rotations about orthogonal axes, such that each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired. Similar scanning schemes based on other regular or irregular polyhedra and various rotation speeds are also discussed.

  15. Exploring miniature insect brains using micro-CT scanning techniques.

    PubMed

    Smith, Dylan B; Bernhardt, Galina; Raine, Nigel E; Abel, Richard L; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J

    2016-02-24

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures.

  16. Exploring miniature insect brains using micro-CT scanning techniques

    PubMed Central

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  17. Slowing the increase in the population dose resulting from CT scans.

    PubMed

    Brenner, D J

    2010-12-01

    The annual number of CT scans in the U.S. is now over 70 million. The concern is that organ doses from CT are typically far larger than those from conventional X-ray examinations, and there is epidemiological evidence of a small but significant increased cancer risk at typical CT doses. Because CT is a superb diagnostic tool and because individual CT risks are small, when a CT scan is clinically indicated, the CT benefit/risk balance is by far in the patient's favor. Nevertheless, CT should operate under the ALARA (As Low As Reasonably Achievable) principle, and opportunities exist to reduce the significant population dose associated with CT without compromising patient care. The first opportunity is to reduce the dose per scan, and improved technology has much potential here. The second opportunity is selective replacement of CT with other modalities, such as for many head and spinal examinations (with MRI), and for diagnosing appendicitis (selective use of ultrasound + CT). Finally, a fraction of CT scans could be avoided entirely, as indicated by CT decision rules: Clinical decision rules for CT use represent a powerful approach for slowing down the increase in CT use, because they have the potential to overcome some of the major factors that result in some CT scans being undertaken when they are potentially not clinically helpful. In the U.S. and potentially elsewhere, legislative approaches are a possible option, to improve quality control and reduce clinically unneeded CT use, and it is also possible that upcoming changes in heath care economics will tend to slow the increase in such CT use.

  18. Childhood CT scans linked to leukemia and brain cancer later in life

    Cancer.gov

    Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.

  19. 68Gallium-DOTATATE PET/CT Scanning Results in Patients with MEN1

    PubMed Central

    Sadowski, Samira M; Millo, Corina; Cottle-Delisle, Candice; Merkel, Roxanne; Yang, Lily A; Herscovitch, Peter; Pacak, Karel; Simonds, William F; Marx, Stephen J; Kebebew, Electron

    2015-01-01

    Background Screening for neuroendocrine tumors (NETs) in patients with multiple endocrine neoplasia type 1 (MEN1) is recommended to detect primary and metastatic tumors, which can result in significant morbidity and mortality. The utility of somatostatin receptor imaging 68Gallium-DOTATATE PET/CT in patients with MEN1 is not known. The aim of this study was to prospectively determine the accuracy of 68Gallium-DOTATATE PET/CT versus 111In-pentetreotide SPECT/CT and anatomic imaging in patients with MEN1. Study design Prospective study comparing 68Gallium-DOTATATE PET/CT, 111In-pentetreotide SPECT/CT, and triphasic CT scan to clinical, biochemical and pathological data in 26 patients with MEN1. Results 68Gallium-DOTATATE PET/CT detected 107 lesions; 111In- pentetreotide SPECT/CT detected 33 lesions; and CT scan detected 48 lesions. Lesions detected on 68Gallium-DOTATATE PET/CT had high SUVmax (median SUVmax = 72.8 [range 19–191]). In 7 of the 26 patients (27%), 68Gallium-DOTATATE PET/CT was positive with a negative 111In-pentetreotide SPECT/CT, and in 10 patients (38.5%), additional metastases were detected (range 0.3 cm to 1.5 cm). In 8 of the 26 patients (31%), there was a change in management recommendations as a result of the findings on 68Gallium-DOTATATE PET/CT that were not seen on 111In- pentetreotide SPECT/CT and CT scan. Conclusions 68Gallium-DOTATATE PET/CT is more sensitive for detecting NETs than 111In-pentetreotide SPECT/CT and CT scan in patients with MEN1. This imaging technique should be integrated into radiologic screening and surveillance of patients with MEN1, as it can significantly alter management recommendations. PMID:26206648

  20. Weightbearing CT scan of severe flexible pes planus deformities.

    PubMed

    Ferri, Melanie; Scharfenberger, Angela V; Goplen, Gord; Daniels, Timothy R; Pearce, Dawn

    2008-02-01

    The three-dimensional relationships of the bones in the foot in a flatfoot deformity are difficult to assess with standard radiographs. CT scans demonstrate these relationships but are typically made in a nonweightbearing mode. Our objective was to assess the use of a weightbearing CT apparatus to image the feet in patients with severe flexible pes planus deformities and to better define the anatomical changes that occur. A specialized device was designed and constructed to simulate weightbearing to the feet during CT examination. Eighteen normal feet and 30 painful severe and flexible pes planus feet were imaged in both the non weightbearing and weightbearing states, set at 50% of body weight. Several measurements of intertarsal relationships were made of the pes planus and normal feet. Navicular floor to skin distance, forefoot arch angle, and subtalar joint subluxation were measured in the coronal plane in both the weightbearing and nonweightbearing states. T-tests were used to analyze measurements of navicular floor to skin distance and forefoot arch angle. The weightbearing device had a significant effect on foot configuration for both normal and pes planus feet (p = 0.0008) and (p < 0.0001) respectively for both floor to skin distance and forefoot arch angle. There was a significant difference between normal feet and pes planus feet with regard to the forefoot arch angle in the nonweightbearing (p = 0.02) and weightbearing states (p = 0.01). Four of the pes planus patients had evidence of subtalar joint subluxation which was more pronounced in the weightbearing state. There was no significant difference between the navicular floor to skin distance in the normal versus pes planus feet in either the non weightbearing (p = 0.05) or the weightbearing states (p = 0.07). A device was designed and constructed to apply a weightbearing load equal to that of 50% body weight with minimal to no patient discomfort. The resultant effects on foot configuration were

  1. Use of PET/CT scanning in cancer patients: technical and practical considerations

    PubMed Central

    2005-01-01

    This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023

  2. Automatic colon segmentation with dual scan CT colonography.

    PubMed

    Li, Hong; Santago, Peter

    2005-03-01

    We present a fully automated three-dimensional (3-D) segmentation algorithm to extract the colon lumen surface in CT colonography. Focusing on significant-size polyp detection, we target at an efficient algorithm that maximizes overall colon coverage, minimizes the extracolonic components, maintains local shape accuracy, and achieves high segmentation speed. Two-dimensional (2-D) image processing techniques are employed first, resulting in automatic seed placement and better colon coverage. This is followed by near-air threshold 3-D region-growing using an improved marching-cubes algorithm, which provides fast and accurate surface generation. The algorithm constructs a well-organized vertex-triangle structure that uniquely employs a hash table method, yielding an order of magnitude speed improvement. We segment two scans, prone and supine, independently and with the goal of improved colon coverage. Both segmentations would be available for subsequent polyp detection systems. Segmenting and analyzing both scans improves surface coverage by at least 6% over supine or prone alone. According to subjective evaluation, the average coverage is about 87.5% of the entire colon. Employing near-air threshold and elongation criteria, only 6% of the data sets include extracolonic components (EC) in the segmentation. The observed surface shape accuracy of the segmentation is adequate for significant-size (6 mm) polyp detection, which is also verified by the results of the prototype detection algorithm. The segmentation takes less than 5 minutes on an AMD 1-GHz single-processor PC, which includes reading the volume data and writing the surface results. The surface-based segmentation algorithm is practical for subsequent polyp detection algorithms in that it produces high coverage, has a low EC rate, maintains local shape accuracy, and has a computational efficiency that makes real-time polyp detection possible. A fully automatic or computer-aided polyp detection system using this

  3. Knowledge Representation Of CT Scans Of The Head

    NASA Astrophysics Data System (ADS)

    Ackerman, Laurens V.; Burke, M. W.; Rada, Roy

    1984-06-01

    We have been investigating diagnostic knowledge models which assist in the automatic classification of medical images by combining information extracted from each image with knowledge specific to that class of images. In a more general sense we are trying to integrate verbal and pictorial descriptions of disease via representations of knowledge, study automatic hypothesis generation as related to clinical medicine, evolve new mathematical image measures while integrating them into the total diagnostic process, and investigate ways to augment the knowledge of the physician. Specifically, we have constructed an artificial intelligence knowledge model using the technique of a production system blending pictorial and verbal knowledge about the respective CT scan and patient history. It is an attempt to tie together different sources of knowledge representation, picture feature extraction and hypothesis generation. Our knowledge reasoning and representation system (KRRS) works with data at the conscious reasoning level of the practicing physician while at the visual perceptional level we are building another production system, the picture parameter extractor (PPE). This paper describes KRRS and its relationship to PPE.

  4. Thoracic CT scanning for mediastinal Hodgkin's disease: results and therapeutic implications

    SciTech Connect

    Rostock, R.A.; Siegelman, S.S.; Lenhard, R.E.; Wharam, M.D.; Order, S.E.

    1983-10-01

    Thoracic CT scans were performed on 42 newly diagnosed patients with Hodgkin's disease. Five of 10 patients with negative chest X ray (CXR) had abnormal thoracic CT scans. Among the remaining 32 patients with mediastinal Hodgkin's disease (MHD) on CXR, pericardial (Ep) and chest wall invasion (Ec) were the two most common sites of involvement which were detectable by CT scan alone. Ep and Ec accounted for 16 of 19 of the changes in treatment portal or philosophy based on CT scan findings. Because of the high risk of cardiac or pulmonary radiation toxicity in Ep or Ec, radiation treatment alone may be inadequate. Treatment of mediastinal Hodgkin's disease is reviewed here. The use of CT scans for identification of Ep, Ec, and other abnormalities will allow for more precise treatment, further define the use of conventional radiotherapy, combined modality therapy or whole lung irradiation, and allow more accurate analysis of treatment results.

  5. Study on Neurological Manifestations of Eclampsia & Findings of CT scan of Brain.

    PubMed

    Begum, F; Nahar, K; Ahmed, M U; Ferdousi, R A; Akter, F A; Rahman, M M

    2015-10-01

    This cross sectional study was carried out in the Department of Obstetrics & Gynaecology in Mymensingh Medical College Hospital during the period of January 2011 to December 2012 to evaluate neurological manifestations in eclampsia by CT scan of brain. A total 35 patients with eclampsia were studied, who underwent CT scan of brain in Radiology & Imaging Department of Mymensingh Medical College Hospital. The study patients were divided into two groups, those who had changes in brain on CT scan (Group A) & those who had no changes in brain on CT scan (Group B). Finally the study variables were compared between these two groups. Each selected patient fulfilling the criteria was sent to the department of Radiology & Imaging for CT scanning of brain. In antepartum cases of eclampsia CT scan of brain were done after delivery/ termination of pregnancy. In all cases, CT scan of brain was done within 72 hours of admission. Out of 35 patients total 85.72% had changes in brain on CT scan & 14.28% had no changes in brain on CT scan. Among them 45.72% patients had cerebral oedema, 37.14% had cerebral infarct & 2.86% patients had intracerebral haemorrhage. Comparison of neurological parameters were done & showed that there were statistically significant difference between the two groups regarding headache, visual disturbance, hypereflexia & depression of consciousness. There was no statistically significant difference regarding aphasia & hemiplegia between the two groups. So the CT scan of brain has been useful in demonstrating the lesion of brain in patients with eclampsia & also helpful to evaluate the neurological manifestations in eclampsia.

  6. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    SciTech Connect

    Neuwelt, E.A.; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-10-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. In eight of the 19 patients who had seizures after barrier disruption and enhanced CT scan, four subsequently had repeat procedures monitored by radionuclide scan alone. In only one of these patients was further seizure activity noted; a single focal motor seizure was observed. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented.

  7. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    PubMed

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  8. Immediate total-body CT scanning versus conventional imaging and selective CT scanning in patients with severe trauma (REACT-2): a randomised controlled trial.

    PubMed

    Sierink, Joanne C; Treskes, Kaij; Edwards, Michael J R; Beuker, Benn J A; den Hartog, Dennis; Hohmann, Joachim; Dijkgraaf, Marcel G W; Luitse, Jan S K; Beenen, Ludo F M; Hollmann, Markus W; Goslings, J Carel

    2016-08-13

    Published work suggests a survival benefit for patients with trauma who undergo total-body CT scanning during the initial trauma assessment; however, level 1 evidence is absent. We aimed to assess the effect of total-body CT scanning compared with the standard work-up on in-hospital mortality in patients with trauma. We undertook an international, multicentre, randomised controlled trial at four hospitals in the Netherlands and one in Switzerland. Patients aged 18 years or older with trauma with compromised vital parameters, clinical suspicion of life-threatening injuries, or severe injury were randomly assigned (1:1) by ALEA randomisation to immediate total-body CT scanning or to a standard work-up with conventional imaging supplemented with selective CT scanning. Neither doctors nor patients were masked to treatment allocation. The primary endpoint was in-hospital mortality, analysed in the intention-to-treat population and in subgroups of patients with polytrauma and those with traumatic brain injury. The χ(2) test was used to assess differences in mortality. This trial is registered with ClinicalTrials.gov, number NCT01523626. Between April 22, 2011, and Jan 1, 2014, 5475 patients were assessed for eligibility, 1403 of whom were randomly assigned: 702 to immediate total-body CT scanning and 701 to the standard work-up. 541 patients in the immediate total-body CT scanning group and 542 in the standard work-up group were included in the primary analysis. In-hospital mortality did not differ between groups (total-body CT 86 [16%] of 541 vs standard work-up 85 [16%] of 542; p=0.92). In-hospital mortality also did not differ between groups in subgroup analyses in patients with polytrauma (total-body CT 81 [22%] of 362 vs standard work-up 82 [25%] of 331; p=0.46) and traumatic brain injury (68 [38%] of 178 vs 66 [44%] of 151; p=0.31). Three serious adverse events were reported in patients in the total-body CT group (1%), one in the standard work-up group (<1%), and

  9. Course and variation of the intercostal artery by CT scan.

    PubMed

    Helm, Emma J; Rahman, Najib M; Talakoub, Omid; Fox, Danial L; Gleeson, Fergus V

    2013-03-01

    It is conventionally taught that the intercostal artery is shielded in the intercostal groove of the superior rib. The continuous course and variability of the intercostal artery, and factors that may influence them, have not been described in a large number of arteries in vivo. Maximal intensity projection reformats in the coronal plane were produced from CT scan pulmonary angiograms to identify the posterolateral course of the intercostal artery (seventh to 11th rib spaces). A novel semiautomated computer segmentation algorithm was used to measure distances between the lower border of the superior rib, the upper border of the inferior rib, and the position of the intercostal artery when exposed in the intercostal space. The position and variability of the artery were analyzed for association with clinical factors. Two hundred ninety-eight arteries from 47 patients were analyzed. The mean lateral distance from the spine over which the artery was exposed within the intercostal space was 39 mm, with wide variability (SD, 10 mm; 10th-90th centile, 28-51 mm). At 3 cm lateral distance from the spine, 17% of arteries were shielded by the superior rib, compared with 97% at 6 cm. Exposed artery length was not associated with age, sex, rib space, or side. The variability of arterial position was significantly associated with age (coefficient, 0.91; P < .001) and rib space number (coefficient, - 2.60; P < .001). The intercostal artery is exposed within the intercostal space in the first 6 cm lateral to the spine. The variability of its vertical position is greater in older patients and in more cephalad rib spaces.

  10. SU-F-I-32: Organ Doses from Pediatric Head CT Scan

    SciTech Connect

    Liu, H; Liu, Q; Qiu, J; Zhuo, W; Majer, M; Knezevic, Z; Miljanic, S; Hrsak, H

    2016-06-15

    Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the top of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)

  11. Hepatocellular nodules in liver cirrhosis: state of the art CT evaluation (perfusion CT/volume helical shuttle scan/dual-energy CT, etc.).

    PubMed

    Okada, Masahiro; Kim, Tonsok; Murakami, Takamichi

    2011-06-01

    The purpose of this article is to explain the role of advanced liver CT imaging, including perfusion CT, dual-energy CT, and volume helical shuttle (VHS) scanning, with regard to its clinical applications. Perfusion CT is a promising method for calculating hepatic blood flow and portal blood flow, including microcirculation, using a color-encoded display of parameters obtained from the liver time-density curve, with iodine contrast agent. Tumor angiogenesis and assessment of the response to antiangiogenesis treatment (e.g., Sorafenib) can be analyzed by perfusion CT of the liver. VHS scan has very high temporal resolution due to the reciprocating movement employed during scanning, enabling the acquisition of 24 scans of the whole liver in the arterial dominant phase during a 40-s breath hold, and a reduction in radiation dose. Dual-energy CT enables differentiation of materials and tissues based on their CT density values, using two different energy spectra. This method includes a low tube voltage CT technique that increases the contrast enhancement of vascular structures while simultaneously reducing radiation dose. Images obtained at the preferred settings of low tube voltage and high tube current, with dose reduction in the hepatic arterial phase, are useful for detecting hypervascular hepatocellular carcinoma.

  12. A Simple Low-dose X-ray CT Simulation from High-dose Scan.

    PubMed

    Zeng, Dong; Huang, Jing; Bian, Zhaoying; Niu, Shanzhou; Zhang, Hua; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2015-10-01

    Low-dose X-ray computed tomography (CT) simulation from high-dose scan is required in optimizing radiation dose to patients. In this study, we propose a simple low-dose CT simulation strategy in sinogram domain using the raw data from high-dose scan. Specially, a relationship between the incident fluxes of low- and high- dose scans is first determined according to the repeated projection measurements and analysis. Second, the incident flux level of the simulated low-dose scan is generated by properly scaling the incident flux level of high-dose scan via the determined relationship in the first step. Third, the low-dose CT transmission data by energy integrating detection is simulated by adding a statistically independent Poisson noise distribution plus a statistically independent Gaussian noise distribution. Finally, a filtered back-projection (FBP) algorithm is implemented to reconstruct the resultant low-dose CT images. The present low-dose simulation strategy is verified on the simulations and real scans by comparing it with the existing low-dose CT simulation tool. Experimental results demonstrated that the present low-dose CT simulation strategy can generate accurate low-dose CT sinogram data from high-dose scan in terms of qualitative and quantitative measurements.

  13. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    SciTech Connect

    Alva-Sánchez, Héctor

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  14. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  15. Cervical spine evaluation in urban trauma centers: lowering institutional costs and complications through helical CT scan.

    PubMed

    Grogan, Eric L; Morris, John A; Dittus, Robert S; Moore, Derek E; Poulose, Benjamin K; Diaz, Jose J; Speroff, Theodore

    2005-02-01

    In the evaluation of the cervical spine (c-spine), helical CT scan has higher sensitivity and specificity than plain radiographs in the moderate- and high-risk trauma population, but is more costly. We hypothesize that institutional costs associated with missed injuries make helical CT scan the least costly approach. A cost-minimization study was performed using decision analysis examining helical CT scan versus radiographic evaluation of the c-spine. Parameter estimates were obtained from the literature for probability of c-spine injury, probability of paralysis after missed injury, plain film sensitivity and specificity, CT scan sensitivity and specificity, and settlement cost of missed injuries resulting in paralysis. Institutional costs of CT scan and plain radiography were used. Sensitivity analyses tested robustness of strategy preference, accounted for parameter variability, and determined threshold values for individual parameters on strategy preference. C-spine evaluation with helical CT scan has an expected cost of US 554 dollars per patient compared with US 2,142 dollars for plain films. CT scan is the least costly alternative if threshold values exceed US 58,180 dollars for institutional settlement costs, 0.9% for probability of c-spine fracture, and 1.7% for probability of paralysis. Plain films are least costly if CT scan costs surpass US 1,918 dollars or plain film sensitivity exceeds 90%. Helical CT scan is the preferred initial screening test for detection of cervical spine fractures among moderate- to high-risk patients seen in urban trauma centers, reducing the incidence of paralysis resulting from false-negative imaging studies and institutional costs, when settlement costs are taken into account.

  16. The Beatles, the Nobel Prize, and CT scanning of the chest.

    PubMed

    Goodman, Lawrence R

    2010-01-01

    From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.

  17. CT scan and the pediatric trauma patient--are we overdoing it?

    PubMed

    Fenton, Stephen J; Hansen, Kris W; Meyers, Rebecka L; Vargo, Daniel J; White, Keith S; Firth, Sean D; Scaife, Eric R

    2004-12-01

    Recent literature expresses concern for an increased risk of cancer in children exposed to low-dose radiation during computed tomography (CT). In response, children's hospitals have implemented the ALARA (as low as reasonably achievable) concept, but this is not true at most adult referring institutions. The purpose of this study was to assess the diagnostic necessity of CT in the evaluation of pediatric trauma patients. A retrospective review was conducted of the trauma database at a large, level I, freestanding children's hospital with specific attention to the pattern of CT evaluations. From January 1999 to October 2003, 1,653 children with traumatic injuries were evaluated by the trauma team, with 1,422 patients undergoing 2,361 CT scans. Overall, 54% of obtained scans were interpreted as normal. Fifty percent of treated patients were transferred from referring hospitals. Approximately half arrived with previous CT scans with 9% of these requiring further imaging. Of the 897 patients that underwent abdominal CT imaging, only 2% were taken to the operating room for an exploratory laparotomy. In addition, of those patients who had abnormal findings on an abdominal CT scan, only 5% underwent surgical exploration. CT scans are used with regularity in the initial evaluation of the pediatric trauma patient, and perhaps abdominal CT imaging is being used too frequently. A substantial number of these scans come from referral institutions that may not comply with ALARA. The purported risk of CT radiation questions whether a more selective approach to CT evaluation of the trauma patient should be considered.

  18. Aortic valve calcification - a commonly observed but frequently ignored finding during CT scanning of the chest.

    PubMed

    Raju, Prashanth; Sallomi, David; George, Bindu; Patel, Hitesh; Patel, Nikhil; Lloyd, Guy

    2012-06-01

    To describe the frequency and severity of Aortic valve calcification (AVC) in an unselected cohort of patients undergoing chest CT scanning and to assess the frequency with which AVC was being reported in the radiology reports. Consecutive CT scan images of the chest and the radiological reports (December 2009 to May 2010) were reviewed at the district general hospital (DGH). AVC on CT scan was visually graded on a scale ranging from 0 to IV (0 = no calcification, IV = severe calcification). Total of 416 (232 male; 184 female) CT chest scans [Contrast enhanced 302 (72%), unenhanced 114 (28%)] were reviewed. Mean age was 70.55 ± 11.48 years. AVC in CT scans was identified in 95 of the 416 patients (22.83%). AVC classification was as follows: Grade I: 60 (63.15%), Grade II: 22 (23.15%), Grade III: 9 (9.47%), Grade IV: 4 (4.21%). Only one CT report mentioned AVC. Only 31 of 95 AVC had Transthoracic echocardiogram (TTE). The interval time between CT scan and TTE was variable.   Aortic valve calcification in CT chest scans is a common finding and studies have shown that it is strongly related to the presence and severity of aortic valve disease. As CT scans are considered as a valuable additional screening tool for detection of aortic stenosis, AVC should always be commented upon in the radiology reports. Furthermore, patients with at least Grade III and IV AVC should be sent for TTE. © 2012 Blackwell Publishing Ltd.

  19. Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Ching; Yu, Jhih-An; Yang, Bang-Hung; Wu, Tung-Hsin

    2013-12-01

    We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kVp with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kVp HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kVp LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.

  20. Image quality and dose comparison among screen-film, computed, and CT scanned projection radiography: applications to CT urography.

    PubMed

    McCollough, C H; Bruesewitz, M R; Vrtiska, T J; King, B F; LeRoy, A J; Quam, J P; Hattery, R R

    2001-11-01

    To evaluate image quality and dose for abdominal imaging techniques that could be used as part of a computed tomographic (CT) urographic examination: screen-film (S-F) radiography or computed radiography (CR), performed with moving and stationary grids, and CT scanned projection radiography (CT SPR). An image quality phantom underwent imaging with moving and stationary grids with both a clinical S-F combination and CR plate. CT SPR was performed with six CT scanners at various milliampere second and kilovolt peak settings. Entrance skin exposure (ESE); spatial, contrast, and temporal resolutions; geometric accuracy; and artifacts were assessed. S-F or CR images, with either grid, provided image quality equivalent to that with the clinical standard, S-F with a moving grid. ESE values for both S-F and CR were 435 mR (112.2 microC/kg [1 mR = 0.258 microC/kg]) with a moving grid and 226 mR (58.3 microC/kg) with a stationary grid. All CT SPR images provided inferior spatial resolution compared with S-F or CR images. High-contrast objects generated substantial artifacts on CT SPR images. Compared with S-F, CR and CT SPR provided improved resolution of small low-contrast objects. The contrast between iodine and soft-tissue-mimicking structures on CT SPR images acquired at 80 kVp was twice that at 120 kVp. CT SPR images with acceptable noise levels required a midline ESE value of approximately 300 mR (77.4 microC/kg) at 80 kVp. S-F and CR provided better spatial resolution than did CT SPR. However, CT SPR provided improved low-contrast resolution compared with S-F, at exposures comparable to those used for S-F or CR.

  1. Do we need a new CT scan for retreatment of intracranial SRS patients?

    PubMed

    Wiant, David; Manning, Matthew; Koch, Kyle; Maurer, Jacqueline; Hayes, Lane; Liu, Han; Shang, Qingyang; Sintay, Benjamin

    2017-09-01

    To determine if the treatment planning computed tomography scan (CT) from an initial intracranial stereotactic radiosurgery (SRS) treatment can be used for repeat courses of SRS. Twenty-five patients with 40 brain metastases that received multiple courses of SRS were retrospectively studied. Magnetic resonance scans from repeat SRS (rMR) courses were registered to CT scans from the initial SRS (iCT) and repeat SRS (rCT). The CT scans were then registered to find the displacement of the rMR between iCT and rCT registrations. The distance from each target to proximal skull surface was measured in 16 directions on each CT scan after registration. The mutual information (MI) coefficients from the registration process were used to evaluate image set similarity. Targets and plans from the rCTs were transferred to the iCTs, and doses were recalculated on the iCT for repeat plans. The two dose distributions were compared through 3D gamma analysis. The magnitude of the mean linear translations from the MR registrations was 0.6 ± 0.3 mm. The mean differences in distance from target to skull on a per target basis were 0.3 ± 0.2 mm. The MI was 0.582 ± 0.042. Registration between a comparison group of 30 CT scans that had the same data resampled and 30 scans that were intercompared with different patients gave MI = 0.721 ± 0.055 and MI = 0.359 ± 0.031, respectively. The mean gamma passing rates were 0.997 ± 0.007 for 1 mm/1% criteria. The rMR can be aligned to the iCT to accurately define targets. The skull shows minimal change between scans so the iCT can be used for set-up at repeat treatments. The dosimetry provided by the iCT dose calculation is adequate for repeat SRS. Treatment based on iCT is feasible. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    SciTech Connect

    Yin, Zhye De Man, Bruno; Yao, Yangyang; Wu, Mingye; Montillo, Albert; Edic, Peter M.; Kalra, Mannudeep

    2015-05-15

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies to achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.

  3. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning.

    PubMed

    Yin, Zhye; Yao, Yangyang; Montillo, Albert; Wu, Mingye; Edic, Peter M; Kalra, Mannudeep; De Man, Bruno

    2015-05-01

    Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies to achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors' pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.

  4. Concepts and Analyses in the CT Scanning of Root Systems and Leaf Canopies: A Timely Summary

    PubMed Central

    Lafond, Jonathan A.; Han, Liwen; Dutilleul, Pierre

    2015-01-01

    Non-medical applications of computed tomography (CT) scanning have flourished in recent years, including in Plant Science. This Perspective article on CT scanning of root systems and leaf canopies is intended to be of interest to three categories of readers: those who have not yet tried plant CT scanning, and should find inspiration for new research objectives; readers who are on the learning curve with applications—here is helpful advice for them; and researchers with greater experience—the field is evolving quickly and it is easy to miss aspects. Our conclusion is that CT scanning of roots and canopies is highly demanding in terms of technology, multidisciplinarity and big-data analysis, to name a few areas of expertise, but eventually, the reward for researchers is directly proportional! PMID:26734022

  5. Few CT Scan Abnormalities Found Even in Neurologically Impaired Learning Disabled Children.

    ERIC Educational Resources Information Center

    Denckla, Martha Bridge; And Others

    1985-01-01

    Most of 32 learning disabled children (seven to 14 years old) with neurological lateralization characteristics marked by right and left hemispheres had a normal CT (computerized tomography) scan. (CL)

  6. CT Scan Findings of Probable Usual Interstitial Pneumonitis Have a High Predictive Value for Histologic Usual Interstitial Pneumonitis

    PubMed Central

    Chawla, Ashish; Peljto, Anna L.; Cool, Carlyne D.; Groshong, Steve D.; Talbert, Janet L.; McKean, David F.; Brown, Kevin K.; Fingerlin, Tasha E.; Schwarz, Marvin I.; Schwartz, David A.; Lynch, David A.

    2015-01-01

    BACKGROUND: The current usual interstitial pneumonitis (UIP)/idiopathic pulmonary fibrosis CT scan classification system excludes probable UIP as a diagnostic category. We sought to determine the predictive effect of probable UIP on CT scan on histology and the effect of the promoter polymorphism in MUC5B (rs35705950) on histologic and CT scan UIP diagnosis. METHODS: The cohort included 201 subjects with pulmonary fibrosis who had lung tissue samples obtained within 1 year of chest CT scan. UIP diagnosis on CT scan was categorized as inconsistent with, indeterminate, probable, or definite UIP by two to three pulmonary radiologists. Tissue slides were scored by two expert pulmonary pathologists. All subjects with available DNA (N = 200) were genotyped for rs35705950. RESULTS: The proportion of CT scan diagnoses were as follows: inconsistent with (69 of 201, 34.3%), indeterminate (72 of 201, 35.8%), probable (34 of 201, 16.9%), and definite (26 of 201, 12.9%) UIP. Subjects with probable UIP on CT scan were more likely to have histologic probable/definite UIP than subjects with indeterminate UIP on CT scan (82.4% [28 of 34] vs 54.2% [39 of 72]; P = .01). CT scan and microscopic honeycombing were not associated with each other (P = .76). The minor (T) allele of the MUC5B polymorphism was associated with concordant CT scan and histologic UIP diagnosis (P = .03). CONCLUSIONS: Probable UIP on CT scan is associated with a higher rate of histologic UIP than indeterminate UIP on CT scan suggesting that they are distinct groups and should not be combined into a single CT scan category as currently recommended by guidelines. CT scan and microscopic honeycombing may be dissimilar entities. The T allele at rs35705950 predicts a UIP diagnosis by both chest CT scan and histology. PMID:25317858

  7. Dual energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-03-01

    Knowledge of the composition of urinary stones is an essential part to determine suitable treatments for patients. The aim of this research is to characterize the urinary stones by using dual energy micro CT SkyScan 11173. This technique combines high-energy and low- energy scanning during a single acquisition. Six human urinary stones were scanned in vitro using 80 kV and 120 kV micro CT SkyScan 1173. Projected images were produced by micro CT SkyScan 1173 and then reconstructed using NRecon (in-house software from SkyScan) to obtain a complete 3D image. The urinary stone images were analysed using CT analyser to obtain information of internal structure and Hounsfield Unit (HU) values to determine the information regarding the composition of the urinary stones, respectively. HU values obtained from some regions of interest in the same slice are compared to a reference HU. The analysis shows information of the composition of the six scanned stones obtained. The six stones consist of stone number 1 (calcium+cystine), number 2 (calcium+struvite), number 3 (calcium+cystine+struvite), number 4 (calcium), number 5 (calcium+cystine+struvite), and number 6 (calcium+uric acid). This shows that dual energy micro CT SkyScan 1173 was able to characterize the composition of the urinary stone.

  8. Micro computed tomography (CT) scanned anatomical gateway to insect pest bioinformatics

    USDA-ARS?s Scientific Manuscript database

    An international collaboration to establish an interactive Digital Video Library for a Systems Biology Approach to study the Asian citrus Psyllid and psyllid genomics/proteomics interactions is demonstrated. Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pic...

  9. Rifaximin suppresses background intestinal 18F-FDG uptake on PET/CT scans.

    PubMed

    Franquet, Elisa; Palmer, Mathew R; Gifford, Anne E; Selen, Daryl J; Chen, Yih-Chieh S; Sedora-Roman, Neda; Joyce, Robin M; Kolodny, Gerald M; Moss, Alan C

    2014-10-01

    Identification of cancer or inflammatory bowel disease in the intestinal tract by PET/computed tomography (CT) imaging can be hampered by physiological uptake of F-fluorodeoxyglucose (F-FDG) in the normal colon. Previous work has localized this F-FDG uptake to the intestinal lumen, predominantly occupied by bacteria. We sought to determine whether pretreatment with an antibiotic could reduce F-FDG uptake in the healthy colon. Thirty patients undergoing restaging PET/CT for nongastrointestinal lymphoma were randomly selected to receive rifaximin 550 mg twice daily for 2 days before their scan (post-rifaximin). Their PET/CT images were compared with those from their prior study (pre-rifaximin). Cecal maximum standard uptake value (SUVmax) and overall colonic F-FDG uptake were compared between scans. All PET/CT images were blindly scored by a radiologist. The same comparison of sequential scans was also undertaken in 30 patients who did not receive antibiotics. Thirty post-rifaximin scans were compared with 30 pre-rifaximin scans in the same patients. SUVmax in the cecum was significantly lower in the patient's post-rifaximin scans than in their pre-rifaximin scans (P=0.002). The percentage of scans with greater than grade 1 colonic F-FDG uptake was significantly lower in the post-rifaximin scans than in the pre-rifaximin scans (P<0.05). In contrast, there was no significant difference in the paired sequential scans from control patients, nor a reduction in the percentage of scans with greater than grade 1 colonic F-FDG uptake. This pilot study shows that treatment with rifaximin for 2 days before PET/CT scanning can significantly reduce physiological F-FDG uptake in the normal colonic lumen.

  10. Increase in dicentric chromosome formation after a single CT scan in adults.

    PubMed

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2015-09-09

    Excess risk of leukemia and brain tumors after CT scans in children has been reported. We performed dicentric chromosome assay (DCAs) before and after CT scan to assess effects of low-dose ionizing radiation on chromosomes. Peripheral blood (PB) lymphocytes were collected from 10 patients before and after a CT scan. DCA was performed by analyzing either 1,000 or 2,000 metaphases using both Giemsa staining and centromere-fluorescence in situ hybridization (Centromere-FISH). The increment of DIC formation was compared with effective radiation dose calculated using the computational dosimetry system, WAZA-ARI and dose length product (DLP) in a CT scan. Dicentric chromosome (DIC) formation increased significantly after a single CT scan, and increased DIC formation was found in all patients. A good correlation between the increment of DIC formation determined by analysis of 2,000 metaphases using Giemsa staining and those by 2,000 metaphases using Centromere-FISH was observed. However, no correlation was observed between the increment of DIC formation and the effective radiation dose. Therefore, these results suggest that chromosome cleavage may be induced by one CT scan, and we recommend 2,000 or more metaphases be analyzed in Giemsa staining or Centromere-FISH for DCAs in cases of low-dose radiation exposure.

  11. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR).

    PubMed

    Wang, Tonghe; Zhu, Lei

    2016-09-21

    Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets with two different energy spectra. In this study, we propose an iterative algorithm to enable a new data acquisition scheme which requires one full scan and a second sparse-view scan for potential reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a similarity matrix from the first full-scan CT image to quantify the similarity between any two pixels, which is assumed unchanged on a second CT image since DECT scans are performed on the same object. The second CT image from reduced projections is reconstructed by an iterative algorithm which updates the image by minimizing the total variation of the difference between the image and its filtered image by the similarity matrix under data fidelity constraint. As the redundant structural information of the two CT images is contained in the similarity matrix for CT reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). The proposed method is evaluated on both digital and physical phantoms, and is compared with the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based algorithm (TVR) and prior-image-constrained-compressed-sensing (PICCS). SPIR with a second 10-view scan reduces the image noise STD by a factor of one order of magnitude with same spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher frequency at the modulation transfer function value of 10% by an average factor of 4. Compared with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar spatial resolution. The electron density map obtained from the SPIR-based DECT images with a second 10-view scan has an

  12. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR)

    NASA Astrophysics Data System (ADS)

    Wang, Tonghe; Zhu, Lei

    2016-09-01

    Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets with two different energy spectra. In this study, we propose an iterative algorithm to enable a new data acquisition scheme which requires one full scan and a second sparse-view scan for potential reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a similarity matrix from the first full-scan CT image to quantify the similarity between any two pixels, which is assumed unchanged on a second CT image since DECT scans are performed on the same object. The second CT image from reduced projections is reconstructed by an iterative algorithm which updates the image by minimizing the total variation of the difference between the image and its filtered image by the similarity matrix under data fidelity constraint. As the redundant structural information of the two CT images is contained in the similarity matrix for CT reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). The proposed method is evaluated on both digital and physical phantoms, and is compared with the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based algorithm (TVR) and prior-image-constrained-compressed-sensing (PICCS). SPIR with a second 10-view scan reduces the image noise STD by a factor of one order of magnitude with same spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher frequency at the modulation transfer function value of 10% by an average factor of 4. Compared with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar spatial resolution. The electron density map obtained from the SPIR-based DECT images with a second 10-view scan has an

  13. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning

    SciTech Connect

    Neuwelt, E.A; Specht, H.D.; Howieson, J.; Haines, J.E.; Bennett, M.J.; Hill, S.A.; Frenkel, E.P.

    1983-10-01

    Results of initial clinical trials of brain tumor chemotherapy after osmotic blood-brain barrier disruption are promising. In general, the procedure is well tolerated. The major complication has been seizures. In this report, data are presented which indicate that the etiology of these seizures is related to the use of contrast agent (meglumine iothalamate) to monitor barrier modification. A series of 19 patients underwent a total of 85 barrier modification procedures. Documentation of barrier disruption was monitored by contrast-enhanced computed tomographic (CT) scanning, radionuclide brain scanning, or a combination of both techniques. In 56 procedures (19 patients) monitored by enhanced CT, seizures occurred a total of 10 times in eight patients. Twenty-three barrier modification procedures (in nine of these 19 patients) documented by nuclear brain scans alone, however, resulted in only one focal motor seizure in each of two patients. Clearly, the radionuclide brain scan does not have the sensitivity and spatial resolution of enhanced CT, but at present it appears safer to monitor barrier modification by this method and to follow tumor growth between barrier modifications by enhanced CT. Four illustrative cases showing methods, problems, and promising results are presented.

  14. Clinical predictors and recommendations for staging CT scan among men with prostate cancer

    PubMed Central

    Risko, Rachel; Merdan, Selin; Womble, Paul R.; Barnett, Christine; Ye, Zaojun; Linsell, Susan M.; Montie, James E.; Miller, David C.; Denton, Brian T.

    2016-01-01

    Objective To identify clinical variables associated with a positive CT scan and estimate the performance of imaging recommendations in patients from a diverse sample of urology practices. Materials and Methods This study comprised 2,380 men with newly diagnosed prostate cancer seen at 28 practices in the Michigan Urological Surgery Improvement Collaborative (MUSIC) from March 2012 through September 2013. Data included age, prostate-specific antigen (PSA) level, Gleason score (GS), clinical T-stage, total number of positive biopsy cores, whether or not the patient received a staging abdominal/pelvic CT scan, and the CT scan result. We fit a multivariable logistic regression model to identify clinical variables associated with metastases detected by CT scan. We estimated the sensitivity and specificity of existing imaging recommendations. Results Among 643 men (27.4%) who underwent a staging CT scan, 62 (9.6%) had a positive study. In the multivariable analysis, PSA, GS, and clinical T stage were independently associated with the occurrence of a positive CT scan (all p-values<0.05). American Urology Association Best Practice recommendations for imaging when PSA >20 or GS ≥8 or locally advanced cancer had a sensitivity of 87.3% and specificity of 82.6%. Compared to current practice, implementing this recommendation in the MUSIC population was estimated to result in approximately 0.5% of positive studies being missed, and 26.1% fewer studies overall. Conclusions Successful implementation of CT imaging criterion of PSA >20 or GS ≥8 or clinical stage ≥T3 would ensure that CT scans are performed for almost all men who would have positive studies while reducing the number of negative studies. PMID:25288575

  15. Cost analysis of management in acute appendicitis with CT scanning under a hospital global budgeting scheme.

    PubMed

    Lin, K-H; Leung, W-S; Wang, C-P; Chen, W-K

    2008-03-01

    CT scanning of the abdomen is a highly accurate diagnostic tool for acute appendicitis. However, it is still relatively expensive in Taiwan, especially in hospitals which have adopted a global budgeting scheme. The purpose of this study was to analyse the cost of the management of this disease with and without CT scanning. A retrospective observational study was undertaken from 1 January to 30 June 2005. Patients with a working diagnosis of "acute appendicitis", "acute appendicitis should be ruled out" and "differential diagnosis including acute appendicitis" were enrolled in the study. Patient demographic data, chief complaints, working diagnoses, laboratory data, CT reports, surgical findings and costs in the emergency department (ED) and ward were collected. A total of 266 patients were admitted to an ED with symptoms suggesting acute appendicitis. Of these, 207 underwent an emergency appendectomy. An abdominal CT scan was performed in 71% of patients with a diagnosis of "differential diagnosis including acute appendicitis", which was higher than in the other two diagnostic groups (18% and 60%). Patient age, high sensitivity C-reactive protein (hsCRP) concentration, ED stay, ED expenses and hospital stay were lower in the group that did not have a CT scan than in those who did. The net cost per patient with acute appendicitis in the group who underwent CT scanning was New Taiwan dollar (NT$)40,728, which was nearly equal to the net cost per patient in the group without CT scanning (NT$39,192). Routine CT scanning in patients with possible appendicitis is not necessary. History taking and physical examination combined with laboratory tests are still useful and cost-effective methods of diagnosing acute appendicitis.

  16. Utility of the CT Scan in Diagnosing Midgut Volvulus in Patients with Chronic Abdominal Pain

    PubMed Central

    Morshedi, Mehdi; Baradaran Jamili, Mohammad; Shafizadeh Barmi, Fatemeh

    2017-01-01

    Symptomatic intestinal malrotation first presenting in the adults is rare. Midgut volvulus is the most common complication of malrotation in the adults. Because of more differential diagnosis, Computed Tomography (CT) scan can play an important role in the evaluation of patients with this abnormality. The whirl pattern around the superior mesenteric artery found on CT scan in patients with midgut volvulus is pathognomonic and diagnostic. We describe a case of intestinal malrotation complicated by midgut volvulus in an adult patient. The preoperative CT findings were pathognomonic. PMID:28182093

  17. Co-registration of isotope bone scan with CT scan and MRI in the investigation of spinal pathology.

    PubMed

    Brazenor, Graeme A; Malham, Gregory M; Ballok, Zita E

    2014-09-01

    Image fusion software enables technetium(99m)-methylene diphosphonate (Tc(99m)-MDP) bone scan images to be co-registered with CT scan or MRI, allowing greater anatomical discrimination. We examined the role of bone scan images co-registered with CT scan or MRI in the investigation of patients presenting with axial spinal pain and/or limb pain. One hundred and thirty-nine consecutive patients were examined, and thereafter investigated with CT scan, MRI, and/or dynamic plain films. At this point diagnosis (pathology type and anatomical site) and treatment intention were declared. The co-registered Tc(99m)-MDP bone scan images were then studied, after which diagnosis (pathology type and anatomical site) and treatment intention were re-declared. This data were then analysed to determine whether the addition of co-registered bone scan images resulted in any change in diagnosis or treatment intention. The most significant change in diagnosis was pathology type (10%). Anatomical site changed markedly without overlap of the pre and post-isotope fields in 5%, and with overlap in 10%. Treatment intention had a major change in 3.6% and minor change in 8.6%. In the two groups where there was (i) no obvious pathology after full pre-isotope investigation, or (ii) a spinal fusion under suspicion, addition of the bone scan information led to a major change in the pathology and/or anatomical localisation in 18% and 19%, respectively. The addition of co-registered Tc(99m)-MDP bone scan images offers significant diagnostic assistance, particularly in the difficult diagnostic groups where a failed spinal fusion may be the suspected pain generator, or when no pain generator can otherwise be found. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Comparison of 4- and 64-slice CT scanning in the diagnosis of pulmonary embolism.

    PubMed

    Douma, Renée A; Hofstee, Herman M A; Schaefer-Prokop, Cornelia; van Waesberghe, Jan Hein T M; Lely, Rutger J; Kamphuisen, Pieter W; Gerdes, Victor E A; Kramer, Mark H H; Büller, Harry R

    2010-01-01

    With the introduction of multi-detector row CT (MDCT), sensitivity to diagnose pulmonary embolism (PE) has greatly improved. The use of newer generation CT-scans may lead to a higher prevalence and a different distribution of PE. We compared 64-slice with 4-slice MDCT regarding prevalence and distribution of PE, the number of inconclusive test results and inter-reader variability. CT-scans from a random sample of 110 consecutive patients who underwent 4-slice CT-scanning were compared with 64-slice CT-scans from 107 patients from a second cohort. Three radiologists independently reassessed all CT-scans. Consensus was reached in case of disagreement between the readers. Final diagnosis of PE was categorised as central, segmental or subsegmental by the thrombus' most proximal end. The prevalence of PE was 24% (26/110, 95% confidence interval [CI] 17-32%) and 22% (24/107, 16-31%) for the 4-slice and 64-slice cohort, respectively. The prevalence of isolated subsegmental emboli was 2/26 (7.7%; 2.1-24%) and 5/24 (21%; 9.2-41%), respectively (p=0.424). The number of inconclusive scans was 10% in both cohorts, mostly due to movement artefacts and suboptimal intravascular contrast, respectively. The inter-reader agreement between the three readers was 0.70 for the 4-slice scans and 0.68 for the 64-slice scans. Although absolute prevalence of PE was equal in both cohorts, there was a trend towards more subsegmental PE with 64-slice CT. In a multi-reader setting, the number of inconclusive examinations was higher than quoted for clinical management studies, indicating that the diagnosis of PE with MDCT could be less straightforward than assumed.

  19. Relationship between Hounsfield unit in CT scan and gray scale in CBCT

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Noorshaida; Rajion, Zainul Ahmad; Yusof, Asilah; Aziz, Mohd Ezane

    2016-12-01

    Cone-beam computed tomography (CBCT) is an imaging system which has advantages over computed tomography (CT). Recently, CBCT has become widely used for oral and maxillofacial imaging. In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present (in vitro) study was to investigate the relationship between gray scale in CBCT and HU in CT scan. In this descriptive study, the anthropomorphic head phantom was scanned with CBCT and CT scanner. Gray scales and HUs were detected on images at the crown of the teeth, trabecular and cortical bone of mandible. The images were analyzed to obtain the gray scale value and HU value. The obtained value then used to investigate the relationship between CBCT gray scales and HUs. For the statistical analysis, t-test, Pearson's correlation and regression analysis were used. The differences between the gray scale of CBCT and HU of CT were statistically not significant, whereas the Pearson's correlation coefficients demonstrated a statistically significant correlation between gray scale of CBCT and HU of CT values. Considering the fact that gray scale in CBCT is important in pre assessment evaluation of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan.

  20. Multimodal imaging of the human temporal bone: A comparison of CT and optical scanning techniques

    NASA Astrophysics Data System (ADS)

    Voie, Arne H.; Whiting, Bruce; Skinner, Margaret; Neely, J. Gail; Lee, Kenneth; Holden, Tim; Brunsden, Barry

    2003-10-01

    A collaborative effort between Washington University in St. Louis and Spencer Technologies in Seattle, WA has been undertaken to create a multimodal 3D reconstruction of the human cochlea and vestibular system. The goal of this project is to improve the accuracy of in vivo CT reconstructions of implanted cochleae, and to expand the knowledge of high-resolution anatomical detail provided by orthogonal-plane optical sectioning (OPFOS). At WUSL, computed tomography (CT) images of the cochlea are used to determine the position of cochlear implant electrodes relative to target auditory neurons. The cochlear implant position is determined using pre- and post-operative CT scans. The CT volumes are cross-registered to align the semicircular canals and internal auditory canal, which have a unique configuration in 3-D space. The head of a human body donor was scanned with a clinical CT device, after which the temporal bones were removed, fixed in formalin and trimmed prior to scanning with a laboratory Micro CT scanner. Following CT, the temporal bones were sent to the OPFOS Imaging Lab at Spencer Technologies for a further analysis. 3-D reconstructions of CT and OPFOS imaging modalities were compared, and results are presented. [Work supported by NIDCD Grants R44-03623-5 and R01-00581-13.

