Sample records for encoded antigens recombinant

  1. Immunizing Patients With Metastatic Melanoma Using Recombinant Adenoviruses Encoding MART-1 or gp100 Melanoma Antigens

    PubMed Central

    Rosenberg, Steven A.; Zhai, Yifan; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Seipp, Claudia A.; Einhorn, Jan H.; Roberts, Bruce; White, Donald E.

    2008-01-01

    Background: The characterization of the genes encoding melanoma-associated antigens MART-1 or gp100, recognized by T cells, has opened new possibilities for the development of immunization strategies for patients with metastatic melanoma. With the use of recombinant adenoviruses expressing either MART-1 or gp100 to immunize patients with metastatic melanoma, we evaluated the safety, immunologic, and potential therapeutic aspects of these immunizations. Methods: In phase I studies, 54 patients received escalating doses (between 107 and 1011 plaque-forming units) of recombinant adenovirus encoding either MART-1 or gp100 melanoma antigen administered either alone or followed by the administration of interleukin 2 (IL-2). The immunologic impact of these immunizations on the development of cellular and antibody reactivity was assayed. Results: Recombinant adenoviruses expressing MART-1 or gp100 were safely administered. One of 16 patients with metastatic melanoma receiving the recombinant adenovirus MART-1 alone experienced a complete response. Other patients achieved objective responses, but they had received IL-2 along with an adenovirus, and their responses could be attributed to the cytokine. Immunologic assays showed no consistent immunization to the MART-1 or gp100 transgenes expressed by the recombinant adenoviruses. High levels of neutralizing antibody were found in the pretreatment sera of the patients. Conclusions: High doses of recombinant adenoviruses could be safely administered to cancer patients. High levels of neutralizing antibody present in patients' sera prior to treatment may have impaired the ability of these viruses to immunize patients against melanoma antigens. PMID:9862627

  2. Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria

    PubMed Central

    Cahoon, Laty A.; Seifert, H. Steven

    2011-01-01

    Summary Some pathogenic microbes utilize homologous recombination to generate antigenic variability in targets of immune surveillance. These specialized systems rely on the cellular recombination machinery to catalyze dedicated, high-frequency reactions that provide extensive diversity in the genes encoding surface antigens. A description of the specific mechanisms that allow unusually high rates of recombination without deleterious effects on the genome in the well characterized pilin antigenic variation systems of Neisseria gonorrhoeae and Neisseria meningitidis is presented. We will also draw parallels to selected bacterial and eukaryotic antigenic variation systems, and suggest the most pressing unanswered questions related to understanding these important processes. PMID:21812841

  3. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    PubMed Central

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  4. Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entrée to the identification of protective antigens.

    PubMed

    Blake, Damer P; Hesketh, Patricia; Archer, Andrew; Carroll, Fionnadh; Smith, Adrian L; Shirley, Martin W

    2004-11-01

    The genomes of protozoan parasites encode thousands of gene products and identification of the subset that stimulates a protective immune response is a daunting task. Most screens for vaccine candidates identify molecules by capacity to induce immune responses rather than protection. This paper describes the core findings of a strategy developed with the coccidial parasite Eimeria maxima to rationally identify loci within its genome that encode immunoprotective antigens. Our strategy uses a novel combination of parasite genetics, DNA fingerprinting, drug-resistance and strain-specific immunity and centres on two strains of E. maxima that each induce a lethal strain-specific protective immune response in the host and show a differential response to anti-Eimeria chemotherapy. Through classical mating studies with these strains we have demonstrated that loci encoding molecules stimulating strain-specific protective immunity or resistance to the anti-coccidial drug robenidine segregate independently. Furthermore, passage of populations of recombinant parasites in the face of killing in the immune host was accompanied by the elimination of some polymorphic DNA markers defining the parent strain used to immunise the host. Consideration of the numbers of parasites recombinant for the two traits implicates very few antigen-encoding loci. Our data provide a potential strategy to identify putative antigen-encoding loci in other parasites.

  5. Immunodiagnostic Value of Echinococcus Granulosus Recombinant B8/1 Subunit of Antigen B.

    PubMed

    Savardashtaki, Amir; Sarkari, Bahador; Arianfar, Farzane; Mostafavi-Pour, Zohreh

    2017-06-01

    Cystic echinococcosis (CE), as a chronic parasitic disease, is a major health problem in many countries. The performance of the currently available serodiagnostic tests for the diagnosis of CE is unsatisfactory. The current study aimed at sub-cloning a gene, encoding the B8/1 subunit of antigen B (AgB) from Echinococcus granulosus, using gene optimization for the immunodiagnosis of human CE. The coding sequence for AgB8/1 subunit of Echinococcus granulosus was selected from GenBank and was gene-optimized. The sequence was synthesized and inserted into pGEX-4T-1 vector. Purification was performed with GST tag affinity column. Diagnostic performance of the produced recombinant antigen, native antigen B and a commercial ELISA kit were further evaluated in an ELISA system, using a panel of sera from CE patients and controls. SDS-PAGE demonstrated that the protein of interest had a high expression level and purity after GST tag affinity purification. Western blotting verified the immunoreactivity of the produced recombinant antigen with the sera of CE patients. In an ELISA system, the sensitivity and specificity (for human CE diagnosis) of the recombinant antigen, native antigen B and commercial kit were respectively 93% and 92%, 87% and 90% and 97% and 95%. The produced recombinant antigen showed a high diagnostic value which can be recommended for serodiagnosis of CE in Iran and other CE-endemic areas. Utilizing the combination of other subunits of AgB8 would improve the performance value of the introduced ELISA system.

  6. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    PubMed

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  8. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  9. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  10. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    PubMed Central

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  11. Cloning and high level expression of gene encoding ES antigen from Trichinella spiralis muscle larvae.

    PubMed

    Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S

    1994-01-01

    The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.

  12. Development of Prototype Filovirus Recombinant Antigen Immunoassays

    PubMed Central

    Boisen, Matt L.; Oottamasathien, Darin; Jones, Abigail B.; Millett, Molly M.; Nelson, Diana S.; Bornholdt, Zachary A.; Fusco, Marnie L.; Abelson, Dafna M.; Oda, Shun-ichiro; Hartnett, Jessica N.; Rowland, Megan M.; Heinrich, Megan L.; Akdag, Marjan; Goba, Augustine; Momoh, Mambu; Fullah, Mohammed; Baimba, Francis; Gbakie, Michael; Safa, Sadiki; Fonnie, Richard; Kanneh, Lansana; Cross, Robert W.; Geisbert, Joan B.; Geisbert, Thomas W.; Kulakosky, Peter C.; Grant, Donald S.; Shaffer, Jeffery G.; Schieffelin, John S.; Wilson, Russell B.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.; Khan, S. Humarr; Pitts, Kelly R.

    2015-01-01

    Background. Throughout the 2014–2015 Ebola outbreak in West Africa, major gaps were exposed in the availability of validated rapid diagnostic platforms, protective vaccines, and effective therapeutic agents. These gaps potentiated the development of prototype rapid lateral flow immunodiagnostic (LFI) assays that are true point-of-contact platforms, for the detection of active Ebola infections in small blood samples. Methods. Recombinant Ebola and Marburg virus matrix VP40 and glycoprotein (GP) antigens were used to derive a panel of monoclonal and polyclonal antibodies. Antibodies were tested using a multivariate approach to identify antibody-antigen combinations suitable for enzyme-linked immunosorbent assay (ELISA) and LFI assay development. Results. Polyclonal antibodies generated in goats were superior reagents for capture and detection of recombinant VP40 in test sample matrices. These antibodies were optimized for use in antigen-capture ELISA and LFI assay platforms. Prototype immunoglobulin M (IgM)/immunoglobulin G (IgG) ELISAs were similarly developed that specifically detect Ebola virus–specific antibodies in the serum of experimentally infected nonhuman primates and in blood samples obtained from patients with Ebola from Sierra Leone. Conclusions. The prototype recombinant Ebola LFI assays developed in these studies have sensitivities that are useful for clinical diagnosis of acute ebolavirus infections. The antigen-capture and IgM/IgG ELISAs provide additional confirmatory assay platforms for detecting VP40 and other ebolavirus-specific immunoglobulins. PMID:26232440

  13. Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.

    PubMed

    Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E

    2004-10-01

    Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.

  14. [Vaccination of rhesus monkeys with recombinant antigen fragments and protection from hepatitis E virus infection].

    PubMed

    Ma, Yan-bing; Xie, Tian-hong; Zhang, Guang-ming; Li, Chun-hong; Dai, Xie-Jie; Dai, Chang-bai; Sun, Mao-sheng; Lu, Jian; Bi, Sheng-li

    2002-12-01

    To observe anti-HEV IgG response to vaccination of recombinant antigen fragments and evaluate its protection from Hepatitis E Virus infection in rhesus monkeys (Macaca mulatta). Twelve monkeys were divided into three groups and immunized respectively with three different recombinant antigens: namely Ag1 (carboxyl terminal 431 amino acids of ORF2), Ag2 (128aa fragment at the carboxyl terminal of ORF2), and Ag3 (full length ORF3 ligated with two ORF2 fragments encoded by 6743-7126nt and 6287-6404nt). The monkeys were challenged intravenously with fecal suspension from experimentally infected rhesus monkeys, and the other three monkeys served as the placebo group for challenge with HEV. The dynamic changes of the levels of ALT and anti-HEV IgG were examined. Pathological changes of liver tissue were observed by light microscope. Excretion of virus was detected by RT-nPCR. Hepatic histopathology of two monkeys in the placebo group was consistent with acute viral hepatitis, and ALT was elevated 3-4 weeks after inoculated with virus, up to 10-20 times higher than normal level. The liver tissue of monkeys immunized with antigen kept normal, ALT in several monkeys elevated mildly, and anti-HEV IgG conversation occurred at 1-2 weeks after vaccination, with the titer reaching 1:12,800. The virus RNA could be detected by RT-nPCR from days 7 to 50 in monkeys of control group, and from days 7 to 21 in vaccinated monkeys after challenged with virus. The recombinant antigens could induce the production of anti-HEV IgG, which protected rhesus monkeys from acute Hepatitis symptoms related to HEV infection.

  15. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    PubMed

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  16. Expression of the Bacillus anthracis protective antigen gene by baculovirus and vaccinia virus recombinants.

    PubMed Central

    Iacono-Connors, L C; Schmaljohn, C S; Dalrymple, J M

    1990-01-01

    The gene encoding Bacillus anthracis protective antigen (PA) was modified by site-directed mutagenesis, subcloned into baculovirus and vaccinia virus plasmid transfer vectors (pAcYM1 and pSC-11, respectively), and inserted via homologous recombinations into baculovirus Autographa californica nuclear polyhedrosis virus or vaccinia virus (strains WR and Connaught). Expression of PA was detected in both systems by immunofluorescence assays with antisera from rabbits immunized with B. anthracis PA. Western blot (immunoblot) analysis showed that the expressed product of both systems was slightly larger (86 kilodaltons) than B. anthracis-produced PA (83.5 kilodaltons). Analysis of trypsin digests of virus-expressed and authentic PA suggested that the size difference was due to the presence of a signal sequence remaining with the virus-expressed protein. Immunization of mice with either recombinant baculovirus-infected Spodoptera frugiperda cells or with vaccinia virus recombinants elicited a high-titer, anti-PA antibody response. Images PMID:2105271

  17. Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects

    PubMed Central

    Kubanov, Aleksey; Runina, Anastassia

    2017-01-01

    The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized. PMID:28523273

  18. [Prokaryotic expression, purification and antigenicity identification of recombinant human survivin protein].

    PubMed

    Yin, Xiaotao; Wang, Wei; Tian, Renli; Xu, Yuanji; Yan, Jinqi; Zhang, Wei; Gao, Jiangping; Yu, Jiyun

    2013-08-01

    To construct a prokaryotic expression plasmid pET28a-survivin, optimize the recombinant protein expression conditions in E.coli, and purify the survivin recombinant protein and identify its antigenicity. Survivin cDNA segment was amplified by PCR and cloned into prokaryotic expression vector pET28a(+) to construct the recombinant expression vector pET28a-survivin. The expression vector was transformed into BL21 (DE3) and the fusion protein survivin/His was induced by IPTG. The fusion protein was purified through Ni affinity chromatography. The antigenicity of the purified survivin protein was identified by Western blotting and ELISA. The recombinant expression vector was verified successfully by BamHI and HindIII. The fusion protein induced by IPTG was obtained with Mr; about 24 000. The purity of the purified protein reached 90% by SDS-PAGE analysis. And the antigenicity of the survivin protein was validated by Western blotting and ELISA. The prokaryotic expression plasmid pET28a-survivin was successfully constructed and the survivin protein was expressed and purified in E.coli. The antigenicity of the purified survivin protein was demonstrated desirable.

  19. Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidis.

    PubMed

    Andrews, T Daniel; Gojobori, Takashi

    2004-01-01

    The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.

  20. Anti-Tumor Activity of Cytotoxic T Lymphocytes Elicited with Recombinant and Synthetic Forms of a Model Tumor-Associated Antigen

    PubMed Central

    Wang, Michael; Chen, Pauline W.; Bronte, Vincenzo; Rosenberg, Steven A.; Restifo, Nicholas P.

    2008-01-01

    Summary The recent cloning of tumor-associated antigens (TAAs) recognized by CD8 + T lymphocytes (TCD8−) has made it possible to use recombinant and synthetic forms of TAAs to generate TCD8− with anti-tumor activity. To explore new therapeutic strategies in a mouse model, we retrovirally transduced the experimental murine tumor CT26 (H-2d), with the lacZ gene encoding our model TAA, (β-galactosidase (β-gal). The transduced cell line, CT26.CL25, grew as rapidly and as lethally as the parental cell line in normal, immuno-competent animals. In an attempt to elicit TCD8+ directed against our model TAA by using purely recombinant and synthetic forms of our model TAA, we synthesized a nine-amino-acid long immunodominant peptide of (β-gal (TPH-PARIGL), corresponding to amino acid residues 876–884, which was known to be presented by the Ld major histocompatibility complex (MHC) class I molecule, and a recombinant vaccinia virus encoding the full-length β-gal protein (VJS6). Splenocytes obtained from naïve mice and co-cultured with (β-gal peptide could not be expanded in primary ex vivo cultures. However, mice immunized with VJS6, but not with a control recombinant vaccinia virus, yielded splenocytes that were capable of specifically lysing CT26.CL25 in vitro after co-culture with (β-gal peptide. Most significantly, adoptive transfer of these cells could effectively treat mice bearing 3-day-old established pulmonary metastases. These observations show that therapeutic TCD8+ directed against a model TAA could be generated by using purely recombinant and synthetic forms of this antigen. These findings point the way to a potentially useful immunotherapeutic strategy, which has been made possible by the recent cloning of immunogenic TAAs that are expressed by human malignancies. PMID:8770769

  1. Serologic Diagnosis of Lyme Borreliosis by Using Enzyme-Linked Immunosorbent Assays with Recombinant Antigens

    PubMed Central

    Magnarelli, Louis A.; Ijdo, Jacob W.; Padula, Steven J.; Flavell, Richard A.; Fikrig, Erol

    2000-01-01

    Class-specific enzyme-linked immunosorbent assays (ELISAs) with purified recombinant antigens of Borrelia burgdorferi sensu stricto and Western blot analyses with whole cells of this spirochete were used to test human sera to determine which antigens were diagnostically important. In analyses for immunoglobulin M (IgM) antibodies, 14 (82%) of 17 serum samples from persons who had erythema migrans reacted positively by an ELISA with one or more recombinant antigens. There was frequent antibody reactivity to protein 41-G (p41-G), outer surface protein C (OspC), and OspF antigens. In an ELISA for IgG antibodies, 13 (87%) of 15 serum samples had antibodies to recombinant antigens; reactivity to p22, p39, p41-G, OspC, and OspF antigens was frequent. By both ELISAs, serum specimens positive for OspB, OspE, and p37 were uncommon. Analyses of sera obtained from persons who were suspected of having human granulocytic ehrlichiosis (HGE) but who lacked antibodies to ehrlichiae revealed IgM antibodies to all recombinant antigens of B. burgdorferi except OspB and IgG antibodies to all antigens except OspE. Immunoblotting of sera from the study group of individuals suspected of having HGE reaffirmed antibody reactivity to multiple antigens of B. burgdorferi. There was minor cross-reactivity when sera from healthy subjects or persons who had syphilis, oral infections, or rheumatoid arthritis were tested by ELISAs with p37, p41-G, OspB, OspC, OspE, and OspF antigens. Although the results of class-specific ELISAs with recombinant antigens were comparable to those recorded for assays with whole-cell antigen and for individuals with confirmed clinical diagnoses of Lyme borreliosis, immunoblotting is still advised as an adjunct procedure, particularly when there are low antibody titers by an ELISA. PMID:10790090

  2. A New MIC1-MAG1 Recombinant Chimeric Antigen Can Be Used Instead of the Toxoplasma gondii Lysate Antigen in Serodiagnosis of Human Toxoplasmosis

    PubMed Central

    Holec-Gąsior, Lucyna; Ferra, Bartłomiej; Drapała, Dorota; Lautenbach, Dariusz

    2012-01-01

    This study presents an evaluation of the MIC1 (microneme protein 1)-MAG1 (matrix antigen 1) Toxoplasma gondii recombinant chimeric antigen for the serodiagnosis of human toxoplasmosis for the first time. The recombinant MIC1-MAG1 antigen was obtained as a fusion protein containing His tags at the N- and C-terminal ends using an Escherichia coli expression system. After purification by metal affinity chromatography, the chimeric protein was tested for usefulness in an enzyme-linked immunosorbent assay (ELISA) for the detection of anti-T. gondii immunoglobulin G (IgG). One hundred ten sera from patients at different stages of infection and 40 sera from seronegative patients were examined. The results obtained for the MIC1-MAG1 chimeric antigen were compared with those of IgG ELISAs using a Toxoplasma lysate antigen (TLA), a combination of recombinant antigens (rMIC1ex2-rMAG1) and single recombinant proteins (rMIC1ex2 and rMAG1). The sensitivity of the IgG ELISA calculated from all of the positive serum samples was similar for the MIC1-MAG1 chimeric antigen (90.8%) and the TLA (91.8%), whereas the sensitivities of the other antigenic samples used were definitely lower, at 69.1% for the mixture of antigens, 75.5% for the rMIC1ex2, and 60% for rMAG1. This study demonstrates that the MIC1-MAG1 recombinant chimeric antigen can be used instead of the TLA in the serodiagnosis of human toxoplasmosis. PMID:22116686

  3. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line.

    PubMed

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.

  4. Whole-genome analysis of genetic recombination of hepatitis delta virus: molecular domain in delta antigen determining trans-activating efficiency.

    PubMed

    Chao, Mei; Lin, Chia-Chi; Lin, Feng-Ming; Li, Hsin-Pai; Iang, Shan-Bei

    2015-12-01

    Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.

  5. Generation of Recombinant Modified Vaccinia Virus Ankara Encoding VP2, NS1, and VP7 Proteins of Bluetongue Virus.

    PubMed

    Marín-López, Alejandro; Ortego, Javier

    2016-01-01

    Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental vaccine vector for its lack of replication in mammalian cells and high expression level of foreign/heterologous genes. Recombinant MVAs (rMVAs) are used as platforms for protein production as well as vectors to generate vaccines against a high number of infectious diseases and other pathologies. The portrait of the virus combines desirable elements such as high-level biological safety, the ability to activate appropriate innate immune mediators upon vaccination, and the capacity to deliver substantial amounts of heterologous antigens. Recombinant MVAs encoding proteins of bluetongue virus (BTV), an Orbivirus that infects domestic and wild ruminants transmitted by biting midges of the Culicoides species, are excellent vaccine candidates against this virus. In this chapter we describe the methods for the generation of rMVAs encoding VP2, NS1, and VP7 proteins of bluetongue virus as a model example for orbiviruses. The protocols included cover the cloning of VP2, NS1, and VP7 BTV-4 genes in a transfer plasmid, the construction of recombinant MVAs, the titration of virus working stocks and the protein expression analysis by immunofluorescence and radiolabeling of rMVA infected cells as well as virus purification.

  6. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum

    PubMed Central

    Artzy-Randrup, Yael; Rorick, Mary M; Day, Karen; Chen, Donald; Dobson, Andrew P; Pascual, Mercedes

    2012-01-01

    The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI: http://dx.doi.org/10.7554/eLife.00093.001 PMID:23251784

  7. Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis

    DTIC Science & Technology

    2011-09-01

    future predictive modeling toolkits. 1 1. Introduction The use of Bacillus anthracis as a bio - weapon in the United States in 2001 affirmed the need...for improved sensing and detection of biological weapons of mass destruction (WMD). Protective Antigen (PA) protein of Bacillus anthracis is the...Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis by Deborah A. Sarkes, Joshua M. Kogot, Irene Val-Addo

  8. Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever.

    PubMed

    Boisen, Matthew L; Hartnett, Jessica N; Shaffer, Jeffrey G; Goba, Augustine; Momoh, Mambu; Sandi, John Demby; Fullah, Mohamed; Nelson, Diana K S; Bush, Duane J; Rowland, Megan M; Heinrich, Megan L; Koval, Anatoliy P; Cross, Robert W; Barnes, Kayla G; Lachenauer, Anna E; Lin, Aaron E; Nekoui, Mahan; Kotliar, Dylan; Winnicki, Sarah M; Siddle, Katherine J; Gbakie, Michael; Fonnie, Mbalu; Koroma, Veronica J; Kanneh, Lansana; Kulakosky, Peter C; Hastie, Kathryn M; Wilson, Russell B; Andersen, Kristian G; Folarin, Onikepe O; Happi, Christian T; Sabeti, Pardis C; Geisbert, Thomas W; Saphire, Erica Ollmann; Khan, S Humarr; Grant, Donald S; Schieffelin, John S; Branco, Luis M; Garry, Robert F

    2018-04-12

    Lassa fever, a hemorrhagic fever caused by Lassa virus (LASV), is endemic in West Africa. It is difficult to distinguish febrile illnesses that are common in West Africa from Lassa fever based solely on a patient's clinical presentation. The field performance of recombinant antigen-based Lassa fever immunoassays was compared to that of quantitative polymerase chain assays (qPCRs) using samples from subjects meeting the case definition of Lassa fever presenting to Kenema Government Hospital in Sierra Leone. The recombinant Lassa virus (ReLASV) enzyme-linked immunosorbant assay (ELISA) for detection of viral antigen in blood performed with 95% sensitivity and 97% specificity using a diagnostic standard that combined results of the immunoassays and qPCR. The ReLASV rapid diagnostic test (RDT), a lateral flow immunoassay based on paired monoclonal antibodies to the Josiah strain of LASV (lineage IV), performed with 90% sensitivity and 100% specificity. ReLASV immunoassays performed better than the most robust qPCR currently available, which had 82% sensitivity and 95% specificity. The performance characteristics of recombinant antigen-based Lassa virus immunoassays indicate that they can aid in the diagnosis of LASV Infection and inform the clinical management of Lassa fever patients.

  9. Antigen-capture blocking enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen to differentiate Transmissible gastroenteritis virus from Porcine respiratory coronavirus antibodies.

    PubMed

    López, Lissett; Venteo, Angel; García, Marga; Camuñas, Ana; Ranz, Ana; García, Julia; Sarraseca, Javier; Anaya, Carmen; Rueda, Paloma

    2009-09-01

    A new commercially available antigen-capture, blocking enzyme-linked immunosorbent assay (antigen-capture b-ELISA), based on baculovirus truncated-S recombinant protein of Transmissible gastroenteritis virus (TGEV) and 3 specific monoclonal antibodies, was developed and evaluated by examining a panel of 453 positive Porcine respiratory coronavirus (PRCoV), 31 positive TGEV, and 126 negative field sera by using another commercially available differential coronavirus b-ELISA as the reference technique to differentiate TGEV- from PRCoV-induced antibodies. The recombinant S protein-based ELISA appeared to be 100% sensitive for TGEV and PRCoV detection and highly specific for TGEV and PRCoV detection (100% and 92.06%, respectively), when qualitative results (positive or negative) were compared with those of the reference technique. In variability experiments, the ELISA gave consistent results when the same serum was evaluated on different wells and different plates. These results indicated that truncated recombinant S protein is a suitable alternative to the complete virus as antigen in ELISA assays. The use of recombinant S protein as antigen offers great advantages because it is an easy-to-produce, easy-to-standardize, noninfectious antigen that does not require further purification or concentration. Those advantages represent an important improvement for antigen preparation, in comparison with other assays in which an inactivated virus from mammalian cell cultures is used.

  10. Application of recombinant antigen 5 allergens from seven allergy-relevant Hymenoptera species in diagnostics.

    PubMed

    Schiener, M; Eberlein, B; Moreno-Aguilar, C; Pietsch, G; Serrano, P; McIntyre, M; Schwarze, L; Russkamp, D; Biedermann, T; Spillner, E; Darsow, U; Ollert, M; Schmidt-Weber, C B; Blank, S

    2017-01-01

    Hymenoptera stings can cause severe anaphylaxis in untreated venom-allergic patients. A correct diagnosis regarding the relevant species for immunotherapy is often hampered by clinically irrelevant cross-reactivity. In vespid venom allergy, cross-reactivity between venoms of different species can be a diagnostic challenge. To address immunological IgE cross-reactivity on molecular level, seven recombinant antigens 5 of the most important Vespoidea groups were assessed by different diagnostic setups. The antigens 5 of yellow jackets, hornets, European and American paper wasps, fire ants, white-faced hornets, and Polybia wasps were recombinantly produced in insect cells, immunologically and structurally characterized, and their sIgE reactivity assessed by ImmunoCAP, ELISA, cross-inhibition, and basophil activation test (BAT) in patients with yellow jacket or Polistes venom allergy of two European geographical areas. All recombinant allergens were correctly folded and structural models and patient reactivity profiles suggested the presence of conserved and unique B-cell epitopes. All antigens 5 showed extensive cross-reactivity in sIgE analyses, inhibition assays, and BAT. This cross-reactivity was more pronounced in ImmunoCAP measurements with venom extracts than in sIgE analyses with recombinant antigens 5. Dose-response curves with the allergens in BAT allowed a differentiated individual dissection of relevant sensitization. Due to extensive cross-reactivity in various diagnostic settings, antigens 5 are inappropriate markers for differential sIgE diagnostics in vespid venom allergy. However, the newly available antigens 5 from further vespid species and the combination of recombinant allergen-based sIgE measurements with BAT represents a practicable way to diagnose clinically relevant sensitization in vespid venom allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. [Recombinant OspC identification and antigenicity detection from Borrelia burgdorferi PD91 in China].

    PubMed

    Chen, Jian; Wan, Kang-Lin

    2003-10-01

    To recombine OspC gene from Borrelia burgdorferi PD91 of China and expressed it in E. coli for early diagnosis of Lyme disease. The OspC gene was amplified from the genome of Borrelia burgdorferi PD91 strain by polymerase chain reaction and recombined with plasmid PET-11D. The recombinant plasmid PET-11D-OspC was identified with PCR, restriction endonuclease analysis and sequencing. The antigenicity was verified with Western Blot. OspC gene was cloned correctly into vector PET-11D. The resultant sequence was definitely different from the published sequence. The recombinant OspC seemed to have had strong antigenicity. The findings laid basis for the studies on early diagnosis of Lyme disease.

  12. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  13. [The lysate and recombinant antigens in ELISA-test-systems for diagnostic of herpes simplex].

    PubMed

    Ganova, L A; Kovtoniuk, G V; Korshun, L N; Kiseleva, E K; Tereshchenko, M I; Vudmaska, M I; Moĭsa, L N; Shevchuk, V A; Spivak, N Ia

    2014-08-01

    The lysate and recombinant antigens of various production included informula of ELISA-test-systems were analyzed. The ELISA-test-systems are used for detection of IgG to Herpes simplex virus type I and II. For testing the panel of serums PTH 201 (BBI Inc.) were used. The samples of this panel contain antibodies to Herpes simplex virus type I and II in mixed titers. The 69 serums of donors were used too (17 samples had IgG to Herpes simplex virus type I, 23 samples to Herpes simplex virus type II and 29 samples had no antibodies to Herpes simplex virus). The diagnostic capacity of mixture of recombinant antigens gG1 Herpes simplex virus type I and gG2 Herpes simplex virus type II (The research-and-production complex "DiaprofMed") was comparable with mixture of lysate antigen Herpes simplex virus type I and II (Membrane) EIE Antigen ("Virion Ltd."). In the test-systems for differentiation of IgG to Herpes simplex virus type I the recombinant antigen gG1 Herpes simplex virus type I proved to be comparable with commercial analogue Herpes simplex virus-1 gG1M ("Viral Therapeutics Inc."'). At the same time, capacity to detect IgG to Herpes simplex virus type II in recombinant protein gG2 Herpes simplex virus type II is significantly higher than in its analogue Herpes simplex virus-2 gG2c ("Viral Therapeutics Inc.").

  14. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus.

    PubMed

    Khan, Mohsin; Dhanwani, Rekha; Kumar, Jyoti S; Rao, P V Lakshmana; Parida, Manmohan

    2014-07-01

    Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous. © 2013 Wiley Periodicals, Inc.

  15. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis

    PubMed Central

    Obuchowski, Michał; Nidzworski, Dawid

    2016-01-01

    Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e) features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human—avian—swine—human M2e (M2eH-A-S-H) peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system. PMID:27902762

  16. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    PubMed

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the

  17. Characterising the KMP-11 and HSP-70 recombinant antigens' humoral immune response profile in chagasic patients.

    PubMed

    Flechas, Ivonne D; Cuellar, Adriana; Cucunubá, Zulma M; Rosas, Fernando; Velasco, Víctor; Steindel, Mario; Thomas, María del Carmen; López, Manuel Carlos; González, John Mario; Puerta, Concepción Judith

    2009-11-25

    Antigen specificity and IgG subclass could be significant in the natural history of Chagas' disease. The relationship between the different stages of human Chagas' disease and the profiles of total IgG and its subclasses were thus analysed here; they were directed against a crude T. cruzi extract and three recombinant antigens: the T. cruzi kinetoplastid membrane protein-11 (rKMP-11), an internal fragment of the T. cruzi HSP-70 protein 192-433, and the entire Trypanosoma rangeli HSP-70 protein. Seventeen Brazilian acute chagasic patients, 50 Colombian chronic chagasic patients (21 indeterminate and 29 cardiopathic patients) and 30 healthy individuals were included. Total IgG and its subtypes directed against the above-mentioned recombinant antigens were determined by ELISA tests. The T. cruzi KMP-11 and T. rangeli HSP-70 recombinant proteins were able to distinguish both acute from chronic chagasic patients and infected people from healthy individuals. Specific antibodies to T. cruzi crude antigen in acute patients came from IgG3 and IgG4 subclasses whereas IgG1 and IgG3 were the prevalent isotypes in indeterminate and chronic chagasic patients. By contrast, the specific prominent antibodies in all disease stages against T. cruzi KMP-11 and T. rangeli HSP-70 recombinant antigens were the IgG1 subclass. T. cruzi KMP-11 and the T. rangeli HSP-70 recombinant proteins may be explored together in the immunodiagnosis of Chagas' disease. Polarising the IgG1 subclass of the IgG response to T. cruzi KMP-11 and T. rangeli HSP-70 recombinant proteins could have important biological effects, taking into account that this is a complement fixing antibody.

  18. Development of ELISA using recombinant antigens for specific detection of mouse parvovirus infection.

    PubMed

    Kunita, Satoshi; Chaya, Miyuki; Hagiwara, Kozue; Ishida, Tomoko; Takakura, Akira; Sugimoto, Tatsuya; Iseki, Hiroyoshi; Fuke, Kumiko; Sugiyama, Fumihiro; Yagami, Ken-ichi

    2006-04-01

    Nucleotide sequences of mouse parvovirus (MPV) isolate, named MPV/UT, and mouse minute virus (MMV) were analyzed and used for expressing recombinant proteins in E. coli. ELISA tests using recombinant major capsid protein (rVP2) and recombinant major non-structural protein (rNS1) as antigens were developed and their performance in serologic detection of rodent parvovirus infection was assessed. MPV-rVP2 and MMV-rVP2 ELISAs reacted specifically with anti-MPV and anti-MMV mouse sera, respectively. MMV-rNS1 antigen had a wide reaction range with antisera to rodent parvoviruses including MPV, MMV, Kilham rat virus (KRV) and H-1 virus. All mice oronasally infected with MPV were seropositive at 4 weeks post-infection in screening by ELISAs using MPV-rVP2 and MMV-rNS1 antigens, but were negative by conventional ELISA using whole MMV antigen. A contact transmission experiment revealed that transmission of MPV occurred up to 4 weeks post-infection, and all cage mates were seropositive in screening with MPV-rVP2 and MMV-rNS1 ELISAs. These results indicate that MPV-rVP2 and MMV-rVP2 are specific ELISA antigens which distinguish between MPV and MVM infection, while MMV-rNS1 antigen can be used in generic ELISA for a variety of rodent parvoviruses. The higher sensitivity of MPV-rVP2 ELISA than conventional ELISA for detecting seroconversion to MPV in oronasally infected mice as well as in cage mates suggests the usefulness of MPV-rVP2 ELISA in quarantine and microbiological monitoring of MPV infection in laboratory mice.

  19. RECOMBINATION OF ANTIBODY POLYPEPTIDE CHAINS IN THE PRESENCE OF ANTIGEN

    PubMed Central

    Metzger, Henry; Mannik, Mart

    1964-01-01

    Conditions were developed by which the separated H and L chains of gamma2 globulins recombined to form four-chained molecules in good yields. In the absence of antigen, anti-2,4-dinitrophenyl (anti-DNP) H chains randomly reassociated with a mixture of antibody and non-specific gamma2 globulin L chains. In the presence of a specific hapten, however, the antibody H chains preferentially interacted with the anti-DNP L chains. Antibody H chain-antibody L chain recombinants formed in the presence of hapten were more active than the corresponding recombinants formed in the absence of hapten. Speculations are made regarding the possible mechanisms and biological significance of these effects. PMID:14247718

  20. Toxoplasma gondii Recombinant Antigens as Tools for Serodiagnosis of Human Toxoplasmosis: Current Status of Studies

    PubMed Central

    2013-01-01

    Toxoplasma gondii is a parasitic protozoan which is the cause of toxoplasmosis. Although human toxoplasmosis in healthy adults is usually asymptomatic, serious disease can occur in the case of congenital infections and immunocompromised individuals. Furthermore, despite the exact recognition of its etiology, it still presents a diagnostic problem. Diagnosis of toxoplasmosis is mainly based on the results of serological tests detecting anti-T. gondii-specific antibodies in the patient's serum sample. The specificities and sensitivities of serology tests depend mostly on the diagnostic antigen(s) used. Most of the commercial serological kits currently available are based on Toxoplasma lysate antigens (TLAs). In recent years, many studies showed that recombinant antigenic proteins of T. gondii may be an alternative source of antigens which are very useful for the serodiagnosis of toxoplasmosis. This article presents a review of current studies on the application and usefulness of different T. gondii recombinant antigens in serological tests for the diagnosis of human toxoplasmosis. PMID:23784855

  1. Recombinant antigens expressed in Pichia pastoris for the diagnosis of sleeping sickness caused by Trypanosoma brucei gambiense.

    PubMed

    Rogé, Stijn; Van Nieuwenhove, Liesbeth; Meul, Magali; Heykers, Annick; Brouwer de Koning, Annette; Bebronne, Nicolas; Guisez, Yves; Büscher, Philippe

    2014-07-01

    Screening tests for gambiense sleeping sickness, such as the CATT/T. b. gambiense and a recently developed lateral flow tests, are hitherto based on native variant surface glycoproteins (VSGs), namely LiTat 1.3 and LiTat 1.5, purified from highly virulent trypanosome strains grown in rodents. We have expressed SUMO (small ubiquitin-like modifier) fusion proteins of the immunogenic N-terminal part of these antigens in the yeast Pichia pastoris. The secreted recombinant proteins were affinity purified with yields up to 10 mg per liter cell culture. The diagnostic potential of each separate antigen and a mixture of both antigens was confirmed in ELISA on sera from 88 HAT patients and 74 endemic non-HAT controls. Replacement of native antigens in the screening tests for sleeping sickness by recombinant proteins will eliminate both the infection risk for the laboratory staff during antigen production and the need for laboratory animals. Upscaling production of recombinant antigens, e.g. in biofermentors, is straightforward thus leading to improved standardisation of antigen production and reduced production costs, which on their turn will increase the availability and affordability of the diagnostic tests needed for the elimination of gambiense HAT.

  2. Sero-detection of Toxocara canis infection in human with T.canis recombinant arginine kinase, cathepsin L-1 and TES-26 antigens.

    PubMed

    Varghese, Anju; Raina, Opinder K; Chandra, Dinesh; Mirdha, Bijay R; Kelawala, Naresh H; Solanki, Jayesh B; Kumar, Niranjan; Ravindran, Reghu; Arun, Anandanarayanan; Rialch, Ajayta; Lalrinkima, Hniang; Kelawala, Rohan N; Samanta, Subhamoy

    2017-12-20

    Three recombinant antigens viz. arginine kinase, cathepsin L-1 and TES-26 of Toxocara canis were expressed in Escherichia coli and evaluated for their potential in the detection of T. canis larval infection in human in immunoglobulin G-enzyme linked immunosorbent assay (IgG-ELISA). Results of the IgG-ELISA with the above recombinant antigens were confirmed with commercially available IgG detection kit for T. canis infection used as a standard test. All three recombinant antigens were 100% sensitive in the detection of positive cases (n = 6) of T. canis infection in human and were screened for their cross-reactivity in human patients with history of Toxoplasma gondii, Plasmodium vivax, Entamoeba histolytica, hydatid and hookworm infections. The recombinant TES-26 antigen showed higher specificity and cross-reacted with T. gondii infection sera only. However, arginine kinase and cathepsin L-1 recombinant antigens showed cross-reactions with sera of patients infected with T. gondii, P. vivax and E. histolytica but not with the patient sera infected with hydatid and hookworm. These results show that recombinant TES-26 is a potential diagnostic candidate antigen for human toxocarosis caused by migrating T. canis larvae.

  3. Expression, purification, immunogenicity, and protective efficacy of a recombinant Tc24 antigen as a vaccine against Trypanosoma cruzi infection in mice.

    PubMed

    Martinez-Campos, Viridiana; Martinez-Vega, Pedro; Ramirez-Sierra, Maria Jesus; Rosado-Vallado, Miguel; Seid, Christopher A; Hudspeth, Elissa M; Wei, Junfei; Liu, Zhuyun; Kwityn, Cliff; Hammond, Molly; Ortega-López, Jaime; Zhan, Bin; Hotez, Peter J; Bottazzi, Maria Elena; Dumonteil, Eric

    2015-08-26

    The Tc24 calcium binding protein from the flagellar pocket of Trypanosoma cruzi is under evaluation as a candidate vaccine antigen against Chagas disease. Previously, a DNA vaccine encoding Tc24 was shown to be an effective vaccine (both as a preventive and therapeutic intervention) in mice and dogs, as evidenced by reductions in T. cruzi parasitemia and cardiac amastigotes, as well as reduced cardiac inflammation and increased host survival. Here we developed a suitable platform for the large scale production of recombinant Tc24 (rTc24) and show that when rTc24 is combined with a monophosphoryl-lipid A (MPLA) adjuvant, the formulated vaccine induces a Th1-biased immune response in mice, comprised of elevated IgG2a antibody levels and interferon-gamma levels from splenocytes, compared to controls. These immune responses also resulted in statistically significant decreased T. cruzi parasitemia and cardiac amastigotes, as well as increased survival following T. cruzi challenge infections, compared to controls. Partial protective efficacy was shown regardless of whether the antigen was expressed in Escherichia coli or in yeast (Pichia pastoris). While mouse vaccinations will require further modifications in order to optimize protective efficacy, such studies provide a basis for further evaluations of vaccines comprised of rTc24, together with alternative adjuvants and additional recombinant antigens. Copyright © 2015. Published by Elsevier Ltd.

  4. Antigen I/II encoded by integrative and conjugative elements of Streptococcus agalactiae and role in biofilm formation.

    PubMed

    Chuzeville, Sarah; Dramsi, Shaynoor; Madec, Jean-Yves; Haenni, Marisa; Payot, Sophie

    2015-11-01

    Streptococcus agalactiae (i.e. Group B streptococcus, GBS) is a major human and animal pathogen. Genes encoding putative surface proteins and in particular an antigen I/II have been identified on Integrative and Conjugative Elements (ICEs) found in GBS. Antigens I/II are multimodal adhesins promoting colonization of the oral cavity by streptococci such as Streptococcus gordonii and Streptococcus mutans. The prevalence and diversity of antigens I/II in GBS were studied by a bioinformatic analysis. It revealed that antigens I/II, which are acquired by horizontal transfer via ICEs, exhibit diversity and are widespread in GBS, in particular in the serotype Ia/ST23 invasive strains. This study aimed at characterizing the impact on GBS biology of proteins encoded by a previously characterized ICE of S. agalactiae (ICE_515_tRNA(Lys)). The production and surface exposition of the antigen I/II encoded by this ICE was examined using RT-PCR and immunoblotting experiments. Surface proteins of ICE_515_tRNA(Lys) were found to contribute to GBS biofilm formation and to fibrinogen binding. Contribution of antigen I/II encoded by SAL_2056 to biofilm formation was also demonstrated. These results highlight the potential for ICEs to spread microbial adhesins between species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A set of recombinant antigens from Echinococcus granulosus with potential for use in the immunodiagnosis of human cystic hydatid disease

    PubMed Central

    VIRGINIO, V G; HERNÁNDEZ, A; ROTT, M B; MONTEIRO, K M; ZANDONAI, A F; NIETO, A; ZAHA, A; FERREIRA, H B

    2003-01-01

    Several recombinant clones expressing antigens from Echinococcus granulosus were isolated previously from a parasite cDNA library using cystic hydatid disease (CHD) patients’ sera or rabbit hyperimmune antiserum against a lipoproteic fraction from bovine cyst fluid. Six of these antigens were expressed in Escherichia coli and the purified recombinant proteins were tested in enzyme-linked immunosorbent assay (ELISA) for specific IgG with a panel of sera from patients with surgically confirmed (n = 58) or immunologically diagnosed (n = 71) CHD. Sera from clinically normal individuals (n = 203) and sera from individuals with other helminthic infections (n = 65) were assayed for the assessment of specificity. A cut-off value was determined by receiver-operating-characteristic plots for each antigen. A recombinant antigen B subunit (AgB8/2) presented the highest sensitivity (93·1%), considering the group of sera from patients with CHD surgically confirmed, and specificity (99·5%) and is proposed as the basis for an immunodiagnostic test. The other recombinant antigens tested presented sensitivities between 58·6% and 89·7%, and three of them were considered of complementary value. In subclass-specific ELISA, different IgG isotypes showed dominance in the response for each of the recombinant antigens. There was a clear predominance of IgG4 response for all antigens tested, indicating that this would be the subclass of choice to be assessed for these recombinant proteins. PMID:12699422

  6. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    PubMed

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine.

    PubMed

    Keitel, Wendy A

    2006-08-01

    Recent terrorist attacks involving the use of Bacillus anthracis spores have stimulated interest in the development of new vaccines for anthrax prevention. Studies of the pathogenesis of anthrax and of the immune responses following infection and immunization underscore the pivotal role that antibodies to the protective antigen play in protection. The most promising vaccine candidates contain purified recombinant protective antigen. Clinical trials of one of these, recombinant protective antigen (rPA)102, are underway. Initial results suggest that rPA102 is well tolerated and immunogenic. Additional trials are necessary to identify optimal formulations and immunization regimens for pre- and postexposure prophylaxis. Future licensure of these and other candidate vaccines will depend on their safety and immunogenicity profiles in humans, and their ability to confer protection in animal models of inhalational anthrax.

  8. Evaluation of whole blood IFNgamma test using PPD and recombinant antigen challenge for diagnosis of pulmonary and extra-pulmonary tuberculosis.

    PubMed

    Kalantri, Yatiraj; Hemvani, Nanda; Chitnis, D S

    2009-06-01

    Quantiferon TB gold (QFT-G) with recombinant antigen cocktail is well evaluated for diagnosis of pulmonary tuberculosis (PTB). However, diagnosis of extra-pulmonary tuberculosis (EPTB) is more difficult due to limitations of conventional techniques. This study compares recombinant antigens based QFT-G and low cost PPD based interferon test for the diagnosis of PTB and EPTB. IFNgamma release, with recombinant antigens and PPD, was assayed by ELISA from 140 cases of EPTB, 100 cases of PTB along with acid fast bacillus (AFB) detection, AFB culture on LJ and MGIT BACTEC. Sensitivity and specificity for QFT-G recombinant antigens was 84.29% and 96%, while for PPD based interferon was 70% and 84% for EPTB group. The sensitivity was far superior to AFB smear and culture for both the antigens. Nine samples were identified as non-tubercular mycobacteria (NTM) in the EPTB group and all were negative for QFT-G, but six of them were positive for PPD based test. Results of the study show that QFT-G using recombinant antigen is sensitive and specific for both PTB and EPTB diagnosis. The PPD based test is economic and offers comparable performance for PTB and EPTB diagnosis and also useful for diagnosis of NTM.

  9. Active Immunotherapy of Cancer with a Nonreplicating Recombinant Fowlpox Virus Encoding a Model Tumor-Associated Antigen

    PubMed Central

    Wang, Michael; Bronte, Vincenzo; Chen, Pauline W.; Gritz, Linda; Panicali, Dennis; Rosenberg, Steven A.; Restifo, Nicholas P.

    2007-01-01

    Some tumor cells express Ags that are potentially recognizable by T lymphocytes and yet do not elicit significant immune responses. To explore new immunotherapeutic strategies aimed at enhancing the recognition of these tumor-associated Ags (TAA), we developed an experimental mouse model consisting of a lethal clone of the BALB/c tumor line CT26 designated CT26.WT, which was transduced with the lacZ gene encoding β-galactosidase, to create CT26.CL25. The growth rate and lethality of CT26.CL25 and CT26.WT were virtually identical despite the expression by CT26.CL25 of the model tumor Ag in vivo. A recombinant fowlpox virus (rFPV), which is replication incompetent in mammalian cells, was constructed that expressed the model TAA, β-galactosidase, under the influence of the 40-kDa vaccinia virus early/late promoter. This recombinant, FPV.bg40k, functioned effectively in vivo as an immunogen, eliciting CD8+ T cells that could effectively lyse CT26.CL25 in vitro. FPV.bg40k protected mice from both subcutaneous and intravenous tumor challenge by CT26.CL25, and most surprisingly, mice bearing established 3-day pulmonary metastasis were found to have significant, Ag-specific decreases in tumor burden and prolonged survival after treatment with the rFPV. These observations constitute the first reported use of rFPV in the prevention and treatment of an experimental cancer and suggest that changing the context in which the immune system encounters a TAA can significantly and therapeutically alter the host immune response against cancer. PMID:7722321

  10. Use of recombinant purified protein derivative (PPD) antigens as specific skin test for tuberculosis.

    PubMed

    Stavri, Henriette; Bucurenci, Nadia; Ulea, Irina; Costache, Adriana; Popa, Loredana; Popa, Mircea Ioan

    2012-11-01

    Purified protein derivative (PPD) is currently the only available skin test reagent used worldwide for the diagnosis of tuberculosis (TB). The aim of this study was to develop a Mycobacterium tuberculosis specific skin test reagent, without false positive results due to Bacillus Calmette-Guerin (BCG) vaccination using recombinant antigens. Proteins in PPD IC-65 were analyzed by tandem mass spectrometry and compared to proteins in M. tuberculosis culture filtrate; 54 proteins were found in common. Top candidates MPT64, ESAT 6, and CFP 10 were overexpressed in Escherichia coli expression strains and purified as recombinant proteins. To formulate optimal immunodiagnostic PPD cocktails, the antigens were evaluated by skin testing guinea pigs sensitized with M. tuberculosis H37Rv and BCG. For single antigens and a cocktail mixture of these antigens, best results were obtained using 3 μg/0.1 ml, equivalent to 105 TU (tuberculin units). Each animal was simultaneously tested with PPD IC-65, 2 TU/0.1 ml, as reference. Reactivity of the multi-antigen cocktail was greater than that of any single antigen. The skin test results were between 34.3 and 76.6 per cent the level of reactivity compared to that of the reference when single antigens were tested and 124 per cent the level of reactivity compared to the reference for the multi-antigen cocktail. Our results showed that this specific cocktail could represent a potential candidate for a new skin diagnostic test for TB.

  11. An Overview of Live Attenuated Recombinant Pseudorabies Viruses for Use as Novel Vaccines

    PubMed Central

    Dong, Bo; Zarlenga, Dante S.; Ren, Xiaofeng

    2014-01-01

    Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals. PMID:24995348

  12. Expression and Refolding of Truncated Recombinant Major Outer Membrane Protein Antigen (r56) of Orientia tsutsugamushi and Its Use in Enzyme-Linked Immunosorbent Assays

    PubMed Central

    Ching, W.-M.; Wang, H.; Eamsila, C.; Kelly, D. J.; Dasch, G. A.

    1998-01-01

    The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. The gene encoding this protein from Karp strain was cloned into the expression vector pET11a. The recombinant protein (r56) was expressed as a truncated nonfusion protein (amino acids 80 to 456 of the open reading frame) which formed an inclusion body when expressed in Escherichia coli BL21. Refolded r56 was purified and compared to purified whole-cell lysate of the Karp strain of O. tsutsugamushi by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for reactivity with rabbit sera prepared against eight antigenic prototypes of O. tsutsugamushi as well as several other species of Rickettsiales and nonrickettsial antigens. Refolded r56 exhibited broad reactivity with the rabbit antisera against the Orientia prototypes, and the ELISA reactions with the r56 and Karp whole-cell lysate antigens correlated well (r = 0.81, n = 22, sensitivity compared to that of standard ELISA of 91%). Refolded r56 did not react with most antisera against other rickettsial species or control antigens (specificity = 92%, n = 13) using a positive cutoff value determined with eight uninfected rabbit sera. Refolded r56 was evaluated further by ELISA, using 128 sera obtained from patients with suspected scrub typhus from Korat, Thailand, and 74 serum specimens from healthy Thai soldiers. By using the indirect immunoperoxidase assay as the reference assay, the recombinant antigen exhibited a sensitivity and specificity of 93% or greater for detection of both IgG and IgM in the ELISA at 1:400 serum dilution. These results strongly suggest that purified r56 is a suitable candidate for replacing the density gradient-purified, rickettsia-derived, whole-cell antigen currently used in the commercial dipstick assay available in the United States. PMID:9665960

  13. Expression and refolding of truncated recombinant major outer membrane protein antigen (r56) of Orientia tsutsugamushi and its use in enzyme-linked immunosorbent assays.

    PubMed

    Ching, W M; Wang, H; Eamsila, C; Kelly, D J; Dasch, G A

    1998-07-01

    The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. The gene encoding this protein from Karp strain was cloned into the expression vector pET11a. The recombinant protein (r56) was expressed as a truncated nonfusion protein (amino acids 80 to 456 of the open reading frame) which formed an inclusion body when expressed in Escherichia coli BL21. Refolded r56 was purified and compared to purified whole-cell lysate of the Karp strain of O. tsutsugamushi by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for reactivity with rabbit sera prepared against eight antigenic prototypes of O. tsutsugamushi as well as several other species of Rickettsiales and nonrickettsial antigens. Refolded r56 exhibited broad reactivity with the rabbit antisera against the Orientia prototypes, and the ELISA reactions with the r56 and Karp whole-cell lysate antigens correlated well (r = 0.81, n = 22, sensitivity compared to that of standard ELISA of 91%). Refolded r56 did not react with most antisera against other rickettsial species or control antigens (specificity = 92%, n = 13) using a positive cutoff value determined with eight uninfected rabbit sera. Refolded r56 was evaluated further by ELISA, using 128 sera obtained from patients with suspected scrub typhus from Korat, Thailand, and 74 serum specimens from healthy Thai soldiers. By using the indirect immunoperoxidase assay as the reference assay, the recombinant antigen exhibited a sensitivity and specificity of 93% or greater for detection of both IgG and IgM in the ELISA at 1:400 serum dilution. These results strongly suggest that purified r56 is a suitable candidate for replacing the density gradient-purified, rickettsia-derived, whole-cell antigen currently used in the commercial dipstick assay available in the United States.

  14. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites

    PubMed Central

    Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr

    2016-01-01

    Background Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Methodology/Principal Findings Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Conclusions/Significance Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody

  15. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    PubMed

    Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr

    2016-03-01

    Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  16. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  17. Evaluation of a new set of recombinant antigens for the serological diagnosis of human and canine visceral leishmaniasis

    PubMed Central

    Nascimento, Marilia B.; Santos, Wagner J. T.; Medeiros, Zulma M.; Lima Neto, Adelino S.; Costa, Dorcas L.; Costa, Carlos H. N.; dos Santos, Washington L. C.; Pontes de Carvalho, Lain C.; Oliveira, Geraldo G. S.

    2017-01-01

    Current strategies for the control of zoonotic visceral leishmaniasis (VL) rely on its efficient diagnosis in both human and canine hosts. The most promising and cost effective approach is based on serologic assays with recombinant proteins. However, no single antigen has been found so far which can be effectively used to detect the disease in both dogs and humans. In previous works, we identified Leishmania infantum antigens with potential for the serodiagnosis of VL. Here, we aimed to expand the panel of the available antigens for VL diagnosis through another screening of a genomic expression library. Seven different protein-coding gene fragments were identified, five of which encoding proteins which have not been previously studied in Leishmania and rich in repetitive motifs. Poly-histidine tagged polypeptides were generated from six genes and evaluated for their potential for diagnosis of VL by ELISA (Enzyme Linked ImmunoSorbent Assay) with sera from infected humans and dogs. None of those was valid for the detection of human VL (26–52% sensitivity) although their performance was increased in the canine sera (48–91% sensitivity), with one polypeptide useful for the diagnosis of canine leishmaniasis. Next, we assayed a mixture of three antigens, found to be best for human or canine VL, among 13 identified through different screenings. This “Mix” resulted in similar levels of sensitivity for both human (84%) and canine (88%) sera. With improvements, this validates the use of multiple proteins, including antigens identified here, as components of a single system for the diagnosis of both forms of leishmaniasis. PMID:28957332

  18. Evaluation of a new set of recombinant antigens for the serological diagnosis of human and canine visceral leishmaniasis.

    PubMed

    Magalhães, Franklin B; Castro Neto, Artur L; Nascimento, Marilia B; Santos, Wagner J T; Medeiros, Zulma M; Lima Neto, Adelino S; Costa, Dorcas L; Costa, Carlos H N; Dos Santos, Washington L C; Pontes de Carvalho, Lain C; Oliveira, Geraldo G S; de Melo Neto, Osvaldo P

    2017-01-01

    Current strategies for the control of zoonotic visceral leishmaniasis (VL) rely on its efficient diagnosis in both human and canine hosts. The most promising and cost effective approach is based on serologic assays with recombinant proteins. However, no single antigen has been found so far which can be effectively used to detect the disease in both dogs and humans. In previous works, we identified Leishmania infantum antigens with potential for the serodiagnosis of VL. Here, we aimed to expand the panel of the available antigens for VL diagnosis through another screening of a genomic expression library. Seven different protein-coding gene fragments were identified, five of which encoding proteins which have not been previously studied in Leishmania and rich in repetitive motifs. Poly-histidine tagged polypeptides were generated from six genes and evaluated for their potential for diagnosis of VL by ELISA (Enzyme Linked ImmunoSorbent Assay) with sera from infected humans and dogs. None of those was valid for the detection of human VL (26-52% sensitivity) although their performance was increased in the canine sera (48-91% sensitivity), with one polypeptide useful for the diagnosis of canine leishmaniasis. Next, we assayed a mixture of three antigens, found to be best for human or canine VL, among 13 identified through different screenings. This "Mix" resulted in similar levels of sensitivity for both human (84%) and canine (88%) sera. With improvements, this validates the use of multiple proteins, including antigens identified here, as components of a single system for the diagnosis of both forms of leishmaniasis.