  1. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT.

    PubMed

    Razi, Tahmineh; Niknami, Mahdi; Alavi Ghazani, Fakhri

    2014-01-01

    Background and aims. Cone-beam computed tomography (CBCT) is an imaging system which has many advantages over computed tomography (CT). In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present study was to investigate the relationship between gray scale in CBCT) and Hounsfield Unit (HU) in CT scan. Materials and methods. In this descriptive study, the head of a sheep was scanned with 3 CBCT and one medical CT scanner. Gray scales and HUs were detected on images. Reconstructed data were analyzed to investigate relationship between CBCT gray scales and HUs. Results. A strong correlation between gray scales of CBCT and HUs of CT scan was determined. Conclusion. Considering the fact that gray scale in CBCT is the criteria in measurement of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan.

  2. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT

    PubMed Central

    Razi, Tahmineh; Niknami, Mahdi; Alavi Ghazani, Fakhri

    2014-01-01

    Background and aims. Cone-beam computed tomography (CBCT) is an imaging system which has many advantages over computed tomography (CT). In CT scan, Hounsfield Unit (HU) is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value). The aim of the present study was to investigate the relationship between gray scale in CBCT) and Hounsfield Unit (HU) in CT scan. Materials and methods. In this descriptive study, the head of a sheep was scanned with 3 CBCT and one medical CT scanner. Gray scales and HUs were detected on images. Reconstructed data were analyzed to investigate relationship between CBCT gray scales and HUs. Results. A strong correlation between gray scales of CBCT and HUs of CT scan was determined. Conclusion. Considering the fact that gray scale in CBCT is the criteria in measurement of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan. PMID:25093055

  3. Repeated CT scans in trauma transfers: An analysis of indications, radiation dose exposure, and costs.

    PubMed

    Hinzpeter, Ricarda; Sprengel, Kai; Wanner, Guido A; Mildenberger, Peter; Alkadhi, Hatem

    2017-03-01

    To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n=45,53%) and major body trauma (n=23;27%) not manageable in the referring hospital, repatriation from a foreign country (n=14;16.5%), and no ICU-capacity (n=3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n=29;39%), repetition of head CT with completion to WBCT (n=24;32.5%), and follow-up of known injury (n=21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81'304mGy*cm) and 35'233€, respectively. A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The disproportionate risk burden of CT scanning on females and younger adults in Australia: a retrospective cohort study.

    PubMed

    Gibson, David A; Moorin, Rachael E; Semmens, James; Holman, D'Arcy J

    2014-10-01

    To explore the interaction of computed tomography (CT) use, dose and radiation risk of Australian Medicare-funded CT scanning and the impact on cancer incidence and mortality. This retrospective cohort study used records of Medicare subsidised CT scans in Australia (2006/07 to 2011/12) and Australian CT dosimetry. The annual number, rate and adjusted likelihood of CT were determined for gender, age and examination type. Incident cancer and cancer-related mortality attributable to CT in Australia were estimated using lifetime attributable risk coefficients, dosimetry and scan numbers. The number of CT scans increased by 36% from 2006/07 to 2011/12. Only patients aged 0-4 years did not present an increase in CT scanning rates. Females were 11% more likely to be scanned than males. Head, abdomen/pelvis and spine CT scans were the most likely areas scanned. Females were attributed 61% of both incident cancers and cancer-related mortality from 55% of scans performed. Patients aged 15-44 years were attributed 37% of incident cancers and 30% of cancer-related mortality from 26% of CT scans. CT in Australia is increasing, including in groups at higher risk from ionising radiation. This presents a complex set of risk/benefit considerations for clinicians and policy makers. © 2014 Public Health Association of Australia.

  5. Scan-rescan reproducibility of CT densitometric measures of emphysema

    NASA Astrophysics Data System (ADS)

    Chong, D.; van Rikxoort, E. M.; Kim, H. J.; Goldin, J. G.; Brown, M. S.

    2011-03-01

    This study investigated the reproducibility of HRCT densitometric measures of emphysema in patients scanned twice one week apart. 24 emphysema patients from a multicenter study were scanned at full inspiration (TLC) and expiration (RV), then again a week later for four scans total. Scans for each patient used the same scanner and protocol, except for tube current in three patients. Lung segmentation with gross airway removal was performed on the scans. Volume, weight, mean lung density (MLD), relative area under -950HU (RA-950), and 15th percentile (PD-15) were calculated for TLC, and volume and an airtrapping mask (RA-air) between -950 and -850HU for RV. For each measure, absolute differences were computed for each scan pair, and linear regression was performed against volume difference in a subgroup with volume difference <500mL. Two TLC scan pairs were excluded due to segmentation failure. The mean lung volumes were 5802 +/- 1420mL for TLC, 3878 +/- 1077mL for RV. The mean absolute differences were 169mL for TLC volume, 316mL for RV volume, 14.5g for weight, 5.0HU for MLD, 0.66p.p. for RA-950, 2.4HU for PD-15, and 3.1p.p. for RA-air. The <500mL subgroup had 20 scan pairs for TLC and RV. The R2 values were 0.8 for weight, 0.60 for MLD, 0.29 for RA-950, 0.31 for PD-15, and 0.64 for RA-air. Our results indicate that considerable variability exists in densitometric measures over one week that cannot be attributed to breathhold or physiology. This has implications for clinical trials relying on these measures to assess emphysema treatment efficacy.

  6. Iofetamine HCI I-123 brain scanning in stroke: a comparison with transmission CT

    SciTech Connect

    Park, C.H.; Madsen, M.T.; McLellan, T.; Schwartzman, R.J.

    1988-03-01

    Although IMP scans fail to show fine anatomical details of the brain, because of poor resolution of a single head rotational system, adequate information is offered by the scans to localize most perfusion defects caused by stroke. The following conclusions can be drawn from our study: 1. The planar IMP brain scans processed through the computer are sensitive in the early diagnosis of acute stroke except for small and deeply localized lesions. 2. The SPECT IMP imaging is more sensitive than the planar or transmission CT scans in the early diagnosis of stroke. Semiquantitative evaluations are feasible with IMP SPECT. 3. Neither transmission CT nor IMP SPECT are sensitive in the detection of acute lacunar infarcts. 4. In acute infarction, the transmission CT is usually negative or minimally positive in the early stages, while impaired uptake of IMP occurs immediately after the onset of the stroke. In acute stroke, the extent of the perfusion defect on IMP is usually greater than the abnormality seen on the transmission CT. 5. On followup studies, IMP scans show improved perfusion reflecting physiologic changes, while transmission CT scans show further dense anatomical changes when compared to the initial studies. 6. Hyperemic changes are likely due to collateral circulation or luxury perfusion. This finding suggests that the IMP reflects local cerebral blood flow in strokes.

  7. The evolution of a brain abscess the complementary roles of radionuclide (RN) and computed tomography (CT) scans

    SciTech Connect

    Masucci, E.F.; Sauerbrunn, B.J.

    1982-04-01

    Serial /sup 99m/Tc glucoheptonate brain scans demonstrated a brain abscess in a patient from the earliest phase of acute focal encephalitis (cerebritis) through the capsule formation and the recovery phase. The role of the RN and CT scans in the diagnosis of the early stage of cerebritis and the complementary nature of RN and CT scans in intracranial infections, particularly abscesses, are discussed. Guidelines for the use of RN and CT scans are suggested.

  8. [Volumetric CT scanning: 2D and 3D reconstruction].

    PubMed

    Ferretti, G-R; Jankowski, A

    2010-12-01

    This review aims to present the 2D and 3D reconstructions derived from high-resolution volume CT acquisitions and to illustrate their thoracic applications, as well as showing the interest and limitations of these techniques. We present new applications for computer-assisted detection (CAD) and tools for quantification of pulmonary lesions. Copyright © 2010 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  9. Derivation and validation of a CT scan scoring system for discriminating malignant from benign pleural effusions.

    PubMed

    Porcel, José M; Pardina, Marina; Bielsa, Silvia; González, Antonio; Light, Richard W

    2015-02-01

    Chest CT scanning has become an integral part of the workup for undiagnosed pleural effusions. We aimed to develop a CT scan-based scoring system for differentiating between benign and malignant pleural effusions. A number of chest CT scan abnormalities were compared between 228 patients with benign and 115 with malignant effusions (derivation cohort). A logistic regression analysis was used to identify the independent predictors of malignancy and generate CT scan scores, with more points assigned to those findings associated with higher β-coefficient values. The diagnostic accuracy of the CT scan scoring system was calculated for the derivation cohort and further evaluated in two independent populations (n = 80 and 42, respectively) by two radiologists. CT scan scores predicting malignancy included any pleural lesion (ie, nodule, mass, or thickening) ≥ 1 cm (5 points); the presence of liver metastases, an abdominal mass, or a lung mass or nodule ≥ 1 cm (3 points each); and the absence of either pleural loculations, pericardial effusions, or cardiomegaly (2 points each). In the first validation cohort, a sum score of ≥ 7 yielded a sensitivity of 88% (95% CI, 73%-95%), specificity of 94% (95% CI, 83%-98%), likelihood ratio positive of 13.8 (95% CI, 4.6-41.5), likelihood ratio negative of 0.13 (95% CI, 0.05-0.33), and area under the receiver operating characteristics curve of 0.919 (95% CI, 0.849-0.990). Moreover, 69% of 42 patients with pathologically unconfirmed malignant effusions from a second independent cohort would have been correctly labeled by the predictive score. A simple CT scan-based scoring system can help physicians to separate malignant from benign pleural effusions.

  10. CT of multiple sclerosis: reassessment of delayed scanning with high doses of contrast material

    SciTech Connect

    Spiegel, S.M.; Vinuela, F.; Fox, A.J.; Pelz, D.M.

    1985-09-01

    A prospective study involving 87 patients was carried out to evaluate the necessity for a high dose of contrast material in addition to delayed computed tomographic (CT) scanning for optimal detection of the lesions of multiple sclerosis in the brain. In patients with either clinically definite multiple sclerosis or laboratory-supported definite multiple sclerosis, CT scans were obtained with a uniform protocol. Lesions consistent with multiple sclerosis were demonstrated on the second scan in 54 patients. In 36 of these 54 patients, the high-dose delayed scan added information. These results are quite similar to those of a previous study from this institution using different patients, in whom the second scan was obtained immediately after the bolus injection of contrast material containing 40 g of organically bound iodine. The lack of real difference in the results of the two studies indicate that the increased dose, not just the delay in scanning, is necessary for a proper study.

  11. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis.

    PubMed

    Loizidou, Eriketi Z; Inoue, Nicholas T; Ashton-Barnett, Johnny; Barrow, David A; Allender, Chris J

    2016-10-01

    Computerized tomography scan (CT scan) imaging and finite element analysis were employed to investigate how the geometric composition of microneedles affects their mechanical strength and penetration characteristics. Simulations of microneedle arrays, comprising triangular, square and hexagonal microneedle base, revealed a linear dependence of the mechanical strength to the number of vertices in the polygon base. A laser-enabled, micromoulding technique was then used to fabricate 3×3 microneedle arrays, each individual microneedle having triangular, square or hexagonal base geometries. Their penetration characteristics into ex-vivo porcine skin, were investigated for the first time by CT scan imaging. This revealed greater penetration depths for the triangular and square-based microneedles, demonstrating CT scan as a powerful and reliable technique for studying microneedle skin penetration.

  12. Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans

    NASA Astrophysics Data System (ADS)

    Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun

    2016-12-01

    Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.

  13. Application of offset-CT scanning to the inspection of high power feeder lines and connections

    NASA Astrophysics Data System (ADS)

    Schneberk, Daniel; Maziuk, Robert; Soyfer, Boris; Shashishekhar, N.; Alreja, Rahul

    2016-02-01

    VJT is developing techniques and scanning methods for the in-situ Radiographic and Computed Tomographic inspection of underground high-power feeder cables. The goals for the inspection are to measure the 3D state of the cables and the cable-connections. Recent in-situ Digital Radiographic inspections performed by VJT have demonstrated the value of NDE inspection information for buried power lines. These NDE data have raised further questions as to the exact state of the cables and connections and pointed to the need for more 3D information of the type provided by volumetric CT scanning. VJT is pursuing a three phased approach to address the many issues involved in this type of inspection: 1) develop a high-power feeder-cable test-bed CT scanner, 2) acquire scans on underground feeder pipes that have been removed from service, and 3) from the work in 1) and 2) develop limited-angle CT scanning methods for extending in-situ Digital Radiography to volumetric CT measurements. To this end, VJT has developed and fielded a high-energy test-bed Gantry-type CT scanner (the source and detector move around the object) with a number of important properties. First, the geometry of the gantry-scans can be configured to match the techniques used in the in-situ radiographic inspection. The same X-ray source is employed as in portable Radiographic inspections, a 7.5 MeV Betatron coupled to a Perkin-Elmer Amorphous Silicon detector. Offset-CT scanning is employed as the high-power feeder line assembly is larger than the detector. A description of this scanner and the scan geometry will be presented showing the connection to in-situ radiography. Results from the CT scans of high-power feeder-cable specimens removed from service will be presented with a focus on the inspection potential of volumetric CT data on these assemblies. An evaluation of the scan performance properties of these data compared to the spectrum of life-cycle inspection issues will be presented. Continuing and

  14. Reduction in radiation doses from paediatric CT scans in Great Britain.

    PubMed

    Lee, Choonsik; Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy

    2016-01-01

    Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. We retrieved 1073 CT film sets from 36 hospitals. The patients were 0-19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current-time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0-4, 5-9, 10-14 and 15-19 years) and scan year (<1990, 1990-1994, 1995-1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0-4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0-4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. We found that mAs for

  15. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    NASA Astrophysics Data System (ADS)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  16. Trends in CT scan rates in children and pregnant women: teaching, private, public and nonprofit facilities.

    PubMed

    Hoshiko, Sumi; Smith, Daniel; Fan, Cathyn; Jones, Carrie R; McNeel, Sandra V; Cohen, Ronald A

    2014-05-01

    Radiation exposure from medical sources now equals or exceeds that from natural background sources, largely attributable to a 20-fold increase in CT use since 1980. Increasing exposure to children and fetuses is of most concern due to their heightened susceptibility. More recently, CT use may be leveling or decreasing, but it is unclear whether this change is widespread or varies by type of institution. We sought to characterize trends in CT utilization in California hospitals and emergency departments among children and pregnant women, looking at different types of facilities, such as teaching, private, public and nonprofit institutions. We examined frequency of CT examinations by year from 229 facilities reporting CT usage in routinely collected California statewide data for 2005-2012. We modeled trends overall and by facility type. CT scans for pediatric and pregnant patient visits in the emergency department increased initially, then started to decline after 2008. Among hospital admissions, rates declined or leveled after 2005. In the emergency department, CT rates varied between types of facilities, with teaching hospitals reducing use sooner and more sharply than other types of facilities. CT utilization in California among children and pregnant women has begun to level or decline. Still, population exposure remains at historically high levels, warranting consideration of potential public health implications. Further examination of reasons for trends among hospital types, particularly how teaching hospitals have reduced rates of CT utilization, may help identify strategies for CT reduction without compromising patient care.

  17. Pancreas tumor model in rabbit imaged by perfusion CT scans

    NASA Astrophysics Data System (ADS)

    Gunn, Jason; Tichauer, Kenneth; Moodie, Karen; Kane, Susan; Hoopes, Jack; Stewart, Errol E.; Hadway, Jennifer; Lee, Ting-Yim; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to develop and validate a pancreas tumor animal model to investigate the relationship between photodynamic therapy (PDT) effectiveness and photosensitizer drug delivery. More specifically, this work lays the foundation for investigating the utility of dynamic contrast enhanced blood perfusion imaging to be used to inform subsequent PDT. A VX2 carcinoma rabbit cell line was grown in the tail of the pancreas of three New Zealand White rabbits and approximately 3-4 weeks after implantation the rabbits were imaged on a CT scanner using a contrast enhanced perfusion protocol, providing parametric maps of blood flow, blood volume, mean transit time, and vascular permeability surface area product.

  18. CT Scans of Cores Metadata, Barrow, Alaska 2015

    SciTech Connect

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    2015-03-11

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  19. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD

    PubMed Central

    2013-01-01

    Background Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Methods Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < −950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp−856, the percent of lung < −856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC856-950, the difference between expiratory and inspiratory lung volumes with attenuation between −856 and −950 HU; and (4) Residuals from the regression of Exp−856 on percent emphysema. Results In 8517 subjects with complete data, Exp−856 was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp−856, E/I MLA and RVC856-950 were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC856-950 showed the highest correlations with clinical variables. Conclusions Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans. PMID:23566024

  20. Impact of low-dose CT scan in dual timepoint investigations: a phantom study

    NASA Astrophysics Data System (ADS)

    Micheelsen, M. A.; Jensen, M.

    2011-09-01

    Dual timepoint FDG takeup investigations have a potential for separating malignant lymph nodes from non-malignant in certain cases of suspected lung cancer. One hour seems to be the optimal time interval between the two scans (50-120 min). Many of the new PET scanners benefit from image fusion with a CT image and also use the CT for attenuation correction. In any practical hospital setting, 1 hour is too long to occupy the scanner bed and a second CT procedure thus becomes necessary. This study tries to validate to what extent the dose/quality of the second CT scan can be lowered, without compromising attenuation correction, lesion detection and quantification. Using a standard NEMA phantom with the GE Discovery PET/CT scanner, taken in and out between scan sessions, we have tried to find the minimal CT dose necessary for the second scan while still reaching tissue activity quantification within predetermined error limits. For a hot sphere to background activity concentration ratio of 1:5, the average uptake (normalised by the time corrected input activity concentration) in a sphere of 6 cm3 was found to be 0.90 ± 0.08 for the standard scan, yielding a dose of 5.5 mGy, and 0.90 ± 0.14 for a scan with lowest possible mAs product and lowest possible kV, yielding a dose of 0.65 mGy. With an insignificant increase in the uncertainty in the uptake measurement, we can get an order of magnitude reduction for the CT dose.

  1. Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD.

    PubMed

    Hersh, Craig P; Washko, George R; Estépar, Raúl San José; Lutz, Sharon; Friedman, Paul J; Han, MeiLan K; Hokanson, John E; Judy, Philip F; Lynch, David A; Make, Barry J; Marchetti, Nathaniel; Newell, John D; Sciurba, Frank C; Crapo, James D; Silverman, Edwin K

    2013-04-08

    Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < -950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp(-856), the percent of lung < -856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC(856-950), the difference between expiratory and inspiratory lung volumes with attenuation between -856 and -950 HU; and (4) Residuals from the regression of Exp(-856) on percent emphysema. In 8517 subjects with complete data, Exp(-856) was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp(-856), E/I MLA and RVC(856-950) were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC(856-950) showed the highest correlations with clinical variables. Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans.

  2. Single energy micro CT SkyScan 1173 for the characterization of urinary stone

    NASA Astrophysics Data System (ADS)

    Fitri, L. A.; Asyana, V.; Ridwan, T.; Anwary, F.; Soekersi, H.; Latief, F. D. E.; Haryanto, F.

    2016-08-01

    A urinary stone is a solid piece of material produced from crystallization of excreted substances in the urine. Knowledge of the composition of urinary stones is essential to determine the suitable treatment for the patient. The aim of this research was to characterize urinary stones using single energy micro CT SkyScan 1173. Six human urinary stones were scanned in vitro using 80 kV in micro CT SkyScan 1173. The produced projection, images, were reconstructed using NRecon (in-house software from SkyScan). The images of urinary stones were analyzed using CT Analyser (CT An) to obtain information of the internal structure and the Hounsfield Unit (HU) value to determine the information regarding the composition of the urinary stones, respectively. The average HU values from certain region of interests in the same slice were compared with spectral curves of known materials from National Institute of Standards and Technology (NIST). From the analysis, the composition of the six scanned stones were obtained. Two stones are composed of cystine, two are composed of struvite, two other stones are composed of struvite+cystine. In conclusion, the single energy micro CT with 80 kV can be used identifying cystine and struvite urinary stone.

  3. Pelvic artery calcification detection on CT scans using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Lu, Le; Yao, Jianhua; Bagheri, Mohammadhadi; Summers, Ronald M.

    2017-03-01

    Artery calcification is observed commonly in elderly patients, especially in patients with chronic kidney disease, and may affect coronary, carotid and peripheral arteries. Vascular calcification has been associated with many clinical outcomes. Manual identification of calcification in CT scans requires substantial expert interaction, which makes it time-consuming and infeasible for large-scale studies. Many works have been proposed for coronary artery calcification detection in cardiac CT scans. In these works, coronary artery extraction is commonly required for calcification detection. However, there are few works about abdominal or pelvic artery calcification detection. In this work, we present a method for automatic pelvic artery calcification detection on CT scan. This method uses the recent advanced faster region-based convolutional neural network (R-CNN) to directly identify artery calcification without a need for artery extraction since pelvic artery extraction itself is challenging. Our method first generates category-independent region proposals for each slice of the input CT scan using region proposal networks (RPN). Then, each region proposal is jointly classified and refined by softmax classifier and bounding box regressor. We applied the detection method to 500 images from 20 CT scans of patients for evaluation. The detection system achieved a 77.4% average precision and a 85% sensitivity at 1 false positive per image.

  4. CT Hounsfield Numbers of Soft Tissues on Unenhanced Abdominal CT Scans: Variability Between Two Different Manufacturers’ MDCT Scanners

    PubMed Central

    Lamba, Ramit; McGahan, John P.; Corwin, Michael T.; Li, Chin-Shang; Tran, Tien; Seibert, J. Anthony; Boone, John M.

    2016-01-01

    OBJECTIVE The purpose of this study is to determine whether Hounsfield numbers of soft tissues on unenhanced abdominal CT of the same patient vary on repeat scans done on two different manufacturers’ MDCT scanners. MATERIALS AND METHODS A database search was performed to identify patients older than 18 years who underwent unenhanced CT of the abdomen and pelvis performed both on a Volume CT (GE Healthcare) and a Definition AS Plus (Siemens Healthcare) 64-MDCT scanner within 12 months of each other. After excluding those patients for whom Hounsfield unit measurements would be affected by mitigating factors, 48 patients (mean age, 58.8 years) were identified. Hounsfield unit measurements were obtained in nine different soft-tissue anatomic locations on each scan, and the location of these sites was kept identical on each scan pair. Data were analyzed to evaluate Hounsfield unit differences between these scanners. RESULTS In general, there was a low consistency in the Hounsfield unit measurements for each of these sites on scans obtained by the two scanners, with the subcutaneous fat in the left posterolateral flank showing the lowest correlation (intraclass correlation coefficient, 0.198). There were differences in the Hounsfield unit measurements obtained in all anatomic sites on scans obtained by both scanners. Mean Hounsfield unit measurements obtained on the Definition AS Plus scanner were lower than those obtained on the Volume CT scanner, with the intriguing exception of the anterior midline subcutaneous fat Hounsfield unit measurements, which were higher on the Definition AS Plus scanner. All differences were statistically significant (p < 0.05). CONCLUSION Hounsfield unit measurements for unenhanced abdominal soft tissues of the same patient vary between scanners of two common MDCT manufacturers. PMID:25341139

  5. CT Hounsfield numbers of soft tissues on unenhanced abdominal CT scans: variability between two different manufacturers' MDCT scanners.

    PubMed

    Lamba, Ramit; McGahan, John P; Corwin, Michael T; Li, Chin-Shang; Tran, Tien; Seibert, J Anthony; Boone, John M

    2014-11-01

    The purpose of this study is to determine whether Hounsfield numbers of soft tissues on unenhanced abdominal CT of the same patient vary on repeat scans done on two different manufacturers' MDCT scanners. A database search was performed to identify patients older than 18 years who underwent unenhanced CT of the abdomen and pelvis performed both on a Volume CT (GE Healthcare) and a Definition AS Plus (Siemens Healthcare) 64-MDCT scanner within 12 months of each other. After excluding those patients for whom Hounsfield unit measurements would be affected by mitigating factors, 48 patients (mean age, 58.8 years) were identified. Hounsfield unit measurements were obtained in nine different soft-tissue anatomic locations on each scan, and the location of these sites was kept identical on each scan pair. Data were analyzed to evaluate Hounsfield unit differences between these scanners. In general, there was a low consistency in the Hounsfield unit measurements for each of these sites on scans obtained by the two scanners, with the subcutaneous fat in the left posterolateral flank showing the lowest correlation (intraclass correlation coefficient, 0.198). There were differences in the Hounsfield unit measurements obtained in all anatomic sites on scans obtained by both scanners. Mean Hounsfield unit measurements obtained on the Definition AS Plus scanner were lower than those obtained on the Volume CT scanner, with the intriguing exception of the anterior midline subcutaneous fat Hounsfield unit measurements, which were higher on the Definition AS Plus scanner. All differences were statistically significant (p < 0.05). Hounsfield unit measurements for unenhanced abdominal soft tissues of the same patient vary between scanners of two common MDCT manufacturers.

  6. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies

    PubMed Central

    Welch, D; Harken, A D; Randers-Pehrson, G; Brenner, D J

    2015-01-01

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions. PMID:25860401

  7. Efficacy of CT scanning in a group of 174 patients with orthopedic and musculoskeletal problems

    SciTech Connect

    Griffiths, H.J.; Hamlin, D.J.; Kiss, S.; Lovelock, J.

    1981-11-01

    One hundred and seventy-four patients with orthopedic and musculoskeletal problems received computed tomography (CT) scans between January 1979 and July 1980. There were 34 trauma patients, 35 patients with known or suspected primary tumors, 20 patients with metastases, 18 patients with suspected spinal stenosis, 25 patients with disc problems, five patients with infections, 13 children with congenital anomalies, and 24 patients with miscellaneous problems. The CT scans proved useful in all the pediatric cases, 97% of the trauma patients, and in the majority of patients with tumors. It appears that absolute indications for CT scanning in orthopedic patients include acute trauma to the spine, pelvis, hip, and shoulder girdles as well as in children with congenital spinal anomalies. Relative indications include determining the extent of the tumor and also aiding in the correct approach for biopsying a lesion.

  8. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies

    NASA Astrophysics Data System (ADS)

    Welch, D.; Harken, A. D.; Randers-Pehrson, G.; Brenner, D. J.

    2015-05-01

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions.

  9. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies.

    PubMed

    Welch, D; Harken, A D; Randers-Pehrson, G; Brenner, D J

    2015-05-07

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions.

  10. Overbeaming and overlapping of volume-scan CT with tube current modulation in a 320-detector row CT scanner

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Lan; Chen, Yan-Shi; Lai, Nan-Ku; Chuang, Keh-Shih; Tsai, Hui-Yu

    2014-11-01

    The purpose of this study was to evaluate the performance of volume scan tube current modulation (VS-ATCM) with adaptive iterative dose reduction 3D (AIDR3D) technique in abdomen CT examinations. We scanned an elliptical cone-shaped phantom utilizing AIDR3D technique combined with VS-ATCM mode in a 320-detector row CT scanner. The image noise distributions with conventional filtered back-projction (FBP) technique and those with AIDR3D technique were compared. The radiation dose profile and tube current time product (mAs) in three noise levels of VS-ATCM modes were compared. The radiation beam profiles of five preset scan lengths were measured using Gafchromic film strips to assess the effects of overbeaming and everlapping. The results indicated that the image noises with AIDR3D technique was 13-74% lower than those in FBP technique. The mAs distributions can be a prediction for various abdominal sizes when undergoing a VS-ATCM mode scan. Patients can receive the radiation dose of overbeaming and overlapping during the VS-ATCM mode scans.

  11. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approach that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan

  12. Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans

    NASA Astrophysics Data System (ADS)

    McMillan, Kyle Lorin

    Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully

  13. Body surface area determined by whole-body CT scanning: need for new formulae?

    PubMed

    Villa, Chiara; Primeau, Charlotte; Hesse, Ulrik; Hougen, Hans Petter; Lynnerup, Niels; Hesse, Birger

    2017-03-01

    Calculation of the estimated body surface area (BSA) by body height and weight has been a challenge in the past centuries due to lack of a well-documented gold standard. More recently, available techniques such as 3D laser surface scanning and CT scanning may be expected to quantify the BSA in an easier and more accurate way. This study provides the first comparison between BSA obtained from post-mortem whole-body CT scans and BSA calculated by nine predictive formulae. The sample consisted of 54 male cadavers ranging from 20 to 87 years old. 3D reconstructions were generated from CT scans using Mimics software, and BSA values were automatically extracted from the program. They were compared with nine predictive equations from the literature. Remarkably, close correlations (r > 0·90) were found between BSA values from CT scans and those from the predictive formulae. A mean BSA of the 54 cadavers of 1·84-1·87 m(2) was calculated by all formulae except one, SD values varying between 0·171 and 0·223 m(2) . T-tests revealed significant differences between mean BSA values calculated with CT and three of the formulae. Regression analyses showed intercepts >(0;0) and slopes <1·0 using all predictive equations, with the CT scan determination as gold standard. It is concluded that DuBois and DuBois' equation can be safely used in normal-weight male subjects with high accuracy, but it seems likely that BSA is underestimated in underweight subjects and overestimated in overweight individuals. Creation of new formulae specific for overweight subjects and children may be needed.

  14. PET/CT Fusion Scan prevents futile laparotomy in early pancreatic cancer

    PubMed Central

    Kim, Richard; Prithviraj, Gopi; Kothari, Nishi; Springett, Greg; Malafa, Mokenge; Hodul, Pamela; Kim, Jongphil; Yue, Binglin; Morse, Brian; Mahipal, Amit

    2016-01-01

    Background In pancreatic cancer, early detection and complete surgical resection with negative margins offers the only cure for the disease. Work up to evaluate resectability includes triple phase helical scan CT of the pancreas and endoscopic ultrasound (EUS). A paucity of data exists in using PET/CT scan as staging work up in early resectable pancreatic cancer. The objective of our study was to determine if PET/CT prevents futile laparotomy by detecting occult metastatic disease in patients with resectable/borderline pancreatic cancer. Methods We looked at our institutional PET/CT data base incorporating National Oncologic PET Registry with diagnosis of resectable or borderline resectable pancreatic cancer from 2005 to 2012. Clinical, radiographic, and pathologic follow-up was evaluated, including age, gender, evidence of metastatic disease, and initial CA 19–9 levels. The impact of PET/CT on patient management was estimated by calculating the percentage of patients whose treatment plan was altered due to PET/CT. The confidence interval was computed using the exact binomial distribution. The effect on the change was evaluated by the multiple logistic regression model. The final model was selected using the backward elimination method. Results We identified 285 patients with early stage (resectable or borderline) pancreatic cancer who received PET/CT as part of initial staging workup. Upon initial work up (CT + EUS), 62% of patients were considered resectable and 38% were borderline resectable. Addition of PET/CT scan changed the management in 10.9% (n=31) of patients (95% CI: 7.5%–15.1%). Median time from EUS to PET/CT was 5 days. Metastatic lesions were confirmed with biopsy in 19 (61%) patients. The proportion in the change in treatment plan is significantly higher in patients who were initially considered to have borderline resectable compared to resectable malignancy (16.5% vs. 7.4%). In 199 patients who were taken to surgery, 18.1% (n=36) were found to

  15. Synthetic CT: simulating low dose single and dual energy protocols from a dual energy scan.

    PubMed

    Wang, Adam S; Pelc, Norbert J

    2011-10-01

    The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material decompositions. The

  16. Outer contour extraction of skull from CT scan images

    NASA Astrophysics Data System (ADS)

    Ulinuha, M. A.; Yuniarno, E. M.; Nugroho, S. M. S.; Hariadi, M.

    2017-03-01

    Extraction of the outer contour of the skull is an important step in craniofacial reconstruction. The outer contour is required for surface reconstruction of the skull. In this paper, we propose a method to extract the outer contour of the skull. The extraction process consists of four stages: defining the region of interest, segmentation of the bone, noise removal and extraction of the outer contour based on scanning from the four sides of the image. The proposed method successfully extracts the outermost contour of the skull and avoids redundant data.

  17. Extraction of the Brain from CT Head Scans Based on Domain Knowledge

    SciTech Connect

    Qian Guoyu; Luo Suhuai; Jin, Jesse; Park, Mira; Nowinski, Wieslaw L.

    2007-11-02

    We present an automatic approach for an efficient brain extraction from CT head scans. Regions of interest are first set in each slice by applying thresholding and region growing. Next, the brain candidates are extracted by using three-dimensional region growing with a variable, anatomy-dependent structuring element. Domain knowledge, including Hounsfield unit ranges, anatomy, and image acquisition parameters, is applied. The proposed method has been applied automatically to 27 CT normal and pathological scans and has shown promising results. The average sensitivity, specificity and Dice's index for 5 cases are 99.6%, 99.4% and 98.7%, respectively.

  18. Radiation exposure among patients with the highest CT scan utilization in the emergency department.

    PubMed

    Shah, Kaushal H; Slovis, Benjamin H; Runde, Dan; Godbout, Brandon; Newman, David H; Lee, Jarone

    2013-12-01

    The risk of cancer from computed tomography (CT) scan radiation is a rising concern in the medical field. Our objectives were to determine how many patients received more than ten CT scans in an academic emergency department (ED) over the course of 7 years and to quantify their radiation exposure and lifetime attributable risk of cancer. An electronic chart review was performed at our urban academic institution with an annual census of 110,000 patients. All patients who underwent a CT scan performed during ED management between the dates of January 2001 and December 2007 were identified. Specific predetermined data elements (e.g., subject demographics, type of CT scan) were extracted by two researchers blinded to hypothesis, using a preformatted data form. After identifying patients with more than ten CTs performed during the study period, radiation exposure was calculated based on accepted and reported radiation doses for the respective anatomic CTs, and lifetime attributable cancer risk was calculated based on the seventh report of the Biological Effects of Ionizing Radiation (BEIR VII) projections. Over the 7-year study period, 24,393 patients received 34,671 CT scans. The vast majority of patients (17,909) received a single CT. Twenty-six (0.1 %) patients received more than ten CTs totaling 374 scans with an average radiation exposure of 83.4 mSv. The maximum lifetime attributable risk for any individual in this cohort was 1.7 % above the baseline cancer risk. Among those undergoing CT imaging in our ED, high-exposure patients (greater than ten scans) constituted a significant minority, while more than one in four patients underwent more than one CT scan during the study period. While the presumed overall risk of radiation-induced cancer continues to be low, it is important for the emergency physician to use clinical knowledge as well as concern for the patient when utilizing radiographic imaging. Increasing attributable cancer risk may have important

  19. False Positive Uptake in Bilateral Gynecomastia on 68Ga-PSMA PET/CT Scan.

    PubMed

    Sasikumar, Arun; Joy, Ajith; Nair, Bindu P; Pillai, M R A; Madhavan, Jayaprakash

    2017-09-01

    A 66-year-old man on hormonal therapy with prostate cancer was referred for Ga-PSMA PET/CT scan for biochemical recurrence. Ga-PSMA PET/CT scan detected moderate heterogeneous tracer concentration in bilateral breast parenchyma, in addition to the abnormal tracer concentration in enlarged prostate gland, right external iliac lymph node, and sclerotic lesion in L4 vertebra. On clinical examination, he was found to have bilateral gynecomastia. Abnormal concentration of Ga-PSMA in breast cancer is now well known, and in this context, it is important to know that tracer localization can occur in gynecomastia as well, as evidenced in this case.

  20. Distribution of abdominal and pelvic Hodgkin disease: implications for CT scanning

    SciTech Connect

    Aisen, A.M.; Gross, B.H.; Glazer, G.M.; Amendola, M.A.

    1985-05-01

    Computed tomography of the abdomen and pelvis is frequently performed for the staging of abdominal and pelvic lymphoma. Certain limited CT protocols have been nearly as accurate as more complete examinations at defining the extent of lymphadenopathy and the response to therapy, with the advantages of decreased scanning time and patient radiation dose. The authors reviewed abdominal and pelvic CT scans and reports of 58 patients with Hodgkin disease to determine whether the entire abdomen and pelvis must always be scanned in such patients. Pelvic adenopathy without concurrent abdominal adenopathy was present in only one of 58 patients, and that patient presented clinically with inguinal adenopathy. These findings are supported by larger pathologic studies showing that Hodgkin disease always spreads contiguously. Patients with Hodgkin disease presenting above the diaphragm should undergo abdominal CT for staging; if the abdomen is normal, the pelvis need not be scanned. For Hodgkin patients with clinical or CT evidence of disease below the diaphragm, both abdomen and pelvis should be scanned.

  1. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans

    SciTech Connect

    Sarrut, David; Boldea, Vlad; Miguet, Serge; Ginestet, Chantal

    2006-03-15

    Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is

  2. Lymph nodes can accurately be measured on PET-CT for lymphoma staging/restaging without a concomitant contrast enhanced CT scan.

    PubMed

    Simpson, William L; Lee, Karen M; Sosa, Ninoska; Cooper, Nancy; Scigliano, Eileen; Brody, Joshua D; Doucette, John T; Kostakoglu, Lale

    2016-05-01

    Dual imaging with both contrast enhanced CT scan and PET-CT is recommended for evaluation of lymphoma. We compared the performance in identification and size measurements of involved lymph nodes in FDG-avid lymphomas on the low dose non-contrast enhanced CT of a PET-CT scan with those on a diagnostic contrast enhanced CT scan. The size of FDG-avid lymph nodes was measured in both the short and long axis on both the low dose non-contrast CT of the PET-CT and the contrast enhanced CT by two independent readers. A total of 307 FGD avid lymph nodes were identified in 52 patients. There was no statistically significant differences in the measured size of the nodes on the non-contrast and contrast enhanced scans (p=0.21). Baseline staging and restaging of FDG-avid lymphomas can be performed with one test, PET-CT, without an accompanying contrast enhanced CT scan, with no effect on the measured nodal size.

  3. Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements

    NASA Astrophysics Data System (ADS)

    Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.

    2013-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.

  4. On the Role of Ultrasonography and CT Scan in the Diagnosis of Acute Appendicitis.

    PubMed

    Debnath, Jyotindu; Kumar, Rajesh; Mathur, Ankit; Sharma, Pawan; Kumar, Nikhilesh; Shridhar, Nagaraj; Shukla, Ashwani; Khanna, Shiv Pankaj

    2015-12-01

    The purposes of this study were to revisit the utility of ultrasonography (USG) as a primary imaging modality in acute appendicitis (AA) and to establish the role of CT scan as a second-line/problem-solving modality. All cases of suspected AA were referred for urgent USG. USG was done with standard protocol for appendicitis. Limited computed tomographic (CT) scan [NCCT ± CECT (IV contrast only)] was done for the lower abdomen and pelvis where sonographic findings were equivocal. One hundred and twenty-one patients were referred for USG for suspected appendicitis. Eight-four patients underwent surgery for AA based on clinical as well as imaging findings, of whom 76 had appendicitis confirmed at histopathology. Three patients were misdiagnosed (3.6 %) on USG as appendicitis. Of 76 patients of appendicitis confirmed histopathologically, 63 (82.8 %) had features of appendicitis on USG and did not require any additional imaging modality. Of 121 patients, 12 (10 %) needed CT scan because of atypical features on USG. Of these 12 patients, seven had retrocecal appendicitis, and three high-up paracolic appendicitis. USG alone had sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 81, 88, 92.6, 71.6, and 83 %, respectively. When combined with CT scan in select cases, the sensitivity, specificity, PPV, NPV, and accuracy of combined USG + CT scan were 96 % (P = 0.0014), 89 %, 93 %, 93.5 % (P = 0.0001), and 93 % (P = 0.0484), respectively. Twenty-eight (23 %) patients were given alternative diagnosis on USG. Dedicated appendiceal USG should be used as a primary imaging modality in diagnosing or excluding AA. Appendiceal CT can serve as a problem-solving modality.

  5. The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans.

    PubMed

    Boes, Jennifer L; Bule, Maria; Hoff, Benjamin A; Chamberlain, Ryan; Lynch, David A; Stojanovska, Jadranka; Martinez, Fernando J; Han, Meilan K; Kazerooni, Ella A; Ross, Brian D; Galbán, Craig J

    2015-09-01

    Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented.

  6. The Impact of Sources of Variability on Parametric Response Mapping of Lung CT Scans

    PubMed Central

    Boes, Jennifer L.; Bule, Maria; Hoff, Benjamin A.; Chamberlain, Ryan; Lynch, David A.; Stojanovska, Jadranka; Martinez, Fernando J.; Han, Meilan K.; Kazerooni, Ella A.; Ross, Brian D.; Galbán, Craig J.

    2015-01-01

    Parametric response mapping (PRM) of inspiration and expiration computed tomography (CT) images improves the radiological phenotyping of chronic obstructive pulmonary disease (COPD). PRM classifies individual voxels of lung parenchyma as normal, emphysematous, or nonemphysematous air trapping. In this study, bias and noise characteristics of the PRM methodology to CT and clinical procedures were evaluated to determine best practices for this quantitative technique. Twenty patients of varying COPD status with paired volumetric inspiration and expiration CT scans of the lungs were identified from the baseline COPD-Gene cohort. The impact of CT scanner manufacturer and reconstruction kernels were evaluated as potential sources of variability in PRM measurements along with simulations to quantify the impact of inspiration/expiration lung volume levels, misregistration, and image spacing on PRM measurements. Negligible variation in PRM metrics was observed when CT scanner type and reconstruction were consistent and inspiration/expiration lung volume levels were near target volumes. CT scanner Hounsfield unit drift occurred but remained difficult to ameliorate. Increasing levels of image misregistration and CT slice spacing were found to have a minor effect on PRM measurements. PRM-derived values were found to be most sensitive to lung volume levels and mismatched reconstruction kernels. As with other quantitative imaging techniques, reliable PRM measurements are attainable when consistent clinical and CT protocols are implemented. PMID:26568983

  7. Interactive lung segmentation in abnormal human and animal chest CT scans

    SciTech Connect

    Kockelkorn, Thessa T. J. P. Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  8. "Bottle Brush Sign"-Spinal Meningeal Disease on 18F-FDG PET-CT Scan.

    PubMed

    Riaz, Saima; Naz, Fozia; Bashir, Humayun; Niazi, Imran Khalid

    2016-09-01

    A 30-year-old man with a history of stage IV AE diffuse large cell lymphoma of left proximal humerus presented with new onset lower limb weakness at completion of chemotherapy. The F-FDG PET-CT scan showed increased intraspinal uptake from T12 to S1 vertebrae with unique "bottle brush" appearance in keeping with spinal meningeal disease. The leptomeningeal disease was further confirmed on correlative MRI scan.

  9. Assessment of the Diagnostic Accuracy of Limited CT Scan of Paranasal Sinuses in the Identification of Sinusitis

    PubMed Central

    Noorian, Vahid; Motaghi, Arya

    2012-01-01

    Background Paranasal sinus CT has high sensitivity and specificity for sinusitis. However, this modality is costly and involves greater radiation exposure than plain radiographs. Objectives We tried to compare 10-cut limited CT scan and standard CT scan in the diagnosis of sinusitis. Materials and Methods We conducted a cross sectional case series from August to December 2010 on 150 patients with non-randomized sampling method in academic hospitals related to medical school of Shahid Beheshti University of medical sciences. Using standard CT scan as the gold standard, the sensitivity and specificity of limited series were calculated for each sinus group. Results In our study limited CT scan had a sensitivity of 92%, specificity of 94%, positive predictive value of 90% and negative predictive value of 95%. Conclusions The limited CT scan is useful for confirming the clinical diagnosis of sinusitis. PMID:23396584

  10. Should all anticoagulated patients with head injury receive a CT scan? Decision-analysis modelling of an observational cohort

    PubMed Central

    Kuczawski, Maxine; Stevenson, Matt; Goodacre, Steve; Teare, M Dawn; Ramlakhan, Shammi; Morris, Francis; Mason, Suzanne

    2016-01-01

    Objectives It is not currently clear whether all anticoagulated patients with a head injury should receive CT scanning or only those with evidence of traumatic brain injury (eg, loss of consciousness or amnesia). We aimed to determine the cost-effectiveness of CT for all compared with selective CT use for anticoagulated patients with a head injury. Design Decision-analysis modelling of data from a multicentre observational study. Setting 33 emergency departments in England and Scotland. Participants 3566 adults (aged ≥16 years) who had suffered blunt head injury, were taking warfarin and underwent selective CT scanning. Main outcome measures Estimated expected benefits in terms of quality-adjusted life years (QALYs) were the entire cohort to receive a CT scan; estimated increased costs of CT and also the potential cost implications associated with patient survival and improved health. These values were used to estimate the cost per QALY of implementing a strategy of CT for all patients compared with observed practice based on guidelines recommending selective CT use. Results Of the 1420 of 3534 patients (40%) who did not receive a CT scan, 7 (0.5%) suffered a potentially avoidable head injury-related adverse outcome. If CT scanning had been performed in all patients, appropriate treatment could have gained 3.41 additional QALYs but would have incurred £193 149 additional treatment costs and £130 683 additional CT costs. The incremental cost-effectiveness ratio of £94 895/QALY gained for unselective compared with selective CT use is markedly above the threshold of £20–30 000/QALY used by the UK National Institute for Care Excellence to determine cost-effectiveness. Conclusions CT scanning for all anticoagulated patients with head injury is not cost-effective compared with selective use of CT scanning based on guidelines recommending scanning only for those with evidence of traumatic brain injury. Trial registration number NCT 02461498. PMID

  11. Geometry-constraint-scan imaging for in-line phase contrast micro-CT.

    PubMed

    Fu, Jian; Yu, Guangyuan; Fan, Dekai

    2014-01-01

    X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.

  12. Reconstructing 3D x-ray CT images of polymer gel dosimeters using the zero-scan method

    NASA Astrophysics Data System (ADS)

    Kakakhel, M. B.; Kairn, T.; Kenny, J.; Trapp, J. V.

    2013-06-01

    In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the 'zero-scan' method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner's x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.

  13. Feasibility of dual-source cardiac CT angiography with high-pitch scan protocols.

    PubMed

    Hausleiter, Jörg; Bischoff, Bernhard; Hein, Franziska; Meyer, Tanja; Hadamitzky, Martin; Thierfelder, Carsten; Allmendinger, Thomas; Flohr, Thomas G; Schömig, Albert; Martinoff, Stefan

    2009-01-01

    Cardiac CT angiography (CCTA) has become a frequently used diagnostic tool in clinical practice, but concern remains about the radiation exposure. Because of the second x-ray acquisition system, dual-source CT systems might allow for high-pitch CT data acquisition and thus for examination of the whole heart during a single heart beat, with the potential for radiation dose reduction. We assessed the feasibility of a high-pitch scan mode with a dual-source CT system. High-pitch modes were used in patients undergoing CCTA with a dual-source CT system. Diagnostic image quality for cardiac structures and coronary arteries was assessed. Radiation dose was estimated from the scanner-generated dose-length product (DLP). CCTA was performed in 14 patients during a single heart beat applying a pitch value of 3.4. Mean heart rate during examination was 56.4+/-8.1 beats/min. Diagnostic image quality for the assessment of larger cardiac structures was obtained in all patients, whereas diagnostic image quality could be achieved in 82% of all coronary segments. With a mean DLP of 145+/-47 mGy x cm, the resulting estimated radiation dose was 2.0+/-0.7 mSv. This proof-of-concept study shows the ability of dual-source CT scanners to scan the whole heart during one single heart beat at low radiation dose.

  14. Multienergy CT acquisition and reconstruction with a stepped tube potential scan

    SciTech Connect

    Shen, Le; Xing, Yuxiang

    2015-01-15

    Purpose: Based on an energy-dependent property of matter, one may obtain a pseudomonochromatic attenuation map, a material composition image, an electron-density distribution, and an atomic number image using a dual- or multienergy computed tomography (CT) scan. Dual- and multienergy CT scans broaden the potential of x-ray CT imaging. The development of such systems is very useful in both medical and industrial investigations. In this paper, the authors propose a new dual- and multienergy CT system design (segmental multienergy CT, SegMECT) using an innovative scanning scheme that is conveniently implemented on a conventional single-energy CT system. The two-step-energy dual-energy CT can be regarded as a special case of SegMECT. A special reconstruction method is proposed to support SegMECT. Methods: In their SegMECT, a circular trajectory in a CT scan is angularly divided into several arcs. The x-ray source is set to a different tube voltage for each arc of the trajectory. Thus, the authors only need to make a few step changes to the x-ray energy during the scan to complete a multienergy data acquisition. With such a data set, the image reconstruction might suffer from severe limited-angle artifacts if using conventional reconstruction methods. To solve the problem, they present a new prior-image-based reconstruction technique using a total variance norm of a quotient image constraint. On the one hand, the prior extracts structural information from all of the projection data. On the other hand, the effect from a possibly imprecise intensity level of the prior can be mitigated by minimizing the total variance of a quotient image. Results: The authors present a new scheme for a SegMECT configuration and establish a reconstruction method for such a system. Both numerical simulation and a practical phantom experiment are conducted to validate the proposed reconstruction method and the effectiveness of the system design. The results demonstrate that the proposed Seg

  15. An anatomically shaped lower body model for CT scanning of cadaver femurs.

    PubMed

    Tanck, Esther; Deenen, J C W; Huisman, Henk Jan; Kooloos, Jan G; Huizenga, Henk; Verdonschot, Nico

    2010-01-21

    Bone specific, CT-based finite element (FE) analyses have great potential to accurately predict the fracture risk of deteriorated bones. However, it has been shown that differences exist between FE-models of femora scanned in a water basin or scanned in situ within the human body, as caused by differences in measured bone mineral densities (BMD). In this study we hypothesized that these differences can be reduced by re-creating the patient CT-conditions by using an anatomically shaped physical model of the lower body. BMD distributions were obtained from four different femora that were scanned under three conditions: (1) in situ within the cadaver body, (2) in a water basin and (3) in the body model. The BMD of the three scanning protocols were compared at two locations: proximally, in the trabecular bone of the femoral head, and in the cortical bone of the femoral shaft. Proximally, no significant differences in BMD were found between the in situ scans and the scans in the body model, whereas the densities from the water basin scans were on average 10.8% lower than in situ. In the femoral shaft the differences between the three scanning protocols were insignificant. In conclusion, the body model better approached the in situ situation than a water basin. Future studies can use this body model to mimic patient situations and to develop protocols to improve the performance of the FE-models in actual patients.

  16. Investigation of the potential causes of partial scan artifacts in dynamic CT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Tao, Yinghua; Speidel, Michael; Szczykutowicz, Timothy; Chen, Guang-Hong

    2014-03-01

    In recent years, there have been several findings regarding CT number variations (partial scan artifact or PSA) across time in dynamic myocardial perfusion studies with short scan gated reconstruction. These variations are correlated with the view angle range corresponding to the short scan acquisition for a given cardiac phase, which can vary from one cardiac cycle to another due to the asynchrony between heart rate and gantry rotation speed. In this study, we investigate several potential causes of PSA, including noise, beam hardening and scatter, using numerical simulations. In addition, we investigate partial scan artifact in a single source 64-slice diagnostic CT scanner in vivo data sets, and report its effect on perfusion analysis. Results indicated that among all three factors investigated, scatter can cause obvious partial scan artifact in dynamic myocardial perfusion imaging. Further, scatter is a low frequency phenomenon and is not heavily dependent on the changing contrasts, as both the frequency method and the virtual scan method are effective in reducing partial scan artifact. However, PSA does not necessarily lead to different blood volume maps compared to the full scan, because these maps are usually generated with a curve fitting procedure.

  17. Dual-resolution image reconstruction for region-of-interest CT scan

    NASA Astrophysics Data System (ADS)

    Jin, S. O.; Shin, K. Y.; Yoo, S. K.; Kim, J. G.; Kim, K. H.; Huh, Y.; Lee, S. Y.; Kwon, O.-K.

    2014-07-01

    In ordinary CT scan, so called full field-of-view (FFOV) scan, in which the x-ray beam span covers the whole section of the body, a large number of projections are necessary to reconstruct high resolution images. However, excessive x-ray dose is a great concern in FFOV scan. Region-of-interest (ROI) scan is a method to visualize the ROI in high resolution while reducing the x-ray dose. But, ROI scan suffers from bright-band artifacts which may hamper CT-number accuracy. In this study, we propose an image reconstruction method to eliminate the band artifacts in the ROI scan. In addition to the ROI scan with high sampling rate in the view direction, we get FFOV projection data with much lower sampling rate. Then, we reconstruct images in the compressed sensing (CS) framework with dual resolutions, that is, high resolution in the ROI and low resolution outside the ROI. For the dual-resolution image reconstruction, we implemented the dual-CS reconstruction algorithm in which data fidelity and total variation (TV) terms were enforced twice in the framework of adaptive steepest descent projection onto convex sets (ASD-POCS). The proposed method has remarkably reduced the bright-band artifacts at around the ROI boundary, and it has also effectively suppressed the streak artifacts over the entire image. We expect the proposed method can be greatly used for dual-resolution imaging with reducing the radiation dose, artifacts and scan time.

  18. Quantifying the impact of µCT-scanning of human fossil teeth on ESR age results.

    PubMed

    Duval, Mathieu; Martín-Francés, Laura

    2017-05-01

    Fossil human teeth are nowadays systematically CT-scanned by palaeoanthropologists prior to any further analysis. It has been recently demonstrated that this noninvasive technique has, in most cases, virtually no influence on ancient DNA preservation. However, it may have nevertheless an impact on other techniques, like Electron Spin Resonance (ESR) dating, by artificially ageing the apparent age of the sample. To evaluate this impact, we µCT-scanned several modern enamel fragments following the standard analytical procedures employed by the Dental Anthropology Group at CENIEH, Spain, and then performed ESR dose reconstruction for each of them. The results of our experiment demonstrate that the systematic high-resolution µCT-scanning of fossil hominin remains introduces a nonnegligible X-ray dose into the tooth enamel, equivalent to 15-30 Gy depending on the parameters used. This dose may be multiplied by a factor of ∼8 if no metallic filter is used. However, this dose estimate cannot be universally extrapolated to any µCT-scan experiment but has instead to be specifically assessed for each device and set of parameters employed. The impact on the ESR age results is directly dependent on the magnitude of the geological dose measured in fossil enamel but could potentially lead to an age overestimation up to 40% in case of Late Pleistocene samples, if not taken into consideration. © 2017 Wiley Periodicals, Inc.

  19. Study Finds Small Increase in Cancer Risk after Childhood CT Scans

    Cancer.gov

    A study published in the June 6, 2012, issue of The Lancet shows that radiation exposure from computed tomography (CT) scans in childhood results in very small but increased risks of leukemia and brain tumors in the first decade after exposure.

  20. Automatic Segmentation and Quantification of White and Brown Adipose Tissues from PET/CT Scans.

    PubMed

    Hussein, Sarfaraz; Green, Aileen; Watane, Arjun; Reiter, David; Chen, Xinjian; Papadakis, Georgios Z; Wood, Bradford; Cypess, Aaron; Osman, Medhat; Bagci, Ulas

    2016-12-06

    In this paper, we investigate the automatic detection of white and brown adipose tissues using Positron Emission Tomography/ Computed Tomography (PET/CT) scans, and develop methods for the quantification of these tissues at the whole-body and body-region levels. We propose a patient-specific automatic adiposity analysis system with two modules. In the first module, we detect white adipose tissue (WAT) and its two sub-types from CT scans: Visceral Adipose Tissue (VAT) and Subcutaneous Adipose Tissue (SAT). This process relies conventionally on manual or semi-automated segmentation, leading to inefficient solutions. Our novel framework addresses this challenge by proposing an unsupervised learning method to separate VAT from SAT in the abdominal region for the clinical quantification of central obesity. This step is followed by a context driven label fusion algorithm through sparse 3D Conditional Random Fields (CRF) for volumetric adiposity analysis. In the second module, we automatically detect, segment, and quantify brown adipose tissue (BAT) using PET scans because unlike WAT, BAT is metabolically active. After identifying BAT regions using PET, we perform a co-segmentation procedure utilizing asymmetric complementary information from PET and CT. Finally, we present a new probabilistic distance metric for differentiating BAT from non-BAT regions. Both modules are integrated via an automatic body-region detection unit based on one-shot learning. Experimental evaluations conducted on 151 PET/CT scans achieve state-of-the-art performances in both central obesity as well as brown adiposity quantification.

  1. Is it possible to calculate surface areas of intraoral structures from preoperative CT scan?

    PubMed

    Ramella, Vittorio; Bottosso, Stefano; Franchi, Alberto; Papa, Giovanni; Bussani, Rossana; Arnež, Zoran Marji

    2017-08-01

    Microsurgical reconstruction of intraoral structures requires accurate planning of flap shape and dimensions. The goal of this study is to describe a method that allows to calculate surfaces of oral structures from preoperative CT-scan in order to determine a precise flap design before the surgery. We created casts of the human mouth from cadavers with a head and neck CT-scan available using an impression material. We digitalized the mouth casts and unwrapped the surfaces of the different structures of the mouth in a bi-dimensional plane in order to measure the area. Furthermore, we measured distances from pre-determined bony landmarks using the CT-scan 3D reconstruction model and we correlated the two type of measurements. We performed a simple regression analysis and afterwards a multivariate analysis using the more statistically correlated measurements. We found a statistical correlation between the surface of the tongue and the surface floor of the mouth with three bone distances that let us to create three mathematical formulas. With those formulas, we can calculate the surfaces of the tongue and the floor of the mouth using simple bony distances that can be easily measured from the head and neck preoperative CT scan. Using standard template's layouts, we can create a precise preoperative flap design in the reconstruction of the tongue and of the floor of the mouth. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies.

    PubMed

    Vivanti, R; Szeskin, A; Lev-Cohain, N; Sosna, J; Joskowicz, L

    2017-08-30

    Radiological longitudinal follow-up of liver tumors in CT scans is the standard of care for disease progression assessment and for liver tumor therapy. Finding new tumors in the follow-up scan is essential to determine malignancy, to evaluate the total tumor burden, and to determine treatment efficacy. Since new tumors are typically small, they may be missed by examining radiologists. We describe a new method for the automatic detection and segmentation of new tumors in longitudinal liver CT studies and for liver tumors burden quantification. Its inputs are the baseline and follow-up CT scans, the baseline tumors delineation, and a tumor appearance prior model. Its outputs are the new tumors segmentations in the follow-up scan, the tumor burden quantification in both scans, and the tumor burden change. Our method is the first comprehensive method that is explicitly designed to find new liver tumors. It integrates information from the scans, the baseline known tumors delineations, and a tumor appearance prior model in the form of a global convolutional neural network classifier. Unlike other deep learning-based methods, it does not require large tagged training sets. Our experimental results on 246 tumors, of which 97 were new tumors, from 37 longitudinal liver CT studies with radiologist approved ground-truth segmentations, yields a true positive new tumors detection rate of 86 versus 72% with stand-alone detection, and a tumor burden volume overlap error of 16%. New tumors detection and tumor burden volumetry are important for diagnosis and treatment. Our new method enables a simplified radiologist-friendly workflow that is potentially more accurate and reliable than the existing one by automatically and accurately following known tumors and detecting new tumors in the follow-up scan.

  3. Use of CA-125 Tests and CT Scans for Surveillance in Ovarian Cancer

    PubMed Central

    Esselen, Katharine M.; Cronin, Angel M.; Bixel, Kristin; Bookman, Michael A.; Burger, Robert A.; Cohn, David E.; Cristea, Mihaela; Griggs, Jennifer J.; Levenback, Charles F.; Mantia-Smaldone, Gina; Meyer, Larissa A.; Matulonis, Ursula A.; Niland, Joyce C.; Sun, Charlotte; O’Malley, David M.; Wright, Alexi A.

    2016-01-01

    Importance A 2009 randomized clinical trial (RCT) demonstrated that using CA-125 tests for routine surveillance in ovarian cancer increases chemotherapy use and decreases patients’ quality of life without improving survival, compared with clinical observation. The Society of Gynecologic Oncology guidelines categorize CA-125 testing as “optional” and discourage the use of radiographic imaging for routine surveillance. To date, few studies have examined their use in clinical practice. Objective To examine the use of CA-125 tests and CT scans in clinical practice before and after the 2009 RCT and estimate the economic impact of surveillance testing. Design Prospective cohort of women diagnosed with ovarian cancer between 2004-2011 and followed through 2012. Setting Six National Cancer Institute-Designated Cancer Centers. Participants 1,241 women with ovarian cancer in clinical remission after completion of primary cytoreductive surgery and chemotherapy. Main Outcome Measures Use of CA-125 tests and CT scans before and after 2009 (n=1,241). Secondary outcomes included: the time from CA-125 doubling to retreatment among women who experienced a rise in CA-125 (n=511) before and after 2009, and the costs associated with surveillance testing using 2016 Medicare reimbursement rates. Results Use of CA-125 testing and CT scans was very similar over the study period. During 12 months of surveillance, the cumulative incidence of 3 or more CA-125 tests was 86% in 2004-2009 versus 91% in 2010-2012 (P=.95), and the cumulative incidence of more than 1 CT scan was 81% (2004-2009) versus 78% (2010-2012) (P=.50). Among women who experienced a CA-125 doubling (n=511), there was no significant difference in the time to retreatment with chemotherapy before and after 2009 (median: 2.8 months vs. 3.5 months, P=.40). Over a 12-month period, there were a mean of 4.6 CA-125 tests and 1.7 CT scans per patient, resulting in a United States population surveillance cost estimate of $1

  4. Pancreatic Cancer Tumor Size on CT Scan Versus Pathologic Specimen: Implications for Radiation Treatment Planning

    SciTech Connect

    Arvold, Nils D.; Niemierko, Andrzej; Mamon, Harvey J.; Hong, Theodore S.

    2011-08-01

    Purpose: Pancreatic cancer primary tumor size measurements are often discordant between computed tomography (CT) and pathologic specimen after resection. Dimensions of the primary tumor are increasingly relevant in an era of highly conformal radiotherapy. Methods and Materials: We retrospectively evaluated 97 consecutive patients with resected pancreatic cancer at two Boston hospitals. All patients had CT scans before surgical resection. Primary endpoints were maximum dimension (in millimeters) of the primary tumor in any direction as reported by the radiologist on CT and by the pathologist for the resected gross fresh specimen. Endoscopic ultrasound (EUS) findings were analyzed if available. Results: Of the patients, 87 (90%) had preoperative CT scans available for review and 46 (47%) had EUS. Among proximal tumors (n = 69), 40 (58%) had pathologic duodenal invasion, which was seen on CT in only 3 cases. The pathologic tumor size was a median of 7 mm larger compared with CT size for the same patient (range, -15 to 43 mm; p < 0.0001), with 73 patients (84%) having a primary tumor larger on pathology than CT. Endoscopic ultrasound was somewhat more accurate, with pathologic tumor size being a median of only 5 mm larger compared with EUS size (range, -15 to 35 mm; p = 0.0003). Conclusions: Computed tomography scans significantly under-represent pancreatic cancer tumor size compared with pathologic specimens in resectable cases. We propose a clinical target volume expansion formula for the primary tumor based on our data. The high rate of pathologic duodenal invasion suggests a risk of duodenal undercoverage with highly conformal radiotherapy.

  5. Neck evaluation with barium-enhanced radiographs and CT scans after supraglottic subtotal laryngectomy.

    PubMed

    Niemeyer, J H; Balfe, D M; Hayden, R E

    1987-02-01

    Supraglottic subtotal laryngectomy (SSL) is a radical, yet voice-conserving, surgical procedure commonly performed for carcinoma of the supraglottic larynx. The pharyngograms and computed tomographic (CT) scans of 35 patients obtained after SSL were evaluated retrospectively. These examinations reliably demonstrated the changes in anatomy caused by removal of the epiglottis, aryepiglottic folds, and false vocal cords. Fourteen patients had documented recurrence of cancer; five mucosal, nine extramucosal. Three of five macroscopic mucosal recurrences in the larynx/pharynx were detected on the barium pharyngograms; the two mucosal lesions not seen were in the base of the tongue and tonsillar fossa. CT enabled detection of five of five recurrences and was superior to pharyngography in demonstrating the soft-tissue extent of disease. CT findings mimicking recurrence were seen in two patients: one with diffuse histiocytic lymphoma; the second, with benign hyperkeratosis. Barium and CT examinations are useful adjuncts to the clinical examination in detecting recurrent squamous cell carcinoma in patients following SSL.

  6. "High-precision, reconstructed 3D model" of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data.

    PubMed

    Katsumura, Seiko; Sato, Keita; Ikawa, Tomoko; Yamamura, Keiko; Ando, Eriko; Shigeta, Yuko; Ogawa, Takumi

    2016-01-01

    Computed tomography (CT) scanning has recently been introduced into forensic medicine and dentistry. However, the presence of metal restorations in the dentition can adversely affect the quality of three-dimensional reconstruction from CT scans. In this study, we aimed to evaluate the reproducibility of a "high-precision, reconstructed 3D model" obtained from a conebeam CT scan of dentition, a method that might be particularly helpful in forensic medicine. We took conebeam CT and helical CT images of three dry skulls marked with 47 measuring points; reconstructed three-dimensional images; and measured the distances between the points in the 3D images with a computer-aided design/computer-aided manufacturing (CAD/CAM) marker. We found that in comparison with the helical CT, conebeam CT is capable of reproducing measurements closer to those obtained from the actual samples. In conclusion, our study indicated that the image-reproduction from a conebeam CT scan was more accurate than that from a helical CT scan. Furthermore, the "high-precision reconstructed 3D model" facilitates reliable visualization of full-sized oral and maxillofacial regions in both helical and conebeam CT scans.

  7. Differential diagnosis of hepatic tumor-like lesions in dog by using dynamic CT scanning.

    PubMed

    Taniura, Tokunori; Marukawa, Kazushi; Yamada, Kazutaka; Hikasa, Yoshiaki; Ito, Katsuhide

    2009-03-01

    Dynamic liver CT scanning is used to observe the hemodynamics of hepatic tumor-like lesions by taking images sequentially after administration of contrast media. In this study in dogs, we compared the hemodynamic patterns of hepatocellular carcinoma (HCC), one of the malignant tumors, and nodular hyperplasia (NH), a benign tumor that is more common in older dogs. Thirty-six dogs with HCC and 40 dogs with NH, which were histopathologically diagnosed at Taniura Animal Hospital, were used as subjects. Dynamic CT scanning was performed and the data of each scanning phase were collected. Dilated blood vessels, septum formation, and capsule formation were noted in the tumors from 25, 17, and 25 animals with HCC, respectively. In the arterial phase, high density and low contrast were noted in 8 and 23 dogs, respectively. Low density was noted in 34 dogs in the equilibrium phase. In contrast, no dilated blood vessels, septum formation, or capsule formation was noted in the dogs with NH. High density, low contrast, and low density were noted in 8, 9, and 23 dogs, respectively, in the arterial phase. In the equilibrium phase, the enhancement level was equal to the surrounding liver tissues in all animals. The CT values of HCC in the plain, the arterial phase, portal venous phase and equilibrium phase after the administration of contrast media, were significantly (p < 0.05 to 0.001) lower than those of the surrounding liver tissues. In the arterial phase, the percent incidence of low density was significantly less in HCC than NH, while that of low contrast was significantly greater (p < 0.001) in HCC than NH. Dynamic CT scanning identified differences between the hemodynamics and internal structures of HCC and NH in dogs. Dynamic liver CT scanning can therefore be considered a useful technique in the differential diagnosis of hepatic tumor-like lesions in dogs.

  8. Analysis of chromosome translocation frequency after a single CT scan in adults

    PubMed Central

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A.; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Kawamura, Fumihiko; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2016-01-01

    We recently reported an increase in dicentric chromosome (DIC) formation after a single computed tomography (CT) scan (5.78–60.27 mSv: mean 24.24 mSv) and we recommended analysis of 2000 metaphase cells stained with Giemsa and centromere-FISH for dicentric chromosome assay (DCA) in cases of low-dose radiation exposure. In the present study, we analyzed the frequency of chromosome translocations using stored Carnoy's-fixed lymphocyte specimens from the previous study; these specimens were from 12 patients who were subject to chromosome painting of Chromosomes 1, 2 and 4. Chromosomes 1, 2 and 4 were analyzed in ∼5000 cells, which is equivalent to the whole-genome analysis of almost 2000 cells. The frequency of chromosome translocation was higher than the number of DICs formed, both before and after CT scanning. The frequency of chromosome translocations tended to be higher, but not significantly higher, in patients with a treatment history compared with patients without such a history. However, in contrast to the results for DIC formation, the frequency of translocations detected before and after the CT scan did not differ significantly. Therefore, analysis of chromosome translocation may not be a suitable assay for detecting chromosome aberrations in cases of low-dose radiation exposure from a CT scan. A significant increase in the frequency of chromosome translocations was not likely to be detected due to the high baseline before the CT scan; the high and variable frequency of translocations was probably due to multiple confounding factors in adults. PMID:26874116

  9. Analysis of chromosome translocation frequency after a single CT scan in adults.

    PubMed

    Abe, Yu; Miura, Tomisato; Yoshida, Mitsuaki A; Ujiie, Risa; Kurosu, Yumiko; Kato, Nagisa; Katafuchi, Atsushi; Tsuyama, Naohiro; Kawamura, Fumihiko; Ohba, Takashi; Inamasu, Tomoko; Shishido, Fumio; Noji, Hideyoshi; Ogawa, Kazuei; Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Muto, Satoshi; Ohsugi, Jun; Suzuki, Hiroyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Sakai, Akira

    2016-06-01

    We recently reported an increase in dicentric chromosome (DIC) formation after a single computed tomography (CT) scan (5.78-60.27 mSv: mean 24.24 mSv) and we recommended analysis of 2000 metaphase cells stained with Giemsa and centromere-FISH for dicentric chromosome assay (DCA) in cases of low-dose radiation exposure. In the present study, we analyzed the frequency of chromosome translocations using stored Carnoy's-fixed lymphocyte specimens from the previous study; these specimens were from 12 patients who were subject to chromosome painting of Chromosomes 1, 2 and 4. Chromosomes 1, 2 and 4 were analyzed in ∼5000 cells, which is equivalent to the whole-genome analysis of almost 2000 cells. The frequency of chromosome translocation was higher than the number of DICs formed, both before and after CT scanning. The frequency of chromosome translocations tended to be higher, but not significantly higher, in patients with a treatment history compared with patients without such a history. However, in contrast to the results for DIC formation, the frequency of translocations detected before and after the CT scan did not differ significantly. Therefore, analysis of chromosome translocation may not be a suitable assay for detecting chromosome aberrations in cases of low-dose radiation exposure from a CT scan. A significant increase in the frequency of chromosome translocations was not likely to be detected due to the high baseline before the CT scan; the high and variable frequency of translocations was probably due to multiple confounding factors in adults.

  10. Self-guided clinical cases for medical students based on postmortem CT scans of cadavers.

    PubMed

    Bohl, Michael; Francois, Webster; Gest, Thomas

    2011-07-01

    In the summer of 2009, we began full body computed tomography (CT) scanning of the pre-embalmed cadavers in the University of Michigan Medical School (UMMS) dissection lab. We theorized that implementing web-based, self-guided clinical cases based on postmortem CT (PMCT) scans would result in increased student appreciation for the clinical relevance of anatomy, increased knowledge of cross-sectional anatomy, and increased ability to identify common pathologies on CT scans. The PMCT scan of each cadaver was produced as a DICOM dataset, and then converted into a Quicktime movie file using Osirix software. Clinical cases were researched and written by the authors, and consist of at least one Quicktime movie of a PMCT scan surrounded by a novel navigation interface. To assess the value of these clinical cases we surveyed medical students at UMMS who are currently using the clinical cases in their coursework. Students felt the clinical cases increased the clinical relevance of anatomy (mean response 7.77/10), increased their confidence finding anatomical structures on CT (7.00/10), and increased their confidence recognizing common pathologies on CT (6.17/10). Students also felt these clinical cases helped them synthesize material from numerous courses into an overall picture of a given disease process (7.01/10). These results support the conclusion that our clinical cases help to show students why the anatomy they are learning is foundational to their other coursework. We would recommend the use of similar clinical cases to any medical school utilizing cadaver dissection as a primary teaching method in anatomy education.

  11. Variation compensation and analysis on diaphragm curvature analysis for emphysema quantification on whole lung CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

  12. Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT.

    PubMed

    McCollough, Cynthia H; Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I

    2012-08-01

    This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.

  13. Achieving Routine Submillisievert CT Scanning: Report from the Summit on Management of Radiation Dose in CT

    PubMed Central

    Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I.

    2012-01-01

    This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation. © RSNA, 2012 PMID:22692035

  14. CT Diagnosis of Fitz-Hugh and Curtis Syndrome: Value of the Arterial Phase Scan

    PubMed Central

    Joo, Seung Ho; Lim, Joon Seok; Kim, Joo Hee; Kim, Ki Whang

    2007-01-01

    Objective We wanted to evaluate the role of the arterial phase (AP) together with the portal venous phase (PP) scans in the diagnosis of Fitz-Hugh-Curtis syndrome (FHCS) with using computed tomography (CT). Materials and Methods Twenty-five patients with FHCS and 25 women presenting with non-specifically diagnosed acute abdominal pain and who underwent biphasic CT examinations were evaluated. The AP scan included the upper abdomen, and the PP scan included the whole abdomen. Two radiologists blindly and retrospectively reviewed the PP scans first and then they reviewed the AP plus PP scans. The diagnostic accuracy of FHCS on each image set was compared for each reader by analyzing the area under the receiver operating characteristic curve (Az). Weighted kappa (wk) statistics were used to measure the interobserver agreement for the presence of CT signs of the pelvic inflammatory disease (PID) on the PP images and FHCS as the diagnosis based on the increased perihepatic enhancement on both sets of images. Results The individual diagnostic accuracy of FHCS was higher on the biphasic images (Az = 0.905 and 0.942 for reader 1 and 2, respectively) than on the PP images alone (Az = 0.806 and 0.706, respectively). The interobserver agreement for the presence of PID on the PP images was moderate (wk = 0.530). The interobserver agreement for FHCS as the diagnosis was moderate on only the PP images (wk = 0.413), but it was substantial on the biphasic images (wk = 0.719). Conclusion Inclusion of the AP scan is helpful to depict the increased perihepatic enhancement, and it improves the diagnostic accuracy of FHCS on CT. PMID:17277562

  15. Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1

    PubMed Central

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.

    2012-01-01

    Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that

  16. Plain abdominal radiographs and abdominal CT scans for nontraumatic abdominal pain--added value?

    PubMed

    Nagurney, J T; Brown, D F; Novelline, R A; Kim, J; Fischer, R H

    1999-11-01

    We conducted a retrospective descriptive study to determine the value of plain abdominal radiographs in emergency department (ED) patients also receiving abdominal computed tomography scans (CT) for the evaluation of nontraumatic abdominal, back and flank pain (NTAP). Cases were identified through radiology log books. Medical records and radiology reports were reviewed to determine whether the CT confirmed the findings of the plain abdominal radiographs, and whether the clinical course confirmed the results of either. Test characteristics for the plain abdominal radiograph and for the CT, using the clinical course including subsequent invasive procedures as the gold standard, were calculated. Of 177 patients who received CTs, 97 (55%) also received plain abdominal radiographs. Among the 74 patients who were admitted to the hospital and had complete data, the sensitivity and specificity for the plain abdominal radiographs were .43 and .75 respectively, compared to .91 and .94 for the CT scan (P(sens.) < .05, P(spec.) < .05). In 4 patients (5%), both studies failed to identify pathology shown in a subsequent procedure. In ED patients with NTAP, the plain abdominal radiograph may have some value as a screening tool; however, in patients in whom a CT is likely to be ordered anyway, a plain abdominal radiograph is unhelpful and often misleading.

  17. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations.

    PubMed

    Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela

    2013-08-01

    Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.

  18. [Progress in thin layer CT scan technology in estimating skeletal age of sternal end of clavicle].

    PubMed

    Wang, Ya-Hui; Wei, Hua; Ying, Chong-Liang; Wan, Lei; Zhu, Guang-You

    2013-04-01

    It is practical value for determination the teenagers whether the age is full of the legal responsibility age of 18 years old or not by estimating skeletal age of sternal end of clavicle. The traditional methods mainly based on X-ray radiography. However, sternal end of clavicle and adjacent lung, bronchus, sternum, rib, transverse process of thoracic vertebra are overlapped each other. As a result of overlapping, there will be obtained false negative or positive film reading results when according to X-ray observation of epiphyseal growth of sternal end of clavicle, which directly affect the scientificalness and accuracy of estimating of skeletal age. In recent years, the scholars at home and abroad have started to use thin layer CT scan technology to estimate skeletal age of the sternal end of clavicle. With the 2D and 3D CT recombination technology, the accuracy of the film reading distinctly improves by making the shape, size and position of epiphysis displayed clearly. This article reviews the application and research progress of thin layer CT scanning technology in estimating skeletal age of sternal end of clavicle at home and abroad, analyzes the superiority and value of thin layer CT scan technology, which applied to skeletal age of sternal end of clavicle.

  19. Dilation of woven and knitted aortic prosthetic grafts: CT scan evaluation.

    PubMed

    Alimi, Y; Juhan, C; Morati, N; Girard, N; Cohen, S

    1994-05-01

    Because there are few reports in the literature concerning short- and medium-term outcome of woven and knitted aortic prosthetic grafts, we conducted CT evaluations in 58 asymptomatic patients (53 males and five females with a mean age of 63.5 years) undergoing infrarenal aortic reconstruction between June 1988 and June 1991. Joined CT slices after contrast enhancement, centered on the proximal anastomoses, prosthetic bodies, and prosthetic limbs, were obtained in the early (mean 19 days) and late (mean 19 months, range 6 to 40 months) postoperative periods. In end-to-side aortoprosthetic anastomoses (n = 28), early and late CT examinations revealed that the anteroposterior diameter increased 1.9% (p = NS) and 8.8% (p < 0.0001) for woven and knitted grafts, respectively. In end-to-end aortoprosthetic anastomoses, the diameter of the prosthetic body on early CT scans increased 12.6% (p < 0.0001) and 28% (p < 0.0001) for woven and knitted prosthetic grafts, respectively, as compared with diameter values provided by the manufacturer. Dilation continued to progress 2.2% (p < 0.04) for woven and 6.2% (p < 0.0002) for knitted prosthetic grafts on late CT scans. The mean diameter of the prosthetic graft limbs (n = 96) increased 22.3% (p < 0.0001) and 34.6% (p < 0.0001) for woven and knitted prosthetic grafts, respectively, on early CT scans as compared with manufacturers' values. Secondary increases were 3.2% (p < 0.002) and 7.7% (p < 0.007) for woven and knitted prosthetic grafts, respectively. These data show that dilation of aortic prostheses occurs early in most cases, most likely soon after declamping of the graft, as shown by recent intraoperative measurements.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Noncontrast perfusion single-photon emission CT/CT scanning: a new test for the expedited, high-accuracy diagnosis of acute pulmonary embolism.

    PubMed

    Lu, Yang; Lorenzoni, Alice; Fox, Josef J; Rademaker, Jürgen; Vander Els, Nicholas; Grewal, Ravinder K; Strauss, H William; Schöder, Heiko

    2014-05-01

    Standard ventilation and perfusion (V˙/Q˙) scintigraphy uses planar images for the diagnosis of pulmonary embolism (PE). To evaluate whether tomographic imaging improves the diagnostic accuracy of the procedure, we compared noncontrast perfusion single-photon emission CT (Q˙-SPECT)/CT scans with planar V˙/Q˙scans in patients at high risk for PE. Between 2006 and 2010, most patients referred for diagnosis of PE underwent both Q˙-SPECT/CT scan and planar V˙/Q˙scintigraphy. All scans were reviewed retrospectively by four observers; planar scans were read with modified Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED) II and Prospective Investigative Study of Pulmonary Embolism Diagnosis (PISA-PED) criteria. On Q˙-SPECT/CT scan, any wedge-shaped peripheral perfusion defect occupying > 50% of a segment without corresponding pulmonary parenchymal or pleural disease was considered to show PE. The final diagnosis was established with a composite reference standard that included ECG, ultrasound of lower-extremity veins, D-dimer levels, CT pulmonary angiography (when available), and clinical follow-up for at least 3 months. One hundred six patients with cancer and mean Wells score of 4.4 had sufficient follow-up; 22 patients were given a final diagnosis of PE, and 84 patients were given a final diagnosis of no PE. According to PIOPED II, 13 studies were graded as intermediate probability. Sensitivity and specificity for PE were 50% and 98%, respectively, based on PIOPED II criteria; 86% and 93%, respectively, based on PISA-PED criteria; and 91% and 94%, respectively, based on Q˙-SPECT/CT scan. Seventy-six patients had additional relevant findings on the CT image of the Q˙-SPECT/CT scan. Noncontrast Q˙-SPECT/CT imaging has a higher accuracy than planar V˙/Q˙imaging based on PIOPED II criteria in patients with cancer and a high risk for PE.

  1. Computed Tomography (CT) Scanning Facilitates Early Identification of Neonatal Cystic Fibrosis Piglets

    PubMed Central

    Guillon, Antoine; Chevaleyre, Claire; Barc, Celine; Berri, Mustapha; Adriaensen, Hans; Lecompte, François; Villemagne, Thierry; Pezant, Jérémy; Delaunay, Rémi; Moënne-Loccoz, Joseph; Berthon, Patricia; Bähr, Andrea; Wolf, Eckhard; Klymiuk, Nikolai; Attucci, Sylvie; Ramphal, Reuben; Sarradin, Pierre; Buzoni-Gatel, Dominique; Si-Tahar, Mustapha; Caballero, Ignacio

    2015-01-01

    Background Cystic Fibrosis (CF) is the most prevalent autosomal recessive disease in the Caucasian population. A cystic fibrosis transmembrane conductance regulator knockout (CFTR-/-) pig that displays most of the features of the human CF disease has been recently developed. However, CFTR-/- pigs presents a 100% prevalence of meconium ileus that leads to death in the first hours after birth, requiring a rapid diagnosis and surgical intervention to relieve intestinal obstruction. Identification of CFTR-/- piglets is usually performed by PCR genotyping, a procedure that lasts between 4 to 6 h. Here, we aimed to develop a procedure for rapid identification of CFTR-/- piglets that will allow placing them under intensive care soon after birth and immediately proceeding with the surgical correction. Methods and Principal Findings Male and female CFTR+/- pigs were crossed and the progeny was examined by computed tomography (CT) scan to detect the presence of meconium ileus and facilitate a rapid post-natal surgical intervention. Genotype was confirmed by PCR. CT scan presented a 94.4% sensitivity to diagnose CFTR-/- piglets. Diagnosis by CT scan reduced the birth-to-surgery time from a minimum of 10 h down to a minimum of 2.5 h and increased the survival of CFTR-/- piglets to a maximum of 13 days post-surgery as opposed to just 66 h after later surgery. Conclusion CT scan imaging of meconium ileus is an accurate method for rapid identification of CFTR-/- piglets. Early CT detection of meconium ileus may help to extend the lifespan of CFTR-/- piglets and, thus, improve experimental research on CF, still an incurable disease. PMID:26600426

  2. Computed tomography automatic exposure control techniques in 18F-FDG oncology PET-CT scanning.

    PubMed

    Iball, Gareth R; Tout, Deborah

    2014-04-01

    Computed tomography (CT) automatic exposure control (AEC) systems are now used in all modern PET-CT scanners. A collaborative study was undertaken to compare AEC techniques of the three major PET-CT manufacturers for fluorine-18 fluorodeoxyglucose half-body oncology imaging. An audit of 70 patients was performed for half-body CT scans taken on a GE Discovery 690, Philips Gemini TF and Siemens Biograph mCT (all 64-slice CT). Patient demographic and dose information was recorded and image noise was calculated as the SD of Hounsfield units in the liver. A direct comparison of the AEC systems was made by scanning a Rando phantom on all three systems for a range of AEC settings. The variation in dose and image quality with patient weight was significantly different for all three systems, with the GE system showing the largest variation in dose with weight and Philips the least. Image noise varied with patient weight in Philips and Siemens systems but was constant for all weights in GE. The z-axis mA profiles from the Rando phantom demonstrate that these differences are caused by the nature of the tube current modulation techniques applied. The mA profiles varied considerably according to the AEC settings used. CT AEC techniques from the three manufacturers yield significantly different tube current modulation patterns and hence deliver different doses and levels of image quality across a range of patient weights. Users should be aware of how their system works and of steps that could be taken to optimize imaging protocols.

  3. Targeted delayed scanning at CT urography: a worthwhile use of radiation?

    PubMed

    Hack, Kalesha; Pinto, Patricia A; Gollub, Marc J

    2012-10-01

    To determine whether ureteral segments not filled with contrast material at computed tomographic (CT) urography ever contain tumor detectable only by filling these segments with contrast material. In this institutional review board-approved, HIPAA-compliant retrospective study, with waiver of informed consent, databases were searched for all patients who underwent heminephroureterectomy or ureteroscopy between January 1, 2001, and December 31, 2009, with available CT urography findings in the 12 months prior to surgery or biopsy and patients who had undergone at least two CT urography procedures with a minimum 5-year follow-up between studies. One of two radiologists blinded to results of pathologic examination recorded location of unfilled segments, time of scan, subsequent filling, and pathologic or 5-year follow-up CT urography results. Tumors were considered missed in an unfilled segment if tumor was found at pathologic examination or follow-up CT urography in the same one-third of the ureter and there were no secondary signs of a mass with other index CT urography sequences. Estimated radiation dose for additional delayed sequences was calculated with a 32-cm phantom. In 59 male and 33 female patients (mean age, 66 years) undergoing heminephroureterectomy, 27 tumors were present in 41 partially nonopacified ureters in 20 patients. Six tumors were present in nonopacified segments (one multifocal, none bilateral); all were identifiable by means of secondary signs present with earlier sequences. Among 182 lesions biopsied at ureteroscopy in 124 male and 53 female patients (mean age, 69 years), 28 tumors were present in nonopacified segments in 25 patients (four multifocal, none bilateral), all with secondary imaging signs detectable without delayed scanning. In 64 male and 29 female patients (mean age, 69 years) who underwent 5-year follow-up CT urography, three new tumors were revealed in three patients; none occurred in the unfilled ureter at index CT urography

  4. NOTE: Optimization of megavoltage CT scan registration settings for brain cancer treatments on tomotherapy

    NASA Astrophysics Data System (ADS)

    Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake

    2007-04-01

    This study aims to determine the settings that provide the optimal clinical accuracy and consistency for the registration of megavoltage CT (MVCT) with planning kilovoltage CT image sets on the Hi-ART tomotherapy system. The systematic offset between the MVCT and the planning kVCT was determined by registration of multiple MVCT scans of a head phantom aligned with the planning isocentre. Residual error vector lengths and components were used to quantify the alignment quality for the phantom shifted by 5 mm in different directions obtained by all 27 possible combinations of MVCT inter-slice spacing, registration techniques and resolution. MVCT scans with normal slices are superior to coarse slices for registration of shifts in the superior-inferior, lateral and anterior-posterior directions. Decreasing the scan length has no detrimental effect on registration accuracy as long as the scan lengths are larger than 24 mm. In the case of bone technique and fine resolution, normal and fine MVCT scan slice spacing options give similar accuracy, so normal mode is preferable due to shorter procedure and less delivered dose required for patient set-up. A superior-inferior field length of 24-30 mm, normal slice spacing, bone technique, and fine resolution is the optimum set of registration settings for MVCT scans of a Rando head phantom acquired with the Hi-ART tomotherapy system, provided the registration shifts are less than 5 mm.

  5. Combining generative and discriminative models for semantic segmentation of CT scans via active learning.

    PubMed

    Iglesias, Juan Eugenio; Konukoglu, Ender; Montillo, Albert; Tu, Zhuowen; Criminisi, Antonio

    2011-01-01

    This paper presents a new supervised learning framework for the efficient recognition and segmentation of anatomical structures in 3D computed tomography (CT), with as little training data as possible. Training supervised classifiers to recognize organs within CT scans requires a large number of manually delineated exemplar 3D images, which are very expensive to obtain. In this study, we borrow ideas from the field of active learning to optimally select a minimum subset of such images that yields accurate anatomy segmentation. The main contribution of this work is in designing a combined generative-discriminative model which: i) drives optimal selection of training data; and ii) increases segmentation accuracy. The optimal training set is constructed by finding unlabeled scans which maximize the disagreement between our two complementary probabilistic models, as measured by a modified version of the Jensen-Shannon divergence. Our algorithm is assessed on a database of 196 labeled clinical CT scans with high variability in resolution, anatomy, pathologies, etc. Quantitative evaluation shows that, compared with randomly selecting the scans to annotate, our method decreases the number of training images by up to 45%. Moreover, our generative model of body shape substantially increases segmentation accuracy when compared to either using the discriminative model alone or a generic smoothness prior (e.g. via a Markov Random Field).

  6. Automatic lung nodule matching for the follow-up in temporal chest CT scans

    NASA Astrophysics Data System (ADS)

    Hong, Helen; Lee, Jeongjin; Shin, Yeong Gil

    2006-03-01

    We propose a fast and robust registration method for matching lung nodules of temporal chest CT scans. Our method is composed of four stages. First, the lungs are extracted from chest CT scans by the automatic segmentation method. Second, the gross translational mismatch is corrected by the optimal cube registration. This initial registration does not require extracting any anatomical landmarks. Third, initial alignment is step by step refined by the iterative surface registration. To evaluate the distance measure between surface boundary points, a 3D distance map is generated by the narrow-band distance propagation, which drives fast and robust convergence to the optimal location. Fourth, nodule correspondences are established by the pairs with the smallest Euclidean distances. The results of pulmonary nodule alignment of twenty patients are reported on a per-center-of mass point basis using the average Euclidean distance (AED) error between corresponding nodules of initial and follow-up scans. The average AED error of twenty patients is significantly reduced to 4.7mm from 30.0mm by our registration. Experimental results show that our registration method aligns the lung nodules much faster than the conventional ones using a distance measure. Accurate and fast result of our method would be more useful for the radiologist's evaluation of pulmonary nodules on chest CT scans.

  7. Determination of stature from skeletal and skull measurements by CT scan evaluation.

    PubMed

    Giurazza, Francesco; Del Vescovo, Riccardo; Schena, Emiliano; Battisti, Sofia; Cazzato, Roberto Luigi; Grasso, Francesco Rosario; Silvestri, Sergio; Denaro, Vincenzo; Zobel, Bruno Beomonte

    2012-10-10

    The aim of this article is to find a correlation between height and femur/skull measurements through Computed Tomography (CT) scans and derive regression equations for total skeletal height estimation in the Caucasian population. We selected 200 Caucasian patients from March 2010 to July 2011 who had to perform a CT scan for cancer restaging. The mean age is 64.5 years. Both sexes are represented by the same number of persons. Patients have executed a total body CT scan with contrast; once scan accomplished, we measured height through a digital scales. We analyzed CT scans of each patient, obtaining multiplanar reconstruction in sagittal and coronal planes with 1mm of thickness, and we measured 10 diameters of skull and femur. Then we performed a single and a multiple regression analysis considering the three diameters that better correlated with height. The skeletal diameters with the highest correlation coefficients with stature were femur lengths, length of cranial base (Ba-N), and distance from the posterior extremity of the cranial base to the inferior point of the nasal bone (Ba-NB). Although both femur and skull are skeletal segments used for stature estimation, in our sample femur gave stronger correlation with height than skull. h=35.7+1.48·BaN+2.32·BaNB+2.53·FEM and h=3.06·FEM+72.6 are the formulae that provided the most accurate stature assessment using multiple and single regression analysis respectively.

  8. A novel sedimentological method based on CT-scanning: Use for tomographic characterization of the Galicia Interior Basin

    NASA Astrophysics Data System (ADS)

    Mena, Anxo; Francés, Guillermo; Pérez-Arlucea, Marta; Aguiar, Pablo; Barreiro-Vázquez, José Daniel; Iglesias, Alfredo; Barreiro-Lois, Andrés

    2015-05-01

    Non-destructive techniques of core analysis, especially of marine cores, are being broadly employed for sedimentary, paleoceanographic and paleoclimate research. In particular, Computed Tomography scanning (CT-scanning) allows acquisition of 3D and 2D images, according to desired planes, and thus the identification of sedimentary structures, large grains and their distributions as well as direct measurements of material densities. The most significant contribution of this technique is the possibility of getting results before opening the core. In this work CT-scan data obtained for five cores from the Galicia Interior Basin (GIB, NW Peninsula Iberia) are presented and discussed, focussing on (1) methodology of the CT-scan use, (2) tomographic description of sedimentary facies identified in the GIB, (3) treatment of the numeric data obtained with CT-scanning using specific software (anidoC), and (4) comparison of tomographic data with data obtained by conventional methodologies of core analysis. The most singular feature of GIB cores is the presence of Ice Rafted Debris (IRD) deposited during late Pleistocene Heinrich Events (HE), which can be easily recognized using the CT-scan by the presence of high radio-density grains immersed in a low radio-density matrix. Comparison of CT-scan data with analytical sedimentary data and HE proxies performed on the cores validates the CT-scanning method as a powerful tool to improve correlations, identify well-constrained events, and make more accurate basin reconstructions without opening all the cores in an oceanographic study.

  9. CT scan

    MedlinePlus

    ... creates detailed pictures of the body, including the brain, chest, spine, and abdomen. The test may be used to: Diagnose an infection Guide a surgeon to the right area during a biopsy Identify masses and tumors, including cancer Study blood vessels Normal Results Results are considered normal ...

  10. CT Scan

    MedlinePlus

    ... MRI, to avoid exposing your baby to radiation. Reactions to contrast material In certain cases, your doctor ... contrast material can cause medical problems or allergic reactions. Most reactions are mild and result in a ...

  11. Routine early CT scanning after craniotomy: is it effective for the early detection of postoperative intracranial hematoma?

    PubMed

    Wen, Liang; Yang, Xiao-Feng; Jiang, Hao; Wang, Hao; Zhan, Ren-Ya

    2016-08-01

    Postoperative intracranial hematoma (POIH) is a frequent sequela secondary to cranial surgery. The role of routine early postoperative computed tomography (CT) scanning in the detection of POIH remains controversial. The study was aimed at analyzing the effect of routine early CT scanning after craniotomy for the early detection of POIH. Routine early postoperative CT scanning was performed at our institute, and a retrospective study was conducted to analyze the data. POIH was defined as an intracranial hematoma requiring surgical management. A total of 1,148 patients undergoing craniotomy were included in this study; 28 of these patients developed POIH. The majority of POIH cases (15/28, 54 %) were detected during the first 6 h following craniotomy. A routine CT scan was performed on all included patients but two; however, CT scans detected only 16 POIH cases. During the first 6 h, the rate at which CT scans detected POIH was 1.9 % (15/786); subsequently, the rate decreased to only 0.3 % (1/360; p < 0.05, compared with the rate during the first 6 h). Among patients without clinical manifestations, the rate at which the routine post-craniotomy CT scan detected POIH was only 0.7 % (5/721) (p < 0.05, compared with the incidence of POIH). Finally, among high-risk POIH patients, the POIH-positive rate of routine CT scanning was elevated. It appears that routine early CT scan is ineffective for the detection of POIH in patients undergoing craniotomy. However, if the strategy for routine scanning can be improved, its effect may be beneficial.

  12. TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections

    SciTech Connect

    Wang, T; Zhu, L

    2014-06-15

    Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction from very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.