  19. Identification of the gene encoding a 38-kilodalton immunogenic and protective antigen of Streptococcus suis.

    PubMed

    Okwumabua, Ogi; Chinnapapakkagari, Sharmila

    2005-04-01

    In our continued effort to search for a Streptococcus suis protein(s) that can serve as a vaccine candidate or a diagnostic reagent, we constructed and screened a gene library with a polyclonal antibody raised against the whole-cell protein of S. suis type 2. A clone that reacted with the antibody was identified and characterized. Analysis revealed that the gene encoding the protein is localized within a 2.0-kbp EcoRI DNA fragment. The nucleotide sequence contained an open reading frame that encoded a polypeptide of 445 amino acid residues with a calculated molecular mass of 46.4 kDa. By in vitro protein synthesis and Western blot experiments, the protein exhibited an electrophoretic mobility of approximately 38 kDa. At the amino acid level the deduced primary sequence shared homology with sequences of unknown function from Streptococcus pneumoniae (89%), Streptococcus mutans (86%), Lactococcus lactis (80%), Listeria monocytogenes (74%), and Clostridium perfringens (64%). Except for strains of serotypes 20, 26, 32, and 33, Southern hybridization analysis revealed the presence of the gene in strains of other S. suis serotypes and demonstrated restriction fragment length differences caused by a point mutation in the EcoRI recognition sequence. We confirmed expression of the 38-kDa protein in the hybridization-positive isolates using specific antiserum against the purified protein. The recombinant protein was reactive with serum from pigs experimentally infected with virulent strains of S. suis type 2, suggesting that the protein is immunogenic and may serve as an antigen of diagnostic importance for the detection of most S. suis infections. Pigs immunized with the recombinant 38-kDa protein mounted antibody responses to the protein and were completely protected against challenge with a strain of a homologous serotype, the wild-type virulent strain of S. suis type 2, suggesting that it may be a good candidate for the development of a vaccine that can be used as

  20. New Technologies in Using Recombinant Attenuated Salmonella Vaccine Vectors

    PubMed Central

    Curtiss, Roy; Xin, Wei; Li, Yuhua; Kong, Wei; Wanda, Soo-Young; Gunn, Bronwyn; Wang, Shifeng

    2014-01-01

    Recombinant attenuated Salmonella vaccines (RASVs) have been constructed to deliver antigens from other pathogens to induce immunity to those pathogens in vaccinated hosts. The attenuation means should ensure that the vaccine survives following vaccination to colonize lymphoid tissues without causing disease symptoms. This necessitates that attenuation and synthesis of recombinant gene encoded protective antigens do not diminish the ability of orally administered vaccines to survive stresses encountered in the gastrointestinal tract. We have eliminated these problems by using RASVs with regulated delayed expression of attenuation and regulated delayed synthesis of recombinant antigens. These changes result in RASVs that colonize effector lymphoid tissues efficiently to serve as “factories” to synthesize protective antigens that induce higher protective immune responses than achieved when using previously constructed RASVs. We have devised a biological containment system with regulated delayed lysis to preclude RASV persistence in vivo and survival if excreted. Attributes were added to reduce the mild diarrhea sometimes experienced with oral live RASVs and to ensure complete safety in newborns. These collective technologies have been used to develop a novel, low-cost, RASV-synthesizing, multiple-protective Streptococcus pneumoniae antigens that will be safe for newborns/infants and will induce protective immunity to diverse S. pneumoniae serotypes after oral immunization. PMID:20370633

  1. Inclusion bodies of recombinant Epstein-Barr virus capsid antigen p18 as potential immobilized antigens in enzyme immunoassays for detection of nasopharyngeal carcinoma.

    PubMed

    Lim, Chun Shen; Goh, Siang Ling; Kariapper, Leena; Krishnan, Gopala; Lim, Yat-Yuen; Ng, Ching Ching

    2015-08-25

    Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC). Thioredoxin fusion VCA p18 (VCA-Trx) and IBs of VCA p18 without fusion tags (VCA-IBs) were purified from E. coli. The diagnostic performances of IgG/VCA-IBs, IgG/VCA-Denat-IBs (using VCA-IBs coated in 8mol/l urea), IgG/VCA-Trx, and IgG/VCA-Peptide assays were compared by screening 100 NPC case-control pairs. The IgG/VCA-Denat-IBs assay showed the best area under the receiver operating characteristic curve (AUC: 0.802; p<0.05), while the AUCs for the IgG/VCA-IBs, IgG/VCA-Trx, and IgG/VCA-Peptide assays were comparable (AUC: 0.740, 0.727, and 0.741, respectively). We improved the diagnostic performance of the ELISA significantly using IBs of recombinant VCA p18. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis

    PubMed Central

    Serra-Vidal, Mᵃdel Mar; Latorre, Irene; Franken, Kees L. C. M.; Díaz, Jéssica; de Souza-Galvão, Maria Luiza; Casas, Irma; Maldonado, José; Milà, Cèlia; Solsona, Jordi; Jimenez-Fuentes, M. Ángeles; Altet, Neus; Lacoma, Alícia; Ruiz-Manzano, Juan; Ausina, Vicente; Prat, Cristina; Ottenhoff, Tom H. M.; Domínguez, José

    2014-01-01

    The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed Mycobacterium tuberculosis (IVE-TB) antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI) vs. patients with active tuberculosis (TB). Following an overnight and 7 days stimulation of whole blood with purified recombinant M. tuberculosis antigens, interferon-γ (IFN-γ) levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups [dormancy survival regulon (DosR regulon) encoded antigens; resuscitation-promoting factors (Rpf) antigens; IVE-TB antigens; reactivation associated antigens]. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to TB immunodiagnosis candidates. PMID:25339944

  3. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis.

    PubMed

    Serra-Vidal, Mᵃdel Mar; Latorre, Irene; Franken, Kees L C M; Díaz, Jéssica; de Souza-Galvão, Maria Luiza; Casas, Irma; Maldonado, José; Milà, Cèlia; Solsona, Jordi; Jimenez-Fuentes, M Ángeles; Altet, Neus; Lacoma, Alícia; Ruiz-Manzano, Juan; Ausina, Vicente; Prat, Cristina; Ottenhoff, Tom H M; Domínguez, José

    2014-01-01

    The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed Mycobacterium tuberculosis (IVE-TB) antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI) vs. patients with active tuberculosis (TB). Following an overnight and 7 days stimulation of whole blood with purified recombinant M. tuberculosis antigens, interferon-γ (IFN-γ) levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups [dormancy survival regulon (DosR regulon) encoded antigens; resuscitation-promoting factors (Rpf) antigens; IVE-TB antigens; reactivation associated antigens]. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to TB immunodiagnosis candidates.

  4. A Recombinant Rabies Virus Encoding Two Copies of the Glycoprotein Gene Confers Protection in Dogs against a Virulent Challenge

    PubMed Central

    Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F.; Niu, Xuefeng; Guo, Xiaofeng

    2014-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines PMID:24498294

  5. Recombinant antibodies encoded by IGHV1-69 react with pUL32, a phosphoprotein of cytomegalovirus and B-cell superantigen

    PubMed Central

    Steininger, Christoph; Widhopf, George F.; Ghia, Emanuela M.; Morello, Christopher S.; Vanura, Katrina; Sanders, Rebecca; Spector, Deborah; Guiney, Don; Jäger, Ulrich

    2012-01-01

    Leukemia cells from patients with chronic lymphocytic leukemia (CLL) express a highly restricted immunoglobulin heavy variable chain (IGHV) repertoire, suggesting that a limited set of antigens reacts with leukemic cells. Here, we evaluated the reactivity of a panel of different CLL recombinant antibodies (rAbs) encoded by the most commonly expressed IGHV genes with a panel of selected viral and bacterial pathogens. Six different CLL rAbs encoded by IGHV1-69 or IGHV3-21, but not a CLL rAb encoded by IGHV4-39 genes, reacted with a single protein of human cytomegalovirus (CMV). The CMV protein was identified as the large structural phosphoprotein pUL32. In contrast, none of the CLL rAbs bound to any other structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells used for propagation of these microorganisms. Monoclonal antibodies or humanized rAbs of irrelevant specificity to pUL32 did not react with any of the proteins present in the different lysates. Still, rAbs encoded by a germ line IGHV1-69 51p1 allele from CMV-seropositive and -negative adults also reacted with pUL32. The observed reactivity of multiple different CLL rAbs and natural antibodies from CMV-seronegative adults with pUL32 is consistent with the properties of a superantigen. PMID:22234695

  6. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination?

    PubMed

    Trombert, A

    2015-01-01

    Lactic acid bacteria (LABs) are good candidates for the development of new oral vaccines and are attractive alternatives to attenuated pathogens. This review focuses on the use of wild-type and recombinant lactococci and lactobacilli with emphasis on their molecular design, immunomodulation and treatment of bacterial infections. The majority of studies related to recombinant LABs have focused on Lactococcus lactis, however, molecular tools have been successfully used for Lactobacillus spp. Recombinant lactobacilli and lactococci have several health benefits, such as immunomodulation, restoration of the microbiota, synthesis of antimicrobial substances and inhibition of virulence factors. In addition, protective immune responses that are well tolerated are induced by the expression of heterologous antigens from recombinant probiotics.

  7. [Immunobiologic characteristics of a recombinant Listeria monocytogenes expressing Mycobacterium tuberculosis antigens].

    PubMed

    Yin, Yuelan; Zhao, Dan; Kang, Meiqin; Tan, Weijun; Lian, Kai; Hu, Maozhi; Chen, Xiang; Pan, Zhiming; Jiao, Xin'an

    2013-12-04

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis complex. Hence, novel vaccines against TB are urgently needed and important to the public health. Immunobiologic characteristics of a recombinant attenuated Listeria monocytogenes strain LMdeltahly: :Ag85b-esat-6 was evaluated. LMdeltahly: :Ag85b-esat-6 had lost the hemolytic activity. It was completely cleared from the livers and spleens of mice 5 days after inoculation via intravenous route. Furthermore, the LD50 of the recombinant strain increased by 4 Logs comparing to that of the parent strain. Histopathology reveals no obvious pathological changes following administration of the recombinant strain to mice, indicating its safety. In addition, the potential protective immune response was evaluated on C57BL/6 mice via intravenous immunization route. The results indicate that the antigen delivered by the recombination LM could induce Th1 type immune response and elicit strong cytotoxic lymphocyte effect against Ag85B-ESAT-6. Thus, LMdeltahly::Ag85b-esat-6 had high safety to mice, and could be used as a novel vaccines candidate for preventing tuberculosis.

  8. Development of a Highly Specific Recombinant Toxocara canis Second-Stage Larva Excretory-Secretory Antigen for Immunodiagnosis of Human Toxocariasis

    PubMed Central

    Yamasaki, Hiroshi; Araki, Kunioki; Lim, Patricia Kim Chooi; Zasmy, Ngah; Mak, Joon Wah; Taib, Radzan; Aoki, Takashi

    2000-01-01

    The specificity of the recombinant Toxocara canis antigen developed for the immunodiagnosis of human toxocariasis was compared with that of the excretory-secretory antigen from T. canis second-stage larvae (TES) by enzyme-linked immunosorbent assay. A total of 153 human serum samples from patients infected with 20 different helminths, including 11 cases of toxocariasis, were examined. No false-negative reactions were observed for the toxocariasis cases. When the TES was used at concentrations of 0.5 and 0.125 μg/ml, cross-reactions were observed in 79 (55.6%) and 61 (43.0%) of 142 cases, respectively. In contrast, when the recombinant antigen was tested at a concentration of 0.5 μg/ml, cross-reactions were observed in 19 (13.4%) of 142 cases. At a concentration of 0.125 μg/ml, however, the cross-reaction rate decreased sharply to only 2.1%, corresponding to 3 of 142 cases. The cross-reactions occurred with one case each of gnathostomiasis, paragonimiasis with Paragonimus miyazakii, and spirometriasis, in which high antibody titers were detected. In addition, the recombinant antigen showed negative reactions with serum samples from patients infected with Ascaris and hookworms, which are the most common parasites in the world. These findings are also supported by experiments with animals infected with Ascaris and hookworm. From these results, the recombinant antigen is highly specific for toxocariasis and may provide more reliable diagnostic results than other methods. PMID:10747116

  9. Enzyme-linked immunosorbent assay using a recombinant baculovirus-expressed Bacillus anthracis protective antigen (PA): measurement of human anti-PA antibodies.

    PubMed Central

    Iacono-Connors, L C; Novak, J; Rossi, C; Mangiafico, J; Ksiazek, T

    1994-01-01

    We developed an antigen capture enzyme-linked immunosorbent assay (ELISA) which does not require purified protective antigen (PA) for detection of human antibodies to Bacillus anthracis PA. Lysates of Spodoptera frugiperda (Sf-9) cells infected with recombinant baculovirus containing the PA gene were used as the source of PA to develop the ELISA. Recombinant PA from crude Sf-9 cell lysates or PA purified from B. anthracis Sterne strain was captured by an anti-PA monoclonal antibody coated onto microtiter plates. We demonstrated that human serum antibody titers to PA were identical in the ELISA whether we used crude Sf-9 cell lysates containing recombinant baculovirus-expressed PA or purified Sterne PA. Finally, false-positive results observed in a direct ELISA were eliminated with this antigen capture ELISA. Thus, the antigen capture ELISA with crude preparations of baculovirus-expressed PA is reliable, safe, and inexpensive for determining anti-PA antibody levels in human sera. PMID:7496927

  10. Novel Antigen Identification Method for Discovery of Protective Malaria Antigens by Rapid Testing of DNA Vaccines Encoding Exons from the Parasite Genome

    PubMed Central

    Haddad, Diana; Bilcikova, Erika; Witney, Adam A.; Carlton, Jane M.; White, Charles E.; Blair, Peter L.; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C.; Carucci, Daniel J.; Weiss, Walter R.

    2004-01-01

    We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens. PMID:14977966

  11. Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing a possible virulence factor from Aspergillus fumigatus.

    PubMed Central

    Moser, M; Menz, G; Blaser, K; Crameri, R

    1994-01-01

    A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866

  12. An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines

    USDA-ARS?s Scientific Manuscript database

    Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. In cell culture, PRV has many non-essential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs ex...

  13. Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design.

    PubMed

    Ramírez, Rosa; Falcón, Rosabel; Izquierdo, Alienys; García, Angélica; Alvarez, Mayling; Pérez, Ana Beatriz; Soto, Yudira; Muné, Mayra; da Silva, Emiliana Mandarano; Ortega, Oney; Mohana-Borges, Ronaldo; Guzmán, María G

    2014-10-01

    The NS3 protein is a multifunctional non-structural protein of flaviviruses implicated in the polyprotein processing. The predominance of cytotoxic T cell lymphocytes epitopes on the NS3 protein suggests a protective role of this protein in limiting virus replication. In this work, we studied the antigenicity and immunogenicity of a recombinant NS3 protein of the Dengue virus 2. The full-length NS3 gene was cloned and expressed as a His-tagged fusion protein in Escherichia coli. The pNS3 protein was purified by two chromatography steps. The recombinant NS3 protein was recognized by anti-protease NS3 polyclonal antibody and anti-DENV2 HMAF by Western Blot. This purified protein was able to stimulate the secretion of high levels of gamma interferon and low levels of interleukin-10 and tumor necrosis factor-α in mice splenocytes, suggesting a predominantly Th-1-type T cell response. Immunized BALB/c mice with the purified NS3 protein showed a strong induction of anti-NS3 IgG antibodies, essentially IgG2b, as determined by ELISA. Immunized mice sera with recombinant NS3 protein showed specific recognition of native dengue protein by Western blotting and immunofluorescence techniques. The successfully purified recombinant protein was able to preserv the structural and antigenic determinants of the native dengue protein. The antigenicity shown by the recombinant NS3 protein suggests its possible inclusion into future DENV vaccine preparations.

  14. Stable expression of hepatitis delta virus antigen in a eukaryotic cell line.

    PubMed

    Macnaughton, T B; Gowans, E J; Reinboth, B; Jilbert, A R; Burrell, C J

    1990-06-01

    The gene encoding the hepatitis delta virus structural antigen (HDAg) was linked to a neomycin resistance gene in a retrovirus expression vector, and human HepG2 cells were transfected with the recombinant plasmid. A stable cell line was cloned that expressed HDAg in the nuclei of 100% of cells, in a pattern indicating a close relationship with cell nucleoli. Analysis of partially purified recombinant HDAg by HPLC showed an Mr in the range of 7 x 10(5) to 2 x 10(6), which appeared to contain conformation-dependent epitopes, whereas the density of the antigen was 1.19 g/ml by equilibrium centrifugation in caesium chloride, and in rate zonal centrifugation it sedimented with a value of 50S, close to that of particulate hepatitis B virus surface antigen. Immunoblotting demonstrated a single polypeptide with an Mr of 24K which corresponded to the smaller of the two HDAg-specific polypeptides present in infected sera. The recombinant HDAg polypeptide was shown to be a RNA-binding protein with specificity for both genomic and antigenomic species of hepatitis delta virus RNA.

  15. Characterisation of recombinant immunoreactive antigens of the scab mite Sarcoptes scabiei.

    PubMed

    Kuhn, C; Lucius, R; Matthes, H F; Meusel, G; Reich, B; Kalinna, B H

    2008-05-31

    Sarcoptic mange (or scabies) is an important skin disease which can affect a variety of species including humans, cattle, goats, sheep, horses, pigs, rabbits, and dogs. Approximately 300 million people are affected worldwide and in lifestock animals the infestation may lead to substantial economic losses caused by depression in growth and feed conversion rates. Diagnosis of Sarcoptes infestation is difficult and only a few serological tests have been developed using whole mite antigen for diagnosis of mange in animals. Here we describe the isolation and characterisation of cDNAs of several immunoreactive clones and their recombinant expression in Escherichia coli. Three of the proteins contain repetitive sequences which suggests that they might be involved in immune evasion. The application of these antigens in serodiagnosis and the suitability for diagnosis is discussed.

  16. Application of recombinant hemagglutinin proteins as alternative antigen standards for pandemic influenza vaccines.

    PubMed

    Choi, Yejin; Kwon, Seong Yi; Oh, Ho Jung; Shim, Sunbo; Chang, Seokkee; Chung, Hye Joo; Kim, Do Keun; Park, Younsang; Lee, Younghee

    2017-09-01

    The single radial immunodiffusion (SRID) assay, used to quantify hemagglutinin (HA) in influenza vaccines, requires reference reagents; however, because centralized production of reference reagents may slow the emergency deployment of vaccines, alternatives are needed. We investigated the production of HA proteins using recombinant DNA technology, rather than a traditional egg-based production process. The HA proteins were then used in an SRID assay as a reference antigen. We found that HA can be quantified in both egg-based and cell-based influenza vaccines when recombinant HAs (rHAs) are used as the reference antigen. Furthermore, we confirmed that rHAs obtained from strains with pandemic potential, such as H5N1, H7N3, H7N9, and H9N2 strains, can be utilized in the SRID assay. The rHA production process takes just one month, in contrast to the traditional process that takes three to four months. The use of rHAs may reduce the time required to produce reference reagents and facilitate timely introduction of vaccines during emergencies.

  17. Recombinant glycoprotein E produced in mammalian cells in large-scale as an antigen for varicella-zoster-virus serology.

    PubMed

    Thomsson, Elisabeth; Persson, Linn; Grahn, Anna; Snäll, Johanna; Ekblad, Maria; Brunhage, Eva; Svensson, Frida; Jern, Christina; Hansson, Gunnar C; Bäckström, Malin; Bergström, Tomas

    2011-07-01

    A recombinant glycoprotein E (gE) from varicella-zoster virus (VZV) was generated and produced in Chinese Hamster Ovary (CHO) cells, in the development of a specific antigen for analysis of IgG antibodies to VZV. Several stable gE-secreting clones were established and one clone was adapted to growth in serum-free suspension culture. When the cells were cultured in a perfusion bioreactor, gE was secreted into the medium, from where it could be easily purified. The recombinant gE was then evaluated as a serological antigen in ELISA. When compared to a conventional whole virus antigen, the VZV gE showed similar results in ELISA-based seroprevalence studies of 854 samples derived from blood donors, students, ischemic stroke patients and their controls, including samples with border-line results in previous analyses. Eight samples (0.9%) were discordant, all being IgG-negative by the VZV gE ELISA and positive by the whole virus ELISA. The sensitivity and specificity of the VZV gE ELISA were 99.9% and 100%, respectively, compared to 100% and 88.9% for the VZV whole virus ELISA. The elderly subjects showed similar reactivities to both antigens, while VZV gE gave lower signals in the younger cohorts, suggesting that antibodies to gE may increase with age. It was concluded that the recombinant VZV gE from CHO cells was suitable as a serological antigen for the detection of IgG antibodies specific for VZV. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Standardization and validation of a cytometric bead assay to assess antibodies to multiple Plasmodium falciparum recombinant antigens.

    PubMed

    Ondigo, Bartholomew N; Park, Gregory S; Gose, Severin O; Ho, Benjamin M; Ochola, Lyticia A; Ayodo, George O; Ofulla, Ayub V; John, Chandy C

    2012-12-21

    Multiplex cytometric bead assay (CBA) have a number of advantages over ELISA for antibody testing, but little information is available on standardization and validation of antibody CBA to multiple Plasmodium falciparum antigens. The present study was set to determine optimal parameters for multiplex testing of antibodies to P. falciparum antigens, and to compare results of multiplex CBA to ELISA. Antibodies to ten recombinant P. falciparum antigens were measured by CBA and ELISA in samples from 30 individuals from a malaria endemic area of Kenya and compared to known positive and negative control plasma samples. Optimal antigen amounts, monoplex vs multiplex testing, plasma dilution, optimal buffer, number of beads required were assessed for CBA testing, and results from CBA vs. ELISA testing were compared. Optimal amounts for CBA antibody testing differed according to antigen. Results for monoplex CBA testing correlated strongly with multiplex testing for all antigens (r = 0.88-0.99, P values from <0.0001 - 0.004), and antibodies to variants of the same antigen were accurately distinguished within a multiplex reaction. Plasma dilutions of 1:100 or 1:200 were optimal for all antigens for CBA testing. Plasma diluted in a buffer containing 0.05% sodium azide, 0.5% polyvinylalcohol, and 0.8% polyvinylpyrrolidone had the lowest background activity. CBA median fluorescence intensity (MFI) values with 1,000 antigen-conjugated beads/well did not differ significantly from MFI with 5,000 beads/well. CBA and ELISA results correlated well for all antigens except apical membrane antigen-1 (AMA-1). CBA testing produced a greater range of values in samples from malaria endemic areas and less background reactivity for blank samples than ELISA. With optimization, CBA may be the preferred method of testing for antibodies to P. falciparum antigens, as CBA can test for antibodies to multiple recombinant antigens from a single plasma sample and produces a greater range of values in

  19. Standardization and validation of a cytometric bead assay to assess antibodies to multiple Plasmodium falciparum recombinant antigens

    PubMed Central

    2012-01-01

    Background Multiplex cytometric bead assay (CBA) have a number of advantages over ELISA for antibody testing, but little information is available on standardization and validation of antibody CBA to multiple Plasmodium falciparum antigens. The present study was set to determine optimal parameters for multiplex testing of antibodies to P. falciparum antigens, and to compare results of multiplex CBA to ELISA. Methods Antibodies to ten recombinant P. falciparum antigens were measured by CBA and ELISA in samples from 30 individuals from a malaria endemic area of Kenya and compared to known positive and negative control plasma samples. Optimal antigen amounts, monoplex vs multiplex testing, plasma dilution, optimal buffer, number of beads required were assessed for CBA testing, and results from CBA vs. ELISA testing were compared. Results Optimal amounts for CBA antibody testing differed according to antigen. Results for monoplex CBA testing correlated strongly with multiplex testing for all antigens (r = 0.88-0.99, P values from <0.0001 - 0.004), and antibodies to variants of the same antigen were accurately distinguished within a multiplex reaction. Plasma dilutions of 1:100 or 1:200 were optimal for all antigens for CBA testing. Plasma diluted in a buffer containing 0.05% sodium azide, 0.5% polyvinylalcohol, and 0.8% polyvinylpyrrolidone had the lowest background activity. CBA median fluorescence intensity (MFI) values with 1,000 antigen-conjugated beads/well did not differ significantly from MFI with 5,000 beads/well. CBA and ELISA results correlated well for all antigens except apical membrane antigen-1 (AMA-1). CBA testing produced a greater range of values in samples from malaria endemic areas and less background reactivity for blank samples than ELISA. Conclusion With optimization, CBA may be the preferred method of testing for antibodies to P. falciparum antigens, as CBA can test for antibodies to multiple recombinant antigens from a single plasma sample

  20. Expression of hepatitis B surface antigen in transgenic plants.

    PubMed Central

    Mason, H S; Lam, D M; Arntzen, C J

    1992-01-01

    Tobacco plants were genetically transformed with the gene encoding hepatitis B surface antigen (HBsAg) linked to a nominally constitutive promoter. Enzyme-linked immunoassays using a monoclonal antibody directed against human serum-derived HBsAg revealed the presence of HBsAg in extracts of transformed leaves at levels that correlated with mRNA abundance. This suggests that there were no major inherent limitations of transcription or translation of this foreign gene in plants. Recombinant HBsAg was purified from transgenic plants by immunoaffinity chromatography and examined by electron microscopy. Spherical particles with an average diameter of 22 nm were observed in negatively stained preparations. Sedimentation of transgenic plant extracts in sucrose and cesium chloride density gradients showed that the recombinant HBsAg and human serum-derived HBsAg had similar physical properties. Because the HBsAg produced in transgenic plants is antigenically and physically similar to the HBsAg particles derived from human serum and recombinant yeast, which are used as vaccines, we conclude that transgenic plants hold promise as low-cost vaccine production systems. Images PMID:1465391

  1. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    PubMed

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  2. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  3. Vaccine platform recombinant measles virus.

    PubMed

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  4. Production of a Recombinant Antibody Specific for i Blood Group Antigen, a Mesenchymal Stem Cell Marker

    PubMed Central

    Suila, Heli; Tiitinen, Sari; Natunen, Suvi; Laukkanen, Marja-Leena; Kotovuori, Annika; Reinman, Mirka; Satomaa, Tero; Alfthan, Kaija; Laitinen, Saara; Takkinen, Kristiina; Räbinä, Jarkko; Valmu, Leena

    2013-01-01

    Abstract Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen–positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology. PMID:24083089

  5. In Vivo Visualization of Bacterial Colonization, Antigen Expression, and Specific T-Cell Induction following Oral Administration of Live Recombinant Salmonella enterica Serovar Typhimurium

    PubMed Central

    Bumann, Dirk

    2001-01-01

    Live attenuated Salmonella strains that express a foreign antigen are promising oral vaccine candidates. Numerous genetic modifications have been empirically tested, but their effects on immunogenicity are difficult to interpret since important in vivo properties of recombinant Salmonella strains such as antigen expression and localization are incompletely characterized and the crucial early inductive events of an immune response to the foreign antigen are not fully understood. Here, methods were developed to directly localize and quantitate the in situ expression of an ovalbumin model antigen in recombinant Salmonella enterica serovar Typhimurium using two-color flow cytometry and confocal microscopy. In parallel, the in vivo activation, blast formation, and division of ovalbumin-specific CD4+ T cells were followed using a well-characterized transgenic T-cell receptor mouse model. This combined approach revealed a biphasic induction of ovalbumin-specific T cells in the Peyer's patches that followed the local ovalbumin expression of orally administered recombinant Salmonella cells in a dose- and time-dependent manner. Interestingly, intact Salmonella cells and cognate T cells seemed to remain in separate tissue compartments throughout induction, suggesting a transport of killed Salmonella cells from the colonized subepithelial dome area to the interfollicular inductive sites. The findings of this study will help to rationally optimize recombinant Salmonella strains as efficacious live antigen carriers for oral vaccination. PMID:11402006

  6. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters.

    PubMed

    Delannoy, Sabine; Beutin, Lothar; Mariani-Kurkdjian, Patricia; Fleiss, Aubin; Bonacorsi, Stéphane; Fach, Patrick

    2017-01-01

    Escherichia coli strains belonging to serogroups O1 and O2 are frequently associated with human infections, especially extra-intestinal infections such as bloodstream infections or urinary tract infections. These strains can be associated with a large array of flagellar antigens. Because of their frequency and clinical importance, a reliable detection of E. coli O1 and O2 strains and also the frequently associated K1 capsule is important for diagnosis and source attribution of E. coli infections in humans and animals. By sequencing the O-antigen clusters of various O1 and O2 strains we showed that the serogroups O1 and O2 are encoded by different sets of O-antigen encoding genes and identified potentially new O-groups. We developed qPCR-assays to detect the various O1 and O2 variants and the K1-encoding gene. These qPCR assays proved to be 100% sensitive and 100% specific and could be valuable tools for the investigations of zoonotic and food-borne infection of humans with O1 and O2 extra-intestinal (ExPEC) or Shiga toxin-producing E. coli (STEC) strains.

  7. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters

    PubMed Central

    Delannoy, Sabine; Beutin, Lothar; Mariani-Kurkdjian, Patricia; Fleiss, Aubin; Bonacorsi, Stéphane; Fach, Patrick

    2017-01-01

    Escherichia coli strains belonging to serogroups O1 and O2 are frequently associated with human infections, especially extra-intestinal infections such as bloodstream infections or urinary tract infections. These strains can be associated with a large array of flagellar antigens. Because of their frequency and clinical importance, a reliable detection of E. coli O1 and O2 strains and also the frequently associated K1 capsule is important for diagnosis and source attribution of E. coli infections in humans and animals. By sequencing the O-antigen clusters of various O1 and O2 strains we showed that the serogroups O1 and O2 are encoded by different sets of O-antigen encoding genes and identified potentially new O-groups. We developed qPCR-assays to detect the various O1 and O2 variants and the K1-encoding gene. These qPCR assays proved to be 100% sensitive and 100% specific and could be valuable tools for the investigations of zoonotic and food-borne infection of humans with O1 and O2 extra-intestinal (ExPEC) or Shiga toxin-producing E. coli (STEC) strains. PMID:28224115

  8. Oral immunisation with live aroA attenuated Salmonella enterica serovar Typhimurium expressing the Yersinia pestis V antigen protects mice against plague.

    PubMed

    Garmory, Helen S; Griffin, Kate F; Brown, Katherine A; Titball, Richard W

    2003-06-20

    Bubonic and pneumonic plague are caused by the bacterium Yersinia pestis. The V antigen of Y. pestis is a protective antigen against plague. In this study, an aroA attenuated strain of Salmonella enterica serovar Typhimurium (SL3261) has been used to deliver the Y. pestis V antigen as a candidate oral plague vaccine. SL3261 was transformed with the expression plasmid pTrc-LcrV, containing the lcrV gene encoding V antigen. Immunoblot analysis showed V antigen expression in SL3261 in vitro and intragastric immunisation of mice with the recombinant Salmonella resulted in the induction of V antigen-specific serum antibody responses and afforded protection against Y. pestis challenge. However, the antibody responses induced by the recombinant Salmonella did not correlate with the protection afforded, indicating that immune responses other than antibody may play a role in the protection afforded against plague by this candidate vaccine.

  9. Protection of ewes against Teladorsagia circumcincta infection in the periparturient period by vaccination with recombinant antigens.

    PubMed

    Nisbet, Alasdair J; McNeilly, Tom N; Greer, Andrew W; Bartley, Yvonne; Oliver, E Margaret; Smith, Stephen; Palarea-Albaladejo, Javier; Matthews, Jacqueline B

    2016-09-15

    Teladorsagiosis is a major production-limiting disease in ruminants in temperate regions throughout the world and one of the key interventions in the management of the disease is the prevention of pasture contamination with Teladorsagia circumcincta eggs by ewes during the periparturient relaxation in immunity which occurs in the period around lambing. Here, we describe the immunisation of twin-bearing ewes with a T. circumcincta recombinant subunit vaccine and the impact that vaccination has on their immune responses and shedding of parasite eggs during a continuous T. circumcincta challenge period spanning late gestation and lactation. In ewes which displayed a clear periparturient relaxation in immunity, vaccination resulted in a 45% reduction in mean cumulative faecal egg count (cFEC, p=0.027) compared to control (immunised with adjuvant only) ewes. Recombinant antigen-specific IgG and IgA, which bound each of the vaccine antigens, were detected in the serum of vaccinated ewes following each immunisation and in colostrum taken from vaccinated ewes post-partum whereas low levels of antigen-specific IgG were detected in serum and colostrum from control ewes. Antigen-specific IgG and IgA levels in blood collected within 48h of birth from lambs largely reflected those in the colostrum of their ewes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Evaluation of Mycobacterium tuberculosis Early Secreted Antigenic Target 6 Recombinant Protein as a Diagnostic Marker in Skin Test.

    PubMed

    Moradi, Jale; Mosavari, Nader; Ebrahimi, Mahmoud; Arefpajohi, Reza; Tebianian, Majid

    2015-02-01

    Tuberculosis (TB) is the leading infectious disease in the developing world. Delayed-type hypersensitivity skin test diagnoses TB using tuberculin purified protein derivative (PPD), but this test is incapable of distinguishing Mycobacterium tuberculosis (MTB) infection from bacillus Calmette-Guérin (BCG) vaccination or an infection caused by nontuberculous mycobacteria (NTM). This study was performed to evaluate the use of recombinant early secretory antigenic target 6 (rESAT-6), a secretory protein found only in MTB, Mycobacterium bovis, and few other mycobacterial species, as a skin marker for MTB in guinea pigs. We prepared recombinant MTB ESAT-6 and evaluated its use as a specific antigen for MTB in guinea pigs. Our results show that the purified MTB rESAT-6 antigen is capable of inducing a positive reaction only in guinea pigs sensitized to MTB. No such reaction was observed in the animals sensitized to M. bovis, BCG vaccination, or NTM (Mycobacterium avium). Our study results confirm that the ESAT-6 antigen is more specific to MTB infection than PPD and could be used in more specific skin tests for detection of MTB in large animals and in humans.

  11. Expression, Polyubiquitination, and Therapeutic Potential of Recombinant E6E7 from HPV16 Antigens Fused to Ubiquitin.

    PubMed

    de Oliveira, Liliane M Fernandes; Morale, Mirian G; Chaves, Agtha A M; Demasi, Marilene; Ho, Paulo L

    2017-01-01

    Ubiquitin-proteasome system plays an essential role in the immune response due to its involvement in the antigen generation and presentation to CD8 + T cells. Hereby, ubiquitin fused to antigens has been explored as an immunotherapeutic strategy that requires the activation of cytotoxic T lymphocytes. Here we propose to apply this ubiquitin fusion approach to a recombinant vaccine against human papillomavirus 16-infected cells. E6E7 multi-epitope antigen was fused genetically at its N- or C-terminal end to ubiquitin and expressed in Escherichia coli as inclusion bodies. The antigens were solubilized using urea and purified by nickel affinity chromatography in denatured condition. Fusion of ubiquitin to E6E7 resulted in marked polyubiquitination in vitro mainly when fused to the E6E7 N-terminal. When tested in a therapeutic scenario, the fusion of ubiquitin to E6E7 reinforced the anti-tumor protection and increased the E6/E7-specific cellular immune responses. Present results encourage the investigation of the adjuvant potential of the ubiquitin fusion to recombinant vaccines requiring CD8 + T cells.

  12. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato.

    PubMed

    Tacket, C O; Mason, H S; Losonsky, G; Clements, J D; Levine, M M; Arntzen, C J

    1998-05-01

    Compared with vaccine delivery by injection, oral vaccines offer the hope of more convenient immunization strategies and a more practical means of implementing universal vaccination programs throughout the world. Oral vaccines act by stimulating the immune system at effector sites (lymphoid tissue) located in the gut. Genetic engineering has been used with variable success to design living and non-living systems as a means to deliver antigens to these sites and to stimulate a desired immune response. More recently, plant biotechnology techniques have been used to create plants which contain a gene derived from a human pathogen; the resultant plant tissues will accumulate an antigenic protein encoded by the foreign DNA. In pre-clinical trials, we found that antigenic proteins produced in transgenic plants retained immunogenic properties when purified; if injected into mice the antigen caused production of protein-specific antibodies. Moreover, in some experiments, if the plant tissues were simply fed to mice, a mucosal immune response occurred. The present study was conducted as a proof of principle to determine if humans would also develop a serum and/or mucosal immune response to an antigen delivered in an uncooked foodstuff.

  13. Antigenic characterisation of yeast-expressed lyssavirus nucleoproteins.

    PubMed

    Kucinskaite, Indre; Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Johnson, Nicholas; Staniulis, Juozas; Fooks, Anthony R; Müller, Thomas; Sasnauskas, Kestutis; Ulrich, Rainer G

    2007-12-01

    In Europe, three genotypes of the genus Lyssavirus, family Rhabdoviridae, are present, classical rabies virus (RABV, genotype 1), European bat lyssavirus type 1 (EBLV-1, genotype 5) and European bat lyssavirus type 2 (EBLV-2, genotype 6). The entire authentic nucleoprotein (N protein) encoding sequences of RABV (challenge virus standard, CVS, strain), EBLV-1 and EBLV-2 were expressed in yeast Saccharomyces cerevisiae at high level. Purification of recombinant N proteins by caesium chloride gradient centrifugation resulted in yields between 14-17, 25-29 and 18-20 mg/l of induced yeast culture for RABV-CVS, EBLV-1 and EBLV-2, respectively. The purified N proteins were evaluated by negative staining electron microscopy, which revealed the formation of nucleocapsid-like structures. The antigenic conformation of the N proteins was investigated for their reactivity with monoclonal antibodies (mAbs) directed against different lyssaviruses. The reactivity pattern of each mAb was virtually identical between immunofluorescence assay with virus-infected cells, and ELISA and dot blot assay using the corresponding recombinant N proteins. These observations lead us to conclude that yeast-expressed lyssavirus N proteins share antigenic properties with naturally expressed virus protein. These recombinant proteins have the potential for use as components of serological assays for lyssaviruses.

  14. Evaluation of recombinant multi-epitope proteins for diagnosis of goat schistosomiasis by enzyme-linked immunosorbent assay.

    PubMed

    Lv, Chao; Hong, Yang; Fu, Zhiqiang; Lu, Ke; Cao, Xiaodan; Wang, Tao; Zhu, Chuangang; Li, Hao; Xu, Rui; Jia, Bingguang; Han, Qian; Dou, Xuefeng; Shen, Yuanxi; Zhang, Zuhang; Zai, Jinli; Feng, Jintao; Lin, Jiaojiao

    2016-03-09

    Schistosomiasis is a huge threat to human and animal health. Apart from bovines, goats play an important role in the transmission of schistosomiasis in some endemic areas of China. An accessible, quality-assured goat schistosomiasis diagnostic technique is needed. Recently, our laboratory identified two recombinant diagnostic antigens, SjPGM and SjRAD23 via an immuno-proteomic method. The application of these two recombinant antigens to develop a higher sensitivity and specificity technique for the sheep schistosomiasis diagnosis is urgently needed. Epitopes of SjPGM and SjRAD23 were predicted and three polypeptides, two from SjRAD23 and one from SjPGM, were selected. Recombinant plasmids containing two to three DNA sequences encoding predicted polypeptides or large hydrophilic region of Sj23 (LHD-Sj23) were constructed and expressed. Eight recombinant schistosome antigens including four multi-epitope proteins and four recombinant single-molecule antigens as well as SEA, were assessed by ELISA in 91 sera from schistosome-infected goats, 44 sera from non-infected goats, 37 sera from Orientobilharzia-infected goats, and 12 from Haemonchus contortus-infected goats. ELISA tests showed that three multi-epitope proteins had higher sensitivity than the four single-molecule antigens (rSjRAD23, rSjPGM, rBSjRAD23-1, rBSj23) and the multi-epitope protein rBSjPGM-BSjRAD23-1-BSj23 had the highest sensitivity (97.8 %, 89/91) and maintained good specificity (100 %, 44/44) as well as low cross-reactivity with haemonchosis (8.33 %, 3/12) and orientobilharziasis (13.51 %, 5/37) in the diagnosis of goat schistosomiasis. In contrast, when SEA was applied as a diagnosis antigen, it had 100 % (91/91) sensitivity, 75 % (33/44) specificity, 25 and 83.78 % cross-reactivity with haemonchosis (3/12) and orientobilharziasis (31/37), respectively. The application of recombinant multi-epitope proteins may increase the sensitivity of diagnosis technique and retain high specificity of single

  15. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    PubMed

    Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  16. Mapping Antigenic Motifs in the Trypomastigote Small Surface Antigen from Trypanosoma cruzi

    PubMed Central

    Balouz, Virginia; Cámara, María de los Milagros; Cánepa, Gaspar E.; Carmona, Santiago J.; Volcovich, Romina; Gonzalez, Nicolás; Altcheh, Jaime; Agüero, Fernán

    2015-01-01

    The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease. PMID:25589551

  17. Assay of anti-HBs antibodies using a recombinant antigen and latex particle counting: comparison with five commercial tests.

    PubMed

    Galanti, L M; Cornu, C; Masson, P L; Robert, A R; Becheanu, D; Lamy, M E; Cambiaso, C L

    1991-05-01

    An assay of anti-HBs antibodies based on agglutination of latex particles coated with recombinant HBs-antigen was compared with Abbott radioimmunoassay (Abbott-RIA), which uses a human plasma-derived antigen. The population examined consisted of 76 Abbott-RIA anti-HBs-negative prevaccinated subjects and 1044 serum samples anti-HBs found positive by Abbott-RIA, including 283 samples of subjects vaccinated either with a human plasma-derived vaccine (group A; n = 180) or with a recombinant vaccine (group B; n = 103). Correlation coefficients between the two techniques were respectively r = 0.89 for the whole population (n = 1044), r = 0.98 in group A and r = 0.74 in group B. Anti-HBs titres were higher with latex than with RIA in group B as shown by the regression slopes: latex = 508 + 1.11 RIA in group A and latex = -1138 + 3.97 RIA in group B, suggesting that some vaccinated subjects from group B produced antibodies against epitopes proper to the recombinant antigen. In the prevaccinated population and in group A, the latex results were compared with those of radioimmunoassays (Abbott, Sorin) and enzyme immunoassays (Behring, Roche, Pasteur). Only the Roche-EIA detected anti-HBs in the prevaccinated subjects. The correlation between the various immunoassays was r greater than 0.96 only for values higher than 100 IU/l.

  18. Antigenic characterization of bovine ephemeral fever rhabdovirus G and GNS glycoproteins expressed from recombinant baculoviruses.

    PubMed

    Johal, Jasjit; Gresty, Karryn; Kongsuwan, Kritaya; Walker, Peter J

    2008-01-01

    Recombinant baculoviruses expressing the BEFV envelope glycoprotein G and non-structural glycoprotein G(NS) were constructed. The G protein expressed in insect cells was located on the cell surface and induced spontaneous cell fusion at mildly acidic pH. The expressed G protein reacted with MAbs to continuous and conformational neutralization sites (G1, G2, G3b and G4), but not to conformational site G3a. The expressed G(NS) protein was also located on the cell surface but did not exhibit fusogenic activity. The G(NS) protein reacted with polyclonal antiserum produced from vaccinia-virus-expressed recombinant G(NS) but did not react with G protein antibodies. A His(6)-tagged, soluble form of the G protein was expressed and purified by Ni(2+)-NTA chromatography. The purified G protein reacted with BEFV-neutralizing MAbs to all continuous and conformational antigenic sites. The highly protective characteristics of the native BEFV G protein suggest that the secreted, baculovirus-expressed product may be a useful vaccine antigen.

  19. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    PubMed Central

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  20. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus.

    PubMed

    Clavijo, A; Lin, M; Riva, J; Mallory, M; Lin, F; Zhou, E M

    2001-02-01

    The sequence encoding a truncated E2 glycoprotein of the Alfort/187 strain of classical swine fever virus (CSFV) was expressed in Escherichia coli using the pET expression system and the recombinant product purified by Ni-NTA agarose affinity chromatography. The antigenicity of this recombinant protein was demonstrated by immunoblot using anti- CSFV-specific antibodies. A monoclonal antibody was produced against the truncated E2 protein and used as competitor in an ELISA for the detection of antibodies to CSFV. Specific antibodies were demonstrated by competitive ELISA (C-ELISA) as early as 21 days post-infection (dpi) in experimentally infected pigs. Seroconversion was demonstrated by C-ELISA and neutralising peroxidase-linked assay (NPLA) in all infected animals by 4 weeks. No cross-reaction with antibodies to bovine viral diarrhoea virus (BVDV) was seen in the C-ELISA using sera from experimentally infected pigs. The C-ELISA is not intended as a substitute for the NPLA. However, it is expected it will be useful for monitoring and prevalence studies. It will also assist in testing a large number of samples in the event of an outbreak. Copyright 2001 Harcourt Publishers Ltd.

  1. Recombinant gp19 as a potential antigen for detecting anti-Ehrlichia canis antibodies in dog sera.

    PubMed

    Oliveira, Rômulo Silva de; Cunha, Rodrigo Casquero; Moraes-Filho, Jonas; Gonçales, Relber Aguiar; Lara, Ana Paula de Souza Stori de; Avila, Luciana Farias da Costa de; Labruna, Marcelo Bahia; Leite, Fábio Pereira Leivas

    2015-01-01

    The canine monocytic ehrlichiosis, caused by Ehrlichia canis, is endemic in several regions of Brazil. Some serological diagnostic techniques using immunodominant proteins of E. canis as antigens are available, but their specificities and sensitivities are questionable. Based on this, the objective of this study was to test the antigenic potential of the recombinant gp19 protein (rGP19) for subsequent use in diagnostic tests. The rGP19 expressed in the Escherichia coli strain BL21 (DE3) C41 was recognized in the sera from experimentally infected dogs using ELISA and Western blotting. Thus, it was possible to obtain a promising antigen with the ability to differentiate between E. canis-positive and -negative animals, even 1 week after infection.

  2. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs

    PubMed Central

    Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV–LACK, rCDV–TSA, and rCDV–LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV–LACK showed markedly smaller nodules without ulceration. Although the rCDV–TSA- and rCDV–LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV–LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs. PMID:26162094

  3. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded-Antigens for Rapid Diagnosis and Vaccine Development

    DTIC Science & Technology

    1988-10-31

    00 0 Cloning and Expression of Genes for Dengue Virus (Type-2 Encoded-Antigens for Rapid ODiagnosis and Vaccine DevelopmentN| ANNUAL PROGRESS REPORT...11. TITLE (include Security Classification) Cloning and Expression of Genes f or Dengue Virus Type 2 Fncoded Antigens for Rapid Diagnosis and Vaccine ...epidemics in Central and South Americas and the Caribbean is a cause of major concern. An effective vaccine is not available to protect individuals

  4. A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer.

    PubMed

    Taylor, Graham S; Jia, Hui; Harrington, Kevin; Lee, Lip Wai; Turner, James; Ladell, Kristin; Price, David A; Tanday, Manjit; Matthews, Jen; Roberts, Claudia; Edwards, Ceri; McGuigan, Lesley; Hartley, Andrew; Wilson, Steve; Hui, Edwin P; Chan, Anthony T C; Rickinson, Alan B; Steven, Neil M

    2014-10-01

    Epstein-Barr virus (EBV) is associated with several cancers in which the tumor cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumor antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC) received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5 × 10(7) and 5 × 10(8) plaque-forming units (pfu). Blood samples were taken at screening, after each vaccine cycle, and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Vaccination was generally well tolerated. Immunity increased after vaccination to at least one antigen in 8 of 14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments, respectively. MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South-East Asia where NPC is most common. The highest dose (5 × 10(8) pfu) is recommended for investigation in current phase IB and II trials. ©2014 American Association for Cancer Research.

  5. Vaccinia virus recombinants encoding the truncated structural gene region of Venezuelan equine encephalitis virus (VEEV) give solid protection against peripheral challenge but only partial protection against airborne challenge with virulent VEEV.

    PubMed

    Phillpotts, R J; Lescott, T L; Jacobs, S C

    2000-10-01

    Vaccinia virus (VV) recombinants that contain the genes encoding the Venezuelan equine encephalitis virus (VEEV) structural gene region (C-E3-E2-6 K-E1) solidly protect mice against peripheral challenge with virulent VEEV, but provide only partial protection against airborne challenge. To improve upon these results we focussed on the principal antigens involved in protection. VV recombinants encoding the structural genes E3-E2-6 K-E1, E3-E2-6 K or 6 K-E1 were prepared and evaluated for their ability to protect Balb/c mice after a single dorsal scarification with 10(8) PFU against peripheral or airborne challenge with virulent VEEV. The antibody response was also examined. Our experiments provide new evidence that truncates of the VEEV structural region (E3-E2-6 K-E1, E3-E2-6 K), cloned and expressed in VV, protect against challenge with virulent virus. They also confirm the important role of E2 in protection. However, we were unable to improve upon previously reported levels of protection against airborne challenge. A substantial level of circulating antibodies and the presence of local IgA (not always induced by mucosal immunization) (Greenway et al., 1992) appear essential for protection against the airborne virus. Current VV-VEEV recombinants seem unable to elicit this level of immune response and further improvements are therefore required to increase the immunogenicity of VV-VEEV vaccines.

  6. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite

    PubMed Central

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-01-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440

  7. Evaluation of protective potential of Yersinia pestis outer membrane protein antigens as possible candidates for a new-generation recombinant plague vaccine.

    PubMed

    Erova, Tatiana E; Rosenzweig, Jason A; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C; Kirtley, Michelle L; van Lier, Christina J; Telepnev, Maxim V; Motin, Vladimir L; Chopra, Ashok K

    2013-02-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1(-) strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1(-) mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1(-) CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.

  8. Evaluation of Protective Potential of Yersinia pestis Outer Membrane Protein Antigens as Possible Candidates for a New-Generation Recombinant Plague Vaccine

    PubMed Central

    Erova, Tatiana E.; Rosenzweig, Jason A.; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C.; Kirtley, Michelle L.; van Lier, Christina J.; Telepnev, Maxim V.; Motin, Vladimir L.

    2013-01-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1− strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1− mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1− CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains. PMID:23239803

  9. Mapping antigenic motifs in the trypomastigote small surface antigen from Trypanosoma cruzi.

    PubMed

    Balouz, Virginia; Cámara, María de Los Milagros; Cánepa, Gaspar E; Carmona, Santiago J; Volcovich, Romina; Gonzalez, Nicolás; Altcheh, Jaime; Agüero, Fernán; Buscaglia, Carlos A

    2015-03-01

    The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Development of a sensitive and specific indirect enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen for detection of specific antibodies against Ehrlichia canis.

    PubMed

    López, Lissett; Venteo, Angel; Aguirre, Enara; García, Marga; Rodríguez, Majosé; Amusátegui, Inmaculada; Tesouro, Miguel A; Vela, Carmen; Sainz, Angel; Rueda, Paloma

    2007-11-01

    An indirect enzyme-linked immunosorbent assay (ELISA) based on baculovirus recombinant P30 protein of Ehrlichia canis and the 1BH4 anticanine IgG monoclonal antibody was developed and evaluated by examining a panel of 98 positive and 157 negative sera using the indirect fluorescent antibody (IFA) test as the reference technique. The P30-based ELISA appeared to be sensitive and specific (77.55% and 95.54%, respectively) when qualitative results (positive/negative) were compared with those of the IFA test; the coefficient of correlation (R) between the 2 tests was 0.833. Furthermore, it was possible to establish a mathematical formula for use in comparing the results of both techniques. These results indicate that recombinant P30 antigen-based ELISA is a suitable alternative of the IFA test for simple, consistent, and rapid serodiagnosis of canine ehrlichiosis. Moreover, the use of this recombinant protein as antigen offers a great advantage for antigen preparation in comparison with other techniques in which the whole E. canis organism is used as antigen.

  11. Salivary sIg-A response against the recombinant Ag38 antigen of Mycobacterium tuberculosis Indonesian strain.

    PubMed

    Raras, Tri Yudani Mardining; Sholeh, Gamal; Lyrawati, Diana

    2014-01-01

    An evaluation of the humoral response based on secretory immunoglobulin A levels in the saliva of pulmonary tuberculosis (TB) acid-fast bacillus-positive (TB-AFB+) patients against a recombinant 38 kDa antigen (Ag38-rec) is reported. A total of 60 saliva samples consist of 30 TB-AFB+ patients and 30 healthy controls were tested against 500 ng of semi-purified antigen using the dot blot method. Results showed that the protein antigen could differentiate between healthy individuals and TB-AFB(+) patients. Whole saliva demonstrated better reactivity than centrifuged saliva. The Ag38-rec protein indicated statistically comparable sensitivity (80% versus 90%), but lower specificity (36.6% versus 70%) compared with purified protein derivative (PPD). Surprisingly, both antigens similarly recognized secretory immunoglobulin A in the saliva of the healthy group (50% versus 50%, respectively). These findings suggest that the Ag38-rec protein originating from a local strain of Mycobacterium tuberculosis may be used for TB screening, however require purity improvement.

  12. Identification of a Polymorphic Gene, BCL2A1, Encoding Two Novel Hematopoietic Lineage-specific Minor Histocompatibility Antigens

    PubMed Central

    Akatsuka, Yoshiki; Nishida, Tetsuya; Kondo, Eisei; Miyazaki, Mikinori; Taji, Hirohumi; Iida, Hiroatsu; Tsujimura, Kunio; Yazaki, Makoto; Naoe, Tomoki; Morishima, Yasuo; Kodera, Yoshihisa; Kuzushima, Kiyotaka; Takahashi, Toshitada

    2003-01-01

    We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1. PMID:12771180

  13. Recombinant antigen-based antibody assays for the diagnosis and surveillance of lymphatic filariasis – a multicenter trial

    PubMed Central

    Lammie, Patrick J; Weil, Gary; Noordin, Rahmah; Kaliraj, Perumal; Steel, Cathy; Goodman, David; Lakshmikanthan, Vijaya B; Ottesen, Eric

    2004-01-01

    The development of antifilarial antibody responses is a characteristic feature of infection with filarial parasites. It should be possible to exploit this fact to develop tools to monitor the progress of the global program to eliminate lymphatic filariasis (LF); however, assays based on parasite extracts suffer from a number of limitations, including the paucity of parasite material, the difficulty of assay standardization and problems with assay specificity. In principle, assays based on recombinant filarial antigens should address these limitations and provide useful tools for diagnosis and surveillance of LF. The present multicenter study was designed to compare the performance of antibody assays for filariasis based on recombinant antigens Bm14, WbSXP, and BmR1. Coded serum specimens were distributed to five participating laboratories where assays for each antigen were conducted in parallel. Assays based on Bm14, WbSXP, or BmR1 demonstrated good sensitivity (>90%) for field use and none of the assays demonstrated reactivity with specimens from persons with non-filarial helminth infections. Limitations of the assays are discussed. Well-designed field studies are now needed to assess sampling methodology and the application of antibody testing to the monitoring and surveillance of LF elimination programs. PMID:15347425

  14. Immunization of rhesus macaques with Echinococcus multilocularis recombinant 14-3-3 antigen leads to specific antibody response.

    PubMed

    Lampe, Karen; Gottstein, B; Becker, T; Stahl-Hennig, C; Kaup, F-J; Mätz-Rensing, K

    2017-01-01

    E. multilocularis (Em) is the etiologic agent of alveolar echinococcosis (AE), a severe and potentially fatal disease, primarily affecting the liver of and occurring in aberrant intermediate hosts, e.g., humans and non-human primates. Due to increasing numbers of spontaneous cases of AE in the Old World monkey colonies of the German Primate Center, the question arose as to whether vaccination of non-human primates may represent a useful prophylactic approach. In this pilot study, the recombinant antigen Em14-3-3, which has provided a 97 % protection against E. multilocularis challenge infection in rodent models, was used for the first time to immunize rhesus macaques. In order to increase immunogenicity, the antigen was formulated with different adjuvants including Quil A®, aluminum hydroxide (alum), and muramyl dipeptide (MDP). Also, different vaccination regimens were tested. All vaccinated animals developed antigen-specific antibodies. While Quil A® induced a local adverse reaction, alum proved to be the most potent adjuvant in terms of induced antibody levels, longevity as well as tolerability. In conclusion, our pilot study demonstrated that recombinant Em14-3-3 is safe and immunogenic in rhesus monkeys. As a next step, efficacy of the vaccination remains to be explored.

  15. Development and evaluation of a sensitive and specific assay for diagnosis of human toxocariasis by use of three recombinant antigens (TES-26, TES-30USM, and TES-120).

    PubMed

    Mohamad, Suharni; Azmi, Norhaida Che; Noordin, Rahmah

    2009-06-01

    Diagnosis of human toxocariasis currently relies on serologic tests that use Toxocara excretory-secretory (TES) antigen to detect immunoglobulin G (IgG) antibodies to the larvae. In general, however, these assays do not have adequate specificity for use in countries in which other soil-transmitted helminths are endemic. The use of recombinant antigens in these assays, however, is promising for improving the specificity of the diagnosis of toxocariasis. Toward this goal, we developed an IgG4 enzyme-linked immunosorbent assay (ELISA) involving three recombinant antigens: rTES-30USM (previously produced), rTES-26, and rTES-120. The latter two antigens were produced by reverse transcription-PCR cloning; subcloned into glutathione S-transferase (GST)-tagged and His-tagged prokaryotic expression vectors, respectively; and expressed in Escherichia coli. The recombinant proteins were subsequently purified by affinity chromatography using GST and His-Trap resins. The diagnostic potential of each purified recombinant antigen was tested with various immunoglobulin classes (IgG, IgM, and IgE) and IgG subclasses. The IgG4 ELISA was determined to have the highest specificity and was further evaluated using a panel of serum samples. The rTES-26 IgG4 ELISA showed 80.0% (24/30 samples positive) sensitivity, and both the rTES-30USM IgG4 ELISA and rTES-120 IgG4 ELISA had 93.0% (28/30) sensitivity. Combined use of rTES-120 and rTES-30 IgG4 ELISA for the diagnosis of toxocariasis provided 100% sensitivity. The specificities of rTES-26, rTES-30USM, and rTES-120 antigens were 96.2%, 93.9%, and 92.0%, respectively. These results indicate that the development of a diagnostic test using the three recombinant antigens will allow for more-accurate detection of toxocariasis.