  13. Individual tooth segmentation from CT images scanned with contacts of maxillary and mandible teeth.

    PubMed

    Xia, Zeyang; Gan, Yangzhou; Chang, Lichao; Xiong, Jing; Zhao, Qunfei

    2017-01-01

    Tooth segmentation from computed tomography (CT) images is a fundamental step in generating the three-dimensional models of tooth for computer-aided orthodontic treatment. Individual tooth segmentation from CT images scanned with contacts of maxillary and mandible teeth is especially challenging, and no method has been reported previously. This study aimed to develop a method for individual tooth segmentation from these images. Tooth contours of maxilla and mandible are first segmented from the volumetric CT images slice-by-slice. For each slice, a line is extracted using the Radon transform to separate neighboring teeth, and each tooth contour is then segmented by a level set model from the corresponding side of the line. Then, each maxillary tooth whose contours overlap with that of mandible ones is detected, and a mesh model is reconstructed from all the contours of these maxillary and mandible teeth with contour overlap. The reconstructed mesh model is segmented using threshold and fast marching watershed method to separate the touched maxillary and mandible teeth. Finally, the separated tooth models are restored to fill the holes to obtain complete tooth models. The proposed method was tested on CT images of ten subjects scanned with natural contacts of maxillary and mandible teeth. For all the tested images, individual tooth regions are extracted successfully, and the segmentation accuracy and efficiency of the proposed method is promising. The proposed method is effective to segment individual tooth from CT images scanned with contacts of maxillary and mandible teeth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. A computational framework for cancer response assessment based on oncological PET-CT scans.

    PubMed

    Sampedro, Frederic; Escalera, Sergio; Domenech, Anna; Carrio, Ignasi

    2014-12-01

    In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Intracranial myeloid metaplasia: diagnosis by CT and Fe52 scans and treatment by cranial irradiation

    SciTech Connect

    Cornfield, D.B.; Shipkin, P.; Alavi, A.; Becker, J.; Peyster, R.

    1983-11-01

    A patient with longstanding agnogenic myeloid metaplasia developed a progressive dementia. CT scanning demonstrated multiple intracranial masses, and a Fe/sub 52/ bone marrow scan demonstrated erythroid activity within the masses and confirmed the suspicion of extra-medullary hematopoiesis. A potentially hazardous biopsy was avoided, and a course of cranial irradiation was administered, resulting in regression of the masses and clearing of the patient's dementia. Fe/sub 52/ scintigraphy provides a specific and useful diagnostic approach which may eliminate the need for invasive procedures.

  16. Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans

    NASA Astrophysics Data System (ADS)

    Shahzad, Rahil; Bos, Daniel; Budde, Ricardo P. J.; Pellikaan, Karlijn; Niessen, Wiro J.; van der Lugt, Aad; van Walsum, Theo

    2017-05-01

    Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is 1.4+/- 1.7 mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.

  17. Head trauma: CT scan interpretation by radiology residents versus staff radiologists.

    PubMed

    Wysoki, M G; Nassar, C J; Koenigsberg, R A; Novelline, R A; Faro, S H; Faerber, E N

    1998-07-01

    To determine the rate and clinical outcome of discrepancies in interpretation by radiology residents and staff neuroradiologists of posttraumatic cranial computed tomographic (CT) scans. Prospective evaluation was performed for 419 consecutive emergency posttraumatic cranial CT studies that had been interpreted by radiology residents on call over a 16-month period. Discrepancies between the interpretations made by residents and those made by staff radiologists were divided into two groups: failure to recognize an abnormality (false-negative finding) and interpretation of normal as abnormal (false-positive finding). Discrepancies were considered major if they could affect patient care in the emergency setting and minor if they could not. Major and minor discrepancies were 1.7% and 2.6%, respectively, among interpretations made by residents and those by staff radiologists. Major discrepancies were four subdural hematomas, one pneumocephalus, one hemorrhagic contusion, and one subarachnoid hemorrhage. Minor discrepancies included six skull and five facial fractures. The discrepancy rate was statistically significantly higher (12.2%) when CT findings were abnormal than when they were normal (1.5%). No change in treatment was attributed to the delay in diagnosis. A low discrepancy rate was found between interpretations made by radiology residents and those made by staff neuroradiologists of posttraumatic cranial CT scans. There were no adverse clinical outcomes.

  18. Correlation between clinical findings and CT scan parameters for shoulder deformities in birth brachial plexus palsy.

    PubMed

    Bhardwaj, Praveen; Burgess, Tanya; Sabapathy, S Raja; Venkataramani, Hari; Ilayaraja, Venkatachalam

    2013-08-01

    The shoulder is the most common site of secondary deformities after birth brachial plexus palsy. The severity and the pattern of deformity vary in patients and have implications for clinical decision making. This study aimed to find the correlation between clinical findings and computed tomography (CT) scan parameters for these deformities. This prospective study included 75 patients aged 3 to 23 years. The clinical parameters included age, extent of involvement (nerve roots affected), degree of shoulder abduction, active and passive external rotation, and Mallet score. These were correlated with 3 CT scan parameters: elevation of the scapula above the clavicle, relative glenoid version, and percentage of the humeral head anterior to the scapular line. There was a significant correlation between lack of active and passive external rotation and relative glenoid version and humeral head subluxation. There was a significant correlation between active abduction and elevation of the scapula above the clavicle. There was no significant correlation between age or Mallet score with any of the CT scan parameters. These results suggest that presence of active and passive external rotation beyond 10° is associated with significantly lesser shoulder deformity irrespective of the degree of shoulder abduction. Hence, a patient with more than 10° external rotation does not need a screening CT scan evaluation regardless of the degree of shoulder abduction present. Conversely, a lack of external rotation beyond 10° strongly suggests relative glenoid retroversion and posterior subluxation of the humeral head and should be considered a clinical indicator of shoulder deformation. Diagnostic II. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. Single low-dose CT scan optimized for rest-stress PET attenuation correction and quantification of coronary artery calcium.

    PubMed

    Kaster, Tyler S; Dwivedi, Girish; Susser, Leah; Renaud, Jennifer M; Beanlands, Rob S B; Chow, Benjamin J W; deKemp, Robert A

    2015-06-01

    Coronary artery calcium is an important marker of coronary artery disease. Myocardial perfusion imaging (MPI) using PET-CT technology requires a CT scan for attenuation correction (CTAC) but is not used routinely to measure coronary calcium burden. This study aimed to determine if a low-dose CTAC scan can also accurately quantify coronary artery calcium. Twenty-three patients underwent both a traditional coronary artery calcium scan on a dedicated cardiac CT scanner (CAC-CT) and a myocardial perfusion scan on a hybrid PET-CT scanner. The standard MPI protocol includes rest and stress-matched PET and CTAC scans. The post-stress CTAC scan was modified to approximate the CAC-CT scan protocol while maintaining ~0.5 mSv dose. Coronary artery calcium scores were compared between the Ca-CTAC and CAC-CT scans. The modified Ca-CTAC scan showed a trend toward slight decreases in segmental stress perfusion of 2-3.5% in the anterior wall segments (P < 0.05). Correlation and agreement between the proposed Ca-CTAC and standard CAC-CT calcium scores at the optimal threshold of 110 HU were also excellent (r (2) = 0.99, κ = 1.0). There was a small difference in the regression slope vs unity: Ca-CTAC = 0.96 × CAC (P < 0.05), but the categorical classification of calcium was accurate in all twenty-three patients (κ = 1.0). A single low-dose rest CTAC scan can be used for accurate attenuation correction of rest and stress PET perfusion images, thus allowing a post-stress CTAC scan to be optimized for improved quantification of coronary artery calcium without increasing radiation dose vs standard protocols.

  20. [Clinical value of 64-slice spiral 3-phase CT enhanced scanning for preoperative TNM staging assessment of gastric carcinoma].

    PubMed

    Zhong, Bao-yuan; Liu, Yan-xiu; Huang, Wen-feng; Liu, Qing-quan; Liu, Shao-qiang; Liu, Yao

    2012-07-01

    To explore the clinical value of 64-slice spiral 3-phase CT enhanced scanning for preoperative TNM staging assessment of gastric carcinoma. A retrospective study was performed to review the 64-slice spiral 3-phase CT enhanced scanning of 120 patients with gastric cancer diagnosed by biopsy prior to operation and postoperative pathological reports. All the findings were reviewed by two senior radiologic diagnosticians separately and compared with pathological findings. The accuracy of 64-slice spiral CT enhanced scan was 79.2%(95/120) for T staging, 66.7%(10/15) for T1, 66.7%(14/21) for T2, 84.0%(42/50) for T3, and 85.3%(29/34) for T4. For gastric wall with single layer and multiple layers, the accuracy of CT enhanced scanning was 59.4%(19/32) and 81.8%(72/88) for T staging, and the difference was statistically significant(P<0.05). The accuracy of 64-slice spiral CT enhanced scan was 73.9%(85/115) for N staging, 75.5%(37/49) for N0, 70.3%(26/37) for N1, 75.9%(22/29) for N2. The accuracy of 64-slice spiral CT enhanced scanning was 89.2% for M staging. 64-slice spiral CT 3-phase enhanced scanning can monitor the invasion, lymphatic metastasis, and distant metastasis of gastric cancer dynamically, which may become an important examination item for the preoperative evaluation of gastric cancer.

  1. Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization.

    PubMed

    Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2014-01-01

    Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.

  2. Cranio-orbital reconstruction: safety and image quality of metallic implants on CT and MRI scanning.

    PubMed

    Sullivan, P K; Smith, J F; Rozzelle, A A

    1994-10-01

    A study was undertaken to evaluate the safety of magnetic resonance imaging (MRI) of metallic implants used in cranio-orbital reconstruction (stainless steel wire and titanium and Vitallium plates) and also to compare the degree of artifact created on computed tomographic (CT) scanning and MRI by each material. Samples of each material were tested for deflection (movement) in a 1.5-T MRI field and for temperature change under conditions simulating a clinical MRI scan. None of the materials exhibited any deflection, and none exhibited any significant temperature change compared with water. Standardized bars of each material and commonly used, commercially available titanium and Vitallium implants (plates, mesh) were evaluated for artifact. On blinded evaluation by three radiologists and on quantitative computer analysis of the CT images, the stainless steel produced the most artifact on both CT scan and MRI, followed by the Vitallium, with the least artifact caused by titanium. All the titanium images were felt to be acceptable to detect orbital pathology, while only the images with the thinnest Vitallium (micromesh) implant were acceptable.

  3. Classification of pulmonary emphysema from chest CT scans using integral geometry descriptors

    NASA Astrophysics Data System (ADS)

    van Rikxoort, E. M.; Goldin, J. G.; Galperin-Aizenberg, M.; Brown, M. S.

    2011-03-01

    To gain insight into the underlying pathways of emphysema and monitor the effect of treatment, methods to quantify and phenotype the different types of emphysema from chest CT scans are of crucial importance. Current standard measures rely on density thresholds for individual voxels, which is influenced by inspiration level and does not take into account the spatial relationship between voxels. Measures based on texture analysis do take the interrelation between voxels into account and therefore might be useful for distinguishing different types of emphysema. In this study, we propose to use Minkowski functionals combined with rotation invariant Gaussian features to distinguish between healthy and emphysematous tissue and classify three different types of emphysema. Minkowski functionals characterize binary images in terms of geometry and topology. In 3D, four Minkowski functionals are defined. By varying the threshold and size of neighborhood around a voxel, a set of Minkowski functionals can be defined for each voxel. Ten chest CT scans with 1810 annotated regions were used to train the method. A set of 108 features was calculated for each training sample from which 10 features were selected to be most informative. A linear discriminant classifier was trained to classify each voxel in the lungs into a subtype of emphysema or normal lung. The method was applied to an independent test set of 30 chest CT scans with varying amounts and types of emphysema with 4347 annotated regions of interest. The method is shown to perform well, with an overall accuracy of 95%.

  4. 3D segmentation of abdominal aorta from CT-scan and MR images.

    PubMed

    Duquette, Anthony Adam; Jodoin, Pierre-Marc; Bouchot, Olivier; Lalande, Alain

    2012-06-01

    We designed a generic method for segmenting the aneurismal sac of an abdominal aortic aneurysm (AAA) both from multi-slice MR and CT-scan examinations. It is a semi-automatic method requiring little human intervention and based on graph cut theory to segment the lumen interface and the aortic wall of AAAs. Our segmentation method works independently on MRI and CT-scan volumes and has been tested on a 44 patient dataset and 10 synthetic images. Segmentation and maximum diameter estimation were compared to manual tracing from 4 experts. An inter-observer study was performed in order to measure the variability range of a human observer. Based on three metrics (the maximum aortic diameter, the volume overlap and the Hausdorff distance) the variability of the results obtained by our method is shown to be similar to that of a human operator, both for the lumen interface and the aortic wall. As will be shown, the average distance obtained with our method is less than one standard deviation away from each expert, both for healthy subjects and for patients with AAA. Our semi-automatic method provides reliable contours of the abdominal aorta from CT-scan or MRI, allowing rapid and reproducible evaluations of AAA.

  5. [Diagnosis of strangulated Spiegel hernia based on CT scan: about a case].

    PubMed

    Akpo, Geraud; Deme, Hamidou; Badji, Nfally; Niang, Fallou; Toure, Mohamadou; Niang, Ibrahima; Diouf, Malick; Niang, El Hadj

    2016-01-01

    We report a case of a 86-year old woman with Spiegel hernia complicated by occlusion whose diagnosis was based on CT scan. She was examined in the Emergency Surgery Department for brutal onset of pain in the right iliac fossa associated with vomiting. On physical examination the patient was febrile (38.2° C). It showed hard, sensitive and mobile mass located in the right iliac fossa, with respect to both planes. Abdominal CT scan showed a hernia sac with the neck measuring 13 mm in the right iliac fossa, in front of the aponeurosis of the external oblique muscle. It contained fat and a small bowel loop (curved arrow) with two zones of transition giving a double beak-like appearance at the level of the neck. CT scan showed a lack of enhancement of the wall of the loop after administration of contrast material. The diagnosis of strangulated spiegel hernia associated with sign of arterial ischemia of the digestive wall was retained. Surgery was perfomed with simple postoperative management.

  6. Spinal uptake mimicking metastasis in SPECT/CT bone scan in a patient with superior vena cava obstruction.

    PubMed

    Rager, Olivier; Nkoulou, René; Garibotto, Valentina; Boudabbous, Sana; Arditi, Daniel

    2013-11-01

    A 46-year-old female patient with a mediastinal neuroendocrine carcinoma complicated by superior vena cava syndrome was referred for a bone metastatic workup. Bone scan with SPECT/CT showed several vertebral fixations without alterations on the unenhanced CT, but a CT scan with injection of contrast media showed vertebral densities matched to the lesions described on the SPECT/CT. This pattern confirmed presence of collateral paths through vertebral veins due to superior vena cava syndrome. Lack of metastases was confirmed by MRI.

  7. WE-EF-207-07: Dual Energy CT with One Full Scan and a Second Sparse-View Scan Using Structure Preserving Iterative Reconstruction (SPIR)

    SciTech Connect

    Wang, T; Zhu, L

    2015-06-15

    Purpose: Conventional dual energy CT (DECT) reconstructs CT and basis material images from two full-size projection datasets with different energy spectra. To relax the data requirement, we propose an iterative DECT reconstruction algorithm using one full scan and a second sparse-view scan by utilizing redundant structural information of the same object acquired at two different energies. Methods: We first reconstruct a full-scan CT image using filtered-backprojection (FBP) algorithm. The material similarities of each pixel with other pixels are calculated by an exponential function about pixel value differences. We assume that the material similarities of pixels remains in the second CT scan, although pixel values may vary. An iterative method is designed to reconstruct the second CT image from reduced projections. Under the data fidelity constraint, the algorithm minimizes the L2 norm of the difference between pixel value and its estimation, which is the average of other pixel values weighted by their similarities. The proposed algorithm, referred to as structure preserving iterative reconstruction (SPIR), is evaluated on physical phantoms. Results: On the Catphan600 phantom, SPIR-based DECT method with a second 10-view scan reduces the noise standard deviation of a full-scan FBP CT reconstruction by a factor of 4 with well-maintained spatial resolution, while iterative reconstruction using total-variation regularization (TVR) degrades the spatial resolution at the same noise level. The proposed method achieves less than 1% measurement difference on electron density map compared with the conventional two-full-scan DECT. On an anthropomorphic pediatric phantom, our method successfully reconstructs the complicated vertebra structures and decomposes bone and soft tissue. Conclusion: We develop an effective method to reduce the number of views and therefore data acquisition in DECT. We show that SPIR-based DECT using one full scan and a second 10-view scan can

  8. Carotid plaque characterization using CT and MRI scans for synergistic image analysis

    NASA Astrophysics Data System (ADS)

    Getzin, Matthew; Xu, Yiqin; Rao, Arhant; Madi, Saaussan; Bahadur, Ali; Lennartz, Michelle R.; Wang, Ge

    2014-09-01

    Noninvasive determination of plaque vulnerability has been a holy grail of medical imaging. Despite advances in tomographic technologies , there is currently no effective way to identify vulnerable atherosclerotic plaques with high sensitivity and specificity. Computed tomography (CT) and magnetic resonance imaging (MRI) are widely used, but neither provides sufficient information of plaque properties. Thus, we are motivated to combine CT and MRI imaging to determine if the composite information can better reflect the histological determination of plaque vulnerability. Two human endarterectomy specimens (1 symptomatic carotid and 1 stable femoral) were imaged using Scanco Medical Viva CT40 and Bruker Pharmascan 16cm 7T Horizontal MRI / MRS systems. μCT scans were done at 55 kVp and tube current of 70 mA. Samples underwent RARE-VTR and MSME pulse sequences to measure T1, T2 values, and proton density. The specimens were processed for histology and scored for vulnerability using the American Heart Association criteria. Single modality-based analyses were performed through segmentation of key imaging biomarkers (i.e. calcification and lumen), image registration, measurement of fibrous capsule, and multi-component T1 and T2 decay modeling. Feature differences were analyzed between the unstable and stable controls, symptomatic carotid and femoral plaque, respectively. By building on the techniques used in this study, synergistic CT+MRI analysis may provide a promising solution for plaque characterization in vivo.

  9. Six-Minute Walk Distance Predictors, Including CT Scan Measures, in the COPDGene Cohort

    PubMed Central

    Rambod, Mehdi; Porszasz, Janos; Make, Barry J.; Crapo, James D.

    2012-01-01

    Background: Exercise tolerance in COPD is only moderately well predicted by airflow obstruction assessed by FEV1. We determined whether other phenotypic characteristics, including CT scan measures, are independent predictors of 6-min walk distance (6MWD) in the COPDGene cohort. Methods: COPDGene recruits non-Hispanic Caucasian and African American current and ex-smokers. Phenotyping measures include postbronchodilator FEV1 % predicted and inspiratory and expiratory CT lung scans. We defined % emphysema as the percentage of lung voxels < −950 Hounsfield units on the inspiratory scan and % gas trapping as the percentage of lung voxels < −856 Hounsfield units on the expiratory scan. Results: Data of the first 2,500 participants of the COPDGene cohort were analyzed. Participant age was 61 ± 9 years; 51% were men; 76% were non-Hispanic Caucasians, and 24% were African Americans. Fifty-six percent had spirometrically defined COPD, with 9.3%, 23.4%, 15.0%, and 8.3% in GOLD (Global Initiative for Chronic Obstructive Lung Disease) stages I to IV, respectively. Higher % emphysema and % gas trapping predicted lower 6MWD (P < .001). However, in a given spirometric group, after adjustment for age, sex, race, and BMI, neither % emphysema nor % gas trapping, or their interactions with FEV1 % predicted, remained a significant 6MWD predictor. In a given spirometric group, only 16% to 27% of the variance in 6MWD could be explained by age, male sex, Caucasian race, and lower BMI as significant predictors of higher 6MWD. Conclusions: In this large cohort of smokers in a given spirometric stage, phenotypic characteristics were only modestly predictive of 6MWD. CT scan measures of emphysema and gas trapping were not predictive of 6MWD after adjustment for other phenotypic characteristics. PMID:21960696

  10. Refractory Epilepsy-MRI, EEG and CT scan, a Correlative Clinical Study

    PubMed Central

    Nikodijevic, Dijana; Baneva–Dolnenec, Natalija; Petrovska-Cvetkovska, Dragana; Caparoska, Daniela

    2016-01-01

    OBJECTIVES: Refractory epilepsies (RE), as well as, the surgically correctable syndromes, are of great interest, since they affect the very young population of children and adolescents. The early diagnosis and treatment are very important in preventing the psychosocial disability. Therefore MRI and EEG are highly sensitive methods in the diagnosis and localization of epileptogenic focus, but also in pre-surgical evaluation of these patients. The aim of our study is to correlate the imaging findings of EEG, MRI and CT scan in refractory symptomatic epilepsies, and to determine their specificity in detecting the epileptogenic focus. METHODS: The study was prospective with duration of over two years, open-labelled, and involved a group of 37 patients that had been evaluated and diagnosed as refractory epilepsy patients. In the evaluation the type and frequency of seizures were considered, together with the etiologic factors and their association, and finally the risk for developing refractory epilepsy was weighted. EEG and MRI findings and CT scan results were evaluated for their specificity and sensitivity in detecting the epileptogenic focus, and the correlation between them was analyzed. RESULTS: Regarding the type of seizures considered in our study, the patients with PCS (partial complex seizures) dominated, as opposed to those with generalized seizures (GS) (D=1.178, p < 0.05). Positive MRI findings were registered in 28 patients (75.7%). Most of them were patients with hippocampal sclerosis, 12 (42.8%), and also they were found to have the highest risk of developing refractory epilepsy (RE) (Odds ratio = 5.7), and the highest association between the etiologic factor and refractory epilepsy (p < 0.01). In detecting the epileptogenic focus, a significant difference was found (p < 0.01) between MRI and CT scan findings, especially in patients with hippocampal sclerosis and cerebral malformations. There was a strong correlation between the MRI findings and the

  11. Hierarchical pictorial structures for simultaneously localizing multiple organs in volumetric pre-scan CT

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye

    2015-03-01

    Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.

  12. Functional imaging in differentiating bronchial masses: an initial experience with a combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan.

    PubMed

    Kumar, Arvind; Jindal, Tarun; Dutta, Roman; Kumar, Rakesh

    2009-10-01

    To evaluate the role of combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in differentiating bronchial tumors observed in contrast enhanced computed tomography scan of chest. Prospective observational study. Place of study: All India Institute of Medical Sciences, New Delhi, India. 7 patients with bronchial mass detected in computed tomography scan of the chest were included in this study. All patients underwent (18)F-FDG PET-CT scan, (68)Ga DOTA-TOC PET-CT scan and fiberoptic bronchoscope guided biopsy followed by definitive surgical excision. The results of functional imaging studies were analyzed and the results are correlated with the final histopathology of the tumor. Histopathological examination of 7 bronchial masses revealed carcinoid tumors (2 typical, 1 atypical), inflammatory myofibroblastic tumor (1), mucoepidermoid carcinoma (1), hamartoma (1), and synovial cell sarcoma (1). The typical carcinoids had mild (18)F-FDG uptake and high (68)Ga DOTA-TOC uptake. Atypical carcinoid had moderate uptake of (18)F-FDG and high (68)Ga DOTA-TOC uptake. Inflammatory myofibroblastic tumor showed high uptake of (18)F-FDG and no uptake of (68)Ga DOTA-TOC. Mucoepidermoid carcinoma showed mild (18)F-FDG uptake and no (68)Ga DOTA-TOC uptake. Hamartoma showed no uptake on either scans. Synovial cell sarcoma showed moderate (18)F-FDG uptake and mild focal (68)Ga DOTA-TOC uptake. This initial experience with the combined use of (18)F-FDG and (68)Ga DOTA-TOC PET-CT scan reveals different uptake patterns in various bronchial tumors. Bronchoscopic biopsy will continue to be the gold standard; however, the interesting observations made in this study merits further evaluation of the utility of the combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in larger number of patients with bronchial masses.

  13. SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis

    SciTech Connect

    Park, I; Song, J; Kim, K

    2016-06-15

    Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated by using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).

  14. Semiautomatic extraction of cortical thickness and diaphyseal curvature from CT scans.

    PubMed

    Dupej, Ján; Lacoste Jeanson, Alizé; Pelikán, Josef; Brůžek, Jaroslav

    2017-09-15

    The understanding of locomotor patterns, activity schemes, and biological variations has been enhanced by the study of the geometrical properties and cortical bone thickness of the long bones measured using CT scan cross-sections. With the development of scanning procedures, the internal architecture of the long bones can be explored along the entire diaphysis. Recently, several methods that map cortical thickness along the whole femoral diaphysis have been developed. Precise homology is vital for statistical examination of the data; however, the repeatability of these methods is unknown and some do not account for the curvature of the bones. We have designed a semiautomatic workflow that improves the morphometric analysis of cortical thickness, including robust data acquisition with minimal user interaction and considering the bone curvature. The proposed algorithm also performs automatic landmark refinement and rigid registration on the extracted morphometric maps of the cortical thickness. Because our algorithm automatically reslices the diaphysis into 100 cross-sections along the medial axis and uses an adaptive thresholding method, it is usable on CT scans that contain soft tissues as well as on bones that have not been oriented specifically prior to scanning. Our approach exhibits considerable robustness to error in user-supplied landmarks, suppresses distortion caused by the curvature of the bones, and calculates the curvature of the medial axis. © 2017 Wiley Periodicals, Inc.

  15. National Survey of Radiation Dose and Image Quality in Adult CT Head Scans in Taiwan

    PubMed Central

    Lin, Chung-Jung; Mok, Greta S. P.; Tsai, Mang-Fen; Tsai, Wei-Ta; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin

    2015-01-01

    Introduction The purpose of the present study was to evaluate the influence of different variables on radiation dose and image quality based on a national database. Materials and Methods Taiwan’s Ministry of Health and Welfare requested all radiology departments to complete a questionnaire for each of their CT scanners. Information gathered included all scanning parameters for CT head scans. For the present analysis, CT machines were divided into three subgroups: single slice CT (Group A); multi-detector CT (MDCT) with 2-64 slices (Group B); and MDCT with more than 64 slices (Group C). Correlations between computed tomography dose index (CTDI) and signal-to-noise ratio (SNR) with cumulated tube rotation number (CTW(n)) and cumulated tube rotation time (CTW(s)), and sub group analyses of CTDI and SNR across the three groups were performed. Results CTDI values demonstrated a weak correlation (r = 0.33) with CTW(n) in Group A. SNR values demonstrated a weak negative correlation (r = -0.46) with CTW(n) in Group C. MDCT with higher slice numbers used more tube potential resulting in higher effective doses. There were both significantly lower CTDI and SNR values in helical mode than in axial mode in Group B, but not Group C. Conclusion CTW(n) and CTW(s) did not influence radiation output. Helical mode is more often used in MDCT and results in both lower CTDI and SNR compared to axial mode in MDCT with less than 64 slices. PMID:26125549

  16. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    NASA Astrophysics Data System (ADS)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  17. Pulmonary nodule registration in serial CT scans based on rib anatomy and nodule template matching

    PubMed Central

    Shi, Jiazheng; Sahiner, Berkman; Chan, Heang-Ping; Hadjiiski, Lubomir; Zhou, Chuan; Cascade, Philip N.; Bogot, Naama; Kazerooni, Ella A.; Wu, Yi-Ta; Wei, Jun

    2009-01-01

    An automated method is being developed in order to identify corresponding nodules in serial thoracic CT scans for interval change analysis. The method uses the rib centerlines as the reference for initial nodule registration. A spatially adaptive rib segmentation method first locates the regions where the ribs join the spine, which define the starting locations for rib tracking. Each rib is tracked and locally segmented by expectation-maximization. The ribs are automatically labeled, and the centerlines are estimated using skeletonization. For a given nodule in the source scan, the closest three ribs are identified. A three-dimensional (3D) rigid affine transformation guided by simplex optimization aligns the centerlines of each of the three rib pairs in the source and target CT volumes. Automatically defined control points along the centerlines of the three ribs in the source scan and the registered ribs in the target scan are used to guide an initial registration using a second 3D rigid affine transformation. A search volume of interest (VOI) is then located in the target scan. Nodule candidate locations within the search VOI are identified as regions with high Hessian responses. The initial registration is refined by searching for the maximum cross-correlation between the nodule template from the source scan and the candidate locations. The method was evaluated on 48 CT scans from 20 patients. Experienced radiologists identified 101 pairs of corresponding nodules. Three metrics were used for performance evaluation. The first metric was the Euclidean distance between the nodule centers identified by the radiologist and the computer registration, the second metric was a volume overlap measure between the nodule VOIs identified by the radiologist and the computer registration, and the third metric was the hit rate, which measures the fraction of nodules whose centroid computed by the computer registration in the target scan falls within the VOI identified by the

  18. Open source deformable image registration system for treatment planning and recurrence CT scans : Validation in the head and neck region.

    PubMed

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn; Bertelsen, Anders; Johansen, Jørgen; Grau, Cai; Eriksen, Jesper Grau

    2016-08-01

    Clinical application of deformable registration (DIR) of medical images remains limited due to sparse validation of DIR methods in specific situations, e. g. in case of cancer recurrences. In this study the accuracy of DIR for registration of planning CT (pCT) and recurrence CT (rCT) images of head and neck squamous cell carcinoma (HNSCC) patients was evaluated. Twenty patients treated with definitive IMRT for HNSCC in 2010-2012 were included. For each patient, a pCT and an rCT scan were used. Median interval between the scans was 8.5 months. One observer manually contoured eight anatomical regions-of-interest (ROI) twice on pCT and once on rCT. pCT and rCT images were deformably registered using the open source software elastix. Mean surface distance (MSD) and Dice similarity coefficient (DSC) between contours were used for validation of DIR. A measure for delineation uncertainty was estimated by assessing MSD from the re-delineations of the same ROI on pCT. DIR and manual contouring uncertainties were correlated with tissue volume and rigidity. MSD varied 1-3 mm for different ROIs for DIR and 1-1.5 mm for re-delineated ROIs performed on pCT. DSC for DIR varied between 0.58 and 0.79 for soft tissues and was 0.79 or higher for bony structures, and correlated with the volumes of ROIs (r = 0.5, p < 0.001) and tissue rigidity (r = 0.54, p < 0.001). DIR using elastix in HNSCC on planning and recurrence CT scans is feasible; an uncertainty of the method is close to the voxel size length of the planning CT images.

  19. A new CT collimator for producing two simultaneous overlapping slices from one scan. [for biomedical applications

    NASA Technical Reports Server (NTRS)

    Kwoh, Y. S.; Glenn, W. V., Jr.; Reed, I. S.; Truong, T. K.

    1981-01-01

    A new CT collimator is developed which is capable of producing two simultaneous successive overlapping images from a single scan. The collimator represents a modification of the standard EMI 5005 collimator achieved by alternately masking one end or portions of both ends of the X-ray detectors at a 13-mm beamwidth so that a set of 540 filtered projections is obtained for each scan which can be separated into two sets of interleaved projections corresponding to views 3 mm apart. Tests have demonstrated that the quality of the images produced from these two projections almost equals the quality of those produced by the standard collimator from two separate scans. The new collimator may thus be used to achieve a speed improvement in the generation of overlapping sections as well as a reduction in X-ray dosage.

  20. A new CT collimator for producing two simultaneous overlapping slices from one scan. [for biomedical applications

    NASA Technical Reports Server (NTRS)

    Kwoh, Y. S.; Glenn, W. V., Jr.; Reed, I. S.; Truong, T. K.

    1981-01-01

    A new CT collimator is developed which is capable of producing two simultaneous successive overlapping images from a single scan. The collimator represents a modification of the standard EMI 5005 collimator achieved by alternately masking one end or portions of both ends of the X-ray detectors at a 13-mm beamwidth so that a set of 540 filtered projections is obtained for each scan which can be separated into two sets of interleaved projections corresponding to views 3 mm apart. Tests have demonstrated that the quality of the images produced from these two projections almost equals the quality of those produced by the standard collimator from two separate scans. The new collimator may thus be used to achieve a speed improvement in the generation of overlapping sections as well as a reduction in X-ray dosage.

  1. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    SciTech Connect

    Park, M; Rosica, D; Agarwal, V; Di Carli, M; Dorbala, S

    2016-06-15

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984 pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.

  2. Automatic classication of pulmonary function in COPD patients using trachea analysis in chest CT scans

    NASA Astrophysics Data System (ADS)

    van Rikxoort, E. M.; de Jong, P. A.; Mets, O. M.; van Ginneken, B.

    2012-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease that is characterized by airflow limitation. COPD is clinically diagnosed and monitored using pulmonary function testing (PFT), which measures global inspiration and expiration capabilities of patients and is time-consuming and labor-intensive. It is becoming standard practice to obtain paired inspiration-expiration CT scans of COPD patients. Predicting the PFT results from the CT scans would alleviate the need for PFT testing. It is hypothesized that the change of the trachea during breathing might be an indicator of tracheomalacia in COPD patients and correlate with COPD severity. In this paper, we propose to automatically measure morphological changes in the trachea from paired inspiration and expiration CT scans and investigate the influence on COPD GOLD stage classification. The trachea is automatically segmented and the trachea shape is encoded using the lengths of rays cast from the center of gravity of the trachea. These features are used in a classifier, combined with emphysema scoring, to attempt to classify subjects into their COPD stage. A database of 187 subjects, well distributed over the COPD GOLD stages 0 through 4 was used for this study. The data was randomly divided into training and test set. Using the training scans, a nearest mean classifier was trained to classify the subjects into their correct GOLD stage using either emphysema score, tracheal shape features, or a combination. Combining the proposed trachea shape features with emphysema score, the classification performance into GOLD stages improved with 11% to 51%. In addition, an 80% accuracy was achieved in distinguishing healthy subjects from COPD patients.

  3. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience With Phantom Scans

    NASA Astrophysics Data System (ADS)

    Johnson, Robert P.; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F.; Piersimoni, Pierluigi; Plautz, Tia E.; Sadrozinski, Hartmut F.-W.; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-02-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360 ° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360 ° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials.

  4. Location registration and recognition (LRR) for serial analysis of nodules in lung CT scans.

    PubMed

    Sofka, Michal; Stewart, Charles V

    2010-06-01

    In the clinical workflow for lung cancer management, the comparison of nodules between CT scans from subsequent visits by a patient is necessary for timely classification of pulmonary nodules into benign and malignant and for analyzing nodule growth and response to therapy. The algorithm described in this paper takes (a) two temporally-separated CT scans, I(1) and I(2), and (b) a series of nodule locations in I(1), and for each location it produces an affine transformation that maps the locations and their immediate neighborhoods from I(1) to I(2). It does this without deformable registration and without initialization by global affine registration. Requiring the nodule locations to be specified in only one volume provides the clinician more flexibility in investigating the condition of the lung. The algorithm uses a combination of feature extraction, indexing, refinement, and decision processes. Together, these processes essentially "recognize" the neighborhoods. We show on lung CT scans that our technique works at near interactive speed and that the median alignment error of 134 nodules is 1.70mm compared to the error 2.14mm of the Diffeomorphic Demons algorithm, and to the error 3.57mm of the global nodule registration with local refinement. We demonstrate on the alignment of 250 nodules, that the algorithm is robust to changes caused by cancer progression and differences in breathing states, scanning procedures, and patient positioning. Our algorithm may be used both for diagnosis and treatment monitoring of lung cancer. Because of the generic design of the algorithm, it might also be used in other applications that require fast and accurate mapping of regions.

  5. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience with Phantom Scans

    PubMed Central

    Johnson, Robert P.; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F.; Piersimoni, Pierluigi; Plautz, Tia E.; Sadrozinski, Hartmut F.-W.; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-01-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials. PMID:27127307

  6. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience with Phantom Scans.

    PubMed

    Johnson, Robert P; Bashkirov, Vladimir; DeWitt, Langley; Giacometti, Valentina; Hurley, Robert F; Piersimoni, Pierluigi; Plautz, Tia E; Sadrozinski, Hartmut F-W; Schubert, Keith; Schulte, Reinhard; Schultze, Blake; Zatserklyaniy, Andriy

    2016-02-01

    We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and the associated paths of protons passing through the object over a 360° angular scan are processed by an iterative, parallelizable reconstruction algorithm that runs on modern GP-GPU hardware. In order to assess the performance of the scanner, we have performed tests with 200 MeV protons from the synchrotron of the Loma Linda University Medical Center and the IBA cyclotron of the Northwestern Medicine Chicago Proton Center. Our first objective was calibration of the instrument, including tracker channel maps and alignment as well as the WEPL calibration. Then we performed the first CT scans on a series of phantoms. The very high sustained rate of data acquisition, exceeding one million protons per second, allowed a full 360° scan to be completed in less than 10 minutes, and reconstruction of a CATPHAN 404 phantom verified accurate reconstruction of the proton relative stopping power in a variety of materials.

  7. CT Scan Does Not Differentiate Patients with Hepatopulmonary Syndrome from Other Patients with Liver Disease

    PubMed Central

    Prabhudesai, Vikramaditya; Castel, Helene; Gupta, Samir

    2016-01-01

    Background Hepatopulmonary syndrome (HPS) is defined by liver dysfunction, intrapulmonary vascular dilatations, and impaired oxygenation. The gold standard for detection of intrapulmonary vascular dilatations in HPS is contrast echocardiography. However, two small studies have suggested that patients with HPS have larger segmental pulmonary arterial diameters than both normal subjects and normoxemic subjects with cirrhosis, when measured by CT. We sought to compare CT imaging-based pulmonary vasodilatation in patients with HPS, patients with liver dysfunction without HPS, and matching controls on CT imaging. Methods We performed a retrospective cohort study at two quaternary care Canadian HPS centers. We analyzed CT thorax scans in 23 patients with HPS, 29 patients with liver dysfunction without HPS, and 52 gender- and age-matched controls. We measured the artery-bronchus ratios (ABRs) in upper and lower lung zones, calculated the “delta ABR” by subtracting the upper from the lower ABR, compared these measurements between groups, and correlated them with clinically relevant parameters (partial pressure of arterial oxygen, alveolar-arterial oxygen gradient, macroaggregated albumin shunt fraction, and diffusion capacity). We repeated measurements in patients with post-transplant CTs. Results Patients had significantly larger lower zone ABRs and delta ABRs than controls (1.20 +/- 0.19 versus 0.98 +/- 0.10, p<0.01; and 0.12 +/- 0.17 versus -0.06 +/- 0.10, p<0.01, respectively). However, there were no significant differences between liver disease patients with and without HPS, nor any significant correlations between CT measurements and clinically relevant parameters. There were no significant changes in ABRs after liver transplantation (14 patients). Conclusions Basilar segmental artery-bronchus ratios are larger in patients with liver disease than in normal controls, but this vasodilatation is no more severe in patients with HPS. CT does not distinguish patients

  8. In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans

    SciTech Connect

    Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Liu, Bob; Liu, Tianyu; Xu, X. George

    2014-09-15

    Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the

  9. In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans

    PubMed Central

    Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Liu, Tianyu; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2014-01-01

    Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the

  10. A Survey of Pediatric CT Protocols and Radiation Doses in South Korean Hospitals to Optimize the Radiation Dose for Pediatric CT Scanning.

    PubMed

    Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung

    2015-12-01

    Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2-5 years), 23.5 to 44.1 (6-10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2-5 years), 3.9 to 9.3 (6-10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2-5 years), 5.7 to 12.4 (6-10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in

  11. Cervical CT scan-guided epidural blood patches for spontaneous intracranial hypotension.

    PubMed

    Maingard, Julian; Giles, Lauren; Marriott, Mark; Phal, Pramit M

    2015-12-01

    We describe two patients with spontaneous intracranial hypotension (SIH), presenting with postural headache due to C1-C2 cerebrospinal fluid (CSF) leak. Both patients were refractory to lumbar epidural blood patching (EBP), and subsequently underwent successful CT scan-guided cervical EBP. SIH affects approximately 1 in 50,000 patients, with females more frequently affected. Its associated features are variable, and as such, misdiagnosis is common. Therefore, imaging plays an important role in the diagnostic workup of SIH and can include MRI of the brain and spine, CT myelogram, and radionuclide cisternography. In patients with an established diagnosis and confirmed CSF leak, symptoms will usually resolve with conservative management. However, in a select subgroup of patients, the symptoms are refractory to medical management and require more invasive therapies. In patients with cervical leaks, EBP in the cervical region is an effective management approach, either in close proximity to, or directly targeting a dural defect. CT scan-guided cervical EBP is an effective treatment approach in refractory SIH, and should be considered in those patients who are refractory to conservative management.

  12. PET-CT scan positive pulmonary nodule revealing histoplasmosis: a case report.

    PubMed

    Matos Figueroa, Jorge R; Vázquez Torres, Orlando L; Hernández, Inés; Vila, Alicia

    2010-01-01

    Our medical staff identified a case of a forty-six years old Armed Force active duty female that presented with multiple systemic and pulmonary signs and symptoms, such as hemoptysis, arthralgias, chest pain and dyspnea after being exposed to a humid and old wooden building one year ago in the state of Georgia. Various imaging studies (cervical & thoracic x-rays and CT Scans), revealed diffuse small nodules at cervical & thoracic areas, osteolytic lesions and lymphadenopathy. Suspecting a malignant process, a PET-CT Scan was performed revealing a right lung lower lobe nodule consistent with a primary malignancy, metastatic disease, active infectious or inflammatory process. She underwent a CT-guided needle biopsy followed by an open thoracotomy. These results were negative for malignancy and positive for chronic granulomatous inflammatory process. Therefore, special immunologic stains were undertaken revealing a granulomatous process with Histoplasmosis capsulatum. This case was diagnosed in the most unusual manner, given the presenting symptoms and pathological findings which suggested a malignant process, later confirmed by multiple specialized imaging studies and tests. This presumptive diagnosis turned out to be an inflammatory/infectious (fungal) process. We must keep in mind that not all mass lesions encountered by special imaging studies should be considered malignant. This case exemplifies the need of clinicians to exercise strong clinical and critical thinking skills to consider the broad diagnostic possibilities of pulmonary nodules presenting as a malignancy.

  13. [Lung cancer screening with low-dose thoracic CT-scan in the Somme area].

    PubMed

    Leleu, O; Auquier, M; Carre, O; Chauffert, B; Dubreuil, A; Petigny, V; Trancart, B; Berna, P; Jounieaux, V

    2017-03-01

    This feasibility trial proposes to set up in the department of the Somme an annual screening for lung cancer with low-dose thoracic CT. It responds to the first objective of the third cancer plan and follows the publication of the results of the National Lung Screening Trial in 2011. The method of this study is to use the existing networks among and between healthcare professionals and the departmental cancer screening structure. The inclusion criteria will be those of the National Lung Screening Trial. Screening will be proposed by treating physicians and chest physicians. The CT-scan will be performed in radiological centers that adhere to the good practice charter for low radiation scanning. A copy of CT results will be sent to the departmental structure of cancer screening (ADEMA80) which will ensure traceability and will perform statistical analysis. The study received funding from the Agence régionale de santé de la Picardie and la ligue contre le cancer. The primary endpoints of this screening will be the number of cancers diagnosed and the survival of the patients. The follow-up of positive examinations, delays in management and the level of participation will also be assessed. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  14. A method for computing general sacroiliac screw corridors based on CT scans of the pelvis.

    PubMed

    Noser, Hansrudi; Radetzki, Florian; Stock, Karsten; Mendel, Thomas

    2011-08-01

    Sacroiliac (SI) joint dislocations and sacral fractures of the pelvis can be stabilized by SI screws; however, screw insertion into a sacral isthmus region is risky for the adjacent neurovascular structures. Therefore, shape analyses of general SI screw corridors or safety zones are of great surgical interest; however, before such analyses can be conducted, a method for computing 3D models of general SI corridors from routine clinical computed tomography (CT) scans has to be developed. This work describes a method for determining general corridors in pelvic CT data for accurate screw placement into the first sacral body. The method is implemented with the computer language C++. The pelvic CT data are preprocessed before the presented algorithm computes a model of the 3D corridor volume. Additionally, the two most important parameters of the algorithm, the raster step and the virtual SI screw diameter, have been characterized. The result of the work is an algorithm for computing general SI screw corridors and its implementation. Additionally the influences of two important parameters, the raster step and the SI screw diameter, on corridor volume precision and computation time have been quantified for the test sample. We conclude that the method can be used in further corridor shape analyses with a large number of pelvic CT data sets for investigating general SI screw corridors and clinical consequences for the placements of the screws. Implementation of the presented software algorithm could also enhance performance of computer-assisted surgery in the near future.

  15. 3D iterative full and half scan reconstruction in CT architectures with distributed sources

    NASA Astrophysics Data System (ADS)

    Iatrou, M.; De Man, B.; Beque, D.; Yin, Z.; Khare, K.; Benson, T. M.

    2008-03-01

    In 3 rd generation CT systems projection data, generated by X-rays emitted from a single source and passing through the imaged object, are acquired by a single detector covering the entire field of view (FOV). Novel CT system architectures employing distributed sources [1,2] could extend the axial coverage, while removing cone-beam artifacts and improving spatial resolution and dose. The sources can be distributed in plane and/or in the longitudinal direction. We investigate statistical iterative reconstruction of multi-axial data, acquired with simulated CT systems with multiple sources distributed along the in-plane and longitudinal directions. The current study explores the feasibility of 3D iterative Full and Half Scan reconstruction methods for CT systems with two different architectures. In the first architecture the sources are distributed in the longitudinal direction, and in the second architecture the sources are distributed both longitudinally and trans-axially. We used Penalized Weighted Least Squares Transmission Reconstruction (PWLSTR) and incorporated a projector-backprojector model matching the simulated architectures. The proposed approaches minimize artifacts related to the proposed geometries. The reconstructed images show that the investigated architectures can achieve good image quality for very large coverage without severe cone-beam artifacts.

  16. TH-C-18A-11: Investigating the Minimum Scan Parameters Required to Generate Free-Breathing Fast-Helical CT Scans Without Motion-Artifacts

    SciTech Connect

    Thomas, D; Neylon, J; Dou, T; Jani, S; Lamb, J; Low, D; Tan, J

    2014-06-15

    Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motion model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed

  17. Scanning multiple samples simultaneously in tube-based microCT systems

    NASA Astrophysics Data System (ADS)

    Stock, S. R.; Rajamannan, N. M.; Spelsberg, T. C.; Malayannan, S.; Riaz, R.; Polavarapu, M.; Hsu, E. L.; Hsu, W., K.; Chen, Yan; Zhang, Ming

    2010-09-01

    The world-wide explosion of commercial microComputed Tomography (microCT) system emplacement has led to dayin, day-out access to laboratory scanners. Most biologically-oriented microCT facilities must characterize large numbers of samples rapidly at moderate spatial resolution (e.g., 10-20 μm isotropic volume elements, voxels). Scanning multiple specimens simultaneously is one efficient solution. Sample positioning is critical if the region of interest of each specimen is to be imaged without increasing the number of slices recorded (i.e., data acquisition and reconstruction times). Three very different, multiple sample data acquisitions are reported: mouse heart tissue calcification, rat spinal fusion and mouse tibial bone cancer models

  18. Implant planning and placement using optical scanning and cone beam CT technology.

    PubMed

    van der Zel, Jef M

    2008-08-01

    There is a growing interest in minimally invasive implant therapy as a standard prosthodontic treatment, providing complete restoration of occlusal function. A new treatment method (CADDIMA), which combines both computerized tomographic (CT) and optical laser-scan data for planning and design of surgical guides, implant abutments, and prosthetic devices, is described. Imaging using a "NewTom 3G" cone beam CT scanner and a modified laser triangulation scanner "D200c" is discussed, as are impression and surgical guide fabrication, which allow for flapless, precise implant placement and an accurate provisional prosthesis. The new approach gives the operator full control over the design of the implant prosthesis for planning of proper occlusal relations and shows promise for further evaluation.

  19. A case of pulmonary artery intimal sarcoma diagnosed with multislice CT scan with 3D reconstruction.

    PubMed

    Choi, Eui-Young; Yoon, Young-Won; Kwon, Hyuck Moon; Kim, Dongsoo; Park, Byung-Eun; Hong, Yoo-Sun; Koo, Ja-Seung; Kim, Tae-Hoon; Kim, Hyun-Seung

    2004-06-30

    Pulmonary artery intimal sarcoma is a rare highly lethal disease, with additional retrograde extension to pulmonic valve and right ventricle being an extremely rare condition. It is frequently mistaken for pulmonary thromboembolism. We report a case of 64-year-old woman with progressive dyspnea initially suspected and treated for pulmonary thromboembolism. Her helical chest CT scan with 3 dimensional (3D) reconstruction combined with echocardiography revealed a compacting main pulmonary artery mass extending to the right ventricular outflow tract and the right pulmonary artery. After excision of the mass, the patient's condition improved dramatically, and the pathologic findings revealed pulmonary intimal sarcoma. This report emphasizes that helical chest CT with 3D reconstruction can be an important tool to differentiate the characteristics of pulmonary artery lesions, such as intimal sarcoma and thromboembolism.

  20. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    SciTech Connect

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-11-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF.

  1. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT.

    PubMed

    Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin

    2017-06-01

    This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.

  2. A multicenter, randomized controlled trial of immediate total-body CT scanning in trauma patients (REACT-2)

    PubMed Central

    2012-01-01

    Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary

  3. A multicenter, randomized controlled trial of immediate total-body CT scanning in trauma patients (REACT-2).

    PubMed

    Sierink, Joanne C; Saltzherr, Teun Peter; Beenen, Ludo F M; Luitse, Jan S K; Hollmann, Markus W; Reitsma, Johannes B; Edwards, Michael J R; Hohmann, Joachim; Beuker, Benn J A; Patka, Peter; Suliburk, James W; Dijkgraaf, Marcel G W; Goslings, J Carel

    2012-03-30

    Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients

  4. Construction and analysis of a head CT-scan database for craniofacial reconstruction.

    PubMed

    Tilotta, Françoise; Richard, Frédéric; Glaunès, Joan; Berar, Maxime; Gey, Servane; Verdeille, Stéphane; Rozenholc, Yves; Gaudy, J F

    2009-10-30

    This paper is devoted to the construction of a complete database which is intended to improve the implementation and the evaluation of automated facial reconstruction. This growing database is currently composed of 85 head CT-scans of healthy European subjects aged 20-65 years old. It also includes the triangulated surfaces of the face and the skull of each subject. These surfaces are extracted from CT-scans using an original combination of image-processing techniques which are presented in the paper. Besides, a set of 39 referenced anatomical skull landmarks were located manually on each scan. Using the geometrical information provided by triangulated surfaces, we compute facial soft-tissue depths at each known landmark positions. We report the average thickness values at each landmark and compare our measures to those of the traditional charts of [J. Rhine, C.E. Moore, Facial Tissue Thickness of American Caucasoïds, Maxwell Museum of Anthropology, Albuquerque, New Mexico, 1982] and of several recent in vivo studies [M.H. Manhein, G.A. Listi, R.E. Barsley, et al., In vivo facial tissue depth measurements for children and adults, Journal of Forensic Sciences 45 (1) (2000) 48-60; S. De Greef, P. Claes, D. Vandermeulen, et al., Large-scale in vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction, Forensic Science International 159S (2006) S126-S146; R. Helmer, Schödelidentifizierung durch elektronische bildmischung, Kriminalistik Verlag GmbH, Heidelberg, 1984].

  5. Evaluation of diagnostic value of CT scan, physical examination and ultrasound based on pathological findings in patients with pelvic masses.

    PubMed

    Firoozabadi, Razieh Dehghani; Karimi Zarchi, Mojgan; Mansurian, Hamid Reza; Moghadam, Bita Rafiei; Teimoori, Soraya; Naseri, Ali

    2011-01-01

    Because benign and malignant cervical and ovarian masses occur with different percentages in different age groups, the importance of primary diagnosis and selection of a suitable surgical procedure is underlined. Diagnosis of pelvic masses is carried out using ultrasound, physical examination, CT scan and MRI. The objective of this study is to evaluate the diagnostic value of CT scan in pelvic masses in comparison with physical examination-ultrasound based on pathology of the lesion in patients undergoing laparotomic surgery. This analytic-descriptive study focused on age, sonographic findings, physical examinations, CT scan and pathological findings in 139 patients with pelvic mass, gathered with questionnaires and statistically analayzed using the SPSS software programme. Of 139 patients with pelvic mass (patients aged from 17 to 75 years old), 62 (44%) cases were diagnosed as benign and 77 (55.4%) as malignant; among them malignant tratoma serocyst adenocarsinoma with 33 (23.7%) cases and benign myoma with 21 (15.2%) cases comprised the most frequent cases. The sensitivity and specificity of sonography-physical examination were 51.9% and 87.9% respectively and the sensitivity and specificity of CT scan images were 79.2% and 91.6% respectively. It was shown that CT scan images were more consistant with pathological findings in predicting appropriate surgical procedures than do sonography-physical examinations. The sensitivity of CT scan is far higher than that of sonography-physical examination in the diagnosis of pelvic mass malignancy.

  6. Optic nerve sheath diameter measurements by CT scan in ventriculoperitoneal shunt obstruction.

    PubMed

    Zaidi, Syed Javed H; Yamamoto, Loren G

    2014-08-01

    The objective of the study was to determine differences in optic nerve sheath diameter (ONSD) measurements taken from computed tomography (CT) scans of patients with ventriculoperitoneal shunt (VPS) obstruction versus controls. Inpatients 0-15 years with confirmed VPS obstruction requiring neurosurgical intervention were identified using ICD9 codes. ONSDs, orbit, cranium, and foramen magnum sizes were measured on their pre-surgical CT. Controls included cases at times when their VPS was not obstructed and age and gender matched patients with a CT scan done in the emergency room for head trauma (normal CT findings). Paired T-tests were used for both case-control comparisons. In order to compare the optic nerve sheath size more accurately, the ONSD width was divided by the width of the orbit and by the foramen magnum (antero-posterior) length. Twenty patients were identified with 25 events of VPS obstruction. The right ONSD (RON) was chosen to study. RON/orbit width and RON/foramen magnum diameter for the VPS obstruction versus self-controls, were 0.22 and 0.22, compared to 0.19 and 0.18, respectively, for the non-obstructed self-controls (P = .044 and P = .008, respectively). The same measurements for the VPS obstruction versus age and gender matched controls were 0.22 and 0.21 for the VPS obstruction cases, respectively, compared to 0.17 and 0.16, respectively for the age and gender matched controls (P < .001 and P < .001, respectively). This data confirms that the optic nerve diameter increases during a VPS obstruction. ONSD measurements by ultrasound could add to the evaluation for VPS obstruction.

  7. Semi-automated method to measure pneumonia severity in mice through computed tomography (CT) scan analysis

    NASA Astrophysics Data System (ADS)

    Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.

    2010-03-01

    Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.

  8. Radiation Dose in the Thyroid and the Thyroid Cancer Risk Attributable to CT Scans for Pediatric Patients in One General Hospital of China

    PubMed Central

    Su, Yin-Ping; Niu, Hao-Wei; Chen, Jun-Bo; Fu, Ying-Hua; Xiao, Guo-Bing; Sun, Quan-Fu

    2014-01-01

    Objective: To quantify the radiation dose in the thyroid attributable to different CT scans and to estimate the thyroid cancer risk in pediatric patients. Methods: The information about pediatric patients who underwent CT scans was abstracted from the radiology information system in one general hospital between 1 January 2012 and 31 December 2012. The radiation doses were calculated using the ImPACT Patient Dosimetry Calculator and the lifetime attributable risk (LAR) of thyroid cancer incidence was estimated based on the National Academies Biologic Effects of Ionizing Radiation VII model. Results: The subjects comprised 922 children, 68% were males, and received 971 CT scans. The range of typical radiation dose to the thyroid was estimated to be 0.61–0.92 mGy for paranasal sinus CT scans, 1.10–2.45 mGy for head CT scans, and 2.63–5.76 mGy for chest CT scans. The LAR of thyroid cancer were as follows: for head CT, 1.1 per 100,000 for boys and 8.7 per 100,000 for girls; for paranasal sinus CT scans, 0.4 per 100,000 for boys and 2.7 per 100,000 for girls; for chest CT scans, 2.1 per 100,000 for boys and 14.1 per 100,000 for girls. The risk of thyroid cancer was substantially higher for girls than for the boys, and from chest CT scans was higher than that from head or paransal sinus CT scans. Conclusions: Chest CT scans caused higher thyroid dose and the LAR of thyroid cancer incidence, compared with paransal sinus or head CT scans. Therefore, physicians should pay more attention to protect the thyroid when children underwent CT scans, especially chest CT scans. PMID:24608902

  9. SU-D-217A-06: Impact of Anterior-Posterior (AP) and Posterior-Anterior (PA) Scout Scans on the CT Radiation Dose in the Whole Body PET/CT Scan.

    PubMed

    Luo, D; Pan, T

    2012-06-01

    CT can contribute over 50% of radiation dose in the whole body (WB) PET/CT scan. Tube current modulation (TCM) is a standard technique for reducing CT radiation dose to the patient by changing the tube current with the patient size, and is controlled by a very low-dose scoutscan, which assumes the patient is positioned at the center of the CT gantry opening. However, most patients are not positioned at the center due to practicality or to avoid claustrophobic or to reduce time of radiation exposure from the patient to the technologist. We study the impact of the AP and PA scout scans to the patient radiation exposure from CT. Ina retrospective study of 200 patients, each received two WB PET/CT scans: one with AP, and the other one with PA. The helical CT with TCM and PET acquisitions were identical in both scans. Separation of the two scans was about 10 months in average. The scans were performed on four GE PET/CT scanners: three 16- and one 64-slice with the same TCM settings. The 200patients were selected for the same scan coverage and similar body weight (difference = 3 kg). The tube current in each slice and average exposure tothe patient were recorded and compared. The AP scout caused lower radiation dose on 94% of the patients. Both the tube current, and radiation exposure were reduced by 46±30 mA and 1.6±1.0 mGy, respectively. The effective radiation dose is reduced by 1.7±1.2 mSv. These results were statistically significant (p<0.00001). The AP scout caused significantly less radiation dose than the PA scout in the CT scan of the whole-body PET/CT scan. Care should be taken to select theorientation of the scout scan to achieve appropriate radiation exposure to the patient when TCM is applied. © 2012 American Association of Physicists in Medicine.

  10. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    SciTech Connect

    Aristophanous, Michalis; Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B.

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  11. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation.

    PubMed

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-21

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  12. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  13. Determining the lymphadenopathy characteristics of the mediastinum in lung CT scan of children with tuberculosis.

    PubMed

    Mehrian, Payam; Moghaddam, Amin Momeni; Tavakkol, Elham; Amini, Afshin; Moghimi, Mehrdad; Kabir, Ali; Velayati, Aliakbar

    2016-09-01

    Most tuberculosis cases in children are primary infection, with difficult and imprecise diagnosis mainly based on the existence of mediastinal lymphadenopathy. Here, we investigated the characteristics of mediastinal lymphadenopathy in lung computed tomography (CT) scans of children with tuberculosis. This cross-sectional study was performed on 75 children with tuberculosis referred to Masih Daneshvari Hospital in Tehran, Iran, from 2009 to 2013. Their medical records were investigated, and CT-scan characteristics were extracted by a radiologist. Mean±standard deviation age of cases was 11.2±4.6years. CT-scan results indicated 94.7% of cases had lymphadenopathy, with lower paratracheal, upper paratracheal, hilar, and subcarinal forms observed in 81.7%, 69.1%, 53.5%, and 47.9% of cases as the most involved stations in lymph nodes, respectively. In 74.6% of patients with mediastinal lymphadenopathy, perilymph node fat inflammation (matting) was observed, with 52.11% exhibiting conglomeration. Bronchial pressure was observed in 4.23% of children with tuberculosis, and bilateral-, right-, and left-parenchymal involvement was observed in 42.7%, 25.3%, and 8% of these cases, respectively. Left- and right-pleural effusion and calcification was reported in 6.7%, 12%, and 5.6% of patients, respectively. Additionally, nearly 80% of patients exhibited mediastinal lymphadenopathy and lung-parenchyma involvement simultaneously. Lung-parenchyma involvement was significantly correlated with subcarinal (p<.001), hilar (p<.001), subaortic (p=.030), lower paratracheal (p=.037), and axillary (p=.006) stations. Situation of mediastinal lymphadenopathy and its synchronicity with lung-parenchyma involvement can help in differential diagnosis of pulmonary tuberculosis from other lung diseases. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  14. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  15. CT scan-based modelling of anastomotic leak risk after colorectal surgery.

    PubMed

    Gervaz, P; Platon, A; Buchs, N C; Rocher, T; Perneger, T; Poletti, P-A

    2013-01-01

    Prolonged ileus, low-grade fever and abdominal discomfort are common during the first week after colonic resection. Undiagnosed anastomotic leak carries a poor outcome and computed tomography (CT) scan is the best imaging tool for assessing postoperative abdominal complications. We used a CT scan-based model to quantify the risk of anastomotic leak after colorectal surgery. A case-control analysis of 74 patients who underwent clinico-radiological evaluation after colorectal surgery for suspicion of anastomotic leak was undertaken and a multivariable analysis of risk factors for leak was performed. A logistic regression model was used to identify determinant variables and construct a predictive score. Out of 74 patients with a clinical suspicion of anastomotic leak, 17 (23%) had this complication confirmed following repeat laparotomy. In multivariate analysis, three variables were associated with anastomotic leak: (1) white blood cells count > 9 × 10(9) /l (OR = 14.8); (2) presence of ≥ 500 cm(3) of intra- abdominal fluid (OR = 13.4); and (3) pneumoperitoneum at the site of anastomosis (OR = 9.9). Each of these three parameters contributed one point to the risk score. The observed risk of leak was 0, 6, 31 and 100%, respectively, for patients with scores of 0, 1, 2 and 3. The area under the receiver operating characteristic curve for the score was 0.83 (0.72-0.94). This CT scan-based model seems clinically promising for objective quantification of the risk of a leak after colorectal surgery. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  16. Development of automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans

    NASA Astrophysics Data System (ADS)

    Mensink, Sanne D.; Spliethoff, Jarich W.; Belder, Ruben; Klaase, Joost M.; Bezooijen, Roland; Slump, Cornelis H.

    2011-03-01

    This contribution describes a novel algorithm for the automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans of patients referred for colorectal resection. Visceral and subcutaneous adipose tissue volumes can accurately be measured with errors of 1.2 and 0.5%, respectively. Also the reproducibility of CT measurements is good; a disadvantage is the amount of radiation. In this study the diagnostic CT scans in the work - up of (colorectal) cancer were used. This implied no extra radiation. For the purpose of segmentation alone, a low dose protocol can be applied. Obesity is a well known risk factor for complications in and after surgery. Body Mass Index (BMI) is a widely accepted indicator of obesity, but it is not specific for risk assessment of colorectal surgery. We report on an automated method to quantify visceral and subcutaneous adipose tissue volumes as a basic step in a clinical research project concerning preoperative risk assessment. The outcomes are to be correlated with the surgery results. The hypothesis is that the balance between visceral and subcutaneous adipose tissue together with the presence of calcifications in the major bloodvessels, is a predictive indicator for post - operatieve complications such as anastomotic leak. We start with four different computer simulated humanoid abdominal volumes with tissue values in the appropriate Hounsfield range at different dose levels. With satisfactory numerical results for this test, we have applied the algorithm on over a 100 patient scans and have compared results with manual segmentations by an expert for a smaller pilot group. The results are within a 5% difference. Compared to other studies reported in the literature, reliable values are obtained for visceral and subcutaneous adipose tissue areas.

  17. A wire scanning based method for geometric calibration of high resolution CT system

    NASA Astrophysics Data System (ADS)

    Jiang, Ruijie; Li, Guang; Gu, Ning; Chen, Gong; Luo, Shouhua

    2015-03-01

    This paper is about geometric calibration of the high resolution CT (Computed Tomography) system. Geometric calibration refers to the estimation of a set of parameters that describe the geometry of the CT system. Such parameters are so important that a little error of them will degrade the reconstruction images seriously, so more accurate geometric parameters are needed in the higher-resolution CT systems. But conventional calibration methods are not accurate enough for the current high resolution CT system whose resolution can reach sub-micrometer or even tens of nanometers. In this paper, we propose a new calibration method which has higher accuracy and it is based on the optimization theory. The superiority of this method is that we build a new cost function which sets up a relationship between the geometrical parameters and the binary reconstruction image of a thin wire. When the geometrical parameters are accurate, the cost function reaches its maximum value. In the experiment, we scanned a thin wire as the calibration data and a thin bamboo stick as the validation data to verify the correctness of the proposed method. Comparing with the image reconstructed with the geometric parameters calculated by using the conventional calibration method, the image reconstructed with the parameters calculated by our method has less geometric artifacts, so it can verify that our method can get more accurate geometric calibration parameters. Although we calculated only one geometric parameter in this paper, the geometric artifacts are still eliminated significantly. And this method can be easily generalized to all the geometrical parameters calibration in fan-beam or cone-beam CT systems.

  18. [Paraclinical diagnostic procedures in micro- and macrotraumas of the shoulder. Indications for echography and CT scanning].

    PubMed

    Annaert, J M; Peetrons, P; Famaey, J P

    1990-03-01

    A careful physical examination is absolutely necessary as a first evaluation of all disorders of the shoulder before performing any imaging technique that must be chosen according to the kind of suspected pathology. The best indications for performing an arthroscanner are the intraarticular lesions such as injuries of the glenoid labrum and of the articular capsule. Echography is the most performing technique for bicipital and rotator cuff tendinitis. CT scan helps to understand the antero-internal retro-coracoidal impingment syndromes as well as uninterpretable bone lesions at standard radiography. Arthrography and arthro-pneumo-tomography are very useful for presurgical assessment of rotator cuff tears.

  19. Microcomputer-based image processing system for CT/MRI scans: II. Expert system

    NASA Astrophysics Data System (ADS)

    Kwok, John C. K.; Yu, Peter K. N.; Cheng, Andrew Y. S.; Ho, Wai-Chin

    1991-06-01

    A microcomputer-based image processing system is used to digitize and process serial sections of CT/MRI scan and reconstruct three-dimensional images of brain structures and brain lesions. The images grabbed also serve as templates and different vital regions with different risk values are also traced out for 3D reconstruction. A knowledge-based system employing rule-based programming has been built to help identifying brain lesions and to help planning trajectory for operations. The volumes of the lesions are also automatically determined. Such system is very useful for medical skills archival, tumor size monitoring, survival and outcome forecasting, and consistent neurosurgical planning.

  20. Image reconstruction for view-limited x-ray CT in baggage scanning

    NASA Astrophysics Data System (ADS)

    Mandava, Sagar; Coccarelli, David; Greenberg, Joel A.; Gehm, Michael E.; Ashok, Amit; Bilgin, Ali

    2017-05-01

    X-ray CT based baggage scanners are widely used in security applications. Recently, there has been increased interest in view-limited systems which can improve the scanning throughput while maintaining the threat detection performance. However as very few view angles are acquired in these systems, the image reconstruction problem is challenging. Standard reconstruction algorithms such as the filtered backprojection create strong artifacts when working with view-limited data. In this work, we study the performance of a variety of reconstruction algorithms for both single and multi-energy view-limited systems.

  1. Preliminary evaluation of optical CT scanning versus MRI for nPAG gel dosimetry: The Ghent experience

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; DeDeene, Yves

    2009-05-01

    The aim of this study was to evaluate fast laser-scanning optical CT versus MRI for an nPAG gel dosimeter in terms of accuracy and precision. Three small cylindrical volumetric gel phantoms were fabricated and irradiated with photon beams. The gel dosimeters were scanned with an MR scanner and an in house developed laser scanning optical CT scanner. A comparison between MRI and optical CT scanning was performed based on the reconstructed images. Preliminary results show a fair correspondence in the MRI acquired and optical CT acquired dose maps. Still, ringing artifacts contaminate the reconstructed optical CT images. These may be related to sub-pixel misalignments between the blank projection and the acquired transmission projection of the gel phantom. Another artifact may be caused by refraction near the edges of the field. Further optimisation of our optical CT scanner is required to obtain the same accuracy as with MRI. To make a comparison between the two imaging modalities in terms of precision, the intrinsic dose precision on readout (IPD) was calculated which is independent of spatial resolution and acquisition time. It is shown that optical CT has a better intrinsic dose precision.

  2. Computerized lung nodule detection on screening CT scans: performance on juxta-pleural and internal nodules

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Zhou, Chuan; Wei, Jun

    2006-03-01

    We are developing a computer-aided detection (CAD) system for lung nodules in thoracic CT volumes. Our CAD system includes an adaptive 3D pre-screening algorithm to segment suspicious objects, and a false-positive (FP) reduction stage to classify the segmented objects as true nodules or normal lung structures. We found that the effectiveness of the FP reduction stage was limited by the different characteristics of the objects in the internal and the juxta-pleural (JP) regions. The purpose of this study was to evaluate object characteristics in the internal and JP regions of a lung CT scan, and to develop different FP reduction classifiers for JP and internal objects. Our FP reduction technique utilized shape, grayscale, and gradient features, as well as the scores of a newly-developed neural network trained on the eigenvalues of the Hessian matrix in a volume of interest containing the suspicious object. We designed an algorithm to automatically label the objects as internal or JP. Based on a training set of 75 CT scans containing internal and JP nodules, two FP classifiers were trained separately for objects in the two types of lung regions. The system performance was evaluated on an independent test set of 27 low dose screening scans. An experienced chest radiologist identified 64 solid nodules (mean diameter: 5.3 mm, range: 3.0-12.9 mm) on the test cases, of which 33 were internal and 31 were JP. Our adaptive 3D prescreening algorithm detected 28 internal and 29 JP nodules. At 80% sensitivity, the average number of FPs was 3.9 and 9.7 in the internal and JP regions per scan, respectively. In comparison, a classifier designed to work on both types of nodules had an average of 29.4 FPs per scan at the same sensitivity. Our results indicate that it is more effective to use two different classifiers for JP and internal nodules because of their different characteristics. FPs in the JP region were more difficult to distinguish from true nodules. Further investigation

  3. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin’s Lymphoma

    PubMed Central

    Johnson, Peter; Federico, Massimo; Kirkwood, Amy; Fosså, Alexander; Berkahn, Leanne; Carella, Angelo; d’Amore, Francesco; Enblad, Gunilla; Franceschetto, Antonella; Fulham, Michael; Luminari, Stefano; O’Doherty, Michael; Patrick, Pip; Roberts, Thomas; Sidra, Gamal; Stevens, Lindsey; Smith, Paul; Trotman, Judith; Viney, Zaid; Radford, John; Barrington, Sally

    2016-01-01

    Background We tested interim positron-emission tomography–computed tomography (PET-CT) as a measure of early response to chemotherapy in order to guide treatment for patients with advanced Hodgkin’s lymphoma. Methods Patients with newly diagnosed advanced classic Hodgkin’s lymphoma underwent a baseline PET-CT scan, received two cycles of ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine) chemotherapy, and then underwent an interim PET-CT scan. Images were centrally reviewed with the use of a 5-point scale for PET findings. Patients with negative PET findings after two cycles were randomly assigned to continue ABVD (ABVD group) or omit bleomycin (AVD group) in cycles 3 through 6. Those with positive PET findings after two cycles received BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone). Radiotherapy was not recommended for patients with negative findings on interim scans. The primary outcome was the difference in the 3-year progression-free survival rate between randomized groups, a noninferiority comparison to exclude a difference of 5 or more percentage points. Results A total of 1214 patients were registered; 937 of the 1119 patients (83.7%) who underwent an interim PET-CT scan according to protocol had negative findings. With a median follow-up of 41 months, the 3-year progression-free survival rate and overall survival rate in the ABVD group were 85.7% (95% confidence interval [CI], 82.1 to 88.6) and 97.2% (95% CI, 95.1 to 98.4), respectively; the corresponding rates in the AVD group were 84.4% (95% CI, 80.7 to 87.5) and 97.6% (95% CI, 95.6 to 98.7). The absolute difference in the 3-year progression-free survival rate (ABVD minus AVD) was 1.6 percentage points (95% CI, −3.2 to 5.3). Respiratory adverse events were more severe in the ABVD group than in the AVD group. BEACOPP was given to the 172 patients with positive findings on the interim scan, and 74.4% had negative findings on a third

  4. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin's Lymphoma.

    PubMed

    Johnson, Peter; Federico, Massimo; Kirkwood, Amy; Fosså, Alexander; Berkahn, Leanne; Carella, Angelo; d'Amore, Francesco; Enblad, Gunilla; Franceschetto, Antonella; Fulham, Michael; Luminari, Stefano; O'Doherty, Michael; Patrick, Pip; Roberts, Thomas; Sidra, Gamal; Stevens, Lindsey; Smith, Paul; Trotman, Judith; Viney, Zaid; Radford, John; Barrington, Sally

    2016-06-23

    We tested interim positron-emission tomography-computed tomography (PET-CT) as a measure of early response to chemotherapy in order to guide treatment for patients with advanced Hodgkin's lymphoma. Patients with newly diagnosed advanced classic Hodgkin's lymphoma underwent a baseline PET-CT scan, received two cycles of ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine) chemotherapy, and then underwent an interim PET-CT scan. Images were centrally reviewed with the use of a 5-point scale for PET findings. Patients with negative PET findings after two cycles were randomly assigned to continue ABVD (ABVD group) or omit bleomycin (AVD group) in cycles 3 through 6. Those with positive PET findings after two cycles received BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone). Radiotherapy was not recommended for patients with negative findings on interim scans. The primary outcome was the difference in the 3-year progression-free survival rate between randomized groups, a noninferiority comparison to exclude a difference of 5 or more percentage points. A total of 1214 patients were registered; 937 of the 1119 patients (83.7%) who underwent an interim PET-CT scan according to protocol had negative findings. With a median follow-up of 41 months, the 3-year progression-free survival rate and overall survival rate in the ABVD group were 85.7% (95% confidence interval [CI], 82.1 to 88.6) and 97.2% (95% CI, 95.1 to 98.4), respectively; the corresponding rates in the AVD group were 84.4% (95% CI, 80.7 to 87.5) and 97.6% (95% CI, 95.6 to 98.7). The absolute difference in the 3-year progression-free survival rate (ABVD minus AVD) was 1.6 percentage points (95% CI, -3.2 to 5.3). Respiratory adverse events were more severe in the ABVD group than in the AVD group. BEACOPP was given to the 172 patients with positive findings on the interim scan, and 74.4% had negative findings on a third PET-CT scan; the 3-year progression

  5. Extracting information from previous full-dose CT scan for knowledge-based Bayesian reconstruction of current low-dose CT images

    PubMed Central

    Zhang, Hao; Han, Hao; Liang, Zhengrong; Hu, Yifan; Liu, Yan; Moore, William; Ma, Jianhua; Lu, Hongbing

    2015-01-01

    Markov random field (MRF) model has been widely employed in edge-preserving regional noise smoothing penalty to reconstruct piece-wise smooth images in the presence of noise, such as in low-dose computed tomography (LdCT). While it preserves edge sharpness, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it may compromise clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodules or colon polyps. This study aims to shift the edge-preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF’s neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of muscle, fat, bone, lung, etc. from previous full-dose CT (FdCT) scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of the proposed reconstruction framework, experiments using clinical patient scans were conducted. The experimental outcomes showed a dramatic gain by the a priori knowledge for LdCT image reconstruction using the commonly-used Haralick texture measures. Thus, it is conjectured that the texture-preserving LdCT reconstruction has advantages over the edge-preserving regional smoothing paradigm for texture-specific clinical applications. PMID:26561284

  6. Triage of Limited Versus Extensive Disease on (18)F-FDG PET/CT Scan in Small Cell lung Cancer.

    PubMed

    Saima, Riaz; Humayun, Bashir; Khalid, Niazi Imran

    2017-01-01

    Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma, which accounts for 10-15% of pulmonary cancers and exhibits early metastatic spread. This study aimed to determine the added value of (18)F-FDG PET/CT imaging in tumor, node, and metastasis (TNM) staging of SCLC, compared to the conventional computed tomography (CT) scan and its potential role as a prognosticator. This retrospective review was conducted on 23 patients, who were histopathologically diagnosed to have SCLC and referred for undergoing (18)F-FDG PET/CT scanning during October 2009-December 2015. The rate of agreement between the CT and (18)F-FDG PET/CT findings for TNM staging was calculated using the Cohen's kappa (κ). The median follow-up time was eight months, ranging 27-3 months). The overall and disease-free survival rates were calculated based on the extent of disease. 19 cases were male and four female with the mean age of 58±9 years. The (18)F-FDG PET/CT identified limited and extensive diseases in 2 (8.7%) and 21 (91.3%) patients, respectively. In addition, the results of the Cohen's kappa demonstrated a strong (κ=0.82), fair (κ=0.24), and poor (κ=0.12) agreement between the PET/CT and CT findings for determining tumor, node, and metastasis stages, respectively. The (18)F-FDG PET/CT scans upstaged disease in 47% of the cases with visceral and osseous metastasis. The disease-free survival rates for the limited and extensive diseases were 100% and 23% within the 12-month follow-up. In addition, 8 (35%) patients expired during the follow-up period. Improved nodal and metastatic disease identification highlights the role of (18)F-FDG PET/CT scanning in initial staging of SCLC with prognostic implications.

  7. Target volume definition for upper abdominal irradiation using CT scans obtained during inhale and exhale phases.

    PubMed

    Aruga, T; Itami, J; Aruga, M; Nakajima, K; Shibata, K; Nojo, T; Yasuda, S; Uno, T; Hara, R; Isobe, K; Machida, N; Ito, H

    2000-09-01

    To evaluate the clinical utility of a treatment-planning technique involving the use of CT images obtained during both the static exhalation phase and static inhalation phase (two-phase planning). Ten patients with pancreatic or liver tumors underwent CT scanning under static exhale and inhale conditions, after a period of mild ventilation. By setting image positions differently, we were able to treat the two-phase images as one dataset. Each gross tumor volume (GTV) was contoured separately and the mixed GTV was used for the two-phase treatment planning. Treatment plans were constructed to compare the two-phase plans with the plans constructed using static exhalation images. The shift of the center of the GTV and kidneys and the minimum dose of GTV were then calculated. The shift of the GTV ranged from 2.6 to 27. 3 mm and that of the kidneys from 2.2 to 24 mm. In some patients whose treatment was planned using exhalation planning, the minimum dose of GTV at inhalation was less than 90% of the isocenter dose. Two-phase planning is a simple technique that can visualize tumor and organ movement simultaneously using CT. It further defines adequate field margins around the tumor and prevents unexpected radiation exposure to critical organs. Routine use of this technique for upper abdominal irradiation is recommended.

  8. Sensitivity calibration procedures in optical-CT scanning of BANG®3 polymer gel dosimeters

    PubMed Central

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-01-01

    The dose response of the BANG®3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS™ laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4×4 cm2 photon fields or 6×6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6×6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG®3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752±3%, 0.0756±3%, 0.0767±3%, and 0.0759±3% cm−1 Gy−1) and the PDD matching methods (0.0768±3% and 0.0761±3% cm−1 Gy−1) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6×6 cm2 electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse

  9. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters

    SciTech Connect

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-02-15

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions

  10. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning.

    PubMed

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-21

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing

  11. Evaluation of image and dose according to I-dose technique when performing a CT scan

    NASA Astrophysics Data System (ADS)

    Ryu, S. W.; Lee, H. K.; Cho, J. H.

    2015-06-01

    In this study, we applied the iterative reconstruction technique to improve image quality (I-dose) and evaluated its usability by analyzing the quality of the resulting image and evaluating the dose. To perform the scans, we fixed the uniform module (CTP 486's section) 4 on the table of the computed tomography (CT) device with the American association of physicists in medicine (AAPM) phantom and located it in the center where the X-rays could be generated by using a razor beam. Then, we set up the conditions of 120 kilovoltage peak (kVp), 150 milliampere second (mAs), collimation 4 × 0.625 mm, and a standard YA (Y-Sharp) filter. Next, we formed two groups: Group A in which I-dose was not applied and Group B in which I-dose was applied. According to the rod in the middle, after fixing the location of (A) at 12 o'clock, (B) at 3 o'clock, (C) at 6 o'clock, and (D) at 9 o'clock to evaluate the image quality, the CT number was measured and the noise level was analyzed. Using the AAPM phantom with doses of 50, 100, 200, 250, and 300 mAs by 80, 100, and 120 kVp, a dose analysis was performed. After scanning, the CT numbers and noise level were measured 20 times as a function of the I-dose levels (1-7). After applying I-dose at 6, 9, 12, and 3 o'clock, when a higher I-dose was applied, a lower noise level was measured. As a result, it was found that when applying I-dose to the AAPM phantom, the higher the level of I-dose, the lower the level of noise. When applying I-dose, the dose can be reduced by 60%. When I-dose is applied when taking CT scans in a clinical study, it is possible to lower the dose and lower the noise level.

  12. Role of PET CT scan in redefining treatment of incidental gall bladder carcinoma.

    PubMed

    Goel, Mahesh; Tamhankar, Anup; Rangarajan, Venkatesh; Patkar, Shraddha; Ramadwar, Mukta; Shrikhande, Shailesh V

    2016-05-01

    Incidental diagnosis of gall bladder cancer is increasing. The role of PET-CT in modifying the extent of surgery and adjuvant treatment is still unclear. We have evaluated the same in this study. This is a prospective audit of gall bladder cancer from Tata Memorial Hospital, Mumbai, India. Patients found non-metastatic on initial imaging underwent laparotomy for revision surgery. One hundred and eight patients had a PET-CT scan done before revision surgery. Median duration of PET-CT from primary surgery was 42 days. PET scan of 64 (59.3%) patients had no uptake in body (N-PET). Rest had loco-regional uptake (L-PET). N-PET patients had lesser residual disease than L-PET patients (23% vs. 52%; P = 0.004). N-PET pT1b patients had no residual disease as compared to L-PET patients (0% vs. 33%, P = 0.028). pT1b patients did not have residual disease in liver wedge irrespective of PET status. Majority of the recurrences were distant and happened in pT2 patients. RFS was longer in N-PET than L-PET patients (P = 0.09) and in pT1b patients than pT2 and pT3 (P = 0.006). OS was longer in pT1b patients than pT2 patients (P = 0.038). PET-CT scan is useful to stratify patients with incidentally diagnosed gall bladder cancer for effective treatment. Liver wedge resection may be avoided in all pT1b patients. PET negative pT1b patients may be observed as chance of relapse is low. There may be a role for giving chemotherapy to all pT2 patients as they have high chance of recurrence and nodal metastases. J. Surg. Oncol. 2016;113:652-658. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Deriving tissue density and elastic modulus from microCT bone scans.

    PubMed

    Wagner, David W; Lindsey, Derek P; Beaupre, Gary S

    2011-11-01

    Tissue level density and elastic modulus are intrinsic properties that can be used to quantify bone material and analyses incorporating those quantities have been used to evaluate bone on a macroscopic scale. Micro-computed tomography (microCT) technology has been used to construct tissue level finite element models to simulate macroscopic fracture strength, however, a single method for assigning voxel-specific tissue density and elastic modulus based on those data has not been universally accepted. One method prevalent in the literature utilizes an empirical relationship that derives tissue stiffness as a function of bone calcium content weight fraction. To derive calcium content weight fraction from microCT scans, a measure of tissue density is required and a constant value is traditionally used. However, experimental data suggest a non-trivial amount of tissue heterogeneity suggesting a constant tissue density may not be appropriate. A theoretical derivation for determining the relationship between voxel-specific tissue density and microCT scan data (i.e., microCT derived tissue mineral density (TMD), mgHA/cm(3)) and bone constituent properties is proposed. Constant model parameters used in the derivation include the density of water, ash, and organics (i.e., bone constituents) and the volume fraction of the organics constituent. The effect of incorporating the theoretically derived tissue density (instead of a constant value) in determining voxel-specific elastic modulus resulted in a maximum observed increase of 12GPa (5.9GPa versus 17.9GPa, for the constant value and derived tissue density formulations, respectively) for a measured TMD of 1.02gHA/cm(3). Average and bounding quantities for the four constant model parameters were defined from the literature and the influence of those values on the derived tissue density and elastic modulus relationships were also evaluated. The theoretical relationships of tissue density and elastic modulus, with the average

  14. Automatic Segmentation of Anatomical Structures from CT Scans of Thorax for RTP

    PubMed Central

    Özsavaş, Emin Emrah; Telatar, Ziya; Dirican, Bahar; Sağer, Ömer; Beyzadeoğlu, Murat

    2014-01-01

    Modern radiotherapy techniques are vulnerable to delineation inaccuracies owing to the steep dose gradient around the target. In this aspect, accurate contouring comprises an indispensable part of optimal radiation treatment planning (RTP). We suggest a fully automated method to segment the lungs, trachea/main bronchi, and spinal canal accurately from computed tomography (CT) scans of patients with lung cancer to use for RTP. For this purpose, we developed a new algorithm for inclusion of excluded pathological areas into the segmented lungs and a modified version of the fuzzy segmentation by morphological reconstruction for spinal canal segmentation and implemented some image processing algorithms along with them. To assess the accuracy, we performed two comparisons between the automatically obtained results and the results obtained manually by an expert. The average volume overlap ratio values range between 94.30 ± 3.93% and 99.11 ± 0.26% on the two different datasets. We obtained the average symmetric surface distance values between the ranges of 0.28 ± 0.21 mm and 0.89 ± 0.32 mm by using the same datasets. Our method provides favorable results in the segmentation of CT scans of patients with lung cancer and can avoid heavy computational load and might offer expedited segmentation that can be used in RTP. PMID:25587349

  15. A reappraisal of adult thoracic and abdominal surface anatomy via CT scan in Chinese population.

    PubMed

    Shen, Xin-Hua; Su, Bai-Yan; Liu, Jing-Juan; Zhang, Gu-Muyang; Xue, Hua-Dan; Jin, Zheng-Yu; Mirjalili, S Ali; Ma, Chao

    2016-03-01

    Accurate surface anatomy is essential for safe clinical practice. There are numerous inconsistencies in clinically important surface markings among and within contemporary anatomical reference texts. The aim of this study was to investigate key thoracic and abdominal surface anatomy landmarks in living Chinese adults using computed tomography (CT). A total of 100 thoracic and 100 abdominal CT scans were examined. Our results indicated that the following key surface landmarks differed from current commonly-accepted descriptions: the positions of the tracheal bifurcation, azygos vein termination, and pulmonary trunk bifurcation (all below the plane of the sternal angle at vertebral level T5-T6 in most individuals); the superior vena cava formation and junction with the right atrium (most often behind the 1st and 4th intercostal spaces, respectively); and the level at which the inferior vena cava and esophagus traverse the diaphragm (T10 and T11, respectively). The renal arteries were most commonly at L1; the midpoint of the renal hila was most frequently at L2; the 11th rib was posterior to the left kidney in only 29% of scans; and the spleen was most frequently located between the 10th and 12th ribs. A number of significant sex- and age-related differences were noted. The Chinese population was also compared with western populations on the basis of published reports. Reappraisal of surface anatomy using modern imaging tools in vivo will provide both quantitative and qualitative evidence to facilitate the clinical application of these key surface landmarks.

  16. The relationship of pineal calcification to cerebral atrophy on CT scan in multiple sclerosis.

    PubMed

    Sandyk, R; Awerbuch, G I

    1994-05-01

    Calcification is a known morphological feature of the pineal gland. The mechanisms underlying the development of pineal calcification (PC) are elusive although there is experimental evidence that calcification may be a marker of the past secretory activity of the gland and/or of degeneration. The increased incidence of PC with aging suggests that it may reflect cerebral degenerative changes as well. In a recent Editorial in this Journal it was proposed that the pineal gland is implicated in the pathogenesis of multiple sclerosis (MS). Cerebral atrophy, which can be demonstrated on CT scan, is a common feature of MS resulting from demyelination and gliosis. If PC is a marker of a cerebral degenerative process, then one would expect a higher incidence of calcification of the gland in patients with cerebral atrophy compared to those without cerebral atrophy. To test this hypothesis, we studied the incidence of PC on CT scan in a cohort of 48 MS patients, 21 of whom had cerebral atrophy. For the purpose of comparison, we also assessed the incidence of choroid plexus calcification (CPC) in relation to cerebral atrophy. PC was found in 42 patients (87.5%) and its incidence in patients with cerebral atrophy was significantly higher compared to the incidence in patients without cerebral atrophy (100% vs. 77.7%; p < .025). In contrast, CPC was unrelated to cerebral atrophy or to PC thus supporting the notion of a specific association between the pineal gland and the pathogenesis of MS.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning

    PubMed Central

    Wang, Hong-kui; Wang, Ya-xian; Xue, Cheng-bin; Li, Zhen-mei-yu; Huang, Jing; Zhao, Ya-hong; Yang, Yu-min; Gu, Xiao-song

    2016-01-01

    Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. PMID:26981108

  18. Axial segmentation of lungs CT scan images using canny method and morphological operation

    NASA Astrophysics Data System (ADS)

    Noviana, Rina; Febriani, Rasal, Isram; Lubis, Eva Utari Cintamurni

    2017-08-01

    Segmentation is a very important topic in digital image process. It is found simply in varied fields of image analysis, particularly within the medical imaging field. Axial segmentation of lungs CT scan is beneficial in designation of abnormalities and surgery planning. It will do to ascertain every section within the lungs. The results of the segmentation are accustomed discover the presence of nodules. The method which utilized in this analysis are image cropping, image binarization, Canny edge detection and morphological operation. Image cropping is done so as to separate the lungs areas, that is the region of interest. Binarization method generates a binary image that has 2 values with grey level, that is black and white (ROI), from another space of lungs CT scan image. Canny method used for the edge detection. Morphological operation is applied to smoothing the lungs edge. The segmentation methodology shows an honest result. It obtains an awfully smooth edge. Moreover, the image background can also be removed in order to get the main focus, the lungs.

  19. Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery

    NASA Astrophysics Data System (ADS)

    Soler, Luc; Delingette, Herve; Malandain, Gregoire; Montagnat, Johan; Ayache, Nicholas; Clement, Jean-Marie; Koehl, Christophe; Dourthe, Olivier; Mutter, Didier; Marescaux, Jacques

    2000-06-01

    To facilitate hepatic surgical planning, we have developed a new system for the automatic 3D delineation of anatomical and pathological hepatic structures from a spiral CT scan. This system also extracts functional information useful for surgery planning, such as portal vein labeling and anatomical segment delineation following the conventional Couinaud definition. From a 2 mm thick enhanced spiral CT scan, a first stage automatically delineates the skin, bones, lungs and kidneys, by combining the use of thresholding, mathematical morphological methods and distance maps. Next, a reference 3D model is immerged in the image and automatically deformed to the liver contour. Then an automatic Gaussians fitting on the imaging histogram allows to threshold the intensities of parenchyma, vessels and lesions. The next stage improves this first classification by an original topological and geometrical analysis, providing an automatic and precise delineation of lesions and veins. Finally, a topological and geometrical analysis based on medical knowledge provides the hepatic functional information invisible in medical imaging: portal vein labeling and hepatic anatomical segments. Clinical validation performed on more than 30 patients shows that this method allows a delineation of anatomical structures, often more sensitive and more specific than manual delineation by a radiologist.

  20. Comparative analysis of realistic CT-scan and simplified human airway models in airflow simulation.

    PubMed

    Johari, Nasrul Hadi; Osman, Kahar; Helmi, Nor Harris N; Abdul Kadir, Mohammed A Rafiq

    2015-01-01

    Efforts to model the human upper respiratory system have undergone many phases. Geometrical proximity to the realistic shape has been the subject of many research projects. In this study, three different geometries of the trachea and main bronchus were modelled, which were reconstructed from computed tomography (CT) scan images. The geometrical variations were named realistic, simplified and oversimplified. Realistic refers to the lifelike image taken from digital imaging and communications in medicine format CT scan images, simplified refers to the reconstructed image based on natural images without realistic details pertaining to the rough surfaces, and oversimplified describes the straight wall geometry of the airway. The characteristics of steady state flows with different flow rates were investigated, simulating three varied physical activities and passing through each model. The results agree with previous studies where simplified models are sufficient for providing comparable results for airflow in human airways. This work further suggests that, under most exercise conditions, the idealised oversimplified model is not favourable for simulating either airflow regimes or airflow with particle depositions. However, in terms of immediate analysis for the prediction of abnormalities of various dimensions of human airways, the oversimplified techniques may be used.

  1. Pulmonary atelectasis during paediatric anaesthesia: CT scan evaluation and effect of positive endexpiratory pressure (PEEP).

    PubMed

    Serafini, G; Cornara, G; Cavalloro, F; Mori, A; Dore, R; Marraro, G; Braschi, A

    1999-01-01

    The case series consisted of ten children, ranged in age from one to three years (median 1.8 yrs), and in body weight from 10.2 to 13.5 kg (median 11.7 kg), in ASA class 1 or 2, all without lung disease. Having undergone general anaesthesia for cranial or abdominal CT scans, the patients were studied for pulmonary morphology. The first pulmonary CT scan was taken five min after induction of general inhalational anaesthesia; preoxygenation was avoided and an intraoperative FiO2

  2. Computer-aided detection and quantification of cavitary tuberculosis from CT scans

    PubMed Central

    Xu, Ziyue; Bagci, Ulas; Kubler, Andre; Luna, Brian; Jain, Sanjay; Bishai, William R.; Mollura, Daniel J.

    2013-01-01

    Purpose: To present a computer-aided detection tool for identifying, quantifying, and evaluating tuberculosis (TB) cavities in the infected lungs from computed tomography (CT) scans. Methods: The authors’ proposed method is based on a novel shape-based automated detection algorithm on CT scans followed by a fuzzy connectedness (FC) delineation procedure. In order to assess interaction between cavities and airways, the authors first roughly identified air-filled structures (airway, cavities, esophagus, etc.) by thresholding over Hounsfield unit of CT image. Then, airway and cavity structure detection was conducted within the support vector machine classification algorithm. Once airway and cavities were detected automatically, the authors extracted airway tree using a hybrid multiscale approach based on novel affinity relations within the FC framework and segmented cavities using intensity-based FC algorithm. At final step, the authors refined airway structures within the local regions of FC with finer control. Cavity segmentation results were compared to the reference truths provided by expert radiologists and cavity formation was tracked longitudinally from serial CT scans through shape and volume information automatically determined through the authors’ proposed system. Morphological evolution of the cavitary TB were analyzed accordingly with this process. Finally, the authors computed the minimum distance between cavity surface and nearby airway structures by using the linear time distance transform algorithm to explore potential role of airways in cavity formation and morphological evolution. Results: The proposed methodology was qualitatively and quantitatively evaluated on pulmonary CT images of rabbits experimentally infected with TB, and multiple markers such as cavity volume, cavity surface area, minimum distance from cavity surface to the nearest bronchial-tree, and longitudinal change of these markers (namely, morphological evolution of cavities) were

  3. Accuracy of cancellous bone volume fraction measured by micro-CT scanning.

    PubMed

    Ding, M; Odgaard, A; Hvid, I

    1999-03-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.