  16. Evaluation of a recombinant LipL41 antigen of Leptospira interrogans serovar canicola in ELISA for serodiagnosis of bovine leptospirosis.

    PubMed

    Mariya, R; Chaudhary, Pallab; Kumar, A A; Thangapandian, E; Amutha, R; Srivastava, S K

    2006-11-01

    The efficacy of a recombinant leptospiral lipoprotein LipL41 as an antigen for conducting enzyme-linked immunosorbent assay (ELISA) for diagnosis of bovine leptospirosis was evaluated. Using known positive and known negative cattle sera the recombinant antigen was found to be highly reactive in the concentration of 100 ng/well. Using a total of 321 field cattle sera the sensitivity of ELISA as compared to microscopic agglutination test (MAT) was calculated to be 100% whereas the specificity was 85.3%. The seropositivity of leptospirosis among bovine population was found to be 21.18% having the predominance of serovars Sejroe and Pomona. It was concluded that rLipL41 protein could be a putative diagnostic candidate for serodiagnosis of bovine leptospirosis.

  17. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae.

    PubMed

    Khulape, S A; Maity, H K; Pathak, D C; Mohan, C Madhan; Dey, S

    2015-09-01

    The outer membrane glycoprotein, hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is important for virus infection and subsequent immune response by host, and offers target for development of recombinant antigen-based immunoassays and subunit vaccines. In this study, the expression of HN protein of NDV is attempted in yeast expression system. Yeast offers eukaryotic environment for protein processing and posttranslational modifications like glycosylation, in addition to higher growth rate and easy genetic manipulation. Saccharomyces cerevisiae was found to be better expression system for HN protein than Pichia pastoris as determined by codon usage analysis. The complete coding  sequence of HN gene was amplified with the histidine tag, cloned in pESC-URA under GAL10 promotor and transformed in Saccharomyces cerevisiae. The recombinant HN (rHN) protein was characterized by western blot, showing glycosylation heterogeneity as observed with other eukaryotic expression systems. The recombinant protein was purified by affinity column purification. The protein could be further used as subunit vaccine.

  18. Development and Evaluation of a Sensitive and Specific Assay for Diagnosis of Human Toxocariasis by Use of Three Recombinant Antigens (TES-26, TES-30USM, and TES-120)▿

    PubMed Central

    Mohamad, Suharni; Azmi, Norhaida Che; Noordin, Rahmah

    2009-01-01

    Diagnosis of human toxocariasis currently relies on serologic tests that use Toxocara excretory-secretory (TES) antigen to detect immunoglobulin G (IgG) antibodies to the larvae. In general, however, these assays do not have adequate specificity for use in countries in which other soil-transmitted helminths are endemic. The use of recombinant antigens in these assays, however, is promising for improving the specificity of the diagnosis of toxocariasis. Toward this goal, we developed an IgG4 enzyme-linked immunosorbent assay (ELISA) involving three recombinant antigens: rTES-30USM (previously produced), rTES-26, and rTES-120. The latter two antigens were produced by reverse transcription-PCR cloning; subcloned into glutathione S-transferase (GST)-tagged and His-tagged prokaryotic expression vectors, respectively; and expressed in Escherichia coli. The recombinant proteins were subsequently purified by affinity chromatography using GST and His-Trap resins. The diagnostic potential of each purified recombinant antigen was tested with various immunoglobulin classes (IgG, IgM, and IgE) and IgG subclasses. The IgG4 ELISA was determined to have the highest specificity and was further evaluated using a panel of serum samples. The rTES-26 IgG4 ELISA showed 80.0% (24/30 samples positive) sensitivity, and both the rTES-30USM IgG4 ELISA and rTES-120 IgG4 ELISA had 93.0% (28/30) sensitivity. Combined use of rTES-120 and rTES-30 IgG4 ELISA for the diagnosis of toxocariasis provided 100% sensitivity. The specificities of rTES-26, rTES-30USM, and rTES-120 antigens were 96.2%, 93.9%, and 92.0%, respectively. These results indicate that the development of a diagnostic test using the three recombinant antigens will allow for more-accurate detection of toxocariasis. PMID:19369434

  19. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  20. MVA vaccine encoding CMV antigens safely induces durable expansion of CMV-specific T cells in healthy adults

    PubMed Central

    La Rosa, Corinna; Longmate, Jeff; Martinez, Joy; Zhou, Qiao; Kaltcheva, Teodora I.; Tsai, Weimin; Drake, Jennifer; Carroll, Mary; Wussow, Felix; Chiuppesi, Flavia; Hardwick, Nicola; Dadwal, Sanjeet; Aldoss, Ibrahim; Nakamura, Ryotaro; Zaia, John A.

    2017-01-01

    Attenuated poxvirus modified vaccinia Ankara (MVA) is a useful viral-based vaccine for clinical investigation, because of its excellent safety profile and property of inducing potent immune responses against recombinant (r) antigens. We developed Triplex by constructing an rMVA encoding 3 immunodominant cytomegalovirus (CMV) antigens, which stimulates a host antiviral response: UL83 (pp65), UL123 (IE1-exon4), and UL122 (IE2-exon5). We completed the first clinical evaluation of the Triplex vaccine in 24 healthy adults, with or without immunity to CMV and vaccinia virus (previous DryVax smallpox vaccination). Three escalating dose levels (DL) were administered IM in 8 subjects/DL, with an identical booster injection 28 days later and 1-year follow-up. Vaccinations at all DL were safe with no dose-limiting toxicities. No vaccine-related serious adverse events were documented. Local and systemic reactogenicity was transient and self-limiting. Robust, functional, and durable Triplex-driven expansions of CMV-specific T cells were detected by measuring T-cell surface levels of 4-1BB (CD137), binding to CMV-specific HLA multimers, and interferon-γ production. Marked and durable CMV-specific T-cell responses were also detected in Triplex-vaccinated CMV-seronegatives, and in DryVax-vaccinated subjects. Long-lived memory effector phenotype, associated with viral control during CMV primary infection, was predominantly found on the membrane of CMV-specific and functional T cells, whereas off-target vaccine responses activating memory T cells from the related herpesvirus Epstein-Barr virus remained undetectable. Combined safety and immunogenicity results of MVA in allogeneic hematopoietic stem cell transplant (HCT) recipients and Triplex in healthy adults motivated the initiation of a placebo-controlled multicenter trial of Triplex in HCT patients. This trial was registered at www.clinicaltrials.gov as #NCT02506933. PMID:27760761

  1. Structure and genetic variability of envelope glycoproteins of two antigenic variants of caprine arthritis-encephalitis lentivirus.

    PubMed

    Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A

    1991-11-01

    To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM.

  2. Structure and genetic variability of envelope glycoproteins of two antigenic variants of caprine arthritis-encephalitis lentivirus.

    PubMed Central

    Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A

    1991-01-01

    To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM. Images PMID:1656067

  3. Antigenic Variation in the Lyme Spirochete: Insights into Recombinational Switching with a Suggested Role for Error-Prone Repair.

    PubMed

    Verhey, Theodore B; Castellanos, Mildred; Chaconas, George

    2018-05-29

    The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Antigenicity in sheep of synthetic peptides derived from stress-regulated Mycobacterium avium subsp. paratuberculosis proteins and comparison with recombinant protein and complex native antigens.

    PubMed

    Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; Whittington, Richard J

    2014-03-15

    Serum antibody enzyme-linked immunosorbent assay is the most commonly used test for diagnosis of Mycobacterium avium subsp. paratuberculosis infection in ruminants. However, the assay requires serum preabsorption with Mycobacterium phlei proteins to reduce cross reactions potentially contributed by the exposure of livestock to environmental mycobacteria. To trial the discovery of novel antigens which do not require serum absorption, synthetic MAP-specific peptides were selected based on in silico research to identify putative B cell epitopes. Four peptides from previously identified stress-regulated proteins were synthesized and evaluated using enzyme linked immunosorbent assay to detect Mycobacterium avium subsp. paratuberculosis specific antibodies in sheep. Two peptides were from hypothetical MAP proteins (MAP3567 and MAP1168c) and two were from proteins with known function (MAP2698c, an acyl-acyl carrier protein desaturase-DesA2 and MAP2487c a carbonic anhydrase). The ability of each peptide to discriminate between unexposed and MAP exposed (infected and vaccinated) animals was similar to that of the parent recombinant MAP antigen, with area under receiver operating curve values of 0.86-0.93. Assays run with a combination of two peptides showed slightly higher reactivity than those of individual peptides. Peptides evaluated in this study had diagnostic potential similar to corresponding recombinant proteins but not superior to a complex native MAP antigen or a commercial assay. Further study is required to investigate other peptides for their diagnostic potential, and this may be simpler and cheaper than subunit protein-based research. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. An Automated ELISA Using Recombinant Antigens for Serologic Diagnosis of B Virus Infections in Macaques

    PubMed Central

    Katz, David; Shi, Wei; Patrusheva, Irina; Perelygina, Ludmila; Gowda, Manjunath S; Krug, Peter W; Filfili, Chadi N; Ward, John A; Hilliard, Julia K

    2012-01-01

    B virus (Macacine herpesvirus 1) occurs naturally in macaques and can cause lethal zoonotic infections in humans. Detection of B virus (BV) antibodies in macaques is essential for the development of SPF breeding colonies and for diagnosing infection in macaques that are involved in human exposures. Traditionally, BV infections are monitored for presence of antibodies by ELISA (a screening assay) and western blot analysis (WBA; a confirmatory test). Both tests use lysates of infected cells as antigens. Because WBA often fails to confirm the presence of low-titer serum antibodies detected by ELISA, we examined a recombinant-based ELISA as a potential alternative confirmatory test. We compared a high-throughput ELISA using 384-well plates for simultaneous antibody screening against 4 BV-related, recombinant proteins with the standard ELISA and WBA. The recombinant ELISA results confirmed more ELISA-positive sera than did WBA. The superiority of the recombinant ELISA over WBA was particularly prominent for sera with low (<500 ELISA units) antibody titers. Among low-titer sera, the relative sensitivity of the recombinant ELISA ranged from 36.7% to 45.0% as compared with 3.3% to 10.0% for WBA. In addition, the screening and confirmatory assays can be run simultaneously, providing results more rapidly. We conclude that the recombinant ELISA is an effective replacement for WBA as a confirmatory assay for the evaluation of macaque serum antibodies to BV. PMID:23561887

  6. Characterization of the Apa antigen from M. avium subsp. paratuberculosis: a conserved Mycobacterium antigen that elicits a strong humoral response in cattle.

    PubMed

    Gioffré, A; Echeverría-Valencia, G; Arese, A; Morsella, C; Garbaccio, S; Delgado, F; Zumárraga, M; Paolicchi, F; Cataldi, A; Romano, M I

    2009-12-15

    Johne's disease or paratuberculosis is widespread in almost all countries and remains difficult to eradicate. Nowadays, diagnosis of Mycobacterium avium subsp. paratuberculosis (MPTB) infection is one of the main concerns. In this work, we evaluated the expression, biochemical properties and antigenicity of the Apa antigen, encoded by the gene annotated as MAP1569, in the MPTB genome. We confirmed its expression in MPTB and its glycosylation by the ConA binding assay. Although the MPTB-Apa is not an immunodominant antigen, MPTB-infected cattle showed a strong humoral response to recombinant Apa by Western blot and ELISA. Milk was also a suitable sample to be tested by ELISA. We comparatively analysed the humoral cross-reactivity to the Apa from MPTB (MPTB-Apa) and the orthologue from Mycobacterium tuberculosis (MT-Apa, identical to that from Mycobacterium bovis) in both infected and control cows. Response of M. bovis- and MPTB-infected animals against MT-Apa was similar (P=0.6985) but the response of the M. bovis-infected ones to MPTB-Apa was differential, being significantly diminished (P<0.0001). Although 6 out 45 animals from MPTB-infected herds responded to MPTB-Apa stimulation in the IFNgamma release assay, we found no significant differences when compared infected herds with non-infected ones (P=0.34). This antigen, in contrast to bovine Purified Protein Derivative (PPDb), was strongly represented in avian PPD (PPDa), as shown by the recognition of BALB/c mice hyperimmune sera against MPTB-Apa by Dot-blot immunoassay. We therefore demonstrated the antigenicity of Apa in MPTB-infected animals and a differential response to the recombinant antigen when compared to M. bovis-infected animals. These traits herein described, added to the usefulness of milk samples to detect IgG anti-Apa, could be important for routine screening in dairy cattle, considering a multiantigenic approach to overcome the lack of immunodominance.

  7. Evaluation of Enzyme-Linked Immunosorbent Assay for Diagnosis of Post-Kala-Azar Dermal Leishmaniasis with Crude or Recombinant k39 Antigen

    PubMed Central

    Salotra, P.; Sreenivas, G.; Nasim, A. A.; Subba Raju, B. V.; Ramesh, V.

    2002-01-01

    The diagnosis of post-kala-azar dermal leishmaniasis (PKDL), a dermatosis that provides the only known reservoir for the parasite Leishmania donovani in India, remains a problem. Timely recognition and treatment of PKDL would contribute significantly to the control of kala-azar. We evaluated here the potential of the enzyme-linked immunosorbent assay (ELISA) as a diagnostic tool for PKDL. Antigen prepared from promastigotes and axenic amastigotes with parasite isolates that were derived from skin lesions of a PKDL patient gave sensitivities of 86.36 and 92%, respectively, in the 88 PKDL cases examined. The specificity of the ELISA test was examined by testing groups of patients with other skin disorders (leprosy and vitiligo) or coendemic infections (malaria and tuberculosis), as well as healthy controls from areas where this disease is endemic or is not endemic. A false-positive reaction was obtained in 14 of 144 (9.8%) of the controls with the promastigote antigen and in 14 of 145 (9.7%) of the controls with the amastigote antigen. Evaluation of the serodiagnostic potential of recombinant k39 by ELISA revealed a higher sensitivity (94.5%) and specificity (93.7%) compared to the other two antigens used. The data demonstrate that ELISA with crude or recombinant antigen k39 provides a relatively simple and less-invasive test for the reliable diagnosis of PKDL. PMID:11874880

  8. Design and evaluation of protein expression in a recombinant plasmid encoding epitope gp 350/220 of the Epstein-Barr virus (EBV)

    NASA Astrophysics Data System (ADS)

    Himmah, Karimatul; Dluha, Nurul; Anyndita, Nadya V. M.; Rifa'i, Muhaimin; Widodo

    2017-05-01

    The Epstein - Barr virus (EBV) causes severe infections that may lead to cancers such as nasopharyngeal carcinoma. Development of effective EBV vaccines is necessary to prevent the virus spreading throughout the community. TheEBV has a surface protein gp 350/220, which serves as an antigen to help interact with host cells. Epitopes of the protein can potentially serve as bases for a vaccine. In a previous study, we have found a conserved epitope of gp 350/220 from all strains EBV through an in silico approach. The aim of this study is to design and overproduce a recombinant peptide of epitope gp 350/220 in E. coli. DNA encoding the conserved epitope was synthesized and cloned into plasmid pET-22b(+); the recombinant plasmid was transformed into E. coli strains DH5α and BL21. The transformed plasmid DNA was isolated and confirmed by restriction using XbaI and PstI enzymes followed by DNA sequencing. Protein expression was induced by isopropyl-D-thiogalactopyranoside (IPTG) with final concentrations of 0.1, 0.2, 1, and 2 mM in consecutive times. An osmotic shock method was used to isolate protein from periplasmic fraction of E. coli DH5α and BL21. The SDS-PAGE analysis was carried out to detect peptide target (3.4 kDa). Based on this result, the induction process did not work properly, and thus needs further investigation.

  9. Characterisation of antibody responses in pigs induced by recombinant oncosphere antigens from Taenia solium.

    PubMed

    Jayashi, César M; Gonzalez, Armando E; Castillo Neyra, Ricardo; Kyngdon, Craig T; Gauci, Charles G; Lightowlers, Marshall W

    2012-12-14

    Recombinant antigens cloned from the oncosphere life cycle stage of the cestode parasite Taenia solium (T. solium) have been proven to be effective as vaccines for protecting pigs against infections with T. solium. Previous studies have defined three different host protective oncosphere antigens, TSOL18, TSOL16 and TSOL45. In this study, we evaluated the potential for combining the antigens TSOL16 and TSOL18 as a practical vaccine. Firstly, in a laboratory trial, we compared the immunogenicity of the combined antigens (TSOL16/18) versus the immunogenicity of the antigens separately. Secondly, in a field trial, we tested the ability of the TSOL16/18 vaccine to induce detectable antibody responses in animals living under environmental stress and traditionally reared in areas where T. solium cysticercosis is endemic; and finally, we characterised the immune response of the study population. Pigs of 8-16 weeks of age were vaccinated with 200 μg each of TSOL16 and TSOL18, plus 5mg of Quil-A. Specific total IgG, IgG(1) and IgG(2) antibody responses induced by TSOL16 and TSOL18 were determined with ELISA. The immunogenicity of both antigens was retained in the combined TSOL16/18 vaccine. The combined vaccine TSOL16/18 induced detectable specific anti-TSOL18 antibody responses in 100% (113/113) and specific anti-TSOL16 in 99% (112/113) of the vaccinated animals measured at 2 weeks following the booster vaccination. From the two IgG antibody subtypes analysed we found there was stronger response to IgG(2). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Serodiagnosis of infectious mononucleosis by using recombinant Epstein-Barr virus antigens and enzyme-linked immunosorbent assay technology.

    PubMed Central

    Gorgievski-Hrisoho, M; Hinderer, W; Nebel-Schickel, H; Horn, J; Vornhagen, R; Sonneborn, H H; Wolf, H; Siegl, G

    1990-01-01

    Four recombinant, diagnostically useful Epstein-Barr virus (EBV) proteins representative of the viral capsid antigen (p150), diffuse early antigen (p54), the major DNA-binding protein (p138), and the EBV nuclear antigen (p72) (W. Hinderer, H. Nebel-Schickel, H.H. Sonneborn, M. Motz, R. Kühbeck, and H. Wolf, J. Exp. Clin. Cancer Res. 7[Suppl.]:132, 1988) were used to set up individual enzyme-linked immunosorbent assays (ELISAs) for the qualitative and quantitative detection of immunoglobulin M (IgM) and IgG antibodies. In direct comparison with results obtained by standard immunofluorescence or immunoperoxidase assays, it was then shown that the recombinant EBV ELISAs provide the means for specific and sensitive serodiagnosis of infectious mononucleosis (IM) caused by EBV. The most useful markers in sera from such patients proved to be IgM antibodies against p54, p138, and p150. Additional positive markers for recent or ongoing IM apparently were IgG antibodies against p54 and p138. In contrast, anti-p72 IgG had a high preference for sera from healthy blood donors and, therefore, can be considered indicative of past exposure to the virus. Altogether, the individual ELISAs proved to be as specific and at least as sensitive for the diagnosis of IM as the currently available standard techniques are. Moreover, our findings suggest that, by combining individual test antigens, a workable ELISA system consisting of three assays (IgM against p54, p138, and p150; IgG against p54 and p138; and IgG against p72) can be established for the standardized rapid diagnosis of acute EBV infections. PMID:2172287

  11. Expression of a recombinant human sperm-agglutinating mini-antibody in tobacco (Nicotiana tabacum L.).

    PubMed

    Xu, Bingfang; Copolla, Michael; Herr, John C; Timko, Michael P

    2007-01-01

    The murine monoclonal antibody (mAB) S19 recognizes an N-linked carbohydrate antigen designated sperm agglutination antigen-1 (SAGA1) located on the membrane protein CD52. This antigen is added to the sperm surface during epididymal maturation. Binding of the S19 mAB to SAGA-1 causes the rapid agglutination of sperm and blocks pre-fertilization events. Previous studies indicated that the S19 mAB may be a potential specific spermicidal agent (termed a spermistatic) capable of replacing current spermicidal products that contain harsh detergents with harmful side effects. The nucleotide sequences encoding the heavy (H) and light (L) chains of the S19 antibody were cloned. A chimeric gene was constructed using the nucleotide sequences encoding the variable regions of both the H and L chains, and this gene (scFv1 9) was expressed in transgenic tobacco (Nicotiana tabacum L.) to produce a recombinant anti-sperm antibody (RASA). Highest levels of RASA expression were observed in BY-2 plant cell suspension cultures and regenerated N. tabacum cv. Xanthi plants transformant in which the RASA coding sequences were expressed under the control of the Cauliflower Mosaic Virus 35S promoter containing a double-enhancer sequence (2X CaMV 35S). Subsequent modifications of the transgene including the addition of a 5'-untranslated sequence from the tobacco etch virus (TEV leader sequence), N-terminal fusion of the coding region with an endoplasmic reticulum targeting signal of patatin (pat) and C-terminal fusion with the endoplasmic reticulum retention signal peptide KDEL showed further enhancement of RASA expression. The plant-expressed RASA formed intrachain disulfide bonds and was primarily soluble in the cytoplasmic fraction of the cells. Introduction of a poly-histidine (6xHIS) tag in the recombinant RASA protein allowed for rapid purification of the recombinant protein using Ni-NTA chromatography. Optimization of scale-up production and purification of this plant

  12. Comparative evaluation of recombinant LigB protein and heat-killed antigen-based latex agglutination test with microscopic agglutination test for diagnosis of bovine leptospirosis.

    PubMed

    Nagalingam, Mohandoss; Thirumalesh, Sushma Rahim Assadi; Kalleshamurthy, Triveni; Niharika, Nakkala; Balamurugan, Vinayagamurthy; Shome, Rajeswari; Sengupta, Pinaki Prasad; Shome, Bibek Ranjan; Prabhudas, Krishnamsetty; Rahman, Habibur

    2015-10-01

    This study aimed to develop latex agglutination test (LAT) using recombinant leptospiral immunoglobulin-like protein (LigB) (rLigB) antigen and compare its diagnostic efficacy with LAT using conventional heat-killed leptospiral antigen and microscopic agglutination test (MAT) in diagnosing bovine leptospirosis. The PCR-amplified 1053-bp ligB gene sequences from Leptospira borgpetersenii Hardjo serovar were cloned in pET 32 (a) vector at EcoRI and NotI sites and expressed in BL21 E. coli cells as fusion protein with thioredoxin (-57 kDa) and characterized by SDS-PAGE and immunoblot. Out of 390 serum samples [cattle (n = 214), buffaloes (n = 176)] subjected to MAT, 115 samples showed reciprocal titre≥100 up to 1600 against one or more serovars. For recombinant LigB protein/antigen-based LAT, agglutination was observed in the positive sample, while no agglutination was observed in the negative sample. Similarly, heat-killed leptospiral antigen was prepared from and used in LAT for comparison with MAT. A two-sided contingency table was used for analysis of LAT using both the antigens separately against MAT for 390 serum samples. The sensitivity, specificity and positive and negative predictive values of recombinant LigB LAT were found to be 75.65, 91.27, 78.38 and 89.96 %, respectively, and that of heat-killed antigen-based LAT were 72.17, 89.82, 74.77 and 88.53 %, respectively, in comparison with MAT. This developed test will be an alternative/complementary to the existing battery of diagnostic assays/tests for specific detection of pathogenic Leptospira infection in bovine population.

  13. The optimal mixture of Toxoplasma gondii recombinant antigens (GRA1, P22, ROP1) for diagnosis of ovine toxoplasmosis.

    PubMed

    Holec-Gąsior, Lucyna; Ferra, Bartłomiej; Hiszczyńska-Sawicka, Elżbieta; Kur, Józef

    2014-12-15

    Toxoplasmosis, caused by Toxoplasma gondii, is the major parasitic disease affecting sheep. Infection not only results in significant reproductive losses in these animals, but has public health implications since consumption of infected meat can facilitate zoonotic transmission. Although several serological tests are currently used for diagnosis of ovine toxoplasmosis, production of reliable reagents is a constraint and therefore there is a need to develop new diagnostic tools. In this paper, we assess for the first time, the preliminary diagnostic utility of 19 T. gondii recombinant antigens (GRA1, GRA2ex2, GRA4, GRA5, GRA6, GRA9, SAG1, SAG4, BSR4, P22, ROP1, P36, MIC1ex2, MIC1ex34, MIC3, MAG1, BAG1, LDH1, and LDH2) in immunoglobulin G (IgG) enzyme-linked immunosorbent assays (IgG ELISAs). Following an initial evaluation, eight recombinant antigens (GRA1, GRA9, SAG1, SAG4, P22, MIC1ex2, MIC3, ROP1) were chosen for subsequent testing and comparison against the native Toxoplasma lysate antigen (TLA) in IgG ELISAs using 88 sera from naturally infected sheep and 20 sera from healthy animals. The reactivity of these antigens was variable with the best results for GRA1, P22, ROP1 and TLA. High sensitivity and specificity (100%) was noted for GRA1, ROP1 and TLA; P22 showed a slightly lower sensitivity (98.9%) but the same high specificity (100%). Four different combinations of these antigens (M1: GRA1+ROP1; M2: GRA1+P22; M3: P22+ROP1; M4: GRA1+P22+ROP1) were tested against the same pool of ovine sera; all IgG-positive serum samples were detected by all of the mixtures. However, the most effective for diagnosis of toxoplasmosis in sheep, based on the highest absorbance values, was the mixture M4 containing three proteins. High sensitivity and specificity (100%) was observed from tests containing either M4 or TLA antigens with a new pool of sera (93 seropositive and 35 seronegative). Thus, the present study shows that a cocktail of GRA1+P22+ROP1 recombinant proteins can be

  14. A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines.

    PubMed

    Smolarek, Dorota; Hattab, Claude; Hassanzadeh-Ghassabeh, Gholamreza; Cochet, Sylvie; Gutiérrez, Carlos; de Brevern, Alexandre G; Udomsangpetch, Rachanee; Picot, Julien; Grodecka, Magdalena; Wasniowska, Kazimiera; Muyldermans, Serge; Colin, Yves; Le Van Kim, Caroline; Czerwinski, Marcin; Bertrand, Olivier

    2010-10-01

    Fy blood group antigens are carried by the Duffy antigen receptor for chemokines (DARC), a red cells receptor for Plasmodium vivax broadly implicated in human health and diseases. Recombinant VHHs, or nanobodies, the smallest intact antigen binding fragment derivative from the heavy chain-only antibodies present in camelids, were prepared from a dromedary immunized against DARC N-terminal extracellular domain and selected for DARC binding. A described VHH, CA52, does recognize native DARC on cells. It inhibits P. vivax invasion of erythrocytes and displaces interleukin-8 bound to DARC. The targeted epitope overlaps the well-defined DARC Fy6 epitope. K (D) of CA52-DARC equilibrium is sub-nanomolar, hence ideal to develop diagnostic or therapeutic compounds. Immunocapture by immobilized CA52 yielded highly purified DARC from engineered K562 cells. This first report on a VHH with specificity for a red blood cell protein exemplifies VHHs' potentialities to target, to purify, and to modulate the function of cellular markers.

  15. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.

    PubMed

    Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M

    2017-11-07

    Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms

  16. Firewalls Prevent Systemic Dissemination of Vectors Derived from Human Adenovirus Type 5 and Suppress Production of Transgene-Encoded Antigen in a Murine Model of Oral Vaccination

    PubMed Central

    Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.

    2018-01-01

    To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380

  17. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    PubMed

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  18. Development and Comparative Evaluation of a Plate Enzyme-Linked Immunosorbent Assay Based on Recombinant Outer Membrane Antigens Omp28 and Omp31 for Diagnosis of Human Brucellosis

    PubMed Central

    Tiwari, Sapana; Kumar, Ashu; Mangalgi, Smita; Rathod, Vedika; Prakash, Archana; Barua, Anita; Arora, Sonia; Sathyaseelan, Kannusamy

    2013-01-01

    Brucellosis is an important zoonotic infectious disease of humans and livestock with worldwide distribution and is caused by bacteria of the genus Brucella. The diagnosis of brucellosis always requires laboratory confirmation by either isolation of pathogens or detection of specific antibodies. The conventional serological tests available for the diagnosis of brucellosis are less specific and show cross-reactivity with other closely related organisms. These tests also necessitate the handling of Brucella species for antigen preparation. Therefore, there is a need to develop reliable, rapid, and user-friendly systems for disease diagnosis and alternatives to vaccine approaches. Keeping in mind the importance of brucellosis as an emerging infection and the prevalence in India, we carried out the present study to compare the recombinant antigens with the native antigens (cell envelope and sonicated antigen) of Brucella for diagnosis of human brucellosis by an indirect plate enzyme-linked immunosorbent assay (ELISA). Recombinant outer membrane protein 28 (rOmp28) and rOmp31 antigens were cloned, expressed, and purified in the bacterial expression system, and the purified proteins were used as antigens. Indirect plate ELISAs were then performed and standardized for comparison of the reactivities of recombinant and native antigens against the 433 clinical samples submitted for brucellosis testing, 15 culture-positive samples, and 20 healthy donor samples. The samples were separated into four groups based on their positivity to rose bengal plate agglutination tests (RBPTs), standard tube agglutination tests (STATs), and 2-mercaptoethanol (2ME) tests. The sensitivities and specificities of all the antigens were calculated, and the rOmp28 antigen was found to be more suitable for the clinical diagnosis of brucellosis than the rOmp31 antigen and native antigens. The rOmp28-based ELISA showed a very high degree of agreement with the conventional agglutination tests and

  19. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration.

    PubMed

    Brockstedt, D G; Podsakoff, G M; Fong, L; Kurtzman, G; Mueller-Ruchholtz, W; Engleman, E G

    1999-07-01

    Recombinant adeno-associated virus (rAAV) is a replication-defective parvovirus which is being explored as a vector for gene therapy because of its broad host range, excellent safety profile, and durable transgene expression in infected hosts. rAAV has also been reported by several groups to induce little or no immune response to its encoded transgene products. In this study we examined the immunogenicity of rAAV by studying the immune response of C57BL/6 mice to a single dose of rAAV-encoding ovalbumin (AAV-Ova) administered by a variety of routes. Mice injected with AAV-Ova intraperitoneally (ip), intravenously, or subcutaneously developed potent ovalbumin-specific cytotoxic T lymphocytes (CTL) as well as anti-ovalbumin antibodies and antibodies to AAV. In contrast, mice injected with AAV-Ova intramuscularly developed a humoral response to the virus and the transgene but minimal ovalbumin-specific CTLs. The induced CTL response after ip administration of AAV-Ova protected mice against a subsequent tumor challenge with an ovalbumin-transfected B16 melanoma cell line. Studies of the mechanism by which AAV-Ova induces CTL confirmed that the virus delivers the transgene product into the classical MHC class I pathway of antigen processing. Mice that previously had been exposed to rAAV vectors failed to develop ovalbumin-specific CTL following administration of AAV-Ova. Analysis of these mice revealed the presence of circulating anti-AAV antibodies that blocked rAAV transduction in vitro and inhibited CTL induction in vivo. These results suggest a possible role for rAAV in the immunotherapy of malignancies and viral infections, although induced antibody responses to AAV may limit its ability to be administered for repeated vaccinations. Copyright 1999 Academic Press.

  20. Cross-reactivity between the immunodominant determinant of the antigen I component of Streptococcus sobrinus SpaA protein and surface antigens from other members of the Streptococcus mutans group.

    PubMed

    Goldschmidt, R M; Curtiss, R

    1990-07-01

    Most members of the Streptococcus mutans group of microorganisms specify a major cell surface-associated protein, SpaA, that is defined by its antigenic properties. The region of the spaA gene from Streptococcus sobrinus 6715 encoding the immunodominant determinant of the major antigenic component (antigen I) of the SpaA protein has recently been characterized. This study examined whether recognition of the immunodominant determinant is independent of the immunized animal host and whether antibodies elicited by the immunodominant determinant cross-react with cell surface proteins from S. mutans of various serotypes. Mouse and rabbit antisera to the undenatured SpaA protein reacted similarly both with the immunodominant determinant and with other antigenic structures of the protein in Western immunoblots with SpaA polypeptides that were specified by spaA gene fragments expressed in recombinant Escherichia coli. This suggests that the antibody responses of inbred and outbred animals were similar. Furthermore, antibodies raised against both the S. sobrinus SpaA immunodominant determinant expressed by recombinant E. coli and the purified protein from S. sobrinus displayed similar strain specificities and protein band profiles towards cells surface proteins from S. mutans of various serotypes in immunodot and Western blot analyses, respectively. This suggests that for S. sobrinus serotype g, the immune response against the SpaA protein is governed by the immunodominant determinant of antigen I. In addition, it indicates that the SpaA protein domain containing the immunodominant determinant overlaps the domain conferring cross-reactivity to cell surface proteins of S. mutans of various serotypes.

  1. Immunization of mice with baculovirus-derived recombinant SV40 large tumour antigen induces protective tumour immunity to a lethal challenge with SV40-transformed cells.

    PubMed Central

    Shearer, M H; Bright, R K; Lanford, R E; Kennedy, R C

    1993-01-01

    In this study, we examined the humoral immune responses and in vivo tumour immunity induced by baculovirus recombinant simian virus 40 (SV40) large tumour antigen (rSV40 T-ag). BALB/c mice immunized with rSV40 T-ag produced antibody responses that recognized SV40 large tumour antigen (T-ag) by ELISA. Analysis of these anti-SV40 T-ag responses indicated that the antibodies recognized epitopes associated with both the carboxy and amino terminus of SV40 T-ag. This pattern of SV40 T-ag epitope recognition was similar to that observed in anti-SV40 T-ag responses induced by inoculation with irradiated SV40-transformed cells. Mice immunized with either rSV40 T-ag or with the inactivated transformed cells were protected from a subsequent in vivo lethal tumour challenge with live SV40-transformed cells. These studies suggest that humoral immune responses induced by rSV40 T-ag are similar in epitope specificity to that induced by inactivated SV40-transformed cells. In addition, recombinant tumour-specific antigens from papovaviruses, such as SV40, can be used to induce tumour immunity which protects from a subsequent lethal tumour challenge. This study may provide insight into the use of recombinant tumour antigens as putative tumour vaccines and in the development of active immunotherapeutic strategies for treating virus-induced cancers. PMID:7679059

  2. A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP142 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-04-01

    Malaria is caused by parasites of the genus Plasmodium , which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum , it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1 42 ) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP1 42 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP1 42 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development. Copyright © 2017 American Society for Microbiology.

  3. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague

    PubMed Central

    Rocke, Tonie E.; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307—a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  4. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    USGS Publications Warehouse

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  5. Higher-order looping and nuclear organization of antigen receptor loci facilitate targeted RAG cleavage and regulated rearrangement in recombination centers

    PubMed Central

    Chaumeil, Julie; Micsinai, Mariann; Ntziachristos, Panagiotis; Deriano, Ludovic; Wang, Joy M-H; Ji, Yanhong; Nora, Elphege P.; Rodesch, Matthew J.; Jeddeloh, Jeffrey A.; Aifantis, Iannis; Kluger, Yuval; Schatz, David G.; Skok, Jane A.

    2013-01-01

    SUMMARY V(D)J recombination is essential for generating a diverse array of B and T cell receptors that can recognize and combat foreign antigen. As with any recombination event, tight control is essential to prevent the occurrence of genetic anomalies that drive cellular transformation. One important aspect of regulation is directed targeting of the RAG recombinase. Indeed, RAG accumulates at the 3’ end of individual antigen receptor loci poised for rearrangement, however, it is not known whether focal binding is involved in regulating cleavage, and what mechanisms lead to enrichment of RAG in this region. Here we show that mono-allelic looping out of the 3’ end of Tcra, coupled with transcription and increased chromatin/nuclear accessibility, are linked to focal RAG binding and ATM-mediated regulated mono-allelic cleavage on looped out 3’ regions. Our data identify higher order loop formation as a key determinant of directed RAG targeting and the maintenance of genome stability. PMID:23416051

  6. Novel functions for glycosyltransferases Jhp0562 and GalT in Lewis antigen synthesis and variation in Helicobacter pylori.

    PubMed

    Pohl, Mary Ann; Kienesberger, Sabine; Blaser, Martin J

    2012-04-01

    Lewis (Le) antigens are fucosylated oligosaccharides present in the Helicobacter pylori lipopolysaccharide. Expression of these antigens is believed to be important for H. pylori colonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galT is essential for production of type 1 (Le(a) and Le(b)) antigens. The upstream gene jhp0562, which is present in many but not all H. pylori strains, is homologous to β-(1,3)galT but is of unknown function. Because H. pylori demonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5' and 3' ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galT null mutant, but neither native nor recombinant jhp0562 can. Mutagenesis of jhp0562 revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galT expression in all wild-type (WT) and mutant strains tested, whereas jhp0562 was not expressed in jhp0562 null mutants, as expected. Since jhp0562 unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whether galT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed that galT is essential for Le(b) production. In total, these results demonstrate that galT and jhp0562 have functions that cross the expected Le synthesis pathways and that jhp0562 provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes.

  7. Novel Functions for Glycosyltransferases Jhp0562 and GalT in Lewis Antigen Synthesis and Variation in Helicobacter pylori

    PubMed Central

    Kienesberger, Sabine; Blaser, Martin J.

    2012-01-01

    Lewis (Le) antigens are fucosylated oligosaccharides present in the Helicobacter pylori lipopolysaccharide. Expression of these antigens is believed to be important for H. pylori colonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galT is essential for production of type 1 (Lea and Leb) antigens. The upstream gene jhp0562, which is present in many but not all H. pylori strains, is homologous to β-(1,3)galT but is of unknown function. Because H. pylori demonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5′ and 3′ ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galT null mutant, but neither native nor recombinant jhp0562 can. Mutagenesis of jhp0562 revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galT expression in all wild-type (WT) and mutant strains tested, whereas jhp0562 was not expressed in jhp0562 null mutants, as expected. Since jhp0562 unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whether galT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed that galT is essential for Leb production. In total, these results demonstrate that galT and jhp0562 have functions that cross the expected Le synthesis pathways and that jhp0562 provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes. PMID:22290141

  8. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  9. Human Anti-V3 HIV-1 Monoclonal Antibodies Encoded by the VH5-51/VL Lambda Genes Define a Conserved Antigenic Structure

    PubMed Central

    Gorny, Miroslaw K.; Sampson, Jared; Li, Huiguang; Jiang, Xunqing; Totrov, Maxim; Wang, Xiao-Hong; Williams, Constance; O'Neal, Timothy; Volsky, Barbara; Li, Liuzhe; Cardozo, Timothy; Nyambi, Phillipe; Zolla-Pazner, Susan; Kong, Xiang-Peng

    2011-01-01

    Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs. PMID:22164215

  10. Detection of anti-PL-12 autoantibodies by ELISA using a recombinant antigen; study of the immunoreactive region

    PubMed Central

    García-Lozano, J R; González-Escribano, M F; Rodríguez, R; Rodriguez-Sanchez, J L; Targoff, I N; Wichmann, I; Núñez-Roldán, A

    1998-01-01

    Autoantibodies to aminoacyl-tRNA synthetases are highly associated with myositis and detection is important in clinical diagnosis; however, current methods of screening limit its clinical utility. In the present study, alanyl-tRNA synthetase (PL-12) recombinant protein was obtained by immunological screening of a HeLa expression library and used in an ELISA with 22 anti-PL-12 sera, 200 autoimmune sera negative for PL-12 and 100 healthy individual sera. Sensitivity of the method was 95% (21/22) and specificity 100%. Mapping of the immunoreactive region was carried out using three anti-PL-12 sera and different recombinant protein-derived peptides. Results show that the same conformational epitope located within amino acids 730–951 of the PL-12 antigen outside the catalytic region was recognized by the three anti-PL-12 sera tested. We conclude that ELISA using recombinant protein is an effective and useful method for routine screening for anti-PL-12 autoantibodies. PMID:9822271

  11. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.

    PubMed

    Galay, Remil Linggatong; Miyata, Takeshi; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-01-01

    Ticks (Parasitiformes: Ixodida) are known for their obligate blood feeding habit and their role in transmitting pathogens to various vertebrate hosts. Tick control using chemical acaricides is extensively used particularly in livestock management, but several disadvantages arise from resistance development of many tick species, and concerns on animal product and environmental contamination. Vaccination offers better protection and more cost-effective alternative to application of chemical acaricides, addressing their disadvantages. However, an ideal anti-tick vaccine targeting multiple tick species and all the tick stages is still wanting. Here, we describe the procedures involved in the evaluation of a vaccine candidate antigen against ticks at the laboratory level, from the preparation of recombinant proteins, administration to the rabbit host and monitoring of antibody titer, to tick infestation challenge and determination of the effects of immunization to ticks.

  12. Generation and purification of recombinant fimbrillin from Porphyromonas (Bacteroides) gingivalis 381.

    PubMed Central

    Washington, O R; Deslauriers, M; Stevens, D P; Lyford, L K; Haque, S; Yan, Y; Flood, P M

    1993-01-01

    Fimbrillin is the major subunit protein of fimbriae from the human periodontal pathogen Porphyromonas (Bacteroides) gingivalis. We describe here the generation and initial characterization of recombinant fimbrillin (r-fimbrillin) isolated from P. gingivalis 381. A fragment of DNA encoding the gene for fimbrillin was generated by polymerase chain reaction and cloned into the expression vector pET11b. Plasmids containing the recombinant gene were transfected into Escherichia coli. Clones were selected on plates for ampicillin resistance and individually screened by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for protein production after activation with IPTG (isopropyl-beta-D- thiogalactopyranoside). One clone, OW0.2, produced significant amounts of a 42-kDa protein after induction with IPTG. This clone contained the pET11b plasmid with a 1-kb insert that had sequence homology to the gene encoding fimbrillin. The majority of recombinant protein from clone OW0.2 was found in the cytoplasm within inclusion bodies. Protein aggregates were solubilized in 8 M urea, and SDS-PAGE analysis showed two major protein bands, one at 42 kDa and the other at 17 kDa. These two proteins coeluted from a DEAE-Sepharose column at 0.15 M NaCl and were reactive to rabbit antiserum to fimbrillin in a Western blot (immunoblot). A preparation giving a single protein band at 42 kDa in SDS-PAGE was obtained by size fractionation by using continuous-elution electrophoresis. Lymph node cells from animals immunized with either fimbrillin from P. gingivalis or r-fimbrillin showed antigen-specific proliferation to both P. gingivalis fimbrillin and r-fimbrillin in an in vitro recall assay. Therefore, it appears that r-fimbrillin is chemically, antigenically, and serologically identical to fimbrillin isolated from P. gingivalis 381. Images PMID:8094377

  13. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins.

    PubMed Central

    Brown, W C; Zhao, S; Woods, V M; Tripp, C A; Tetzlaff, C L; Heussler, V T; Dobbelaere, D A; Rice-Ficht, A C

    1993-01-01

    Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1

  14. Evaluation of recombinant porin (rOmp2a) protein as a potential antigen candidate for serodiagnosis of Human Brucellosis.

    PubMed

    Pathak, Prachi; Kumar, Ashu; Thavaselvam, Duraipandian

    2017-07-11

    Brucellosis is an important zoonotic disease caused by different Brucella species and human brucellosis is commonly prevalent in different states of India. Among various Brucella species, B. melitensis is most pathogenic to human and included as category B biothreat which can cause infection through aerosol, cut, wounds in skin and contact with infected animals. The diagnosis of human brucellosis is very important for proper treatment and management of disease as there is no vaccine available for human use. The present study was designed to clone, express and purify immunodominant recombinant omp2a (rOmp2a) porin protein of B. melitensis and to evaluate this new antigen candidate for specific serodiagnosis of human brucellosis by highly sensitive iELISA (indirect enzyme linked immunosorbent assay). Omp2a gene of B. melitensis 16 M strain was cloned and expressed in pET-SUMO expression system. The recombinant protein was purified under denaturing conditions using 8 M urea. The purified recombinant protein was confirmed by western blotting by reacting with anti-HIS antibody. The sero-reactivity of the recombinant protein was also checked by reacting with antisera of experimentally infected mice with B. melitensis 16 M at different time points. Serodiagnostic potential of recombinant porin antigen was tested against 185 clinical serum samples collected from regions endemic to brucellosis in southern part of India by iELISA. The samples were grouped into five groups. Group 1 contained cultured confirmed positive serum samples of brucellosis (n = 15), group 2 contained sera samples from positive cases of brucellosis previously tested by conventional methods of RBPT (n = 28) and STAT (n = 26), group 3 contained sera samples negative by RBPT(n = 36) and STAT (n = 32), group 4 contained sera samples of other febrile illness and PUO case (n = 35) and group 5 contained confirmed negative sera samples from healthy donors (n = 23). The rOmp2a was found to be

  15. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  16. SvSXP: a Strongylus vulgaris antigen with potential for prepatent diagnosis.

    PubMed

    Andersen, Ulla V; Howe, Daniel K; Dangoudoubiyam, Sriveny; Toft, Nils; Reinemeyer, Craig R; Lyons, Eugene T; Olsen, Susanne N; Monrad, Jesper; Nejsum, Peter; Nielsen, Martin K

    2013-04-04

    Strongyle parasites are ubiquitous in grazing horses. Strongylus vulgaris, the most pathogenic of the large strongyles, is known for its extensive migration in the mesenteric arterial system. The lifecycle of S. vulgaris is characterised by a long prepatent period where the migrating larvae are virtually undetectable as there currently is no test available for diagnosing prepatent S. vulgaris infection. Presence of S. vulgaris larvae in the arterial system causes endarteritis and thrombosis with a risk of non-strangulating intestinal infarctions. Emergence of anthelmintic resistance among cyathostomins has led to recommendations of reduced treatment intensity by targeting horses that exceed a predetermined strongyle faecal egg count threshold. One study suggests an apparent increase in prevalence of S. vulgaris on farms where reduced anthelmintic treatment intensity has been implemented. These issues highlight the need for an accurate and reliable assay for diagnosing prepatent S. vulgaris infection. Immunoscreening of a larval S. vulgaris cDNA library using hyperimmune serum raised against S. vulgaris excretory/secretory antigens was performed to identify potential diagnostic antigens. Immunoreactive clones were sequenced, one potential antigen was characterised, expressed as a recombinant protein, initially evaluated by western blot (WB) analysis, the diagnostic potential of the IgG subclasses was evaluated by ELISA, and the diagnostic accuracy evaluated using serum from 102 horses with known S. vulgaris infection status. The clone expressing the potential antigen encoded a S. vulgaris SXP/RAL2 homologue. The recombinant protein, rSvSXP, was shown to be a potential diagnostic antigen by WB analysis, and a target of serum IgGa, IgG(T) and total IgG in naturally infected horses, with IgG(T) antibodies being the most reliable indicator of S. vulgaris infection in horses. Evaluation of diagnostic accuracy of the ELISA resulted in a sensitivity of 73.3%, a specificity

  17. SvSXP: a Strongylus vulgaris antigen with potential for prepatent diagnosis

    PubMed Central

    2013-01-01

    Background Strongyle parasites are ubiquitous in grazing horses. Strongylus vulgaris, the most pathogenic of the large strongyles, is known for its extensive migration in the mesenteric arterial system. The lifecycle of S. vulgaris is characterised by a long prepatent period where the migrating larvae are virtually undetectable as there currently is no test available for diagnosing prepatent S. vulgaris infection. Presence of S. vulgaris larvae in the arterial system causes endarteritis and thrombosis with a risk of non-strangulating intestinal infarctions. Emergence of anthelmintic resistance among cyathostomins has led to recommendations of reduced treatment intensity by targeting horses that exceed a predetermined strongyle faecal egg count threshold. One study suggests an apparent increase in prevalence of S. vulgaris on farms where reduced anthelmintic treatment intensity has been implemented. These issues highlight the need for an accurate and reliable assay for diagnosing prepatent S. vulgaris infection. Methods Immunoscreening of a larval S. vulgaris cDNA library using hyperimmune serum raised against S. vulgaris excretory/secretory antigens was performed to identify potential diagnostic antigens. Immunoreactive clones were sequenced, one potential antigen was characterised, expressed as a recombinant protein, initially evaluated by western blot (WB) analysis, the diagnostic potential of the IgG subclasses was evaluated by ELISA, and the diagnostic accuracy evaluated using serum from 102 horses with known S. vulgaris infection status. Results The clone expressing the potential antigen encoded a S. vulgaris SXP/RAL2 homologue. The recombinant protein, rSvSXP, was shown to be a potential diagnostic antigen by WB analysis, and a target of serum IgGa, IgG(T) and total IgG in naturally infected horses, with IgG(T) antibodies being the most reliable indicator of S. vulgaris infection in horses. Evaluation of diagnostic accuracy of the ELISA resulted in a

  18. Recombinant constructs of Borrelia burgdorferi

    DOEpatents

    Dattwyler, Raymond J.; Gomes-Solecki, Maria J. C.; Luft, Benjamin J.; Dunn, John J.

    2007-02-20

    Novel chimeric nucleic acids, encoding chimeric Borrelia proteins comprising OspC or an antigenic fragment thereof and OspA or an antigenic fragment thereof, are disclosed. Chimeric proteins encoded by the nucleic acid sequences are also disclosed. The chimeric proteins are useful as vaccine immunogens against Lyme borreliosis, as well as for immunodiagnostic reagents.

  19. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis.

    PubMed

    Boulila, Moncef

    2010-06-01

    To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.

  20. Recombinant Antigen-Based Enzyme-Linked Immunosorbent Assay for Diagnosis of Baylisascaris procyonis Larva Migrans ▿

    PubMed Central

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Ndao, Momar; Kazacos, Kevin R.

    2011-01-01

    Baylisascaris larva migrans is an important zoonotic disease caused by Baylisascaris procyonis, the raccoon roundworm, and is being increasingly considered in the differential diagnosis of eosinophilic meningoencephalitis in children and young adults. Although a B. procyonis excretory-secretory (BPES) antigen-based enzyme-linked immunosorbent assay (ELISA) and a Western blot assay are useful in the immunodiagnosis of this infection, cross-reactivity remains a major problem. Recently, a recombinant B. procyonis antigen, BpRAG1, was reported for use in the development of improved serological assays for the diagnosis of Baylisascaris larva migrans. In this study, we tested a total of 384 human patient serum samples in a BpRAG1 ELISA, including samples from 20 patients with clinical Baylisascaris larva migrans, 137 patients with other parasitic infections (8 helminth and 4 protozoan), and 227 individuals with unknown/suspected parasitic infections. A sensitivity of 85% and a specificity of 86.9% were observed with the BpRAG1 ELISA, compared to only 39.4% specificity with the BPES ELISA. In addition, the BpRAG1 ELISA had a low degree of cross-reactivity with antibodies to Toxocara infection (25%), while the BPES antigen showed 90.6% cross-reactivity. Based on these results, the BpRAG1 antigen has a high degree of sensitivity and specificity and should be very useful and reliable in the diagnosis and seroepidemiology of Baylisascaris larva migrans by ELISA. PMID:21832102

  1. Recombinant dissection of myosin heavy chain of Toxocara canis shows strong clustering of antigenic regions.

    PubMed

    Obwaller, A; Duchêne, M; Bruhn, H; Steipe, B; Tripp, C; Kraft, D; Wiedermann, G; Auer, H; Aspöck, H

    2001-05-01

    Myosins from nematode parasites elicit strong humoral and cellular immune responses and have been investigated as vaccine candidates. In this study we cloned and sequenced a cDNA coding for myosin heavy chain from Toxocara canis, a nematode parasite of canids which may also infect humans and cause various unspecific symptoms. To determine the major antigenic regions the myosin heavy chain was systematically dissected into ten overlapping recombinant fusion polypeptides which were purified by metal chelate chromatography. Single fragments were then tested for their IgG reactivity in sera from toxocarosis patients and healthy probands. Two regions, one region at the mid to carboxy-terminal end of the head domain and one region in the rod domain, were identified as major antigens, which in combination were positive with 86% of the sera. The other domains were less reactive. This shows that the patients' IgG reactivity was not directed evenly against all parts of the molecule, but was rather clustered in few regions.

  2. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  3. Bacterial production and structure-functional validation of a recombinant antigen-binding fragment (Fab) of an anti-cancer therapeutic antibody targeting epidermal growth factor receptor.

    PubMed

    Kim, Ji-Hun; Sim, Dae-Won; Park, Dongsun; Jung, Tai-Geun; Lee, Seonghwan; Oh, Taeheun; Ha, Jong-Ryul; Seok, Seung-Hyeon; Seo, Min-Duk; Kang, Ho Chul; Kim, Young Pil; Won, Hyung-Sik

    2016-12-01

    Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.

  4. Antigen processing in vivo and the elicitation of primary CTL responses.

    PubMed

    Restifo, N P; Bacík, I; Irvine, K R; Yewdell, J W; McCabe, B J; Anderson, R W; Eisenlohr, L C; Rosenberg, S A; Bennink, J R

    1995-05-01

    CD8+ T lymphocytes (TCD8+) play an important role in cellular immune responses. TCD8+ recognize MHC class I molecules complexed to peptides of 8 to 10 residues derived largely from cytosolic proteins. Proteins are generally thought to be fragmented in the cytoplasm and delivered to nascent class I molecules in the endoplasmic reticulum (ER) by a peptide transporter encoded by the MHC. To explore the extent to which TCD8+ induction in vivo is limited by proteolysis or peptide transport into the ER, mice were immunized with recombinant vaccinia viruses containing mini-genes encoding antigenic peptides (bypassing the need for proteolysis), or these peptides with a NH2-terminal ER insertion sequence (bypassing the requirements for both proteolysis and transport). Additionally, mice were immunized with recombinant vaccinia viruses encoding rapidly degraded fragments of proteins. We report that limitations in induction of TCD8+ responses vary among Ags: for some, full length proteins are as immunogenic as other forms tested; for others, maximal responses are induced by peptides or by peptides targeted to the ER. Most importantly, in every circumstance examined, targeting peptides to the ER never diminished, and in some cases greatly enhanced, the TCD8+ immune response and provide an important alternative strategy in the design of live viral or naked DNA vaccines for the treatment of cancer and infectious diseases.

  5. Expression of Recombinant Rotavirus Proteins Harboring Antigenic Epitopes of the Hepatitis A Virus Polyprotein in Insect Cells

    PubMed Central

    Than, Van Thai; Baek, In Hyuk; Lee, Hee Young; Kim, Jong Bum; Shon, Dong Hwa; Chung, In Sik; Kim, Wonyong

    2012-01-01

    Rotavirus and hepatitis A virus (HAV) spread by the fecal-oral route and infections are important in public health, especially in developing countries. Here, two antigenic epitopes of the HAV polyprotein, domain 2 (D2) and domain 3 (D3), were recombined with rotavirus VP7, generating D2/VP7 and D3/VP7, cloned in a baculovirus expression system, and expressed in Spodoptera frugiperda 9 (Sf9) insect cells. All were highly expressed, with peak expression 2 days post-infection. Western blotting and ELISA revealed that two chimeric proteins were antigenic, but only D2/VP7 was immunogenic and elicited neutralizing antibody responses against rotavirus and HAV by neutralization assay, implicating D2/VP7 as a multivalent subunit-vaccine Candidate for preventing both rotavirus and HAV infections. PMID:24130930

  6. Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system

    PubMed Central

    Santi, Luca; Giritch, Anatoli; Roy, Chad J.; Marillonnet, Sylvestre; Klimyuk, Victor; Gleba, Yuri; Webb, Robert; Arntzen, Charles J.; Mason, Hugh S.

    2006-01-01

    Plague is still an endemic disease in different regions of the world. Increasing reports of incidence, the discovery of antibiotic resistance strains, and concern about a potential use of the causative bacteria Yersinia pestis as an agent of biological warfare have highlighted the need for a safe, efficacious, and rapidly producible vaccine. The use of F1 and V antigens and the derived protein fusion F1-V has shown great potential as a protective vaccine in animal studies. Plants have been extensively studied for the production of pharmaceutical proteins as an inexpensive and scalable alternative to common expression systems. In the current study the recombinant plague antigens F1, V, and fusion protein F1-V were produced by transient expression in Nicotiana benthamiana by using a deconstructed tobacco mosaic virus-based system that allowed very rapid and extremely high levels of expression. All of the plant-derived purified antigens, administered s.c. to guinea pigs, generated systemic immune responses and provided protection against an aerosol challenge of virulent Y. pestis. PMID:16410352

  7. Expression and characterization of highly antigenic domains of chicken anemia virus viral VP2 and VP3 subunit proteins in a recombinant E. coli for sero-diagnostic applications

    PubMed Central

    2013-01-01

    Background Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. Generally, CAV infection occurs via vertical transmission in young chicks that are less than two weeks old, which are very susceptible to the disease. Therefore, epidemiological investigations of CAV infection and/or the evaluation of the immunization status of chickens is necessary for disease control. Up to the present, systematically assessing viral protein antigenicity and/or determining the immunorelevant domain(s) of viral proteins during serological testing for CAV infection has never been performed. The expression, production and antigenic characterization of CAV viral proteins such as VP1, VP2 and VP3, and their use in the development of diagnostic kit would be useful for CAV infection prevention. Results Three CAV viral proteins VP1, VP2 and VP3 was separately cloned and expressed in recombinant E. coli. The purified recombinant CAV VP1, VP2 and VP3 proteins were then used as antigens in order to evaluate their reactivity against chicken sera using indirect ELISA. The results indicated that VP2 and VP3 show good immunoreactivity with CAV-positive chicken sera, whereas VP1 was found to show less immunoreactivity than VP2 and VP3. To carry out the further antigenic characterization of the immunorelevant domains of the VP2 and VP3 proteins, five recombinant VP2 subunit proteins (VP2-435N, VP2-396N, VP2-345N, VP2-171C and VP2-318C) and three recombinant VP3 subunit proteins (VP3-123N, VP3-246M, VP3-366C), spanning the defined regions of VP2 and VP3 were separately produced by an E. coli expression system. These peptides were then used as antigens in indirect ELISAs against chicken sera. The results of these ELISAs using truncated recombinant VP2 and VP3 subunit proteins as coating antigen showed that VP2-345N, VP2-396N and VP3-246M gave good immunoreactivity with CAV-positive chicken sera compared to the other

  8. Recombinant α-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis.

    PubMed

    Xie, Yi-Ting; Gao, Jiang-Mei; Wu, Ya-Ping; Tang, Petrus; Hide, Geoff; Lai, De-Hua; Lun, Zhao-Rong

    2017-02-16

    stimulation with the corresponding antigens in vitro. Immunization with both ACT-F and ACT-T could confer partial to complete protection and trigger strong Th1/Th2 mixed humoral and cellular immune responses in the mouse host. This suggested that recombinant α-actinin subunit antigens may be promising vaccine candidates against trichomoniasis.

  9. Production of recombinant botulism antigens: a review of expression systems.

    PubMed

    Moreira, G M S G; Cunha, C E P; Salvarani, F M; Gonçalves, L A; Pires, P S; Conceição, F R; Lobato, F C F

    2014-08-01

    Botulism is a paralytic disease caused by intoxication with neurotoxins produced by Clostridium botulinum. Despite their similar mechanism of action, the botulinum neurotoxins (BoNT) are classified in eight serotypes (A to H). As to veterinary medicine, the impact of this disease is essentially economic, since different species of production animals can be affected, especially by BoNT/C and D. In human health, botulism is feared in a possible biological warfare, what would involve mainly the BoNT/A, B, E and F. In both cases, the most effective way to deal with botulism is through prevention, which involves vaccination. However, the current vaccines against this disease have several drawbacks on their process of production and, besides this, can be dangerous to producers since it requires certain level of biosafety. This way, recombinant vaccines have been shown to be a great alternative for the development of vaccines against both animal and human botulism. All BoNTs have a 50-kDa light chain (LC) and a 100-kDa heavy chain (HC). The latter one presents two domains of 50 kDa, called the N-terminal (HN) and C-terminal (HC) halves. Among these regions, the HC alone seem to confer the proper immune response against intoxication. Since innumerous studies describe the expression of these distinct regions using different systems, strategies, and protocols, it is difficult to define the best option for a viable vaccine production. Thereby, the present review describes the problematic of botulism and discusses the main advances for the viable production of vaccines for both human and veterinary medicine using recombinant antigens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  11. Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines

    PubMed Central

    Chin’ombe, Nyasha; Ruhanya, Vurayai

    2013-01-01

    HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity. These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice) and are yet to reach human trials. PMID:24478808

  12. Usefulness of in-house obtained recombinant proteins Yop of Yersinia enterocolitica as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis.

    PubMed

    Rastawicki, Waldemar; Smietafiska, Karolina; Chrost, Anna; Wolkowicz, Tomasz; Rokosz-Chudziak, Natalia

    Proper analysis of the human immune response is crucial in the laboratory diagnosis of many bacterial infections-The current serological diagnosis of yersiniosis often is carried out using ELISA with native antigens. However, recombinant proteins increase the specificity of the serological assays, particularly in patients with chronic, non- specific infections. The aim of the present study was to evaluate the usefulness of in-house obtained recombinant proteins Yop of Yersinia enterocolitica as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis. Recombinant YopD, YopB, YopE and V-Ag proteins of Y enterocolitica were expressing in E. coli BL21 (DE3) using the pET-30 Ek/LIC expression vector (Novagen). Purification was accomplished by immobilized metal (Ni2) affinity column chromatography (His-trap). The proteins were used as antigens in standard ELISA and recom-dot assay, which was performed on nitrocellulose strips. The study population, used for characterization of the humoral immune response to the recombinant proteins, consisted of 74 patients suspected for Y enterocolitica infection and 41 clinically healthy blood donors. Some of the results obtained by ELISA and recom-dot were compared with results obtained by commercial western-blot Yersinia (Virotech). In the group of patients suspected for yersiniosis in clinical investigation the most positive results were obtained in ELISA with the recombinant protein YopD (IgA respectively 25 (42.4%), IgG 41 (69.5%), IgM 24 (40.7%). The percentage ofpositive results in the group of blood donors did not exceed 10.0% in IgG and 5.0% in IgA/IgM classes of immunoglobulin. The results obtained in the recom-dot assay showed that among 74 tested serum samples obtained from individuals suspected of yersiniosis the most common IgA, IgG and IgM antibodies were found for recombinant protein YopD (respectively IgG in 60.8%, IgA in 37.8% and IgM in 33.8% of serum samples). IgG antibodies to

  13. Characterization of HKE2: an ancient antigen encoded in the major histocompatibility complex.

    PubMed

    Ostrov, D A; Barnes, C L; Smith, L E; Binns, S; Brusko, T M; Brown, A C; Quint, P S; Litherland, S A; Roopenian, D C; Iczkowski, K A

    2007-02-01

    Genes at the centromeric end of the human leukocyte antigen region influence adaptive autoimmune diseases and cancer. In this study, we characterized protein expression of HKE2, a gene located in the centromeric portion of the class II region of the major histocompatibility complex encoding subunit 6 of prefoldin. Immunohistochemical analysis using an anti-HKE2 antibody indicated that HKE2 protein expression is dramatically upregulated as a consequence of activation. In a tissue microarray and in several tumors, HKE2 was overexpressed in certain cancers compared with normal counterparts. The localization of the HKE2 gene to the class II region, its cytoplasmic expression and putative protein-binding domain suggest that HKE2 may function in adaptive immunity and cancer.

  14. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs

    PubMed Central

    Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel

    2016-01-01

    Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates. PMID:27223609

  15. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs.

    PubMed

    Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel

    2016-05-01

    Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  16. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  17. Development and evaluation of a truncated recombinant NS3 antigen-based indirect ELISA for detection of pestivirus antibodies in sheep and goats.

    PubMed

    Kalaiyarasu, Semmannan; Mishra, Niranjan; Rajukumar, Katherukamem; Nema, Ram Kumar; Behera, Sthita Pragnya

    2015-01-01

    The aim of this study was to develop an indirect ELISA using the helicase domain of bovine viral diarrhoea virus (BVDV) NS3 protein instead of full-length NS3 protein for detection of BVDV and BDV antibodies in sheep and goats and its validation by comparing its sensitivity and specificity with virus neutralization test (VNT) as the reference test. The purified 50 kDa recombinant NS3 protein was used as the coating antigen in the ELISA. The optimal concentration of antigen was 320 ng/well at a serum dilution of 1:20 and the optimal positive cut-off optical density value was 0.40 based on test results of 418 VNT negative sheep and goat sera samples. When 569 serum samples from sheep (463) and goats (106) were tested, the ELISA showed a sensitivity of 91.71% and specificity of 94.59% with BVDV VNT. A good correlation (93.67%) was observed between the two tests. It showed a sensitivity of 85% and specificity of 86.6% with VNT in detecting BDV antibody positive or negative samples. This study demonstrates the efficacy of truncated recombinant NS3 antigen based ELISA for seroepidemiological study of pestivirus infection in sheep and goats.

  18. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model.

    PubMed

    Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein

    2012-06-08

    Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong

    2016-01-08

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively boundmore » the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.« less

  20. Production of Toxocara cati TES-120 Recombinant Antigen and Comparison with its T. canis Homolog for Serodiagnosis of Toxocariasis

    PubMed Central

    Zahabiun, Farzaneh; Sadjjadi, Seyed Mahmoud; Yunus, Muhammad Hafiznur; Rahumatullah, Anizah; Moghaddam, Mohammad Hosein Falaki; Saidin, Syazwan; Noordin, Rahmah

    2015-01-01

    Toxocariasis is a cosmopolitan zoonotic disease caused by the infective larvae of Toxocara canis and T. cati. Diagnosis in humans is usually based on clinical symptoms and serology. Immunoglobulin G (IgG)-enzyme-linked immunosorbent assay kits using T. canis excretory–secretory (TES) larval antigens are commonly used for serodiagnosis. Differences in the antigens of the two Toxocara species may influence the diagnostic sensitivity of the test. In this study, T. cati recombinant TES-120 (rTES-120) was cloned, expressed, and compared with its T. canis homolog in an IgG4-western blot. The diagnostic sensitivity and specificity of T. cati rTES-120 were 70% (33/47) and 100% (39/39), respectively. T. canis rTES-120 showed 57.4% sensitivity and 94.4% specificity. When the results of assays using rTES-120 of both species were considered, the diagnostic sensitivity was 76%. This study shows that using antigens from both Toxocara species may improve the serodiagnosis of toxocariasis. PMID:26033026

  1. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  2. Evaluation of Selected Borrelia burgdorferi lp54 Plasmid-Encoded Gene Products Expressed during Mammalian Infection as Antigens To Improve Serodiagnostic Testing for Early Lyme Disease

    PubMed Central

    Weiner, Zachary P.; Crew, Rebecca M.; Brandt, Kevin S.; Ullmann, Amy J.; Schriefer, Martin E.; Molins, Claudia R.

    2015-01-01

    Laboratory testing for the diagnosis of Lyme disease is performed primarily by serologic assays and is accurate for detection beyond the acute stage of the infection. Serodiagnostic assays to detect the early stages of infection, however, are limited in their sensitivity, and improvement is warranted. We analyzed a series of Borrelia burgdorferi proteins known to be induced within feeding ticks and/or during mammalian infection for their utility as serodiagnostic markers against a comprehensive panel of Lyme disease patient serum samples. The antigens were assayed for IgM and IgG reactivity in line immunoblots and separately by enzyme-linked immunosorbent assay (ELISA), with a focus on reactivity against early Lyme disease with erythema migrans (EM), early disseminated Lyme neuroborreliosis, and early Lyme carditis patient serum samples. By IgM immunoblotting, we found that recombinant proteins BBA65, BBA70, and BBA73 reacted with early Lyme EM samples at levels comparable to those of the OspC antigen used in the current IgM blotting criteria. Additionally, these proteins reacted with serum samples from patients with early neuroborreliosis and early carditis, suggesting value in detecting early stages of this disease progression. We also found serological reactivity against recombinant proteins BBA69 and BBA73 with early-Lyme-disease samples using IgG immunoblotting and ELISA. Significantly, some samples that had been scored negative by the Centers for Disease Control and Prevention-recommended 2-tiered testing algorithm demonstrated positive reactivity to one or more of the antigens by IgM/IgG immunoblot and ELISA. These results suggest that incorporating additional in vivo-expressed antigens into the current IgM/IgG immunoblotting tier in a recombinant protein platform assay may improve the performance of early-Lyme-disease serologic testing. PMID:26376927

  3. Evaluation of Selected Borrelia burgdorferi lp54 Plasmid-Encoded Gene Products Expressed during Mammalian Infection as Antigens To Improve Serodiagnostic Testing for Early Lyme Disease.

    PubMed

    Weiner, Zachary P; Crew, Rebecca M; Brandt, Kevin S; Ullmann, Amy J; Schriefer, Martin E; Molins, Claudia R; Gilmore, Robert D

    2015-11-01

    Laboratory testing for the diagnosis of Lyme disease is performed primarily by serologic assays and is accurate for detection beyond the acute stage of the infection. Serodiagnostic assays to detect the early stages of infection, however, are limited in their sensitivity, and improvement is warranted. We analyzed a series of Borrelia burgdorferi proteins known to be induced within feeding ticks and/or during mammalian infection for their utility as serodiagnostic markers against a comprehensive panel of Lyme disease patient serum samples. The antigens were assayed for IgM and IgG reactivity in line immunoblots and separately by enzyme-linked immunosorbent assay (ELISA), with a focus on reactivity against early Lyme disease with erythema migrans (EM), early disseminated Lyme neuroborreliosis, and early Lyme carditis patient serum samples. By IgM immunoblotting, we found that recombinant proteins BBA65, BBA70, and BBA73 reacted with early Lyme EM samples at levels comparable to those of the OspC antigen used in the current IgM blotting criteria. Additionally, these proteins reacted with serum samples from patients with early neuroborreliosis and early carditis, suggesting value in detecting early stages of this disease progression. We also found serological reactivity against recombinant proteins BBA69 and BBA73 with early-Lyme-disease samples using IgG immunoblotting and ELISA. Significantly, some samples that had been scored negative by the Centers for Disease Control and Prevention-recommended 2-tiered testing algorithm demonstrated positive reactivity to one or more of the antigens by IgM/IgG immunoblot and ELISA. These results suggest that incorporating additional in vivo-expressed antigens into the current IgM/IgG immunoblotting tier in a recombinant protein platform assay may improve the performance of early-Lyme-disease serologic testing. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Serological diagnosis of pneumocystosis: production of a synthetic recombinant antigen for immunodetection of Pneumocystis jirovecii.

    PubMed

    Tomás, A L; Cardoso, F; Esteves, F; Matos, O

    2016-11-08

    Diagnosis of Pneumocystis pneumonia (PcP) relies on the detection of P. jirovecii in respiratory specimens obtained by invasive techniques. Thus, the development of a serological test is urgently needed as it will allow the diagnosis of PcP using blood, an inexpensive and non-invasive specimen. This study aims to combine the production of a multi-epitope synthetic recombinant antigen (RSA) and an ELISA test for detection of anti-P. jirovecii antibodies, in order to develop a new approach for PcP diagnosis. The RSA was selected and designed based on the study of the immunogenicity of the carboxyl-terminal domain of the major surface glycoprotein. This antigen was purified and used as an antigenic tool in an ELISA technique for detection of Ig, IgG and IgM antibodies anti-P. jirovecii (patent-pending no. PT109078). Serum specimens from 88 patients previously categorized in distinct clinical subgroups and 17 blood donors, were analysed. The IgM anti-P. jirovecii levels were statistically increased in patients with PcP (p = 0.001) and the ELISA IgM anti-P. jirovecii test presented a sensitivity of 100% and a specificity of 80.8%, when associated with the clinical diagnosis criteria. This innovative approach, provides good insights about what can be done in the future serum testing for PcP diagnosis.

  5. Serological diagnosis of pneumocystosis: production of a synthetic recombinant antigen for immunodetection of Pneumocystis jirovecii

    PubMed Central

    Tomás, A. L.; Cardoso, F.; Esteves, F.; Matos, O.

    2016-01-01

    Diagnosis of Pneumocystis pneumonia (PcP) relies on the detection of P. jirovecii in respiratory specimens obtained by invasive techniques. Thus, the development of a serological test is urgently needed as it will allow the diagnosis of PcP using blood, an inexpensive and non-invasive specimen. This study aims to combine the production of a multi-epitope synthetic recombinant antigen (RSA) and an ELISA test for detection of anti-P. jirovecii antibodies, in order to develop a new approach for PcP diagnosis. The RSA was selected and designed based on the study of the immunogenicity of the carboxyl-terminal domain of the major surface glycoprotein. This antigen was purified and used as an antigenic tool in an ELISA technique for detection of Ig, IgG and IgM antibodies anti-P. jirovecii (patent-pending no. PT109078). Serum specimens from 88 patients previously categorized in distinct clinical subgroups and 17 blood donors, were analysed. The IgM anti-P. jirovecii levels were statistically increased in patients with PcP (p = 0.001) and the ELISA IgM anti-P. jirovecii test presented a sensitivity of 100% and a specificity of 80.8%, when associated with the clinical diagnosis criteria. This innovative approach, provides good insights about what can be done in the future serum testing for PcP diagnosis. PMID:27824115

  6. Bicistronic DNA vaccines simultaneously encoding HIV, HSV and HPV antigens promote CD8⁺ T cell responses and protective immunity.

    PubMed

    Santana, Vinicius C; Diniz, Mariana O; Cariri, Francisco A M O; Ventura, Armando M; Cunha-Neto, Edécio; Almeida, Rafael R; Campos, Marco A; Lima, Graciela K; Ferreira, Luís C S

    2013-01-01

    Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.

  7. The use of halloysite clay and carboxyl-functionalised multi-walled carbon nanotubes for recombinant LipL32 antigen delivery enhanced the IgG response.

    PubMed

    Hartwig, Daiane D; Bacelo, Kátia L; Oliveira, Thaís L; Schuch, Rodrigo; Seixas, Fabiana K; Collares, Tiago; Rodrigues, Oscar; Hartleben, Cláudia P; Dellagostin, Odir A

    2015-02-01

    We studied the feasibility of using halloysite clay nanotubes (HNTs) and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs) as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32). Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05) of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations.

  8. Characterization of monoclonal antibodies against hepatitis C virus nonstructural protein 3: different antigenic determinants from human B cells.

    PubMed

    Ou-Yang, P; Chiang, B L; Hwang, L H; Chen, Y G; Yang, P M; Chi, W K; Chen, P J; Chen, D S

    1999-04-01

    The nonstructural (NS3) region protein of hepatitis C virus (HCV) possesses major B-cell epitopes that induce antibodies after infection. To elucidate further the characteristics of these B cells and their role in the immune regulation of HCV infection, T9 (portion of NS3 region, amino acids [a.a.] 1188-1493)-specific monoclonal antibodies were derived and mapped for B-cell antigenic determinants with recombinant proteins. A total of 10 T9-specific hybridomas were generated and tested for B-cell antigenic determinants. To analyze the B-cell antigenic determinants, eight recombinant proteins including NS3-e (a.a. 1175-1334), NS3-a' (a.a. 1175-1250), NS3-a (a.a. 1251-1334), NS3-b (a.a. 1323-1412), NS3-c (a.a. 1407-1499), NS3-a/b (a.a. 1251-1412), NS3-bc (a.a. 1323-1499), and NS3-abc (a.a. 1251-1499) encoded by NS3-region internal clones were expressed and tested for immunoblotting. The data suggested IgG hybridomas recognized NS3-a, NS3-a', or NS3-b protein by immunoblotting. By contrast, the NS3-e protein bears the major antigenic determinant recognized by human sera. Half of the hybridomas were found to react with protein NS3-a', which is not a major B-cell antigenic determinant in humans. These data suggested that conformational epitopes in vivo may be important for B-cell recognition.

  9. Immunization with a Recombinant Vaccinia Virus That Encodes Nonstructural Proteins of the Hepatitis C Virus Suppresses Viral Protein Levels in Mouse Liver

    PubMed Central

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid–polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29(+/−)/MxCre(+/−) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine. PMID:23284733

  10. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    PubMed

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  11. Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination

    PubMed Central

    HWANG, JOYCE K.; ALT, FREDERICK W.; YEAP, LENG-SIEW

    2015-01-01

    The primary antibody repertoire is generated by mechanisms involving the assembly of the exons that encode the antigen-binding variable regions of immunoglobulin heavy (IgH) and light (IgL) chains during the early development of B lymphocytes. After antigen-dependent activation, mature B lymphocytes can further alter their IgH and IgL variable region exons by the process of somatic hypermutation (SHM), which allows the selection of B cells in which SHMs resulted in the production of antibodies with increased antigen affinity. In addition, during antigen-dependent activation, B cells can also change the constant region of their IgH chain through a DNA double-strand-break (DSB) dependent process referred to as IgH class switch recombination (CSR), which generates B cell progeny that produce antibodies with different IgH constant region effector functions that are best suited for a elimination of a particular pathogen or in a particular setting. Both the mutations that underlie SHM and the DSBs that underlie CSR are initiated in target genes by activation-induced cytidine deaminase (AID). This review describes in depth the processes of SHM and CSR with a focus on mechanisms that direct AID cytidine deamination in activated B cells and mechanisms that promote the differential outcomes of such cytidine deamination. PMID:26104555

  12. Recombinant expression of rt-PA gene (encoding Reteplase) in gametophytes of the seaweed Laminaria japonica (Laminariales, Phaeophyta).

    PubMed

    Zhang, YiChen; Jiang, Peng; Gao, JiangTao; Liao, JianMin; Sun, ShiJing; Shen, ZiLong; Qin, Song

    2008-12-01

    The life cycle of seaweed Laminaria japonica involves a generation alternation between diploid sporophyte and haploid gametophte. The expression of foreign genes in sporophte has been proved. In this research, the recombinant expression in gametophyte was investigated by particle bombardment with the rt-PA gene encoding the recombinant human tissue-type plasminogen activator (Reteplase), which is a thrombolytic agent for acute myocardial infarction (AMI). Transgenic gametophytes were selected by their resistance to herbicide phosphiothricin (PPT), and proliferated in an established bubble column photo-bioreactor. According to the results from quantitative ELISA, Southern blotting, and fibrin agarose plate assay (FAPA) for bioactivity, it was showed that the rt-PA gene had been integrated into the genome of gametophytes of L. japonica, and the expression product showed the expected bioactivity, implying the proper post-transcript modification in haploid gametophyte.

  13. A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform

    PubMed Central

    Malczyk, Anna H.; Kupke, Alexandra; Prüfer, Steffen; Scheuplein, Vivian A.; Hutzler, Stefan; Kreuz, Dorothea; Beissert, Tim; Bauer, Stefanie; Hubich-Rau, Stefanie; Tondera, Christiane; Eldin, Hosam Shams; Schmidt, Jörg; Vergara-Alert, Júlia; Süzer, Yasemin; Seifried, Janna; Hanschmann, Kay-Martin; Kalinke, Ulrich; Herold, Susanne; Sahin, Ugur; Cichutek, Klaus; Waibler, Zoe; Eickmann, Markus; Becker, Stephan

    2015-01-01

    ABSTRACT In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MVvac2 genome, and the respective viruses were rescued (MVvac2-CoV-S and MVvac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MVvac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MVvac2-GFP (encoding green fluorescent protein), while titers of MVvac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR−/−)-CD46Ge mice with 2 × 105 50% tissue culture infective doses of MVvac2-CoV-S(H) or MVvac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice. IMPORTANCE Although MERS-CoV has not yet acquired extensive distribution

  14. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination

    PubMed Central

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-01-01

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription. PMID:28977829

  15. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  16. Construction of a complementary DNA library for Parelaphostrongylus tenuis and identification of a potentially sero-diagnostic recombinant antigen.

    PubMed

    Ogunremi, Oladele; Benjamin, Jane; MacDonald, Lily; Schimpf, Robert

    2008-12-01

    Newly developed serological tests for diagnosing parelaphostrongylosis in cervids, using the excretory-secretory products (ES) of the infective larvae of Parelaphostrongylus tenuis in enzyme-linked immunosorbent assays (ELISAs), have demonstrable superiority over the traditional method of larval recovery and microscopic identification. To generate a source of ELISA antigen by genetic engineering, we created a complementary DNA (cDNA) expression library by the reverse transcription of mRNA of P. tenuis adult worms, and ligation with the vector lambda-ZAP II. The library was screened using antisera produced in mice by immunization with a somatic antigen preparation of adult worms. Seventeen clones were isolated, sequenced, and checked for similarity to other DNA sequences in GenBank. A previously identified parasite gene encoding an aspartyl protease inhibitor (API) was isolated from the cDNA library, subcloned and expressed using the pET expression vector to produce a glutathione S transferase (GST)-His-S.Tag-P. tenuis API fusion protein (molecular weight = 63 kDa). An enzyme-linked immunosorbent assay utilizing the API fusion protein as the coating antigen was used to serologically diagnose all white-tailed deer (WTD, 10 out of 10) that had been inoculated with 6 - 150 L3 P. tenuis, indicating that the antigen may be a useful serodiagnostic antigen for P. tenuis infection in this cervid species.

  17. Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists.

    PubMed

    Kollmann, Christopher S; Bai, Xiaopeng; Tsai, Ching-Hsuan; Yang, Hongfang; Lind, Kenneth E; Skinner, Steven R; Zhu, Zhengrong; Israel, David I; Cuozzo, John W; Morgan, Barry A; Yuki, Koichi; Xie, Can; Springer, Timothy A; Shimaoka, Motomu; Evindar, Ghotas

    2014-04-01

    The inhibition of protein-protein interactions remains a challenge for traditional small molecule drug discovery. Here we describe the use of DNA-encoded library technology for the discovery of small molecules that are potent inhibitors of the interaction between lymphocyte function-associated antigen 1 and its ligand intercellular adhesion molecule 1. A DNA-encoded library with a potential complexity of 4.1 billion compounds was exposed to the I-domain of the target protein and the bound ligands were affinity selected, yielding an enriched small-molecule hit family. Compounds representing this family were synthesized without their DNA encoding moiety and found to inhibit the lymphocyte function-associated antigen 1/intercellular adhesion molecule-1 interaction with submicromolar potency in both ELISA and cell adhesion assays. Re-synthesized compounds conjugated to DNA or a fluorophore were demonstrated to bind to cells expressing the target protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evaluation of recombinant LigB antigen-based indirect ELISA and latex agglutination test for the serodiagnosis of bovine leptospirosis in India.

    PubMed

    Deneke, Yosef; Sabarinath, T; Gogia, Neha; Lalsiamthara, Jonathan; Viswas, K N; Chaudhuri, Pallab

    2014-08-01

    Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of the genus Leptospira, causing febrile infection characterized by multi-organ failure in humans and animals. Leptospiral Ig-like protein B (LigB) is a surface-expressed antigen that mediates host cell invasion or attachment. In this study, N-terminal conserved region of LigB protein (46 kDa) was evaluated for its diagnostic potential to detect anti-leptospiral antibodies in the sera of various animal species. Dot blot analysis revealed immunoreactivity of Leptospira-positive sera of cattle, buffalo, dog, sheep and goat to purified LigB protein. We have analyzed 1126 bovine serum samples, collected from Northern and Eastern part of India, by microscopic agglutination test (MAT) and recombinant LigB (rLigB) based ELISA and latex agglutination test (LAT). The sensitivity of rLigB based ELISA for 554 MAT positive sera was 96.9% and the specificity with 572 MAT negative sera was 91.08% whereas LAT showed sensitivity and specificity of 93.68% and 92.31%, respectively. Kappa values of 0.879 and 0.860 for recombinant antigen based ELISA and LAT indicate excellent agreement with the gold standard serological test, MAT, for the detection of anti-leptospiral antibodies in sera. Further, LAT based on rLigB antigen is a simple and rapid test, suitable for serodiagnosis of leptospirosis under field conditions, owing to its portability and longer shelf life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. In vitro V(D)J recombination: signal joint formation.

    PubMed

    Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D

    1996-11-26

    The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.

  20. The use of halloysite clay and carboxyl-functionalised multi-walled carbon nanotubes for recombinant LipL32 antigen delivery enhanced the IgG response

    PubMed Central

    Hartwig, Daiane D; Bacelo, Kátia L; Oliveira, Thaís L; Schuch, Rodrigo; Seixas, Fabiana K; Collares, Tiago; Rodrigues, Oscar; Hartleben, Cláudia P; Dellagostin, Odir A

    2015-01-01

    We studied the feasibility of using halloysite clay nanotubes (HNTs) and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs) as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32). Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05) of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations. PMID:25742273

  1. Production of Toxocara cati TES-120 Recombinant Antigen and Comparison with its T. canis Homolog for Serodiagnosis of Toxocariasis.

    PubMed

    Zahabiun, Farzaneh; Sadjjadi, Seyed Mahmoud; Yunus, Muhammad Hafiznur; Rahumatullah, Anizah; Moghaddam, Mohammad Hosein Falaki; Saidin, Syazwan; Noordin, Rahmah

    2015-08-01

    Toxocariasis is a cosmopolitan zoonotic disease caused by the infective larvae of Toxocara canis and T. cati. Diagnosis in humans is usually based on clinical symptoms and serology. Immunoglobulin G (IgG)-enzyme-linked immunosorbent assay kits using T. canis excretory-secretory (TES) larval antigens are commonly used for serodiagnosis. Differences in the antigens of the two Toxocara species may influence the diagnostic sensitivity of the test. In this study, T. cati recombinant TES-120 (rTES-120) was cloned, expressed, and compared with its T. canis homolog in an IgG4-western blot. The diagnostic sensitivity and specificity of T. cati rTES-120 were 70% (33/47) and 100% (39/39), respectively. T. canis rTES-120 showed 57.4% sensitivity and 94.4% specificity. When the results of assays using rTES-120 of both species were considered, the diagnostic sensitivity was 76%. This study shows that using antigens from both Toxocara species may improve the serodiagnosis of toxocariasis. © The American Society of Tropical Medicine and Hygiene.

  2. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    PubMed

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus) microplus

    PubMed Central

    2018-01-01

    The bovine tick Rhipicephalus (Boophilus) microplus is found in several tropical and subtropical regions of the world. This parasite transmits pathogens that cause disease, such as babesiosis (Babesia bovis and B. bigemina) and anaplasmosis (Anaplasma marginale). Tick infestations cause enormous livestock losses, and controlling tick infestations and the transmission of tick-borne diseases remains a challenge for the livestock industry. Because the currently available commercial vaccines offer only partial protection against R. (B.) microplus, there is a need for more efficient vaccines. Several recombinant antigens have been evaluated using different immunization strategies, and they show great promise. This work describes the construction and immunological characterization of a multi-antigen chimera composed of two R. (B.) microplus antigens (RmLTI and BmCG) and one Escherichia coli antigen (B subunit, LTB). The immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in E. coli. For all of the experiments, two groups (treated and control) of four Angus heifers (3–6 months old) were used. The inoculation was performed via intramuscular injection with 200 μg of purified recombinant chimeric protein and adjuvated. The chimeric protein was recognized by specific antibodies against each subunit and by sera from cattle inoculated with the chimera. Immunization of RmLTI-BmCG-LTB cattle reduced the number of adult female ticks by 6.29% and vaccination of cattle with the chimeric antigen provided 55.6% efficacy against R. (B.) microplus infestation. The results of this study indicate that the novel chimeric protein is a potential candidate for the future development of a more effective vaccine against R. (B.) microplus. PMID:29415034

  4. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus) microplus.

    PubMed

    Csordas, Bárbara Guimarães; Cunha, Rodrigo Casquero; Garcia, Marcos Valério; da Silva, Sérgio Silva; Leite, Fábio Leivas; Andreotti, Renato

    2018-01-01

    The bovine tick Rhipicephalus (Boophilus) microplus is found in several tropical and subtropical regions of the world. This parasite transmits pathogens that cause disease, such as babesiosis (Babesia bovis and B. bigemina) and anaplasmosis (Anaplasma marginale). Tick infestations cause enormous livestock losses, and controlling tick infestations and the transmission of tick-borne diseases remains a challenge for the livestock industry. Because the currently available commercial vaccines offer only partial protection against R. (B.) microplus, there is a need for more efficient vaccines. Several recombinant antigens have been evaluated using different immunization strategies, and they show great promise. This work describes the construction and immunological characterization of a multi-antigen chimera composed of two R. (B.) microplus antigens (RmLTI and BmCG) and one Escherichia coli antigen (B subunit, LTB). The immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in E. coli. For all of the experiments, two groups (treated and control) of four Angus heifers (3-6 months old) were used. The inoculation was performed via intramuscular injection with 200 μg of purified recombinant chimeric protein and adjuvated. The chimeric protein was recognized by specific antibodies against each subunit and by sera from cattle inoculated with the chimera. Immunization of RmLTI-BmCG-LTB cattle reduced the number of adult female ticks by 6.29% and vaccination of cattle with the chimeric antigen provided 55.6% efficacy against R. (B.) microplus infestation. The results of this study indicate that the novel chimeric protein is a potential candidate for the future development of a more effective vaccine against R. (B.) microplus.

  5. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques.

    PubMed

    Au, Bryan C; Lee, Chyan-Jang; Lopez-Perez, Orlay; Foltz, Warren; Felizardo, Tania C; Wang, James C M; Huang, Ju; Fan, Xin; Madden, Melissa; Goldstein, Alyssa; Jaffray, David A; Moloo, Badru; McCart, J Andrea; Medin, Jeffrey A

    2016-02-19

    Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag)-specific responses through direct injections of recombinant lentivectors (LVs) that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA)-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months-the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an "off-the-shelf" anti-cancer vaccine that could be made at large scale and injected into patients-even on an out-patient basis.

  6. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    PubMed

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  7. Molecular cloning, expression and first antigenic characterization of human astrovirus VP26 structural protein and a C-terminal deleted form.

    PubMed

    Royuela, Enrique; Sánchez-Fauquier, Alicia

    2010-01-01

    The open reading frame 2 (ORF2) of human astrovirus (HAstV) encodes the structural VP26 protein that seems to be the main antigenic viral protein. However, its functional role remains unclear. Bioinformatic predictions revealed that VP29 and VP26 proteins could be involved in virus-cell interaction. In this study, we describe for the first time the cloning and expression in Escherichia coli (E. coli) of a recombinant VP26 (rVP26) protein and a VP26 C-terminal truncated form (VP26 Delta C), followed by purification by NTA-Ni(2+) agarose affinity chromatography. Protein expression and purification were evaluated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot (WB). Then, the purified proteins were evaluated for antigenic properties in enzyme linked immunosorbent assay (ELISA) using a polyclonal antibody (PAb) and a neutralizing monoclonal antibody (nMAb) named PL2, both of them directed to HAstV. The results presented herein indicate that the C-terminal end of the VP26 protein is essential to maintain the neutralizing epitope recognized by nMAb PL2 and that the N-terminus of VP26 protein may contain antigenic lineal-epitopes recognized by PAb. Thus, these recombinant proteins can be ideal tools for further antigenic, biochemical, structural and functional VP26 protein characterization, in order to evaluate its potential role in immunodiagnosis and vaccine studies.

  8. Recombinant ELISA using baculovirus-expressed VP2 for detection of antibodies against canine parvovirus.

    PubMed

    Elia, Gabriella; Desario, Costantina; Pezzoni, Giulia; Camero, Michele; Brocchi, Emiliana; Decaro, Nicola; Martella, Vito; Buonavoglia, Canio

    2012-09-01

    The gene encoding the VP2 protein of canine parvovirus type 2 was expressed in an insect-baculovirus system. The recombinant (r) VP2 was similar antigenically/functionally to the native capsid protein as demonstrated by hemagglutination, Western blotting and hemagglutination inhibition test, using Canine parvovirus type-2 (CPV-2) positive sera. An enzyme-linked immunosorbent assay (ELISA) using the rVP2 was used for testing CPV-2 positive and negative sera from dogs and for determining the threshold of maternally derived antibodies interfering with successful vaccination of pups against CPV-2. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission.

    PubMed

    Olds, Cassandra L; Mwaura, Stephen; Odongo, David O; Scoles, Glen A; Bishop, Richard; Daubenberger, Claudia

    2016-09-02

    Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination.

  10. Characterization of a new Lactobacillus salivarius strain engineered to express IBV multi-epitope antigens by chromosomal integration.

    PubMed

    Ma, Bing-cun; Yang, Xin; Wang, Hong-ning; Cao, Hai-peng; Xu, Peng-wei; Ding, Meng-die; Liu, Hui

    2016-01-01

    To obtain adhesive and safe lactic acid bacteria (LAB) strains for expressing heterologous antigens, we screened LAB inhabitants in intestine of Tibetan chickens by analyzing their adhesion and safety properties and the selected LAB was engineered to express heterologous antigen (UTEpi C-A) based on chromosomal integration strategy. We demonstrated that a new Lactobacillu salivarius TCMM17 strain is strongly adhesive to chicken intestinal epithelial cells, contains no endogenous plasmids, is susceptible to tested antimicrobials, and shows no toxicities. In order to examine the potential of TCMM17 strain as heterogenous antigen delivering vehicle, we introduced a UTEpi C-A expression cassette in its chromosome by constructing a non-replicative plasmid (pORI280-UUTEpi C-AD). The recombinant TCMM17 strain (∆TCMM17) stably was found to keep the gene cassette through 50 generations, and successfully displayed EpiC encoded by the cassette on its surface. This work provides a universal platform for development of novel oral vaccines and expression of further antigens of avian pathogens.

  11. Development of a single-antigen magnetic bead assay (SAMBA) for the sensitive detection of HPA-1a alloantibodies using tag-engineered recombinant soluble β3 integrin.

    PubMed

    Skaik, Younis; Battermann, Anja; Hiller, Oliver; Meyer, Oliver; Figueiredo, Constanca; Salama, Abdulgabar; Blasczyk, Rainer

    2013-05-31

    Timely and accurate testing for human platelet antigen 1a (HPA-1a) alloantibodies is vital for clinical diagnosis of neonatal alloimmune thrombocytopenia (NAIT). Current antigen-specific assays used for the detection of HPA-1 alloantibodies are technically very complex and cumbersome for most diagnostic laboratories. Hence, we designed and applied recombinant soluble (rs) β3 integrins displaying HPA-1a or HPA-1b epitopes for the development of a single-antigen magnetic bead assay (SAMBA). Soluble HPA-1a and HPA-1b were produced recombinantly in human embryonic kidney 293 (HEK293) cells and differentially tagged. The recombinant soluble proteins were then immobilized onto paramagnetic beads and used for analysis of HPA-1 alloantibodies by enzyme-linked immunosorbent assay (ELISA). HPA-1a serum samples (n=7) from NAIT patients, inert sera and sera containing non-HPA-1a antibodies were used to evaluate the sensitivity and specificity of the SAMBA. Fusion of V5-His or GS-SBP-His tags to the rsβ3 integrins resulted in high-yield expression. SAMBA was able to detect all HPA-1a and -1b alloantibodies recognized by monoclonal antibody-specific immobilization of platelet antigens assay (MAIPA). No cross-reactions between the sera were observed. Two out of seven of the HPA-1a alloantibody-containing sera demonstrated weak to moderate reactivity in MAIPA but strong signals in SAMBA. SAMBA provides a very reliable method for the detection of HPA-1 antibodies with high specificity and sensitivity. This simple and rapid assay can be adapted for use in any routine laboratory and can be potentially adapted for use on automated systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Production and evaluation of the recombinant antigen TES-30 of Toxocara canis for the immunodiagnosis of toxocariasis.

    PubMed

    Olave, Ana M; Mesa, Jairo A; Botero, Jorge H; Patiño, Edwin B; García, Gisela M; Alzate, Juan F

    2016-03-03

    Toxocara canis is a pathogenic nematode of canines which can be accidentally transmitted to humans. Although serology is the most important diagnostic tool for this zoonosis, diagnostic kits use crude excretion/secretion antigens, most of them being glycoproteins which are not species-specific and may cross-react with antibodies generated against other parasites.  To produce the rTES-30 recombinant antigen of Toxocara canis and evaluate it in the immunodiagnosis of toxocariasis.  The gene that codes for TES-30 was cloned in the expression vector pET28a (+) using single-stranded oligonucleotides united by PCR. The protein rTES-30 was purified by Ni2+ affinity chromotography. Seroreactivity of rTES-30 was evaluated by immunoblot. Given that there is no gold standard test, the behaviour of the antigen was compared with the method that is routinely used to immunodiagnose toxocariasis, i.e., the conventional ELISA technique using excretion/secretion antigens.  The rTES-30 was produced from an Escherichia coli LB culture which yielded 2.25 mg/L of the antigen with a purity of 95%. The results obtained showed 73% (46/63) concordance of reactivity between the rTES-30 immunoblot and the conventional ELISA, and 100% concordance with the nonreactive sera (21). Nineteen of the 21 sera positive for other parasitoses reacted with ELISA, while only seven of these were positive with the rTES-30 immunoblot. Concordance between the ELISA and the immunoblot was moderate (kappa coefficient: 0.575; 95% CI: 0.41- 0.74).  The data presented show the potential of the rTES-30 inmunoblot for confirmation of possible ELISA positives, not only in epidemiological studies, but also as a candidate for the development of diagnostic tests for ocular toxocariasis in Colombia.

  13. Enhanced Vaccine-Induced CD8+ T Cell Responses to Malaria Antigen ME-TRAP by Fusion to MHC Class II Invariant Chain

    PubMed Central

    Spencer, Alexandra J.; Cottingham, Matthew G.; Jenks, Jennifer A.; Longley, Rhea J.; Capone, Stefania; Colloca, Stefano; Folgori, Antonella; Cortese, Riccardo; Nicosia, Alfredo; Bregu, Migena; Hill, Adrian V. S.

    2014-01-01

    The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required. PMID:24945248

  14. Recombinant protein subunit vaccine synthesis in microbes: a role for yeast?

    PubMed

    Bill, Roslyn M

    2015-03-01

    Recombinant protein subunit vaccines are formulated using protein antigens that have been synthesized in heterologous host cells. Several host cells are available for this purpose, ranging from Escherichia coli to mammalian cell lines. This article highlights the benefits of using yeast as the recombinant host. The yeast species, Saccharomyces cerevisiae and Pichia pastoris, have been used to optimize the functional yields of potential antigens for the development of subunit vaccines against a wide range of diseases caused by bacteria and viruses. Saccharomyces cerevisiae has also been used in the manufacture of 11 approved vaccines against hepatitis B virus and one against human papillomavirus; in both cases, the recombinant protein forms highly immunogenic virus-like particles. Advances in our understanding of how a yeast cell responds to the metabolic load of producing recombinant proteins will allow us to identify host strains that have improved yield properties and enable the synthesis of more challenging antigens that cannot be produced in other systems. Yeasts therefore have the potential to become important host organisms for the production of recombinant antigens that can be used in the manufacture of subunit vaccines or in new vaccine development. © 2014 Royal Pharmaceutical Society.

  15. Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors.

    PubMed

    Walcher, Petra; Mayr, Ulrike B; Azimpour-Tabrizi, Chakameh; Eko, Francis O; Jechlinger, Wolfgang; Mayrhofer, Peter; Alefantis, Tim; Mujer, Cesar V; DelVecchio, Vito G; Lubitz, Werner

    2004-12-01

    The bacterial ghost (BG) platform system is a novel vaccine delivery system endowed with intrinsic adjuvant properties. BGs are nonliving Gram-negative bacterial cell envelopes which are devoid of their cytoplasmic contents, yet maintain their cellular morphology and antigenic structures, including bioadhesive properties. The main advantages of BGs as carriers of subunit vaccines include their ability to stimulate a high immune response and to target the carrier itself to primary antigen-presenting cells. The intrinsic adjuvant properties of BGs enhance the immune response to target antigens, including T-cell activation and mucosal immunity. Since native and foreign antigens can be carried in the envelope complex of BGs, combination vaccines with multiple antigens of diverse origin can be presented to the immune system simultaneously. Beside the capacity of BGs to function as carriers of protein antigens, they also have a high loading capacity for DNA. Thus, loading BGs with recombinant DNA takes advantage of the excellent bioavailability for DNA-based vaccines and the high expression rates of the DNA-encoded antigens in target cell types such as macrophages and dendritic cells. There are many spaces within BGs including the inner and outer membranes, the periplasmic space and the internal lumen which can carry antigens, DNA or mediators of the immune response. All can be used for subunit antigen to design new vaccine candidates with particle presentation technology. In addition, the fact that BGs can also carry piggyback large-size foreign antigen particles, increases the technologic usefulness of BGs as combination vaccines against viral and bacterial pathogens. Furthermore, the BG antigen carriers can be stored as freeze-dried preparations at room temperature for extended periods without loss of efficacy. The potency, safety and relatively low production cost of BGs offer a significant technical advantage over currently utilized vaccine technologies.

  16. [Molecular cloning and characterization of a novel Clonorchis sinensis antigenic protein containing tandem repeat sequences].

    PubMed

    Liu, Qian; Xu, Xue-Nian; Zhou, Yan; Cheng, Na; Dong, Yu-Ting; Zheng, Hua-Jun; Zhu, Yong-Qiang; Zhu, Yong-Qiang

    2013-08-01

    To find and clone new antigen genes from the lambda-ZAP cDNA expression library of adult Clonorchis sinensis, and determine the immunological characteristics of the recombinant proteins. The cDNA expression library of adult C. sinensis was screened by pooled sera of clonorchiasis patients. The sequences of the positive phage clones were compared with the sequences in EST database, and the full-length sequence of the gene (Cs22 gene) was obtained by RT-PCR. cDNA fragments containing 2 and 3 times tandem repeat sequences were generated by jumping PCR. The sequence encoding the mature peptide or the tandem repeat sequence was respectively cloned into the prokaryotic expression vector pET28a (+), and then transformed into E. coli Rosetta DE3 cells for expression. The recombinant proteins (rCs22-2r, rCs22-3r, rCs22M-2r, and rCs22M-3r) were purified by His-bind-resin (Ni-NTA) affinity chromatography. The immunogenicity of rCs22-2r and rCs22-3r was identified by ELISA. To evaluate the immunological diagnostic value of rCs22-2r and rCs22-3r, serum samples from 35 clonorchiasis patients, 31 healthy individuals, 15 schistosomiasis patients, 15 paragonimiasis westermani patients and 13 cysticercosis patients were examined by ELISA. To locate antigenic determinants, the pooled sera of clonorchiasis patients and healthy persons were analyzed for specific antibodies by ELISA with recombinant protein rCs22M-2r and rCs22M-3r containing the tandem repeat sequences. The full-length sequence of Cs22 antigen gene of C. sinensis was obtained. It contained 13 times tandem repeat sequences of EQQDGDEEGMGGDGGRGKEKGKVEGEDGAGEQKEQA. Bioinformatics analysis indicated that the protein (Cs22) belonged to GPI-anchored proteins family. The recombinant proteins rCs22-2r and rCs22-3r showed a certain level of immunogenicity. The positive rate by ELISA coated with the purified PrCs22-2r and PrCs22-3r for sera of clonorchiasis patients both were 45.7% (16/35), and 3.2% (1/31) for those of healthy

  17. Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage-displayed epitope libraries.

    PubMed

    Bentley, L; Fehrsen, J; Jordaan, F; Huismans, H; du Plessis, D H

    2000-04-01

    VP2 is an outer capsid protein of African horsesickness virus (AHSV) and is recognized by serotype-discriminatory neutralizing antibodies. With the objective of locating its antigenic regions, a filamentous phage library was constructed that displayed peptides derived from the fragmentation of a cDNA copy of the gene encoding VP2. Peptides ranging in size from approximately 30 to 100 amino acids were fused with pIII, the attachment protein of the display vector, fUSE2. To ensure maximum diversity, the final library consisted of three sub-libraries. The first utilized enzymatically fragmented DNA encoding only the VP2 gene, the second included plasmid sequences, while the third included a PCR step designed to allow different peptide-encoding sequences to recombine before ligation into the vector. The resulting composite library was subjected to immunoaffinity selection with AHSV-specific polyclonal chicken IgY, polyclonal horse immunoglobulins and a monoclonal antibody (MAb) known to neutralize AHSV. Antigenic peptides were located by sequencing the DNA of phages bound by the antibodies. Most antigenic determinants capable of being mapped by this method were located in the N-terminal half of VP2. Important binding areas were mapped with high resolution by identifying the minimum overlapping areas of the selected peptides. The MAb was also used to screen a random 17-mer epitope library. Sequences that may be part of a discontinuous neutralization epitope were identified. The amino acid sequences of the antigenic regions on VP2 of serotype 3 were compared with corresponding regions on three other serotypes, revealing regions with the potential to discriminate AHSV serotypes serologically.

  18. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  19. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    PubMed

    Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  20. Recombinant antibodies and their use in biosensors.

    PubMed

    Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray

    2012-04-01

    Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.

  1. Identification of immunodominant antigens for the laboratory diagnosis of toxocariasis.

    PubMed

    Zhan, Bin; Ajmera, Ravi; Geiger, Stefan Michael; Gonçalves, Marco Túlio Porto; Liu, Zhuyun; Wei, Junfei; Wilkins, Patricia P; Fujiwara, Ricardo; Gazzinelli-Guimaraes, Pedro Henrique; Bottazzi, Maria Elena; Hotez, Peter

    2015-12-01

    To identify immunodominant antigens of Toxocara canis recognised by Toxocara-infected sera as recombinant reagents for immunodiagnosis of toxocariasis. Pooled sera from human cases of toxocariasis were used to identify immunodominant antigens by immunoscreening a T. canis larval expression cDNA library. The positive clones were sequenced to reveal the identity of the antigens. The recombinant proteins were expressed in E. coli and then used to confirm their immunoreaction with sera of humans with toxocariasis. Two chosen antigens were also used to differentiate Toxocara infection from other helminth infections in mice. Eleven antigens with immunodiagnostic potential were identified, including two C-type lectins (CTLs) that reacted strongly with the Toxocara-positive serum pool. The first CTL (Tc-CTL-1) is the same as TES-32, previously identified as a major immunodominant component of TES; the second CTL (Tc-CTL-2) is a novel C-type lectin sharing 83% amino acid sequence identity within the functional domain of Tc-CTL-1. The E. coli-expressed recombinant Tc-CTL-1 was strongly recognised by the Toxocara-positive serum pool or sera from animals experimentally infected with T. canis. Reactivity with recombinant Tc-CTL-1 was higher when the unreduced protein was used in an enzyme-linked immunosorbent assay (ELISA), dot-blot assay or Western blot test compared to the protein under reduced condition. Both recombinant Tc-CTL-1- and Tc-CTL-2-based ELISAs were able to differentiate T. canis infection from other helminth infections in experimentally infected mice. Both Tc-CTL-1 and Tc-CTL-2 were able to differentiate Toxocara infection from other helminth infections and could potentially be used as sensitive and specific immunodiagnostic antigens. © 2015 John Wiley & Sons Ltd.

  2. Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7.

    PubMed

    van de Wall, Stephanie; Walczak, Mateusz; van Rooij, Nienke; Hoogeboom, Baukje-Nynke; Meijerhof, Tjarko; Nijman, Hans W; Daemen, Toos

    2015-03-24

    The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus.

  3. Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7

    PubMed Central

    van de Wall, Stephanie; Walczak, Mateusz; van Rooij, Nienke; Hoogeboom, Baukje-Nynke; Meijerhof, Tjarko; Nijman, Hans W.; Daemen, Toos

    2015-01-01

    The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus. PMID:26343186

  4. Glycosylation of Recombinant Antigenic Proteins from Mycobacterium tuberculosis: In Silico Prediction of Protein Epitopes and Ex Vivo Biological Evaluation of New Semi-Synthetic Glycoconjugates.

    PubMed

    Bavaro, Teodora; Tengattini, Sara; Piubelli, Luciano; Mangione, Francesca; Bernardini, Roberta; Monzillo, Vincenzina; Calarota, Sandra; Marone, Piero; Amicosante, Massimo; Pollegioni, Loredano; Temporini, Caterina; Terreni, Marco

    2017-06-29

    Tuberculosis is still one of the most deadly infectious diseases worldwide, and the use of conjugated antigens, obtained by combining antigenic oligosaccharides, such as the lipoarabinomannane (LAM), with antigenic proteins from Mycobacterium tuberculosis (MTB), has been proposed as a new strategy for developing efficient vaccines. In this work, we investigated the effect of the chemical glycosylation on two recombinant MTB proteins produced in E. coli with an additional seven-amino acid tag (recombinant Ag85B and TB10.4). Different semi-synthetic glycoconjugated derivatives were prepared, starting from mannose and two disaccharide analogs. The glycans were activated at the anomeric position with a thiocyanomethyl group, as required for protein glycosylation by selective reaction with lysines. The glycosylation sites and the ex vivo evaluation of the immunogenic activity of the different neo- glycoproteins were investigated. Glycosylation does not modify the immunological activity of the TB10.4 protein. Similarly, Ag85B maintains its B-cell activity after glycosylation while showing a significant reduction in the T-cell response. The results were correlated with the putative B- and T-cell epitopes, predicted using a combination of in silico systems. In the recombinant TB10.4, the unique lysine is not included in any T-cell epitope. Lys30 of Ag85B, identified as the main glycosylation site, proved to be the most important site involved in the formation of T-cell epitopes, reasonably explaining why its glycosylation strongly influenced the T-cell activity. Furthermore, additional lysines included in different epitopes (Lys103, -123 and -282) are also glycosylated. In contrast, B-cell epitopic lysines of Ag85B were found to be poorly glycosylated and, thus, the antibody interaction of Ag85B was only marginally affected after coupling with mono- or disaccharides.

  5. Protective Immunity Against a Lethal Respiratory Yersinia pestis Challenge Induced by V Antigen or the F1 Capsular Antigen Incorporated into Adenovirus Capsid

    PubMed Central

    Boyer, Julie L.; Sofer-Podesta, Carolina; Ang, John; Hackett, Neil R.; Chiuchiolo, Maria J.; Senina, Svetlana; Perlin, David

    2010-01-01

    Abstract The aerosol form of the bacterium Yersinia pestis causes pneumonic plague, a rapidly fatal disease that is a biothreat if deliberately released. At present, no plague vaccines are available for use in the United States, but subunit vaccines based on the Y. pestis V antigen and F1 capsular protein show promise when administered with adjuvants. In the context that adenovirus (Ad) gene transfer vectors have a strong adjuvant potential related to the ability to directly infect dendritic cells, we hypothesized that modification of the Ad5 capsid to display either the Y. pestis V antigen or the F1 capsular antigen on the virion surface would elicit high V antigen- or F1-specific antibody titers, permit boosting with the same Ad serotype, and provide better protection against a lethal Y. pestis challenge than immunization with equivalent amounts of V or F1 recombinant protein plus conventional adjuvant. We constructed AdYFP-pIX/V and AdLacZ-pIX/F1, E1–, E3– serotype 5 Ad gene transfer vectors containing a fusion of the sequence for either the Y. pestis V antigen or the F1 capsular antigen to the carboxy-terminal sequence of pIX, a capsid protein that can accommodate the entire V antigen (37 kDa) or F1 protein (15 kDa) without disturbing Ad function. Immunization with AdYFP-pIX/V followed by a single repeat administration of the same vector at the same dose resulted in significantly better protection of immunized animals compared with immunization with a molar equivalent amount of purified recombinant V antigen plus Alhydrogel adjuvant. Similarly, immunization with AdLacZ-pIX/F1 in a prime–boost regimen resulted in significantly enhanced protection of immunized animals compared with immunization with a molar-equivalent amount of purified recombinant F1 protein plus adjuvant. These observations demonstrate that Ad vaccine vectors containing pathogen-specific antigens fused to the pIX capsid protein have strong adjuvant properties and stimulate more robust

  6. Evaluation of recombinant granule antigens GRA1 and GRA7 for serodiagnosis of Toxoplasma gondii infection in dogs

    PubMed Central

    2014-01-01

    Background Toxoplasmosis, caused by the obligate intracellular parasite Toxoplasma gondii, is an important zoonotic disease worldwide. The precise detection of T. gondii infection in dogs has important public health significance. In this study, recombinant granule antigen proteins GRA1 and GRA7 were evaluated as potential diagnostic markers for T. gondii infection in dogs by an indirect enzyme-linked immunosorbent assay (ELISA). Results GRA1 and GRA7 were cloned and expressed in Escherichia coli, and the recombinant GRA1, GRA7- and Toxoplasma lysate antigen (TLA)-based ELISAs were developed and evaluated using the canine positive and negative serum samples for anti-T. gondii antibodies determined by modified agglutination test (MAT) and indirect fluorescent antibody test (IFAT), showing a seroprevalence of 15.1% by TLA- and GRA1-ELISA, and 15.8% by GRA7-ELISA, and no significant difference was observed (P > 0.05). When compared with the two reference assays, MAT and IFAT, the GRA7-ELISA showed the highest co-positivity and co-negativity rates. Receiver operating characteristic (ROC) analysis revealed a largest area under curve (AUC) of 0.973 (95% CI, 0.955 to 0.991), and a highest relative sensitivity (93.2%) and specificity (94.0%) for a cut-off value of 0.809 in GRA7-ELISA. Conclusions The results of the present study showed that GRA7-ELISA is highly sensitive and specific, and GRA7 is a potential serodiagnostic marker for the detection of T. gondii infection in dogs. PMID:25016474

  7. RHCE*ceCF encodes partial c and partial e but not CELO an antigen antithetical to Crawford

    PubMed Central

    Hipsky, Christine Halter; Lomas-Francis, Christine; Fuchisawa, Akiko; Reid, Marion E.; Moulds, Marilyn; Christensen, JoAnn; Nickle, Pam; Vege, Sunitha; Westhoff, Connie

    2010-01-01

    Background RH43 (Crawford) is encoded by RHCE*ce with nucleotide changes 48G>C, 697C>G, and 733C>G (RHCE*ceCF). We investigated the Rh antigen expression and antibody specificities in four patients with this allele. Methods Hemagglutination tests, DNA extraction, PCR-RFLP, AS-PCR, reticulocyte RNA isolation, RT-PCR cDNA analyses, cloning, and sequencing were performed by standard procedures. Results RBCs from two patients typed D+C−E−c+e+/−, hrS−/+W, hrB− and their serum was reactive (3+) with all RBC samples of common Rh phenotype tested, but non reactive with Rhnull or D- - RBCs (apparent alloanti-Rh17). At the RHCE locus, Patient 1 was homozygous for RHCE*ceCF, and Patient 2 inherited RHCE*ceCF in trans to a silenced RHCE*cE. Cross testing of serum and RBCs from these two samples showed mutual compatibility, indicating that both antibodies define the same novel high prevalence antigen on Rhce. Two additional patients, one whose serum contained alloanti-c but the RBCs typed C+c+, and one whose serum contained anti-e but the RBCs typed E+e+, also had RHCE*ceCF. RHCE*Ce was present in trans in the former and RHCE*cE in the latter patient. Conclusion We report that amino acid changes on RhceCF (Trp16Cys, Gln233Glu, and Leu245Val) alter the protein to the extent that c and e antigens are partial, and a high prevalence antigen, we have named CELO (provisional ISBT number 004058; RH58) is not expressed. CELO is antithetical to RH43 (Crawford). PMID:20609196

  8. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling.