  4. High-resolution CT scan findings in patients with symptomatic scleroderma-related interstitial lung disease.

    PubMed

    Goldin, Jonathan G; Lynch, David A; Strollo, Diane C; Suh, Robert D; Schraufnagel, Dean E; Clements, Philip J; Elashoff, Robert M; Furst, Daniel E; Vasunilashorn, Sarinnapha; McNitt-Gray, Michael F; Brown, Mathew S; Roth, Michael D; Tashkin, Donald P

    2008-08-01

    Lung disease has become the leading cause of mortality and morbidity in scleroderma (SSc) patients. The frequency, nature, and progression of interstitial lung disease seen on high-resolution CT (HRCT) scans in patients with diffuse SSc (dcSSc) compared with those with limited SSc (lcSSc) has not been well characterized. Baseline HRCT scan images of 162 participants randomized into a National Institutes of Health-funded clinical trial were compared to clinical features, pulmonary function test measures, and BAL fluid cellularity. The extent and distribution of interstitial lung disease HRCT findings, including pure ground-glass opacity (pGGO), pulmonary fibrosis (PF), and honeycomb cysts (HCs), were recorded in the upper, middle, and lower lung zones on baseline and follow-up CT scan studies. HRCT scan findings included 92.9% PF, 49.4% pGGO, and 37.2% HCs. There was a significantly higher incidence of HCs in the three zones in lcSSc patients compared to dcSSc patients (p = 0.034, p = 0.048, and p = 0.0007, respectively). The extent of PF seen on HRCT scans was significantly negatively correlated with FVC (r = - 0.22), diffusing capacity of the lung for carbon monoxide (r = - 0.44), and total lung capacity (r = - 0.36). A positive correlation was found between pGGO and the increased number of acute inflammatory cells found in BAL fluid (r = 0.28). In the placebo group, disease progression was assessed as 30% in the upper and middle lung zones, and 45% in the lower lung zones. No difference in the progression rate was seen between lcSSc and dcSSc patients. PF and GGO were the most common HRCT scan findings in symptomatic SSc patients. HCs were seen in more than one third of cases, being more common in lcSSc vs dcSSc. There was no relationship between progression and baseline PF extent or lcSSc vs dcSSc. Clinicaltrials.gov Identifier: NCT00004563.

  5. Imaging Non-Specific Wrist Pain: Interobserver Agreement and Diagnostic Accuracy of SPECT/CT, MRI, CT, Bone Scan and Plain Radiographs

    PubMed Central

    Huellner, Martin W.; Bürkert, Alexander; Strobel, Klaus; Pérez Lago, María del Sol; Werner, Lennart; Hug, Urs; von Wartburg, Urs; Seifert, Burkhardt; Veit-Haibach, Patrick

    2013-01-01

    Purpose Chronic hand and wrist pain is a common clinical issue for orthopaedic surgeons and rheumatologists. The purpose of this study was 1. To analyze the interobserver agreement of SPECT/CT, MRI, CT, bone scan and plain radiographs in patients with non-specific pain of the hand and wrist, and 2. to assess the diagnostic accuracy of these imaging methods in this selected patient population. Materials and Methods Thirty-two consecutive patients with non-specific pain of the hand or wrist were evaluated retrospectively. All patients had been imaged by plain radiographs, planar early-phase imaging (bone scan), late-phase imaging (SPECT/CT including bone scan and CT), and MRI. Two experienced and two inexperienced readers analyzed the images with a standardized read-out protocol. Reading criteria were lesion detection and localisation, type and etiology of the underlying pathology. Diagnostic accuracy and interobserver agreement were determined for all readers and imaging modalities. Results The most accurate modality for experienced readers was SPECT/CT (accuracy 77%), followed by MRI (56%). The best performing, though little accurate modality for inexperienced readers was also SPECT/CT (44%), followed by MRI and bone scan (38% each). The interobserver agreement of experienced readers was generally high in SPECT/CT concerning lesion detection (kappa 0.93, MRI 0.72), localisation (kappa 0.91, MRI 0.75) and etiology (kappa 0.85, MRI 0.74), while MRI yielded better results on typification of lesions (kappa 0.75, SPECT/CT 0.69). There was poor agreement between experienced and inexperienced readers in SPECT/CT and MRI. Conclusions SPECT/CT proved to be the most helpful imaging modality in patients with non-specific wrist pain. The method was found reliable, providing high interobserver agreement, being outperformed by MRI only concerning the typification of lesions. We believe it is beneficial to integrate SPECT/CT into the diagnostic imaging algorithm of chronic wrist

  6. Computerized lung nodule detection: comparison of performance for low-dose and standard-dose helical CT scans

    NASA Astrophysics Data System (ADS)

    Armato, Samuel G., III; Giger, Maryellen L.; Doi, Kunio; Bick, Ulrich; MacMahon, Heber

    2001-07-01

    The vast amount of image data acquired during a computed tomography (CT) scan makes lung nodule detection a burdensome task. Moreover, the growing acceptance of low-dose CT for lung cancer screening promises to further impact radiologists' workloads. Therefore, we have developed a computerized method to automatically analyze structures within a CT scan and identify those structures that represent lung nodules. Gray-level thresholding is performed to segment the lungs in each section to produce a segmented lung volume, which is then iteratively thresholded. At each iteration, remaining voxels are grouped into contiguous three-dimensional structures. Structures that satisfy a volume criterion then become nodule candidates. The set of nodule candidates is subjected to feature analysis. To distinguish candidates representing nodule and non-nodule structures, a rule-based approach is combined with an automated classifier. This method was applied to 43 standard-dose (diagnostic) CT scans and 13 low-dose CT scans. The method achieved an overall detection sensitivity of 71% with 1.5 false-positive detections per section on the standard-dose database and 71% sensitivity with 1.2 false-positive detections per section on the low-dose database. This automated method demonstrates promising performance in its ability to accurately detect lung nodules in standard-dose and low-dose CT images.

  7. Multiphase CT scanning and different intravenous contrast media concentrations in combined F-18-FDG PET/CT: Effect on quantitative and clinical assessment.

    PubMed

    Rebière, Marilou; Verburg, Frederik A; Palmowski, Moritz; Krohn, Thomas; Pietsch, Hubertus; Kuhl, Christiane K; Mottaghy, Felix M; Behrendt, Florian F

    2012-08-01

    To evaluate the influence of multiphase CT scanning and different intravenous contrast media on contrast enhancement, attenuation correction and image quality in combined PET/CT. 140 patients were prospectively enrolled for F-18-FDG-PET/CT including a low-dose unenhanced, arterial and venous contrast enhanced CT. The first (second) 70 patients, received contrast medium with 370 (300) mg iodine/ml. The iodine delivery rate (1.3mg/s) and total iodine load (44.4g) were identical for both groups. Contrast enhancement and maximum and mean standardized FDG uptake values (SUVmax and SUVmean) were determined for the un-enhanced, arterial and venous PET/CT at multiple anatomic sites and PET reconstructions were visually evaluated. Arterial contrast enhancement was significantly higher for the 300mg/ml contrast medium compared to 370mgI/ml at all anatomic sites. Venous enhancement was not different between the two contrast media. SUVmean and SUVmax were significantly higher for the contrast enhanced compared to the non-enhanced PET/CT at all anatomic sites (all P<0.001). Tracer uptake was significantly higher in the arterial than in the venous PET/CT in the arteries using both contrast media (all P<0.001). No differences in tracer uptake were found between the contrast media (all P>0.05). Visual assessment revealed no relevant differences between the different PET reconstructions. There is no relevant qualitative influence on the PET scan from the use of different intravenous contrast media in its various phases in combined multiphase PET/CT. For quantitative analysis of tracer uptake it is required to use an identical PET/CT protocol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. CT-PET weighted image fusion for separately scanned whole body rat

    PubMed Central

    Suh, Jung W.; Kwon, Oh-Kyu; Scheinost, Dustin; Sinusas, Albert J.; Cline, Gary W.; Papademetris, Xenophon

    2012-01-01

    Purpose: The limited resolution and lack of spatial information in positron emission tomography (PET) images require the complementary anatomic information from the computed tomography (CT) and/or magnetic resonance imaging (MRI). Therefore, multimodality image fusion techniques such as PET/CT are critical in mapping the functional images to structural images and thus facilitate the interpretation of PET studies. In our experimental situation, the CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produce significant nonrigid changes between the two acquisitions in addition to dissimilar image characteristics. The registration conditions are also poor because CT images have artifacts due to the limitation of current scanning settings, while PET images are very blurry (in transmission-PET) and have vague anatomical structure boundaries (in emission-PET). Methods: The authors present a new method for whole body small animal multimodal registration. In particular, the authors register whole body rat CT image and PET images using a weighted demons algorithm. The authors use both the transmission-PET and the emission-PET images in the registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. After a rigid transformation and a histogram matching between the CT and the transmission-PET images, the authors deformably register the transmission-PET image to the CT image with weights based on the intensity-normalized emission-PET image. For the deformable registration process, the authors develop a weighted demons registration method that can give preferences to particular regions of the input image using a weight image. Results: The authors validate the results with nine rat image sets using the M-Hausdorff distance (M-HD) similarity measure with different outlier-suppression parameters (OSP). In comparison with standard methods such as the

  9. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    SciTech Connect

    Toftegaard, Jakob Fledelius, Walther; Worm, Esben S.; Poulsen, Per R.; Seghers, Dieter; Huber, Michael; Brehm, Marcus; Elstrøm, Ulrik V.

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  10. An evaluation of CT-scan to locate the femoral head centre and its implication for hip surgeons.

    PubMed

    Viste, Anthony; Trouillet, Franck; Testa, Rodolphe; Chèze, Laurence; Desmarchelier, Romain; Fessy, Michel-Henri

    2014-04-01

    The aim of this preliminary study was to determine the accuracy of CT-scan to locate the femoral head centre. Eleven dried femurs were included for study. Three techniques were compared to determine femoral head centre (FHC) location: CT-scan, Motion Analysis and Faro-Arm. Markers were stuck on each femur to create a system of coordinates. Femurs lied on their posterior parts (bicondylar plane). Several points around the femoral head were palpated (Motion Analysis and Faro-Arm) or determined (Amira software for CT-scans). By a least-square regression method, the FHC location in 3D was defined for each technique. The results of the FHC location determined by the CT-scan technique were compared with those measured by the faro-arm and the Motion Analysis techniques. The coordinates (X, Y, Z) of the FHC were compared between the three methods, and no statistical difference was found (p = 0.99). In a 3D plot, this gave a mean difference of 1.3 mm. The mean radius of the femoral head was of 22.5 mm (p = 0.6). CT-scan is as accurate and reliable as gold-standard techniques (motion and faro-arm). Locating FHC before and after hip arthroplasty would allow hip surgeons to determine and compare 3D orientation of the upper-end of femur: offset, height and anteversion.

  11. Automated CT Scan Scores of Bronchiectasis and Air Trapping in Cystic Fibrosis

    PubMed Central

    Swiercz, Waldemar; Heltshe, Sonya L.; Anthony, Margaret M.; Szefler, Paul; Klein, Rebecca; Strain, John; Brody, Alan S.; Sagel, Scott D.

    2014-01-01

    Background: Computer analysis of high-resolution CT (HRCT) scans may improve the assessment of structural lung injury in children with cystic fibrosis (CF). The goal of this cross-sectional pilot study was to validate automated, observer-independent image analysis software to establish objective, simple criteria for bronchiectasis and air trapping. Methods: HRCT scans of the chest were performed in 35 children with CF and compared with scans from 12 disease control subjects. Automated image analysis software was developed to count visible airways on inspiratory images and to measure a low attenuation density (LAD) index on expiratory images. Among the children with CF, relationships among automated measures, Brody HRCT scanning scores, lung function, and sputum markers of inflammation were assessed. Results: The number of total, central, and peripheral airways on inspiratory images and LAD (%) on expiratory images were significantly higher in children with CF compared with control subjects. Among subjects with CF, peripheral airway counts correlated strongly with Brody bronchiectasis scores by two raters (r = 0.86, P < .0001; r = 0.91, P < .0001), correlated negatively with lung function, and were positively associated with sputum free neutrophil elastase activity. LAD (%) correlated with Brody air trapping scores (r = 0.83, P < .0001; r = 0.69, P < .0001) but did not correlate with lung function or sputum inflammatory markers. Conclusions: Quantitative airway counts and LAD (%) on HRCT scans appear to be useful surrogates for bronchiectasis and air trapping in children with CF. Our automated methodology provides objective quantitative measures of bronchiectasis and air trapping that may serve as end points in CF clinical trials. PMID:24114359

  12. Relationship between architectural parameters and sample volume of human cancellous bone in micro-CT scanning.

    PubMed

    Yan, Ya-Bo; Qi, Wei; Wang, Jun; Liu, Lin-Feng; Teo, Ee-Chon; Tianxia, Qiu; Ba, Jing-jing; Lei, Wei

    2011-07-01

    Truly representative architectural parameters of trabeculea can be extremely difficult to achieve based on scanning images because of variable porosity and distribution of trabeculae within the specific overall scanned volume of bone. Accordingly, in present study different selective volume of interests, measured from centroid of μ-CT scanned human vertebral body, were analyzed to determine the architectural parameters (BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp) of trabeculae within these volumes and to suggest an optimal volume for representative architectural parameters of the overall scanned volume. Nonlinear curve fitting method was also applied to obtain the correlation between the parameters and the volume of interests. The results show different volumes of interests give different morphological indices of BV/TV, BS/BV, Tb.N and Tb.Sp within a specific scanned vertebral body. Tb.Th shows relatively small variation (0.8%) even with sample volume of less than (2mm)(3). Statistical analysis shows that with sample volume of less than (6mm)(3), significant different in the measured BV/TV comparing against the control group. Tb.N and Tb.Sp show significant different values against the control group for volume of interest less than (4mm)(3) and (5mm)(3), respectively. However, no significant differences were observed in the indices of BS/BV and Tb.Th. Present study shows that an optimal volume of interests of greater than (6mm)(3) be selected to predict the architectural parameters of trabeculae of human vertebral bodies.

  13. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    SciTech Connect

    Cunliffe, A; Contee, C; White, B; Justusson, J; Armato, S; Malik, R; Al-Hallaq, H

    2014-06-15

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps) using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used

  14. Detection of bladder cancer: comparison of low-dose scans with AIDR 3D and routine-dose scans with FBP on the excretory phase in CT urography

    PubMed Central

    Tsuboyama, Takahiro; Kumano, Seishi; Inada, Yuki; Koyama, Mitsuhiro; Azuma, Haruhito; Narumi, Yoshifumi

    2016-01-01

    Objective: To prospectively compare the detection of bladder cancer between low-dose scans with adaptive iterative dose reduction three dimensional projection (AIDR 3D) and routine-dose scans with filtered back projection (FBP) on the excretory phase (EP) in CT urography. Methods: 42 patients were included. Routine- and low-dose EP were performed in each patient. Routine-dose images were reconstructed with FBP, and low-dose images were reconstructed with AIDR 3D. Two radiologists scored confidence levels for the presence or absence of bladder cancer using a 5-point scale. The CT dose index of each EP was measured, and the dose reduction was calculated. Results: Sensitivity, specificity and accuracy were 86.4%, 95.0% and 90.5% on routine-dose scans and were 86.4%, 90.0% and 88.1% on low-dose scans, respectively. There was no significant difference (p; not significant, 1.00 and 1.00, respectively). The average CT dose index was 8.07 and 2.63 mGy on routine- and low-dose scans, and the ratio of dose reduction was 67.6%. Conclusion: The detection of bladder cancer on low-dose scans with AIDR 3D is almost equal to that on routine-dose scans with FBP on the EP, with nearly 70% dose reduction. Advances in knowledge: Using AIDR 3D, the radiation dose may be reduced on the EP in CT urography for the detection of bladder cancer. PMID:26642306

  15. Objective function to obtain multiple representative waveforms for a novel helical CT scan protocol

    PubMed Central

    Ruan, Dan; Thomas, David; Low, Daniel A.

    2015-01-01

    Purpose: To develop objective functions for selecting multiple representative respiratory waveforms. A specific application considered is to reduce the number of swiping scans in a novel helical CT scan protocol to harvest efficiency and dose reduction benefit. Methods: The authors consider a general class of potential objective functions consisting of weighted norms on pointwise profile differentials. The authors utilize the Lagrangian approach and derive proper conditions on the formulation based on first and second order optimality conditions. The derived objective functions are applied to clinically acquired respiratory trajectories for swipe subset selection to verify the validity and generality of the proposed rationale. An end-to-end 4DCT reconstruction comparison is performed using a swipe subset of data corresponding to 3 out of the full 25 waveforms to assess the consequence in image quality and dose. Results: Their results show that maximizing the proposed objective function with the suggested parameters yields maximal spread of trajectories among the selected subset. 4DCT Reconstruction using the chosen subset of data indicates the potential for further dose reduction by about 5 to 10 folds without significant sacrifice in image quality. Experimental results also support further generalization to include slice prioritization. Conclusions: The authors have derived a formulation that is both simple and general as a metric to quantify the spread of a set of respiratory trajectories, which can be used for subset selection with potential computation and dose reduction benefit when applied to a newly developed helical 4DCT scan protocol. PMID:25735271

  16. Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field

    PubMed Central

    Tan, Yongqiang; Schwartz, Lawrence H.; Zhao, Binsheng

    2013-01-01

    Purpose: Lung lesions vary considerably in size, density, and shape, and can attach to surrounding anatomic structures such as chest wall or mediastinum. Automatic segmentation of the lesions poses a challenge. This work communicates a new three-dimensional algorithm for the segmentation of a wide variety of lesions, ranging from tumors found in patients with advanced lung cancer to small nodules detected in lung cancer screening programs. Methods: The authors’ algorithm uniquely combines the image processing techniques of marker-controlled watershed, geometric active contours as well as Markov random field (MRF). The user of the algorithm manually selects a region of interest encompassing the lesion on a single slice and then the watershed method generates an initial surface of the lesion in three dimensions, which is refined by the active geometric contours. MRF improves the segmentation of ground glass opacity portions of part-solid lesions. The algorithm was tested on an anthropomorphic thorax phantom dataset and two publicly accessible clinical lung datasets. These clinical studies included a same-day repeat CT (prewalk and postwalk scans were performed within 15 min) dataset containing 32 lung lesions with one radiologist's delineated contours, and the first release of the Lung Image Database Consortium (LIDC) dataset containing 23 lung nodules with 6 radiologists’ delineated contours. The phantom dataset contained 22 phantom nodules of known volumes that were inserted in a phantom thorax. Results: For the prewalk scans of the same-day repeat CT dataset and the LIDC dataset, the mean overlap ratios of lesion volumes generated by the computer algorithm and the radiologist(s) were 69% and 65%, respectively. For the two repeat CT scans, the intra-class correlation coefficient (ICC) was 0.998, indicating high reliability of the algorithm. The mean relative difference was −3% for the phantom dataset. Conclusions: The performance of this new segmentation

  17. The additional diagnostic value of contemporary evaluation of FDG PET/CT scan and contrast enhanced CT imaging both acquired by a last generation PET/CT system in oncologic patients.

    PubMed

    Nanni, Cristina; Zompatori, Maurizio; Ambrosini, Valentina; Montesi, Valeria; Mezzetti, Simona; Ferretti, Alice; Chondrogiannis, Sotirios; Rubello, Domenico; Fanti, Stefano

    2013-03-01

    Last generation PET tomographs are equipped with a state-of-the-art CT scanner. Normally, CT images are acquired with suboptimal parameters and without intravenous contrast media, being used for attenuation correction and localization only. For this reason, no CT report is usually provided. Most of the patients who are referred for an FDG PET/CT scan, however, present with a diagnostic CT indicating that a PET/CT is required to characterize otherwise equivocal findings and, in the end, undergo both the techniques to reach a final diagnosis. The aim of this study was to evaluate the impact of the contemporary execution of both the techniques employing a PET/CT scanner on the conclusiveness of the final report. Secondary aim was to verify the concordance of the two reports. Thirty-eight patients affected by hypermetabolic malignant diseases (15F-23M, mean age 58±17 years) were enrolled. Twenty-two were in staging, 16 in restaging. They underwent a standard FDG PET/CT scan immediately followed by a diagnostic contrast enhanced (ce)CT scan acquired on the same tomograph. The PET/CT scan was reported by a nuclear medicine physician while the ceCT by a radiologist, independently. Then, they wrote a conclusive paragraph formulated by consensus. The results were compared in terms of stage (FDG PET/CT vs. ceCT and vs. final stage by consensus) and positivity of T, N and M by the inter-rater agreement K. In all the patients, a final, conclusive and agreed stage was reached. There was a high concordance in terms of stage between FDG PET/CT and ceCT (K=0.874), ceCT and final stage (K=0.936), FDG PET/CT and final stage (K=0.938). In two cases, ceCT contributed significantly to the final stage, while PET/CT in four patients. More in details, for the detection of T, there was a complete concordance between PET/CT and ceCT, despite PET/CT wasn't able to provide an accurate evaluation of nearby structures infiltration. K was 0.785 for the assessing of N and 0.718 for M. In general

  18. A case of catastrophic antiphospholipid syndrome, which presented an acute interstitial pneumonia-like image on chest CT scan.

    PubMed

    Kameda, Tomohiro; Dobashi, Hiroaki; Susaki, Kentaro; Danjo, Junichi; Nakashima, Shusaku; Shimada, Hiromi; Izumikawa, Miharu; Takeuchi, Yohei; Mitsunaka, Hiroki; Bandoh, Shuji; Imataki, Osamu; Nose, Masato; Matsunaga, Takuya

    2015-01-01

    We report the case of catastrophic antiphospholipid syndrome (CAPS) complicated with mixed connective tissue disease (MCTD). A female patient was diagnosed with acute interstitial pneumonia (AIP) with MCTD by chest CT scan. Corticosteroid therapy was refractory for lung involvement, and she died due to acute respiratory failure. The autopsy revealed that AIP was compatible with lung involvement of CAPS. We therefore suggest that chest CT might reveal AIP-like findings in CAPS patients whose condition is complicated with pulmonary manifestations.

  19. Does early ED CT scanning of afebrile patients with first episodes of acute pancreatitis ever change management?

    PubMed

    Dachs, Robert J; Sullivan, Luke; Shanmugathasan, Preshanthini

    2015-06-01

    Rising utilization of computed tomography (CT) imaging early in the course of acute pancreatitis (AP) has been recently reported. However, radiographic demonstration of the degree of necrosis or the presence of complications is not fully apparent within the first days of an acute attack. The objective of this study was to examine if CT scanning early in the course of disease (<48 h of symptoms) in afebrile patients with an emergency department (ED) diagnosis of first episode of AP revealed any unanticipated pathology that altered clinical management. A retrospective chart review of all adult patients with a first episode of AP without fever admitted to the medical ward through the ED of our community hospital from January 1, 2011 to May 31, 2012 was performed. In cases in which CT scans were performed, the record was reviewed to determine if any unexpected findings were uncovered or if patient care was altered by the CT report. Two hundred forty-eight patients were admitted with an ED diagnosis of AP; 26.2 % (n = 65) met inclusion criteria; 70.8 % (n = 46) received a CT scan within 48 h of symptom onset. No patient that underwent CT scanning had an unexpected finding (95 % CI, 0.923-1.0). Our results demonstrate that afebrile patients with first episodes of AP do not benefit from early abdominal CT imaging. These results support the ACR Appropriateness Criteria recommendation that CT is not indicated in the first 48 h after symptom onset in unequivocal cases of AP.

  20. Inter- and Intra-Observer Reliability of Measurement of Pedicle Screw Breach Assessed by Postoperative CT Scans

    PubMed Central

    Ranade, Ashish; Samdani, Amer F.; Gaughan, John P.; D'Andrea, Linda P.; Betz, Randal R.

    2014-01-01

    Background Pedicle screws are used increasingly in spine surgery. Concerns of complications associated with screw breach necessitates accurate pedicle screw placement. Postoperative CT imaging helps to detect screw malposition and assess its severity. However, accuracy is dependent on the reading of the CT scans. Inter- and intra-observer variability could affect the reliability of CT scans to assess multiple screw types and sites. The purpose of this study was to assess the reliability of multi-observer analysis of CT scans for determining pedicle screw breach for various screw types and sites in patients with spinal deformity or degenerative pathologies. Methods Axial CT scan images of 23 patients (286 screws) were read by four experienced spine surgeons. Pedicle screw placement was considered 'In' when the screw was fully contained and/or the pedicle wall breach was ≤2 mm. 'Out' was defined as a breach in the medial or lateral pedicle wall >2 mm. Intra-class coefficients (ICC) were calculated to assess the inter- and intra-observer reliability. Results Marked inter- and intra-observer variability was noticed. The overall inter-observer ICC was 0.45 (95% confidence limits 0.25 to 0.65). The intra-observer ICC was 0.49 (95% confidence limits 0.29 to 0.69). Underlying spinal pathology, screw type, and patient age did not seem to impact the reliability of our CT assessments. Conclusion Our results indicate the evaluation of pedicle screw breach on CT by a single surgeon is highly variable, and care should be taken when using individual CT evaluations of millimeters of breach as a basis for screw removal. This was a Level III study. PMID:25694925

  1. Variability in Radiation Dose From Repeat Identical CT Examinations: Longitudinal Analysis of 2851 Patients Undergoing 12,635 Thoracoabdominal CT Scans in an Academic Health System.

    PubMed

    Mileto, Achille; Nelson, Rendon C; Larson, Douglas G; Samei, Ehsan; Wilson, Joshua M; Christianson, Olav; Marin, Daniele; Boll, Daniel T

    2017-06-01

    The purpose of this study was to conduct longitudinal analyses of radiation dose data from adult patients undergoing clinically indicated, repeat identical thoracoabdominal CT examinations. Radiation dose data were electronically collected from 2851 subjects undergoing 12,635 repeat identical CT scans (mean number of scans per patient, 4.8; range, 2-33) in one health system. Included CT protocols were chest-abdomen-pelvis with contrast administration (n = 4621 CT studies of 1064 patients), abdomen-pelvis with contrast administration (n = 876 CT studies of 261 patients), renal stone (n = 1053 CT studies of 380 patients), and chest (n = 6085 CT studies of 1146 patients) without contrast administration. A radiation-tracking software infrastructure was adopted to extract data from DICOM headers in PACS. Size-specific dose estimate (SSDE) was calculated. A trend was observed toward global reduction in SSDE values with all protocols investigated (chest-abdomen-pelvis slope, -1.78; abdomen-pelvis slope, -0.82; renal stone slope, -0.83; chest slope, -0.47; p < 0.001 for all comparisons). The intraindividual analyses of radiation dose distribution showed widespread variability in SSDE values across the four protocols investigated (chest-abdomen-pelvis mean coefficient of variance, 14.02 mGy; abdomen-pelvis mean coefficient of variance, 10.26 mGy; renal stone mean coefficient of variance, 34.18 mGy; chest mean coefficient of variance, 6.74 mGy). Although there is a trend toward global reduction in radiation doses, this study showed widespread variability in the radiation dose that each patient undergoing identical repeat thoracoabdominal CT protocols absorbs. These data may provide a foundation for the future development of best-practice guidelines for patient-specific radiation dose monitoring.

  2. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob; Yang, Jie

    2014-09-15

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm{sup 3} Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT.

  3. Cerebral embolism: local CBF and edema measured by CT scanning and Xe inhalation

    SciTech Connect

    Meyer, J.S.; Yamamoto, M.; Hayman, L.A.; Sakai, F.; Nakajima, S.; Armstrong, D.

    1980-01-01

    Serial CT scans were made in baboons after cerebral embolization during stable Xe inhalation for measuring local values for CBF and lambda (brain-blood partition or solubility coefficients), followed by iodine infusion for detecting blood-brain barrier (BBB) damage. Supplementary 133Xe CBF measurements were made at corresponding intervals. Persistent zones of zero flow surrounded by reduced flow were measured predominantly in subcortical regions, which showed gross and microscopic evidence of infarction at necropsy. Overylng cortex was relatively spared. Reduced lambda values attributed to edema appeared with in 3 to 5 minutes and progressed up to 60 minutes. Damage to BBB with visible transvascular seepage of iodine began to appear 1-11/2 hours after embolism. In chronic animals, lambda values were persistently reduced in areas showing histologic infarction. Contralateral hemispheric CBF increased for the first 15 minutes after embolism, followed by progressive reduction after 30 minutes (diaschisis).

  4. A TR-induced algorithm for hot spots elimination through CT-scan HIFU simulations

    NASA Astrophysics Data System (ADS)

    Leduc, Nicolas; Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2011-09-01

    Although nowadays widely spread for imaging and treatments uses, HIFU techniques are still limited by the distortion of the wavefront due to refraction and reflection on the inhomogeneous media inside the human body. CT-scan Time Reversal (TR) procedure has risen as a promising candidate for focus control. A finite difference time domain parallelized code is used to provide simulations of TR-enhanced propagation through elements of the human body and implement a simple algorithm to address the issue of grating lobes, i.e secondary peaks of pressure due to natural diffraction by phased arrays and enhanced by medium heterogeneity. Using an iterative, progressive process combining secondary sound sources and independent signal summation, the primary peak is strengthened while secondary peaks are increasingly obliterated. This method supports the feasibility of precise modification and enhancement of the pressure profile in the targeted area through Time Reversal based solutions.

  5. Brain CT-scan in acute stroke patients: silent infarcts and relation to outcome.

    PubMed

    Corea, Francesco; Tambasco, Nicola; Luccioli, Roberto; Ciorba, Ettore; Parnetti, Lucilla; Gallai, Virgilio

    2002-01-01

    Silent infarcts (SIs) are common findings in stroke patients, but their clinical significance remains controversial. Aim of this study was to evaluate the prevalence of SI in consecutive stroke patients, characteristics, associated factors, and influence on in-hospital mortality. The population consisted of 191 patients, consecutively admitted for an acute stroke. Of 191 patients, 74 had SI on CT-scan. Silent infarcts were often multiple, right sided, lacunar. We found SI more frequently in older patients, smokers, with an ischemic stroke having small vessel disease as presumed cause. In our study SI were associated with ageing, smoke habit and lacunar stroke. Silent infarcts size influenced the rate of in-hospital mortality.

  6. The first ant-termite syninclusion in amber with CT-scan analysis of taphonomy.

    PubMed

    Coty, David; Aria, Cédric; Garrouste, Romain; Wils, Patricia; Legendre, Frédéric; Nel, André

    2014-01-01

    We describe here a co-occurrence (i.e. a syninclusion) of ants and termites in a piece of Mexican amber (Totolapa deposit, Chiapas), whose importance is two-fold. First, this finding suggests at least a middle Miocene antiquity for the modern, though poorly documented, relationship between Azteca ants and Nasutitermes termites. Second, the presence of a Neivamyrmex army ant documents an in situ raiding behaviour of the same age and within the same community, confirmed by the fact that the army ant is holding one of the termite worker between its mandibles and by the presence of a termite with bitten abdomen. In addition, we present how CT-scan imaging can be an efficient tool to describe the topology of resin flows within amber pieces, and to point out the different states of preservation of the embedded insects. This can help achieving a better understanding of taphonomical processes, and tests ethological and ecological hypotheses in such complex syninclusions.

  7. Cerebral embolism: local CFBF and edema measured by CT scanning and Xe inhalation. [Baboons

    SciTech Connect

    Meyer, J.S.; Yamamoto, M.; Hayman, L.A.; Sakai, F.; Nakajima, S.; Armstrong, D.

    1980-01-01

    Serial CT scans were made in baboons after cerebral embolization during stable Xe inhalation for measuring local values for CBF and lambda (brain-blood partition or solubility coefficients), followed by iodine infusion for detecting blood-brain barrier (BBB) damage. Persistent zones of zero flow surrounded by reduced flow were measured predominantly in subcortical regions, which showed gross and microscopic evidence of infarction at necropsy. Overlying cortex was relatively spared. Reduced lambda values attributed to edema appeared within 3 to 5 minutes and progressed up to 60 minutes. Damage to BBB with visible transvascular seepage of iodine began to appear 1 to 1 1/2 hours after embolism. In chronic animals, lambda values were persistently reduced in areas showing histologic infarction. Contralateral hemispheric CBF increased for the first 15 minutes after embolism, followed by progressive reduction after 30 minutes (diaschisis).

  8. Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Karme, Aleksis; Kallonen, Aki; Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.

  9. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: a phantom study.

    PubMed

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S P; Wu, Tung-Hsin

    2014-09-01

    This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  10. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    SciTech Connect

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S. P.; Wu, Tung-Hsin

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  11. Automatic three-dimensional rib centerline extraction from CT scans for enhanced visualization and anatomical context

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Sowmya; Alvino, Christopher; Grady, Leo; Kiraly, Atilla

    2011-03-01

    We present a complete automatic system to extract 3D centerlines of ribs from thoracic CT scans. Our rib centerline system determines the positional information for the rib cage consisting of extracted rib centerlines, spinal canal centerline, pairing and labeling of ribs. We show an application of this output to produce an enhanced visualization of the rib cage by the method of Kiraly et al., in which the ribs are digitally unfolded along their centerlines. The centerline extraction consists of three stages: (a) pre-trace processing for rib localization, (b) rib centerline tracing, and (c) post-trace processing to merge the rib traces. Then we classify ribs from non-ribs and determine anatomical rib labeling. Our novel centerline tracing technique uses the Random Walker algorithm to segment the structural boundary of the rib in successive 2D cross sections orthogonal to the longitudinal direction of the ribs. Then the rib centerline is progressively traced along the rib using a 3D Kalman filter. The rib centerline extraction framework was evaluated on 149 CT datasets with varying slice spacing, dose, and under a variety of reconstruction kernels. The results of the evaluation are presented. The extraction takes approximately 20 seconds on a modern radiology workstation and performs robustly even in the presence of partial volume effects or rib pathologies such as bone metastases or fractures, making the system suitable for assisting clinicians in expediting routine rib reading for oncology and trauma applications.

  12. CT-scans of cochlear implant patients with characteristics of Pendred syndrome.

    PubMed

    Roesch, Sebastian; Moser, Gerhard; Rasp, Gerd; Tóth, Miklós

    2013-01-01

    Sensorineural hearing loss (SNHL) in newborns is estimated with an incidence around 1:10,000 per year and is divided into syndromic and non-syndromic forms. In case of present retrocochlear function' cochlear implantation allows speech and cognitive development in affected children, comparable to that of normal hearing children. Pathogenesis of SNHL remains unclear in many cases. Imaging of the temporal bone, such as computed tomography (CT) and magnetic resonance imaging (MRI), can reveal conspicuous findings, e.g. enlarged vestibular aqueduct (EVA) and Mondini malformation (MM) of the cochlea. These malformations can be a clinical sign for Pendred syndrome. We screened CT scans of 75 cochlear implant patients for EVA and MM. Six patients were observed to have either EVA alone (n=3), or MM alone (n=2), or a combination of both (n=1). Further malformations of the temporal bone could be found within the whole group, as well. Our results confirm the general opinion on EVA and MM, being commonly found in patients with SNHL. A possible association with Pendred syndrome needs to be confirmed by genetic investigations with search for mutations in the SLC26A4 gene and further clinical tests, such as Perchlorate test for surveillance of thyroid function. © 2014 S. Karger AG, Basel.

  13. Prediction of intracranial findings on CT-scans by alternative modelling techniques

    PubMed Central

    2011-01-01

    Background Prediction rules for intracranial traumatic findings in patients with minor head injury are designed to reduce the use of computed tomography (CT) without missing patients at risk for complications. This study investigates whether alternative modelling techniques might improve the applicability and simplicity of such prediction rules. Methods We included 3181 patients with minor head injury who had received CT scans between February 2002 and August 2004. Of these patients 243 (7.6%) had intracranial traumatic findings and 17 (0.5%) underwent neurosurgical intervention. We analyzed sensitivity, specificity and area under the ROC curve (AUC-value) to compare the performance of various modelling techniques by 10 × 10 cross-validation. The techniques included logistic regression, Bayes network, Chi-squared Automatic Interaction Detection (CHAID), neural net, support vector machines, Classification And Regression Trees (CART) and "decision list" models. Results The cross-validated performance was best for the logistic regression model (AUC 0.78), followed by the Bayes network model and the neural net model (both AUC 0.74). The other models performed poorly (AUC < 0.70). The advantage of the Bayes network model was that it provided a graphical representation of the relationships between the predictors and the outcome. Conclusions No alternative modelling technique outperformed the logistic regression model. However, the Bayes network model had a presentation format which provided more detailed insights into the structure of the prediction problem. The search for methods with good predictive performance and an attractive presentation format should continue. PMID:22026551

  14. Dissociation between back pain and bone stress reaction as measured by CT scan in young cricket fast bowlers

    PubMed Central

    Millson, H; Gray, J; Stretch, R; Lambert, M

    2004-01-01

    Background: Bone stress reaction is prevalent among cricket fast bowlers. Few studies have addressed the sensitivity and specificity of imaging for diagnosis, and follow up assessment has been poorly investigated. Objective: To determine whether there was an association between back pain and bone stress reaction as measured by computed tomography (CT) scan in young cricket fast bowlers. Methods: Ten young cricket fast bowlers were included in the study. Nine bowlers presented to a physiotherapy practice with low back pain and were later diagnosed with lumbar stress fractures, while one was an experienced bowler with no pain. All players had a CT scan after presenting to the physiotherapy practice. Pain was assessed according to a subjective scale (0–10) where 10 represented the player's subjective, maximum pain score. Recovery and rehabilitation of all players was monitored until they returned to full participation. Results: There was no consistency in the relationship between pain and CT scan results. For example, one subject had evidence of un-united stress fractures after 15 months of rest but had experienced moderate pain for only 2 weeks after the onset of symptoms, in contrast to another subject who had intermittent pain for 11 months even though CT scan showed multiple stress fractures ranging from partially healed to fully healed status at 3 months. Conclusion: There is dissociation between back pain and bone stress reaction as measured by CT scan. Therefore, CT scan does not provide objective evidence for ongoing management or decision concerning return to sport in cricket fast bowlers. PMID:15388545

  15. A reassessment of cervical surface anatomy via CT scan in an adult population.

    PubMed

    Shen, Xin-Hua; Xue, Hua-Dan; Chen, Yu; Wang, Man; Mirjalili, S Ali; Zhang, Zhu-Hua; Ma, Chao

    2017-04-01

    Surface landmarks in the neck are important for orientations of cervical glands, arteries, veins, nerves, and vertebrae. Recent research suggests some orientations are not correct. What are the cervical landmark orientations in the Chinese population? In this study, two essential cervical anatomy planes, the thyroid cartilage and C7 planes, were assessed in living adult Chinese subjects using computed tomography (CT), and the hyoid, carotid bifurcation, cricoid cartilage, thyroid arteries, and vertebral artery were simultaneously positioned. After excluding patients with distorting pathology, a total of 108 cervical CT scans were examined. The thyroid cartilage plane commonly passed through the C5 (in males) or C4 (in females) vertebral level. The carotid artery bifurcated most commonly at C3 (left) or C4 (right), more than 10 mm above the thyroid cartilage plane bilaterally in most cases. Orientation of the carotid bifurcation according to the body or greater horn of the hyoid was more accurate. The superior thyroid artery was found a finger-breadth below the thyroid cartilage plane, and the inferior thyroid artery in the C7 plane. The inferior border of the cricoid cartilage was most often at C7 (in males) or C6 (in females). The vertebral artery entered the C6 transverse foramen in more than 80% of scans. This reassessment of cervical surface anatomy using modern imaging tools in vivo provides both qualitative and quantitative information for surgeons in clinical practice. Clin. Anat. 30:330-335, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Characterizing functional lung heterogeneity in COPD using reference equations for CT scan-measured lobar volumes.

    PubMed

    Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R

    2013-06-01

    CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.

  17. Characterizing Functional Lung Heterogeneity in COPD Using Reference Equations for CT Scan-Measured Lobar Volumes

    PubMed Central

    Diaz, Alejandro A.; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P.; Zach, Jordan A.; Schroeder, Joyce; Lynch, David A.; Celli, Bartolome; Washko, George R.

    2013-01-01

    Background: CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Methods: Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. Results: In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Conclusions: Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction. PMID:23699785

  18. Effect of emphysema on CT scan measures of airway dimensions in smokers.

    PubMed

    Diaz, Alejandro A; Han, MeiLan K; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kim, Victor; Dransfield, Mark T; Curran-Everett, Douglas; Schroeder, Joyce D; Lynch, David A; Tschirren, Juerg; Silverman, Edwin K; Washko, George R

    2013-03-01

    In CT scans of smokers with COPD, the subsegmental airway wall area percent (WA%) is greater and more strongly correlated with FEV1 % predicted than WA% obtained in the segmental airways. Because emphysema is linked to loss of airway tethering and may limit airway expansion, increases in WA% may be related to emphysema and not solely to remodeling. We aimed to first determine whether the stronger association of subsegmental vs segmental WA% with FEV1 % predicted is mitigated by emphysema and, second, to assess the relationships among emphysema, WA%, and total bronchial area (TBA). We analyzed CT scan segmental and subsegmental WA% (WA% = 100 × wall area/TBA) of six bronchial paths and corresponding lobar emphysema, lung function, and clinical data in 983 smokers with COPD. Compared with segmental WA%, the subsegmental WA% had a greater effect on FEV1% predicted (-0.8% to -1.7% vs -1.9% to -2.6% per 1-unit increase in WA%, respectively; P < .05 for most bronchial paths). After adjusting for emphysema, the association between subsegmental WA% and FEV1 % predicted was weakened in two bronchial paths. Increases in WA% between bronchial segments correlated directly with emphysema in all bronchial paths (P < .05). In multivariate regression models, emphysema was directly related to subsegmental WA% in most bronchial paths and inversely related to subsegmental TBA in all bronchial paths. The greater effect of subsegmental WA% on airflow obstruction is mitigated by emphysema. Part of the emphysema effect might be due to loss of airway tethering, leading to a reduction in TBA and an increase in WA%.

  19. Effect of Emphysema on CT Scan Measures of Airway Dimensions in Smokers

    PubMed Central

    Han, MeiLan K.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kim, Victor; Dransfield, Mark T.; Curran-Everett, Douglas; Schroeder, Joyce D.; Lynch, David A.; Tschirren, Juerg; Silverman, Edwin K.; Washko, George R.

    2013-01-01

    Background: In CT scans of smokers with COPD, the subsegmental airway wall area percent (WA%) is greater and more strongly correlated with FEV1 % predicted than WA% obtained in the segmental airways. Because emphysema is linked to loss of airway tethering and may limit airway expansion, increases in WA% may be related to emphysema and not solely to remodeling. We aimed to first determine whether the stronger association of subsegmental vs segmental WA% with FEV1 % predicted is mitigated by emphysema and, second, to assess the relationships among emphysema, WA%, and total bronchial area (TBA). Methods: We analyzed CT scan segmental and subsegmental WA% (WA% = 100 × wall area/TBA) of six bronchial paths and corresponding lobar emphysema, lung function, and clinical data in 983 smokers with COPD. Results: Compared with segmental WA%, the subsegmental WA% had a greater effect on FEV1% predicted (−0.8% to −1.7% vs −1.9% to −2.6% per 1-unit increase in WA%, respectively; P < .05 for most bronchial paths). After adjusting for emphysema, the association between subsegmental WA% and FEV1 % predicted was weakened in two bronchial paths. Increases in WA% between bronchial segments correlated directly with emphysema in all bronchial paths (P < .05). In multivariate regression models, emphysema was directly related to subsegmental WA% in most bronchial paths and inversely related to subsegmental TBA in all bronchial paths. Conclusion: The greater effect of subsegmental WA% on airflow obstruction is mitigated by emphysema. Part of the emphysema effect might be due to loss of airway tethering, leading to a reduction in TBA and an increase in WA%. Trial registry: ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov PMID:23460155

  20. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    NASA Astrophysics Data System (ADS)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  1. Heart region segmentation from low-dose CT scans: an anatomy based approach

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Biancardi, Alberto M.; Yankelevitz, David F.; Cham, Matthew D.; Henschke, Claudia I.

    2012-02-01

    Cardiovascular disease is a leading cause of death in developed countries. The concurrent detection of heart diseases during low-dose whole-lung CT scans (LDCT), typically performed as part of a screening protocol, hinges on the accurate quantification of coronary calcification. The creation of fully automated methods is ideal as complete manual evaluation is imprecise, operator dependent, time consuming and thus costly. The technical challenges posed by LDCT scans in this context are mainly twofold. First, there is a high level image noise arising from the low radiation dose technique. Additionally, there is a variable amount of cardiac motion blurring due to the lack of electrocardiographic gating and the fact that heart rates differ between human subjects. As a consequence, the reliable segmentation of the heart, the first stage toward the implementation of morphologic heart abnormality detection, is also quite challenging. An automated computer method based on a sequential labeling of major organs and determination of anatomical landmarks has been evaluated on a public database of LDCT images. The novel algorithm builds from a robust segmentation of the bones and airways and embodies a stepwise refinement starting at the top of the lungs where image noise is at its lowest and where the carina provides a good calibration landmark. The segmentation is completed at the inferior wall of the heart where extensive image noise is accommodated. This method is based on the geometry of human anatomy and does not involve training through manual markings. Using visual inspection by an expert reader as a gold standard, the algorithm achieved successful heart and major vessel segmentation in 42 of 45 low-dose CT images. In the 3 remaining cases, the cardiac base was over segmented due to incorrect hemidiaphragm localization.

  2. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  3. Comparative analysis of the radiation shield effect in an abdominal CT scan

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Chil; Kim, Young-Jae; Lee, Joon-Seok; Dong, Kyung-Rae; Chung, Woon-Kwan; Lim, Chang-Seon

    2014-03-01

    This study measured and compared the dose on the eyeballs and the thyroid with and without the use of a shield by applying the abdominal examination protocol used in an actual examination to a 64-channel computed tomography (CT) scan. A dummy phantom manufactured from acryl was used to measure the dose to the eyeballs and the thyroid of a patient during a thoraco-abdominal CT scan. The dose was measured using three dosimeters (optically-stimulated luminescence dosimeter (OSLD), thermoluminescence dosimeter (TLD) and photoluminescence dosimeter (PLD)) attached to the surfaces of three parts (left and right eyeballs and thyroid) in a phantom with and without the use of a shield for the eyeballs and the thyroid. Two types of shields (1-mm barium shielding sheet and 1-mm tungsten shielding sheet) were used for the measurements. The goggles and the lead shield, which are normally used in clinical practice, were used to compare the shield ratios of the shields. According to the results of the measurements made by using the OSLD, the shield ratios of the barium and the tungsten sheets were in the range of 34-36%. The measurements made by using the TLD showed that the shield ratio of the barium sheet was 6.25% higher than that of the tungsten sheet. When the PLD was used for the measurement, the shield ratio of the barium sheet was 33.34%, which was equivalent to that of the tungsten sheet. These results confirmed that the cheap barium sheet had a better shielding effect than the expensive tungsten sheet.

  4. CT-scan imaging of iron marked chorda tympani nerve: anatomical study and educational perspectives.

    PubMed

    Trost, Olivier; Rouchy, René-Charles; Teyssier, Charles; Kazemi, Apolline; Zwetyenga, Narcisse; Malka, Gabriel; Cheynel, Nicolas; Trouilloud, Pierre

    2011-08-01

    The chorda tympani nerve (CTN) is the last collateral branch of the facial nerve in its third intraosseous portion just over the stylomastoid foramen. After a curved course against the medial aspect of the tympanum where it is likely to be injured in middle ear surgery, CTN reaches the lingual nerve in the infratemporal fossa. Knowledge of CTN topographic anatomy is not easily achieved by the students because of the deep location of this thin structure. The aim of this study was to assess the spatial relationships of the CTN in the infratemporal fossa. Therefore, ten nerves were dissected in five fresh cadavers. All the nerves were catheterized with a 3/0 wire. After a meticulous repositioning of surrounding structures, standard X-ray and CT scan examinations were performed with multiplanar acquisitions and three-dimensional surface rendering reconstructions. Ventral projection of the CTN corresponded to the middle of the maxillary sinus. Lateral landmark was the mandibular condyle. The CTN was present and unique in all the dissections. The average length of the nerve, as measured on CT scans, was 31.8 mm (29-34, standard deviation of 1.62); the anastomosis of the CTN to the lingual nerve was located at a mean 24.9 mm below the skull base (24-27, standard deviation of 0.99), approximately in the same horizontal plane as the lower part of the mandibular notch. The acute angle opened dorsally and cranially between CTN and LN measured mean 63.2° (60-65, standard deviation of 1.67). Three-dimensional volumetric reconstructions using surface rendering technique provided realistic educational support at the students' disposal.