    PubMed

    Bendz, Henriette; Ruhland, Sibylle C; Pandya, Maya J; Hainzl, Otmar; Riegelsberger, Stefan; Braüchle, Christoph; Mayer, Matthias P; Buchner, Johannes; Issels, Rolf D; Noessner, Elfriede

    2007-10-26

    Heat shock proteins (HSPs) have shown promise for the optimization of protein-based vaccines because they can transfer exogenous antigens to dendritic cells and at the same time induce their maturation. Great care must be exercised in interpretating HSP-driven studies, as by-products linked to the recombinant generation of these proteins have been shown to mediate immunological effects. We generated highly purified human recombinant Hsp70 and demonstrated that it strongly enhances the cross-presentation of exogenous antigens resulting in better antigen-specific T cell stimulation. Augmentation of T cell stimulation was a direct function of the degree of complex formation between Hsp70 and peptides and correlated with improved antigen delivery to endosomal compartments. The Hsp70 activity was independent of TAP proteins and was not inhibited by exotoxin A or endosomal acidification. Consequently, Hsp70 enhanced cross-presentation of various antigenic sequences, even when they required different post-uptake processing and trafficking, as exemplified by the tumor antigens tyrosinase and Melan-A/MART-1. Furthermore, Hsp70 enhanced cross-presentation by different antigen-presenting cells (APCs), including dendritic cells and B cells. Importantly, enhanced cross-presentation and antigen-specific T cell activation were observed in the absence of innate signals transmitted by Hsp70. As Hsp70 supports the cross-presentation of different antigens and APCs and is inert to APC function, it may show efficacy in various settings of immune modulation, including induction of antigen-specific immunity or tolerance.

  9. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  10. Inaccuracy of Enzyme-Linked Immunosorbent Assay Using Soluble and Recombinant Antigens to Detect Asymptomatic Infection by Leishmania infantum

    PubMed Central

    Moreno, Elizabeth Castro; Gonçalves, Andréa Vieira; Chaves, Anderson Vieira; Melo, Maria Norma; Lambertucci, José Roberto; Andrade, Antero Silva Ribeiro; Negrão-Corrêa, Deborah; Antunes, Carlos Mauricio de Figueiredo; Carneiro, Mariângela

    2009-01-01

    Background One of the most important drawbacks in visceral leishmaniasis (VL) population studies is the difficulty of diagnosing asymptomatic carriers. The aim of this study, conducted in an urban area in the Southeast of Brazil, was to evaluate the performance of serology to identify asymptomatic VL infection in participants selected from a cohort with a two-year follow-up period. Methodology Blood samples were collected in 2001 from 136 cohort participants (97 positive and 39 negatives, PCR/hybridization carried out in 1999). They were clinically evaluated and none had progressed to disease from their asymptomatic state. As controls, blood samples from 22 control individuals and 8 patients with kala-azar were collected. Two molecular biology techniques (reference tests) were performed: PCR with Leishmania-generic primer followed by hybridization using L. infantum probe, and PCR with specific primer to L. donovani complex. Plasma samples were tested by ELISA using three different antigens: L. infantum and L. amazonensis crude antigens, and rK39 recombinant protein. Accuracy of the serological tests was evaluated using sensitivity, specificity, likelihood ratio and ROC curve. Findings The presence of Leishmania was confirmed, by molecular techniques, in all kala-azar patients and in 117 (86%) of the 136 cohort participants. Kala-azar patients showed high reactivity in ELISAs, whereas asymptomatic individuals presented low reactivity against the antigens tested. When compared to molecular techniques, the L. amazonensis and L. infantum antigens showed higher sensitivity (49.6% and 41.0%, respectively) than rK39 (26.5%); however, the specificity of rK39 was higher (73.7%) than L. amazonensis (52.6%) and L. infantum antigens (36.8%). Moreover, there was low agreement among the different antigens used (kappa<0.10). Conclusions Serological tests were inaccurate for diagnosing asymptomatic infections compared to molecular methods; this could lead to misclassification bias

  11. Ancient diversity and geographical sub-structuring in African buffalo Theileria parva populations revealed through metagenetic analysis of antigen-encoding loci.

    PubMed

    Hemmink, Johanneke D; Sitt, Tatjana; Pelle, Roger; de Klerk-Lorist, Lin-Mari; Shiels, Brian; Toye, Philip G; Morrison, W Ivan; Weir, William

    2018-03-01

    An infection and treatment protocol involving infection with a mixture of three parasite isolates and simultaneous treatment with oxytetracycline is currently used to vaccinate cattle against Theileria parva. While vaccination results in high levels of protection in some regions, little or no protection is observed in areas where animals are challenged predominantly by parasites of buffalo origin. A previous study involving sequencing of two antigen-encoding genes from a series of parasite isolates indicated that this is associated with greater antigenic diversity in buffalo-derived T. parva. The current study set out to extend these analyses by applying high-throughput sequencing to ex vivo samples from naturally infected buffalo to determine the extent of diversity in a set of antigen-encoding genes. Samples from two populations of buffalo, one in Kenya and the other in South Africa, were examined to investigate the effect of geographical distance on the nature of sequence diversity. The results revealed a number of significant findings. First, there was a variable degree of nucleotide sequence diversity in all gene segments examined, with the percentage of polymorphic nucleotides ranging from 10% to 69%. Second, large numbers of allelic variants of each gene were found in individual animals, indicating multiple infection events. Third, despite the observed diversity in nucleotide sequences, several of the gene products had highly conserved amino acid sequences, and thus represent potential candidates for vaccine development. Fourth, although compelling evidence for population differentiation between the Kenyan and South African T. parva parasites was identified, analysis of molecular variance for each gene revealed that the majority of the underlying nucleotide sequence polymorphism was common to both areas, indicating that much of this aspect of genetic variation in the parasite population arose prior to geographic separation. Copyright © 2018 The Authors

  12. A network approach to analyzing highly recombinant malaria parasite genes.

    PubMed

    Larremore, Daniel B; Clauset, Aaron; Buckee, Caroline O

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  13. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    PubMed Central

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  14. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice.

    PubMed

    Permyakova, Natalia V; Zagorskaya, Alla A; Belavin, Pavel A; Uvarova, Elena A; Nosareva, Olesya V; Nesterov, Andrey E; Novikovskaya, Anna A; Zav'yalov, Evgeniy L; Moshkin, Mikhail P; Deineko, Elena V

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  15. Improved diagnostic performance of a commercial anaplasma antibody competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5–glutathione S-transferase fusion protein as antigen

    USDA-ARS?s Scientific Manuscript database

    This study tested the hypothesis that removal of maltose binding protein from recombinant antigen used for plate coating would improve the specificity of Anaplasma antibody competitive ELISA. Three hundred and eight sera with significant MBP antibody binding (=30%I) in Anaplasma negative herds was 1...

  16. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  17. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris

    PubMed Central

    Wang, Man; Jiang, Shuai; Wang, Yefu

    2016-01-01

    ABSTRACT Recombinant protein subunit vaccines are formulated using defined protein antigens that can be produced in heterologous expression systems. The methylotrophic yeast Pichia pastoris has become an important host system for the production of recombinant subunit vaccines. Although many basic elements of P. pastoris expression system are now well developed, there is still room for further optimization of protein production. Codon bias, gene dosage, endoplasmic reticulum protein folding and culture condition are important considerations for improved production of recombinant vaccine antigens. Here we comment on current advances in the application of P. pastoris for the synthesis of recombinant subunit vaccines. PMID:27246656

  18. A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor.

    PubMed

    Krug, Christian; Wiesinger, Manuel; Abken, Hinrich; Schuler-Thurner, Beatrice; Schuler, Gerold; Dörrie, Jan; Schaft, Niels

    2014-10-01

    Chimeric antigen receptors (CARs), which combine an antibody-derived binding domain (single chain fragment variable) with T-cell-activating signaling domains, have become a promising tool in the adoptive cellular therapy of cancer. Retro- and lenti-viral transductions are currently the standard methods to equip T cells with a CAR; permanent CAR expression, however, harbors several risks like uncontrolled auto-reactivity. Modification of T cells by electroporation with CAR-encoding RNA to achieve transient expression likely circumvents these difficulties. We here present a GMP-compliant protocol to activate and expand T cells for clinical application. The protocol is optimized in particular to produce CAR-modified T cells in clinically sufficient numbers under full GMP-compliance from late-stage cancer patients. This protocol allows the generation of 6.7 × 10(8) CAR-expressing T cells from one patient leukapheresis. The CAR-engineered T cells produced pro-inflammatory cytokines after stimulation with antigen-bearing tumor cells and lysed tumor cells in an antigen-specific manner. This functional capacity was maintained after cryopreservation. Taken together, we provide a clinically applicable protocol to transiently engineer sufficient numbers of antigen-specific patient T cells for use in adoptive cell therapy of cancer.

  19. Expression of a cloned lipopolysaccharide antigen from Neisseria gonorrhoeae on the surface of Escherichia coli K-12.

    PubMed Central

    Palermo, D A; Evans, T M; Clark, V L

    1987-01-01

    A gonococcal gene bank maintained in Escherichia coli K-12 was screened by colony immunoblotting, and a transformant expressing a surface antigen reactive to anti-gonococcal outer membrane antiserum was isolated. The isolate carried a recombinant plasmid, pTME6, consisting of approximately 9 kilobases of Neisseria gonorrhoeae DNA inserted into the BamHI site of pBR322. Surface labeling of E. coli HB101(pTME6) confirmed that the antigen was expressed on the E. coli cell surface. The antigenic material was resistant to proteinase K digestion and sensitive to periodate oxidation, indicating that the material was carbohydrate. Purified lipopolysaccharide (LPS) from HB101(pTME6) produced a unique band on silver-stained polyacrylamide gels that contained immunoreactive material as seen on Western blots of LPS samples. Only two of three E. coli LPS mutant strains carrying pTME6 reacted with the antigonococcal antiserum, suggesting that a certain E. coli core structure is necessary for antigen expression. We conclude that pTME6 contains one or more gonococcal genes encoding an LPS core biosynthetic enzyme(s) which can modify E. coli core LPS to produce a gonococcuslike epitope(s). Images PMID:3117695

  20. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families

    PubMed Central

    Bopp, Selina E. R.; Manary, Micah J.; Bright, A. Taylor; Johnston, Geoffrey L.; Dharia, Neekesh V.; Luna, Fabio L.; McCormack, Susan; Plouffe, David; McNamara, Case W.; Walker, John R.; Fidock, David A.; Denchi, Eros Lazzerini; Winzeler, Elizabeth A.

    2013-01-01

    Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10−6 structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0–9.7×10−9 mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to

  1. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses.

  2. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    PubMed

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Alanine scanning of the rabies virus glycoprotein antigenic site III using recombinant rabies virus: implication for post-exposure treatment.

    PubMed

    Papaneri, Amy B; Wirblich, Christoph; Marissen, Wilfred E; Schnell, Matthias J

    2013-12-02

    The safety and availability of the human polyclonal sera that is currently utilized for post-exposure treatment (PET) of rabies virus (RABV) infection remain a concern. Recombinant monoclonal antibodies have been postulated as suitable alternatives by WHO. To this extent, CL184, the RABV human antibody combination comprising monoclonal antibodies (mAbs) CR57 and CR4098, has been developed and has delivered promising clinical data to support its use for RABV PET. For this fully human IgG1 cocktail, mAbs CR57 and CR4098 are produced in the PER.C6 human cell line and combined in equal amounts in the final product. During preclinical evaluation, CR57 was shown to bind to antigenic site I whereas CR4098 neutralization was influenced by a mutation of position 336 (N336) located within antigenic site III. Here, alanine scanning was used to analyze the influence of mutations within the potential binding site for CR4098, antigenic site III, in order to evaluate the possibility of mutated rabies viruses escaping neutralization. For this approach, twenty flanking amino acids (10 upstream and 10 downstream) of the RABV glycoprotein (G) asparagine (N336) were exchanged to alanine (or serine, if already alanine) by site-directed mutagenesis. Analysis of G expression revealed four of the twenty mutant Gs to be non-functional, as shown by their lack of cell surface expression, which is a requirement for the production of infectious RABV. Therefore, these mutants were excluded from further study. The remaining sixteen mutants were introduced in an infectious clone of RABV, and recombinant RABVs (rRABVs) were recovered and utilized for in vitro neutralization assays. All of the viruses were effectively neutralized by CR4098 as well as by CR57, indicating that single amino acid exchanges in this region does not affect the broad neutralizing capability of the CL184 mAb combination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Antibody profiling using a recombinant protein-based multiplex ELISA array accelerates recombinant vaccine development: Case study on red sea bream iridovirus as a reverse vaccinology model.

    PubMed

    Matsuyama, Tomomasa; Sano, Natsumi; Takano, Tomokazu; Sakai, Takamitsu; Yasuike, Motoshige; Fujiwara, Atushi; Kawato, Yasuhiko; Kurita, Jun; Yoshida, Kazunori; Shimada, Yukinori; Nakayasu, Chihaya

    2018-05-03

    Predicting antigens that would be protective is crucial for the development of recombinant vaccine using genome based vaccine development, also known as reverse vaccinology. High-throughput antigen screening is effective for identifying vaccine target genes, particularly for pathogens for which minimal antigenicity data exist. Using red sea bream iridovirus (RSIV) as a research model, we developed enzyme-linked immune sorbent assay (ELISA) based RSIV-derived 72 recombinant antigen array to profile antiviral antibody responses in convalescent Japanese amberjack (Seriola quinqueradiata). Two and three genes for which the products were unrecognized and recognized, respectively, by antibodies in convalescent serum were selected for recombinant vaccine preparation, and the protective effect was examined in infection tests using Japanese amberjack and greater amberjack (S. dumerili). No protection was provided by vaccines prepared from gene products unrecognized by convalescent serum antibodies. By contrast, two vaccines prepared from gene products recognized by serum antibodies induced protective immunity in both fish species. These results indicate that ELISA array screening is effective for identifying antigens that induce protective immune responses. As this method does not require culturing of pathogens, it is also suitable for identifying protective antigens to un-culturable etiologic agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Eimeria maxima recombinant Gam82 gametocyte antigen vaccine protects against coccidiosis and augments humoral and cell-mediated immunity.

    PubMed

    Jang, Seung I; Lillehoj, Hyun S; Lee, Sung Hyen; Lee, Kyung Woo; Park, Myeong Seon; Cha, Sung-Rok; Lillehoj, Erik P; Subramanian, B Mohana; Sriraman, R; Srinivasan, V A

    2010-04-09

    Intestinal infection with Eimeria, the etiologic agent of avian coccidiosis, stimulates protective immunity to subsequent colonization by the homologous parasite, while cross-protection against heterologous species is poor. As a first step toward the development of a broad specificity Eimeria vaccine, this study was designed to assess a purified recombinant protein from Eimeria maxima gametocytes (Gam82) in stimulating immunity against experimental infection with live parasites. Following Gam82 intramuscular immunization and oral parasite challenge, body weight gain, fecal oocyst output, lesion scores, serum antibody response, and cytokine production were assessed to evaluate vaccination efficacy. Animals vaccinated with Gam82 and challenged with E. maxima showed lower oocyst shedding and reduced intestinal pathology compared with non-vaccinated and parasite-challenged animals. Gam82 vaccination also stimulated the production of antigen-specific serum antibodies and induced greater levels of IL-2 and IL-15 mRNAs compared with non-vaccinated controls. These results demonstrate that the Gam82 recombinant protein protects against E. maxima and augments humoral and cell-mediated immunity. Published by Elsevier Ltd.

  6. Recombinant poxviruses as mucosal vaccine vectors.

    PubMed

    Gherardi, M Magdalena; Esteban, Mariano

    2005-11-01

    The majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against Mycobacterium tuberculosis. The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.

  7. Stable expression of the hepatitis B virus surface antigen containing pre-S2 protein in mouse cells using a bovine papillomavirus vector.

    PubMed

    Yoneyama, T; Akatsuka, T; Miyamura, T

    1988-08-01

    The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.

  8. Linkage disequilibrium in HLA cannot be explained by selective recombination.

    PubMed

    Termijtelen, A; D'Amaro, J; van Rood, J J; Schreuder, G M

    1995-11-01

    Some combinations of HLA-A, -B and -DR antigens occur more frequently than would be expected from their gene frequencies in the population. This phenomenon, referred to as Linkage Disequilibrium (LD) has been the origin of many speculations. One hypothesis to explain LD is that some haplotypes are protected from recombination. A second hypothesis is that these HLA antigens preferentially recombine after cross-over to create an LD haplotype. We tested these 2 hypotheses: from a pool of over 10,000 families typed in our department, we analyzed 126 families in which HLA-A:B or B:DR recombinant offspring was documented. To overcome a possible bias in our material, we used the non-recombined haplotypes from the same 126 families as a control group. Our results show that the number of cross-overs through LD haplotypes is not significantly lower then would be expected if recombination occurred randomly. Also the number of LD haplotypes created upon recombination was not significantly increased.

  9. Utility of recombinant Aspergillus fumigatus antigens in the diagnosis of allergic bronchopulmonary aspergillosis: a systematic review and diagnostic test accuracy meta-analysis.

    PubMed

    Muthu, Valliappan; Sehgal, Inderpaul Singh; Dhooria, Sahajal; Aggarwal, Ashutosh N; Agarwal, Ritesh

    2018-06-21

    The role of recombinant A.fumigatus (rAsp) antigens in the diagnosis of allergic bronchopulmonary aspergillosis (ABPA) has not been systematically evaluated. Herein, we evaluate the utility of recombinant A.fumigatus (rAsp) antigens in diagnosing ABPA. We systematically reviewed the PubMed, EmBase, and Scopus databases for studies evaluating rAsp antigens in ABPA. The QUADAS-2 tool and the GRADE approach were used to assess the risk of bias and the quality of evidence, respectively. The diagnostic performance of IgE or skin test against rAsp f1, f2, f3, f4, f6, and their combination was evaluated separately for ABPA complicating asthma or cystic fibrosis (CF), using an HSROC model. The reference standard for diagnosing ABPA was the composite (clinical, radiological, immunological) criteria. Our search yielded 26 studies (n=1,694) and 17 studies (n=1,131) for inclusion in the systematic review and meta-analysis, respectively. In asthmatics, the pooled sensitivity for diagnosing ABPA was best for IgE against a combination of rAsp f1 or f3 (96.7%; 95% confidence interval [CI], 87.6-99.2). The pooled specificity for diagnosing ABPA was highest (99.2%; 95% CI, 88.2-99.9) for IgE against a combination of f4 or f6. In CF patients, the pooled sensitivity of rAsp f1 or f3 was 93.3% (95% CI, 55.2-99.9) while the pooled specificity of rAsp f4 or f6 was 93.9% (95% CI, 68.8-99.9). The quality of evidence was low as per the GRADE approach. A combination of IgE against rAsp antigens (f1, f2, f3, f4, f6) are likely to be helpful in the diagnosis of ABPA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Structure and function of three novel MHC class I antigens derived from a C3H ultraviolet-induced fibrosarcoma

    PubMed Central

    1986-01-01

    The UV-induced, C3H fibrosarcoma, 1591, expresses at least three unique MHC class I antigens not found on normal C3H tissue. Here we report the complete DNA sequence of the three novel class I genes encoding these molecules, and describe in detail the recognition of the individual products by tumor-reactive and allospecific CTL. Remarkably, although C3H does not appear to express H-2L locus information, this C3H tumor expresses two distinct antigens, termed A149 and A166, which are extremely homologous to each other and to the H-2Ld antigen from BALB/c. The gene encoding the third novel class I antigen from 1591, A216, is quite homologous to H-2Kk) throughout its 3' end. Since all three of these genes account for polymorphic restriction fragments not found in C3H, it is likely that they were derived by recombination from the endogenous class I genes of C3H. The DNA sequence homology of A149, A166, and H-2Ld is especially significant given the functional conservation observed between the products of these genes. Limited sequence substitutions appear to correlate with some of the discrete serological differences observed between these molecules. In addition, both A149 and A166 crossreact, but to differing extents, with H-2Ld at the level of T cell recognition. Our results are consistent with the view that CTL recognize complex conformational determinants on class I molecules, but extend previous observations by comparing a set of antigens with discrete and overlapping structural and functional differences. PMID:3489061

  11. Recombinant HT{sub m4} gene, protein and assays

    DOEpatents

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  12. Recombinant HT.sub.m4 gene, protein and assays

    DOEpatents

    Lim, Bing; Adra, Chaker N.; Lelias, Jean-Michel

    1996-01-01

    The invention relates to a recombinant DNA molecule which encodes a HT.sub.m4 protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT.sub.m4 protein and a recombinant HT.sub.m4 protein. The invention also relates to a method for detecting the presence of a hereditary atopy.

  13. High-throughput Identification of DNA-Encoded IgG Ligands that Distinguish Active and Latent Mycobacterium Tuberculosis Infections

    PubMed Central

    Ndungu, John Maina; Suponitsky-Kroyter, Irena; Cavett, Valerie J.; McEnaney, Patrick J.; MacConnell, Andrew B.; Doran, Todd. M.; Ronacher, Katharina; Stanley, Kim; Utset, Ofelia; Walzl, Gerhard; Paegel, Brian M.; Kodadek, Thomas

    2017-01-01

    The circulating antibody repertoire encodes a patient's health status and pathogen exposure history, but identifying antibodies with diagnostic potential usually requires knowledge of the antigen(s). We previously circumvented this problem by screening libraries of bead-displayed small molecules against case and control serum samples to discover “epitope surrogates” (ligands of IgGs enriched in the case sample). Here, we describe an improved version of this technology that employs DNA-encoded libraries and high-throughput FACS-based screening to discover epitope surrogates that differentiate noninfectious/latent (LTB) patients from infectious/active TB (ATB) patients, which is imperative for proper treatment selection and antibiotic stewardship. Normal control/LTB (10 patients each, NCL) and ATB (10 patients) serum pools were screened against a library (5 × 106 beads, 448k unique compounds) using fluorescent anti-human IgG to label hit compound beads for FACS. Deep sequencing decoded all hit structures and each hit's occurrence frequencies. ATB hits were pruned of NCL hits and prioritized for resynthesis based on occurrence and homology. Several structurally homologous families were identified and 16/21 resynthesized representative hits validated as selective ligands of ATB serum IgGs (p < 0.005). The native secreted TB protein Ag85B (though not the E. coli recombinant form) competed with one of the validated ligands for binding to antibodies, suggesting that it mimics a native Ag85B epitope. The use of DNA-encoded libraries and FACS-based screening in epitope surrogate discovery reveals thousands of potential hit structures. Distilling this list down to several consensus chemical structures yielded a diagnostic panel for ATB composed of thermally stable and economically produced small molecule ligands in place of protein antigens. PMID:27957856

  14. Recombinant blood group proteins for use in antibody screening and identification tests.

    PubMed

    Seltsam, Axel; Blasczyk, Rainer

    2009-11-01

    The present review elucidates the potentials of recombinant blood group proteins (BGPs) for red blood cell (RBC) antibody detection and identification in pretransfusion testing and the achievements in this field so far. Many BGPs have been eukaryotically and prokaryotically expressed in sufficient quantity and quality for RBC antibody testing. Recombinant BGPs can be incorporated in soluble protein reagents or solid-phase assays such as ELISA, color-coded microsphere and protein microarray chip-based techniques. Because novel recombinant protein-based assays use single antigens, a positive reaction of a serum with the recombinant protein directly indicates the presence and specificity of the target antibody. Inversely, conventional RBC-based assays use panels of human RBCs carrying a huge number of blood group antigens at the same time and require negative reactions of samples with antigen-negative cells for indirect determination of antibody specificity. Because of their capacity for single-step, direct RBC antibody determination, recombinant protein-based assays may greatly facilitate and accelerate the identification of common and rare RBC antibodies.

  15. Joint capsule treatment with enkephalin-encoding HSV-1 recombinant vector reduces inflammatory damage and behavioural sequelae in rat CFA monoarthritis.

    PubMed

    Lu, Ying; McNearney, Terry A; Wilson, Steven P; Yeomans, David C; Westlund, Karin N

    2008-03-01

    This study assessed enkephalin expression induced by intra-articular application of recombinant, enkephalin-encoding herpes virus (HSV-1) and the impact of expression on nociceptive behaviours and synovial lining inflammation in arthritic rats. Replication-conditional HSV-1 recombinant vectors with cDNA encoding preproenkephalin (HSV-ENK), or control transgene beta-galactosidase cDNA (HSV-beta-gal; control) were injected into knee joints with complete Freund's adjuvant (CFA). Joint temperatures, circumferences and nociceptive behaviours were monitored on days 0, 7, 14 and 21 post CFA and vector treatments. Lumbar (L4-6) dorsal root ganglia (DRG) and spinal cords were immunostained for met-enkephalin (met-ENK), beta-gal, HSV-1 proteins and Fos. Joint tissues were immunostained for met-ENK, HSV-1 proteins, and inflammatory mediators Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) and cyclo-oxygenase-2, or stained with haematoxylin and eosin for histopathology. Compared to exuberant synovial hypertrophy and inflammatory cell infiltration seen in arthritic rats treated with CFA only or CFA and HSV-beta-gal, the CFA- and HSV-ENK-treated arthritic rats had: (i) striking preservation of synovial membrane cytoarchitecture with minimal inflammatory cell infiltrates; (ii) significantly improved nociceptive behavioural responses to mechanical and thermal stimuli; (iii) normalized Fos staining in lumbar dorsal horn; and (iv) significantly increased met-ENK staining in ipsilateral synovial tissue, lumbar DRG and spinal cord. The HSV-1 and transgene product expression were confined to ipsilateral lumbar DRG (HSV-1, met-ENK, beta-gal). Only transgene product (met-ENK and beta-gal) was seen in lumbar spinal cord sections. Targeted delivery of enkephalin-encoding HSV-1 vector generated safe, sustained opioid-induced analgesia with protective anti-inflammatory blunting in rat inflammatory arthritis.

  16. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum.

    PubMed

    Lee, H-R; Rhyu, I-C; Kim, H-D; Jun, H-K; Min, B-M; Lee, S-H; Choi, B-K

    2011-04-01

    Fusobacterium nucleatum plays a pivotal role in dental plaque biofilm formation and is known to be involved in chronic inflammatory systemic disease. However, limited knowledge of F. nucleatum genes expressed in vivo interferes with our understanding of pathogenesis. In this study, we identified F. nucleatum genes induced in vivo using in-vivo-induced antigen technology (IVIAT). Among 30,000 recombinant clones screened, 87 reacted reproducibly with pooled sera from 10 patients with periodontitis. The clones encoded for 32 different proteins, of which 28 could be assigned to their functions, which were categorized in translation, transcription, transport, energy metabolism, cell envelope, cellular process, fatty acid and phospholipid metabolism, transposition, cofactor biosynthesis, amino acid biosynthesis, and DNA replication. Putative virulence factors detected were ABC transporter, butyrate-acetoacetate CoA-transferase, hemin receptor, hemolysin, hemolysin-related protein, LysR family transcriptional regulator, serine protease, and transposase. Analysis of immune responses to the in-vivo-induced (ivi) antigens in five patients demonstrated that most were reactive to these proteins, confirming results with pooled sera. IVIAT-identified F. nucleatum genes in this study may accelerate the elucidation of F. nucleatum-mediated molecular pathogenesis. © 2011 John Wiley & Sons A/S.

  17. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic

    PubMed Central

    Gabitzsch, Elizabeth S.; Tsang, Kwong Yok; Palena, Claudia; David, Justin M.; Fantini, Massimo; Kwilas, Anna; Rice, Adrian E.; Latchman, Yvette; Hodge, James W.; Gulley, James L.; Madan, Ravi A.; Heery, Christopher R.; Balint, Joseph P.

    2015-01-01

    Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies. PMID:26374823

  18. Rift Valley Fever Virus Structural and Nonstructural Proteins: Recombinant Protein Expression and Immunoreactivity Against Antisera from Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William; McVey, D. Scott; Drolet, Barbara S.; Weingartl, Hana; Madden, Daniel; Young, Alan; Ma, Wenjun

    2013-01-01

    Abstract The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA). PMID:23962238

  19. A new human IgG avidity test, using mixtures of recombinant antigens (rROP1, rSAG2, rGRA6), for the diagnosis of difficult-to-identify phases of toxoplasmosis.

    PubMed

    Drapała, Dorota; Holec-Gąsior, Lucyna; Kur, Józef; Ferra, Bartłomiej; Hiszczyńska-Sawicka, Elżbieta; Lautenbach, Dariusz

    2014-07-01

    The preliminary diagnostic utility of two mixtures of Toxoplasma gondii recombinant antigens (rROP1+rSAG2 and rROP1+rGRA6) in IgG ELISA and IgG avidity test has been evaluated. A total of 173 serum samples from patients with toxoplasmosis and seronegative people were examined. The sensitivity of IgG ELISA for rROP1+rSAG2 and rROP1+rGRA6 was 91.1% and 76.7%, respectively, while the reactivity for sera from patients where acute toxoplasmosis was suspected was higher, at 100% and 95.4%, respectively, than for people with chronic infection, at 88.2% and 70.6%. In this study a different trend in avidity maturation of IgG antibodies for two mixtures of proteins in comparison with native antigen was observed. The results suggest that a new IgG avidity test using the mixtures of recombinant antigens may be useful for the diagnosis of difficult-to-identify phases of toxoplasmosis. For this reason, selected mixtures after the additional tests on groups of sera with well-defined dates of infection could be used as a better alternative to the native antigens of the parasite in the serodiagnosis of human T. gondii infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  1. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    PubMed

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs.

    PubMed

    Farahmand, Mahin; Nahrevanian, Hossein

    2016-07-01

    Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs.

  3. Recombinant antigens for immunodiagnosis of cystic echinococcosis

    PubMed Central

    Li, Jun; Zhang, Wen-Bao

    2004-01-01

    Three cDNAs, termed EpC1, TPxEg and EgG5, were isolated by immunoscreening from an Echinococcus granulosus cDNA library. The recombinant phages exhibited strong reactivity with sera from humans with confirmed cystic echinococcosis (CE) and with sera from mice infected with E. granulosus oncospheres. The cDNAs were subcloned into a pET vector, expressed as fusion proteins tagged with GST and affinity purified against the GST tag. Of the three recombinant proteins, EpC1 achieved the highest performance for serodiagnosis of CE in Western blot analysis using a panel of clinically defined human sera to initially address the sensitivity and specificity of the molecules. The protein yielded an overall sensitivity of 92.2% and specificity of 95.6%, levels unprecedented taking into account the large panel of 896 human sera that were tested. The strategy used may also prove suitable for improved immunodiagnosis of other parasitic infections. PMID:15188015

  4. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE PAGES

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; ...

    2016-02-09

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  5. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  6. Wide distribution of O157-antigen biosynthesis gene clusters in Escherichia coli.

    PubMed

    Iguchi, Atsushi; Shirai, Hiroki; Seto, Kazuko; Ooka, Tadasuke; Ogura, Yoshitoshi; Hayashi, Tetsuya; Osawa, Kayo; Osawa, Ro

    2011-01-01

    Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.

  7. Engineering Chimeric Antigen Receptors

    PubMed Central

    Kulemzin, S. V.; Kuznetsova, V. V.; Mamonkin, M.; Taranin, A. V.; Gorchakov, A. A.

    2017-01-01

    Chimeric antigen receptors (CARs) are recombinant protein molecules that redirect cytotoxic lymphocytes toward malignant and other target cells. The high feasibility of manufacturing CAR-modified lymphocytes for the therapy of cancer has spurred the development and optimization of new CAR T cells directed against a broad range of target antigens. In this review, we describe the main structural and functional elements constituting a CAR, discuss the roles of these elements in modulating the anti-tumor activity of CAR T cells, and highlight alternative approaches to CAR engineering. PMID:28461969

  8. Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene.

    PubMed

    Soria-Guerra, Ruth Elena; Rosales-Mendoza, Sergio; Márquez-Mercado, Crisóforo; López-Revilla, Rubén; Castillo-Collazo, Rosalba; Alpuche-Solís, Angel Gabriel

    2007-07-01

    A current priority of vaccinology is the development of multicomponent vaccines that protect against several pathogens. The diphtheria-pertussis-tetanus (DPT) vaccine prevents the symptoms of three serious and often fatal diseases due to the exotoxins produced by Corynebacterium diphteriae, Bordetella pertussis and Clostridium tetani. We are attempting to develop an edible DPT multicomponent vaccine in plants, based on the fusion of protective exotoxin epitopes encoded by synthetic genes. By means of Agrobacterium mediated transformation we generated transgenic tomatoes with a plant-optimised synthetic gene encoding a novel polypeptide containing two adjuvant and six DPT immunoprotective exotoxin epitopes joined by peptide linkers. In transformed tomato plants, integration of the synthetic DPT (sDPT) gene detected by PCR was confirmed by Southern blot, and specific transcripts of the expected molecular size were detected by RT-PCR. Expression of the putative polypeptide encoded by the sDPT gene was detected by immunoassay with specific antibodies to the diphtheria, pertussis and tetanus exotoxins. The sDPT gene is therefore integrated, transcribed and translated as the expected recombinant sDPT multiepitope polypeptide in transgenic tomatoes that constitute a potential edible vaccine.

  9. Development of a Luminex Bead Based Assay for Diagnosis of Toxocariasis Using Recombinant Antigens Tc-CTL-1 and Tc-TES-26.

    PubMed

    Anderson, John P; Rascoe, Lisa N; Levert, Keith; Chastain, Holly M; Reed, Matthew S; Rivera, Hilda N; McAuliffe, Isabel; Zhan, Bin; Wiegand, Ryan E; Hotez, Peter J; Wilkins, Patricia P; Pohl, Jan; Handali, Sukwan

    2015-01-01

    The clinical spectrum of human disease caused by the roundworms Toxocara canis and Toxocara cati ranges from visceral and ocular larva migrans to covert toxocariasis. The parasite is not typically recovered in affected tissues, so detection of parasite-specific antibodies is usually necessary for establishing a diagnosis. The most reliable immunodiagnostic methods use the Toxocara excretory-secretory antigens (TES-Ag) in ELISA formats to detect Toxocara-specific antibodies. To eliminate the need for native parasite materials, we identified and purified immunodiagnostic antigens using 2D gel electrophoresis followed by electrospray ionization mass spectrometry. Three predominant immunoreactive proteins were found in the TES; all three had been previously described in the literature: Tc-CTL-1, Tc-TES-26, and Tc-MUC-3. We generated Escherichia coli expressed recombinant proteins for evaluation in Luminex based immunoassays. We were unable to produce a functional assay with the Tc-MUC-3 recombinant protein. Tc-CTL-1 and Tc-TES-26 were successfully coupled and tested using defined serum batteries. The use of both proteins together generated better results than if the proteins were used individually. The sensitivity and specificity of the assay for detecting visceral larval migrans using Tc-CTL-1 plus Tc-TES-26 was 99% and 94%, respectively; the sensitivity for detecting ocular larval migrans was 64%. The combined performance of the new assay was superior to the currently available EIA and could potentially be employed to replace current assays that rely on native TES-Ag.

  10. Development of a Luminex Bead Based Assay for Diagnosis of Toxocariasis Using Recombinant Antigens Tc-CTL-1 and Tc-TES-26

    PubMed Central

    Anderson, John P.; Rascoe, Lisa N.; Levert, Keith; Chastain, Holly M.; Reed, Matthew S.; Rivera, Hilda N.; McAuliffe, Isabel; Zhan, Bin; Wiegand, Ryan E.; Hotez, Peter J.; Wilkins, Patricia P.; Pohl, Jan; Handali, Sukwan

    2015-01-01

    The clinical spectrum of human disease caused by the roundworms Toxocara canis and Toxocara cati ranges from visceral and ocular larva migrans to covert toxocariasis. The parasite is not typically recovered in affected tissues, so detection of parasite-specific antibodies is usually necessary for establishing a diagnosis. The most reliable immunodiagnostic methods use the Toxocara excretory-secretory antigens (TES-Ag) in ELISA formats to detect Toxocara-specific antibodies. To eliminate the need for native parasite materials, we identified and purified immunodiagnostic antigens using 2D gel electrophoresis followed by electrospray ionization mass spectrometry. Three predominant immunoreactive proteins were found in the TES; all three had been previously described in the literature: Tc-CTL-1, Tc-TES-26, and Tc-MUC-3. We generated Escherichia coli expressed recombinant proteins for evaluation in Luminex based immunoassays. We were unable to produce a functional assay with the Tc-MUC-3 recombinant protein. Tc-CTL-1 and Tc-TES-26 were successfully coupled and tested using defined serum batteries. The use of both proteins together generated better results than if the proteins were used individually. The sensitivity and specificity of the assay for detecting visceral larval migrans using Tc-CTL-1 plus Tc-TES-26 was 99% and 94%, respectively; the sensitivity for detecting ocular larval migrans was 64%. The combined performance of the new assay was superior to the currently available EIA and could potentially be employed to replace current assays that rely on native TES-Ag. PMID:26485145

  11. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment.

    PubMed

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A; Roland, Kenneth L; Curtiss, Roy

    2008-07-08

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain chi8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 P(R) promoter. An arabinose-regulated c2 gene is present in the chromosome. chi8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of P(R), driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic alpha-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with chi8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.

  12. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment

    PubMed Central

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A.; Roland, Kenneth L.; Curtiss, Roy

    2008-01-01

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 PR promoter. An arabinose-regulated c2 gene is present in the chromosome. χ8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of PR, driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic α-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with χ8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable. PMID:18607005

  13. Oral delivery of microparticles containing plasmid DNA encoding hepatitis-B surface antigen.

    PubMed

    Bhowmik, Tuhin; D'Souza, Bernadette; Uddin, Mohammad N; D'Souza, Martin J

    2012-05-01

    The role of albumin-based chitosan microparticles on enhancing immune response of plasmid DNA (pDNA) to hepatitis-B surface antigen (HBsAg) vaccine after oral administration was investigated in mice. The pDNA encoding HBsAg was entrapped in albumin microparticles using a one-step spray drying technique optimized in our laboratory. The encapsulated particles were also characterized in vitro for their shape, size, encapsulation efficiency, content, and stability. Albumin microparticles could protect the DNA from nuclease degradation as confirmed in our agarose gel study. Further immune modulating effect was studied in our formulation by measuring IgG antibodies in serum as well as IgA antibodies in fecal extracts. The mice were immunized with a prime dose of 100 μg of pDNA in microparticle formulations with and without interleukins biweekly until week 7 followed by a booster dose of equivalent strength on week 33 to compare the response with the subcutaneous group. The oral immunization with the pDNA to HBsAg microparticles gave significantly higher titer level of both sIgA and IgG at week 9 and 34, respectively, in oral vaccine with interleukins group when compared with the subcutaneous group. Thus, we observed an augmentation of both humoral and cellular immune responses for prolonged periods after immunization.

  14. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodzik, R.; Bandurska, K.; Deka, D.

    2005-12-16

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles weremore » efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP.« less

  16. Detection of peste des petits ruminants virus antigen using immunofiltration and antigen-competition ELISA methods.

    PubMed

    Raj, G Dhinakar; Rajanathan, T M C; Kumar, C Senthil; Ramathilagam, G; Hiremath, Geetha; Shaila, M S

    2008-06-22

    Peste des petits ruminants (PPR) is one of the most economically important diseases affecting sheep and goats in India. An immunofiltration-based test has been developed using either mono-specific serum/monoclonal antibodies (mAb) prepared against a recombinant truncated nucleocapsid protein of rinderpest virus (RPV) cross-reactive with PPR virus. This method consists of coating ocular swab eluate from suspected animals onto a nitrocellulose membrane housed in a plastic module, which is allowed to react with suitable dilutions of a mAb or a mono-specific polyclonal antibody. The antigen-antibody complex formed on the membrane is then detected by protein A-colloidal gold conjugate, which forms a pink colour. In the immunofiltration test, concordant results were obtained using either PPRV mAb or mono-specific serum. Another test, an antigen-competition ELISA which relies on the competition between plate-coated recombinant truncated 'N' protein of RPV and the PPRV 'N' protein present in ocular swab eluates (sample) for binding to the mono-specific antibody against N protein of RPV (in liquid phase) was developed. The cut-off value for this test was established using reverse transcription polymerase chain reaction (RT-PCR) positive and negative oculo-nasal swab samples. Linear correlation between percent inhibition (PI) values in antigen-competition ELISA and virus infectivity titres was 0.992. Comparison of the immunofiltration test with the antigen-competition ELISA yielded a sensitivity of 80% and specificity of 100%. These two tests can serve as a screening (immunofiltration) and confirmatory (antigen-competition ELISA) test, respectively, in the diagnosis of PPR in sheep or goats.

  17. Colorectal cancer vaccines: antiidiotypic antibody, recombinant protein, and viral vector.

    PubMed

    Basak, S; Eck, S; Gutzmer, R; Smith, A J; Birebent, B; Purev, E; Staib, L; Somasundaram, R; Zaloudik, J; Li, W; Jacob, L; Mitchell, E; Speicher, D; Herlyn, D

    2000-06-01

    The colorectal cancer antigen GA733 (also termed CO17-1A, KSI-4, Ep-CAM, KSA) has proved to be a useful target in passive immunotherapy with monoclonal antibody and in active immunotherapy with antiidiotypic antibodies in cancer patients. The GA733 antigen was molecularly cloned and expressed in baculovirus (BV), adenovirus (AV), and vaccinia virus (VV). Recombinant BV-, VV-, and AV-GA733 induced antigen-specific cytotoxic antibodies and proliferative and delayed-type hypersensitive lymphocytes. However, only the AV recombinant induced antigen-specific cytolytic T lymphocytes and regression of established tumors. Cured mice were protected against challenge with antigen-negative tumors, indicating antigen spreading of immune responses. In a model of active immunotherapy against the murine homologue of the human GA733 antigen, murine epithelial glycoprotein (mEGP), BV-derived mEGP protein in various adjuvants did not protect mice against a challenge with mEGP-positive tumors. AV mEGP, only when combined with interleukin-2, significantly inhibited growth of established mEGP-positive tumors. This is in contrast to the same vaccine expressing the human antigen that was effective without interleukin-2. AV GA733, in combination with interleukin-2, is a candidate vaccine for colorectal cancer patients.

  18. Applications and challenges of multivalent recombinant vaccines

    PubMed Central

    Naim, Hussein Y.

    2013-01-01

    The exceptional discoveries of antigen/gene delivery systems have allowed the development of novel prophylactic and therapeutic vaccine candidates. The vaccine candidates employ various antigen-delivery systems, particularly recombinant viral vectors. Recombinant viral vectors are experimental vaccines similar to DNA vaccines, but they use attenuated viruses or bacterium as a carrier “vector” to introduce microbial DNA to cells of the body. They closely mimic a natural infection and therefore can efficiently stimulate the immune system. Although such recombinant vectors may face extensive preclinical testing and will possibly have to meet stringent regulatory requirements, some of these vectors (e.g. measles virus vectors) may benefit from the profound industrial and clinical experience of the parent vaccine. Most notably, novel vaccines based on live attenuated viruses combine the induction of broad, strong and persistent immune responses with acceptable safety profiles. We assess certain technologies in light of their use against human immunodeficiency virus (HIV). PMID:23249651

  19. Recombinant vaccine displaying the loop-neutralizing determinant from protective antigen completely protects rabbits from experimental inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Jacobs, Jana L; Cease, Kemp B

    2013-03-01

    We previously showed that a multiple antigenic peptide (MAP) vaccine displaying amino acids (aa) 304 to 319 from the 2β2-2β3 loop of protective antigen was capable of protecting rabbits from an aerosolized spore challenge with Bacillus anthracis Ames strain. Antibodies to this sequence, referred to as the loop-neutralizing determinant (LND), are highly potent at neutralizing lethal toxin yet are virtually absent in rabbit and human protective antigen (PA) antiserum. While the MAP vaccine was protective against anthrax, it contains a single heterologous helper T cell epitope which may be suboptimal for stimulating an outbred human population. We therefore engineered a recombinant vaccine (Rec-LND) containing two tandemly repeated copies of the LND fused to maltose binding protein, with enhanced immunogenicity resulting from the p38/P4 helper T cell epitope from Schistosoma mansoni. Rec-LND was found to be highly immunogenic in four major histocompatibility complex (MHC)-diverse strains of mice. All (7/7) rabbits immunized with Rec-LND developed high-titer antibody, 6 out of 7 developed neutralizing antibody, and all rabbits were protected from an aerosolized spore challenge of 193 50% lethal doses (LD(50)) of the B. anthracis Ames strain. Survivor serum from Rec-LND-immunized rabbits revealed significantly increased neutralization titers and specific activity compared to prechallenge levels yet lacked PA or lethal factor (LF) antigenemia. Control rabbits immunized with PA, which were also completely protected, appeared sterilely immune, exhibiting significant declines in neutralization titer and specific activity compared to prechallenge levels. We conclude that Rec-LND may represent a prototype anthrax vaccine for use alone or potentially combined with PA-containing vaccines.

  20. Expression, purification and in vitro refolding of the recombinant truncated Saposin-like protein 2 antigen for development of diagnosis of human fascioliasis.

    PubMed

    Mirzadeh, Abolfazl; Valadkhani, Zarrintaj; Yoosefy, Asiyeh; Babaie, Jalal; Golkar, Majid; Esmaeili Rastaghi, Ahmad Reza; Kazemi-Rad, Elham; Ashrafi, Keyhan

    2017-07-01

    Early diagnosis of fascioliasis is critical in prevention of injury to the liver and bile ducts. Saposin-like protein (FhSAP-2) is probably the most ideal antigen of Fasciola hepatica for development of ELISA kits. SAP-2 has a conserved tertiary structure containing three disulfide bonds and conformational epitopes. Therefore, antigenicity of SAP-2 is greatly depends on disulfide bond formation and proper folding. We produced the recombinant truncated SAP-2 (rtSAP-2) in the SHuffle ® T7 and Rosetta strain of Escherichia coli, in soluble and insoluble forms, respectively and purified by immobilized metal affinity chromatography (IMAC). The refolding process of denatured rtSAP-2 was performed using dialysis and dilution methods in the presence of chemical additives, along with reduced/oxidized glutathione (in vitro). Physicochemical studies, including non-reducing gel electrophoresis, Ellman's assay, Western blotting and ELISA showed the most antigenicity and likely correct folding of rtSAP-2, which was obtained by dialysis method. An IgG ELISA test was developed using rtSAP-2 refolded by dialysis and compared with excretory/secretory products of parasite with 52 positive fascioliasis samples, 79 other parasitic samples and 70 negative controls samples. The results exhibited 100% sensitivity and 98% specificity for rtSAP-2, also, 100% and 95.3% for excretory/secretory (E/S) antigen, respectively. In conclusion, it is suggested that rtSAP-2 with the correct folding could be used as a candidate antigen for detection of human fascioliasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Impact of recombination on polymorphism of genes encoding Kunitz-type protease inhibitors in the genus Solanum.

    PubMed

    Speranskaya, Anna S; Krinitsina, Anastasia A; Kudryavtseva, Anna V; Poltronieri, Palmiro; Santino, Angelo; Oparina, Nina Y; Dmitriev, Alexey A; Belenikin, Maxim S; Guseva, Marina A; Shevelev, Alexei B

    2012-08-01

    The group of Kunitz-type protease inhibitors (KPI) from potato is encoded by a polymorphic family of multiple allelic and non-allelic genes. The previous explanations of the KPI variability were based on the hypothesis of random mutagenesis as a key factor of KPI polymorphism. KPI-A genes from the genomes of Solanum tuberosum cv. Istrinskii and the wild species Solanum palustre were amplified by PCR with subsequent cloning in plasmids. True KPI sequences were derived from comparison of the cloned copies. "Hot spots" of recombination in KPI genes were independently identified by DnaSP 4.0 and TOPALi v2.5 software. The KPI-A sequence from potato cv. Istrinskii was found to be 100% identical to the gene from Solanum nigrum. This fact illustrates a high degree of similarity of KPI genes in the genus Solanum. Pairwise comparison of KPI A and B genes unambiguously showed a non-uniform extent of polymorphism at different nt positions. Moreover, the occurrence of substitutions was not random along the strand. Taken together, these facts contradict the traditional hypothesis of random mutagenesis as a principal source of KPI gene polymorphism. The experimentally found mosaic structure of KPI genes in both plants studied is consistent with the hypothesis suggesting recombination of ancestral genes. The same mechanism was proposed earlier for other resistance-conferring genes in the nightshade family (Solanaceae). Based on the data obtained, we searched for potential motifs of site-specific binding with plant DNA recombinases. During this work, we analyzed the sequencing data reported by the Potato Genome Sequencing Consortium (PGSC), 2011 and found considerable inconsistence of their data concerning the number, location, and orientation of KPI genes of groups A and B. The key role of recombination rather than random point mutagenesis in KPI polymorphism was demonstrated for the first time. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies.

    PubMed

    Okegawa, Yuki; Koshino, Masanori; Okushima, Teruya; Motohashi, Ken

    2016-02-01

    Specific antibodies are a reliable tool to examine protein expression patterns and to determine the protein localizations within cells. Generally, recombinant proteins are used as antigens for specific antibody production. However, recombinant proteins from mammals and plants are often overexpressed as insoluble inclusion bodies in Escherichia coli. Solubilization of these inclusion bodies is desirable because soluble antigens are more suitable for injection into animals to be immunized. Furthermore, highly purified proteins are also required for specific antibody production. Plastidic acetyl-CoA carboxylase (ACCase: EC 6.4.1.2) from Arabidopsis thaliana, which catalyzes the formation of malonyl-CoA from acetyl-CoA in chloroplasts, formed inclusion bodies when the recombinant protein was overexpressed in E. coli. To obtain the purified protein to use as an antigen, we applied preparative disk gel electrophoresis for protein purification from inclusion bodies. This method is suitable for antigen preparation from inclusion bodies because the purified protein is recovered as a soluble fraction in electrode running buffer containing 0.1% sodium dodecyl sulfate that can be directly injected into immune animals, and it can be used for large-scale antigen preparation (several tens of milligrams). Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Isolation of an intertypic poliovirus capsid recombinant from a child with vaccine-associated paralytic poliomyelitis.

    PubMed

    Martín, Javier; Samoilovich, Elena; Dunn, Glynis; Lackenby, Angie; Feldman, Esphir; Heath, Alan; Svirchevskaya, Ekaterina; Cooper, Gill; Yermalovich, Marina; Minor, Philip D

    2002-11-01

    The isolation of a capsid intertypic poliovirus recombinant from a child with vaccine-associated paralytic poliomyelitis is described. Virus 31043 had a Sabin-derived type 3-type 2-type 1 recombinant genome with a 5'-end crossover point within the capsid coding region. The result was a poliovirus chimera containing the entire coding sequence for antigenic site 3a derived from the Sabin type 2 strain. The recombinant virus showed altered antigenic properties but did not acquire type 2 antigenic characteristics. The significance of the presence in nature of such poliovirus chimeras and the consequences for the current efforts to detect potentially dangerous vaccine-derived poliovirus strains are discussed in the context of the global polio eradication initiative.

  4. Performance of Leishmania PFR1 recombinant antigen in serological diagnosis of asymptomatic canine leishmaniosis by ELISA.

    PubMed

    Ledesma, Darién; Berriatua, Eduardo; Thomas, M Carmen; Bernal, Luis Jesús; Ortuño, María; Benitez, Celia; Egui, Adriana; Papasouliotis, Kostas; Tennant, Bryn; Chambers, Julia; Infante, Juan José; López, Manuel Carlos

    2017-10-23

    Leishmania infantum is a protozoan parasite transmitted by phlebotomine sand flies that causes life-threatening disease in humans and dogs. The dog is the primary reservoir of the parasite and early diagnosis of canine leishmaniosis is crucial at the clinical and epidemiological level. The currently available serological tests for CanL diagnostic show limitations therefore the aim of the present study was to investigate the diagnostic performance of an indirect antibody ELISA based on the Leishmania infantum recombinant antigen PFR1 in asymptomatically infected dogs. One hundred fifty-six dogs including Leishmania-free experimental Beagles and pet dogs from England, Scotland and Leishmania-endemic Murcia in Spain, were tested with the assay. The later were also tested with two commercial L. infantum crude antigen ELISAs (INgezim and Civtest, respectively) and a real-time kinetoplast PCR test. Anti-PFR1 antibodies were detected in the four groups of dogs, and the mean log-transformed optical density (OD) values were lowest in Beagles and in dogs from England and highest among dogs from Murcia (p < 0.05). Using the highest OD in beagles as the PFR1 ELISA cut-off point, the estimated seroprevalence was 27% (14-40%) in dogs from Murcia, 4% (0-9%) in dogs from Scotland and 3% (0-8%) in dogs from England (p < 0.05). Seroprevalence in dogs from Murcia according to the INgezim and Civtest ELISAs were 24% (12-37%) and 31% (18-45%), respectively, whilst the prevalence of infection based on PCR in these dogs was 73% (60-86). The percentages of PFR1-positive dogs that tested negative on the INgezim and Civtest ELISAs were 30% and 35%, respectively, and all of them tested positive on the PCR test. Relative to the PCR, the specificity, sensitivity and area under the ROC curve of the PFR1 ELISA were 100%, 36% and 0.74 (0.63-0.86), respectively. The ability shown by the PFR1 ELISA to detect infected dogs that go undetected by the crude antigen ELISAs is clinically and

  5. Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.

    PubMed

    Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin

    2016-07-01

    The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.

  6. Recombineering Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  7. Diagnostic value of detecting specific IgA and IgM with recombinant Trypanosoma cruzi antigens in congenital Chagas' disease.

    PubMed

    Lorca, M; Veloso, C; Munoz, P; Bahamonde, M I; Garcia, A

    1995-06-01

    The present study compares the early diagnosis of congenital Chagas' disease with a DOT assay using recombinant antigens with immunofluorescence antibody testing (IFAT) and an enzyme-linked immunosorbent assay (ELISA). The studies were performed using cord blood and sera of 12 infected newborns (group I) and 12 uninfected ones born to Trypanosoma cruzi-infected mothers (group II). Conventional IFAT and ELISA showed positive results for IgG at high titers, in infants and mothers of both groups; IgA antibodies were detected by ELISA in four of the infected infants and IgM was detected in two of them. All sera of the uninfected infants were negative for IgA and IgM in the ELISA. Application of a DOT assay using eight recombinant T. cruzi antigens allowed detection of specific IgA in the cord blood of six of the infected cases and IgM in eight of them. Repetition of these serologic tests in samples obtained during a monthly follow-up gave positive results for IgA in two of the initially negative infants of group I and for IgM in four of them. This means that diagnosis of congenital T. cruzi infection was confirmed, through demonstration of specific IgM, in all infected infants, and of IgA in eight of them. The importance of late detection of IgM in siblings born of infected mothers is discussed. The detection of IgM and IgA in sera obtained after birth is believed to be due to a congenital transmission of the parasite that occurred late in pregnancy. No IgA or IgM antibodies could be detected by the DOT assay in the sera of the negative controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Recombinant Lactococcus lactis can make the difference in antigen-specific immune tolerance induction, the Type 1 Diabetes case

    PubMed Central

    2014-01-01

    Especially in western civilizations, immune diseases that are driven by innocuous (auto- or allo-) antigens are gradually evolving to become pandemic threats. A particularly poignant example is type 1 diabetes, where young children are confronted with the perspective and consequences of total pancreatic β-cell destruction. Along these disquieting observations we find ourselves equipped with impressively accumulating molecular immunological knowledge on the ins and outs of these pathologies. Often, however, it is difficult to translate this wealth into efficacious medicines. The molecular understanding, the concept of oral tolerance induction, the benefit of using recombinant Lactococcus lactis therein and recent openings towards their clinical use may well enable turning all colors to their appropriate fields on this Rubik's cube. PMID:25185797

  9. Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine.

    PubMed

    Heath, D G; Anderson, G W; Mauro, J M; Welkos, S L; Andrews, G P; Adamovicz, J; Friedlander, A M

    1998-07-01

    The current human whole-cell vaccine is ineffective against pneumonic plague caused by typical F1 capsule positive (F1+) strains of Yersinia pestis. The authors found this vaccine to also be ineffective against F1-negative (F1-) Y. pestis strains, which have been isolated from a human case and from rodents. For these reasons, the authors developed a recombinant vaccine composed of a fusion protein of F1 with a second protective immunogen, V antigen. This vaccine protected experimental mice against pneumonic as well as bubonic plague produced by either an F1+ or F1- strain of Y. pestis, gave better protection than F1 or V alone against the F1+ strain, and may provide the basis for an improved human plague vaccine.

  10. Diversification of Orientia tsutsugamushi genotypes by intragenic recombination and their potential expansion in endemic areas

    PubMed Central

    Kim, Gwanghun; Ha, Na-Young; Min, Chan-Ki; Kim, Hong-Il; Yen, Nguyen Thi Hai; Lee, Keun-Hwa; Oh, Inbo; Kang, Jae-Seung; Choi, Myung-Sik; Kim, Ik-Sang

    2017-01-01

    Background Scrub typhus is a mite-borne febrile disease caused by O. tsutsugamushi infection. Recently, emergence of scrub typhus has attracted considerable attention in several endemic countries in Asia and the western Pacific. In addition, the antigenic diversity of the intracellular pathogen has been a serious obstacle for developing effective diagnostics and vaccine. Methodology/Principal findings To understand the evolutionary pathway of genotypic diversification of O. tsutsugamushi and the environmental factors associated with the epidemiological features of scrub typhus, we analyzed sequence data, including spatiotemporal information, of the tsa56 gene encoding a major outer membrane protein responsible for antigenic variation. A total of 324 tsa56 sequences covering more than 85% of its open reading frame were analyzed and classified into 17 genotypes based on phylogenetic relationship. Extensive sequence analysis of tsa56 genes using diverse informatics tools revealed multiple intragenic recombination events, as well as a substantially higher mutation rate than other house-keeping genes. This suggests that genetic diversification occurred via frequent point mutations and subsequent genetic recombination. Interestingly, more diverse bacterial genotypes and dominant vector species prevail in Taiwan compared to other endemic regions. Furthermore, the co-presence of identical and sub-identical clones of tsa56 gene in geographically distant areas implies potential spread of O. tsutsugamushi genotypes. Conclusions/Significance Fluctuation and diversification of vector species harboring O. tsutsugamushi in local endemic areas may facilitate genetic recombination among diverse genotypes. Therefore, careful monitoring of dominant vector species, as well as the prevalence of O. tsutsugamushi genotypes may be advisable to enable proper anticipation of epidemiological changes of scrub typhus. PMID:28248956

  11. Prime-boost vaccination with toxoplasma lysate antigen, but not with a mixture of recombinant protein antigens, leads to reduction of brain cyst formation in BALB/c mice.

    PubMed

    Wagner, Angelika; Schabussova, Irma; Ruttkowski, Bärbel; Peschke, Roman; Kur, Józef; Kundi, Michael; Joachim, Anja; Wiedermann, Ursula

    2015-01-01

    Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii

  12. Prime-Boost Vaccination with Toxoplasma Lysate Antigen, but Not with a Mixture of Recombinant Protein Antigens, Leads to Reduction of Brain Cyst Formation in BALB/c Mice

    PubMed Central

    Wagner, Angelika; Schabussova, Irma; Ruttkowski, Bärbel; Peschke, Roman; Kur, Józef; Kundi, Michael; Joachim, Anja; Wiedermann, Ursula

    2015-01-01

    Introduction Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Methods Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Results Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. Conclusion In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further

  13. Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection.

    PubMed

    Reed, Matthew D; Wilder, Julie A; Mega, William M; Hutt, Julie A; Kuehl, Philip J; Valderas, Michelle W; Chew, Lawrence L; Liang, Bertrand C; Squires, Charles H

    2015-01-01

    Protective antigen (PA), one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax). Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively) supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse injection site reactions. Mutant derivatives of the protective antigen that will not form the anthrax toxins have been described. We have cloned and expressed both mutant (PA SNKE167-ΔFF-315-E308D) and native PA molecules recombinantly and purified them. In this study, both the mutant and native PA molecules, formulated with alum (Alhydrogel), elicited high titers of anthrax toxin neutralizing anti-PA antibodies in New Zealand White rabbits. Both mutant and native PA vaccine preparations protected rabbits from lethal, aerosolized, B. anthracis spore challenge subsequent to two immunizations at doses of less than 1 μg.

  14. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen specific Interleukin 17 response

    PubMed Central

    Zeng, Xun; Wei, Yu-ling; Huang, Jun; Newell, Evan W.; Yu, Hongxiang; Kidd, Brian A.; Kuhns, Michael S.; Waters, Ray W.; Davis, Mark M.; Weaver, Casey T.; Chien, Yueh-hsiu

    2012-01-01

    Summary γδ T cells contribute uniquely to host immune defense. However, how they function remains an enigma. Although it is unclear what most γδ T cells recognize, common dogma asserts that they recognize self-antigens. While they are the major initial Interleukin-17 (IL-17) producers in infections, it is unclear what is required to trigger these cells to act. Here, we report that a noted B cell antigen, the algae protein-phycoerythrin (PE) is an antigen for murine and human γδ T cells. PE also stained specific bovine γδ T cells. Employing this specificity, we demonstrated that antigen recognition, but not extensive clonal expansion, was required to activate naïve γδ T cells to make IL-17. In this activated state, γδ T cells gained the ability to respond to cytokine signals that perpetuated the IL-17 production. These results underscore the adaptability of lymphocyte antigen receptors and suggest a previously unrecognized antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  15. Mapping of the antigenic determinants of the Leishmania infantum gp63 protein recognized by antibodies elicited during canine visceral leishmaniasis.

    PubMed

    Morales, G; Carrillo, G; Requena, J M; Guzman, F; Gomez, L C; Patarroyo, M E; Alonso, C

    1997-06-01

    The gp63 gene encoding the major surface antigen of Leishmania infantum has been cloned and sequenced. In spite of the overall sequence homology with the gp63 genes from other Leishmania species, particularly with the constitutively expressed Leishmania chagasi Gp63 gene, the carboxy-terminal ends of these genes are clearly divergent (62% homology). To study the prevalence of anti-gp63 antibodies in the sera from dogs with visceral leishmaniasis, a recombinant L. infantum gp63 protein was expressed in Escherichia coli. It was found that 100% of the sera from these dogs recognized the recombinant gp63 protein, suggesting that it must function as a potent B cell immunogen during natural canine visceral leishmaniasis. However, heterogeneity in the level of response was observed. Fine mapping of the antigenic determinants was performed by means of 6 overlapping subfragments of the gp63 protein and by the use of a library of synthetic peptides. The data showed that there is some degree of immunological restriction in the recognition of the protein since reactivity was observed preferentially against the most divergent region. The epitope mapping of this region showed 2 immunodominant peptides the response to which seems to be preferentially of the IgG2 type.

  16. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    NASA Astrophysics Data System (ADS)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  17. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    PubMed

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  18. Isolation of an Intertypic Poliovirus Capsid Recombinant from a Child with Vaccine-Associated Paralytic Poliomyelitis

    PubMed Central

    Martín, Javier; Samoilovich, Elena; Dunn, Glynis; Lackenby, Angie; Feldman, Esphir; Heath, Alan; Svirchevskaya, Ekaterina; Cooper, Gill; Yermalovich, Marina; Minor, Philip D.

    2002-01-01

    The isolation of a capsid intertypic poliovirus recombinant from a child with vaccine-associated paralytic poliomyelitis is described. Virus 31043 had a Sabin-derived type 3-type 2-type 1 recombinant genome with a 5′-end crossover point within the capsid coding region. The result was a poliovirus chimera containing the entire coding sequence for antigenic site 3a derived from the Sabin type 2 strain. The recombinant virus showed altered antigenic properties but did not acquire type 2 antigenic characteristics. The significance of the presence in nature of such poliovirus chimeras and the consequences for the current efforts to detect potentially dangerous vaccine-derived poliovirus strains are discussed in the context of the global polio eradication initiative. PMID:12368335

  19. Freeze-thaw stress of Alhydrogel ® alone is sufficient to reduce the immunogenicity of a recombinant hepatitis B vaccine containing native antigen.

    PubMed

    Clapp, Tanya; Munks, Michael W; Trivedi, Ruchit; Kompella, Uday B; Braun, LaToya Jones

    2014-06-24

    Preventing losses in vaccine potency due to accidental freezing has recently become a topic of interest for improving vaccines. All vaccines with aluminum-containing adjuvants are susceptible to such potency losses. Recent studies have described excipients that protect the antigen from freeze-induced inactivation, prevent adjuvant agglomeration and retain potency. Although these strategies have demonstrated success, they do not provide a mechanistic understanding of freeze-thaw (FT) induced potency losses. In the current study, we investigated how adjuvant frozen in the absence of antigen affects vaccine immunogenicity and whether preventing damage to the freeze-sensitive recombinant hepatitis B surface antigen (rHBsAg) was sufficient for maintaining vaccine potency. The final vaccine formulation or Alhydrogel(®) alone was subjected to three FT-cycles. The vaccines were characterized for antigen adsorption, rHBsAg tertiary structure, particle size and charge, adjuvant elemental content and in-vivo potency. Particle agglomeration of either vaccine particles or adjuvant was observed following FT-stress. In vivo studies demonstrated no statistical differences in IgG responses between vaccines with FT-stressed adjuvant and no adjuvant. Adsorption of rHBsAg was achieved; regardless of adjuvant treatment, suggesting that the similar responses were not due to soluble antigen in the frozen adjuvant-containing formulations. All vaccines with adjuvant, including the non-frozen controls, yielded similar, blue-shifted fluorescence emission spectra. Immune response differences could not be traced to differences in the tertiary structure of the antigen in the formulations. Zeta potential measurements and elemental content analyses suggest that FT-stress resulted in a significant chemical alteration of the adjuvant surface. This data provides evidence that protecting a freeze-labile antigen from subzero exposure is insufficient to maintain vaccine potency. Future studies should

  20. Construction and characterization of a recombinant invertebrate iridovirus.

    PubMed

    Ozgen, Arzu; Muratoglu, Hacer; Demirbag, Zihni; Vlak, Just M; van Oers, Monique M; Nalcacioglu, Remziye

    2014-08-30

    Chilo iridescent virus (CIV), officially named Insect iridescent virus 6 (IIV6), is the type species of the genus Iridovirus (family Iridoviridae). In this paper we constructed a recombinant CIV, encoding the green fluorescent protein (GFP). This recombinant can be used to investigate viral replication dynamics. We showed that homologous recombination is a valid method to make CIV gene knockouts and to insert foreign genes. The CIV 157L gene, putatively encoding a non-functional inhibitor of apoptosis (IAP), was chosen as target for foreign gene insertion. The gfp open reading frame preceded by the viral mcp promoter was inserted into the 157L locus by homologous recombination in Anthonomus grandis BRL-AG-3A cells. Recombinant virus (rCIV-Δ157L-gfp) was purified by successive rounds of plaque purification. All plaques produced by the purified recombinant virus emitted green fluorescence due to the presence of GFP. One-step growth curves for recombinant and wild-type CIV were similar and the recombinant was fully infectious in vivo. Hence, CIV157L can be inactivated without altering the replication kinetics of the virus. Consequently, the CIV 157L locus can be used as a site for insertion of foreign DNA, e.g. to modify viral properties for insect biocontrol. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Inhibition of CD1 antigen presentation by human cytomegalovirus.

    PubMed

    Raftery, Martin J; Hitzler, Manuel; Winau, Florian; Giese, Thomas; Plachter, Bodo; Kaufmann, Stefan H E; Schönrich, Günther

    2008-05-01

    The betaherpesvirus human cytomegalovirus (HCMV) encodes several molecules that block antigen presentation by the major histocompatibility complex (MHC) proteins. Humans also possess one other family of antigen-presenting molecules, the CD1 family; however, the effect of HCMV on CD1 expression is unknown. The majority of CD1 molecules are classified on the basis of homology as group 1 CD1 and are present almost exclusively on professional antigen-presenting cells such as dendritic cells, which are a major target for HCMV infection and latency. We have determined that HCMV encodes multiple blocking strategies targeting group 1 CD1 molecules. CD1 transcription is strongly inhibited by the HCMV interleukin-10 homologue cmvIL-10. HCMV also blocks CD1 antigen presentation posttranscriptionally by the inhibition of CD1 localization to the cell surface. This function is not performed by a known HCMV MHC class I-blocking molecule and is substantially stronger than the blockage induced by herpes simplex virus type 1. Antigen presentation by CD1 is important for the development of the antiviral immune response and the generation of mature antigen-presenting cells. HCMV present in antigen-presenting cells thus blunts the immune response by the blockage of CD1 molecules.

  2. Serologic reactivity to purified recombinant and native 29-kilodalton peripheral membrane protein of pathogenic Entamoeba histolytica.

    PubMed Central

    Flores, B M; Reed, S L; Ravdin, J I; Torian, B E

    1993-01-01

    The 29-kDa peripheral membrane protein of Entamoeba histolytica has recently been demonstrated to have epitopes on pathogenic clinical isolates which were not detected by monoclonal antibodies on nonpathogenic isolates. To analyze the serological response to this protein, we tested 93 serum specimens (from 33 patients with amebic liver abscess, 7 patients with colitis, 2 patients with ameboma, 18 individuals harboring a nonpathogenic zymodeme strain, 10 healthy Mexican migrant workers, and 23 healthy controls) by enzyme-linked immunosorbent assay (ELISA) using immunoaffinity-purified native or recombinant protein. When tested by ELISA with the native antigen, 79% (26 of 33) of the serum specimens from patients with amebic liver abscess, 4 of 9 serum specimens from symptomatic patients with colitis or ameboma, and serum from one migrant worker were positive. None of the 18 subjects harboring a nonpathogenic strain or 23 control individuals were seropositive to the native antigen (sensitivity, 71%; specificity, 98%). Of 30 serum specimens from patients with amebic liver abscess tested with recombinant antigen, 27 were seropositive (90%). In addition, six patients with colitis or ameboma and two individuals who harbored a nonpathogenic strain were seropositive to the recombinant antigen. One healthy Mexican migrant worker tested positive by both ELISAs (sensitivity, 87%; specificity, 94%). Immunoblotting of 51 serum specimens to sodium dodecyl sulfate-denatured native 29-kDa protein was less sensitive (65%) than ELISA in detecting serum antibodies to the antigen. These results suggest a similar antibody response to native and recombinant antigens (r = 0.86) and support the potential utility of a quantitative assay with defined recombinant antigen for the serodiagnosis of invasive amebiasis in nonendemic areas in conjunction with other diagnostic tools. Images PMID:8314979

  3. A Novel Malaria Vaccine Candidate Antigen Expressed in Tetrahymena thermophila

    PubMed Central

    Eleni-Muus, Janna; Aldag, Ingo; Samuel, Kay; Creasey, Alison M.; Hartmann, Marcus W. W.; Cavanagh, David R.

    2014-01-01

    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens. PMID:24489871

  4. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus).

    PubMed

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-05-31

    Vibrio anguillarum is a severe bacterial pathogen that can infect a wide range of fish species. Identification of immunogenic proteins and development of vaccine are essential for disease prevention. In this study, immunogenic proteins were screened and identified from V. anguillarum, and then protective efficacy of the immunogenic proteins was evaluated. Immunogenic proteins in V. anguillarum whole cell were detected by Western blotting (WB) using immunized flounder (Paralichthys olivaceus) serum, and then identified by Mass spectrometry (MS). The recombinant proteins of four identified immunogenic proteins were produced and immunized to fish, and then percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBL), total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were measured, respectively. The results showed that five immunogenic proteins, VAA, Groel, OmpU, PteF and SpK, were identified; their recombinant proteins, rOmpU, rGroel, rSpK and rVAA, could induce the proliferation of sIg+ cells in PBL and production of total antibodies, antibodies against V. anguillarum and antibodies against the recombinant proteins; their protection against V. anguillarum showed 64.86%, 72.97%, 21.62% and 78.38% RPS, respectively. The results revealed that the immunoproteomic technique using fish anti-V. anguillarum serum provided an efficient way to screen the immunogenic protein for vaccine antigen. Moreover, the rVAA, rGroel and rOmpU had potential to be vaccine candidates against V. anguillarum infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation

    PubMed Central

    Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard

    2011-01-01

    Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552

  6. Evaluating the Use of Commercial West Nile Virus Antigens as Positive Controls in the Rapid Analyte Measurement Platform West Nile Virus Assay.

    PubMed

    Burkhalter, Kristen L; Savage, Harry M

    2015-12-01

    We evaluated the utility of 2 types of commercially available antigens as positive controls in the Rapid Analyte Measurement Platform (RAMP®) West Nile virus (WNV) assay. Purified recombinant WNV envelope antigens and whole killed virus antigens produced positive RAMP results and either type would be useful as a positive control. Killed virus antigens provide operational and economic advantages and we recommend their use over purified recombinant antigens. We also offer practical applications for RAMP positive controls and recommendations for preparing them.

  7. Detection of hepatitis B virus core antigen by phage display mediated TaqMan real-time immuno-PCR.

    PubMed

    Monjezi, Razieh; Tan, Sheau Wei; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2013-01-01

    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The Asd(+)-DadB(+) dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine.

    PubMed

    Xin, Wei; Wanda, Soo-Young; Zhang, Xiangmin; Santander, Javier; Scarpellini, Giorgio; Ellis, Karen; Alamuri, Praveen; Curtiss, Roy

    2012-10-01

    We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd(+)-DadB(+) plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd(+) and DadB(+) plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF(+) counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 10(9) CFU of χ9760 (carrying Asd(+)-PspA and DadB(+)-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD(50)s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD(50)s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd(+)-PspA) and χ11026 (DadB(+)-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines.

  9. The Asd+-DadB+ Dual-Plasmid System Offers a Novel Means To Deliver Multiple Protective Antigens by a Recombinant Attenuated Salmonella Vaccine

    PubMed Central

    Xin, Wei; Wanda, Soo-Young; Zhang, Xiangmin; Santander, Javier; Scarpellini, Giorgio; Ellis, Karen; Alamuri, Praveen

    2012-01-01

    We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd+-DadB+ plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd+ and DadB+ plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF+ counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 109 CFU of χ9760 (carrying Asd+-PspA and DadB+-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD50s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD50s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd+-PspA) and χ11026 (DadB+-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines. PMID:22868499

  10. Histamine release factor from Dermanyssus gallinae (De Geer): characterization and in vitro assessment as a protective antigen.

    PubMed

    Bartley, Kathryn; Nisbet, Alasdair J; Offer, Jill E; Sparks, Nicholas H C; Wright, Harry W; Huntley, John F

    2009-03-01

    A cDNA encoding a 174-amino-acid orthologue of a tick histamine release factor (HRF) was identified from the haematophagous poultry red mite Dermanyssus gallinae. The predicted D. gallinae HRF protein (Dg-HRF-1) sequence is highly conserved with the tick HRFs (identity 52-54%) and to a lesser degree with translationally controlled tumour proteins (TCTP) from mammals and other invertebrates (range 38-47%). Phylogenetically, Dg-HRF-1 partitions with the tick HRF clade suggesting a shared linage and potentially similar function(s). A recombinant Dg-HRF-1 protein (rDg-HRF-1) was produced and shown to induce degranulation of rat peritoneal mast cells in vitro, confirming conservation of the histamine-releasing function in D. gallinae. Polyclonal antibodies were generated in rabbits and hens to rDg-HRF-1. Western blotting demonstrated that native Dg-HRF is a soluble protein and immunohistochemical staining of mite sections revealed that the distribution of Dg-HRF, although ubiquitous, is more common in mite reproductive, digestive and synganglion tissues. A survey of hens housed continuously in a mite-infested commercial poultry unit failed to identify IgY specific for recombinant or native Dg-HRF, indicating that Dg-HRF is not exposed to the host during infestation/feeding and may therefore have potential as a vaccine using the concealed antigen approach. To test the protective capability of rDg-HRF-1, fresh heparinised chicken blood was enriched with yolk-derived anti-Dg-HRF IgY antibodies and fed to semi-starved mites using an in vitro feeding system. A statistically significant increase in mortality was shown (P=0.004) in mites fed with anti-Dg-HRF IgY after just one blood meal. The work presented here demonstrates, to our knowledge for the first time, the feasibility of vaccinating hens with recombinant D. gallinae antigens to control mite infestation and the potential of rDg-HRF-1 as a vaccine antigen.

  11. Cloning structural genes for Treponema pallidum immunogens and characterisation of recombinant treponemal surface protein, P2 (P2 star).

    PubMed Central

    Peterson, K M; Baseman, J B; Alderete, J F

    1987-01-01

    A genomic library consisting of partially digested 10 to 20 kilobase pair fragments of Treponema pallidum deoxyribonucleic acid (DNA) was constructed using bacteriophage lambda EMBL-3 as the vector. Positive clones expressing T pallidum antigens were detected with sera from experimentally infected rabbits. Treponemal proteins ranging in molecular weight from 37,000 daltons to 120,000 daltons were identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunoblotting of phage lysate proteins. One recombinant phage was examined further and contained an insert encoding a prominent treponemal 37,000 dalton protein. The recombinant protein was not recognised by antiserum directed against a fibronectin binding treponemal adhesion that contained the same electrophoretic mobility. Neither did antibody to the recombinant 37,000 dalton protein react with any treponemal proteins purified by fibronectin affinity chromatography. The recombinant protein in Escherichia coli lysates was labelled P2 (P2 star) to differentiate it from the comigrating adhesin protein called P2. Native P2 protein was present on T pallidum surfaces as shown by radioimmunoprecipitation assays with extrinsically labelled organisms. A cross reactive molecule like P2 was not synthesised by the avirulent spirochaete, T phagedenis biotype Reiter, which indicated that P2 is a protein specific to virulent T pallidum organisms. Finally, only sera of patients with primary syphilis possessed appreciable concentrations of antibody to recombinant P2 protein. Images PMID:3315959

  12. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    PubMed

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  13. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice.

    PubMed

    Indran, Sabarish V; Lihoradova, Olga A; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A; Tigabu, Bersabeh; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-07-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.

  14. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice

    PubMed Central

    Indran, Sabarish V.; Lihoradova, Olga A.; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A.; Tigabu, Bersabeh; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Freiberg, Alexander N.

    2013-01-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV. PMID:23515022

  15. [Expression, purification and protective antigen analysis of cell wall protein MRP of Streptococcus suis type 2].

    PubMed

    Wang, Ping-ping; Pian, Ya-ya; Yuan, Yuan; Zheng, Yu-ling; Jiang, Yong-qiang; Xiong, Zheng-ying

    2012-02-01

    To amplify the mrp gene of Streptococcus suis type 2 05ZYH33, express it in E.coli BL21 in order to acquire high purity recombinant protein MRP, then evaluate the protective antigen of recombinant protein MRP. Using PCR technology to obtain the product of mrp gene of 05ZYH33, and then cloned it into the expression vector pET28a(+). The recombinant protein was purified by affinity chromatography, later immunized New Zealand rabbit to gain anti-serum, then test the anti-serum titer by ELISA. The opsonophagocytic killing test demonstrated the abilities of protective antigen of MRP. The truncated of MRP recombinant protein in E.coli BL21 expressed by inclusion bodies, and purified it in high purity. After immunoprotection, the survival condition of CD-1 was significantly elevated. The survival rate of wild-type strain 05ZYH33 in blood was apparently decreased after anti-serum opsonophagocyticed, but the mutant delta; MRP showed no differences. MRP represent an important protective antigen activity.

  16. Antigenic profiling of Yersinia pestis infection in the Wyoming coyote (Canis latrans)

    USGS Publications Warehouse

    Vernati, G.; Edwards, W.H.; Rocke, T.E.; Little, S.F.; Andrews, G.P.

    2011-01-01

    Although Yersinia pestis is classified as a "high-virulence" pathogen, some host species are variably susceptible to disease. Coyotes (Canis latrans) exhibit mild, if any, symptoms during infection, but antibody production occurs postinfection. This immune response has been reported to be against the F1 capsule, although little subsequent characterization has been conducted. To further define the nature of coyote humoral immunity to plague, qualitative serology was conducted to assess the antiplague antibody repertoire. Humoral responses to six plasmid-encoded Y. pestis virulence factors were first examined. Of 20 individual immune coyotes, 90% were reactive to at least one other antigen in the panel other than F1. The frequency of reactivity to low calcium response plasmid (pLcr)-encoded Yersinia protein kinase A (YpkA) and Yersinia outer protein D (YopD) was significantly greater than that previously observed in a murine model for plague. Additionally, both V antigen and plasminogen activator were reactive with over half of the serum samples tested. Reactivity to F1 was markedly less frequent in coyotes (35%). Twenty previously tested antibody-negative samples were also examined. While the majority were negative across the panel, 15% were positive for 1-3 non-F1 antigens. In vivo-induced antigen technology employed to identify novel chromosomal genes of Y. pestis that are up-regulated during infection resulted in the identification of five proteins, including a flagellar component (FliP) that was uniquely reactive with the coyote serum compared with immune serum from two other host species. Collectively, these data suggest that humoral immunity to pLcr-encoded antigens and the pesticin plasmid (pPst)-encoded Pla antigen may be relevant to plague resistance in coyotes. The serologic profile of Y. pestis chromosomal antigens up-regulated in vivo specific to C. latrans may provide insight into the differences in the pathogen-host responses during Y. pestis infection.

  17. The immunogenicity of Echinococcus granulosus antigen 5 is determined by its post-translational modifications.

    PubMed

    Lorenzo, C; Last, J A; González-Sapienza, G G

    2005-11-01

    Since its early introduction as a marker for the immunodiagnosis of hydatid disease, antigen 5 (Ag5) has been regarded as one of the more relevant antigens of Echinococcus granulosus, and it is still widely used in different confirmation techniques. In this work we prepared 2 recombinant forms of the antigen, namely, rAg5 (corresponding to the unprocessed polypeptide chain of the antigen) and rAg5-38s (corresponding to its 38 kDa subunit). Their antigenicities were compared to that of the native antigen using a human serum collection. There was a major drop in the reactivity of the sera, particularly against rAg5-38s, which was confirmed by analysis of the cross-reactivity of 2 panels of monoclonal antibodies specific for rAg5-38s and the native antigen. Using the chemically deglycosylated native antigen, we demonstrated that the reduced antigenicity of the recombinants is due to the loss of the sugar determinants, and not to their misfolding. Inhibition experiments using phosphorylcholine confirmed that this moiety also contributes to the reactivity of the antigen, but to a much lesser extent. The presence of immunodominant highly cross-reactive glycan moieties in the Ag5 molecule may involve a parasite evasion mechanism.

  18. Variation in a surface-exposed region of the Mycoplasma pneumoniae P40 protein as a consequence of homologous DNA recombination between RepMP5 elements.

    PubMed

    Spuesens, Emiel B M; van de Kreeke, Nick; Estevão, Silvia; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis

    2011-02-01

    Mycoplasma pneumoniae is a human pathogen that causes a range of respiratory tract infections. The first step in infection is adherence of the bacteria to the respiratory epithelium. This step is mediated by a specialized organelle, which contains several proteins (cytadhesins) that have an important function in adherence. Two of these cytadhesins, P40 and P90, represent the proteolytic products from a single 130 kDa protein precursor, which is encoded by the MPN142 gene. Interestingly, MPN142 contains a repetitive DNA element, termed RepMP5, of which homologues are found at seven other loci within the M. pneumoniae genome. It has been hypothesized that these RepMP5 elements, which are similar but not identical in sequence, recombine with their counterpart within MPN142 and thereby provide a source of sequence variation for this gene. As this variation may give rise to amino acid changes within P40 and P90, the recombination between RepMP5 elements may constitute the basis of antigenic variation and, possibly, immune evasion by M. pneumoniae. To investigate the sequence variation of MPN142 in relation to inter-RepMP5 recombination, we determined the sequences of all RepMP5 elements in a collection of 25 strains. The results indicate that: (i) inter-RepMP5 recombination events have occurred in seven of the strains, and (ii) putative RepMP5 recombination events involving MPN142 have induced amino acid changes in a surface-exposed part of the P40 protein in two of the strains. We conclude that recombination between RepMP5 elements is a common phenomenon that may lead to sequence variation of MPN142-encoded proteins.

  19. Vaccine development against the Taenia solium parasite: the role of recombinant protein expression in Escherichia coli.

    PubMed

    Gauci, Charles; Jayashi, César; Lightowlers, Marshall W

    2013-01-01

    Taenia solium is a zoonotic parasite that causes cysticercosis. The parasite is a major cause of human disease in impoverished communities where it is transmitted to humans from pigs which act as intermediate hosts. Vaccination of pigs to prevent transmission of T. solium to humans is an approach that has been investigated to control the disease. A recombinant vaccine antigen, TSOL18, has been remarkably successful at reducing infection of pigs with T. solium in several experimental challenge trials. The vaccine has been shown to eliminate transmission of naturally acquired T. solium in a field trial conducted in Africa. We recently reported that the vaccine was also effective in a field trial conducted in Peru. The TSOL18 recombinant antigen for each of these trials has been produced by expression in Escherichia coli. Here we discuss research that has been undertaken on the TSOL18 antigen and related antigens with a focus on improved methods of preparation of recombinant TSOL18 and optimized expression in Escherichia coli.

  20. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations.

    PubMed

    Maruyama, Sandra R; Garcia, Gustavo R; Teixeira, Felipe R; Brandão, Lucinda G; Anderson, Jennifer M; Ribeiro, José M C; Valenzuela, Jesus G; Horackova, Jana; Veríssimo, Cecília J; Katiki, Luciana M; Banin, Tamy M; Zangirolamo, Amanda F; Gardinassi, Luiz G; Ferreira, Beatriz R; de Miranda-Santos, Isabel K F

    2017-04-26

    Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.

  1. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme.

    PubMed Central

    Dong, G; Vieille, C; Zeikus, J G

    1997-01-01

    The gene encoding the Pyrococcus furiosus hyperthermophilic amylopullulanase (APU) was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a single 827-residue polypeptide with a 26-residue signal peptide. The protein sequence had very low homology (17 to 21% identity) with other APUs and enzymes of the alpha-amylase family. In particular, none of the consensus regions present in the alpha-amylase family could be identified. P. furiosus APU showed similarity to three proteins, including the P. furiosus intracellular alpha-amylase and Dictyoglomus thermophilum alpha-amylase A. The mature protein had a molecular weight of 89,000. The recombinant P. furiosus APU remained folded after denaturation at temperatures of < or = 70 degrees C and showed an apparent molecular weight of 50,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Denaturating temperatures of above 100 degrees C were required for complete unfolding. The enzyme was extremely thermostable, with an optimal activity at 105 degrees C and pH 5.5. Ca2+ increased the enzyme activity, thermostability, and substrate affinity. The enzyme was highly resistant to chemical denaturing reagents, and its activity increased up to twofold in the presence of surfactants. PMID:9293009

  2. A Lateral Flow Rapid Test for Human Toxocariasis Developed Using Three Toxocara canis Recombinant Antigens.

    PubMed

    Yunus, Muhammad Hafiznur; Tan Farrizam, Siti Naqiuyah; Abdul Karim, Izzati Zahidah; Noordin, Rahmah

    2018-01-01

    Laboratory diagnosis of toxocariasis is still a challenge especially in developing endemic countries with polyparasitism. In this study, three Toxocara canis recombinant antigens, rTES-26, rTES-30, and rTES-120, were expressed and used to prepare lateral flow immunoglobulin G4 (IgG4) dipsticks. The concordance of the results of the rapid test (comprising three dipsticks) with a commercial IgG-enzyme-linked immunosorbent assay (ELISA) (Cypress Diagnostics, Belgium) was compared against the concordance of two other commercial IgG-ELISA kits (Bordier, Switzerland and NovaTec, Germany) with the Cypress kit. Using Toxocara- positive samples, the concordance of the dipstick dotted with rTES-26, rTES-30, and rTES-120 was 41.4% (12/29), 51.7% (15/29), and 72.4% (21/29), respectively. When positivity with any dipstick was considered as an overall positive rapid test result, the concordance with the Cypress kit was 93% (27/29). Meanwhile, when compared with the results of the Cypress kit, the concordance of IgG-ELISA from NovaTec and Bordier was 100% (29/29) and 89.7% (26/29), respectively. Specific IgG4 has been recognized as a marker of active infection for several helminthic diseases; therefore, the two non-concordant results of the rapid test when compared with the NovaTec IgG-ELISA kit may be from samples of people with non-active infection. All the three dipsticks showed 100% (50/50) concordance with the Cypress kit when tested with serum from individuals who were healthy and with other infections. In conclusion, the lateral flow rapid test is potentially a good, fast, and easy test for toxocariasis. Next, further validation studies and development of a test with the three antigens in one dipstick will be performed.

  3. Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.

    PubMed

    Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H

    1997-01-01

    The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant gB, gC and gD were confirmed by a panel of MAbs specific for each glycoprotein produced in CHV-infected cells. Immunization of mice with these recombinants produced high titers of neutralizing antibodies against CHV. These results suggest that recombinant vaccinia viruses expressing CHV gB, gC and gD may be useful to develop a vaccine to control CHV infection.

  4. Rapid one-step recombinational cloning

    PubMed Central

    Fu, Changlin; Wehr, Daniel R.; Edwards, Janice; Hauge, Brian

    2008-01-01

    As an increasing number of genes and open reading frames of unknown function are discovered, expression of the encoded proteins is critical toward establishing function. Accordingly, there is an increased need for highly efficient, high-fidelity methods for directional cloning. Among the available methods, site-specific recombination-based cloning techniques, which eliminate the use of restriction endonucleases and ligase, have been widely used for high-throughput (HTP) procedures. We have developed a recombination cloning method, which uses truncated recombination sites to clone PCR products directly into destination/expression vectors, thereby bypassing the requirement for first producing an entry clone. Cloning efficiencies in excess of 80% are obtained providing a highly efficient method for directional HTP cloning. PMID:18424799

  5. Trimming of two major type 1 diabetes driving antigens, GAD65 and IA-2, allows for successful expression in Lactococcus lactis.

    PubMed

    Robert, S; Van Huynegem, K; Gysemans, C; Mathieu, C; Rottiers, P; Steidler, L

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterised by excessive immune reactions against auto-antigens of pancreatic β-cells. Restoring auto-antigen tolerance remains the superior therapeutic strategy. Oral auto-antigen administration uses the tolerogenic nature of the gut-associated immune system to induce antigen-specific tolerance. However, due to gastric degradation, proper mucosal product delivery often imposes a challenge. Recombinant Lactococcus lactis have proven to be effective and safe carriers for gastrointestinal delivery of therapeutic products: L. lactis secreting diabetes-associated auto-antigens in combination with interleukin (IL)-10 have demonstrated therapeutic efficacy in a well-defined mouse model for T1D. Here, we describe the construction of recombinant L. lactis secreting the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and tyrosine phosphatase-like protein ICA512 (IA-2), two major T1D-related auto-antigens. Attempts to secrete full size human GAD65 and IA-2 protein by L. lactis were unsuccessful. Trimming of GAD65 and IA-2 was investigated to optimise antigen secretion while maintaining sufficient bacterial growth. GAD65370-575 and IA-2635-979 showed to be efficiently secreted by recombinant L. lactis. Antigen secretion was verified by immunoblotting. Plasmid-derived GAD65 and IA-2 expression was combined in single strains with human IL-10 expression, a desired combination to allow tolerance induction. This study reports the generation of recombinant L. lactis secreting two major diabetes-related auto-antigens: human GAD65 and IA-2, by themselves or combined with the anti-inflammatory cytokine human IL-10. Prohibitive sequence obstacles hampering antigen secretion were resolved by trimming the full size proteins.

  6. Immunization against Rabies with Plant-Derived Antigen

    NASA Astrophysics Data System (ADS)

    Modelska, Anna; Dietzschold, Bernard; Sleysh, N.; Fu, Zhen Fang; Steplewski, Klaudia; Hooper, D. Craig; Koprowski, Hilary; Yusibov, Vidadi

    1998-03-01

    We previously demonstrated that recombinant plant virus particles containing a chimeric peptide representing two rabies virus epitopes stimulate virus neutralizing antibody synthesis in immunized mice. We show here that mice immunized intraperitoneally or orally (by gastric intubation or by feeding on virus-infected spinach leaves) with engineered plant virus particles containing rabies antigen mount a local and systemic immune response. After the third dose of antigen, given intraperitoneally, 40% of the mice were protected against challenge infection with a lethal dose of rabies virus. Oral administration of the antigen stimulated serum IgG and IgA synthesis and ameliorated the clinical signs caused by intranasal infection with an attenuated rabies virus strain.

  7. Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of Yersinia pestis.

    PubMed

    Anderson, G W; Leary, S E; Williamson, E D; Titball, R W; Welkos, S L; Worsham, P L; Friedlander, A M

    1996-11-01

    The purified recombinant V antigen from Yersinia pestis, expressed in Escherichia coli and adsorbed to aluminum hydroxide, an adjuvant approved for human use, was used to immunize outbred Hsd:ND4 mice subcutaneously. Immunization protected mice from lethal bubonic and pneumonic plague caused by CO92, a wild-type F1+ strain, or by the isogenic F1- strain C12. This work demonstrates that a subunit plague vaccine formulated for human use provides significant protection against bubonic plague caused by an F1- strain (C12) or against substantial aerosol challenges from either F1+ (CO92) or F1-(C12) Y. pestis.

  8. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  9. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  10. Analysis of antibodies to newly described Plasmodium falciparum merozoite antigens supports MSPDBL2 as a predicted target of naturally acquired immunity.

    PubMed

    Tetteh, Kevin K A; Osier, Faith H A; Salanti, Ali; Kamuyu, Gathoni; Drought, Laura; Failly, Marilyne; Martin, Christophe; Marsh, Kevin; Conway, David J

    2013-10-01

    Prospective studies continue to identify malaria parasite genes with particular patterns of polymorphism which indicate they may be under immune selection, and the encoded proteins require investigation. Sixteen new recombinant protein reagents were designed to characterize three such polymorphic proteins expressed in Plasmodium falciparum schizonts and merozoites: MSPDBL1 (also termed MSP3.4) and MSPDBL2 (MSP3.8), which possess Duffy binding-like (DBL) domains, and SURFIN4.2, encoded by a member of the surface-associated interspersed (surf) multigene family. After testing the antigenicities of these reagents by murine immunization and parasite immunofluorescence, we analyzed naturally acquired antibody responses to the antigens in two cohorts in coastal Kenya in which the parasite was endemic (Chonyi [n = 497] and Ngerenya [n = 461]). As expected, the prevalence and levels of serum antibodies increased with age. We then investigated correlations with subsequent risk of clinical malaria among children <11 years of age during 6 months follow-up surveillance. Antibodies to the polymorphic central region of MSPDBL2 were associated with reduced risk of malaria in both cohorts, with statistical significance remaining for the 3D7 allelic type after adjustment for individuals' ages in years and antibody reactivity to whole-schizont extract (Chonyi, risk ratio, 0.51, and 95% confidence interval [CI], 0.28 to 0.93; Ngerenya, risk ratio, 0.38, and 95% CI, 0.18 to 0.82). For the MSPDBL1 Palo Alto allelic-type antigen, there was a protective association in one cohort (Ngerenya, risk ratio, 0.53, and 95% CI, 0.32 to 0.89), whereas the other antigens showed no protective associations after adjustment. These findings support the prediction that antibodies to the polymorphic region of MSPDBL2 contribute to protective immunity.

  11. Epstein-Barr virus recombinants from overlapping cosmid fragments.

    PubMed

    Tomkinson, B; Robertson, E; Yalamanchili, R; Longnecker, R; Kieff, E

    1993-12-01

    Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the

  12. Antigenicity of Leishmania braziliensis Histone H1 during Cutaneous Leishmaniasis: Localization of Antigenic Determinants

    PubMed Central

    Carmelo, Emma; Martínez, Enrique; González, Ana Cristina; Piñero, José Enrique; Patarroyo, Manuel E.; del Castillo, Antonio; Valladares, Basilio

    2002-01-01

    The humoral immune response against Leishmania braziliensis histone H1 by patients with cutaneous leishmaniasis is described. For this purpose, the protein was purified as a recombinant protein in a prokaryotic expression system and was assayed by enzyme-linked immunosorbent assay (ELISA) with a collection of sera from patients with cutaneous leishmaniasis and Chagas' disease. The assays showed that L. braziliensis histone H1 was recognized by 66% of the serum samples from patients with leishmaniasis and by 40% of the serum samples from patients with Chagas' disease, indicating that it acts as an immunogen during cutaneous leishmaniasis. In order to locate the linear antigenic determinants of this protein, a collection of synthetic peptides covering the L. braziliensis histone H1sequence was tested by ELISA. The experiments showed that the main antigenic determinant is located in the central region of this protein. Our results show that the recombinant L. braziliensis histone H1 is recognized by a significant percentage of serum samples from patients with cutaneous leishmaniasis, but use of this protein as a tool for the diagnosis of cutaneous leishmaniasis is hampered by the cross-reaction with sera from patients with Chagas' disease. PMID:12093677

  13. Antigenicity of Leishmania braziliensis histone H1 during cutaneous leishmaniasis: localization of antigenic determinants.

    PubMed

    Carmelo, Emma; Martínez, Enrique; González, Ana Cristina; Piñero, José Enrique; Patarroyo, Manuel E; Del Castillo, Antonio; Valladares, Basilio

    2002-07-01

    The humoral immune response against Leishmania braziliensis histone H1 by patients with cutaneous leishmaniasis is described. For this purpose, the protein was purified as a recombinant protein in a prokaryotic expression system and was assayed by enzyme-linked immunosorbent assay (ELISA) with a collection of sera from patients with cutaneous leishmaniasis and Chagas' disease. The assays showed that L. braziliensis histone H1 was recognized by 66% of the serum samples from patients with leishmaniasis and by 40% of the serum samples from patients with Chagas' disease, indicating that it acts as an immunogen during cutaneous leishmaniasis. In order to locate the linear antigenic determinants of this protein, a collection of synthetic peptides covering the L. braziliensis histone H1sequence was tested by ELISA. The experiments showed that the main antigenic determinant is located in the central region of this protein. Our results show that the recombinant L. braziliensis histone H1 is recognized by a significant percentage of serum samples from patients with cutaneous leishmaniasis, but use of this protein as a tool for the diagnosis of cutaneous leishmaniasis is hampered by the cross-reaction with sera from patients with Chagas' disease.

  14. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    PubMed

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. A recombinant Toscana virus nucleoprotein in a diagnostic immunoblot test system.

    PubMed

    Schwarz, T F; Gilch, S; Schätzl, H M

    1998-01-01

    Sandfly fever, a vector-borne disease endemic in the Mediterranean region, is caused by Toscana virus (TOS). The disease is increasingly important as a travel-related infection. Serological diagnosis is currently dependent on viral antigens derived from TOS-infected cell cultures. In this study, we report the cloning and expression of the TOS nucleoprotein (N) in Escherichia coli and evaluation of the recombinant (r) TOS N protein as an antigen for immunoblot assays. The TOS N gene was amplified by reverse-transcriptase polymerase chain reaction and cloned into the bacterial expression vector pTrcHis-A. Sera with known TOS antibody status were used to evaluate the immunoblot assay. The expressed rTOS N protein was purified and used as antigen for immunoblots. By recombinant immunoblot, the TOS antibody status (IgM and/or IgG) of the test panel was correctly identified. No cross-reactivity was detected. The rTOS N protein is useful as an antigen for immunoblot assays, and will enable more laboratories to perform TOS antibody diagnosis.

  16. Structure of a gene encoding a murine thymus leukemia antigen, and organization of Tla genes in the BALB/c mouse

    PubMed Central

    1985-01-01

    We have determined the DNA sequence of a gene encoding a thymus leukemia (TL) antigen in the BALB/c mouse, and have more definitively mapped the cloned BALB/c Tla-region class I gene clusters. Analysis of the sequence shows that the Tla gene is less closely related to the H-2 genes than H-2 genes are to one another or to a Qa-2,3-region genes. The Tla gene, 17.3A, contains an apparent gene conversion. Comparison of the BALB/c Tla genes with those from C57BL shows that BALB/c has more Tla-region class I genes, and that one of the genes absent in C57BL is gene 17.3A. PMID:3894562

  17. Characterization of the gene encoding the polymorphic immunodominant molecule, a neutralizing antigen of Theileria parva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toye, P.G.; Metzelaar, M.J.; Wijngaard, P.L.J.

    1995-08-01

    Theileria parva, a tick-transmitted protozoan parasite related to Plasmodium spp., causes the disease East Coast fever, an acute and usually fatal lymphoproliferative disorder of cattle in Africa. Previous studies using sera from cattle that have survived infection identified a polymorphic immunodominant molecule (PIM) that is expressed by both the infective sporozoite stage of the parasite and the intracellular schizont. Here we show that mAb specific for the PIM Ag can inhibit sporozoite invasion of lymphocytes in vitro. A cDNA clone encoding the PIM Ag of the T. parva (Muguga) stock was obtained by using these mAb in a novel eukaryoticmore » expression cloning system that allows isolation of cDNA encoding cytoplasmic or surface Ags. To establish the molecular basis of the polymorphism of PIM, the cDNA of the PIM Ag from a buffalo-derived T. parva stock was isolated and its sequence was compared with that of the cattle-derived Muguga PIM. The two cDNAs showed considerable identity in both the 5{prime} and 3{prime} regions, but there was substantial sequence divergence in the central regions. Several types of repeated sequences were identified in the variant regions. In the Muguga form of the molecule, there were five tandem repeats of the tetrapeptide, QPEP, that were shown, by transfection of a deleted version of the PIM gene, not to react with several anti-PIM mAbs. By isolating and sequencing the genomic version of the gene, we identified two small introns in the 3{prime} region of the gene. Finally, we showed that polyclonal rat Abs against recombinant PIM neutralize sporozoite infectivity in vitro, suggesting that the PIM Ag should be evaluated for its capacity to immunize cattle against East Coast Fever.« less

  18. Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation

    PubMed Central

    Devlin, Rebecca; Marques, Catarina A; Paape, Daniel; Prorocic, Marko; Zurita-Leal, Andrea C; Campbell, Samantha J; Lapsley, Craig; Dickens, Nicholas; McCulloch, Richard

    2016-01-01

    Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating – a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility. DOI: http://dx.doi.org/10.7554/eLife.12765.001 PMID:27228154

  19. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein

    PubMed Central

    Lemonnier, François A.; Esteban, Mariano

    2017-01-01

    Background The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. Methodology/Principal findings By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Conclusions/Significance Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins. PMID:29084215

  1. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    PubMed

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  2. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L; Hassan, Wisam S; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.

  3. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L.; Hassan, Wisam S.; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy. PMID:28481911

  4. Latex-protein complexes from an acute phase recombinant antigen of Toxoplasma gondii for the diagnosis of recently acquired toxoplasmosis.

    PubMed

    Peretti, Leandro E; Gonzalez, Verónica D G; Marcipar, Iván S; Gugliotta, Luis M

    2014-08-01

    The synthesis and characterization of latex-protein complexes (LPC), from the acute phase recombinant antigen P35 (P35Ag) of Toxoplasma gondii and "core-shell" carboxylated or polystyrene (PS) latexes (of different sizes and charge densities) are considered, with the aim of producing immunoagglutination reagents able to detect recently acquired toxoplasmosis. Physical adsorption (PA) and chemical coupling (CC) of P35Ag onto latex particles at different pH were investigated. Greater amounts of adsorbed protein were obtained on PS latexes than on carboxylated latexes, indicating that hydrophobic forces govern the interactions between the protein and the particle surface. In the CC experiments, the highest amount of bound protein was obtained at pH 6, near the isoelectric point of the protein (IP=6.27). At this pH, it decreased both the repulsion between particle surface and protein, and the repulsion between neighboring molecules. The LPC were characterized and the antigenicity of the P35Ag protein coupled on the particles surface was evaluated by Enzyme-Linked ImmunoSorbent Assay (ELISA). Results from ELISA showed that the P35Ag coupled to the latex particles surface was not affected during the particles sensitization by PA and CC and the produced LPC were able to recognize specific anti-P35Ag antibodies present in the acute phase of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of single-point mutations on the stability and immunogenicity of a recombinant ricin A chain subunit vaccine antigen.

    PubMed

    Thomas, Justin C; O'Hara, Joanne M; Hu, Lei; Gao, Fei P; Joshi, Sangeeta B; Volkin, David B; Brey, Robert N; Fang, Jianwen; Karanicolas, John; Mantis, Nicholas J; Middaugh, C Russell

    2013-04-01

    There is great interest in the design and development of highly thermostable and immunogenic protein subunit vaccines for biodefense. In this study, we used two orthogonal and complementary computational protein design approaches to generate a series of single-point mutants of RiVax, an attenuated recombinant ricin A chain (RTA) protein subunit vaccine antigen. As assessed by differential scanning calorimetry, the conformational stabilities of the designed mutants ranged from 4°C less stable to 4.5°C more stable than RiVax, depending on solution pH. Two more thermostable (V18P, C171L) and two less thermostable (T13V, S89T) mutants that displayed native-like secondary and tertiary structures (as determined by circular dichroism and fluorescence spectral analysis, respectively) were tested for their capacity to elicit RTA-specific antibodies and toxin-neutralizing activity. Following a prime-boost regimen, we found qualitative differences with respect to specific antibody titers and toxin neutralizing antibody levels induced by the different mutants. Upon a second boost with the more thermostable mutant C171L, a statistically significant increase in RTA-specific antibody titers was observed when compared with RiVax-immunized mice. Notably, the results indicate that single residue changes can be made to the RiVax antigen that increase its thermal stability without adversely impacting the efficacy of the vaccine.

  6. Evaluating the protective efficacy of antigen combinations against Photobacterium damselae ssp. piscicida infections in cobia, Rachycentron canadum L.

    PubMed

    Ho, L-P; Chang, C-J; Liu, H-C; Yang, H-L; Lin, J H-Y

    2014-01-01

    Cobia, Rachycentron canadum L., is a very important aquatic fish that faces the risk of infection with the bacterial pathogen Photobacterium damselae ssp. piscicida, and there are few protective approaches available that use multiple antigens. In the present study, potent bivalent antigens from P. damselae ssp. piscicida showed more efficient protection than did single antigens used in isolation. In preparations of three antigens that included recombinant heat shock protein 60 (rHSP60), recombinant α-enolase (rENOLASE) and recombinant glyceraldehyde-3-phosphate dehydrogenase (rGAPDH), we analysed the doses that elicited the best immune responses and found that this occurred at a total of 30 μg of antigen per fish. Subsequently, vaccination of fish with rHSP60, rENOLASE and rGAPDH achieved 46.9, 52 and 25% relative per cent survival (RPS), respectively. In addition, bivalent subunit vaccines--combination I (rHSP60 + rENOLASE), combination II (rENOLASE + rGAPDH) and combination III (rHSP60 + rGAPDH)--were administered and the RPS in these groups (65.6, 64.0 and 48.4%, respectively), was higher than that achieved with single-antigen administration. Finally, in combination IV, the trivalent vaccine rHSP60 + rENOLASE + rGAPDH, the RPS was 1.6%. Taken together, our results suggest that combinations of two antigens may achieve a better efficiency than monovalent or trivalent antigens, and this may provide new insights into pathogen prevention strategies. © 2013 John Wiley & Sons Ltd.

  7. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.

    PubMed

    Borhani Dizaji, Nahid; Basseri, Hamid Reza; Naddaf, Saied Reza; Heidari, Mansour

    2014-10-25

    Transmission blocking vaccines (TBVs) that target the antigens on the midgut epithelium of Anopheles mosquitoes are among the promising tools for the elimination of the malaria parasite. Characterization and analysis of effective antigens is the first step to design TBVs. Calreticulin (CRT), a lectin-like protein, from Anopheles albimanus midgut, has shown antigenic features, suggesting a promising and novel TBV target. CRT is a highly conserved protein with similar features in vertebrates and invertebrates including anopheline. We cloned the full-length crt gene from malaria vector, Anopheles stephensi (AsCrt) and explored the interaction of recombinant AsCrt protein, expressed in a prokaryotic system (pGEX-6p-1), with surface proteins of Plasmodium berghei ookinetes by immunofluorescence assay. The cellular localization of AsCrt was determined using the baculovirus expression system. Sequence analysis of the whole cDNA of AsCrt revealed that AsCrt contains an ORF of 1221 bp. The amino acid sequence of AsCrt protein obtained in this study showed 64% homology with similar protein in human. The AsCrt shares the most common features of CRTs from other species. This gene encodes a 406 amino-acid protein with a molecular mass of 46 kDa, which contains a predicted 16 amino-acid signal peptides, conserved cysteine residues, a proline-rich region, and highly acidic C-terminal domain with endoplasmic reticulum retrieval sequence HDEL. The production of GST-AsCrt recombinant protein was confirmed by Western blot analysis using an antibody against the GST protein. The FITC-labeled GST-AsCrt exhibited a significant interaction with P. berghei ookinete surface proteins. Purified recombinant GST-AsCrt, labeled with FITC, displayed specific binding to the surface of P. berghei ookinetes in comparison with control. Moreover, the expression of AsCrt in baculovirus expression system indicated that AsCrt was localized on the surface of Sf9 cells. Our results suggest that AsCrt could

  8. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host–parasite interaction

    PubMed Central

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432

  9. Crimean-Congo Hemorrhagic Fever Virus Gn Bioinformatic Analysis and Construction of a Recombinant Bacmid in Order to Express Gn by Baculovirus Expression System

    PubMed Central

    Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza

    2015-01-01

    Background Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. Objectives The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. Materials and Methods To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Results Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Conclusions Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV. PMID:26862379

  10. Crimean-Congo Hemorrhagic Fever Virus Gn Bioinformatic Analysis and Construction of a Recombinant Bacmid in Order to Express Gn by Baculovirus Expression System.

    PubMed

    Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza

    2015-11-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV.

  11. Blood Interferon Signatures Putatively Link Lack of Protection Conferred by the RTS,S Recombinant Malaria Vaccine to an Antigen-specific IgE Response

    PubMed Central

    Rinchai, Darawan; Presnell, Scott; Vidal, Marta; Dutta, Sheetij; Chauhan, Virander; Cavanagh, David; Moncunill, Gemma; Dobaño, Carlota; Chaussabel, Damien

    2017-01-01

    Malaria remains a major cause of mortality and morbidity worldwide. Progress has been made in recent years with the development of vaccines that could pave the way towards protection of hundreds of millions of exposed individuals. Here we used a modular repertoire approach to re-analyze a publically available microarray blood transcriptome dataset monitoring the response to malaria vaccination. We report the seminal identification of interferon signatures in the blood of subjects on days 1, 3 and 14 following administration of the third dose of the RTS,S recombinant malaria vaccine. These signatures at day 1 correlate with protection, and at days 3 and 14 to susceptibility to subsequent challenge of study subjects with live parasites. In addition we putatively link the decreased abundance of interferon-inducible transcripts observed at days 3 and 14 post-vaccination with the elicitation of an antigen-specific IgE response in a subset of vaccine recipients that failed to be protected by the RTS,S vaccine. Furthermore, profiling of antigen-specific levels of IgE in a Mozambican cohort of malaria-exposed children vaccinated with RTS,S identified an association between elevated baseline IgE levels and subsequent development of naturally acquired malaria infection during follow up. Taken together these findings warrant further investigation of the role of antigen-specific IgE in conferring susceptibility to malaria infection. PMID:28883910

  12. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells

    PubMed Central

    Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh

    2013-01-01

    Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046

  13. Dengue Type-2 Virus Envelope Protein Made Using Recombinant Baculovirus Protects Mice Against Virus Challenge

    DTIC Science & Technology

    1994-01-01

    Spodoptera frugiperda (Sf9) cells, approximately I mg of recombinant E antigen was made per 10’ cells. This antigen reacted with polyclonal, anti...entry by fusion at acidic pH with host cell mem- in Spodoptera frugiperda (Sf9) cells brane.Ř The E antigen contains both T and B cell epitopes that

  14. HP-1γ Controls High-Affinity Antibody Response to T-Dependent Antigens

    PubMed Central

    Ha, Ngoc; Pham, Duc-Hung; Shahsafaei, Aliakbar; Naruse, Chie; Asano, Masahide; Thai, To-Ha

    2014-01-01

    In vitro observations suggest a role for the mouse heterochromatin protein 1γ (HP-1γ) in the immune system. However, it has not been shown if and how HP-1γ contributes to immunity in vivo. Here we show that in mice, HP-1γ positively regulates the germinal center reaction and high-affinity antibody response to thymus (T)-dependent antigens by limiting the size of CD8+ regulatory T-cell (Treg) compartment without affecting progenitor B- or T-cell-development. Moreover, HP-1γ does not control cell proliferation or class switch recombination. Haploinsufficiency of cbx-3 (gene encoding HP-1γ) is sufficient to expand the CD8+ Treg population and impair the immune response in mice despite the presence of wild-type HP-1α and HP-1β. This is the first in vivo evidence demonstrating the non-redundant role of HP-1γ in immunity. PMID:24971082

  15. Evaluation of Six Recombinant Proteins for Serological Diagnosis of Lyme Borreliosis in China.

    PubMed

    Liu, Wei; Liu, Hui Xin; Zhang, Lin; Hou, Xue Xia; Wan, Kang Lin; Hao, Qin

    2016-05-01

    In this study, we evaluated the diagnostic efficiency of six recombinant proteins for the serodiagnosis of Lyme borreliosis (LB) and screened out the appropriate antigens to support the production of a Chinese clinical ELISA (enzyme-linked immunosorbent assay) kit for LB. Six recombinant antigens, Fla B.g, OspC B.a, OspC B.g, P39 B.g, P83 B.g, and VlsE B.a, were used for ELISA to detect serum antibodies in LB, syphilis, and healthy controls. The ELISA results were used to generate receiver operating characteristic (ROC) curves, and the sensitivity and specificity of each protein was evaluated. All recombinant proteins were evaluated and screened by using logistic regression models. Two IgG (VlsE and OspC B.g) and two IgM (OspC B.g and OspC B.a) antigens were left by the logistic regression model screened. VlsE had the highest specificity for syphilis samples in the IgG test (87.7%, P<0.05). OspC B.g had the highest diagnostic value in the IgM test (AUC=0.871). Interactive effects between OspC B.a and Fla B.g could reduce the specificity of the ELISA. Three recombinant antigens, OspC B.g, OspC B.a, and VlsE B.a, were useful for ELISAs of LB. Additionally, the interaction between OspC B.a and Fla B.g should be examined in future research. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  16. Dengue-1 Virus Envelope Glycoprotein Gene Expressed in Recombinant Baculovirus Elicits Virus-Neutralizing Antibody in Mice and Protects them from Virus Challenge

    DTIC Science & Technology

    1991-01-01

    8217 terminus of E. When the recombinant virus was grown in Spodoptera frugiperda cells. about I mg of E antigen was made per 10’ cells. Recombinant E antigen...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...immunization, S. frugiperda cells infected with tion with BstNI (cuts at nucleotides 801 and recombinant baculovirus were pelleted. lysed by 2150). The

  17. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    PubMed

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Protamine-based nanoparticles as new antigen delivery systems.