  5. The value of Weight-Bearing CT scan in the evaluation of subtalar distraction bone block arthrodesis: Case report.

    PubMed

    Welck, M J; Myerson, M S

    2015-12-01

    Subtalar distraction arthrodesis is performed in certain situations where there is loss of subtalar height, reduced talar declination and evidence of anterior tibiotalar impingement. Standard evaluation includes the assessment of the lateral talocalcaneal angle, calcaneal pitch, talocalcaneal height and talar declination angle on a weight bearing lateral radiograph. We present a case of erosive valgus subtalar osteoarthritis with subtalar collapse managed with a subtalar distraction arthrodesis. A weight bearing CT (WB-CT) scan was used in the assessment. The value of WB-CT for this indication is discussed, along with a discussion on surgical technique, complications and future directions. Copyright © 2015 European Foot and Ankle Society. All rights reserved.

  6. Whole-body CT screening: scan delay and contrast injection duration for optimal enhancement of abdominal organs and deep vessels.

    PubMed

    Watanabe, Haruo; Kanematsu, Masayuki; Kondo, Hiroshi; Tomimatsu, Hideto; Sakurai, Kota; Goshima, Satoshi; Kawada, Hiroshi; Noda, Yoshifumi; Miyoshi, Toshiharu

    2014-01-01

    To assess the optimal scan delays and contrast injection durations for contrast-enhanced whole-body computed tomography (CT). One hundred forty-two patients were randomized into three groups: protocol A-scan delay of 65 s after starting contrast injection over 30 s; protocol B-105 and 70 s; and protocol C-145 and 110 s, respectively. Contrast enhancement and diagnostic acceptability were assessed. Qualitative assessment was subtle among the three protocols. Homogenous enhancement of deep veins was more assuredly achieved with protocol C. With protocol C, qualitatively acceptable enhancement can be obtained in whole-body CT. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Metastatic Neuroblastoma in Adult Patient, Presenting as a Super Scan on 68Ga-DOTANOC PET/CT Imaging.

    PubMed

    Malik, Dharmender; Jois, Abhiram; Singh, Harmandeep; Bora, Girdhar S; Basher, Rajender Kumar; Mittal, Bhagwant Rai

    2017-09-01

    We report a case of 23-year-old man who presented with complaints of progressive abdominal distension for the past 3 months along with the loss of appetite and weight and had a large solid cystic mass in the left half of the abdominal cavity revealed on ultrasonography and contrast-enhanced CT of the abdomen. Subsequent biopsy and histopathology revealed it to be neuroblastoma. Ga-DOTANOC PET/CT scan performed to rule out distant metastasis showed intense radiotracer uptake distributed throughout the skeleton, mimicking a super scan.

  8. Is there an ideal set of prospective scan acquisition phases for fast-helical based 4D-CT?

    NASA Astrophysics Data System (ADS)

    Thomas, D. H.; Ruan, D.; Williams, P.; Lamb, J.; White, B. M.; Dou, T.; O'Connell, D.; Lee, P.; Low, D. A.

    2016-12-01

    The article aims to determine if a prospective acquisition algorithm can be used to find the ideal set of free-breathing phases for fast-helical model-based 4D-CT. A retrospective five-patient dataset that consisted of 25 repeated free breathing CT scans per patient was used. The sum of the square root amplitude difference between all the breathing phases was defined as an objective function to determine the optimality of sets of breathing phases. The objective function was intended to determine if a specific set of breathing phases would yield a motion model that could accurately predict the motion in all 25 CT scans. Voxel specific motion models were calculated using all combinations of N scans from 25 breathing trajectories, (3  ⩽  N  ⩽  25), and the minimum number of scans required to absolutely characterize the motion model was analyzed. This analysis suggests that the number of scans could potentially be reduced to as few as five scans. When the objective function was large, the resulting motion model provided an excellent approximation to the motion model created using all 25 scans.

  9. Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Han, Ce; Gan, Guanghui; Deng, Zhenxiang; Zhou, Yongqiang; Yi, Jinling; Zheng, Xiaomin; Xie, Congying; Jin, Xiance

    2017-04-01

    Dynamic myocardial perfusion CT (DMP-CT) imaging provides quantitative functional information for diagnosis and risk stratification of coronary artery disease by calculating myocardial perfusion hemodynamic parameter (MPHP) maps. However, the level of radiation delivered by dynamic sequential scan protocol can be potentially high. The purpose of this work is to develop a pre-contrast normal-dose scan induced structure tensor total variation regularization based on the penalized weighted least-squares (PWLS) criteria to improve the image quality of DMP-CT with a low-mAs CT acquisition. For simplicity, the present approach was termed as ‘PWLS-ndiSTV’. Specifically, the ndiSTV regularization takes into account the spatial-temporal structure information of DMP-CT data and further exploits the higher order derivatives of the objective images to enhance denoising performance. Subsequently, an effective optimization algorithm based on the split-Bregman approach was adopted to minimize the associative objective function. Evaluations with modified dynamic XCAT phantom and preclinical porcine datasets have demonstrated that the proposed PWLS-ndiSTV approach can achieve promising gains over other existing approaches in terms of noise-induced artifacts mitigation, edge details preservation, and accurate MPHP maps calculation.

  10. Prediction of New Clinical Vertebral Fractures in Elderly Men using Finite Element Analysis of CT Scans

    PubMed Central

    Wang, Xiang; Sanyal, Arnav; Cawthon, Peggy M.; Palermo, Lisa; Jekir, Michael; Christensen, John; Ensrud, Kristine E.; Cummings, Steven R.; Orwoll, Eric; Black, Dennis M.; Keaveny, Tony M.

    2012-01-01

    Vertebral strength, as estimated by finite element analysis of computed tomography (CT) scans, has not yet been compared against areal bone mineral density (BMD) by dual energy x-ray absorptiometry (DXA) for prospectively assessing the risk of new clinical vertebral fractures. To do so, we conducted a case-cohort analysis of 306 men aged 65 yrs and older, which included 63 men who developed new clinically-identified vertebral fractures and 243 men who did not, all observed over an average of 6.5 years. Non-linear finite element analysis was performed on the baseline CT scans, blinded to fracture status, to estimate L1 vertebral compressive strength and a load-to-strength ratio. Volumetric BMD by quantitative CT and areal BMD by DXA were also evaluated. We found that, for the risk of new clinical vertebral fracture, the age-adjusted hazard ratio per standard deviation change for areal BMD (3.2; 95% CI: 2.0–5.2) was significantly lower (p<0.005) than for strength (7.2; 3.6–14.1), numerically lower than for volumetric BMD (5.7; 3.1–10.3), and similar for the load-to-strength ratio (3.0; 2.1–4.3). After also adjusting for race, BMI, clinical center, and areal BMD, all these hazard ratios remained highly statistically significant, particularly those for strength (8.5; 3.6–20.1) and volumetric BMD (9.4; 4.1–21.6). The area-under-the-curve for areal BMD (AUC=0.76) was significantly lower than for strength (AUC=0.83, p=0.02), volumetric BMD (AUC=0.82, p=0.05), and the load-to-strength ratio (AUC=0.82, p=0.05). We conclude that, compared to areal BMD by DXA, vertebral compressive strength and volumetric BMD consistently improved vertebral fracture risk assessment in this cohort of elderly men. PMID:22190331

  11. New noise reduction method for reducing CT scan dose: Combining Wiener filtering and edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Anam, Choirul; Haryanto, Freddy; Widita, Rena; Arif, Idam

    2015-09-01

    New noise reduction method for reducing dose of CT scans has been proposed. The new method is expected to address the major problems in the noise reduction algorithm, i.e. the decreasing in the spatial resolution of the image. The proposed method was developed by combining adaptive Wiener filtering and edge detection algorithms. The first step, the image was filtered with a Wiener filter. Separately, edge detection operation performed on the original image using the Prewitt method. The next step, a new image was generated based on the edge detection operation. At the edge area, the image was taken from the original image, while at the non-edge area, the image was taken from the image that had been filtered with a Wiener filter. The new method was tested on a CT image of the spatial resolution phantom, which was scanned by different current-time multiplication, namely 80, 130 and 200 mAs, while other exposure factors were kept in constant conditions. The spatial resolution phantom consists of six sets of bar pattern made of plexi-glass and separated at some distance by water. The new image quality assessed from the amount of noise and the magnitude of spatial resolution. Noise was calculated by determining the standard deviation of the homogeneous regions, while the spatial resolution was assessed by observation of the area sets of the bar pattern. In addition, to evaluate the performance of this new method has also been tested on patient CT images. From the measurements, the new method can reduce the noise to an average 64.85%, with a spatial resolution does not decrease significantly. Visually, the third set bar on the image phantom (the distance between the bar 1.0 mm) can still be distinguished, as well as on the original image. Meanwhile, if the image is only processed using Wiener filter, the second set bar (the distance between the bar 1.3 mm) are distinguishable. Testing this new method to patient image, its results in relatively the same. Thus, using this

  12. [The value of sinonasal CT scan in diagnosing of eosinophilic chronic rhinosinusitis with nasal polyps].

    PubMed

    Meng, Y F; Lou, H F; Wang, C S; Zhang, L

    2017-02-07

    Objective: To compare the value of sinonasal CT scan with other clinical parameters in the pre-diagnosis of eosinophilic chronic rhinosinusitis with nasal polyps (eCRSwNP). Methods: From January to May of 2016, One hundred and fifty consecutive CRSwNP patients (90 eCRSwNP and 60 non-eosinophilic CRSwNP) undergoing endoscopic functional sinus surgery in Beijing Tongren Hospital were recruited in this study. Preoperative CT scan, skin prick test (SPT) and oral fractional exhaled nitric oxide (FeNO) measurements were performed in each patient and full blood count with differential analysis was performed within 1 week before surgery. t test and X2 test were used to compare the age, gender, history of surgery, onset of asthma, history of allergy, CT scores' ratio for the ethmoid sinus and maxillary sinus (E/M ratio) and presence of osteoneogenesis of two groups. Mann-Whitney analysis was used to compare the total Lund-Mackay scores, FeNO and blood eosinophil counts of two groups. Logistic regression analysis and receiver operating characteristic (ROC) curve were used to assess the predictive value of clinical parameters. Results: E/M ratio, FeNO, blood eosinophil percentage of eCRSwNP group was significantly higher than those of non-eosinophilic CRSwNP group [3.56±0.37 vs 1.80±0.10, (34.4±18.1) μg/L vs (22.1±11.7) μg/L, 8.19%±1.50% vs 4.55%±5.60%; χ(2) value was 0.900; t value was 0.994 and 0.900, respectively; all P<0.05]. E/M ratio had the highest predictive value, with area under curve (AUC) value of 0.938. The cut-off point of 2.59 for E/M ratio demonstrated a sensitivity of 94.3% and a specificity of 89.6% for eCRSwNP. Conclusion: The E/M ratio is a more useful predictor in the diagnosis of eCRSwNP compared to other clinical parameters.

  13. Longitudinal dose distribution and energy absorption in PMMA and water cylinders undergoing CT scans

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-10-15

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full width at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or

  14. Volumetric gain of the human pancreas after left partial pancreatic resection: A CT-scan based retrospective study.

    PubMed

    Phillip, Veit; Zahel, Tina; Danninger, Assiye; Erkan, Mert; Dobritz, Martin; Steiner, Jörg M; Kleeff, Jörg; Schmid, Roland M; Algül, Hana

    2015-01-01

    Regeneration of the pancreas has been well characterized in animal models. However, there are conflicting data on the regenerative capacity of the human pancreas. The aim of the present study was to assess the regenerative capacity of the human pancreas. In a retrospective study, data from patients undergoing left partial pancreatic resection at a single center were eligible for inclusion (n = 185). Volumetry was performed based on 5 mm CT-scans acquired through a 256-slice CT-scanner using a semi-automated software. Data from 24 patients (15 males/9 females) were included. Mean ± SD age was 68 ± 11 years (range, 40-85 years). Median time between surgery and the 1st postoperative CT was 9 days (range, 0-27 days; IQR, 7-13), 55 days (range, 21-141 days; IQR, 34-105) until the 2nd CT, and 191 days (range, 62-1902; IQR, 156-347) until the 3rd CT. The pancreatic volumes differed significantly between the first and the second postoperative CT scans (median volume 25.6 mL and 30.6 mL, respectively; p = 0.008) and had significantly increased further by the 3rd CT scan (median volume 37.9 mL; p = 0.001 for comparison with 1st CT scan and p = 0.003 for comparison with 2nd CT scan). The human pancreas shows a measurable and considerable potential of volumetric gain after partial resection. Multidetector-CT based semi-automated volume analysis is a feasible method for follow-up of the volume of the remaining pancreatic parenchyma after partial pancreatectomy. Effects on exocrine and endocrine pancreatic function have to be evaluated in a prospective manner. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  15. Relevance of early head CT scans following neurosurgical procedures: an analysis of 892 intracranial procedures at Rush University Medical Center.

    PubMed

    Fontes, Ricardo B V; Smith, Adam P; Muñoz, Lorenzo F; Byrne, Richard W; Traynelis, Vincent C

    2014-08-01

    Early postoperative head CT scanning is routinely performed following intracranial procedures for detection of complications, but its real value remains uncertain: so-called abnormal results are frequently found, but active, emergency intervention based on these findings may be rare. The authors' objective was to analyze whether early postoperative CT scans led to emergency surgical interventions and if the results of neurological examination predicted this occurrence. The authors retrospectively analyzed 892 intracranial procedures followed by an early postoperative CT scan performed over a 1-year period at Rush University Medical Center and classified these cases according to postoperative neurological status: baseline, predicted neurological change, unexpected neurological change, and sedated or comatose. The interpretation of CT results was reviewed and unexpected CT findings were classified based on immediate action taken: Type I, additional observation and CT; Type II, active nonsurgical intervention; and Type III, surgical intervention. Results were compared between neurological examination groups with the Fisher exact test. Patients with unexpected neurological changes or in the sedated or comatose group had significantly more unexpected findings on the postoperative CT (p < 0.001; OR 19.2 and 2.3, respectively) and Type II/III interventions (p < 0.001) than patients at baseline. Patients at baseline or with expected neurological changes still had a rate of Type II/III changes in the 2.2%-2.4% range; however, no patient required an immediate return to the operating room. Over a 1-year period in an academic neurosurgery service, no patient who was neurologically intact or who had a predicted neurological change required an immediate return to the operating room based on early postoperative CT findings. Obtaining early CT scans should not be a priority in these patients and may even be cancelled in favor of MRI studies, if the latter have already been planned

  16. Sex determination of a Tunisian population by CT scan analysis of the skull.

    PubMed

    Zaafrane, Malek; Ben Khelil, Mehdi; Naccache, Ines; Ezzedine, Ekbel; Savall, Frédéric; Telmon, Norbert; Mnif, Najla; Hamdoun, Moncef

    2017-09-21

    It is widely accepted that the estimation of biological attributes in the human skeleton is more accurate when population-specific standards are applied. With the shortage of such data for contemporary North African populations, it is duly required to establish population-specific standards. We present here the first craniometric standards for sex determination of a contemporary Tunisian population. The aim of this study was to analyze the correlation between sex and metric parameters of the skull in this population using CT scan analysis and to generate proper reliable standards for sex determination of a complete or fragmented skull. The study sample comprised cranial multislice computed tomography scans of 510 individuals equally distributed by sex. ASIR(TM) software in a General Electric(TM) workstation was used to position 37 landmarks along the volume-rendered images and the multiplanar slices, defining 27 inter-landmark distances. Frontal and parietal bone thickness was also measured for each case. The data were analyzed using basic descriptive statistics and logistic regression with cross-validation of classification results. All of the measurements were sexually dimorphic with male values being higher than female values. A nine-variable model achieved the maximum classification accuracy of 90% with -2.9% sex bias and a six-variable model yielded 85.9% sexing accuracy with -0.97% sex bias. We conclude that the skull is highly dimorphic and represents a reliable bone for sex determination in contemporary Tunisian individuals.

  17. How to Avoid Nontherapeutic Laparotomy in Patients With Multiple Organ Failure of Unknown Origin. The Role of CT Scan Revisited.

    PubMed

    Fui, Stephanie Li Sun; Lupinacci, Renato Micelli; Trésallet, Christophe; Faron, Matthieu; Godiris-Petit, Gaelle; Salepcioglu, Harika; Noullet, Severine; Menegaux, Fabrice

    2015-03-01

    Diagnosis of intra-abdominal diseases in critically ill patients remains a clinical challenge. Physical examination is unreliable whereas exploratory laparotomy may aggravate patient's condition and delay further evaluation. Only a few studies have investigated the place of computed tomography (CT) on this hazardous situation. We aimed to evaluate the ability of CT to prevent unnecessary laparotomy during the management of critically ill patients. Charts of all consecutive patients who had undergone an emergency nontherapeutic laparotomy from 1996 to 2013 were retrospectively studied and patient's demographic, clinical characteristics, and surgical findings were collected. During this period 59 patients had an unnecessary laparotomy. Fifty-one patients had at least one preoperative imaging and 36 had a CT scan. CT scans were interpreted to be normal (n = 12), with minor anomalies (n = 10), or major anomalies (pneumoperitoneum, portal venous gas/pneumatosis intestinalis, thickened gallbladder wall, and small bowel obstruction signs). Surgical exploration was performed through laparotomy (n = 55) or laparoscopy. Overall mortality was 37% with a median survival after surgery of 7 days. In univariate analysis, hospitalization in ICU before surgical exploration was the only factor related to death. In our series CT scans, objectively interpreted, helped avoid unnecessary surgical exploration in 61% of our patients.

  18. Prevalence and Morphologic Features of Ponticulus Posticus in Koreans: Analysis of 312 Radiographs and 225 Three-dimensional CT Scans

    PubMed Central

    Kim, Kyeong Hwan; Park, Kun Woo; Manh, Tran Hoang; Chang, Bong-Soon; Lee, Choon-Ki

    2007-01-01

    Study Design A retrospective review of three-dimensional CT scan images and radiographs. Purpose To investigate the prevalence and morphologic features of ponticulus posticus in Koreans. Overview of Literature There has been little reported on the prevalence or morphologic characteristics of ponticulus posticus in Asians, predisposing them to vertebral artery injury during screw placement in the lateral mass of the atlas. Methods The presence and types of ponticulus posticus were investigated on 225 consecutive cervical three-dimensional CT scans and 312 consecutive digital lateral cephalometric head radiographs. Results Various spectra of ponticulus posticus were found in 26% of the CT scans and 14% of the radiographs. Conclusions Ponticulus posticus is a relatively common anomaly in Koreans. Therefore, the presence of this anomaly should be carefully examined for on radiographs before lateral mass screw placement. If ponticulus posticus is suspected or confirmed on radiographs, three-dimensional CT scanning should be considered before placement of lateral mass screws into the posterior arch, especially given its wide variation of size and shape. PMID:20411149

  19. Incorporating Radiology into Medical Gross Anatomy: Does the Use of Cadaver CT Scans Improve Students' Academic Performance in Anatomy?

    ERIC Educational Resources Information Center

    Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.

    2010-01-01

    Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with…

  20. Incorporating Radiology into Medical Gross Anatomy: Does the Use of Cadaver CT Scans Improve Students' Academic Performance in Anatomy?

    ERIC Educational Resources Information Center

    Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.

    2010-01-01

    Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with…

  1. Is it possible to limit the use of CT scanning in acute diverticular disease without compromising outcomes? A preliminary experience.

    PubMed

    Caputo, Pierpaolo; Rovagnati, Marco; Carzaniga, Pier Luigi

    2015-01-01

    The aim of our study was to determine whether the use of CT scanning in the assessment of acute diverticulitis can be reduced without a negative effect on outcome. Our series consisted of 93 out of 100 patients with acute diverticulitis admitted to the Emergency Room of our institution in the period from February 2012 to March 2013.The Hinchey classification system was used to stage disease based on findings on ultrasound (US) examination and/or computed tomography (CT) scanning. We compared the patients' Hinchey stage (HS) on admission and 72 hours later. Types of treatment were defined as emergency or delayed intervention (operative approaches (OA); ultrasound-guided percutaneous drainage (UPD), and surgery. The borderline between conservative and surgical management was identified. In patients with a HS CT scans. The skill of the individual operator in US examination was found to be of key importance. As regards CT scanning, we found, in agreement with the literature, that it has greater specificity and sensitivity than US, and is therefore indicated if the patient's condition has deteriorated.

  2. Automatic transperineal ultrasound probe positioning based on CT scan for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Camps, S. M.; Verhaegen, F.; Paiva Fonesca, G.; de With, P. H. N.; Fontanarosa, D.

    2017-03-01

    Image interpretation is crucial during ultrasound image acquisition. A skilled operator is typically needed to verify if the correct anatomical structures are all visualized and with sufficient quality. The need for this operator is one of the major reasons why presently ultrasound is not widely used in radiotherapy workflows. To solve this issue, we introduce an algorithm that uses anatomical information derived from a CT scan to automatically provide the operator with a patient-specific ultrasound probe setup. The first application we investigated, for its relevance to radiotherapy, is 4D transperineal ultrasound image acquisition for prostate cancer patients. As initial test, the algorithm was applied on a CIRS multi-modality pelvic phantom. Probe setups were calculated in order to allow visualization of the prostate and adjacent edges of bladder and rectum, as clinically required. Five of the proposed setups were reproduced using a precision robotic arm and ultrasound volumes were acquired. A gel-filled probe cover was used to ensure proper acoustic coupling, while taking into account possible tilted positions of the probe with respect to the flat phantom surface. Visual inspection of the acquired volumes revealed that clinical requirements were fulfilled. Preliminary quantitative evaluation was also performed. The mean absolute distance (MAD) was calculated between actual anatomical structure positions and positions predicted by the CT-based algorithm. This resulted in a MAD of (2.8±0.4) mm for prostate, (2.5±0.6) mm for bladder and (2.8±0.6) mm for rectum. These results show that no significant systematic errors due to e.g. probe misplacement were introduced.

  3. The relationship between organ dose and patient size in tube current modulated adult thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Khatonabadi, Maryam; Zhang, Di; Yang, Jeffrey; DeMarco, John J.; Cagnon, Chris C.; McNitt-Gray, Michael F.

    2012-03-01

    Recently published AAPM Task Group 204 developed conversion coefficients that use scanner reported CTDIvol to estimate dose to the center of patient undergoing fixed tube current body exam. However, most performed CT exams use TCM to reduce dose to patients. Therefore, the purpose of this study was to investigate the correlation between organ dose and a variety of patient size metrics in adult chest CT scans that use tube current modulation (TCM). Monte Carlo simulations were performed for 32 voxelized models with contoured lungs and glandular breasts tissue, consisting of females and males. These simulations made use of patient's actual TCM data to estimate organ dose. Using image data, different size metrics were calculated, these measurements were all performed on one slice, at the level of patient's nipple. Estimated doses were normalized by scanner-reported CTDIvol and plotted versus different metrics. CTDIvol values were plotted versus different metrics to look at scanner's output versus size. The metrics performed similarly in terms of correlating with organ dose. Looking at each gender separately, for male models normalized lung dose showed a better linear correlation (r2=0.91) with effective diameter, while female models showed higher correlation (r2=0.59) with the anterior-posterior measurement. There was essentially no correlation observed between size and CTDIvol-normalized breast dose. However, a linear relationship was observed between absolute breast dose and size. Dose to lungs and breasts were consistently higher in females with similar size as males which could be due to shape and composition differences between genders in the thoracic region.

  4. Automatic detection of patients with invasive fungal disease from free-text computed tomography (CT) scans.

    PubMed

    Martinez, David; Ananda-Rajah, Michelle R; Suominen, Hanna; Slavin, Monica A; Thursky, Karin A; Cavedon, Lawrence

    2015-02-01

    Invasive fungal diseases (IFDs) are associated with considerable health and economic costs. Surveillance of the more diagnostically challenging invasive fungal diseases, specifically of the sino-pulmonary system, is not feasible for many hospitals because case finding is a costly and labour intensive exercise. We developed text classifiers for detecting such IFDs from free-text radiology (CT) reports, using machine-learning techniques. We obtained free-text reports of CT scans performed over a specific hospitalisation period (2003-2011), for 264 IFD and 289 control patients from three tertiary hospitals. We analysed IFD evidence at patient, report, and sentence levels. Three infectious disease experts annotated the reports of 73 IFD-positive patients for language suggestive of IFD at sentence level, and graded the sentences as to whether they suggested or excluded the presence of IFD. Reliable agreement between annotators was obtained and this was used as training data for our classifiers. We tested a variety of Machine Learning (ML), rule based, and hybrid systems, with feature types including bags of words, bags of phrases, and bags of concepts, as well as report-level structured features. Evaluation was carried out over a robust framework with separate Development and Held-Out datasets. The best systems (using Support Vector Machines) achieved very high recall at report- and patient-levels over unseen data: 95% and 100% respectively. Precision at report-level over held-out data was 71%; however, most of the associated false-positive reports (53%) belonged to patients who had a previous positive report appropriately flagged by the classifier, reducing negative impact in practice. Our machine learning application holds the potential for developing systematic IFD surveillance systems for hospital populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A CAD of fully automated colonic polyp detection for contrasted and non-contrasted CT scans.

    PubMed

    Tulum, Gökalp; Bolat, Bülent; Osman, Onur

    2017-04-01

    Computer-aided detection (CAD) systems are developed to help radiologists detect colonic polyps over CT scans. It is possible to reduce the detection time and increase the detection accuracy rates by using CAD systems. In this paper, we aimed to develop a fully integrated CAD system for automated detection of polyps that yields a high polyp detection rate with a reasonable number of false positives. The proposed CAD system is a multistage implementation whose main components are: automatic colon segmentation, candidate detection, feature extraction and classification. The first element of the algorithm includes a discrete segmentation for both air and fluid regions. Colon-air regions were determined based on adaptive thresholding, and the volume/length measure was used to detect air regions. To extract the colon-fluid regions, a rule-based connectivity test was used to detect the regions belong to the colon. Potential polyp candidates were detected based on the 3D Laplacian of Gaussian filter. The geometrical features were used to reduce false-positive detections. A 2D projection image was generated to extract discriminative features as the inputs of an artificial neural network classifier. Our CAD system performs at 100% sensitivity for polyps larger than 9 mm, 95.83% sensitivity for polyps 6-10 mm and 85.71% sensitivity for polyps smaller than 6 mm with 5.3 false positives per dataset. Also, clinically relevant polyps ([Formula: see text]6 mm) were identified with 96.67% sensitivity at 1.12 FP/dataset. To the best of our knowledge, the novel polyp candidate detection system which determines polyp candidates with LoG filters is one of the main contributions. We also propose a new 2D projection image calculation scheme to determine the distinctive features. We believe that our CAD system is highly effective for assisting radiologist interpreting CT.

  6. [Effect of different tidal volume ventilations on atelectasis in patients during general anesthesia by CT scan].

    PubMed

    Gong, Hua; Zhang, Li-na; Cai, Hong-wei; Wang, Yan-jin; Hou, Yong-hong

    2007-10-01

    To investigate the effect of different tidal volume ventilations on the amount of atelectasis during general anesthesia. Twenty adults, ASA physical status I and status II patients, who were scheduled for elective excision of intracranial lesion were randomly divided into 2 groups: Group TV (traditional tidal volume ventilation, 10 mL/kg) and Group LV (low tidal volume ventilation, 6 mL/kg). Atelectasis, as determined by CT and artery blood gas (ABG) analysis, was measured before the anesthesia, after the tracheal intubation, and at the end of the operation, respectively. Respiratory mechanical parameters were measured at 30, 120, and 240 min after the intubation. After the tracheal intubation, CT scan showed obvious atelectasis in both groups. The atelectasis area was(4.35+/-2.15)cm2 (3.12%+/-1.94%) in the TV group and (4.80+/-2.45)cm2 (3.89%+/-2.11%) in the LV group, with a nonsignificant difference between the 2 groups. At the end of the operation, there was no significant increase in the amount of atelectasis between and within the 2 groups. Artery blood gas analysis showed no difference after the tracheal intubation and at the end of the operation in either group. Ppeak, Pplat, Pmean and lung compliance(Cst)were significantly higher in the TV group than those in the LV group. Low tidal volume(6 mL/kg) ventilation is more feasible during general anesthesia in patients with healthy lungs, and it does not increase the atelectasis and impairment of gas exchange.

  7. Reducing false positives of small bowel segmentation on CT scans by localizing colon regions

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Summers, Ronald M.

    2014-03-01

    Automated small bowel segmentation is essential for computer-aided diagnosis (CAD) of small bowel pathology, such as tumor detection and pre-operative planning. We previously proposed a method to segment the small bowel using the mesenteric vasculature as a roadmap. The method performed well on small bowel segmentation but produced many false positives, most of which were located on the colon. To improve the accuracy of small bowel segmentation, we propose a semi-automated method with minimum interaction to distinguish the colon from the small bowel. The method utilizes anatomic knowledge about the mesenteric vasculature and a statistical method of colon detection. First, anatomic labeling of the mesenteric arteries is used to identify the arteries supplying the colon. Second, a statistical detector is created by combining two colon probability maps. One probability map is of the colon location and is generated from colon centerlines generated from CT colonography (CTC) data. Another probability map is of 3D colon texture using Haralick features and support vector machine (SVM) classifiers. The two probability maps are combined to localize colon regions, i.e., voxels having high probabilities on both maps were labeled as colon. Third, colon regions identified by anatomical labeling and the statistical detector are removed from the original results of small bowel segmentation. The method was evaluated on 11 abdominal CT scans of patients suspected of having carcinoid tumors. The reference standard consisted of manually-labeled small bowel segmentation. The method reduced the voxel-based false positive rate of small bowel segmentation from 19.7%±3.9% to 5.9%±2.3%, with two-tailed P-value < 0.0001.

  8. CT scan evaluation of glenoid bone and pectoralis major tendon: interest in shoulder prosthesis

    PubMed Central

    Obert, Laurent; Peyron, Christelle; Boyer, Etienne; Menu, Gauthier; Loisel, François; Aubry, Sébastien

    2016-01-01

    Introduction: The shoulder arthroplasty brings satisfaction to patients in terms of quality of life and indolence. However whether anatomic implant or reverse, it does not escape from the loosening of the glenoid component. Moreover, optimal implantation is required to ensure the functional outcome without shortening of the arm. The purpose of this study is obtain CT scan evaluation of the glenoid bone stock in order to optimize glenoid component implantation and obtain a reference to determine optimal humeral component placement in case of humeral proximal fracture. Materials and methods: Between 2010 and 2011 we have analyzed 200 intact shoulder’s CT. We measured maximal and minimal width in the transverse plane of the glenoid, the distance from the pectoralis major (PM) tendon to the humeral head, the greater tubercle, change of curvature and the anatomical neck. Results: Mean maximum width was 27.4 ± 3.4 mm and mean minimum width was 15.5 ± 2.8 mm. Distances between upper edge of PM tendon to: humeral head, greater tubercle, change of curvature and anatomical neck were respectively: 67.6 ± 9.98 mm, 57.8 ± 10.3 mm, 28.7 ± 9 mm, and 34.2 ± 9.7 mm. Conclusion: Our study has produced an assessment of glenoid bone stock for optimal positioning of the glenoid implant but also to obtain a reference to determine the ideal location of the humeral component in the case of proximal humerus fracture. PMID:27716461

  9. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study.

    PubMed

    Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Sir Craft, Alan W; Parker, Louise; Berrington de González, Amy

    2012-08-04

    Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. During follow-up, 74 of 178,604 patients were diagnosed with leukaemia and 135 of 176,587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005-0·120; p=0·0097) and brain tumours (0·023, 0·010-0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46-6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50-74 mGy (mean dose 60·42 mGy) was 2·82 (1·33-6·03). Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain cancer. Because these cancers are relatively rare, the cumulative

  10. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study

    PubMed Central

    Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Craft, Alan W; Parker, Louise; de González, Amy Berrington

    2012-01-01

    Summary Background Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. Methods In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. Findings During follow-up, 74 of 178 604 patients were diagnosed with leukaemia and 135 of 176 587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005–0·120; p=0·0097) and brain tumours (0·023, 0·010–0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46–6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50–74 mGy (mean dose 60·42 mGy) was 2·82 (1·33–6·03). Interpretation Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain

  11. Optimal scan parameters for CT fluoroscopy in lung interventional radiologic procedures: relationship between radiation dose and image quality.

    PubMed

    Yamao, Yoshikazu; Yamakado, Koichiro; Takaki, Haruyuki; Yamada, Tomomi; Murashima, Shuichi; Uraki, Junji; Kodama, Hiroshi; Nagasawa, Naoki; Takeda, Kan

    2010-04-01

    To evaluate the relationship between radiation doses and lung computed tomographic (CT) fluoroscopic scan parameters and to determine optimal scan parameters for performance of lung interventional radiologic (IR) procedures. The institutional review board approved this prospective study, which included 32 patients with a single lung tumor; written informed consent was obtained. CT fluoroscopic images were obtained with three tube voltages (80,120,135 kV) and three tube currents (10, 20, 30 mA) in each patient. The signal-to-noise ratios (SNRs) and the contrast-to-noise ratios (CNRs) were measured quantitatively. To evaluate the feasibility of performing lung IR procedures, four readers visually scored the image quality. Acceptable CT fluoroscopic images were determined by using agreement of at least three of the four readers. The weighted CT dose index for each CT scan parameter was measured. A piecewise linear regression equation was obtained from the relationship between radiation doses and visual image scores. Both the SNR and the CNR improved as the radiation dose increased, leading to improvement in the image quality. Acceptable image quality was achieved in 94% (30 of 32) of patients when the radiation dose was 1.18 mGy/sec (120 kV, 10 mA) and in all patients when it was greater than 1.48 mGy/sec (135 kV, 10 mA). The piecewise linear curve showed rapid improvement in image quality until the radiation dose increased to 1.48 mGy/sec (135 kV, 10 mA). When the radiation dose was increased greater than 1.48 mGy/sec, improvement in the image quality became more gradual. Results of this study can be used to guide the determination of optimal scan parameters in lung CT fluoroscopy. RSNA, 2010

  12. The evaluation and comparison of kidney length obtained from axial cuts in spiral CT scan with its true length

    PubMed Central

    Karami, Mehdi; Rahimi, Farshad; Tajadini, Mohammadhasan

    2015-01-01

    Background: Increased size of kidney is the main symptom of pyelonephritis and renal ischemia in children. Ultrasound and computed tomography (CT) scan methods are the imaging methods for evaluating the urogenital system. The aim of this study is to compare the kidney length obtained from spiral CT scan with the true length obtained from multi-slice CT. Materials and Methods: From 100 patients 200 kidneys were examined in Alzahra Hospital in 2012. Multi-slice CT was used to obtain coronal and sagittal cuts to find the length of kidneys. Results: The mean values of true size of axial sections of the right and left kidneys were 108.37 ± 12.3 mm and 109.74 ± 13.6 mm, respectively. The mean difference of axial sections’ lengths in the right and left kidneys was 1.37 ± 1.22 mm. The mean values of length in the spiral CT scan of the right and left kidneys were 98.61 ± 15.8 mm and 103.11 ± 15.9 mm, respectively. The difference in the estimated size by multi-slice CT scan in oblique and axial images was significant (9.77 ± 1.19 mm and 6.63 ± 0.8 mm for the right and left kidneys, respectively (P < 0.001). Conclusion: The average size of both kidneys determined in axial images was smaller than the actual size. The estimation of kidney size in axial images is not reliable, and to obtain the actual size, it is required to have the coronal and sagittal cuts with proper quality, which could be achieved by multi-slice method. PMID:25709984

  13. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients.

    PubMed

    Cunliffe, Alexandra R; Contee, Clay; Armato, Samuel G; White, Bradley; Justusson, Julia; Malik, Renuka; Al-Hallaq, Hania A

    2015-01-01

    To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Eighteen patients who received curative doses (≥ 60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4-75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm ("Fast" and "EMPIRE10"). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (dE) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of dE, dose (D), dose standard deviation (SD(dose)) in an eight-pixel neighborhood, and the registration algorithm used. Over 1400 landmark point pairs were identified, with 58-93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9-10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average dE across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of dE (0.42 Gy/mm), D (0.05 Gy/Gy), SD(dose) (1.4 Gy/Gy), and the algorithm used (≤ 1 Gy). An average error of <4 Gy in radiation dose was introduced when points were mapped between

  14. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    SciTech Connect

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia; Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  15. Association Between Airway Caliber Changes With Lung Inflation and Emphysema Assessed by Volumetric CT Scan in Subjects With COPD

    PubMed Central

    Come, Carolyn E.; Ross, James C.; San José Estépar, Raúl; Han, MeiLan K.; Loring, Stephen H.; Silverman, Edwin K.; Washko, George R.

    2012-01-01

    Background: An increase in airway caliber (airway distensibility) with lung inflation is attenuated in COPD. Furthermore, some subjects have a decrease in airway caliber with lung inflation. We aimed to test the hypothesis that airway caliber increases are lower in subjects with emphysema-predominant (EP) compared with airway-predominant (AP) CT scan subtypes. Additionally, we compared clinical and CT scan features of subjects with (airway constrictors) and without a decrease in airway caliber. Methods: Based on GOLD (Global Initiative for Chronic Obstructive Lung Disease) stages and CT scan subtypes, we created a control group (n = 46) and the following matched COPD groups (n = 23 each): GOLD-2-AP, GOLD-2-EP, GOLD-4-AP, and GOLD-4-EP. From the CT scans of all 138 subjects, we measured emphysema, lung volumes, and caliber changes in the third and fourth airway generations of two bronchi. We expressed airway distensibility (ratio of airway lumen diameter change to lung volume change from end tidal breathing to full inspiration) as a global or lobar measure based on normalization by whole-lung or lobar volume changes. Results: Global distensibility in the third and fourth airway generations was significantly lower in the GOLD-2-EP and GOLD-4-EP groups than in control subjects. In GOLD-2 subjects, lobar distensibility of the right-upper-lobe fourth airway generation was significantly lower in those with EP than in those with AP. In multivariate analysis, emphysema was an independent determinant of global and lobar airway distensibility. Compared with nonconstrictors, airway constrictors experienced more dyspnea, were more hyperinflated, and had a higher percentage of emphysema. Conclusions: Distensibility of large- to medium-sized airways is reduced in subjects with an EP CT scan subtype. Emphysema seems to alter airway-parenchyma interdependence. Trial registry: ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov PMID:21940776

  16. Single-scan scatter correction for cone-beam CT using a stationary beam blocker: a preliminary study

    NASA Astrophysics Data System (ADS)

    Niu, Tianye; Zhu, Lei

    2011-03-01

    The performance of cone-beam CT (CBCT) is greatly limited by scatter artifacts. The existing measurement-based methods have promising advantages as a standard scatter correction solution, except that they currently require multiple scans or moving the beam blocker during data acquisition to compensate for the missing primary data. These approaches are therefore unpractical in clinical applications. In this work, we propose a new measurement-based scatter correction method to achieve accurate reconstruction with one single scan and a stationary beam blocker, two seemingly incompatible features which enable simple and effective scatter correction without increase of scan time or patient dose. Based on CT reconstruction theory, we distribute the blocked areas over one projection where primary signals are considered to be redundant in a full scan. The CT image quality is not degraded even with primary loss. Scatter is accurately estimated by interpolation and scatter-corrected CT images are obtained using an FDK-based reconstruction. In a Monte Carlo simulation study, we first optimize the beam blocker geometry using projections on the Shepp-Logan phantom and then carry out a complete simulation of a CBCT scan on a water phantom. With the scatter-to-primary ratio around 1.0, our method reduces the CT number error from 293 to 2.9 Hounsfield unit (HU) around the phantom center. The proposed approach is further evaluated on a CBCT tabletop system. On the Catphan©600 phantom, the reconstruction error is reduced from 202 to 10 HU in the selected region of interest after the proposed correction.

  17. Response Assessment and Prediction in Esophageal Cancer Patients via F-18 FDG PET/CT Scans

    NASA Astrophysics Data System (ADS)

    Higgins, Kyle J.

    Purpose: The purpose of this study is to utilize F-18 FDG PET/CT scans to determine an indicator for the response of esophageal cancer patients during radiation therapy. There is a need for such an indicator since local failures are quite common in esophageal cancer patients despite modern treatment techniques. If an indicator is found, a patient's treatment strategy may be altered to possibly improve the outcome. This is investigated with various standard uptake volume (SUV) metrics along with image texture features. The metrics and features showing the most promise and indicating response are used in logistic regression analysis to find an equation for the prediction of response. Materials and Methods: 28 patients underwent F-18 FDG PET/CT scans prior to the start of radiation therapy (RT). A second PET/CT scan was administered following the delivery of ~32 Gray (Gy) of dose. A physician contoured gross tumor volume (GTV) was used to delineate a PET based GTV (GTV-pre-PET) based on a threshold of >40% and >20% of the maximum SUV value in the GTV. Deformable registration was used in VelocityAI software to register the pre-treatment and intra-treatment CT scans so that the GTV-pre-PET contours could be transferred from the pre to intra scans (GTV-intra-PET). The fractional decrease in the maximum, mean, volume to the highest intensity 10%-90%, and combination SUV metrics of the significant previous SUV metrics were compared to post-treatment pathologic response for an indication of response. Next for the >40% threshold, texture features based on a neighborhood gray-tone dimension matrix (NGTDM) were analyzed. The fractional decrease in coarseness, contrast, busyness, complexity, and texture strength were compared to the pathologic response of the patients. From these previous two types of analysis, SUV and texture features, the two most significant results were used in logistic regression analysis to find an equation to predict the probability of a non

  18. Photodynamic therapy light dose analysis of a patient based upon arterial and venous contrast CT scan information

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Davis, Scott C.; Dehghani, Hamid; Huggett, Matthew; Hasan, Tayyaba; Pereira, Stephen P.; Pogue, Brian W.

    2013-03-01

    The goal of this work was to determine the light dose required to induce necrosis in verteporfin-based photodynamic therapy, in the VERTPAC-1 trial. Patient CT scans were obtained of the abdomen, including the entire treatment zone of pancreas and surrounding tissues, before and after treatment, as well as fast scans during needle placement. These scans were used to estimate arterial and venous blood content, and provide structural information of the pancreas and nearby blood vessels. Using NIRFAST, a finite-element based package for modeling diffuse near-infrared light transport in tissue, simulations were run to create maps of light fluence within the pancreas. These maps provided visualizations of light dose overlaid on the original CT scans, and were used to estimate light dose at the boundary of the zone of necrosis, as observed in follow up treatment outcome CT scans. The aim of these simulation studies was to assist pre-treatment planning by informing the light treatment parameters. This paper presents a case study of the process used on a single patient.

  19. Clinical Indications and Impact on Management: Fourth and Subsequent Posttherapy Follow-up (18)F-FDG PET/CT Scans in Oncology Patients.

    PubMed

    Taghipour, Mehdi; Marcus, Charles; Sheikhbahaei, Sara; Mena, Esther; Prasad, Shwetha; Jha, Abhinav K; Solnes, Lilja; Subramaniam, Rathan M

    2017-05-01

    The Centers for Medicare and Medicaid Services coverage includes 3 posttherapy (18)F-FDG PET/CT scans per patient and per tumor type. Any additional follow-up (18)F-FDG PET/CT scans will be reimbursed at the discretion of a local Medicare administrator, if deemed medically necessary. This study aimed to investigate common clinical indications for performing a fourth or additional follow-up (18)F-FDG PET/CT scans that could affect the management of patients. Methods: This was a retrospective institutional review of 433 oncology patients (203 men; mean age, 55 y), including a total of 1,659 fourth or subsequent follow-up PET/CT scans after completion of primary treatment. Twelve indications for performing a fourth or subsequent follow-up PET/CT scan were determined, and the impact of each of the 12 indications on patients' management was evaluated. Results: The primary tumors were breast cancer (92 patients, 426 scans), non-Hodgkin lymphoma (77 patients, 208 scans), Hodgkin disease (41 patients, 182 scans), colorectal cancer (70 patients, 286 scans), melanoma (69 patients, 271 scans), and lung cancer (84 patients, 286 scans). The indications were categorized in 4 groups: PET/CT for diagnosis of tumor recurrence (303/1,659, 18.3%), PET/CT before starting therapy for tumor recurrence (64/1,659, 3.9%), PET/CT to assess therapy response for tumor recurrence (507/1,659, 30.6%), and follow-up PET/CT after completion of treatment for tumor recurrence (785/1,659, 47.3%). Overall, fourth and subsequent follow-up (18)F-FDG PET/CT scans resulted in change in management in 31.6% of the scans (356 of 1,128) when the scans were obtained for medical necessities (indications 1-11), and in 5.6% of the scans (30/531) when the scans were obtained without any medical necessity (indication 12). Conclusion: The fourth and subsequent PET/CT scans obtained after completion of primary treatment led to a change in management in 31.6% of the scans when acquired for appropriate clinical reasons

  20. Diagnostic performance of isolated orbital CT scan for assessment of globe rupture in acute blunt facial trauma.

    PubMed

    Chou, Chieh; Lou, Yun-Ting; Hanna, Eissa; Huang, Shu-Hung; Lee, Su-Shin; Lai, Hsin-Ti; Chang, Kao-Ping; Wang, Hui-Min David; Chen, Chao-Wen

    2016-05-01

    We determine the diagnostic performance of emergent orbital computed tomography (CT) scans for assessing globe rupture in patients with blunt facial trauma. We performed a retrospective cohort study based on prospectively collected trauma registry and acute care surveillance data in a tertiary-care hospital. Patients aged at least 18 years who underwent isolated orbital CT scanning for assessing potential ocular trauma were examined. Analyses were performed to evaluate the magnitude of agreement between diagnosis by CT scanning and ophthalmic assessment, including globe rupture. Our study cohort comprised 136 patients, 30% of whom (41 patients) sustained orbital wall fractures. Concordance for orbital CT diagnosis and the ophthalmic assessment of globe rupture was substantial (k=0.708). The relative risk of globe rupture was 0.692 (95% confidence interval (CI): 0.054-8.849) for superior wall fractures, 0.459 (95% CI: 0.152-1.389) for inferior wall fractures, 2.286 (95% CI: 1.062-4.919) for lateral wall fractures, and 0.637 (95% CI: 0.215-1.886) for medial wall fractures. According to multivariate analysis, lateral wall fractures were an independent risk factor for globe ruptures (adjusted odds ratio (OR)=12.01, P=0.011), and medial or inferior wall fracture was a protective factor (adjusted OR=0.14, P=0.012). In the stratified analysis of diagnostic performance of CT scan, specificity was highest among patients with orbital wall fractures (97.2%), followed by negative predictive volume (NPV, 97%), and accuracy (95.1%). Among patients with blunt facial trauma who underwent isolated orbital CT scanning as part of ocular trauma assessment, the diagnostic performance of CT in detecting globe rupture is more accurate in patients with orbital wall fractures. Nevertheless, isolated orbital CT alone does not have a sufficiently high diagnostic performance to be reliable to rule out all globe ruptures. Lateral orbital wall fractures in blunt facial trauma patients, in

  1. Impact of number of repeated scans on model observer performance for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Yu, Lifeng; Chen, Baiyu; Vrieze, Thomas; Favazza, Christopher; Leng, Shuai; McCollough, Cynthia

    2015-03-01

    In previous investigations on CT image quality, channelized Hotelling observer (CHO) models have been shown to well represent human observer performance in several phantom-based detection/discrimination tasks. In these studies, a large number of independent images was necessary to estimate the expectation images and covariance matrices for each test condition. The purpose of this study is to investigate how the number of repeated scans affects the precision and accuracy of the CHO's performance in a signal-known-exactly detection task. A phantom containing 21 low-contrast objects (3 contrast levels and 7 sizes) was scanned with a 128-slice CT scanner at three dose levels. For each dose level, 100 independent images were acquired for each test condition. All images were reconstructed using filtered-backprojection (FBP) and a commercial iterative reconstruction algorithm. For each combination of dose level and reconstruction method, the low-contrast detectability, quantified with the area under receiver operating characteristic curve (Az), was calculated using a previously validated CHO model. To determine the dependency of CHO performance on the number of repeated scans, the Az value was calculated for different number of channel filters, for each object size and contrast, and for different dose/reconstruction settings using all 100 repeated scans. The Az values were also calculated using randomly selected subsets of the scans (from 10 to 90 scans with an increment of 10 scans). Using the Az from the 100 scans as the reference, the accuracy of Az values calculated from a fewer number of scans was determined and the minimal number of scans was subsequently derived. For the studied signal-known-exactly detection task, results demonstrated that, the minimal number of scans depends on dose level, object size and contrast level, and channel filters.

  2. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    PubMed

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.

  3. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    SciTech Connect

    Tselikas, Lambros Joskin, Julien; Roquet, Florian; Farouil, Geoffroy; Dreuil, Serge; Hakimé, Antoine Teriitehau, Christophe; Auperin, Anne; Baere, Thierry de Deschamps, Frederic

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  4. A study on the change in image quality before and after an attenuation correction with the use of a CT image in a SPECT/CT scan

    NASA Astrophysics Data System (ADS)

    Park, Yong-Soon; Kim, Woo-Hyun; Shim, Dong-Oh; Kim, Ho-Sung; Chung, Woon-Kwan; Cho, Jae-Hwan

    2012-12-01

    This study compared the SPECT (single-photon emission computed tomography) images before and after applying an attenuation correction by using the CT (computed tomography) image in a SPECT/CT scan and examined depending of the change in image quality on the CT dose. A flangeless Esser PET (positron emission tomography) Phantom was used to evaluate the image quality for the Precedence 16 SPECT/CT system manufactured by Philips. The experimental method was to obtain a SPECT image and a CT image of a flangeless Esser PET Phantom to acquire an attenuation-corrected SPECT image. A ROI (region of interest) was then set up at a hot spot of the acquired image to measure the SNR (signal to noise ratio) and the FWHM (full width at half maximum) and to compare the image quality with that of an unattenuation-corrected SPECT image. To evaluate the quality of a SPECT image, we set the ROI as a cylinder diameter (25, 16, 12, and 8 mm) and the BKG (background) radioactivity of the phantom images was obtained when each CT condition was changed. Subsequently, the counts were compared to measure the SNR. The FWHM of the smallest cylinder (8 mm) was measured to compare the image quality. A comparison of the SPECT images with and without attenuation correction revealed 5.01-fold, 4.77 fold, 4.43-fold, 4.38-fold, and 5.13-fold differences in SNR for the 25-mm cylinder, 16-mm cylinder, 12-mm cylinder, 8-mm cylinder, and BKG, respectively. In the phantom image obtained when the CT dose was changed, the FWHM of the 8-mm cylinder showed almost no difference under each condition regardless of the changes in kVp and mAs.

  5. Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques

    PubMed Central

    Norton, Luke A.; Manger, Paul R.; Rubidge, Bruce S.

    2017-01-01

    Euchambersia mirabilis is an iconic species of Permo-Triassic therapsid because of its unusually large external maxillary fossa linked through a sulcus to a ridged canine. This anatomy led to the commonly accepted conclusion that the large fossa accommodated a venom gland. However, this hypothesis remains untested so far. Here, we conducted a μCT scan assisted reappraisal of the envenoming capacity of Euchambersia, with a special focus on the anatomy of the maxillary fossa and canines. This study shows that the fossa, presumably for the venom-producing gland, is directly linked to the maxillary canal, which carries the trigeminal nerve (responsible for the sensitivity of the face). The peculiar anatomy of the maxillary canal suggests important reorganisation in the somatosensory system and that a ganglion could possibly have been present in the maxillary fossa instead of a venom gland. Nevertheless, the venom gland hypothesis is still preferred since we describe, for the first time, the complete crown morphology of the incisiform teeth of Euchambersia, which strongly suggests that the complete dentition was ridged. Therefore Euchambersia manifests evidence of all characteristics of venomous animals: a venom gland (in the maxillary fossa), a mechanism to deliver the venom (the maxillary canal and/or the sulcus located ventrally to the fossa); and an apparatus with which to inflict a wound for venom delivery (the ridged dentition). PMID:28187210

  6. A CT-scan database for the facial soft tissue thickness of Taiwan adults.

    PubMed

    Chung, Ju-Hui; Chen, Hsiao-Ting; Hsu, Wan-Yi; Huang, Guo-Shu; Shaw, Kai-Ping

    2015-08-01

    Facial reconstruction is a branch of forensic anthropology used to assist in the identification of skeletal remains. The majority of facial reconstruction techniques use facial soft tissue depth chart data to recreate facial tissue on a skull or a model of a skull through the use of modeling clay. This study relied on 193 subjects selected from the Taiwanese population on the basis of age and gender to determine the average values of 32 landmarks, include midline and bilateral measures, by means of CT scans. The mean age of the subjects was 46.9±16.4 years, with a mean age of 43.8±16.6 for males and 49.9±15.8 for females respectively. There were 16 landmarks with statistically significant differences between male and female subjects, namely S, G, N, Na, Ph, Sd and Id in the midline portion, FE, LO, ZA and Sub M2 in the bilateral-right and left portion, and IM point in the bilateral-left portion (abbreviations adapted from Karen T. Taylor's work). The mean soft tissue depth was greater in males than in females, and there was significant difference between the right and left sides of the face in Za point. This study's findings were compared with those of Bulut et al.

  7. Preliminary experiments on pharmacokinetic diffuse fluorescence tomography of CT-scanning mode

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqi; Wang, Xin; Yin, Guoyan; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng; Zhang, Limin

    2016-10-01

    In vivo tomographic imaging of the fluorescence pharmacokinetic parameters in tissues can provide additional specific and quantitative physiological and pathological information to that of fluorescence concentration. This modality normally requires a highly-sensitive diffuse fluorescence tomography (DFT) working in dynamic way to finally extract the pharmacokinetic parameters from the measured pharmacokinetics-associated temporally-varying boundary intensity. This paper is devoted to preliminary experimental validation of our proposed direct reconstruction scheme of instantaneous sampling based pharmacokinetic-DFT: A highly-sensitive DFT system of CT-scanning mode working with parallel four photomultiplier-tube photon-counting channels is developed to generate an instantaneous sampling dataset; A direct reconstruction scheme then extracts images of the pharmacokinetic parameters using the adaptive-EKF strategy. We design a dynamic phantom that can simulate the agent metabolism in living tissue. The results of the dynamic phantom experiments verify the validity of the experiment system and reconstruction algorithms, and demonstrate that system provides good resolution, high sensitivity and quantitativeness at different pump speed.

  8. Sex determination from scapular length measurements by CT scans images in a Caucasian population.

    PubMed

    Giurazza, F; Schena, E; Del Vescovo, R; Cazzato, R L; Mortato, L; Saccomandi, P; Paternostro, F; Onofri, L; Zobel, B Beomonte

    2013-01-01

    Together with race, stature and age, sex is a main component of the biological identity. Thanks to its proportional correlation with parts of the human body, sex can be evaluated form the skeleton. The most accurate approach to determine sex by bone size is based on os coxae or skull. After natural disaster their presence can never be guaranteed, therefore the development of methods of sex determination using other skeletal elements can result crucial. Herein, sexual dimorphism in the human scapula is used to develop a two-variable discriminant function for sex estimation. We have enrolled 100 males and 100 females who underwent thoracic CT scan evaluation and we have estimated two scapular diameters. The estimation has been carried out by analyzing images of the scapulae of each patient after three dimensional post-processing reconstructions. The two-variable function allows to obtain an overall accuracy of 88% on the calibration sample. Furthermore, we have employed the mentioned function on a collection of 10 individual test sample from the collection of the "Museo di Anatomia Umana di Firenze" of the Università degli Studi di Firenze; sex has been correctly predicted on 9 skeletons.

  9. The First Ant-Termite Syninclusion in Amber with CT-Scan Analysis of Taphonomy

    PubMed Central

    Coty, David; Aria, Cédric; Garrouste, Romain; Wils, Patricia; Legendre, Frédéric; Nel, André

    2014-01-01

    We describe here a co-occurrence (i.e. a syninclusion) of ants and termites in a piece of Mexican amber (Totolapa deposit, Chiapas), whose importance is two-fold. First, this finding suggests at least a middle Miocene antiquity for the modern, though poorly documented, relationship between Azteca ants and Nasutitermes termites. Second, the presence of a Neivamyrmex army ant documents an in situ raiding behaviour of the same age and within the same community, confirmed by the fact that the army ant is holding one of the termite worker between its mandibles and by the presence of a termite with bitten abdomen. In addition, we present how CT-scan imaging can be an efficient tool to describe the topology of resin flows within amber pieces, and to point out the different states of preservation of the embedded insects. This can help achieving a better understanding of taphonomical processes, and tests ethological and ecological hypotheses in such complex syninclusions. PMID:25140873

  10. Modeling the bifurcating flow in a CT-scanned human lung airway.

    PubMed

    Luo, H Y; Liu, Y

    2008-08-28

    The inspiratory flow characteristics in a CT-scanned human lung model were numerically investigated using low Reynolds number (LRN) kappa-omega turbulent model. The five-generation airway is extracted from the trachea to segmental bronchi of a 60-year-old Chinese male patient. Computations were carried out in the Reynolds number range of 900-2100, corresponding to mouth-air breathing rates of 190-440 ml/s. Flow patterns on the Re=2100 and flow rate distribution were presented. In this model, the flow pattern is very complex. To count the effect of laryngeal jet on trachea inlet, the trachea was extended and modified to simulate the larynx, consequently the inlet velocity profile is biased towards the rear wall. In the inferior lobar bronchi, there are two stems in which the axial velocity is stronger but secondary velocity is weaker. Secondary flow in the lateral bronchi is stronger than the medial ones. With increasing Re, the air flow increases in the middle, inferior lobes and left main bronchus, i.e., flow biases to left and downward.

  11. Optical CT imaging of solid radiochromic dosimeters in mismatched refractive index solutions using a scanning laser and large area detector.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-08-01

    The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve

  12. Prediction of intramuscular fat content using CT scanning of packaged lamb cuts and relationships with meat eating quality.

    PubMed

    Lambe, N R; McLean, K A; Gordon, J; Evans, D; Clelland, N; Bunger, L

    2017-01-01

    Novel, multi-object X-ray computed tomography (CT) methodologies can individually analyse vacuum-packed meat samples scanned in batches of three or more, saving money and time compared to scanning live animals. If intramuscular fat (IMF), as a proxy for meat quality, can be predicted with similar accuracies as in live lambs, this method could be used to grade on quality, or to inform breeding programmes. Lamb loin cuts from commercial carcasses (n=303), varying in fat and conformation grade, were vacuum-packed and CT scanned, then tested for meat quality traits and by a trained taste panel. Tissue density values measured by CT, alongside carcass and loin weights, predicted IMF with moderate accuracy (R(2) 0.36), but did not accurately predict shear force or sensory traits. Juiciness and flavour increased linearly with IMF, whilst texture and overall liking increased to an optimum between 4 and 5% IMF. Samples predicted by CT as having >3% IMF scored significantly higher for sensory traits, than those predicted as <3% IMF.

  13. Automatic identification of IASLC-defined mediastinal lymph node stations on CT scans using multi-atlas organ segmentation

    NASA Astrophysics Data System (ADS)

    Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.

    2015-03-01

    Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.

  14. The Value of Restaging With Chest and Abdominal CT/MRI Scan After Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer.

    PubMed

    Liu, Guo-Chen; Zhang, Xu; Xie, E; An, Xin; Cai, Pei-Qiang; Zhu, Ying; Tang, Jing-Hua; Kong, Ling-Heng; Lin, Jun-Zhong; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-11-01

    Little was known with regard to the value of preoperative systemic restaging for patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (CRT). This study was designed to evaluate the role of chest and abdominal computed tomography (CT) scan or magnetic resonance imaging (MRI) on preoperative restaging in LARC after neoadjuvant CRT and to assess the impact on treatment strategy.Between January 2007 and April 2013, 386 newly diagnosed consecutive patients with LARC who underwent neoadjuvant CRT and received restaging with chest and abdominal CT/MRI scan were included. Imaging results before and after CRT were analyzed.Twelve patients (3.1%) (6 liver lesions, 2 peritoneal lesions, 2 distant lymph node lesions, 1 lung lesions, 1 liver and lung lesions) were diagnosed as suspicious metastases on the restaging scan after radiotherapy. Seven patients (1.8%) were confirmed as metastases by pathology or long-term follow-up. The treatment strategy was changed in 5 of the 12 patients as a result of restaging CT/MRI findings. Another 10 patients (2.6%) who present with normal restaging imaging findings were diagnosed as metastases intra-operatively. The sensitivity, specificity accuracy, negative predictive value, and positive predictive values of restaging CT/MRI was 41.4%, 98.6%, 58.3%, and 97.3%, respectively.The low incidence of metastases and minimal consequences for the treatment plan question the clinical value of routine restaging of chest and abdomen after neoadjuvant CRT. Based on this study, a routine restaging CT/MRI of chest and abdomen in patients with rectal cancer after neoadjuvant CRT is not advocated, carcino-embryonic antigen (CEA) -guided CT/MRI restaging might be an alternative.

  15. An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.

    PubMed

    Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique

    2015-01-01

    This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.

  16. Comparison of Two Deformable Registration Algorithms in the Presence of Radiologic Change Between Serial Lung CT Scans.

    PubMed

    Cunliffe, Alexandra R; White, Bradley; Justusson, Julia; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A; Armato, Samuel G

    2015-12-01

    We evaluated the image registration accuracy achieved using two deformable registration algorithms when radiation-induced normal tissue changes were present between serial computed tomography (CT) scans. Two thoracic CT scans were collected for each of 24 patients who underwent radiation therapy (RT) treatment for lung cancer, eight of whom experienced radiologically evident normal tissue damage between pre- and post-RT scan acquisition. For each patient, 100 landmark point pairs were manually placed in anatomically corresponding locations between each pre- and post-RT scan. Each post-RT scan was then registered to the pre-RT scan using (1) the Plastimatch demons algorithm and (2) the Fraunhofer MEVIS algorithm. The registration accuracy for each scan pair was evaluated by comparing the distance between landmark points that were manually placed in the post-RT scans and points that were automatically mapped from pre- to post-RT scans using the displacement vector fields output by the two registration algorithms. For both algorithms, the registration accuracy was significantly decreased when normal tissue damage was present in the post-RT scan. Using the Plastimatch algorithm, registration accuracy was 2.4 mm, on average, in the absence of radiation-induced damage and 4.6 mm, on average, in the presence of damage. When the Fraunhofer MEVIS algorithm was instead used, registration errors decreased to 1.3 mm, on average, in the absence of damage and 2.5 mm, on average, when damage was present. This work demonstrated that the presence of lung tissue changes introduced following RT treatment for lung cancer can significantly decrease the registration accuracy achieved using deformable registration.

  17. Quantitative Computerized Two-Point Correlation Analysis of Lung CT Scans Correlates With Pulmonary Function in Pulmonary Sarcoidosis

    PubMed Central

    Erdal, Barbaros Selnur; Yildiz, Vedat; King, Mark A.; Patterson, Andrew T.; Knopp, Michael V.; Clymer, Bradley D.

    2012-01-01

    Background: Chest CT scans are commonly used to clinically assess disease severity in patients presenting with pulmonary sarcoidosis. Despite their ability to reliably detect subtle changes in lung disease, the utility of chest CT scans for guiding therapy is limited by the fact that image interpretation by radiologists is qualitative and highly variable. We sought to create a computerized CT image analysis tool that would provide quantitative and clinically relevant information. Methods: We established that a two-point correlation analysis approach reduced the background signal attendant to normal lung structures, such as blood vessels, airways, and lymphatics while highlighting diseased tissue. This approach was applied to multiple lung fields to generate an overall lung texture score (LTS) representing the quantity of diseased lung parenchyma. Using deidentified lung CT scan and pulmonary function test (PFT) data from The Ohio State University Medical Center’s Information Warehouse, we analyzed 71 consecutive CT scans from patients with sarcoidosis for whom simultaneous matching PFTs were available to determine whether the LTS correlated with standard PFT results. Results: We found a high correlation between LTS and FVC, total lung capacity, and diffusing capacity of the lung for carbon monoxide (P < .0001 for all comparisons). Moreover, LTS was equivalent to PFTs for the detection of active lung disease. The image analysis protocol was conducted quickly (< 1 min per study) on a standard laptop computer connected to a publicly available National Institutes of Health ImageJ toolkit. Conclusions: The two-point image analysis tool is highly practical and appears to reliably assess lung disease severity. We predict that this tool will be useful for clinical and research applications. PMID:22628487

  18. A novel method of estimating effective dose from the point dose method: a case study—parathyroid CT scans

    NASA Astrophysics Data System (ADS)

    Januzis, Natalie; Nguyen, Giao; Hoang, Jenny K.; Lowry, Carolyn; Yoshizumi, Terry T.

    2015-02-01

    The purpose of this study was to validate a novel approach of applying a partial volume correction factor (PVCF) using a limited number of MOSFET detectors in the effective dose (E) calculation. The results of the proposed PVCF method were compared to the results from both the point dose (PD) method and a commercial CT dose estimation software (CT-Expo). To measure organ doses, an adult female anthropomorphic phantom was loaded with 20 MOSFET detectors and was scanned using the non-contrast and 2 phase contrast-enhanced parathyroid imaging protocols on a 64-slice multi-detector computed tomography scanner. E was computed by three methods: the PD method, the PVCF method, and the CT-Expo method. The E (in mSv) for the PD method, the PVCF method, and CT-Expo method was 2.6  ±  0.2, 1.3  ±  0.1, and 1.1 for the non-contrast scan, 21.9  ±  0.4, 13.9  ±  0.2, and 14.6 for the 1st phase of the contrast-enhanced scan, and 15.5  ±  0.3, 9.8  ±  0.1, and 10.4 for the 2nd phase of the contrast-enhanced scan, respectively. The E with the PD method differed from the PVCF method by 66.7% for the non-contrast scan, by 44.9% and by 45.5% respectively for the 1st and 2nd phases of the contrast-enhanced scan. The E with PVCF was comparable to the results from the CT-Expo method with percent differences of 15.8%, 5.0%, and 6.3% for the non-contrast scan and the 1st and 2nd phases of the contrast-enhanced scan, respectively. To conclude, the PVCF method estimated E within 16% difference as compared to 50-70% in the PD method. In addition, the results demonstrate that E can be estimated accurately from a limited number of detectors.

  19. Forced diuresis and dual-phase 18F-fluorodeoxyglucose-PET/CT scan for restaging of urinary bladder cancers

    PubMed Central

    Harkirat, S; Anand, SS; Jacob, MJ

    2010-01-01

    Context: The results of 18F-fluorodeoxyglucose (FDG)-PET imaging carried out with the current standard techniques for assessment of urinary tract cancers have been reported to be less than satisfactory because of the urinary excretion of the tracer. Aims: To investigate the role of dual-phase FDG-PET/CT in the restaging of invasive cancers of the urinary bladder, with delayed imaging after forced diuresis and oral hydration as the scanning protocol. Settings and Design: FDG-PET has been considered to be of limited value for the detection of urinary tract cancers because of interference by the FDG excreted in urine. We investigated the efficacy of delayed FDG-PET/CT in the restaging of invasive bladder cancer, with imaging performed after intravenous (IV) administration of a potent diuretic and oral hydration. Materials and Methods: Twenty-nine patients with invasive cancer of the urinary bladder were included in this study. Patients were divided into two groups: Group I (22 patients) included cases with invasive bladder cancer who had not undergone cystectomy and group II (seven patients) included cases with invasive bladder cancer who had undergone cystectomy and urinary diversion procedure. All patients underwent FDG-PET/CT scan from the skull base to the mid-thighs 60 min after IV injection of 370 mega-Becquerel (MBq) of FDG. Additional delayed images were acquired 60-90 min after IV furosemide and oral hydration. PET/CT data were analyzed as PET and CT images studied separately as well as fused PET/CT images and the findings were recorded. The imaging findings were confirmed by cystoscopy, biopsy or follow-up PET/CT. Results: The technique was successful in achieving adequate washout of urinary FDG and overcame the problems posed by the excess FDG in the urinary tract. Hypermetabolic lesions could be easily detected by PET and precisely localized to the bladder wall, perivesical region and pelvic lymph nodes. PET/CT delayed images were able to demonstrate 16

  20. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    PubMed Central

    2011-01-01

    Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476

  1. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement.

    PubMed

    Yunus, Barunawaty

    2011-06-01

    This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.

  2. Agreement of Visual Estimation of Coronary Artery Calcium from Low-Dose CT Attenuation Correction Scans in Hybrid PET/CT and SPECT/CT with Standard Agatston Score

    PubMed Central

    Einstein, Andrew J.; Johnson, Lynne L.; Bokhari, Sabahat; Son, Jessica; Thompson, Randall C.; Bateman, Timothy M.; Hayes, Sean W.; Berman, Daniel S.

    2010-01-01

    Objectives We sought to evaluate the accuracy and reproducibility of visual estimation of coronary artery calcium (CAC) from CT attenuation correction (CTAC) scans performed for hybrid PET/CT and SPECT/CT myocardial perfusion imaging (MPI). Background At the time of MPI, hybrid systems obtain a low-dose, non-ECG-gated CT scan that is used to perform attenuation correction. Utility of this CTAC scan in estimating actual CAC as measured by Agatston score (AS) on standard ECG-gated scans has not been previously studied. Methods 492 patients from 3 centers receiving both MPI with CTAC and a standard CAC scan were studied. At each site, experienced readers blinded to AS reviewed CTAC images, visually estimating CAC on a six-level scale: classifying patients as estimated AS of 0, 1-9, 10-99, 100-300, 400-999, or ≥1000. Agreement between visually-estimated CAC (VECAC) on CTAC and AS, measured standardly and converted to the same scale, was evaluated, as was inter-reader agreement. Results Although CTAC images are low-dose and non-gated, a high degree of association was observed between VECAC and AS, with 63% of VECACs in the same category as the AS category and 93% within one category. Weighted kappa was 0.89 (95% confidence interval 0.88 to 0.91, p<0.0001). High weighted kappa statistics were observed for each site, scanner type, and gender. Readers reported identical scores in 65% of cases and scores within one category in 93%. Conclusions CAC can be visually assessed from low-dose CTAC scans with high agreement with AS. CTAC scans should be routinely assessed for VECAC. PMID:21109114

  3. Assessing the usefulness of 18F-fluorodeoxyglucose PET-CT scan after stereotactic body radiotherapy for early-stage non-small cell lung cancer.

    PubMed

    Pastis, Nicholas J; Greer, Travis J; Tanner, Nichole T; Wahlquist, Amy E; Gordon, Leonie L; Sharma, Anand K; Koch, Nicholas C; Silvestri, Gerard A

    2014-08-01

    Although stereotactic body radiation therapy (SBRT) is an established treatment option for early-stage lung cancer, there are no guidelines for reassessing patients for local treatment failure or intrathoracic recurrence after treatment. This study reports the sensitivity, specificity, and positive and negative predictive values for 18F-fluorodeoxyglucose (FDG) PET-CT scanning when used to evaluate patients after SBRT. Charts were reviewed of all patients who received SBRT and a subsequent FDG PET-CT scan at a university hospital over a 5-year period. Pretreatment and 3-month posttreatment tumor characteristics on PET-CT scan and outcome data (adverse events from SBRT, need for repeat biopsy, rate of local treatment failure and recurrent disease, and all-cause mortality) were recorded. Eighty-eight patients were included in the study. Fourteen percent of patients (12 of 88) had positive 3-month PET scans. Of the positive results, 67% (eight of 12) were true positives. Eighty-six percent (76 of 88 patients) had negative 3-month FDG PET-CT scans, with 89% (68 of 76) true negatives. FDG PET-CT scan performed 3 months after SBRT for non-small cell lung cancer (NSCLC) had a sensitivity of 50% (95% CI, 0.26-0.75), a specificity of 94% (95% CI, 0.89-1.0), a positive predictive value of 67% (95% CI, 0.4-0.93), and a negative predictive value of 89% (95% CI, 0.83- 0.96). FDG PET-CT scan 3 months after treatment of NSCLC with SBRT was a specific but insensitive test for the detection of recurrence or treatment failure. Serial CT scans should be used for early surveillance following SBRT, whereas FDG PET-CT scans should be reserved to define suspected metastatic disease or to evaluate new abnormalities on CT scan, or for possible reassessment later in the follow-up period after radiation-related inflammation subsides.

  4. Pilon fractures: A new classification system based on CT-scan.

    PubMed

    Leonetti, Danilo; Tigani, Domenico

    2017-10-01

    Actually, pilon fractures are classified according to AO and Ruedi Allgower classification systems based on X-rays. These classifications are less reproducible and do not provide necessary information for proper surgical planning. Aim of the study is to (1) propose a new classification system based on CT scan; (2) to check the prognostic value of this classification and (3) to evaluate its reliability and (4) reproducibility. We retrospectively reviewed 71 cases of pilon fracture. All fractures were classified according to AO, Ruedi Allgower and new proposed classification system by 5 surgeons. Clinical and radiographic evaluation were performed at a mean follow-up of 36 months. Cohen's K value was calculated in order to evaluate the interobserver and intraobserver agreement. Sixty-four of 71 fractures healed. Average AOFAS score was 91,7±7,8 in the Type I of new classification proposed, 87,7±7,8 in the Type II, 82±18,6 in type III, and 67,2±20,9 in type IV. Using the AO classification system the average K weighted value among the five reviewers was 0,51; using Ruedi Allgower classification it was 0,50 and using the new classification system it was 0,88 (p<0.0005). This study demonstrated that the new classification system is prognostic, reliable and reproducible. Moreover it provides a new treatment-oriented classification for this challenging fracture which affect the quality of life of the patients more than chronic diseases like diabetes and coronaropathy or pelvic fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of a pulmonary strain model by registration of dynamic CT scans

    NASA Astrophysics Data System (ADS)

    Pomeroy, Marc; Liang, Zhengrong; Brehm, Anthony

    2017-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease that develops in adults without any known cause. It is an interstitial lung disease in which the lung tissue becomes scarred and stiffens, ultimately leading to respiratory failure. This disease currently has no cure with limited treatment options, leading to an average survival time of 3-5 years after diagnosis. In this paper we employ a mathematical model simulating the lung parenchyma as hexagons with elastic forces applied to connecting vertices and opposing vertices. Using an image registration algorithm, we obtain trajectories of 4D-CT scans of a healthy patient, and one suffering from IPF. Converting the image trajectories into a hexagonal lattice, we fit the model parameters to match the respiratory motion seen for both patients across multiple image slices. We found the model could decently describe the healthy lung slices, with a minimum average error between corresponding vertices to be 1.66 mm. For the fibrotic lung slices the model was less accurate, maintaining a higher average error across all slices. Using the optimized parameters, we apply the forces predicted from the model using the image trajectory positions for each phase. Although the error is large, the spring constant values determined for the fibrotic patient were not as high as we expected, and more often than not determined to be lower than corresponding healthy lung slices. However, the net force distribution for some of those slices was still found to be greater than the healthy lung counterparts. Other modifications to the model, including additional directional components and which vertices were receiving with the limited sample size available, a clear distinction between the healthy and fibrotic lung cannot yet be made by this model.

  6. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  7. Assessment of the Impact of Zoledronic Acid on Ovariectomized Osteoporosis Model Using Micro-CT Scanning

    PubMed Central

    Shuai, Bo; Shen, Lin; Yang, Yanping; Ma, Chen; Zhu, Rui; Xu, Xiaojuan

    2015-01-01

    Purpose/Objective Prompted by preliminary findings, this study was conducted to investigate the impact of zoledronic acid on the cancellous bone microstructure and its effect on the level of β-catenin in a mouse model of postmenopausal osteoporosis. Methods and Materials 96 8-week-old specific-pathogen-free C57BL/6 mice were randomly divided into 4 groups (24 per group): a sham group, an ovariectomized osteoporosis model group, an estradiol-treated group, and a zoledronic acid-treated group. Five months after surgery, the third lumbar vertebra and left femur of the animals were dissected and scanned using micro-computed tomography (micro-CT) to acquire three-dimensional imagery of their cancellous bone microstructure. The impact of ovariectomy, the effect of estradiol, and the effect of zoledronic acid intervention on cancellous bone microstructure, as well as on the expression of β-catenin, were evaluated. Results The estradiol-treated and the zoledronic acid-treated group exhibited a significant increase in the bone volume fraction, trabecular number, trabecular thickness, bone surface to bone volume ratio (BS/BV), and β-catenin expression, when compared with those of the control group (P <0.01). In contrast, the structure model index, trabecular separation, and BS/BV were significantly lower compared with those of the model group (P <0.01). No differences were observed in the above parameters between animals of the zoledronic acid-treated and the estradiol-treated group. Conclusion These results suggest that increased β-catenin expression may be the mechanism underlying zoledronic acid-related improvement in the cancellous bone microstructure in ovariectomized mice. Our findings provide a scientific rationale for using zoledronic acid as a therapeutic intervention to prevent bone loss in post-menopausal women. PMID:26148020

  8. [Value of serial CT scanning and intracranial pressure monitoring for detecting new intracranial mass effect in severe head injury patients showing lesions type I-II in the initial CT scan].

    PubMed

    Lobato, R D; Alen, J F; Perez-Nuñez, A; Alday, R; Gómez, P A; Pascual, B; Lagares, A; Miranda, P; Arrese, I; Kaen, A

    2005-06-01

    To determine the incidence of pathological and intracranial pressure (ICP) changes during the acute posttraumatic period in severe head injury patients presenting with lesions Types I-II (TCDB classification) in the admission CT scan with the aim of defining the most appropriate strategy of sequential CT scanning and ICP monitoring for detecting new intra-cranial mass effect and improving the final outcome. 56 patients (ages 15-80 years) consecutively admitted during a 2 years period were included. All had the initial CT scan < 24 hours after injury (mean interval = 150 min), several CT controls within the first days of the course and ICP monitoring after admission. Different epidemiological, clinical and radiological variables were recorded and deterioration defined as the development of sustained ICP over 20 mmHg requiring aggressive medical and/or surgical treatment was considered the dependent variable. Uni and multivariate analyses were made for determining the correlation between different parameters and the occurrence of deterioration and the final outcome as assessed with the GOS. The mean GCS score was 5 and 37% of the patients showed pupillary changes; 52.3% had peritraumatic hypotension-hypoxemia, 16.1% anemia and 12.3% coagulation changes. 50% of the patients showed petechial hemorrhages in the white matter or the brainstem, 66% SAH, 40% HIV, 39.3% brain contusion and 21.4% small extraaxial hematomas. 57.1% of the patients showed CT changes through the acute post-traumatic period consisting of new contusion (26.8% of the cases), growing of previous contusion (68.2%) or previous extraaxial hematoma (10.7%), and generalized brain swelling (10.7%). 64.9% of the patients made a favourable and 35.7% an unfavourable outcome. Overall, 27 (48.9%) patients developed deterioration, 21 (37.5%) with concurrent CT changes and 6 (10.7%) without new pathology as seen by the CT control. The remaining 29 (51.7%) patients in this series did not develop deterioration in

  9. Automated detection and quantification of micronodules in thoracic CT scans to identify subjects at risk for silicosis

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; Opdam, S. H. T. T.; van Rikxoort, E. M.; Mets, O. M.; Rooyackers, J.; de Jong, P. A.; Prokop, M.; van Ginneken, B.

    2014-03-01

    Silica dust-exposed individuals are at high risk of developing silicosis, a fatal and incurable lung disease. The presence of disseminated micronodules on thoracic CT is the radiological hallmark of silicosis but locating micronodules, to identify subjects at risk, is tedious for human observers. We present a computer-aided detection scheme to automatically find micronodules and quantify micronodule load. The system used lung segmentation, template matching, and a supervised classification scheme. The system achieved a promising sensitivity of 84% at an average of 8.4 false positive marks per scan. In an independent data set of 54 CT scans in which we defined four risk categories, the CAD system automatically classified 83% of subjects correctly, and obtained a weighted kappa of 0.76.

  10. Study on accuracy and interobserver reliability of the assessment of odontoid fracture union using plain radiographs or CT scans

    PubMed Central

    Kolb, Klaus; Zenner, Juliane; Reynolds, Jeremy; Dvorak, Marcel; Acosta, Frank; Forstner, Rosemarie; Mayer, Michael; Tauber, Mark; Auffarth, Alexander; Kathrein, Anton; Hitzl, Wolfgang

    2009-01-01

    In odontoid fracture research, outcome can be evaluated based on validated questionnaires, based on functional outcome in terms of atlantoaxial and total neck rotation, and based on the treatment-related union rate. Data on clinical and functional outcome are still sparse. In contrast, there is abundant information on union rates, although, frequently the rates differ widely. Odontoid union is the most frequently assessed outcome parameter and therefore it is imperative to investigate the interobserver reliability of fusion assessment using radiographs compared to CT scans. Our objective was to identify the diagnostic accuracy of plain radiographs in detecting union and non-union after odontoid fractures and compare this to CT scans as the standard of reference. Complete sets of biplanar plain radiographs and CT scans of 21 patients treated for odontoid fractures were subjected to interobserver assessment of fusion. Image sets were presented to 18 international observers with a mean experience in fusion assessment of 10.7 years. Patients selected had complete radiographic follow-up at a mean of 63.3 ± 53 months. Mean age of the patients at follow-up was 68.2 years. We calculated interobserver agreement of the diagnostic assessment using radiographs compared to using CT scans, as well as the sensitivity and specificity of the radiographic assessment. Agreement on the fusion status using radiographs compared to CT scans ranged between 62 and 90% depending on the observer. Concerning the assessment of non-union and fusion, the mean specificity was 62% and mean sensitivity was 77%. Statistical analysis revealed an agreement of 80–100% in 48% of cases only, between the biplanar radiographs and the reconstructed CT scans. In 50% of patients assessed there was an agreement of less than 80%. The mean sensitivity and specificity values indicate that radiographs are not a reliable measure to indicate odontoid fracture union or non-union. Regarding experience in years

  11. Study on accuracy and interobserver reliability of the assessment of odontoid fracture union using plain radiographs or CT scans.

    PubMed

    Koller, Heiko; Kolb, Klaus; Zenner, Juliane; Reynolds, Jeremy; Dvorak, Marcel; Acosta, Frank; Forstner, Rosemarie; Mayer, Michael; Tauber, Mark; Auffarth, Alexander; Kathrein, Anton; Hitzl, Wolfgang

    2009-11-01

    In odontoid fracture research, outcome can be evaluated based on validated questionnaires, based on functional outcome in terms of atlantoaxial and total neck rotation, and based on the treatment-related union rate. Data on clinical and functional outcome are still sparse. In contrast, there is abundant information on union rates, although, frequently the rates differ widely. Odontoid union is the most frequently assessed outcome parameter and therefore it is imperative to investigate the interobserver reliability of fusion assessment using radiographs compared to CT scans. Our objective was to identify the diagnostic accuracy of plain radiographs in detecting union and nonunion after odontoid fractures and compare this to CT scans as the standard of reference. Complete sets of biplanar plain radiographs and CT scans of 21 patients treated for odontoid fractures were subjected to interobserver assessment of fusion. Image sets were presented to 18 international observers with a mean experience in fusion assessment of 10.7 years. Patients selected had complete radiographic follow-up at a mean of 63.3 +/- 53 months. Mean age of the patients at follow-up was 68.2 years. We calculated interobserver agreement of the diagnostic assessment using radiographs compared to using CT scans, as well as the sensitivity and specificity of the radiographic assessment. Agreement on the fusion status using radiographs compared to CT scans ranged between 62 and 90% depending on the observer. Concerning the assessment of non-union and fusion, the mean specificity was 62% and mean sensitivity was 77%. Statistical analysis revealed an agreement of 80-100% in 48% of cases only, between the biplanar radiographs and the reconstructed CT scans. In 50% of patients assessed there was an agreement of less than 80%. The mean sensitivity and specificity values indicate that radiographs are not a reliable measure to indicate odontoid fracture union or non-union. Regarding experience in years of all

  12. Top-level design and pilot analysis of low-end CT scanners based on linear scanning for developing countries.

    PubMed

    Liu, Fenglin; Yu, Hengyong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    The goal is to develop new architectures for computed tomography (CT) which are at an ultra-low-cost for developing countries, especially in rural areas. The proposed general scheme is inspired by the recently developed compressive sensing and interior tomography techniques, where the data acquisition system targets a region of interest (ROI) to acquire limited and truncated data. Similar to linear tomosynthesis, the source and detector are translated in opposite directions but in contrast to conventional tomosynthesis, our proposal is for either ROI reconstruction with one or more localized linear scans or global reconstruction by combining multiple ROI reconstructions. In other words, the popular slip ring is replaced by a translation based setup, and the instrumentation cost is reduced by a relaxation of the imaging speed requirement. The various translational scanning modes are theoretically analyzed, and the scanning parameters are optimized. The numerical simulation results from different numbers of linear scans confirm the feasibility of the proposed scheme, and suggest two preferred low-end systems for horizontal and vertical patient positions respectively. Ultra-low-cost x-ray CT is feasible with our proposed combination of linear scanning, compressive sensing, and interior tomography. The proposed architecture can be tailored into permanent, movable, or reconfigurable systems as desirable. Advanced image registration and spectral imaging features can be included as well.

  13. SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation

    SciTech Connect

    Liu, H; Liu, T; Xu, X; Wu, J; Zhuo, W

    2015-06-15

    Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, and the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)

  14. Measurements of Epidural Space Depth Using Preexisting CT Scans Correlate with Loss of Resistance Depth during Thoracic Epidural Catheter Placement

    PubMed Central

    Greene, Nathaniel H.; Cobb, Benjamin G.; Linnau, Ken F.; Kent, Christopher D.

    2015-01-01

    Background. Thoracic epidural catheters provide the best quality postoperative pain relief for major abdominal and thoracic surgical procedures, but placement is one of the most challenging procedures in the repertoire of an anesthesiologist. Most patients presenting for a procedure that would benefit from a thoracic epidural catheter have already had high resolution imaging that may be useful to assist placement of a catheter. Methods. This retrospective study used data from 168 patients to examine the association and predictive power of epidural-skin distance (ESD) on computed tomography (CT) to determine loss of resistance depth acquired during epidural placement. Additionally, the ability of anesthesiologists to measure this distance was compared to a radiologist, who specializes in spine imaging. Results. There was a strong association between CT measurement and loss of resistance depth (P < 0.0001); the presence of morbid obesity (BMI > 35) changed this relationship (P = 0.007). The ability of anesthesiologists to make CT measurements was similar to a gold standard radiologist (all individual ICCs > 0.9). Conclusions. Overall, this study supports the examination of a recent CT scan to aid in the placement of a thoracic epidural catheter. Making use of these scans may lead to faster epidural placements, fewer accidental dural punctures, and better epidural blockade. PMID:25628654

  15. Three-dimensional model of the skull and the cranial bones reconstructed from CT scans designed for rapid prototyping process.

    PubMed

    Skrzat, Janusz; Spulber, Alexandru; Walocha, Jerzy

    This paper presents the effects of building mesh models of the human skull and the cranial bones from a series of CT-scans. With the aid of computer so ware, 3D reconstructions of the whole skull and segmented cranial bones were performed and visualized by surface rendering techniques. The article briefly discusses clinical and educational applications of 3D cranial models created using stereolitographic reproduction.

  16. Intraosseous fat necrosis and metaphyseal osteonecrosis in a patient with chronic pancreatitis: MR imaging and CT scanning.

    PubMed

    L'Hirondel, J L; Fournier, L; Fretille, A; Denizet, D; Loyau, G

    1994-01-01

    Necrosis of fatty bone marrow is an unusual complication of several pancreatic disorders. We describe a patient with polyarthritis, sterile subcutaneous abscess and osteolysis arising during the course of alcoholic chronic pancreatitis. MR images of one knee showed multiple foci of abnormal signal intensity within the marrow of the distal femur and proximal tibia, consistent with intraosseous fat necrosis. CT scans showed significant changes in the cancellous bone in these areas compatible with metaphyseal osteonecrosis.

  17. Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other?

    PubMed

    Sangeux, Morgan; Mahy, Jessica; Graham, H Kerr

    2014-01-01

    Informed clinical decision making for femoral and/or tibial de-rotation osteotomies requires accurate measurement of patient function through gait analysis and anatomy through physical examination of bony torsions. Validity of gait analysis has been extensively studied; however, controversy remains regarding the accuracy of physical examination measurements of femoral and tibial torsion. Comparison between CT-scans and physical examination measurements of femoral neck anteversion (FNA) and external tibial torsion (ETT) were retrospectively obtained for 98 (FNA) and 64 (ETT) patients who attended a tertiary hospital for instrumented gait analysis between 2007 and 2010. The physical examination methods studied for femoral neck anteversion were the trochanteric prominence angle test (TPAT) and the maximum hip rotation arc midpoint (Arc midpoint) and for external tibial torsion the transmalleolar axis (TMA). Results showed that all physical examination measurements statistically differed to the CT-scans (bias(standard deviation): -2(14) for TPAT, -10(12) for Arc midpoint and -16(9) for TMA). Bland and Altman plots showed that method disagreements increased with increasing bony torsions in all cases but notably for TPAT. Regression analysis showed that only TMA and CT-scan measurement of external tibial torsion demonstrated good (R(2)=57%) correlation. Correlations for both TPAT (R(2)=14%) and Arc midpoint (R(2)=39%) with CT-scan measurements of FNA were limited. We conclude that physical examination should be considered as screening techniques rather than definitive measurement methods for FNA and ETT. Further research is required to develop more accurate measurement methods to accompany instrumented gait analysis.

  18. (18)F-Choline PET/CT scan in staging and biochemical recurrence in prostate cancer patients: Changes in classification and radiotherapy planning.

    PubMed

    Cardona Arboniés, J; Rodríguez Alfonso, B; Mucientes Rasilla, J; Martínez Ballesteros, C; Zapata Paz, I; Prieto Soriano, A; Carballido Rodriguez, J; Mitjavila Casanovas, M

    To evaluate the role of the (18)F-Choline PET/CT in prostate cancer management when detecting distant disease in planning radiotherapy and staging and to evaluate the therapy changes guided by PET/TC results. A retrospective evaluation was performed on (18)F-Choline PET/CT scans of patients with prostate cancer. Staging and planning radiotherapy scans were selected in patients with at least 9 months follow up. There was a total of 56 studies, 33 (58.93%) for staging, and 23 (41.07%) for planning radiotherapy. All scans were obtained using a hybrid PET/CT scanner. The PET/CT acquisition protocol consisted of a dual-phase procedure after the administration of an intravenous injection of 296-370MBq of (18)F-Choline. There were 43 out of 56 (76.8%) scans considered as positive, and 13 (23.2%) were negative. The TNM staging was changed in 13 (23.2%) scans. The PET/CT findings ruled out distant disease in 4 out of 13 scans, and unknown distant disease was detected in 9 (69.3%) scans. (18)F-Choline PET/CT is a useful technique for detecting unknown distant disease in prostate cancer when staging and planning radiotherapy. The inclusion of (18)F-choline PET/CT should be considered in prostate cancer management protocols. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  19. Dynamic CT Scan of the Normal Scapholunate Joint in a Clenched Fist and Radial and Ulnar Deviation.

    PubMed

    Kelly, Paul M; Hopkins, John G; Furey, Andrew J; Squire, Daniel S

    2017-08-01

    Injuries to the scapholunate can have severe long-term effects on the wrist. Early detection of these injuries can help identify pathology. The purpose of this study was to evaluate the motions of the scapholunate joint in normal wrists in a clenched fist and through radial and ulnar deviation using novel dynamic computed tomography (CT) imaging. Fifteen participants below 40 years of age consented to have their wrist scanned. Eight participants were randomized to have the right wrist scanned and 7 the left wrist. Volunteers were positioned at the back of the gantry with the wrist placed on the table, palmar side down. Participants began with the hand in a relaxed fist position and then proceeded through an established range of motion protocol. Dynamic CT imaging was captured throughout the range of motion. The movement in the healthy scapholunate joint through a clenched fist and radial and ulnar deviation is minimal. The averages were 1.19, 1.01, and 0.95 mm, representing the middle, dorsal, and volar measurements, respectively. This novel dynamic CT scan of the wrist is a user-friendly way of measuring of the scapholunate distance, which is minimal in the normal wrist below 40 years of age.

  20. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    NASA Astrophysics Data System (ADS)

    Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Marsac, L.; Tanter, M.; Fink, M.

    2009-05-01

    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  1. Evaluation of radiation dose of triple rule-out coronary angiography protocols with different scan length using 256-slice CT

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin

    2011-10-01

    Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.

  2. Interfractional Prostate Shifts: Review of 1870 Computed Tomography (CT) Scans Obtained During Image-Guided Radiotherapy Using CT-on-Rails for the Treatment of Prostate Cancer

    SciTech Connect

    Wong, James R. Gao Zhanrong; Uematsu, Minoru; Merrick, Scott; Machernis, Nolan P.; Chen, Timothy; Cheng, C.W.

    2008-12-01

    Purpose: To review 1870 CT scans of interfractional prostate shift obtained during image-guided radiotherapy. Methods and Materials: A total of 1870 pretreatment CT scans were acquired with CT-on-rails, and the corresponding shift data for 329 patients with prostate cancer were analyzed. Results: Of the 1870 scans reviewed, 44% required no setup adjustments in the anterior-posterior (AP) direction, 14% had shifts of 3-5 mm, 29% had shifts of 6-10 mm, and 13% had shifts of >10 mm. In the superior-inferior direction, 81% had no adjustments, 2% had shifts of 3-5 mm, 15% had shifts of 6-10 mm, and 2% had shifts of >10 mm. In the left-right direction, 65% had no adjustment, 13% had shifts of 3-5 mm, 17% had shifts of 6-10 mm, and 5% had shifts of >10 mm. Further analysis of the first 66 consecutive patients divided into three groups according to body mass index indicates that the shift in the AP direction for the overweight subgroup was statistically larger than those for the control and obese subgroups (p < 0.05). The interfractional shift in the lateral direction for the obese group (1 SD, 5.5 mm) was significantly larger than those for the overweight and control groups (4.1 and 2.9 mm, respectively) (p < 0.001). Conclusions: These data demonstrate that there is a significantly greater shift in the AP direction than in the lateral and superior-inferior directions for the entire patient group. Overweight and obese patient groups show a significant difference from the control group in terms of prostate shift.

  3. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    SciTech Connect

    Pu, Jiantao; Jin, Chenwang Yu, Nan; Qian, Yongqiang; Guo, Youmin; Wang, Xiaohua; Meng, Xin

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concave loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.

  4. Usefulness of ct scans and radiographs in the assessment of cervical spine injuries in polytrauma patients - own experience.

    PubMed

    Paszkowska, Emilia; Wasilewski, Grzegorz; Szalcunas-Olsztyn, Anna; Widawski, Tomasz; Stefanowicz, Elzbieta

    2010-01-01

    This paper evaluates the usefulness of spiral CT and conventional radiographs in the assessment of cervical spine injuries in polytrauma patients. The data are used as a basis for determining a precise and quick method for the assessment of the severity of cervical spine injuries that is also possibly least inconvenient for the patient.This approach is important due to the high risk of cervical spine injuries in patients with severe polytrauma and head injuries, as appropriate diagnostic work-up will help avoid unnecessary examinations and shorten time to diagnosis. The study population consisted of 46 polytrauma patients hospitalized at the Intensive Care Unit of the Regional Hospital in Olsztyn. The efficacy of the diagnosis of cervical spine injuries on the basis of conventional radiographs and spiral CT studies was compared. Conventional radiographs failed to cover the entire cervical spine in all patient, and the assessment of most radiographic images was either difficult or unclear. Spiral CT studies with reformations were able to provide complete image of injuries to bony structures in all patients. Spiral CT with reformations (MPR and VRT) should be the basic modality in the diagnosis of cervical spine fractures. An appropriate treatment method may be selected and mistakes in the interpretation of injuries may be avoided on the basis of CT studies. Its other advantages are the short time required to perform the scan and the possibility of supporting vital functions in polytrauma patients during the examination.

  5. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  6. Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation.

    PubMed

    Shekhar, Raj; Lei, Peng; Castro-Pareja, Carlos R; Plishker, William L; D'Souza, Warren D

    2007-07-01

    Conventional radiotherapy is planned using free-breathing computed tomography (CT), ignoring the motion and deformation of the anatomy from respiration. New breath-hold-synchronized, gated, and four-dimensional (4D) CT acquisition strategies are enabling radiotherapy planni