    PubMed

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Targeting vector construction through recombineering.

    PubMed

    Malureanu, Liviu A

    2011-01-01

    Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.

  20. Development of Novel Prime-Boost Strategies Based on a Tri-Gene Fusion Recombinant L. tarentolae Vaccine against Experimental Murine Visceral Leishmaniasis

    PubMed Central

    Saljoughian, Noushin; Taheri, Tahereh; Zahedifard, Farnaz; Taslimi, Yasaman; Doustdari, Fatemeh; Bolhassani, Azam; Doroud, Delaram; Azizi, Hiva; Heidari, Kazem; Vasei, Mohammad; Namvar Asl, Nabiollah; Papadopoulou, Barbara; Rafati, Sima

    2013-01-01

    Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL. PMID:23638195

  1. Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs.

    PubMed

    Woolley, Lauren K; Fell, Shayne A; Gonsalves, Jocelyn R; Raymond, Benjamin B A; Collins, Damian; Kuit, Tracey A; Walker, Mark J; Djordjevic, Steven P; Eamens, Graeme J; Jenkins, Cheryl

    2014-07-23

    Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel(®) or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn(®) M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn(®) M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel(®) and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn(®) M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn(®) M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn(®) M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights

  2. Allergenicity of native/recombinant tropomyosin, per a 7, of American cockroach (CR), Periplaneta americana, among CR allergic Thais.

    PubMed

    Sookrung, Nitat; Indrawattana, Nitaya; Tungtrongchitr, Anchalee; Bunnag, Chaweewan; Tantilipikorn, Pongsakorn; Kwangsri, Sukanya; Chaicump, Wanpen

    2009-03-01

    In this study, native tropomyosin (Per a 7) of American cockroach (CR), Periplaneta americana, caught in Thailand was purified. Also, gene sequence encoding full length tropomyosin of the CR was PCR amplified by using degenerate primers designed from gene sequences coding for P. americana tropomyosin of the database (Per a 7.0101 and Per a 7.0102; accession no.Y14854 and AF106961, respectively). Amino acid sequence deduced from the nucleotide sequence encoding P. americana tropomyosin of this study (GenBank accession no. FJ976895) had 98.59% identity with the sequences of Per a 7.0101 and Per a 7.0102 and was 97.18% identical to the Bla g 7 sequence of German cockroach, Blatella germanica (accession no. AF260897). The native and recombinant tropomyosins (approximately 34 kDa) were used as antigens in sandwich ELISA for detecting specific IgE in serum samples of 14 consented allergic patients who were positive by skin test to crude CR extract in comparison to 5 individuals who were skin test negative. It was found that 8 (57%) and 6 (43%) of the CR allergic patients gave positive IgE binding results to the native and the recombinant proteins, respectively, while none of the non-allergic counterparts was positive. Results of immunoblotting conformed to the ELISA results. Tropomyosin extracted from the P. americana caught in Thailand has potential as standard P. americana allergen in clinical monitoring of the allergic Thai patients.

  3. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation.

    PubMed

    Sabadin, Gabriela Alves; Parizi, Luís Fernando; Kiio, Irene; Xavier, Marina Amaral; da Silva Matos, Renata; Camargo-Mathias, Maria Izabel; Githaka, Naftaly Wang'ombe; Nene, Vish; da Silva Vaz, Itabajara

    2017-12-04

    The ticks Rhipicephalus appendiculatus and Rhipicephalus sanguineus are the main vectors of Theileria parva and Babesia spp. in cattle and dogs, respectively. Due to their impact in veterinary care and industry, improved methods against R. appendiculatus and R. sanguineus parasitism are under development, including vaccines. We have previously demonstrated the induction of a cross-protective humoral response against Rhipicephalus microplus following vaccination with recombinant glutathione S-transferase from Haemaphysalis longicornis tick (rGST-Hl), suggesting that this protein could control tick infestations. In the present work, we investigated the effect of rGST-Hl vaccine against R. appendiculatus and R. sanguineus infestation in rabbits. In silico analysis revealed that GST from H. longicornis, R. appendiculatus and R. sanguineus have >80% protein sequence similarity, and multiple conserved antigenic sites. After the second vaccine dose, rGST-Hl-immunized rabbits showed elevated antibody levels which persisted until the end of experiment (75 and 60 days for R. appendiculatus and R. sanguineus, respectively). Western blot assays demonstrated cross-reactivity between anti-rGST-Hl antibodies and native R. appendiculatus and R. sanguineus GST extracts from ticks at different life stages. Vaccination with rGST-Hl decreased the number, weight, and fertility of engorged R. appendiculatus adults, leading to an overall vaccine efficacy of 67%. Interestingly, histological analysis of organ morphology showed damage to salivary glands and ovaries of R. appendiculatus adult females fed on vaccinated animals. In contrast, rGST-Hl vaccination did not affect R. appendiculatus nymphs, and it was ineffective against R. sanguineus across the stages of nymph and adult. Taken together, our results show the potential application of rGST-Hl as an antigen in anti-tick vaccine development, however indicating a broad difference in efficacy among tick species. Copyright © 2017 Elsevier

  4. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    PubMed

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.

  5. Efficacy of chimeric DNA vaccines encoding Eimeria tenella 5401 and chicken IFN-γ or IL-2 against coccidiosis in chickens.

    PubMed

    Song, Xiaokai; Huang, Xinmei; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-09-01

    Chimeric DNA vaccines encoding Eimeria tenella (E. tenella) surface antigen 5401 were constructed and their efficacies against E. tenella challenge were studied. The open reading frame (ORF) of 5401 was cloned into the prokaryotic expression vector pGEX-4T2 to express the recombinant protein and the expressed recombinant protein was identified by Western blot. The ORF of 5401 and chicken cytokine gene IFN-γ or IL-2 were cloned into the eukaryotic expression vector pVAX1 consecutively to construct DNA vaccines pVAX-5401-IFN-γ, pVAX-5401-IL-2 and pVAX-5401. The expression of aim genes in vivo was detected by reverse transcription-polymerase chain reaction and Western blot. Fourteen-day-old chickens were inoculated twice at an interval of 7 days with 100 µg of plasmids pVAX-5401, pVAX-5401-IFN-γ and pVAX-5401-IL-2 or 200 µg of recombinant 5401 protein by leg intramuscular injection, respectively. Seven days after the second inoculation, all chickens except the unchallenged control group were challenged orally with 5 × 10(4) sporulated oocysts of E. tenella. Seven days after challenge, all chickens were weighted and slaughtered to determine the effects of immunization. The results showed the recombinant protein was about 90 kDa and reacted with antiserum against soluble sporozoites. The animal experiment showed that all the DNA vaccines pVAX-5401, pVAX-5401-IFN-γ or pVAX-5401-IL-2 and the recombinant 5401 protein could obviously alleviate body weight loss and cecal lesions as compared with non-vaccinated challenged control and empty vector pVAX1control. Furthermore, pVAX-5401-IFN-γ or pVAX-5401-IL-2 induced anti-coccidial index (ACI) of 180.01 or 177.24 which were significantly higher than that of pVAX-5401. The results suggested that 5401 was an effective candidate antigen for vaccine. This finding also suggested that chicken IFN-γ or IL-2 could effectively improve the efficacies of DNA vaccines against avian coccidiosis. Copyright © 2015 Elsevier

  6. Immunogenicity of Recombinant Classic Swine Fever Virus CD8+ T Lymphocyte Epitope and Porcine Parvovirus VP2 Antigen Coexpressed by Lactobacillus casei in Swine via Oral Vaccination ▿

    PubMed Central

    Xu, Yigang; Cui, Lichun; Tian, Changyong; Zhang, Guocai; Huo, Guicheng; Tang, Lijie; Li, Yijing

    2011-01-01

    Classical swine fever virus (CSFV) and porcine parvovirus (PPV) are highly contagious pathogens, resulting in enormous economic losses in pig industries worldwide. Because vaccines play an important role in disease control, researchers are seeking improved vaccines that could induce antiviral immune responses against CSFV and PPV at the mucosal and systemic levels simultaneously. In this study, a genetically engineered Lactobacillus strain coexpressing the CSFV-specific cytotoxic T lymphocyte (CTL) epitope 290 and the VP2 antigen of PPV was developed, and its immunopotentiating capacity as an oral vaccine in pigs was analyzed. The data demonstrated that in the absence of any adjuvant, the recombinant Lactobacillus strain can efficiently stimulate mucosal and systemic CSFV-specific CD8+ CTL responses to protect pigs against CSFV challenge. Moreover, anti-PPV-VP2 serum IgG and mucosal IgA were induced in pigs immunized orally with the recombinant Lactobacillus strain, showing a neutralizing effect on PPV infection. The results suggest that the recombinant Lactobacillus microecological agent may be a valuable component of a strategy for development of a vaccine against CSFV and PPV. PMID:21940406

  7. Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection

    PubMed Central

    2013-01-01

    Background Dengue virus (DENV) infection represents a significant public health problem in many subtropical and tropical countries. Although genetically closely related, the four serotypes of DENV differ in antigenicity for which cross protection among serotypes is limited. It is also believed that both multi-serotype infection as well as the evolution of viral antigenicity may have confounding effects in increased dengue epidemics. Numerous studies have been performed that investigated genetic diversity of DENV, but the precise mechanism(s) of dengue virus evolution are not well understood. Results We investigated genome-wide genetic diversity and nucleotide substitution patterns in the four serotypes among samples collected from different countries in Asia and Central and South America and sequenced as part of the Genome Sequencing Center for Infectious Diseases at the Broad Institute. We applied bioinformatics, statistical and coalescent simulation methods to investigate diversity of codon sequences of DENV samples representing the four serotypes. We show that fixation of nucleotide substitutions is more prominent among the inter-continental isolates (Asian and American) of serotypes 1, 2 and 3 compared to serotype 4 isolates (South and Central America) and are distributed in a non-random manner among the genes encoded by the virus. Nearly one third of the negatively selected sites are associated with fixed mutation sites within serotypes. Our results further show that of all the sites showing evidence of recombination, the majority (~84%) correspond to sites under purifying selection in the four serotypes. The analysis further shows that genetic recombination occurs within specific codons, albeit with low frequency (< 5% of all recombination sites) throughout the DENV genome of the four serotypes and reveals significant enrichment (p < 0.05) among sites under purifying selection in the virus. Conclusion The study provides the first evidence for intracodon

  8. Hepatitis B virus core antigen: synthesis in Escherichia coli and application in diagnosis.

    PubMed Central

    Stahl, S; MacKay, P; Magazin, M; Bruce, S A; Murray, K

    1982-01-01

    Fragments of hepatitis B virus DNA cloned in plasmid pBR322 carrying the gene for the viral core antigen have been placed under the control of the lac promoter of Escherichia coli. Several of the new recombinants direct higher levels of synthesis of the antigen, but the degree of enhancement varies with the different structures of the plasmids and hence the mRNAs produced. The antigen in crude bacterial lysates is a satisfactory diagnostic reagent for antibodies to the core antigen in serum samples. Images PMID:7041126

  9. Antigen-mediated regulation in monoclonal gammopathies and myeloma.

    PubMed

    Nair, Shiny; Sng, Joel; Boddupalli, Chandra Sekhar; Seckinger, Anja; Chesi, Marta; Fulciniti, Mariateresa; Zhang, Lin; Rauniyar, Navin; Lopez, Michael; Neparidze, Natalia; Parker, Terri; Munshi, Nikhil C; Sexton, Rachael; Barlogie, Bart; Orlowski, Robert; Bergsagel, Leif; Hose, Dirk; Flavell, Richard A; Mistry, Pramod K; Meffre, Eric; Dhodapkar, Madhav V

    2018-04-19

    A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM.

  10. The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections.

    PubMed

    Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan

    2006-02-01

    Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.

  11. Molecular cloning and characterization of rat sperm surface antigen 2B1, a glycoprotein implicated in sperm-zona binding.

    PubMed

    Hou, S T; Ma, A; Jones, R; Hall, L

    1996-10-01

    The rat sperm surface antigen, 2B1, that has been proposed to play a key role in sperm adhesion to the zona pellucida, has been cloned and its entire cDNA sequenced. Northern blot analysis indicates that 2B1 is encoded by a 2.2-kb RNA transcript that is abundantly expressed in the testis. The deduced protein sequence contains 512 amino-acid residues with a strong candidate signal sequence and C-terminal transmembrane domain. Data base searches reveal a high degree of sequence similarity to guinea pig, rabbit, monkey, and human PH20 sperm surface antigens, and a lower degree of similarity to honey bee and whiteface hornet venom hyaluronidases. Rat 2B1 antigen also possesses hyaluronidase activity, suggesting that it is a bifunctional protein with putative roles in the dispersion of cumulus oophorus cells as well as zona adhesion. However, while it would appear that 2B1 is the rat homologue of the guinea pig PH20 antigen, they differ in a number of important biochemical respects (including their mode of attachment to the sperm membrane and distribution between soluble and membrane-bound fractions), as well as in their localization on the sperm membrane. Expression of regions of the 2B1 protein in recombinant bacterial cells has allowed a preliminary mapping of the 2B1 epitope, and has provided more definitive information on the endoproteolytic processing of 2B1 during epididymal transit.

  12. Immunogenicity of HSP-70, KMP-11 and PFR-2 leishmanial antigens in the experimental model of canine visceral leishmaniasis.

    PubMed

    Carrillo, Eugenia; Crusat, Martín; Nieto, Javier; Chicharro, Carmen; Thomas, Maria del Carmen; Martínez, Enrique; Valladares, Basilio; Cañavate, Carmen; Requena, Jose María; López, Manuel Carlos; Alvar, Jorge; Moreno, Javier

    2008-03-28

    Zoonotic visceral leishmaniasis (ZVL) is a parasitic disease caused by Leishmania infantum/L. chagasi that is emerging as an important medical and veterinary problem. Dogs are the domestic reservoir for this parasite and, therefore, the main target for controlling the transmission to humans. In the present work, we have evaluated the immunogenicity of the Leishmania infantum heat shock protein (HSP)-70, paraflagellar rod protein (PFR)-2 and kinetoplastida membrane protein (KMP)-11 recombinant proteins in dogs experimentally infected with the parasite. We have shown that peripheral blood mononuclear cells (PBMC) from experimentally infected dogs proliferated in response to these recombinant antigens and against the soluble leishmanial antigen (SLA). We have also quantified the mRNA expression level of the cytokines induced in PBMC upon stimulation with the HSP-70, PFR-2 and KMP-11 proteins. These recombinant proteins induced an up-regulation of IFN-gamma. HSP-70 and PFR-2 also produced an increase of the TNF-alpha transcripts abundance. No measurable induction of IL-10 was observed and low levels of IL-4 mRNA were produced in response to the three mentioned recombinant antigens. Serum levels of specific antibodies against HSP-70, PFR-2 and KMP-11 recombinant proteins were also determined in these animals. Our study showed that HSP-70, KMP-11 and PFR-2 proteins are recognized by infected canines. Furthermore, these antigens produce a Th1-type immune response, suggesting that they may be involved in protection. The identification as vaccine candidates of Leishmania antigens that elicit appropriate immune responses in the canine model is a key step in the rational approach to generate a vaccine for canine visceral leishmaniasis.

  13. Fermentation, Purification, and Characterization of Protective Antigen from a Recombinant, Avirulent Strain of Bacillus anthracis

    PubMed Central

    Farchaus, J. W.; Ribot, W. J.; Jendrek, S.; Little, S. F.

    1998-01-01

    Bacillus anthracis, the etiologic agent for anthrax, produces two bipartite, AB-type exotoxins, edema toxin and lethal toxin. The B subunit of both exotoxins is an Mr 83,000 protein termed protective antigen (PA). The human anthrax vaccine currently licensed for use in the United States consists primarily of this protein adsorbed onto aluminum oxyhydroxide. This report describes the production of PA from a recombinant, asporogenic, nontoxigenic, and nonencapsulated host strain of B. anthracis and the subsequent purification and characterization of the protein product. Fermentation in a high-tryptone, high-yeast-extract medium under nonlimiting aeration produced 20 to 30 mg of secreted PA per liter. Secreted protease activity under these fermentation conditions was low and was inhibited more than 95% by the addition of EDTA. A purity of 88 to 93% was achieved for PA by diafiltration and anion-exchange chromatography, while greater than 95% final purity was achieved with an additional hydrophobic interaction chromatography step. The purity of the PA product was characterized by reversed-phase high-pressure liquid chromatography, sodium dodecyl sulfate (SDS)-capillary electrophoresis, capillary isoelectric focusing, native gel electrophoresis, and SDS-polyacrylamide gel electrophoresis. The biological activity of the PA, when combined with excess lethal factor in the macrophage cell lysis assay, was comparable to previously reported values. PMID:9501438

  14. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  15. Evaluation of recombinant MGL_1304 produced by Pichia pastoris for clinical application to sweat allergy.

    PubMed

    Kan, Takanobu; Hiragun, Takaaki; Ishii, Kaori; Hiragun, Makiko; Yanase, Yuhki; Tanaka, Akio; Hide, Michihiro

    2015-07-01

    We previously identified MGL_1304 secreted by Malassezia globosa as a sweat antigen for patients with atopic dermatitis (AD) and cholinergic urticaria (ChU). However, purifying native MGL_1304 from human sweat or culture supernatant of M. globosa (sup-MGL_1304) is costly and time-consuming. Moreover, recombinant MGL_1304 expressed by using Escherichia coli (TF-rMGL_1304) needs a large chaperon protein and lacks the original glycosylation of yeasts. Thus, we generated a recombinant MGL_1304 by Pichia pastoris (P-rMGL_1304) and investigated its characteristic features. Recombinant MGL_1304 proteins expressed by E. coli and P. pastoris were generated. Properties of these recombinants and native antigens were compared by western blot analysis, histamine release tests (HRT) of patients with AD and ChU, and β-hexosaminidase release tests with RBL-48 cells. P-rMGL_1304-specific IgE in sera of patients with AD were measured by sandwich ELISA. Western blot analysis revealed that IgE of patients with AD bound to all MGL_1304 recombinants and native antigens. The histamine releasing ability of P-rMGL_1304 was 100 times higher than that of TF-rMGL_1304, and was comparable to that of sup-MGL_1304. Degranulation rates of RBL-48 cells, sensitized with sera of patients with AD in response to the stimulation of P-rMGL_1304, were comparable to those of sup-MGL_1304, whereas those of TF-rMGL_1304 were relatively weak. The levels of P-rMGL_1304-specific IgE in sera of patients with AD were correlated with their disease severities. P-rMGL_1304 has an antigenicity comparable to the native antigen, and is more useful than TF-rMGL_1304, especially in HRT and degranulation assay of RBL-48 cells. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  16. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens.

    PubMed

    Squadrito, Mario Leonardo; Cianciaruso, Chiara; Hansen, Sarah K; De Palma, Michele

    2018-03-01

    We describe a lentivirus-encoded chimeric receptor, termed extracellular vesicle (EV)-internalizing receptor (EVIR), which enables the selective uptake of cancer-cell-derived EVs by dendritic cells (DCs). The EVIR enhances DC presentation of EV-associated tumor antigens to CD8 + T cells primarily through MHCI recycling and cross-dressing. EVIRs should facilitate exploring the mechanisms and implications of horizontal transfer of tumor antigens to antigen-presenting cells.

  17. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis.

    PubMed

    Pan, Yuchen; Sackmann, Eric K; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S; Herr, Amy E

    2016-12-23

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality - the binding affinity - is quantified through the dissociation constant (K D ) of each recombinant antibody and the target antigen. To characterize the K D of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The K D for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization.

  18. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis

    PubMed Central

    Pan, Yuchen; Sackmann, Eric K.; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S.; Herr, Amy E.

    2016-01-01

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality – the binding affinity – is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization. PMID:28008969

  19. Phage-displayed specific polypeptide antigens induce significant protective immunity against Trichinella spiralis infection in BALB/c mice.

    PubMed

    Cui, Jing; Ren, Hui Jun; Liu, Ruo Dan; Wang, Li; Zhang, Zi Fang; Wang, Zhong Quan

    2013-02-06

    Trichinellosis is a public health problem and is considered an emerging/re-emerging disease in various countries. The etiological agent of trichinellosis is the nematode Trichinella, which infects humans, domestic animals and wildlife. A veterinary vaccine could be an option to control the disease in domestic animals. Although several vaccine candidates have shown promising results, a vaccine against trichinellosis remains unavailable to date. Phage particles are especially ideal vaccine delivery vehicles because they do not interfere with the immune response against the displayed peptide antigens, and, if anything, are more likely to efficiently direct antigen expression to professional antigen-presenting cells. In this study, Tsp10 polypeptide, which was encoded by a cDNA fragment of Trichinella spiralis intestinal infective larvae and was found to bind to normal mouse intestinal cells, was displayed on the surface of T7 phage. Anti-Tsp10 antibodies were able to recognize the native Tsp10 protein mainly localized to the stichosome of T. spiralis. Mice immunized with the recombinant phage T7-Tsp10 showed a 62.8% reduction in adult worms and a 78.6% reduction in muscle larvae following challenge with T. spiralis muscle larvae. Our results demonstrate that the vaccination with Tsp10 polypeptide displayed by T7 phage elicits the Th2-predominant immune responses and produces a significant protection against T. spiralis infection in mice. These findings suggest that phage display is a simple, efficient, and promising tool to express candidate vaccine antigens for immunization against T. spiralis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Host range, immunity and antigenic properties of lambdoid coliphage HK97.

    PubMed

    Dhillon, E K; Dhillon, T S; Lai, A N; Linn, S

    1980-09-01

    Temperate coliphage HK97 was isolated from pig dung. Although HK97 is antigenically unrelated to coliphage lambda, it has similar morphology, host range and immunity properties, and can recombine with it.

  1. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    PubMed Central

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  2. Multicolor quantum dot-encoded microspheres for the fluoroimmunoassays of chicken newcastle disease and goat pox virus.

    PubMed

    Yuan, Pingfan; Ma, Qiang; Meng, Rizeng; Wang, Chao; Dou, Wenchao; Wang, Guannan; Su, Xingguang

    2009-05-01

    Semiconductor nanocrystals (or quantum dots, QDs) have the potential to overcome some of the limitations encountered by traditional fluorophores in fluorescence labeling applications. The unique spectroscopic properties of QDs make them hold immense promise as versatile labels for biological applications. In this work, we employ the layer-by-layer (LbL) method for the construction of bio-functional multicolor QD-encoded microspheres. Polystyrene microspheres with diameter of 3 microm were used as templates for the deposition of different sized CdTe QDs/polyelectrolyte multilayers. Two different antigens, Chicken newcastle disease (CND) antigen and goat pox virus (GPV) antigen, were conjugated to two kinds of biofunctional multicolor microspheres with different optical encoding. The multicolor microspheres can capture corresponding antibodies labeled with QDs, QDs-CND antibody and QDs-GPV antibody in the fluoroimmunoassays. The microspheres can be distinguished from each other based on their optical encoding.

  3. Development of an Enzyme-Linked Immunosorbent Assay Using a Recombinant LigA Fragment Comprising Repeat Domains 4 to 7.5 as an Antigen for Diagnosis of Equine Leptospirosis

    PubMed Central

    Yan, Weiwei; Saleem, Muhammad Hassan; McDonough, Patrick; McDonough, Sean P.; Divers, Thomas J.

    2013-01-01

    Leptospira immunoglobulin (Ig)-like (Lig) proteins are a novel family of surface-associated proteins in which the N-terminal 630 amino acids are conserved. In this study, we truncated the LigA conserved region into 7 fragments comprising the 1st to 3rd (LigACon1-3), 4th to 7.5th (LigACon4-7.5), 4th (LigACon4), 4.5th to 5.5th (LigACon4.5–5.5), 5.5th to 6.5th (LigACon5.5–6.5), 4th to 5th (LigACon4-5), and 6th to 7.5th (LigACon6-7.5) repeat domains. All 7 recombinant Lig proteins were screened using a slot-shaped dot blot assay for the diagnosis of equine leptospirosis. Our results showed that LigACon4-7.5 is the best candidate diagnostic antigen in a slot-shaped dot blot assay. LigACon4-7.5 was further evaluated as an indirect enzyme-linked immunosorbent assay (ELISA) antigen for the detection of Leptospira antibodies in equine sera. This assay was evaluated with equine sera (n = 60) that were microscopic agglutination test (MAT) negative and sera (n = 220) that were MAT positive to the 5 serovars that most commonly cause equine leptospirosis. The indirect ELISA results showed that at a single serum dilution of 1:250, the sensitivity and specificity of ELISA were 80.0% and 87.2%, respectively, compared to those of MAT. In conclusion, an indirect ELISA was developed utilizing a recombinant LigA fragment comprising the 4th to 7.5th repeat domain (LigACon4-7.5) as a diagnostic antigen for equine leptospirosis. This ELISA was found to be sensitive and specific, and it yielded results that concurred with those of the standard MAT. PMID:23720368

  4. The genetic origin of minor histocompatibility antigens.

    PubMed

    Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E

    1993-01-01

    The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.

  5. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    PubMed

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  6. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins

    PubMed Central

    2018-01-01

    ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant

  7. Marker-Dependent Recombination in T4 Bacteriophage. IV. Recombinational Effects of Antimutator T4 DNA Polymerase

    PubMed Central

    Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.

    1995-01-01

    Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281

  8. Identification of novel tumor antigens with patient-derived immune-selected antibodies

    PubMed Central

    Rodriguez-Pinto, Daniel; Sparkowski, Jason; Keough, Martin P.; Phoenix, Kathryn N.; Vumbaca, Frank; Han, David K.; Gundelfinger, Eckart D.; Beesley, Philip

    2010-01-01

    The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions. PMID:18568347

  9. The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice.

    PubMed

    Hess, Jessica A; Zhan, Bin; Torigian, April R; Patton, John B; Petrovsky, Nikolai; Zhan, Tingting; Bottazzi, Maria Elena; Hotez, Peter J; Klei, Thomas R; Lustigman, Sara; Abraham, David

    2016-07-01

    In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans.

  10. Assessment and optimization of theileria parva sporozoite full-length p67 antigen expression in mammalian cells

    USDA-ARS?s Scientific Manuscript database

    Delivery of various forms of recombinant Theileria parva sporozoite antigen (p67) has been shown to elicit antibody responses in cattle capable of providing protection against East Coast fever, the clinical disease caused by T. parva. Previous formulations of full-length and shorter recombinant vers...

  11. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2014-02-25

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  12. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  13. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2008-04-01

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  14. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-10-12

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  15. EGVIII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-23

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl8, and the corresponding EGVIII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVIII, recombinant EGVIII proteins and methods for producing the same.

  16. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-10-05

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  17. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-06-06

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  18. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2009-05-05

    The present invention provides an endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  19. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2013-07-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  20. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel [Los Gatos, CA; Goedegebuur, Frits [Vlaardingen, NL; Ward, Michael [San Francisco, CA; Yao, Jian [Sunnyvale, CA

    2012-02-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  1. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2015-04-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  2. Antigen-mediated regulation in monoclonal gammopathies and myeloma

    PubMed Central

    Nair, Shiny; Sng, Joel; Boddupalli, Chandra Sekhar; Seckinger, Anja; Fulciniti, Mariateresa; Zhang, Lin; Rauniyar, Navin; Lopez, Michael; Neparidze, Natalia; Parker, Terri; Munshi, Nikhil C.; Sexton, Rachael; Barlogie, Bart; Orlowski, Robert; Bergsagel, Leif; Hose, Dirk; Mistry, Pramod K.; Meffre, Eric; Dhodapkar, Madhav V.

    2018-01-01

    A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM. PMID:29669929

  3. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius.

    PubMed

    Johnston, Christopher D; Bannantine, John P; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D

    2014-01-01

    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.

  4. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction.

    PubMed

    Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab

    2014-06-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    PubMed

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Development and potential applications of microarrays based on fluorescent nanocrystal-encoded beads for multiplexed cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Brazhnik, Kristina; Grinevich, Regina; Efimov, Anton E.; Nabiev, Igor; Sukhanova, Alyona

    2014-05-01

    Advanced multiplexed assays have recently become an indispensable tool for clinical diagnostics. These techniques provide simultaneous quantitative determination of multiple biomolecules in a single sample quickly and accurately. The development of multiplex suspension arrays is currently of particular interest for clinical applications. Optical encoding of microparticles is the most available and easy-to-use technique. This technology uses fluorophores incorporated into microbeads to obtain individual optical codes. Fluorophore-encoded beads can be rapidly analyzed using classical flow cytometry or microfluidic techniques. We have developed a new generation of highly sensitive and specific diagnostic systems for detection of cancer antigens in human serum samples based on microbeads encoded with fluorescent quantum dots (QDs). The designed suspension microarray system was validated for quantitative detection of (1) free and total prostate specific antigen (PSA) in the serum of patients with prostate cancer and (2) carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA 15-3) in the serum of patients with breast cancer. The serum samples from healthy donors were used as a control. The antigen detection is based on the formation of an immune complex of a specific capture antibody (Ab), a target antigen (Ag), and a detector Ab on the surface of the encoded particles. The capture Ab is bound to the polymer shell of microbeads via an adapter molecule, for example, protein A. Protein A binds a monoclonal Ab in a highly oriented manner due to specific interaction with the Fc-region of the Ab molecule. Each antigen can be recognized and detected due to a specific microbead population carrying the unique fluorescent code. 100 and 231 serum samples from patients with different stages of prostate cancer and breast cancer, respectively, and those from healthy donors were examined using the designed suspension system. The data were validated by comparing with the results of

  7. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults.

    PubMed

    Ledgerwood, J E; Costner, P; Desai, N; Holman, L; Enama, M E; Yamshchikov, G; Mulangu, S; Hu, Z; Andrews, C A; Sheets, R A; Koup, R A; Roederer, M; Bailer, R; Mascola, J R; Pau, M G; Sullivan, N J; Goudsmit, J; Nabel, G J; Graham, B S

    2010-12-16

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses. Published by Elsevier Ltd.

  8. Immunofluorescence Technique Using HeLa Cells Expressing Recombinant Nucleoprotein for Detection of Immunoglobulin G Antibodies to Crimean-Congo Hemorrhagic Fever Virus

    PubMed Central

    Saijo, Masayuki; Qing, Tang; Niikura, Masahiro; Maeda, Akihiko; Ikegami, Tetsuro; Sakai, Koji; Prehaud, Christophe; Kurane, Ichiro; Morikawa, Shigeru

    2002-01-01

    A HeLa cell line continuously expressing recombinant nucleoprotein (rNP) of the Crimean-Congo hemorrhagic fever virus (CCHFV) was established by transfection with an expression vector containing the cDNA of CCHFV NP (pKS336-CCHFV-NP). These cells were used as antigens for indirect immunofluorescence (IF) to detect immunoglobulin G antibodies to CCHFV. The sensitivity and specificity of this IF technique were examined by using serum samples and were compared to those of the IF technique using CCHFV-infected Vero E6 cells (authentic antigen). Staining of the CCHFV rNP expressed in HeLa cells showed a unique granular pattern similar to that of CCHFV-infected Vero E6 cells. Positive staining could easily be distinguished from a negative result. All 13 serum samples determined to be positive by using the authentic antigen were also determined to be positive by using CCHFV rNP-expressing HeLa cells (recombinant antigen). The 108 serum samples determined to be negative by using the authentic antigen were also determined to be negative by using the recombinant antigen. Thus, both the sensitivity and the specificity of this IF technique were 100% compared to the IF with authentic antigen. The novel IF technique using CCHFV rNP-expressing HeLa cells can be used not only for diagnosis of CCHF but also for epidemiological studies on CCHFV infections. PMID:11825944

  9. Natural selection promotes antigenic evolvability.

    PubMed

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  10. Natural Selection Promotes Antigenic Evolvability

    PubMed Central

    Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections

  11. Genetic variations in merozoite surface antigen genes of Babesia bovis detected in Vietnamese cattle and water buffaloes.

    PubMed

    Yokoyama, Naoaki; Sivakumar, Thillaiampalam; Tuvshintulga, Bumduuren; Hayashida, Kyoko; Igarashi, Ikuo; Inoue, Noboru; Long, Phung Thang; Lan, Dinh Thi Bich

    2015-03-01

    The genes that encode merozoite surface antigens (MSAs) in Babesia bovis are genetically diverse. In this study, we analyzed the genetic diversity of B. bovis MSA-1, MSA-2b, and MSA-2c genes in Vietnamese cattle and water buffaloes. Blood DNA samples from 258 cattle and 49 water buffaloes reared in the Thua Thien Hue province of Vietnam were screened with a B. bovis-specific diagnostic PCR assay. The B. bovis-positive DNA samples (23 cattle and 16 water buffaloes) were then subjected to PCR assays to amplify the MSA-1, MSA-2b, and MSA-2c genes. Sequencing analyses showed that the Vietnamese MSA-1 and MSA-2b sequences are genetically diverse, whereas MSA-2c is relatively conserved. The nucleotide identity values for these MSA gene sequences were similar in the cattle and water buffaloes. Consistent with the sequencing data, the Vietnamese MSA-1 and MSA-2b sequences were dispersed across several clades in the corresponding phylogenetic trees, whereas the MSA-2c sequences occurred in a single clade. Cattle- and water-buffalo-derived sequences also often clustered together on the phylogenetic trees. The Vietnamese MSA-1, MSA-2b, and MSA-2c sequences were then screened for recombination with automated methods. Of the seven recombination events detected, five and two were associated with the MSA-2b and MSA-2c recombinant sequences, respectively, whereas no MSA-1 recombinants were detected among the sequences analyzed. Recombination between the sequences derived from cattle and water buffaloes was very common, and the resultant recombinant sequences were found in both host animals. These data indicate that the genetic diversity of the MSA sequences does not differ between cattle and water buffaloes in Vietnam. They also suggest that recombination between the B. bovis MSA sequences in both cattle and water buffaloes might contribute to the genetic variation in these genes in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    PubMed Central

    Thor, Sharmi W.; Hilt, Deborah A.; Kissinger, Jessica C.; Paterson, Andrew H.; Jackwood, Mark W.

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV) isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus. PMID:21994806

  13. Isolation, nucleotide sequence and expression of a cDNA encoding feline granulocyte colony-stimulating factor.

    PubMed

    Dunham, S P; Onions, D E

    2001-06-21

    A cDNA encoding feline granulocyte colony stimulating factor (fG-CSF) was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction. The cDNA is 949 bp in length and encodes a predicted mature protein of 174 amino acids. Recombinant fG-CSF was expressed as a glutathione S-transferase fusion and purified by affinity chromatography. Biological activity of the recombinant protein was demonstrated using the murine myeloblastic cell line GNFS-60, which showed an ED50 for fG-CSF of approximately 2 ng/ml. Copyright 2001 Academic Press.

  14. Transcriptionally active PCR for antigen identification and vaccine development: in vitro genome-wide screening and in vivo immunogenicity

    PubMed Central

    Regis, David P.; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L.; Stefaniak, Maureen E.; Campo, Joseph J.; Carucci, Daniel J.; Roth, David A.; He, Huaping; Felgner, Philip L.; Doolan, Denise L.

    2009-01-01

    We have evaluated a technology called Transcriptionally Active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data. PMID:18164079

  15. Transcriptionally active PCR for antigen identification and vaccine development: in vitro genome-wide screening and in vivo immunogenicity.

    PubMed

    Regis, David P; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L; Stefaniak, Maureen E; Campo, Joseph J; Carucci, Daniel J; Roth, David A; He, Huaping; Felgner, Philip L; Doolan, Denise L

    2008-03-01

    We have evaluated a technology called transcriptionally active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data.

  16. Macrophage Immune Response Suppression by Recombinant Mycobacterium tuberculosis Antigens, the ESAT-6, CFP-10, and ESAT-6/CFP-10 Fusion Proteins

    PubMed Central

    Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh

    2016-01-01

    Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at P<0.05. Results: The results showed that the ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551

  17. CLONING AND CHARACTERIZATION OF CDNA ENCODING GIARDIA LAMBLIA d-GIARDIN

    USDA-ARS?s Scientific Manuscript database

    A cDNA coding for d-giardin was cloned from Giardia lamblia trophozoites in order to localize the protein and study its function in mediating surface attachment. Recombinant d-giardin antigen was produced in Escherichia coli as a poly-histidine fusion protein and was purified by affinity chromatogr...

  18. Endogenous murine leukemia virus-encoded proteins in radiation leukemias of BALB/c mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tress, E.; Pierotti, M.; DeLeo, A.B.

    1982-02-01

    To explore the role of endogenous retroviruses in radiation-induced leukemogenesis in the mouse, we have examined virus-encoded proteins in nine BALB/c leukemias by pulsechase labeling procedures and serological typing with monospecific and monoclonal antibodies. The major gag precursor protein, Pr65/sup gag/, was observed in all cases, but only three leukemias expressed detectable amounts of the glycosylated gag species, gP95/sup gag/, or its precursor, Pr75/sup gag/. No evidence was found for synthesis of gag-host fusion proteins. None of the leukemias released infectious xenotropic or dualtropic virus, but all nine expressed at least one env protein with xenotropic properties. In two instancesmore » a monoclonal antibody, 35/56, which is specific for the NuLV G/sub IX/ antigen, displayed a distinctive reactivity with this class of env protein, although this antibody is unreactive with replicating xenotropic viruses. An ecotropic/xenotropic recombinant env protein with the same 35/56 phenotype was observed in a leukemia induced by a strongly leukemogenic virus isolated from a BALB/c radiation leukemia.« less

  19. Antigenic Determinants of Alpha-Like Proteins of Streptococcus agalactiae

    PubMed Central

    Maeland, Johan A.; Bevanger, Lars; Lyng, Randi Valsoe

    2004-01-01

    The majority of group B streptococcus (GBS) isolates express one or more of a family of surface-anchored proteins that vary by strain and that form ladder-like patterns on Western blotting due to large repeat units. These proteins, which are important as GBS serotype markers and as inducers of protective antibodies, include the alpha C (Cα) and R4 proteins and the recently described alpha-like protein 2 (Alp2), encoded by alp2, and Alp3, encoded by alp3. In this study, we examined antigenic determinants possessed by Alp2 and Alp3 by testing of antibodies raised in rabbits, mainly by using enzyme-linked immunosorbent assays (ELISA) and an ELISA absorption test. The results showed that Alp2 and Alp3 shared an antigenic determinant, which may be a unique immunological marker of the Alp variants of GBS proteins. Alp2, in addition, possessed an antigenic determinant which showed specificity for Alp2 and a third determinant which showed serological cross-reactivity with Cα. Alp3, in addition to the determinant common to Alp2 and Alp3, harbored an antigenic site which also was present in the R4 protein, whereas no Alp3-specific antigenic site was detected. These ELISA-based results were confirmed by Western blotting and a fluorescent-antibody test. The results are consistent with highly complex antigenic structures of the alpha-like proteins in a fashion which is in agreement with the recently described structural mosaicism of the alp2 and alp3 genes. The results are expected to influence GBS serotyping, immunoprotection studies, and GBS vaccine developments. PMID:15539502

  20. Generation of Recombinant Ebola Viruses Using Reverse Genetics.

    PubMed

    Groseth, Allison

    2017-01-01

    Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.

  1. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  2. Healthy human T-Cell Responses to Aspergillus fumigatus antigens.

    PubMed

    Chaudhary, Neelkamal; Staab, Janet F; Marr, Kieren A

    2010-02-17

    Aspergillus fumigatus is associated with both invasive and allergic pulmonary diseases, in different hosts. The organism is inhaled as a spore, which, if not cleared from the airway, germinates into hyphal morphotypes that are responsible for tissue invasion and resultant inflammation. Hyphae secrete multiple products that function as antigens, evoking both a protective (T(H)1-T(H)17) and destructive allergic (T(H)2) immunity. How Aspergillus allergens (Asp f proteins) participate in the development of allergic sensitization is unknown. To determine whether Asp f proteins are strictly associated with T(H)2 responses, or represent soluble hyphal products recognized by healthy hosts, human T cell responses to crude and recombinant products were characterized by ELISPOT. While responses (number of spots producing IFN-gamma, IL-4 or IL-17) to crude hyphal antigen preparations were weak, responses to recombinant Asp f proteins were higher. Recombinant allergens stimulated cells to produce IFN-gamma more so than IL-4 or IL-17. Volunteers exhibited a diverse CD4+ and CD8+ T cell antigen recognition profile, with prominent CD4 T(H)1-responses to Asp f3 (a putative peroxismal membrane protein), Asp f9/16 (cell wall glucanase), Asp f11 (cyclophilin type peptidyl-prolyl isomerase) and Asp f22 (enolase). Strong IFN-gamma responses were reproduced in most subjects tested over 6 month intervals. Products secreted after conidial germination into hyphae are differentially recognized by protective T cells in healthy, non-atopic individuals. Defining the specificity of the human T cell repertoire, and identifying factors that govern early responses may allow for development of novel diagnostics and therapeutics for both invasive and allergic Aspergillus diseases.

  3. Development and antigenic characterization of three recombinant proteins with potential for Glässer's disease prevention.

    PubMed

    Li, Miao; Li, Chunling; Song, Shuai; Kang, Huahua; Yang, Dongxia; Li, Guoqing

    2016-04-27

    Haemophilus parasuis is the causative agent of Glässer's disease, which causes high morbidity and mortality in piglets, leading to severe economic losses. The lack of a commercial vaccine against a broad spectrum of strains has limited the disease control. H. parasuis outer membrane proteins (OMPs) are potentially essential components for vaccine formulation. In this study, seven putative OMPs were selected from the annotated H. parasuis serovar 5 genome; they were predicted by bioinformatics and annotated as potential virulence-related factors. These proteins were cloned, expressed, and purified as His-tagged proteins. Antigenicity of the candidate proteins was assessed using Western blotting with convalescent sera against H. parasuis serovar 5. The immunogenicity of the seven OMPs was assessed in a guinea pig model. Except VacJ, all the other six recombinant proteins elicited a detectable antibody response. Antisera against four of the selected proteins effectively killed the bacteria in vitro. Three proteins (Omp26, VacJ, and HAPS_0742) were found to confer significant protection against challenge with a lethal dose of H. parasuis in a guinea pig model. The results suggest that these three proteins have a strong potential to be vaccine candidates against Glässer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Recombinant hosts suitable for simultaneous saccharification and fermentation

    DOEpatents

    Ingram, Lonnie O'Neal; Zhou, Shengde

    2007-06-05

    The invention provides recombinant host cells containing at least one heterologous polynucleotide encoding a polysaccharase under the transcriptional control of a surrogate promoter capable of increasing the expression of the polysaccharase. In addition, the invention further provides such hosts with genes encoding secretory protein/s to facilitate the secretion of the expressed polysaccharase. Preferred hosts of the invention are ethanologenic and capable of carrying out simultaneous saccharification fermentation resulting in the production of ethanol from complex cellulose substrates.

  5. Recombineering using RecET from Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  6. Murine T-Cell Response to Native and Recombinant Protein Antigens of Rickettsia Tsutsugamushi

    DTIC Science & Technology

    1993-02-01

    Wright, and J. Sadoff. 1985. 18-kilodalton protein of Mycobacterium leprae recognized by Immunoenzymatic analysis by monoclonal antibodies of bacte- Vo...determinants and closely resembles T-cell antigenic determinants, Rothbard and Taylor, by the GroEL homolog (65 kDa) of Mycobacterium tuberculo- analysis of...not be completely present in protein that is recognized by 20% of the mycobacterium - peptide 91-110. If this were the core of the antigenic deter

  7. [Construction and expression of recombinant human serum albumin-EPO fusion protein].

    PubMed

    Huang, Ying-Chun; Gou, Xing-Hua; Han, Lei; Li, De-Hua; Zhao, Lan-Ying; Wu, Qia-Qing

    2011-05-01

    OBJECTIVE To construct the recombinant plasmid pCI-HLE encoding human serum album-EPO (HSA-EPO) fusion protein and to express it in CHO cell. The cDNA encoding human serum album and EPO were amplified by PCR, and then spliced with the synsitic DNA fragment encoding GS (GGGGS), by overlap PCR extension to form LEPO. After BamH I digestion, the HSA and LEPO was ligated to generate the fusion HSA-EPO gene and was then cloned into the expression vector pCI-neo to generate the recombinant plasmid pCI-HLE. The plasmid pCI-HLE was transfected into CHO cell by liposome protocol. Then, the recombinant cells were screened by G418 and identified by PCR and Western blot. Expression of fusion protein was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Restrictive enzymes digestion and DNA sequencing revealed that HSA-EPO fusion gene was cloned into expression vector pCI-neo successfully. PCR and Western blot analysis confirmed that the fusion gene was integrated in the genome of CHO cells and expressed successfully. The HSA-EPO production varied from 86 Iu/(mL x 10(6) x 72 h) to 637 IU/(mLx 10(6) x 72 h). The results confirmed that HSA-EPO fusion gene can be expressed in the CHO cells, with EPO immunogenicity, which could serve as foundation for the development of long-lasting recombinant HSA-EPO protein.

  8. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  9. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  10. Cloning, sequence, and expression of a blood group B active recombinant alpha-D-galactosidase from pinto bean (Phaseolus vulgaris).

    PubMed

    Davis, M O; Hata, D J; Johnson, S A; Jones, D E; Harmata, M A; Evans, M L; Walker, J C; Smith, D S

    1997-07-01

    A cDNA encoding pinto bean alpha-D-galactosidase [E.C. 3.2.1.22] was obtained by amplification of cDNA using highly conserved sequences found in eucaryotic alpha-D-galactosidases. Subsequently a full length Phaseolus cDNA clone was obtained that is 1537 nt long and contains untranslated 5' and 3' sequences. The nucleotide sequence of the cDNA has a high degree of homology with other eucaryotic alpha-D-galactosidase genes. The recombinant alpha-D-galactosidase (rGal) was expressed in Escherichia coli and purified by ion exchange and affinity chromatography. Purified rGal was homogeneous by SDS-PAGE and had relative masses of 40.1 and 45.4 kDa under nonreducing and reducing conditions, respectively. The N-terminal sequence of the expressed protein contained the sequence GNGLGQTPPMG corresponding to that deduced from the cDNA sequence. The native molecular weight for rGal was determined to be 32.18 kDa by Sephacryl S-200 chromatography. The specific activity of the rGal was 349 mu moles of PNP-alpha-D-galactopyranoside hydrolyzed per mg of pure rGal per min. rGal was highly specific for alpha-D-galactosyl residues and degraded B oligosaccharide. No detectable hemagglutinin or protease activity was present in the preparations. Furthermore, rGal was active against the blood group B antigen on native human erythrocytes in cell suspension assays. The only detectable RBC phenotypic change was loss of the B and P1 epitopes. Recombinant Phaseolus vulgaris alpha-D-galactosidase may have useful biotechnical applications in the potential mass production of enzymatically converted, universally transfusable type O RBCs. alpha-D-galactosidase [E.C. 3.2.1.22] has been purified from a variety of procaryotic and eucaryotic species. Most alpha-D-galactosidases have similar low molecular weight substrate specificities, but activity against high molecular weight substrates is variable. Terminal alpha-D-galactoside residues are present in glycoproteins and glycolipids. Some alpha

  11. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus.

    PubMed

    O'Flaherty, Sarah; Klaenhammer, Todd R

    2016-10-15

    Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid

  12. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus

    PubMed Central

    Klaenhammer, Todd R.

    2016-01-01

    ABSTRACT Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is

  13. Cloning of the Gene Encoding a 22-Kilodalton Cell Surface Antigen of Mycobacterium bovis BCG and Analysis of Its Potential for DNA Vaccination against Tuberculosis

    PubMed Central

    Lefèvre, Philippe; Denis, Olivier; De Wit, Lucas; Tanghe, Audrey; Vandenbussche, Paul; Content, Jean; Huygen, Kris

    2000-01-01

    Using spleen cells from mice vaccinated with live Mycobacterium bovis BCG, we previously generated three monoclonal antibodies reactive against a 22-kDa protein present in mycobacterial culture filtrate (CF) (K. Huygen et al., Infect. Immun. 61:2687–2693, 1993). These monoclonal antibodies were used to screen an M. bovis BCG genomic library made in phage λgt11. The gene encoding a 233-amino-acid (aa) protein, including a putative 26-aa signal sequence, was isolated, and sequence analysis indicated that the protein was 98% identical with the M. tuberculosis Lppx protein and that it contained a sequence 94% identical with the M. leprae 38-mer polypeptide 13B3 recognized by T cells from killed M. leprae-immunized subjects. Flow cytometry and cell fractionation demonstrated that the 22-kDa CF protein is also highly expressed in the bacterial cell wall and membrane compartment but not in the cytosol. C57BL/6, C3H, and BALB/c mice were vaccinated with plasmid DNA encoding the 22-kDa protein and analyzed for immune response and protection against intravenous M. tuberculosis challenge. Whereas DNA vaccination induced elevated antibody responses in C57BL/6 and particularly in C3H mice, Th1-type cytokine response, as measured by interleukin-2 and gamma interferon secretion, was only modest, and no protection against intravenous M. tuberculosis challenge was observed in any of the three mouse strains tested. Therefore, the 22-kDa antigen seems to have little potential for a DNA vaccine against tuberculosis, but it may be a good candidate for a mycobacterial antigen detection test. PMID:10678905

  14. Structural analysis and cross-protective efficacy of recombinant 87 kDa outer membrane protein (Omp87) of Pasteurella multocida serogroup B:2.

    PubMed

    Kumar, Abhinendra; Yogisharadhya, Revanaiah; Ramakrishnan, Muthannan A; Viswas, K N; Shivachandra, Sathish B

    2013-12-01

    Pasteurella multocida serogroup B:2, a causative agent of haemorrhagic septicaemia (HS) in cattle and buffalo especially in tropical regions of Asian and African countries, is known to possess several outer membrane proteins (OMPs) as immunogenic antigens. In the present study, omp87 gene encoding for 87 kDa OMP (Omp87) protein of P. multocida serogroup B:2 strain P52, has been amplified (∼2304 bp), cloned in to pET32a vector and over-expressed in recombinant Escherichia coli as fusion protein. The recombinant Omp87 protein (∼102 kDa) including N-terminus hexa-histidine tag was purified under denaturing condition. Immunization of mice with rOmp87 resulted in increased antigen specific IgG titres in serum and provided protection of 66.6 and 83.3% following homologous (B:2) and heterologous (A:1) challenge, respectively. A homology model of Omp87 revealed the presence of two distinct domains; N-terminal domain with four POTRA repeats in the periplasmic space and a pore forming C-terminal β-barrel domain (β1- β16) in the outer membrane of P. multocida, which belong to Omp85-TpsB transporter superfamily of OMPs. The study indicated the potential possibilities to use rOmp87 protein along with suitable adjuvant in developing subunit vaccine for haemorrhagic septicaemia and pasteurellosis in livestock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The molecular bases of δ/αβ T cell-mediated antigen recognition.

    PubMed

    Pellicci, Daniel G; Uldrich, Adam P; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B G; de Boer, Renate; Lim, Ricky T; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H M; Gras, Stephanie; Rossjohn, Jamie; Godfrey, Dale I

    2014-12-15

    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1(+) human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. © 2014 Pellicci et al.

  16. The molecular bases of δ/αβ T cell–mediated antigen recognition

    PubMed Central

    Pellicci, Daniel G.; Uldrich, Adam P.; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B.G.; de Boer, Renate; Lim, Ricky T.; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R.; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H.M.; Gras, Stephanie

    2014-01-01

    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1+ human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. PMID:25452463

  17. Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic determinants of dengue 2 virus.

    PubMed

    Amexis, Georgios; Young, Neal S

    2006-09-15

    For the production of dengue-vaccine candidates, empty capsids, or virus-like particles (VLPs), of parvovirus B19 that carry dengue 2-specific epitopes were employed as antigen carriers. Two epitopes (comprising amino acids 352-368 and 386-397) of domain BIII of the envelope glycoprotein were chosen to produce recombinant B19 VLPs for immunization of BALB/c mice. Serum samples from immunized mice revealed that recombinant B19 VLPs elicited strong humoral immune responses. In summary, this B19 VLP-vaccine platform produced high (> or =2.0 x 10(5)) anti-dengue 2 titers and robust (< or =1 120) 50%-plaque-reduction neutralization test (PRNT(50)) titers, which effectively neutralized live dengue 2 virus in PRNT(50) assays.

  18. Interaction of apicoplast-encoded elongation factor (EF) EF-Tu with nuclear-encoded EF-Ts mediates translation in the Plasmodiumfalciparum plastid.

    PubMed

    Biswas, Subir; Lim, Erin E; Gupta, Ankit; Saqib, Uzma; Mir, Snober S; Siddiqi, Mohammad Imran; Ralph, Stuart A; Habib, Saman

    2011-03-01

    Protein translation in the plastid (apicoplast) of Plasmodium spp. is of immense interest as a target for potential anti-malarial drugs. However, the molecular data on apicoplast translation needed for optimisation and development of novel inhibitors is lacking. We report characterisation of two key translation elongation factors in Plasmodium falciparum, apicoplast-encoded elongation factor PfEF-Tu and nuclear-encoded PfEF-Ts. Recombinant PfEF-Tu hydrolysed GTP and interacted with its presumed nuclear-encoded partner PfEF-Ts. The EF-Tu inhibitor kirromycin affected PfEF-Tu activity in vitro, indicating that apicoplast EF-Tu is indeed the target of this drug. The predicted PfEF-Ts leader sequence targeted GFP to the apicoplast, confirming that PfEF-Ts functions in this organelle. Recombinant PfEF-Ts mediated nucleotide exchange on PfEF-Tu and homology modeling of the PfEF-Tu:PfEF-Ts complex revealed PfEF-Ts-induced structural alterations that would expedite GDP release from PfEF-Tu. Our results establish functional interaction between two apicoplast translation factors encoded by genes residing in different cellular compartments and highlight the significance of their sequence/structural differences from bacterial elongation factors in relation to inhibitor activity. These data provide an experimental system to study the effects of novel inhibitors targeting PfEF-Tu and PfEF-Tu.PfEF-Ts interaction. Our finding that apicoplast EF-Tu possesses chaperone-related disulphide reductase activity also provides a rationale for retention of the tufA gene on the plastid genome. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  19. An Approach toward the Development of a Functional Encoding Model of Short Term Memory during Reading.

    ERIC Educational Resources Information Center

    Herndon, Mary Anne

    1978-01-01

    In a model of the functioning of short term memory, the encoding of information for subsequent storage in long term memory is simulated. In the encoding process, semantically equivalent paragraphs are detected for recombination into a macro information unit. (HOD)

  20. Allergic aspergillosis and the antigens of Aspergillus fumigatus.

    PubMed

    Singh, Bharat; Singh, Seema; Asif, Abdul R; Oellerich, Michael; Sharma, Gainda L

    2014-01-01

    Incidence of fungal infections has increased alarmingly in past few decades. Of the fungal pathogens, the Aspergillus fumigatus has been a major cause of allergic bronchopulmonary aspergillosis (ABPA) which has five main stages--the acute, remission, exacerbation, glucocorticoid dependent and fibrotic stage. The diagnosis of ABPA remains difficult due to its overlapping clinical and radiological features with tuberculosis and cystic fibrosis. From past few decades, the crude fractions of A. fumigatus have been used for immunodiagnosis of ABPA. Most of the detection kits based on crude fractions of A. fumigatus are quite sensitive but have low specificity. Till date 21 known and 25 predicted allergens of A. fumigatus have been identified. Of these allergens, only five recombinants (rAsp f1-f4 and f6) are commercially used for diagnosis of allergic aspergillosis. Remaining allergens of A. fumigatus have been restricted for use in specific diagnosis of ABPA, due to sharing of common antigenic epitopes with other allergens. Complete sequencing of A. fumigatus genome identified 9926 genes and the reports on the proteome of A. fumigatus have shown the presence of large number of their corresponding proteins in the pathogen. The analysis of immunoproteomes developed from crude fractions of A. fumigatus by IgG/IgE reactivity with ABPA patients and animal sera have identified the panel of new antigens. A brief description on the current status of A. fumigatus antigens is provided in this review. The implementation of advance recombinant expression and peptidomic approaches on the A. fumigatus antigens may help in the selection of appropriate molecules for the development of tools for more specific early diagnosis of ABPA, and desensitization therapies for patients of allergic disorders.

  1. Applying biotin-streptavidin binding for iscom (immunostimulating complex) association of recombinant immunogens.

    PubMed

    Wikman, Maria; Friedman, Mikaela; Pinitkiatisakul, Sunan; Hemphill, Andrew; Lövgren-Bengtsson, Karin; Lundén, Anna; Ståhl, Stefan

    2005-04-01

    We have previously reported strategies for Escherichia coli production of recombinant immunogens fused to hydrophobic peptide or lipid tags to improve their capacity to be incorporated into an adjuvant formulation. In the present study, we have explored the strong interaction between biotin and SA (streptavidin) (K(D) approximately 10(-15) M) to couple recombinant immunogens to iscoms (immunostimulating complexes). Two different concepts were evaluated. In the first concept, a His(6)-tagged SA fusion protein (His(6)-SA) was bound to Ni(2+)-loaded iscom matrix (iscom without associated protein), and biotinylated immunogens were thereafter associated with the SA-coated iscoms. The immunogens were either biotinylated in vivo on E. coli expression or double biotinylated in vivo and in vitro. In the second concept, the recombinant immunogens were expressed as SA fusion proteins, which were directly bound to a biotinylated iscom matrix. A 53-amino-acid malaria peptide (M5), derived from the central repeat region of the Plasmodium falciparum blood-stage antigen Pf155/RESA, and a 232-amino-acid segment (SRS2') from the central region (from Pro-97 to Lys-328) of the major surface antigen NcSRS2 of the protozoan parasite Neospora caninum, served as model immunogens in the present study. All fusion proteins generated were found to be efficiently expressed and could be recovered to high purity using affinity chromatography. The association between the different immunogen-containing fusion proteins and the corresponding iscom matrix was demonstrated by analytical ultracentrifugation in a sucrose density gradient. However, some fusion proteins were, to a certain extent, also found to associate unspecifically with a regular iscom matrix. Furthermore, selected iscom fractions were demonstrated to induce high-titre antigen-specific antibody responses on immunization of mice. For the particular target immunogen SRS2', the induced antibodies demonstrated reactivity to the native

  2. Seroprevalence of Cryptosporidium parvum infection of dairy cows in three northern provinces of Thailand determined by enzyme-linked immunosorbent assay using recombinant antigen CpP23.

    PubMed

    Inpankaew, T; Jittapalapong, S; Phasuk, J; Pinyopanuwut, N; Chimnoi, W; Kengradomkit, C; Sunanta, C; Zhang, G; Aboge, G O; Nishikawa, Y; Igarashi, I; Xuan, X

    2009-06-01

    Cryptosporidium parvum is the most frequent parasitic agent that causes diarrhoea in AIDS patients in Thailand. Cryptosporidiosis outbreaks in humans may be attributed to contamination of their drinking water from infected dairy pastures. A 23-kDa glycoprotein of C. parvum (CpP23) is a sporozoite surface protein that is geographically conserved among C. parvum isolates. This glycoprotein is a potentially useful candidate antigen for the diagnosis of cryptosporidiosis by enzyme-linked immunosorbent assay. Therefore, we investigated the seroprevalence of C. parvum infection in dairy cows in northern Thailand using an ELISA based on recombinant CpP23 antigen. Sera were randomly collected from 642 dairy cows of 42 small-holder farmers, which had the top three highest number of the dairy cows' population in Northern Thailand, that included Chiang Mai, Chiang Rai and Lumpang provinces. The overall seroprevalence of the infection was 4.4%, and the seropositive rates for the three provinces were 3.3% in Chiang Mai, 5.1% in Chiang Rai and 3% in Lumpang. These results suggest that cattle could play a role in zoonotic cryptosporidiosis in Thailand.

  3. Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1

    PubMed Central

    Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2012-01-01

    The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317

  4. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte–macrophage colony-stimulating factor in experimental pulmonary tuberculosis

    PubMed Central

    Francisco-Cruz, A.; Mata-Espinosa, D.; Estrada-Parra, S.; Xing, Z.; Hernández-Pando, R.

    2013-01-01

    Summary BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte–macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. PMID:23379435

  5. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  6. Development of Two FhSAP2 Recombinant-Based Assays for Immunodiagnosis of Human Chronic Fascioliasis.

    PubMed

    Shin, Sun Hee; Hsu, Angel; Chastain, Holly M; Cruz, Lorna A; Elder, Eric S; Sapp, Sarah G H; McAuliffe, Isabel; Espino, Ana M; Handali, Sukwan

    2016-10-05

    In the United States, infection with Fasciola hepatica has been identified as an emerging disease, primarily in immigrants, refugees, and travelers. The laboratory test of choice for diagnosis of fascioliasis is detection of disease specific antibodies, most commonly uses excretory-secretory antigens for detection of IgG antibodies. Recently, recombinant proteins such as F. hepatica antigen (FhSAP2) have been used to detect IgG antibodies. The glutathione S-transferase (GST)-FhSAP2 recombinant antigen was used to develop Western blot (WB) and fluorescent bead-based (Luminex) assays to detect F. hepatica total IgG and IgG 4 antibodies. The sensitivity and specificity of GST-FhSAP2 total IgG and IgG 4 WB were similar at 94% and 98%, respectively. For the IgG Luminex assay, the sensitivity and specificity were 94% and 97%, and for the IgG 4 , the values were 100% and 99%, respectively. In conclusion, the GST-FhSAP2 antigen performs well in several assay formats and can be used for clinical diagnosis. © The American Society of Tropical Medicine and Hygiene.

  7. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    PubMed

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  8. Identification of new antigen candidates for the early diagnosis of Mycobacterium avium subsp. paratuberculosis infection in goats.

    PubMed

    Souriau, Armel; Freret, Sandrine; Foret, Benjamin; Willemsen, Peter T J; Bakker, Douwe; Guilloteau, Laurence A

    2017-12-01

    Currently Mycobacterium avium subsp. paratuberculosis (MAP) infection is diagnosed through indirect tests based on the immune response induced by the infection. The antigens commonly used in IFN-γ release assays (IGRA) are purified protein derivative tuberculins (PPD). However, PPDs, lack both specificity (Sp) and sensitivity (Se) in the early phase of infection. This study investigated the potential of 16 MAP recombinant proteins and five lipids to elicit the release of IFN-γ in goats from herds with or without a history of paratuberculosis. Ten recombinant proteins were selected as potential candidates for the detection of MAP infection in young goats. They were found to detect 25 to 75% of infected shedder (IS) and infected non-shedder (INS) kids younger than 10months of age. In comparison, PPD was shown to detect only 10% of INS and no IS kids. For seven antigens, Se (21-33%) and Sp (≥90%) of IGRA were shown to be comparable with PPD at 20months old. Only three antigens were suitable candidates to detect IS adult goats, although Se was lower than that obtained with PPD. In paratuberculosis-free herds, IGRA results were negative in 97% of indoor goats and 86% of outdoor goats using the 10 antigens. However, 22 to 44% of one-year-old outdoor goats were positive suggesting that they may be infected. In conclusion, this study showed that ten MAP recombinant proteins are potential candidates for early detection of MAP infected goats. Combining these antigens could form a possible set of MAP antigens to optimize the Se of caprine IGRA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Combination of Two Candidate Subunit Vaccine Antigens Elicits Protective Immunity to Ricin and Anthrax Toxin in Mice

    PubMed Central

    Vance, David J.; Rong, Yinghui; Brey, Robert N.; Mantis, Nicholas J.

    2014-01-01

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population. PMID:25475957

  10. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria.

    PubMed

    Grangette, Corinne; Müller-Alouf, Heide; Hols, Pascal; Goudercourt, Denise; Delcour, Jean; Turneer, Mireille; Mercenier, Annick

    2004-05-01

    The potential of recombinant lactic acid bacteria (LAB) to deliver heterologous antigens to the immune system and to induce protective immunity has been best demonstrated by using the C subunit of tetanus toxin (TTFC) as a model antigen. Two types of LAB carriers have mainly been used, Lactobacillus plantarum and Lactococcus lactis, which differ substantially in their abilities to resist passage through the stomach and to persist in the mouse gastrointestinal tract. Here we analyzed the effect of a deficiency in alanine racemase, an enzyme that participates in cell wall synthesis, in each of these bacterial carriers. Recombinant wild-type and mutant strains of L. plantarum NCIMB8826 and L. lactis MG1363 producing TTFC intracellularly were constructed and used in mouse immunization experiments. Remarkably, we observed that the two cell wall mutant strains were far more immunogenic than their wild-type counterparts when the intragastric route was used. However, intestinal TTFC-specific immunoglobulin A was induced only after immunization with the recombinant L. plantarum mutant strain. Moreover, the alanine racemase mutant of either LAB strain allowed induction of a much stronger serum TTFC-specific immune response after immunization via the vagina, which is a quite different ecosystem than the gastrointestinal tract. The design and use of these mutants thus resulted in a major improvement in the mucosal delivery of antigens exhibiting vaccine properties.

  11. [Experimental study on TCRbeta idiotypic antigenic determinants DNA vaccine to induce anti-lymphoma antibodies].

    PubMed

    Zhang, Yeping; Zhu, Ping; Shi, Yongjin; Liu, Jihua; Pu, Dingfang; Cao, Xianghong; Zhu, Qiang; Wang, Yijia; Ma, Mingxin; Yu, Jiren

    2002-02-01

    To investigate the anti-human CEM lymphoma cell activities induced by TCR idiotypic DNA vaccine containing different antigen determinants in BALB/c mice. The specific rearranged gene fragment encoding TCRVbeta region of CEM cell line was obtained by RT-PCR technique. The PCR product was cloned into eukaryocytic expression vector pcDNA3, which was used as DNA vaccine and template for PCR amplifying different antigen determinant. Gene fragments encoding different antigen determinant were amplified and cloned into pcDNA3, separately. The experimental mice were immunized by intramuscular injection of the DNA vaccines. The specific anti-idiotype antibodies were detected by indirect immunofluorescence assay. TCRbetaV of CEM cell line contains five antigen determinants. Specific anti-idiotype antibody was detected in all of the six mice immunized with DNA vaccine containing all the five determinants (the highest titer was 1:480). Although the antibody could also be detected in four of the six mice immunized with DNA vaccine containing four of the five antigen determinants, the antibody titer was lower (the highest titer was 1:80). DNA vaccine containing two of the five determinants could not induce the specific antibody. The idiotypic DNA vaccine containing the whole TCRbetaV five antigen determinants could induce the specific anti-lymphoma idiotypic antibody in BALB/c mice.

  12. Analysis of A549 cell proteome alteration in response to recombinant influenza A virus nucleoprotein and its interaction with cellular proteins, a preliminary study.

    PubMed

    Kumar, D; Tiwari, K; Rajala, M S

    Influenza A virus undergoes frequent changes of antigenicity and contributes to seasonal epidemics or unpredictable pandemics. Nucleoprotein, encoded by gene segment 5, is an internal protein of the virus and is conserved among strains of different host origins. In the current study, we analyzed the differentially expressed proteins in A549 cells transiently transfected with the recombinant nucleoprotein of influenza A virus by 2D gel electrophoresis. The resolved protein spots on gel were identified by MALDI-TOF/Mass spectrometry analysis. The majority of the host proteins detected to be differentially abundant in recombinant nucleoprotein-expressing cells as compared to vector-transfected cells are the proteins of metabolic pathways, glycolytic enzymes, molecular chaperones and cytoskeletal proteins. We further demonstrated the interaction of virus nucleoprotein with some of the identified host cellular proteins. In vitro binding assay carried out using the purified recombinant nucleoprotein (pET29a+NP-His) and A549 cell lysate confirmed the interaction between nucleoprotein and host proteins, such as alpha enolase 1, pyruvate kinase and β-actin. The preliminary data of our study provides the information on virus nucleoprotein interaction with proteins involved in glycolysis. However, studies are ongoing to understand the significance of these interactions in modulating the host factors during virus replication.

  13. A glycosylated recombinant subunit candidate vaccine consisting of Ehrlichia ruminantium major antigenic protein1 induces specific humoral and Th1 type cell responses in sheep.

    PubMed

    Faburay, Bonto; McGill, Jodi; Jongejan, Frans

    2017-01-01

    Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37-38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31-32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3-6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas.

  14. A glycosylated recombinant subunit candidate vaccine consisting of Ehrlichia ruminantium major antigenic protein1 induces specific humoral and Th1 type cell responses in sheep

    PubMed Central

    McGill, Jodi; Jongejan, Frans

    2017-01-01

    Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37–38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31–32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3–6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas. PMID:28957443

  15. Vaccine potential of antigen cocktails composed of recombinant Toxoplasma gondii TgPI-1, ROP2 and GRA4 proteins against chronic toxoplasmosis in C3H mice.

    PubMed

    Picchio, Mariano S; Sánchez, Vanesa R; Arcon, Nadia; Soto, Ariadna S; Perrone Sibilia, Matías; Aldirico, María de Los Angeles; Urrutia, Mariela; Moretta, Rosalía; Fenoy, Ignacio M; Goldman, Alejandra; Martin, Valentina

    2018-02-01

    The development of an effective and safe vaccine to prevent Toxoplasma gondii infection is an important aim due to the great clinical and economic impact of this parasitosis. We have previously demonstrated that immunization with the serine protease inhibitor-1 (TgPI-1) confers partial protection to C3H/HeN and C57BL/6 mice. In order to improve the level of protection, in this work, we combined this novel antigen with ROP2 and/or GRA4 recombinant proteins (rTgPI-1+rROP2, rTgPI-1+rGRA4, rTgPI-1+rROP2+rGRA4) to explore the best combination against chronic toxoplasmosis in C3H/HeN mice. All tested vaccine formulations, administered following a homologous prime-boost protocol that combines intradermal and intranasal routes, conferred partial protection as measured by the reduction of brain cyst burden following oral challenge with tissue cysts of Me49 T. gondii strain. The highest level of protection was achieved by the mixture of rTgPI-1 and rROP2 proteins with an average parasite burden reduction of 50% compared to the unvaccinated control group. The vaccine-induced protective effect was related to the elicitation of systemic cellular and humoral immune responses that included antigen-specific spleen cell proliferation, the release of Th1/Th2 cytokines, and the generation of antigen-specific antibodies in serum. Additionally, mucosal immune responses were also induced, characterized by secretion of antigen-specific IgA antibodies in intestinal lavages and specific mesenteric lymph node cell proliferation. Our results demonstrate that rTgPI-1+rROP2 antigens seem a promising mixture to be combined with other immunogenic proteins in a multiantigenic vaccine formulation against toxoplasmosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques.

    PubMed

    Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo

    2010-04-01

    Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.

  17. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins.

    PubMed

    Sequeira, Ana Filipa; Brás, Joana L A; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-12-01

    Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery.

  18. [Development of oral vaccines based on recombinant proteins derived from cholera toxin].

    PubMed

    Sánchez, J; Solórzano, R M

    1992-01-01

    In this paper a new approach to create antigens through genetic engineering is discussed. In this particular case the subunits of V. cholerae toxin are used as heterologous epitope carries. In this paper the manipulation of A and B subunits is described. This manipulation allows both the insertion of epitopes to the B subunit and the use of subunit A in the construction of recombinant antigens similar to the ones derived from subunit B.

  19. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Ermakova, Yulia G.; Bilan, Dmitry S.; Matlashov, Mikhail E.; Mishina, Natalia M.; Markvicheva, Ksenia N.; Subach, Oksana M.; Subach, Fedor V.; Bogeski, Ivan; Hoth, Markus; Enikolopov, Grigori; Belousov, Vsevolod V.

    2014-10-01

    Reactive oxygen species (ROS) are conserved regulators of numerous cellular functions, and overproduction of ROS is a hallmark of various pathological processes. Genetically encoded fluorescent probes are unique tools to study ROS production in living systems of different scale and complexity. However, the currently available recombinant redox sensors have green emission, which overlaps with the spectra of many other probes. Expanding the spectral range of recombinant in vivo ROS probes would enable multiparametric in vivo ROS detection. Here we present the first genetically encoded red fluorescent sensor for hydrogen peroxide detection, HyPerRed. The performance of this sensor is similar to its green analogues. We demonstrate the utility of the sensor by tracing low concentrations of H2O2 produced in the cytoplasm of cultured cells upon growth factor stimulation. Moreover, using HyPerRed we detect local and transient H2O2 production in the mitochondrial matrix upon inhibition of the endoplasmic reticulum Ca2+ uptake.

  20. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease.

    PubMed

    Seid, Christopher A; Jones, Kathryn M; Pollet, Jeroen; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J

    2017-03-04

    A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.

  1. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease

    PubMed Central

    Jones, Kathryn M.; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C. Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L.; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J.

    2017-01-01

    ABSTRACT A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies. PMID:27737611

  2. The diagnostic performance of recombinant Trypanosoma cruzi ribosomal P2beta protein is influenced by its expression system.

    PubMed

    Marcipar, Iván S; Olivares, María Laura; Robles, Lucía; Dekanty, Andrés; Marcipar, Alberto; Silber, Ariel M

    2004-03-01

    In the present work, we have determined the effect of expression vectors and their corresponding host bacteria on the antigenic performance of Trypanosoma cruzi P2beta (TcP2beta) full-length recombinant protein. The gene encoding the TcP2beta ribosomal protein was cloned in pMAL-c2 and pET-32a vectors that allow the expression of high levels of soluble fusion proteins. A panel of 32 positive and 32 negative sera was assayed with the purified proteins expressed using pMal-c2 (TcP2beta-MBP) and pET-32a (TcP2beta-TRX) vectors and with MBP and TRX purified from pMAL-c2 and pET-32a vectors, respectively. The antigenic behavior of each TcP2beta recombinant protein differed in the diagnostic performance in terms of DI(+) (93.7 for TcP2beta-MBP vs 100% for TcP2beta-TRX), in DI(-) (90.5 for TcP2beta-MBP vs 100% for TcP2beta-TRX) and in cross-reaction with negative sera. To determine if the higher reactivity of expressed pMAL-c2 protein was due to folding during protein expression or to a steric effect related to the protein adsorption at the titration plate, the reactivity of sera against soluble proteins was assessed by ELISA inhibition assays. As each soluble protein preserved its level of reactivity, we concluded that differences in reactivity were due to intrinsic characteristics of the proteins and not to differences in patterns of adsorption to the plates.

  3. A novel multi-epitope recombined protein for diagnosis of human brucellosis.

    PubMed

    Yin, Dehui; Li, Li; Song, Xiuling; Li, Han; Wang, Juan; Ju, Wen; Qu, Xiaofeng; Song, Dandan; Liu, Yushen; Meng, Xiangjun; Cao, Hongqian; Song, Weiyi; Meng, Rizeng; Liu, Jinhua; Li, Juan; Xu, Kun

    2016-05-21

    In epidemic regions of the world, brucellosis is a reemerging zoonosis with minimal mortality but is a serious public hygiene problem. Currently, there are various methods for brucellosis diagnosis, however few of them are available to be used to diagnose, especially for serious cross-reaction with other bacteria. To overcome this disadvantage, we explored a novel multi-epitope recombinant protein as human brucellosis diagnostic antigen. We established an indirect enzyme-linked immunosorbent assay (ELISA) based on this recombinant protein. 248 sera obtained from three different groups including patients with brucellosis (146 samples), non-brucellosis patients (82 samples), and healthy individuals (20 samples) were tested by indirect ELISA. To evaluate the assay, a receiver-operating characteristic (ROC) analysis and immunoblotting were carried out using these characterized serum samples. For this test, the area under the ROC curve was 0.9409 (95 % confidence interval, 0.9108 to 0.9709), and a sensitivity of 88.89 % and a specificity of 85.54 % was given with a cutoff value of 0.3865 from this ROC analysis. The Western blot results indicate that it is feasible to differentiate human brucellosis and non-brucellosis with the newly established method based on this recombinant protein. Our results obtained high diagnostic accuracy of the ELISA assay which encourage the use of this novel recombinant protein as diagnostic antigen to implement serological diagnosis of brucellosis.

  4. Evaluation of recombinant proteins of Burkholderia mallei for serodiagnosis of glanders.

    PubMed

    Pal, Vijai; Kumar, Subodh; Malik, Praveen; Rai, Ganga Prasad

    2012-08-01

    Glanders is a contagious disease caused by the Gram-negative bacillus Burkholderia mallei. The number of equine glanders outbreaks has increased steadily during the last decade. The disease must be reported to the Office International des Epizooties, Paris, France. Glanders serodiagnosis is hampered by the considerable number of false positives and negatives of the internationally prescribed tests. The major problem leading to the low sensitivity and specificity of the complement fixation test (CFT) and enzyme-linked immunosorbent assay (ELISA) has been linked to the test antigens currently used, i.e., crude preparations of whole cells. False-positive results obtained from other diagnostic tests utilizing crude antigens lead to financial losses to animal owners, and false-negative results can turn a risk into a possible threat. In this study, we report on the identification of diagnostic targets using bioinformatics tools for serodiagnosis of glanders. The identified gene sequences were cloned and expressed as recombinant proteins. The purified recombinant proteins of B. mallei were used in an indirect ELISA format for serodiagnosis of glanders. Two recombinant proteins, 0375H and 0375TH, exhibited 100% sensitivity and specificity for glanders diagnosis. The proteins also did not cross-react with sera from patients with the closely related disease melioidosis. The results of this investigation highlight the potential of recombinant 0375H and 0375TH proteins in specific and sensitive diagnosis of glanders.

  5. Evaluation of Recombinant Proteins of Burkholderia mallei for Serodiagnosis of Glanders

    PubMed Central

    Kumar, Subodh; Malik, Praveen

    2012-01-01

    Glanders is a contagious disease caused by the Gram-negative bacillus Burkholderia mallei. The number of equine glanders outbreaks has increased steadily during the last decade. The disease must be reported to the Office International des Epizooties, Paris, France. Glanders serodiagnosis is hampered by the considerable number of false positives and negatives of the internationally prescribed tests. The major problem leading to the low sensitivity and specificity of the complement fixation test (CFT) and enzyme-linked immunosorbent assay (ELISA) has been linked to the test antigens currently used, i.e., crude preparations of whole cells. False-positive results obtained from other diagnostic tests utilizing crude antigens lead to financial losses to animal owners, and false-negative results can turn a risk into a possible threat. In this study, we report on the identification of diagnostic targets using bioinformatics tools for serodiagnosis of glanders. The identified gene sequences were cloned and expressed as recombinant proteins. The purified recombinant proteins of B. mallei were used in an indirect ELISA format for serodiagnosis of glanders. Two recombinant proteins, 0375H and 0375TH, exhibited 100% sensitivity and specificity for glanders diagnosis. The proteins also did not cross-react with sera from patients with the closely related disease melioidosis. The results of this investigation highlight the potential of recombinant 0375H and 0375TH proteins in specific and sensitive diagnosis of glanders. PMID:22695165

  6. Characterization of two genes encoding the Mycobacterium tuberculosis ribonucleotide reductase small subunit.

    PubMed Central

    Yang, F; Curran, S C; Li, L S; Avarbock, D; Graf, J D; Chua, M M; Lu, G; Salem, J; Rubin, H

    1997-01-01

    Two nrdF genes, nrdF1 and nrdF2, encoding the small subunit (R2) of ribonucleotide reductase (RR) from Mycobacterium tuberculosis have 71% identity at the amino acid level and are both highly homologous with Salmonella typhimurium R2F. The calculated molecular masses of R2-1 and R2-2 are 36,588 (322 amino acids [aa]) and 36,957 (324 aa) Da, respectively. Western blot analysis of crude M. tuberculosis extracts indicates that both R2s are expressed in vivo. Recombinant R2-2 is enzymatically active when assayed with pure recombinant M. tuberculosis R1 subunit. Both ATP and dATP are activators for CDP reduction up to 2 and 1 mM, respectively. The gene encoding M. tuberculosis R2-1, nrdF1, is not linked to nrdF2, nor is either gene linked to the gene encoding the large subunit, M. tuberculosis nrdE. The gene encoding MTP64 was found downstream from nrdF1, and the gene encoding alcohol dehydrogenase was found downstream from nrdF2. A nrdA(Ts) strain of E. coli (E101) could be complemented by simultaneous transformation with M. tuberculosis nrdE and nrdF2. An M. tuberculosis nrdF2 variant in which the codon for the catalytically necessary tyrosine was replaced by the phenylalanine codon did not complement E101 when cotransformed with M. tuberculosis nrdE. Similarly, M. tuberculosis nrdF1 and nrdE did not complement E101. Activity of recombinant M. tuberculosis RR was inhibited by incubating the enzyme with a peptide corresponding to the 7 C-terminal amino acid residues of the R2-2 subunit. M. tuberculosis is a species in which a nrdEF system appears to encode the biologically active species of RR and also the only bacterial species identified so far in which class I RR subunits are not arranged on an operon. PMID:9335290

  7. Vaccine strategies against Babesia bovis based on prime-boost immunizations in mice with modified vaccinia Ankara vector and recombinant proteins.

    PubMed

    Jaramillo Ortiz, José Manuel; Del Médico Zajac, María Paula; Zanetti, Flavia Adriana; Molinari, María Paula; Gravisaco, María José; Calamante, Gabriela; Wilkowsky, Silvina Elizabeth

    2014-08-06

    In this study, a recombinant modified vaccinia virus Ankara vector expressing a chimeric multi-antigen was obtained and evaluated as a candidate vaccine in homologous and heterologous prime-boost immunizations with a recombinant protein cocktail. The chimeric multi-antigen comprises immunodominant B and T cell regions of three Babesia bovis proteins. Humoral and cellular immune responses were evaluated in mice to compare the immunogenicity induced by different immunization schemes. The best vaccination scheme was achieved with a prime of protein cocktail and a boost with the recombinant virus. This scheme induced high level of specific IgG antibodies and secreted IFN and a high degree of activation of IFNγ(+) CD4(+) and CD8(+) specific T cells. This is the first report in which a novel vaccine candidate was constructed based on a rationally designed multi-antigen and evaluated in a prime-boost regime, optimizing the immune response necessary for protection against bovine babesiosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors.

    PubMed

    Dekhtiarenko, Iryna; Ratts, Robert B; Blatnik, Renata; Lee, Lian N; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D; Marandu, Thomas F; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K; Mansouri, Mandana; Meyer, Christine; Lemmermann, Niels A W; Holtappels, Rafaela; Arens, Ramon; Klenerman, Paul; Früh, Klaus; Reddehase, Matthias J; Riemer, Angelika B; Cicin-Sain, Luka

    2016-12-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.

  9. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors

    PubMed Central

    Blatnik, Renata; Lee, Lian N.; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D.; Marandu, Thomas F.; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K.; Meyer, Christine; Holtappels, Rafaela; Arens, Ramon; Früh, Klaus; Reddehase, Matthias J.; Riemer, Angelika B.; Cicin-Sain, Luka

    2016-01-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy. PMID:27977791

  10. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  11. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  12. Adjuvant Activity of the Catalytic A1 Domain of Cholera Toxin for Retroviral Antigens Delivered by GeneGun▿

    PubMed Central

    Bagley, Kenneth C.; Lewis, George K.; Fouts, Timothy R.

    2011-01-01

    Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques. PMID:21508173

  13. Adjuvant activity of the catalytic A1 domain of cholera toxin for retroviral antigens delivered by GeneGun.

    PubMed

    Bagley, Kenneth C; Lewis, George K; Fouts, Timothy R

    2011-06-01

    Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques.

  14. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems.

    PubMed

    Gottschamel, Johanna; Lössl, Andreas; Ruf, Stephanie; Wang, Yanliang; Skaugen, Morten; Bock, Ralph; Clarke, Jihong Liu

    2016-07-01

    Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression.

  15. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  16. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  17. Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa.

    PubMed

    Perez-Martinez, Angy P; Ong, Edison; Zhang, Lixin; Marrs, Carl F; He, Yongqun; Yang, Zhenhua

    2017-11-01

    H56/AERAS-456+IC31 (H56), composed of two early secretion proteins, Ag85B and ESAT-6, and a latency associated protein, Rv2660, and the IC31 Intercell adjuvant, is a new fusion subunit vaccine candidate designed to induce immunity against both new infection and reactivation of latent tuberculosis infection. Efficacy of subunit vaccines may be affected by the diversity of vaccine antigens among clinical strains and the extent of recognition by the diverse HLA molecules in the recipient population. Although a previous study showed the conservative nature of Ag85B- and ESAT-6-encoding genes, genetic diversity of Rv2660c that encodes RV2660 is largely unknown. The population coverage of H56 as a whole yet remains to be assessed. The present study was conducted to address these important knowledge gaps. DNA sequence analysis of Rv2660c found no variation among 83 of the 84 investigated clinical strains belonging to four genetic lineages. H56 was predicted to have as high as 99.6% population coverage in the South Africa population using the Immune Epitope Database (IEDB) Population Coverage Tool. Further comparison of H56 population coverage between South African Blacks and Caucasians based on the phenotypic frequencies of binding MHC Class I and Class II supertype alleles found that all of the nine MHC-I and six of eight MHC-II human leukocyte antigen (HLA) supertype alleles analyzed were significantly differentially expressed between the two subpopulations. This finding suggests the presence of race-specific functional binding motifs of MHC-I and MHC-II HLA alleles, which, in turn, highlights the importance of including diverse populations in vaccine clinical evaluation. In conclusion, H56 vaccine is predicted to have a promising population coverage in South Africa; this study demonstrates the utility of integrating comparative genomics and bioinformatics in bridging animal and clinical studies of novel TB vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Immunization with recombinant V10 protects cynomolgus macaques from lethal pneumonic plague.

    PubMed

    Cornelius, Claire A; Quenee, Lauriane E; Overheim, Katie A; Koster, Frederick; Brasel, Trevor L; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf

    2008-12-01

    Vaccine and therapeutic strategies that prevent infections with Yersinia pestis have been sought for over a century. Immunization with live attenuated (nonpigmented) strains and immunization with subunit vaccines containing recombinant low-calcium-response V antigen (rLcrV) and recombinant F1 (rF1) antigens are considered effective in animal models. Current antiplague subunit vaccines in development for utilization in humans contain both antigens, either as equal concentrations of the two components (rF1 plus rLcrV) or as a fusion protein (rF1-rLcrV). Here, we show that immunization with either purified rLcrV (a protein at the tip of type III needles) or a variant of this protein, recombinant V10 (rV10) (lacking amino acid residues 271 to 300), alone or in combination with rF1, prevented pneumonic lesions and disease pathogenesis. In addition, passive immunization studies showed that specific antibodies of macaques immunized with rLcrV, rV10, or rF1, either alone or in combination, conferred protection against bubonic plague challenge in mice. Finally, we found that when we compared the reactivities of anti-rLcrV and anti-rV10 immune sera from cynomolgus macaques, BALB/c mice, and brown Norway rats with LcrV-derived peptides, rV10, but not rLcrV immune sera, lacked antibodies recognizing linear LcrV oligopeptides.

  19. Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn.

    PubMed

    Tacket, Carol O; Pasetti, Marcela F; Edelman, Robert; Howard, John A; Streatfield, Stephen

    2004-10-22

    Previous clinical studies have demonstrated the feasibility of using edible transgenic plants to deliver protective antigens as new oral vaccines. Transgenic corn is particularly attractive for this purpose since the recombinant antigen is stable and homogeneous, and corn can be formulated in several edible forms without destroying the cloned antigen. Transgenic corn expressing 1 mg of LT-B of Escherichia coli without buffer was fed to adult volunteers in three doses, each consisting of 2.1 g of plant material. Seven (78%) of nine volunteers developed rises in both serum IgG anti-LT and numbers of specific antibody secreting cells after vaccination. Four (44%) of nine volunteers also developed stool IgA. Transgenic plants represent a new vector for oral vaccine antigens.

  20. [Expression changes of major outer membrane protein antigens in Leptospira interrogans during infection and its mechanism].

    PubMed

    Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie

    2013-03-01

    To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P <0.01), whereas mRNA levels of leptospiral groEL, mce, loa22 and ligB genes were rapidly but transiently up-regulated (P<0.01). The treatment with closantel and HK-peptide antiserum partly reversed the infection-based down-regulated mRNA levels of lipL21 and lipL48 genes (P <0.01). Moreover, closantel caused a decrease of the infection-based up-regulated mRNA levels of groEL, mce, loa22 and ligB genes (P <0.01). Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.

  1. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector

    USGS Publications Warehouse

    Rocke, T.E.; Dein, F.J.; Fuchsberger, M.; Fox, B.C.; Stinchcomb, D.T.; Osorio, J.G.

    2004-01-01

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  2. A recombinant iron transport protein from Bordetella pertussis confers protection against Bordetella parapertussis.

    PubMed

    Alvarez Hayes, Jimena; Oviedo, Juan Marcos; Valdez, Hugo; Laborde, Juan Martín; Maschi, Fabricio; Ayala, Miguel; Shah, Rohan; Fernandez Lahore, Marcelo; Rodriguez, Maria Eugenia

    2017-10-01

    Whooping cough, which is caused by Bordetella pertussis and B. parapertussis, is a reemerging disease. New protective antigens are needed to improve the efficacy of current vaccines against both species. Using proteomic tools, it was here found that B. parapertussis expresses a homolog of AfuA, a previously reported new vaccine candidate against B. pertussis. It was found that this homolog, named AfuA Bpp , is expressed during B. parapertussis infection, exposed on the surface of the bacteria and recognized by specific antibodies induced by the recombinant AfuA cloned from B. pertussis (rAfuA). Importantly, the presence of the O-antigen, a molecule that has been found to shield surface antigens on B. parapertussis, showed no influence on antibody recognition of AfuA Bpp on the bacterial surface. The present study further showed that antibodies induced by immunization with the recombinant protein were able to opsonize B. parapertussis and promote bacterial uptake by neutrophils. Finally, it was shown that this antigen confers protection against B. parapertussis infection in a mouse model. Altogether, these results indicate that AfuA is a good vaccine candidate for acellular vaccines protective against both causative agents of whooping cough. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  3. Antigenic properties of HCMV peptides displayed by filamentous bacteriophages vs. synthetic peptides.

    PubMed

    Ulivieri, Cristina; Citro, Alessandra; Ivaldi, Federico; Mascolo, Dina; Ghittoni, Raffaella; Fanigliulo, Daniela; Manca, Fabrizio; Baldari, Cosima Tatiana; Li Pira, Giuseppina; Del Pozzo, Giovanna

    2008-08-15

    Several efforts have been invested in the identification of CTL and Th epitopes, as well as in the characterization of their immunodominance and MHC restriction, for the generation of a peptide-based HCMV vaccine. Small synthetic peptides are, however, poor antigens and carrier proteins are important for improving the efficacy of synthetic peptide vaccines. Recombinant bacteriophages appear as promising tools in the design of subunit vaccines. To investigate the antigenicity of peptides carried by recombinant bacteriophages we displayed different HCMV MHCII restricted peptides on the capsid of filamentous bacteriophage (fd) and found that hybrid bacteriophages are processed by human APC and activate HCMV-specific CD4 T-cells. Furthermore we constructed a reporter T-cell hybridoma expressing a chimeric TCR comprising murine alphabeta constant regions and human variable regions specific for the HLA-A2 restricted immunodominant NLV peptide of HCMV. Using the filamentous bacteriophage as an epitope carrier, we detected a more robust and long lasting response of the reporter T-cell hybridoma compared to peptide stimulation. Our results show a general enhancement of T-cell responses when antigenic peptides are carried by phages.

  4. Nucleic acids encoding metal uptake transporters and their uses

    DOEpatents

    Schroeder, Julian I.; Antosiewicz, Danuta M.; Schachtman, Daniel P.; Clemens, Stephan

    1999-01-01

    The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.

  5. [An indirect ELISA using Legionella pneumophila recombinant MOMP protein and its application in serological diagnosis].

    PubMed

    Wang, Tao; Zhang, Caixia; Cao, Xiuqin; Yang, Zhiwei

    2013-12-01

    To express and purify the recombinant major outer membrane protein (MOMP) of Legionella pneumophila (Lp) as diagnostic antigen, and explore its practical value in the serological diagnosis of Lp infection. The recombinant plasmid pET-momp was transformed into the E.coli BL21 competent cells. The recombinant MOMP was induced to express, and then analyzed by SDS-PAGE electrophoresis, purified by affinity chromatography. We screened and obtained 58 positive blood serum and 32 negative blood serum using the DRG (Germany, IgG/IgM/IgA) Lp kit. The blood serum samples were detected for IgG, IgM, IgA antibody levels by indirect ELISA that we had established with the purified MOMP as the coating antigen, as well as by R&D (USA, IgG/IgM/IgA) Lp kit. Then using the receiver operating characteristic (ROC) curve, we compared these two methods in the sensitivity, specificity and consistency of the test results, for evaluating the application value of the indirect ELISA of recombinant MOMP. The approximately 45 000 recombinant MOMP was successfully expressed and purified. Compared with the indirect ELISA we established with the R&D Lp kit for detecting Lp antibody IgG, IgM and IgA in blood serum, the sensitivity of the indirect ELISA of recombinant MOMP to IgG was 90.9%, the specificity was 91.7%, the Kappa value was 0.784 (P < 0.05), and the area under the ROC curve was 0.913; the sensitivity to IgM was 91.4% and the specificity was 90.6%, the Kappa value was 0.809 (P < 0.05), and the area under the ROC curve was 0.910; the sensitivity to IgA was 92.1% and the specificity was 88.9%, the Kappa value was 0.793(P < 0.05), and the area under the ROC curve was 0.905. The recombinant MOMP was successfully induced to express and purified. The indirect ELISA we established with the recombinant MOMP protein as a diagnostic antigen showed good specificity, sensitivity and consistency, which laid a foundation for the development of serological diagnosis kit of Legionnaires' disease.

  6. Biological, immunological and functional properties of two novel multi-variant chimeric recombinant proteins of CSP antigens for vaccine development against Plasmodium vivax infection.

    PubMed

    Shabani, Samaneh H; Zakeri, Sedigheh; Salmanian, Ali H; Amani, Jafar; Mehrizi, Akram A; Snounou, Georges; Nosten, François; Andolina, Chiara; Mourtazavi, Yousef; Djadid, Navid D

    2017-10-01

    The circumsporozoite protein (CSP) of the malaria parasite Plasmodium vivax is a major pre-erythrocyte vaccine candidate. The protein has a central repeat region that belongs to one of repeat families (VK210, VK247, and the P. vivax-like). In the present study, computer modelling was employed to select chimeric proteins, comprising the conserved regions and different arrangements of the repeat elements (VK210 and VK247), whose structure is similar to that of the native counterparts. DNA encoding the selected chimeras (named CS127 and CS712) were synthetically constructed based on E. coli codons, then cloned and expressed. Mouse monoclonal antibodies (mAbs; anti-Pv-210-CDC and -Pv-247-CDC), recognized the chimeric antigens in ELISA, indicating correct conformation and accessibility of the B-cell epitopes. ELISA using IgG from plasma samples collected from 221 Iranian patients with acute P. vivax showed that only 49.32% of the samples reacted to both CS127 and CS712 proteins. The dominant subclass for the two chimeras was IgG1 (48% of the positive responders, OD 492 =0.777±0.420 for CS127; 48.41% of the positive responders, OD 492 =0.862±0.423 for CS712, with no statistically significant difference P>0.05; Wilcoxon signed ranks test). Binding assays showed that both chimeric proteins bound to immobilized heparan sulphate and HepG2 hepatocyte cells in a concentration-dependent manner, saturable at 80μg/mL. Additionally, anti-CS127 and -CS712 antibodies raised in mice recognized the native protein on the surface of P. vivax sporozoite with high intensity, confirming the presence of common epitopes between the recombinant forms and the native proteins. In summary, despite structural differences at the molecular level, the expression levels of both chimeras were satisfactory, and their conformational structure retained biological function, thus supporting their potential for use in the development of vivax-based vaccine. Copyright © 2017 Elsevier Ltd. All rights

  7. Presence of Human T-Cell Responses to the Mycobacterium leprae 45-Kilodalton Antigen Reflects Infection with or Exposure to M. leprae

    PubMed Central

    Macfarlane, Anne; Mondragon-Gonzalez, Rafael; Vega-Lopez, Francisco; Wieles, Brigitte; de Pena, Josefina; Rodriguez, Obdulia; Suarez y de la Torre, Raul; de Vries, Rene R. P.; Ottenhoff, Tom H. M.; Dockrell, Hazel M.

    2001-01-01

    The ability of the 45-kDa serine-rich Mycobacterium leprae antigen to stimulate peripheral blood mononuclear cell (PBMC) proliferation and gamma interferon (IFN-γ) production was measured in leprosy patients, household contacts, and healthy controls from areas of endemicity in Mexico. Almost all the tuberculoid leprosy patients gave strong PBMC proliferation responses to the M. leprae 45-kDa antigen (92.8%; n = 14). Responses were lower in lepromatous leprosy patients (60.6%; n = 34), but some responses to the 45-kDa antigen were detected in patients unresponsive to M. leprae sonicate. The proportion of positive responses to the M. leprae 45-kDa antigen was much higher in leprosy contacts (88%; n = 17) than in controls from areas of endemicity (10%; n = 20). None of 15 patients with pulmonary tuberculosis gave a positive proliferation response to the 45-kDa antigen. The 45-kDa antigen induced IFN-γ secretion similar to that induced by the native Mycobacterium tuberculosis 30/31-kDa antigen in tuberculoid leprosy patients and higher responses than those induced by the other recombinant antigens (M. leprae 10- and 65-kDa antigens, thioredoxin, and thioredoxin reductase); in patients with pulmonary tuberculosis it induced lower IFN-γ secretion than the other recombinant antigens. These results suggest that the M. leprae 45-kDa antigen is a potent T-cell antigen which is M. leprae specific in these Mexican donors. This antigen may therefore have diagnostic potential as a new skin test reagent or as an antigen in a simple whole-blood cytokine test. PMID:11329466

  8. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis.

    PubMed

    Francisco-Cruz, A; Mata-Espinosa, D; Estrada-Parra, S; Xing, Z; Hernández-Pando, R

    2013-03-01

    BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte-macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. © 2012 British Society for Immunology.

  9. Combination of two candidate subunit vaccine antigens elicits protective immunity to ricin and anthrax toxin in mice.

    PubMed

    Vance, David J; Rong, Yinghui; Brey, Robert N; Mantis, Nicholas J

    2015-01-09

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism.

    PubMed

    Cheng, W-F; Chang, M-C; Sun, W-Z; Lee, C-N; Lin, H-W; Su, Y-N; Hsieh, C-Y; Chen, C-A

    2008-07-01

    A novel method for generating an antigen-specific cancer vaccine and immunotherapy has emerged using a DNA vaccine. However, antigen-presenting cells (APCs) have a limited life span, which hinders their long-term ability to prime antigen-specific T cells. Connective tissue growth factor (CTGF) has a role in cell survival. This study explored the intradermal administration of DNA encoding CTGF with a model tumor antigen, human papilloma virus type 16 E7. Mice vaccinated with CTGF/E7 DNA exhibited a dramatic increase in E7-specific CD4(+) and CD8(+) T-cell precursors. They also showed an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with the wild-type E7 DNA. The delivery of DNA encoding CTGF and E7 or CTGF alone could prolong the survival of transduced dendritic cells (DCs) in vivo. In addition, CTGF/E7-transduced DCs could enhance a higher number of E7-specific CD8(+) T cells than E7-transduced DCs. By prolonging the survival of APCs, DNA vaccine encoding CTGF linked to a tumor antigen represents an innovative approach to enhance DNA vaccine potency and holds promise for cancer prophylaxis and immunotherapy.

  11. Molecular Cloning of an Immunogenic Protein of Baylisascaris procyonis and Expression in Escherichia coli for Use in Developing Improved Serodiagnostic Assays▿

    PubMed Central

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Hancock, Kathy; Kazacos, Kevin R.

    2010-01-01

    Larva migrans caused by Baylisascaris procyonis is an important zoonotic disease. Current serological diagnostic assays for this disease depend on the use of the parasite's larval excretory-secretory (ES) antigens. In order to identify genes encoding ES antigens and to generate recombinant antigens for use in diagnostic assays, construction and immunoscreening of a B. procyonis third-stage larva cDNA expression library was performed and resulted in identification of a partial-length cDNA clone encoding an ES antigen, designated repeat antigen 1 (RAG1). The full-length rag1 cDNA contained a 753-bp open reading frame that encoded a protein of 250 amino acids with 12 tandem repeats of a 12-amino-acid long sequence. The rag1 genomic DNA revealed a single intron of 837 bp that separated the 753-bp coding sequence into two exons delimited by canonical splice sites. No nucleotide or amino acid sequences present in the GenBank databases had significant similarity with those of RAG1. We have cloned, expressed, and purified the recombinant RAG1 (rRAG1) and analyzed its diagnostic potential by enzyme-linked immunosorbent assay. Anti-Baylisascaris species-specific rabbit serum showed strong reactivity to rRAG1, while only minimal to no reactivity was observed with sera against the related ascarids Toxocara canis and Ascaris suum, strongly suggesting the specificity of rRAG1. On the basis of these results, the identified RAG1 appears to be a promising diagnostic antigen for the development of serological assays for specific detection of B. procyonis larva migrans. PMID:20926699

  12. Structures of Coxsackievirus A16 Capsids with Native Antigenicity: Implications for Particle Expansion, Receptor Binding, and Immunogenicity.

    PubMed

    Ren, Jingshan; Wang, Xiangxi; Zhu, Ling; Hu, Zhongyu; Gao, Qiang; Yang, Pan; Li, Xuemei; Wang, Junzhi; Shen, Xinliang; Fry, Elizabeth E; Rao, Zihe; Stuart, David I

    2015-10-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the primary causes of the epidemics of hand-foot-and-mouth disease (HFMD) that affect more than a million children in China each year and lead to hundreds of deaths. Although there has been progress with vaccines for EV71, the development of a CVA16 vaccine has proved more challenging, and the EV71 vaccine does not give useful cross-protection, despite the capsid proteins of the two viruses sharing about 80% sequence identity. The structural details of the expanded forms of the capsids, which possess nonnative antigenicity, are now well understood, but high resolution information for the native antigenic form of CVA16 has been missing. Here, we remedy this with high resolution X-ray structures of both mature and natural empty CVA16 particles and also of empty recombinant viruslike particles of CVA16 produced in insect cells, a potential vaccine antigen. All three structures are unexpanded native particles and antigenically identical. The recombinant particles have recruited a lipid moiety to stabilize the native antigenic state that is different from the one used in a natural virus infection. As expected, the mature CVA16 virus is similar to EV71; however, structural and immunogenic comparisons highlight differences that may have implications for vaccine production. Hand-foot-and-mouth disease is a serious public health threat to children in Asian-Pacific countries, resulting in millions of cases. EV71 and CVA16 are the two dominant causative agents of the disease that, while usually mild, can cause severe neurological complications, leading to hundreds of deaths. EV71 vaccines do not provide protection against CVA16. A CVA16 vaccine or bivalent EV71/CVA16 vaccine is therefore urgently needed. We report atomic structures for the mature CVA16 virus, a natural empty particle, and a recombinant CVA16 virus-like particle that does not contain the viral genome. All three particles have similar structures and

  13. Structural and Immunological Analysis of Anthrax Recombinant Protective Antigen Adsorbed to Aluminum Hydroxide Adjuvant

    PubMed Central

    Wagner, Leslie; Verma, Anita; Meade, Bruce D.; Reiter, Karine; Narum, David L.; Brady, Rebecca A.; Little, Stephen F.

    2012-01-01

    New anthrax vaccines currently under development are based on recombinant protective antigen (rPA) and formulated with aluminum adjuvant. Because long-term stability is a desired characteristic of these vaccines, an understanding of the effects of adsorption to aluminum adjuvants on the structure of rPA is important. Using both biophysical and immunological techniques, we compared the structure and immunogenicity of freshly prepared rPA-Alhydrogel formulations to that of formulations stored for 3 weeks at either room temperature or 37°C in order to assess the changes in rPA structure that might occur upon long-term storage on aluminum adjuvant. Intrinsic fluorescence emission spectra of tryptophan residues indicated that some tertiary structure alterations of rPA occurred during storage on Alhydrogel. Using anti-PA monoclonal antibodies to probe specific regions of the adsorbed rPA molecule, we found that two monoclonal antibodies that recognize epitopes located in domain 1 of PA exhibited greater reactivity to the stored formulations than to freshly prepared formulations. Immunogenicity of rPA-Alhydrogel formulations in mice was assessed by measuring the induction of toxin-neutralizing antibodies, as well as antibodies reactive to 12-mer peptides spanning the length of PA. Mice immunized with freshly prepared formulations developed significantly higher toxin-neutralizing antibody titers than mice immunized with the stored preparations. In contrast, sera from mice immunized with stored preparations exhibited increased reactivity to nine 12-mer peptides corresponding to sequences located throughout the rPA molecule. These results demonstrate that storage of rPA-Alhydrogel formulations can lead to structural alteration of the protein and loss of the ability to elicit toxin-neutralizing antibodies. PMID:22815152

  14. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses.

    PubMed

    Gallardo, Carmina; Sánchez, Elena G; Pérez-Núñez, Daniel; Nogal, Marisa; de León, Patricia; Carrascosa, Ángel L; Nieto, Raquel; Soler, Alejandro; Arias, María Luisa; Revilla, Yolanda

    2018-05-03

    The risk of spread of African swine fever virus (ASFV) from Russia and Caucasian areas to several EU countries has recently emerged, making it imperative to improve our knowledge and defensive tools against this important pathogen. The ASFV genome encodes many genes which are not essential for virus replication but are known to control host immune evasion, such as NFκB and the NFAT regulator A238L, the apoptosis inhibitor A224L, the MHC-I antigen presenting modulator EP153R, and the A276R gene, involved in modulating type I IFN. These genes are hypothesized to be involved in virulence of the genotype I parental ASFV NH/P68. We here describe the generation of putative live attenuated vaccines (LAV) prototypes by constructing recombinant NH/P68 viruses lacking these specific genes and containing specific markers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Design and construction of a double inversion recombination switch for heritable sequential genetic memory.

    PubMed

    Ham, Timothy S; Lee, Sung K; Keasling, Jay D; Arkin, Adam P

    2008-07-30

    Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and "remembers" its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit did not fully behave as expected, we showed that a multi-state, temporal memory is achievable.

  16. Variable performance of a human derived Sarcoptes scabiei recombinant antigen ELISA in swine mange diagnosis.

    PubMed

    Casais, R; Goyena, E; Martínez-Carrasco, C; Ruiz de Ybáñez, R; Alonso de Vega, F; Ramis, G; Prieto, J M; Berriatua, E

    2013-10-18

    The performance of an indirect ELISA test based on Sarcoptes scabiei var hominis recombinant antigen Ssλ20ΔB3 (rec-ELISA), to diagnose pig mange was investigated in 15 experimentally infected and non-infected pigs and 692 commercial pigs from 16 herds in southeast Spain. These latter animals included 6-7 month old fatteners (13 herds), 11-12 month old replacement sows (1 herd) and ≥24 month old breeding sows (7 herds). All pigs were examined for mites in ear skin scrapings and the presence of S. scabiei-associated macroscopic dermatitis; moreover, fatteners were also tested for antibodies against porcine viruses including: Aujeszky disease virus (ADV), swine influenza virus (SIV), type 2 porcine circovirus (PCV2) and porcine respiratory and reproductive syndrome virus (PRRSV). S. scabiei and chronic hyperkeratotic dermatitis were detected in breeding sows from 6 herds. Mite prevalence in other pigs was 83% in replacement sows, 0% in 7 fattener's herds and 3-82% in other fattener's herds. All fattener herds had pigs with acute hypersensitivity dermatitis and the percentage of affected pigs and lesion area was significantly greater in S. scabiei infected ones. Rec-ELISA relative optical densities (RODs) were greater in older than in young pigs, as well as in infected compared to non-infected pigs. However, RODs differed significantly between infected individuals, regardless of age and origin (commercial or experimental) and the herd prevalence of S. scabiei. Low repeatability between ELISA microtiter plates, suggesting variable specific antibody binding to antigen, are likely partly responsible for ROD variation. Other potential causes of variation were examined in fatteners using random effects logistic regression analysis, after defining a seropositivity threshold value with receiver-operating characteristics (ROC) analysis. The logistic model indicated that seropositivity was associated with large dermatitis areas and with the only herd with low PCV2

  17. Decreased capacity of recombinant 45/47-kDa molecules (Apa) of Mycobacterium tuberculosis to stimulate T lymphocyte responses related to changes in their mannosylation pattern.

    PubMed

    Horn, C; Namane, A; Pescher, P; Rivière, M; Romain, F; Puzo, G; Bârzu, O; Marchal, G

    1999-11-05

    The Apa molecules secreted by Mycobacterium tuberculosis, Mycobacterium bovis, or BCG have been identified as major immunodominant antigens. Mass spectrometry analysis indicated similar mannosylation, a complete pattern from 1 up to 9 hexose residues/mole of protein, of the native species from the 3 reference strains. The recombinant antigen expressed in M. smegmatis revealed a different mannosylation pattern: species containing 7 to 9 sugar residues/mole of protein were in the highest proportion, whereas species bearing a low number of sugar residues were almost absent. The 45/47-kDa recombinant antigen expressed in E. coli was devoid of sugar residues. The proteins purified from M. tuberculosis, M. bovis, or BCG have a high capacity to elicit in vivo potent delayed-type hypersensitivity (DTH) reactions and to stimulate in vitro sensitized T lymphocytes of guinea pigs immunized with living BCG. The recombinant Apa expressed in Mycobacterium smegmatis was 4-fold less potent in vivo in the DTH assay and 10-fold less active in vitro to stimulate sensitized T lymphocytes than the native proteins. The recombinant protein expressed in Escherichia coli was nearly unable to elicit DTH reactions in vivo or to stimulate T lymphocytes in vitro. Thus the observed biological effects were related to the extent of glycosylation of the antigen.

  18. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice

    PubMed Central

    Bagherpour, Ghasem; Ghasemi, Hosnie; Zand, Bahare; Zarei, Najmeh; Roohvand, Farzin; Ardakani, Esmat M.; Azizi, Mohammad; Khalaj, Vahid

    2018-01-01

    Saccharomyces boulardii, a subspecies of Saccharomyces cerevisiae, is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi®) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3- S. boulardii. To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group (P < 0.001) compared to control groups (receiving wild type S. boulardii or PBS), and the fecal IgA titer was significantly higher in test group (P < 0.05) than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii, as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins. PMID

  19. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice.

    PubMed

    Bagherpour, Ghasem; Ghasemi, Hosnie; Zand, Bahare; Zarei, Najmeh; Roohvand, Farzin; Ardakani, Esmat M; Azizi, Mohammad; Khalaj, Vahid

    2018-01-01

    Saccharomyces boulardii , a subspecies of Saccharomyces cerevisiae , is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi ® ) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3 - S. boulardii . To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group ( P < 0.001) compared to control groups (receiving wild type S. boulardii or PBS), and the fecal IgA titer was significantly higher in test group ( P < 0.05) than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii , as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins.

  20. Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines.

    PubMed

    Martinez-Torrecuadrada, Jorge L; Saubi, Narciís; Pagès-Manté, Albert; Castón, José R; Espuña, Enric; Casal, J Ignacio

    2003-07-04

    The immunogenicity and protective capability of several baculovirus-expressed infectious bursal disease virus (IBDV)-derived assemblies as VP2 capsids, VPX tubules and polyprotein (PP)-derived mixed structures, were tested. Four-week-old chickens were immunised subcutaneously with one dose of each particulate antigen. VP2 icosahedral capsids induced the highest neutralising response, followed by PP-derived structures and then VPX tubules. All vaccinated animals were protected when challenged with a very virulent IBDV (vvIBDV) isolate, however the degree of protection is directly correlated with the levels of neutralising antibodies. VP2 capsids elicited stronger protective immunity than tubular structures and 3 micrograms of them were sufficient to confer a total protection comparable to that induced by an inactivated vaccine. Therefore, VP2 capsids represent a suitable candidate recombinant vaccine instead of virus-like particles (VLPs) for IBDV infections. Our results also provide clear evidence that the recombinant IBDV-derived antigens are structure-dependent in order to be efficient as vaccine components.